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Hematopoiesis is an optimal system for studying stem cell maintenance and lineage
differentiation under physiological and pathological conditions. In vertebrate organisms,
billions of differentiated hematopoietic cells need to be continuously produced to
replenish the blood cell pool. Disruptions in this process have immediate consequences
for oxygen transport, responses against pathogens, maintenance of hemostasis and
vascular integrity. Zebrafish is a widely used and well-established model for studying
the hematopoietic system. Several new hematopoietic regulators were identified
in genetic and chemical screens using the zebrafish model. Moreover, zebrafish
enables in vivo imaging of hematopoietic stem cell generation and differentiation
during embryogenesis, and adulthood. Finally, zebrafish has been used to model
hematopoietic diseases. Recent technological advances in single-cell transcriptome
analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data
sets promise to transform the current understanding of normal, abnormal, and malignant
hematopoiesis. In this perspective, we discuss how the zebrafish model has proven
beneficial for studying physiological and pathological hematopoiesis and how these
novel technologies are transforming the field.
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INTRODUCTION

Over the past three decades, zebrafish has been established as an important model to study
various biological processes during development and homeostasis, including hematopoiesis. Many
attractive features underpin the success of zebrafish as a model for vertebrate hematopoiesis.
Cell-intrinsic and -extrinsic signaling mechanisms in hematopoiesis are well conserved between
zebrafish and mammals, with the exception of a few hematopoietic niche components (Liao et al.,
1998; Murayama et al., 2006; Bertrand and Traver, 2009; Paik and Zon, 2010; Goessling and North,
2011; Zhang and Liu, 2011; Zhang et al., 2013; Frame et al., 2017; Nik et al., 2017; Gore et al.,
2018). Moreover, zebrafish embryos are small and transparent so they are ideal for imaging and
easy to manipulate, at low cost. Additionally, genetic manipulation is easy and population studies
can be easily performed in zebrafish. Thus, zebrafish have become invaluable vertebrate models for
robust large-scale genetic screens (Mullins et al., 1994; Driever et al., 1996; Amsterdam et al., 1999)
and, more recently, high-throughput chemical compound screens (North et al., 2007; Yeh et al.,
2009). However, there are certain disadvantages in the zebrafish model. For example, zebrafish is
not a mammal, but rather a poikilothermic animal in which the development of embryos occurs
outside of the animal body and without placenta. That may lead to many metabolic and other
differences between zebrafish and mammals, including drug action and utilization. Finally, the
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zebrafish genome is duplicated and thus many genes have
paralogs and homologs that make the otherwise easy genetic
manipulation complicated (Glasauer and Neuhauss, 2014).

Embryonic hematopoiesis in zebrafish is a multistep process
occurring in a spatially restricted manner in three distinct waves.
During the intraembryonic primitive wave, the medial and
anterior lateral mesoderm give rise to erythroid and myeloid
cells, respectively. Erythro-myeloid progenitors (EMPs) form in
the posterior blood island (PBI) during a transient intermediate
wave. Finally, during the definitive wave, hematopoietic stem
cells (HSC) with multilineage capacity originate in the aorta-
gonad-mesonephros (AGM) region. The HSCs then translocate
to and expand in the caudal hematopoietic tissue (CHT), which
is followed by the colonization of the kidney and the thymus
(Figure 1). Interestingly, it was recently discovered that HSC-
independent T-cells can originate from the AGM and PBI during
the embryonic and larval stages of development (Tian et al.,
2017).

Zebrafish has been extensively used for modeling human
hematopoietic disease, including anemia, thrombocytopenia,
bone marrow failure syndromes, leukemia, and lymphoma
(Taylor and Zon, 2011; Kwan and North, 2017; Potts and
Bowman, 2017; Gore et al., 2018). The first transplantable
leukemia modeled in zebrafish was T-cell acute lymphoblastic
leukemia (T-ALL), which was induced by T cell-specific c-Myc
overexpression (Langenau et al., 2003). Thereafter, several models
of myelodysplastic syndromes and myeloproliferative neoplasms
have been described (Le et al., 2007; He et al., 2014; Gjini et al.,
2015; Peng et al., 2015).

Although for many years zebrafish was mainly used to
study embryonic and larval developmental hematopoiesis, recent
technological advances have transformed the field. In this
perspective, we will briefly discuss how research using zebrafish
genetic models in combination with chemical screens, high-
end imaging, and genome-wide molecular, metabolics and
proteomics approaches has contributed to our understanding of
hematopoiesis.

