
 

1 
 

 
Long Run Returns Predictability and  

Volatility with Moving Averages * 
 

Chia-Lin Chang  
Department of Applied Economics  

Department of Finance 
National Chung Hsing University, Taiwan    

 
Jukka Ilomäki  

Faculty of Management 
University of Tampere, Finland 

 

Hannu Laurila  
Faculty of Management 

University of Tampere, Finland 
 

Michael McAleer ** 
Department of Finance 

Asia University, Taiwan 
and 

Discipline of Business Analytics 
University of Sydney Business School, Australia 

and 
Econometric Institute, Erasmus School of Economics 

Erasmus University Rotterdam, The Netherlands 
and 

Department of Economic Analysis and ICAE 
Complutense University of Madrid, Spain 

and 
Institute of Advanced Sciences 

Yokohama National University, Japan 
 

EI2018-39 

September 2018 
 
 
 
 

* For financial support, the first author wishes to acknowledge the Ministry of Science and 
Technology (MOST), Taiwan, and the fourth author is grateful to the Australian Research Council 
and Ministry of Science and Technology (MOST), Taiwan. 
** Corresponding author: michael.mcaleer@gmail.com   



 

2 
 

 

Abstract 

 

The paper examines how the size of the rolling window, and the frequency used in moving average 

(MA) trading strategies, affect financial performance when risk is measured. We use the MA rule for 

market timing, that is, for when to buy stocks and when to shift to the risk-free rate. The important 

issue regarding the predictability of returns is assessed. It is found that performance improves, on 

average, when the rolling window is expanded and the data frequency is low. However, when the size 

of the rolling window reaches three years, the frequency loses its significance and all frequencies 

considered produce similar financial performance. Therefore, the results support stock returns 

predictability in the long run. The procedure takes account of the issues of variable persistence as we 

use only returns in the analysis. Therefore, we use the performance of MA rules as an instrument for 

testing returns predictability in financial stock markets. 

 

Keywords: Trading strategies, Risk, Moving average, Market timing, Returns predictability, 

Volatility, Rolling window, Data frequency.  

JEL: C22, C32, C58, G32. 
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1. Introduction  

 

Gartley (1935) introduced the moving average (MA) trading rule to detect stochastic trends in the 

prices of risky assets. According to the rule, unnecessary price fluctuations are supposedly reduced 

when the rolling averages are calculated over the price history. If the rolling average is lower (higher) 

than the current closing price, the rule suggests that an uptrend (downtrend) prevails in risky asset 

prices.  

Black (1986) refined the idea of Gartley by assuming that all unnecessary price fluctuations 

that are independent of fundamental information concerning the risky assets were noise fluctuations 

(that is, opposite to those produced by fundamental information). This means that any price variation 

that has nothing to do with any new information regarding risky assets can simply be referred to as 

noise. This idea has become elementary in the behavioral finance literature that started from Shiller 

(1981), which asks why asset price fluctuations are more severe than expected fundamentals would 

count for. 

Merton (1981) stated that trading rules are usually used to determine when to buy or sell 

stocks, and calls this ‘market timing’. According to Merton, market timing by some technical trading 

rule is useless, and its performance should equal that of random market timing in efficient financial 

markets. Short selling costs or fund manager constraints make the market timing strategy usually turn 

into a simple rule, specifically when to buy risky assets, and when to sell them and switch to the risk-

free asset.  

The phenomenon is important because Menkhoff (2010) reports that 87% of fund managers 

use technical trading rules in their investment decisions, and tend to use the weekly horizon as the 

time frame. According to Zhu and Zhou (2009), the MA200 daily rule is the most popular trend 

chasing rule, in practice. This market timing rule means that the rolling window is 200 trading days, 

and every trading day is included in the calculations of the historical average.   

Ilomäki et al. (2018) used the Dow Jones Industrial Average (DJIA) stocks from the 

beginning of 1988 through to the end of 2017, and found that the lower was the frequency in the MA 

rule, the higher were average daily returns, even though average volatilities remained unchanged. The 

MA was calculated for the following frequencies: daily, weekly, monthly, every other month, every 

3rd month, every 4th month, and every 5th month, from the maximum 200 rolling window to the 

smallest. Monthly frequencies were produced, for example, with ten, nine, eight, seven, six, five, 

four, three, and two monthly observations. The largest rolling window (200 days) produced the best 
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results, on average, with all frequencies including, for example, ten observations at the monthly 

frequency.    

More importantly, the MA200 was found to produce a lower Sharpe ratio than the random 

market timing strategy, implying that the most popular MA rule among practitioners was useless for 

risk averse market timing. However, starting from the monthly frequency, that is, every 22th trading 

day in the 200 day rolling window, the MA200 Sharpe ratio began to exceed that of the random timing 

strategy. Moreover, the Sharpe ratio continued to rise when the frequency was reduced. This suggests 

that the MA rules are more accurate in detecting long term stochastic trends.  

The empirical results indicated an anomaly: lower frequency increases returns and Sharpe 

ratios with relatively unchanged volatility. The anomaly can be explained by the time varying risk 

premium of aggregate risk averse investors, or by investor affection for high volatility (see Baker et 

al., 2011). The literature in financial economics discusses stock returns being predictable in the long 

run, as well as problems raised by the persistence of explanatory variable observations (mainly 

dividend yields and dividend-price ratios). Our procedure solves the problem by using only returns 

as observations. 

In Ilomäki et al. (2018), the annualized average volatilities and average returns were 

calculated using annualized Sharpe ratios. This raises a question about conditional volatility that 

indicates time-varying risk. Among other issues, this paper tackles that question. In addition, what 

would happen to the performance if the rolling window size were expanded? What about long term 

stock return predictability? The null hypothesis is that the size of rolling windows or frequencies do 

not explain the performance of MA rules. The empirical results confirm previous empirical findings, 

namely that reduction of the frequency of the rolling windows makes the returns grow, and the 

conditional risk remains the same, on average.  

In addition, when the rolling window size is expanded, the financial performance improves. 

However, when the rolling window is 800 trading days (about three years), the significance of the 

frequency disappears. The results support previous empirical findings in the financial economics 

literature, namely that stock market returns are predictable in the long run. Moreover, this empirical 

finding is free from the non-stationarity issue (as reported in Valkanov (2003) and Boudoukh et al. 

(2008)) that has been a major problem concerning the long-term predictability of stock returns with 

dividend yields, or with dividend-price ratios.   

The remainder of the paper is as follows. Section 2 presents a literature review. Section 3 

discusses the model specification. The empirical tests for expanded rolling windows and the 

conditional volatility analysis are analyzed in Section 4. Section 5 gives some concluding comments. 
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2. Literature Review 

 

Beginning with the influential work of Fama and French (1988), there is substantial evidence to 

suggest that stocks returns are predictable by dividend yields, by dividend price ratios, or by interest 

rate term spreads over the longer horizon, that is, from two to four years ahead (see, for example, 

Campbell and Shiller, 1988; Fama, 1998; Campbell and Cochrane, 1999; Cochrane, 1999; Campbell 

and Viceira, 1999; and Menzly et al., 2004). Cochrane (1999) notes that stock returns are predictable 

in the long run over business cycles, whereas daily, weekly and monthly returns remain mainly 

unpredictable.  

However, Valkanov (2003) emphasizes that long term predictability is mainly due to the 

non-stationarity issues in the regressors, such as in dividend yields and in dividend/price ratios, 

thereby producing spurious regression results over the longer horizon. More importantly, Cochrane 

(2011) reports that variations in dividend/price ratios matches almost perfectly with variations in 

discount rates, indicating that changes in risk-free rates and in risk premia can be substituted reported 

non-stationary dividend/price ratios.   

In addition, Campbell and Yogo (2006), Ang and Bekaert (2007), Campbell and Thompson 

(2008), Hjalmarsson (2010), and Maio (2014) show that stock returns are partly predictable mainly 

through changes in short term interest rates over a short horizon, whereas changes in long term bond 

yields do not seem to predict stock returns. Obviously, short term predictability is explained by 

changes in the discount factor in present value models for cash flows for investors from risky assets. 

In fact, Boudoukh et al. (2008) stress that weak predictability over a short horizon reflects stronger 

predictability over a long horizon due to persistence in dividend yields and in dividend price ratios.  

However, the technique we espouse in the paper for measuring stock returns predictability 

does not suffer from non-stationarity issues as we only analyze trading strategy returns, and compare 

the risk and returns that are produced by different MA frequencies and by different rolling window 

sizes. 

Brown and Jennings (1987) note that investors use technical trading rules assuming that 

past prices incorporate useful information. Brock et al. (1992) report that MA rules are valuable for 

investors, while Sullivan et al. (1999) note that MA rules can become useless when transaction costs 

are considered. On the other hand, Allen and Karjalainen (1999), Lo et al. (2000), and Zhu and Zhou 

(2009) report that risk averse investors benefit from MA rules. Neely et al. (2014) and Ilomäki (2018) 

find, using monthly data, that MA rules are beneficial for investors, and Marshall et al. (2017) draws 

the same conclusion using daily data on US small stocks. In addition, Ni et al. (2015) report that a 
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combination of two MA rules (or the so-called dead cross emerges) is useful for investors. However, 

Hudson et al. (2017) and Yamamoto (2012) conclude that MA rules are totally useless in high-

frequency trading.  

The financial economics literature stresses that investors are risk averse, which means that 

they care about the first and second moments of return distributions equally, that is, both returns and 

variability. This basic assumption of modern financial theory can be traced back to Markowitz (1951) 

and Tobin (1958). Furthermore, the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and 

Lintner (1965) indicates that the excess return of any share is linearly and positively dependent on 

the excess returns of the whole market. Beginning with LeRoy (1973), Merton (1973) and Lucas 

(1978), time-varying risk-premia have been regarded as rational phenomena because investors are 

risk averse.  