HEMATOPOIETIC GENERATION, LINEAGE
TRACING, AND DIFFERENTIATION

Imaging the Origin of Hematopoiesis
The transparency and accessibility of zebrafish embryos was
pivotal to collect evidence showing that hematopoietic stem and
progenitor cells (HSPCs) emerge from the ventral wall of the
dorsal aorta in vivo (Bertrand et al., 2010; Kissa and Herbomel,
2010). Moreover, high-end imaging techniques in zebrafish
embryos uncovered the mechanisms of thymus development
(Hess and Boehm, 2012) and revealed that HSPCs are amplified
and interact with endothelial cells in the CHT (Tamplin et al.,
2015). Multiple signaling pathways and cell-interactions affect
HSPC emergence. For instance, inflammatory signaling provided
by neutrophils is required for HSC generation (Espin-Palazon
et al., 2014; Li et al., 2014; Sawamiphak et al., 2014; He et al.,
2015). These unique properties of zebrafish allowed to uncover
the role of macrophages in HPSC mobilization and definitive

hematopoiesis (Travnickova et al., 2015). Where transient
and rapid cell-interactions occur, light-sheet microscopy, SPIM
(selective plane illumination) or spinning disk microscopy can
be used to visualize these processes in vivo in embryos and
adults, because these systems record time-lapse 3D fluorescent
images 100–1000x faster than conventional confocal microscopy
(Inoue and Inoue, 1996; Huisken et al., 2004; Arrenberg et al.,
2010). Moreover, transparent adult zebrafish models (White et al.,
2008) have enabled the imaging of adult hematopoiesis, thereby
opening the way to research exploring different HSC niche
components and HSC-niche interactions in the adult kidney
marrow, thymus, and spleen.

Lineage Differentiation: The Impact of
Single-Cell RNA Sequencing
The development of single-cell RNA-sequencing (scRNA-
seq) revolutionized the way we understand hematopoiesis.
As most cellular compartments have a certain degree of
heterogeneity, with bulk RNA-seq one cannot distinguish
between a small transcriptional difference in many cells, and a
large transcriptional difference in a few cells. Several insightful
reviews describe the different methods used for single-cell RNA-
seq (Kolodziejczyk et al., 2015; Ziegenhain et al., 2017; Dal Molin
and Di Camillo, 2018).

In zebrafish, one of the first methods used to characterize the
transcriptome of single cells was massive parallel qPCR, where
up to 96 transcripts could be analyzed in great sequencing depth
using the Fluidigm system. This method revealed two distinct
sub-populations of HSPCs in the CD41-GFP low-expressing stem
cell compartment of the adult kidney marrow. Moreover, by
using this technique and genetic ablation of T cells, a previously
uncharacterized hematopoietic cytotoxic T/NK cell population in
zebrafish was uncovered (Moore et al., 2016).

Recent technological advances in scRNA-seq have enabled
analyses without restriction to specific transcripts. A re-
examination of the CD41-GFPlow population revealed four
HSPC sub-populations with different cellular characteristics and
potential novel markers for HSCs were uncovered. Importantly,
some cells in these subpopulations expressed the thrombocyte
differentiation program long before they would have been
characterized as thrombocytes, showing that there is an early
lineage bias (Guo et al., 2013; Buenrostro et al., 2015; Paul et al.,
2015; Drissen et al., 2016; Grover et al., 2016; Nestorowa et al.,
2016; Olsson et al., 2016; Alberti-Servera et al., 2017; Velten et al.,
2017; Villani et al., 2017; Buenrostro et al., 2018; Dahlin et al.,
2018). In addition, scRNA-seq analyses in various transgenic
lines revealed that ribosomal genes and lineage regulators control
hematopoietic differentiation (Athanasiadis et al., 2017) and
uncovered several novel hematopoietic populations, including
two new types of NK cells (Tang et al., 2017). Finally, elegant
comparative evolutionary studies on LCK-GFP transgenic
zebrafish and mammals showed that membrane proteins are less
conserved in NK cells than in T cells (Carmona et al., 2017).
In the pathological context, scRNA-seq analysis of Myc-induced
T-ALLs demonstrated that few cells expressed an immature stem
cell program, suggesting that only a small proportion of leukemia

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 October 2018 | Volume 6 | Article 124

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-06-00124 October 11, 2018 Time: 19:20 # 3

de Pater and Trompouki Zebrafish Hematopoiesis Meets Technology

FIGURE 1 | (A) Overview of definitive hematopoietic sites in the developing embryo where HSPCs are born from hemogenic endothelial cells of the dorsal aorta (DA).
HSPCs are amplified in the caudal hematopoietic tissue (CHT) and migrate to the kidney and thymus. (B) Endothelial-to-hematopoietic transition (EHT) event imaged
in a Tg(fli:GFP) embryo between 32 and 40 hpf. (C) CHT region in Tg(flt:RFP)/Tg(CD41:GFP) embryo at 56 hpf indicating erythroid myeloid progenitors (EMP) in
green and definitive HSPCs in yellow as they originate from the artery and retain RFP at this timepoint. (D) Sagittal section through an adult zebrafish where the head
kidney is indicated with enlargement showing the hematopoietic cells in between the kidney tubules.

cells promote the disease. This is remarkable as a single transgenic
approach was used to initiate leukemogenesis and all leukemia
cells overexpress Myc (Moore et al., 2016).