This can lead to a non-linear relationship between risk and returns. Malkiel (2003) states 

the common wisdom, namely that efficient financial markets do not allow investors to earn above 

average returns without accepting above average risk. Therefore, market efficiency can be examined 

by testing Malkiel’s claim as a null hypothesis (allowing non-linearity in returns as the null hypothesis 

is the buy and hold performance of the market portfolio). Cochrane (2008) emphasizes this by 

claiming that the time-varying standard deviation of realized returns reflects the time-varying 

expected excess returns, thereby implying a constant Sharpe ratios over time. 

Stock market returns for a share i  are assumed to be stationary over time. A traditional way 

is to assume that returns i  include a constant variance 2
i , which also indicates constant volatility, 

2
i , as volatility is simply the square root of the variance. However, Engle (1982) shows that the 

conditional variance, th  (and the conditional volatility, th ) can change over time as a function of 

previous conditional variances, 2
t s  , while the unconditional (long-term) variance 2

i  remains 

constant.  

In the simplest version, this leads to the following ARCH (1) process: 

 

2
0 1 1t th       

 

where 0 0,   and 10 1   are constant parameters to be estimated (for further details regarding 

the parametric restrictions, see McAleer (2014)). The unconditional variance is 20

11 i

 





, where 



 

7 
 

11 0.   Bollerslev (1986) generalized the ARCH process to GARCH by adding a lagged 

conditional variance, t sh  , in ARCH, so that GARCH (1,1) is given as: 

 

2
0 1 1 1 1t t th h        

 

where  1 1 1    and the unconditional variance is 20

1 11 ( ) i

 
 


 

. The conditional volatility can 

be detected in trading rule returns by using the GARCH (1,1) model. However, Bollerslev and Engle 

(1986) report that the stock market returns may actually exhibit an integrated GARCH (that is, 

IGARCH) process, resulting in 1 1 1.    If an IGARCH process is identified, the unconditional 

variance cannot be determined as it will expand linearly in the forecasting horizon. However, we can 

still estimate the conditional volatility, for example, one year ahead.  

In addition, Allen et al. (2014) found that the realized volatility exceeds the forecasted 

volatility in stock markets. Corsi (2009) introduced an estimation method where the possible long 

memory of realized volatility can be investigated, denoting the method as a heterogenous 

autoregressive (HAR) model, as an approximation to long memory models (see, for example, Chang 

and McAleer (2012) and Chang et al. (2012) for empirical examples of HAR modelling in tourism 

research and agricultural commodity futures returns, respectively).  

 

3. Model Specification 

 

The model follows Ilomäki et al. (2018) closely. Assume an overlapping generation economy with a 

continuum of young and old investors,  0,1 . A young risk-averse investor j  is assumed to invest 

her initial wealth, j
tw ,  in infinitely lived risky assets,  i   DJIA index, and in risk-free assets that 

produce the risk-free rate of return, rf =  the rate of three-month U.S. Treasury bill. A risky asset i 

pays dividend ,tD and has s
ix outstanding.  

A young investor j maximizes utility from old time consumption through optimal 

allocation of initial resources, j
tw , between risky and risk-free assets: 
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2 21 1( )
max (1 )

2

. .

j
j f jt t t

t
t

j j
t t t

E P D
x r x

P

s t

x P w

   
   

 

  

 

where tE  is the expectations operator, tP is the price of one share of stock index,  j  is a constant 

risk-aversion parameter for investor j ,  2 is the variance of returns for the DJIA index, and j
tx  is 

the demand of risky assets for an investor j. The first-order condition is: 

 

 1 1 2(1 ) 0,t t t f j j
t

t

E P D
r x

P
  

   

 

which results in the following optimal demand for risky assets: 

 

 1 1
2

( ) / (1 )f
t t t tj

t j

E P D P r
x

 
   


.   (1) 

 

Suppose that an investor j is a macro forecaster who allocates their initial wealth between risky 

stocks and risk-free assets according to their forecast about the return of the risky alternative. Then, 

equation (1) says that the investor invests in the risky stocks only if the numerator on the right-hand 

side is positive. 

 

4. Empirical Analysis  

 

Ilomäki et al. (2018) observe that, using the largest sample for different frequencies, gives the best 

results for a technical trader. For example, with daily frequency in a 200 trading days rolling window, 

the authors calculate only MA200 trading rule returns.  This section presents the empirical results 

from seven frequencies for the MA rules with expanded rolling windows.  

The data consist of Dow Jones Industrial Average (DJIA) index data (daily closing 

prices) from 4 January 1988 to 31 December 2017, which produces 7825 daily observations for every 
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returns/volatility time series. Furthermore, we use 0.1% cost per transaction and calculate log returns 

in all the time series that are analyzed. 

The rolling windows are 200, 400, 600 and 800 trading days. The first frequency is to 

calculate MA for every trading day; the 2nd frequency takes into account every 5th trading day 

(thereby providing a proxy for the weekly rule); the 3rd frequency takes into account every 22nd 

trading day (proxy for the monthly rule); the 4th rule is to calculate MA for every 44th trading day 

(proxy for every other month); the 5th rule takes into account every 66th trading day (proxy for every 

3rd month); the 6th rule takes into account every 88th trading day (proxy for every 4th month); and 

the 7th rule takes into account every 110th trading day (proxy for every 5th month). In this way, the 

procedure generates 219100 return observations (in addition to the buy and hold results of 7825 

observations) return observations that will be used in the empirical analysis. 

The trading rule for all cases is a simple crossover rule. When the trend-chasing MA 

turns lower (higher) than the current daily closing price, we invest in the stock index (three-month 

US Treasury Bills) at the closing price of the next trading day. Thus, the trading rule provides a 

market timing strategy where we invest all wealth either in the DJIA index, or in the risk-free asset 

(three-month U.S. Treasury bill), while the moving average rule advises on the timing.  

The MA200, MA400, MA600 and MA800 are calculated as: 

 

1
20021

200

...


 





 

t
ttt X

PPP
 

  

1 2 400
1

...

400
t t t

t

P P P
X  



     
 

 

 

1 2 600
1

...

600
t t t

t

P P P
X  



     
 

  

 

1 2 800
1

...

800
t t t

t

P P P
X  



     
 

.   

 

At the lowest frequency, where every 110th daily observation is counted, MAC2, 

MAC4, MAC6 and MAC8 are calculated as: 
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1 110
12

t t
t

P P
X 



   
 

. 

 

1 110 220 330
14

t t t t
t

P P P P
X   



     
 

 

 

1 110 220 330 440 550
16

t t t t t t
t

P P P P P P
X     



       
 

 

 

1 110 220 330 440 550 660 770
18

t t t t t t t t
t

P P P P P P P P
X       



         
 

. 

 

If 11   tt PX  , we buy the stock at the closing price, tP  , thereby giving daily returns as:   

 









 


t

t
t P

P
R 1

1 ln . 

 

Table 1 presents the results where 200 trading days are used. We estimate conditional 

volatility on the basis of GARCH(1,1), reporting the average of yearly (1989-2017) estimated 

conditional volatilities for 260 trading days ahead, using the expanding window method. These 

estimates are also repeated for 400, 600 and 800 rolling windows returns. IGARCH processes are 

identified for almost all of the estimates. 

 

<Table 1 goes here.> 

 

The buy and hold strategy produces annualized returns before dividends of +0.085 with the 

annualized volatility 0.167. Table 1 shows that the annualized average volatility is 0.115 when MA 

rules are used, thereby reducing by about 31% compared with the buy and hold returns volatility. 

Note that 1 0.48 0.31  , and that the average US three month Treasury bill annualized yield has 

been +0.022, indicating we invest randomly 48% of time in the DJIA index from 4 January 1988, 

and 52% of time in the risk-free rate, thereby producing (0.085*0.48 0.022*0.52)   +0.053 

annually, on average, with 0.115 volatility.  
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Table 1 reports that, from the weekly frequency onwards, the MA rules exceed the random 

timing performance, before dividends. The average annualized dividends in the DJIA index have been 

+0.026 for the last 30 years. Therefore, the Sharpe ratio of random market timing (48% in stocks and 

52% in the risk-free rate), with dividends, is 0.38; for MA200, it is 0.32; for MAW40, it is 0.37; for 

MA10, it is 0.51; for MAD5, it is 0.47; for MAT4, it is 0.55; for MAQ3, it is 0.58; and for MAC2, it 

is 0.53.  

We calculate the Sharpe ratio as follows: 

 

[( % 0.026) 0.022] /i i ir x SR    , 

 

where ir is the annualized average returns for the trading rule i , %x  is the share of time  invested in 

the stock index, 0.026 is the average annual dividend, 0.022 is the average annualized risk-free rate 

of return, and  i is the annualized average standard deviation for the trading rule i . The annualized 

average standard deviation can be considered as an approximation for the unconditional volatility, 

where the GARCH effect is ignored.  

However, the results with conditional volatilities are more drastic, that is, if the GARCH 

effect is taken into account. While the buy and hold strategy produces the average (estimated by each 

year) conditional volatility 0.255 a year ahead, the average MA trading rule volatility is reduced to 

0.125, meaning a 51% reduction. When IGARCH is identified, the conditional volatility for 260 

trading days ahead is given by  

 

2
260 0 1 1260 (1 )t t th h         , 

 

where the 0 and 1  parameters are estimated using restricted GARCH (1,1), 2
t  is the return variance 

at time t , and th  is the conditional variance at time t . We annualize this by multiplying the IGARCH 

result by 260 , and use robust standard errors for all the estimates at the 95% confidence level. The 

equation indicates that if 0  has a zero (positive) estimate, the IGARCH process forecast behaves as 

random walk without (with) drift.  