Lineage Tracing
Zebrafish has traditionally been utilized to lineage-trace
differentiation during embryonic stages by labeling single cells
with dyes and following them throughout development, until the
dye fades or dilutes. However, the recent development of complex
genetic models has removed this time restriction and enabled
lineage tracing from the embryo into adulthood. For instance,
HSPCs generated from the hemogenic endothelium of the aorta
have been lineage-traced by using the multicolor transgenic
labeling system “blood bow” (Henninger et al., 2017) in
combination with high-end imaging and fluorescence-activated
cell sorting (FACS). Additionally, labeling with CRISPR/Cas9
scarring in embryos and tracing of unique hematopoietic clones
into adulthood has revealed that the hematopoietic system is only
generated from a handful of cells present at dome stage (Alemany
et al., 2018). This study claimed that all clones contribute to all
blood lineages, a subject that is controversial in mammalian
studies (Yamamoto et al., 2013; Notta et al., 2016; Pei et al., 2017).

A different approach for lineage-tracing cells consists
of performing high-throughput scRNAseq at various
developmental stages and then mapping similarities in
transcriptional profiles across a pseudo timescale of
differentiation (Macosko et al., 2015). By using this method
in early embryogenesis, two independent studies have described
gradually divergent differentiation patterns for specific lineages
and uncovered signaling networks required for zebrafish
development (Farrell et al., 2018; Wagner et al., 2018).

Future studies combining scRNAseq with lineage tracing
will be paramount to advance our understanding of the
developmental origins of hematopoietic populations. However,
this approach has the important caveat that scRNA-seq does
not provide topographic information for each individual cell. To
overcome this limitation, the Van Oudernaarden and Bakkers
laboratories have developed RNA-tomography (TOMOSEQ),

a method that combines traditional histological techniques
with low-input RNA sequencing and mathematical image
reconstruction (Junker et al., 2014).

IDENTIFICATION OF NOVEL
REGULATORY MECHANISMS OF
NORMAL AND MALIGNANT
HEMATOPOIESIS

Chemical Screens to Identify Regulators
of Normal and Abnormal Hematopoiesis
Zebrafish is an ideal vertebrate model system to conduct bio-
reactive compound screens (Zon and Peterson, 2005; Cusick
et al., 2012; Tamplin et al., 2012; Veinotte et al., 2014; Rennekamp
and Peterson, 2015; Deveau et al., 2017). The animals are
small-sized and lay hundreds of eggs that develop very rapidly,
thereby allowing the monitoring of compound activity and
biotoxicity in vivo across development. Such screens have led
to the identification of prostaglandin E2 as a compound that
increases HSC production (North et al., 2007). Prostaglandin E2
is currently being investigated for HSC expansion applications in
human and non-human primates (Goessling et al., 2011; Cutler
et al., 2013).

Important insights into the molecular regulation of T-ALL
came from zebrafish studies where immature T cells served as
models for T-ALL cells. By screening small molecules for an effect
on immature T cells using LCK-GFP transgenic zebrafish, a novel
compound, 1H-indole-3-carbaldehyde quinolin-8-yl-hydrazone,
named Lenaldekar, was identified with the potential to specifically
attack T-ALL cells (Ridges et al., 2012). Lenaldekar also has a
potential effect against autoimmune diseases such as multiple
sclerosis, as they are caused by an off-target activity of T cells
(Cusick et al., 2012). Currently there are ongoing clinical trials
to study the effectiveness of this promising compound. These
examples highlight the power of zebrafish models for screening
novel chemical compounds affecting normal, abnormal or
malignant hematopoiesis (Shafizadeh et al., 2004; Yeh et al., 2009;
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Paik et al., 2010; Gutierrez et al., 2014; Arulmozhivarman et al.,
2016).

Future studies addressing malignancy heterogeneity may
combine chemical screens with scRNAseq to identify therapy-
resistant cells and explore the mechanisms underpinning
resistance to treatment in individual cells, a fundamental
unresolved question in the cancer research field.