Returns from January 4, 1988 to December 29, 1989 are the observations used for the first 

GARCH (1,1) estimates. Note that we approximate the conditional volatility of the random market 
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timing 48% of the time, investing in stocks as follows: 0.255 0.48 0.177  . In addition, Figure 1 

shows the realized volatilities for these returns series. 

 

<Figure 1 goes here> 

<Table 2 goes here> 

 

Table 2 shows that, with the 400 trading days rolling window, the annualized average 

volatility is 0.121, which means a reduction of 28% compared to the buy and hold strategy returns 

volatility when MA rules are used. This indicates in random timing strategy that we invest (because 

1 0.52 0.28)  52% of the time in the DJIA index and 48% in the risk-free rate producing

(0.085*0.52 0.022*0.48)   +0.055 annually, on average, with 0.121 volatility. The Sharpe ratio of 

random market timing (52% in stocks and 48% in the risk-free rate) with dividends is 0.38; for 

MA400 0.38; for MAW80 0.46; for MA19 0.58;   for MAD10 0.63; for MAT7 0.58; for MAQ5 0.55; 

and for MAC4 0.66.  

The results concerning the conditional volatilities are again more drastic. While the buy and 

hold strategy produces average yearly conditional volatility for a year ahead 0.255, the trading rule 

volatility reduces to 0.098, on average, indicating a 62% reduction. Moreover, the conditional 

volatility for the random timing is approximated as: 0.255 0.52 0.184  . Figure 2 shows the 

realized volatilities with these returns series. 

 

<Figure 2 goes here> 

<Table 3 goes here> 

 

Table 3 shows that, with the 600 trading days rolling window, the annualized average 

volatility is 0.129, which means a reduction of about 23% compared with the buy and hold strategy 

returns volatility when MA rules are used. This indicates for the random timing strategy that we 

invest 60% of the time in the index and 40% in the risk-free rate, producing

(0.085*0.60 0.022*0.40)   +0.060 annually before dividends, on average, with 0.129 volatility. 

The Sharpe ratio of random market timing (60% in stocks and 40% in the risk-free rate) with 

dividends is 0.42; for MA600, it is 0.55; for MAW121, it is 0.49; for MA29, it is 0.48;   for MAD14, 

it is 0.50; for MAT10, it is 0.56; for MAQ7, it is 0.54; and for MAC6, it is 0.67.  
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The results regarding conditional volatilities are again more severe. While the buy and hold 

strategy produces the average conditional volatility for a year ahead 0.255, the trading rule volatility 

reduces to 0.158, on average, indicating a 38% reduction. The approximation for the random timing 

conditional volatility is 0.255 0.60 0.198  .  Figure 3 shows the realized volatilities with these 

returns series. 

 

<Figure 3 goes here> 

<Table 4 goes here> 

 
Table 4 shows that, with the 800 trading days rolling window, the annualized average 

volatility is 0.133, with a reduction of about 20% compared with the buy and hold strategy returns 

when MA rules are used. This indicates for the random timing strategy that we invest 64% of the time 

in the index and 36% in the risk-free rate, thereby producing (0.085*0.64 0.022*0.36)   +0.062 

annually before dividends, on average, with 0.133 volatility. The Sharpe ratio of random market 

timing (64% in stocks and 36% in the risk-free rate) with dividends is 0.43; for MA800, it is 0.58; 

for MAW161, it is 0.61; for MA39, it is 0.57;   for MAD19, it is 0.60; for MAT13, it is 0.59; for 

MAQ10, it is 0.55; and for MAC8, it is 0.58.  

Finally, the results using conditional volatilities are again more drastic. While the buy and 

hold strategy produces conditional volatility for a year ahead 0.255, the average trading rule volatility 

reduces to 0.148, on average, indicating a 42% reduction. Finally, the approximation for the random 

timing conditional volatility is 0.255 0.64 0.204  . Figure 3 shows the realized volatilities with 

these returns series. 

 

<Table 5 goes here.> 

 

Table 5 suggests that when the size of the rolling window is 800 trading days (about three 

years), the significance of the frequencies in the MA rules becomes unimportant.  In order to analyze 

how the size of the rolling window and the frequencies can affect the performance (see Table 5) in 

trading rules, we estimate the following OLS regression models: 

 

1 2 3 4 5200 400 600 800i i i i i iSR RW RW RW RW           ,  (2) 
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1 2 3 4 5

6 7 8

i i i i i

i i i i

SR daily weekly monthly Dmonthly

Tmonhtly Qmonthly Cmonthly

    
   
    

   
,  (3) 

 

where iSR  denotes the Sharpe ratio, RW denotes the rolling window, all explanatory variables are 

taken to be dummies, and the benchmark group is the random timing strategy. Therefore, equations 

(2) and (3) contribute to the calculation of the analysis of variance (ANOVA). 

 

<Table 6 goes here.> 

   

Table 6 shows that all the estimated parameters are statistically significant, and the random 

timing strategy produces 0.40 for the Sharpe ratio, on average. With the rolling window of 200 trading 

days, the Sharpe remains the same statistically. However, RW400 produces 0.55, RW600 produces 

0.54, and the rolling window of 800 trading days produces 0.58, on average. Note that we use the 

small sample adjusted heteroskedasticity consistent standard errors (JHCSE) for all OLS estimates. 

Table 5 shows that the sample size is 32 for the OLS estimates in Tables 6-9. According to the small 

sample adjusted Jarque-Bera test, the residuals are normally distributed, with a p-value of 0.25 for 

this case. 

These empirical esults suggest that the widest window yields the best performance, beating 

the random timing performance by a 45% increase in the Sharpe ratio, on average. The adjusted R2 

value is 0.34, indicating that the size of the rolling window explains about one-third of the variations 

in the Sharpe ratios. The empirical results show that even the stochastic trend information from three 

years ago seems to improve the performance of the trading strategies. Moreover, the random timing 

(Efficient Market Hypothesis) performance is beaten by MA trading strategies, using the long run 

rolling window. This indicates that stock returns are more predictable in the long run.  

 

<Table 7 goes here.> 

 

Table 7 shows that the random timing beta, as well as the betas from monthly frequency 

onwards, are statistically significant. Moreover, the random timing strategy produces a Sharpe ratio 

of 0.40, on average. However, using monthly frequencies, the Sharpe ratio increases to 0.54, every 

other month produces 0.55, every 3rd month frequency produces 0.57, every 4th month produces 0.56 

and every 5th month produces a Sharpe ratio of 0.61, on average. According to the small sample 

adjusted Jarque-Bera test, the residuals are normally distributed, with a p-value of 0.78. 
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These results support the results of Ilomäki et al. (2018), suggesting that the lowest 

frequency produces the best performance, beating the random timing performance by a 51% increase 

in the Sharpe ratio, on average. The results suggest that using daily and weekly frequencies are 

practically useless, except when the widest rolling window is used. The adjusted R2 value is 0.38, 

which indicates that the frequency explains 38% of the variations in the Sharpe ratios.  

These empirical findings suggest that the long run stochastic trend information (that is, the 

observations in every 5th month), enhances the performance of trading strategies, and the random 

timing (Efficient Market Hypothesis) performance is clearly beaten by MA trading strategies. This 

indicates that the stock returns are more predictable in the long run.  

Next, we change the explained variable in equations (2) and (3) to the Sharpe ratio, where 

the unconditional volatility is changed for the conditional volatility ( )CV  measures in Tables 1-4, 

and are presented in Table 5. We denote this performance measure as iCSR , which is calculated as: 

 

[( % 0.026) 0.022] / cv
i i ir x CSR     , 

 

where ir is the annualized average returns for trading rule i , %x  is the share of time invested in the 

stock index, 0.026 is the average annual dividend, 0.022 is the average annualized risk-free rate of 

return, and  cv
i  is the annualized average conditional standard deviation, which is estimated yearly 

by GARCH(1,1) for 260  trading days ahead for trading rule i . 

Then, we estimate the ANOVA equations: 

 

1 2 3 4 5200 400 600 800i i i i i iCSR RW RW RW RW             (4) 

 

1 2 3 4 5

6 7 8

i i i i i

i i i i

CSR daily weekly monthly Dmonthly

Tmonhtly Qmonthly Cmonthly

    
   

    

   
,   (5) 

 

where the benchmark group is the random market timing, and all the explanatory variables are taken 

to be dummies. Table 8 presents the regression results for the model given in equation (4). 

Table 8 shows that all the estimated parameters are statistically significant, and the random 

timing strategy produces 0.26 for the iCSR , on average. However, when the rolling window of 200 

trading days is used, the iCSR  increases to 0.49, RW400 produces 0.68, RW600 produces 0.50, and 
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the rolling window of 800 trading days produces 0.53, on average. The small sample adjusted Jarque-

Bera test shows that the residuals are normally distributed, with a p-value of 0.48. 

 

<Table 8 goes here> 

 

These empirical results suggest that RW400 (a year and a half) yields the best performance, 

beating the random timing performance by a 158% increase in iCSR , on average.  The adjusted R2 

value is 0.31, indicating that the size of the rolling window explains about one-third of the variations 

in the iCSR .However, the empirical findings suggest that even the stochastic trend information from 

three years ago seems to improve the statistical performance of the trading strategies. Moreover, the 

random timing (Efficient Market Hypothesis) performance is beaten by MA trading strategies, with 

the long run rolling window increasing by 100%. This outcome indicates that the stock returns are 

indeed predictable in the long run. 

 

<Table 9 goes here.> 

  

Table 9 shows that the random timing strategy produces iCSR  of 0.26, on average. 

However, with daily, weekly, and monthly frequencies, the iCSR  does not increase significantly (at 

the 5% level of significance). On the other hand, every other month produces 0.51, every 3rd month 

frequency produces 0.62, every 4th month produces 0.72, and every 5th month produces a Sharpe 

ratio of 0.64, on average. The small sample adjusted Jarque-Bera test shows that the residuals are 

normally distributed, with a p-value of 0.72. 

These empirical results suggest that every 4th month frequency produces the best 

performance, beating the random timing performance by an increase of 173% in the iCSR , on average 

The adjusted R2 value is 0.38, indicating that the frequency explains 38% of the variations in the 

Sharpe ratios when the conditional volatilities are accommodated.  

 

5. Concluding Remarks 

 

This paper investigated the performance of Moving Average (MA) market timing strategies when the 

rolling window used in such strategies was expanded, and the frequency used in the calculations was 

also changed. The timing considered 200, 400, 600, and 800 trading days rolling windows, and daily, 
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weekly, monthly, every other month, every 3rd month, every 4th month and every 5th month 

frequencies were used. The primary purpose is to apply MA rule returns performance as an instrument 

for testing returns predictability in stock markets. 

The first empirical finding is that, on average, using daily or weekly frequencies does 

not beat random market timing performance. For example, the MA200 trading rule, which is the most 

common rule among practitioners, underperforms the random market timing strategy. However, it 

was also found that, when the rolling window was expanded from 400 trading days (a year and a half) 

onwards, with monthly and lower frequencies, the performance of MA trading strategies started to 

exceed that of random market timing when the unconditional volatility was used in the Sharpe ratios. 

Random market timing dominates if expected stock returns were constant or, as in our test, if the 

Sharpe ratios with unconditional and conditional volatility were fairly constant over time.  

Furthermore, we found that, when the unconditional volatility was changed to the 

conditional volatility in the Sharpe ratios, the results became more variable, as expected, but the main 

results remained fairly consistent with each other. However, when the conditional volatility was 

incorporated in the Sharpe ratio, then the monthly frequency seemed to lose power in predicting stock 

returns, on average. In addition, when the size of the rolling window reached 800 trading days (about 

three years), the frequencies produced a similar performance in the tested MA rules. This included 

both Sharpe ratios using unconditional and conditional volatilities. 

In summary, the empirical results indicated that stock returns were indeed predictable 

in the long run, and also over business cycles and stochastic trends. The results were also independent 

of the persistence issues of explanatory variables in predictions, which have been noted in the 

literature, because only returns were considered in the empirical analysis.  
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Table 1 

200 trading days rolling window, average annualized returns, volatilities and  
conditional volatilities in DJIA index, January 4, 1988 to December 31, 2017 

 

  random 

timing 

MA200 

daily 

MAW40 

weekly 

MA10 

monthly 

MAD5 

every 

other 

month 

MAT4 

every 

3rd 

month 

MAQ3 

every 

4th 

month 

MAC2 

every 

5th 

month 

returns 0.053 0.045 0.051 0.066 0.064 0.075 0.078 0.072 

volatility 0.115 0.110 0.111 0.111 0.116 0.120 0.118 0.119 

conditional  

volatility 

0.177 0.168 0.150 0.143 0.128 0.100 0.078 0.110 
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Table 2 

400 trading days rolling window, average annualized returns, volatilities and  
conditional volatilities in DJIA index, January 4, 1988 to December 31, 2017 

 
 random 

market 

timing 

MA400 

daily 

MAW80 

weekly 

MA19 

monthly 

MAD10 

every 

other 

month 

MAT7 

every 

3rd 

month 

MAQ5 

every 

4th 

month 

MAC4 

every 

5th 

month 

returns 0.055 0.053 0.063 0.077 0.085 0.076 0.080 0.087 

volatility 0.121 0.118 0.118 0.119 0.122 0.125 0.125 0.123 

conditional  

volatility 

0.184 0.100 0.098 0.097 0.101 0.098 0.090 0.099 

 

 

 

 

 

 

 

 

 

 

 

 



 

23 
 

 

 

 

Table 3 

600 trading days rolling window, average annualized returns, volatilities and 
conditional volatilities in DJIA index, January 4, 1988 to December 31, 2017 

 
 random 

market 

timing 

MA600 

daily 

MAW121 

weekly 

MA29 

monthly 

MAD14 

every 

other 

month 

MAT10 

every 

3rd 

month 

MAQ7 

every 

4th 

month 

MAC6 

every 

5th 

month 

returns 0.060 0.078 0.068 0.068 0.072 0.079 0.077 0.093 

volatility 0.129 0.130 0.127 0.129 0.130 0.129 0.131 0.130 

conditional  

volatility 

0.198 0.135 0.189 0.221 0.229 0.103 0.101 0.129 
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Table 4 

800 trading days rolling window, average annualized returns, volatilities and 
conditional volatilities in DJIA index, January 4, 1988 to December 31, 2017 

 
 random 

timing 

MA800 

daily 

MAW161 

weekly 

MA39 

monthly 

MAD19 

every 

other 

month 

MAT13 

every 

3rd 

month 

MAQ10 

every 

4th 

month 

MAC8 

every 

5th 

month 

returns 0.062 0.081 0.085 0.081 0.085 0.083 0.080 0.084 

volatility 0.133 0.131 0.131 0.132 0.133 0.132 0.136 0.135 

conditional  

volatility 

0.204 0.138 0.136 0.144 0.140 0.175 0.152 0.148 
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Table 5 
 

Summary of Sharpe ratios, sizes of rolling windows,  
frequencies, and Sharpe ratios with conditional volatilities  

 

Sharpe 
ratio 

200 Rolling 
Window 

400 Rolling 
Window 

600 Rolling 
Window 

800 
Rolling 
Window 

 Sharpe 
with 
conditional 
volatility 

   

0.38 random timing     0.25    

0.32 200     0.21    

           0.37 40     0.28    

0.51 10     0.39    

0.47 5     0.43    

0.55 4     0.65    

0.58 3     0.88    

0.53 2     0.57    

0.38  random timing    0.25    

0.38  400    0.45    

0.46  80    0.56    

0.58  19    0.71    

0.63  10    0.76    

0.58  7    0.69    

0.55  5    0.79    

0.66  4    0.79    

0.42   

random 
timing  

 0.27    

0.55   600   0.53    

0.49   121   0.33    

0.48   29   0.27    

0.5   14   0.29    

0.56   10   0.70    

0.54   7   0.70    

0.67   6   0.67    

0.43    

random 
timing 

 0.28    

0.58    800  0.55    

0.61    161  0.59    

0.57    39  0.53    

0.6    19  0.57    

0.59    13  0.44    

0.55    10  0.49    
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0.58    8  0.53    
 

 

 

Table 6 

OLS estimates from equation (2), where t-JHCSE are t-values with  
small sample adjusted heteroskedasticity consistent standard errors 

 

 coefficients t-JHCSE 
Constant 0.403 26.90 
RW200 0.073 1.76 
RW400 0.146 3.48 
RW600 0.139 4.64 
RW800 0.180 10.70 
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Table 7 
 

OLS estimates from equation (3), where t-JHCSE are t-values with  
small sample adjusted heteroskedasticity consistent standard errors 

 

 coefficients 
         
              t-JHCSE 

Constant 0.403 26.90 
daily 0.055 0.75 
weekly 0.080 1.37 
monthly 0.133 4.26 
every other month 0.148 3.19 
every 3rd month 0.168 9.21 
every 4th month 0.153 8.52 
every 5th month 0.208 5.08 
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Table 8 

OLS estimates from equation (4), where t-JHCSE are t-values with  
small sample adjusted heteroskedasticity consistent standard errors 

 
 

 coefficients           t-JHCSE 
Constant 0.262 29.00 
RW200 0.225 2.41 
RW400 0.416 7.77 

RW600 0.237 2.92 
RW800 0.266 12.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 
 

 

 

 

Table 9 
OLS estimates from equation (5), where t-JHCSE are t-values with  
small sample adjusted heteroskedasticity consistent standard errors 

 

 coefficients 
         
    t-JHCSE 

Constant 0.262 29.00 
daily 0.172 1.94 
weekly 0.174 1.93 
monthly 0.213 2.00 
every other month 0.248 2.15 
every 3rd month 0.361 5.19 
every 4th month 0.454 4.77 
every 5th month 0.379 5.62 
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Buy and Hold   200MA 

 

  

MAW40   MA10 

 

   

MAD5   MAT4 

  

MAQ3   MAC2   

Figure 1. Realized volatilities in 200 trading days rolling window are used.  
The straight line is the 2% realized volatility bound. 
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 MA400    MAW80 

  

MA19    MAD10 

   

 MAT7    MAQ5 

 

 MAC4 

Figure 2. Realized volatilities in 400 trading days rolling window are used.  
The straight line is the 2% realized volatility bound. 
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 MA600   MAW121 

         

MA29   MAD14 

  

 MAT10   MAQ7 

 

 MAC6 

Figure 3. Realized volatilities in 600 trading days rolling window are used.  
The straight line is the 2% realized volatility bound. 
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 MA800    MAW161 

  

 MA39    MAD19 

  

MAT13    MAQ10 

 

MAC8 

Figure 4. Realized volatilities in 800 trading days rolling window are used.  
The straight line is the 2% realized volatility bound. 