Effects of Perturbations in Embryonic
HSC Generation and Adult
Hematopoiesis
Several acute myeloid leukemia (AML) predisposition syndromes
are caused by innate mutations in transcription factors that
affect embryonic hematopoiesis, such as Gata2 and Runx1
(Babushok et al., 2016), suggesting that perturbations in
embryonic hematopoiesis affect the adult HSC compartment.
As the effects of alterations in embryonic hematopoiesis can
be easily monitored in zebrafish throughout development, as
well as during adulthood, this is an excellent system to study
AML predisposition syndromes. Until the recent development
of targeted gene editing, manipulating the zebrafish genome
to create specific mutations for making knockout and knockin
animals was challenging. Although TILLING (Targeting Induced
Local Lesions in Genomes) was a significant advancement,
this is a costly method that requires thousands of fish to
search for a STOP codon in the gene of interest. Moreover,
TILLING is rather limiting as it does not allow to induce
specific mutations (Wienholds et al., 2003; Draper et al., 2004).
Targeting the zebrafish genome with zinc-finger nucleases was
the beginning of a new era in zebrafish biology, as selected
genes could finally be specifically targeted for genome editing
(Amacher, 2008; Foley et al., 2009). Shortly after this technology
was introduced, TALENS (Dahlem et al., 2012; Hwang et al.,
2014; Huang et al., 2016; Liu et al., 2016), and more recently,
CRISPR/Cas9 (Hruscha et al., 2013; Irion et al., 2014; Shah
et al., 2015; Li et al., 2016; Liu et al., 2017) were developed.
Whilst it is relatively easy to generate knockouts and large
deletions with these gene-targeting techniques, making knockin
animals remains challenging. Nevertheless, several laboratories
have successfully created knockin animals by using CRISPR/Cas9
and co-injecting a repair template to facilitate homology-directed
repair (Hruscha et al., 2013; Auer et al., 2014; Albadri et al., 2017;
Kesavan et al., 2017). Additionally, Cre/lox, Flp/FRT, and 8C31
systems are also currently being used in zebrafish for precise
genome editing (Mosimann et al., 2013; Felker and Mosimann,
2016; Carney and Mosimann, 2018). Importantly, tissue-specific
expression of Cas9 in the hematopoietic system can be performed
in zebrafish to enable conditional manipulation of hematopoietic
cells (Ablain et al., 2015). A major caveat in both perturbing
the zebrafish genome and comparing the zebrafish with the
mammalian transcriptome in the context of clinical translation,
is, as previously mentioned, the Teleost genome duplication
(Glasauer and Neuhauss, 2014). As a result most genes are present
twice with (partially) redundant biological roles. This means that
for a complete perturbation of a mammalian gene, the zebrafish
counterparts have to be removed both, complicating genetic
crossings and analyses.

Epigenetic Regulation of the
Hematopoietic System
Chromatin conformation is essential for controlling gene
expression, and deregulation of this process may cause malignant
transformation (Groschel et al., 2014). Zebrafish is an excellent
system to explore the mechanisms underlying chromatin
regulation and to evaluate the effects of chromatin-modifying
drugs in vivo. Gene regulatory elements can be identified in
zebrafish using chromatin immunoprecipitation combined with
sequencing (ChIP-seq), however, the technique is limited by the
low number of zebrafish-specific antibodies currently available
and the large amount of input material required (Havis et al.,
2006; Trompouki et al., 2011; Bogdanovic et al., 2013). ChIP-
seq has been mostly used in early zebrafish embryos (Paik
et al., 2010; Vastenhouw et al., 2010; Bogdanovic et al., 2012;
Xu et al., 2012; Winata et al., 2013; Nelson et al., 2017; Meier
et al., 2018). Antibodies against histone marks, which are highly
conserved between species, have been successfully utilized in
zebrafish erythrocytes to describe the potential locus control
region (LCR) regulating globin expression (Ganis et al., 2012).
Moreover, given the functional conservation of these genes,
zebrafish is useful to functionally validate enhancers identified in
mouse and/or human models (Tijssen et al., 2011; Chiang et al.,
2017).

Other techniques for identifying gene regulatory elements
are based on the detection of open chromatin, for instance,
assay for transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq). ATAC-seq requires much less input
material than ChIP-seq, and has even been used successfully
with single cells (Fernandez-Minan et al., 2016; Doganli et al.,
2017). This method allowed the identification of endothelial
enhancers (Quillien et al., 2017) and revealed the role of cohesin
in rearranging the genomic architecture during the transition
of maternal to zygotic transcription in early embryos (Meier
et al., 2018). Combining scRNA-seq with ATAC-seq and immune
phenotypic analysis is a powerful approach to integrate our
understanding of lineage differentiation with the regulatory
elements involved in that process (Buenrostro et al., 2018). DNA
methylation studies can also be used to understand chromatin
accessibility, although more material is needed in these methods.
Methylation experiments have been conducted in zebrafish albeit
not specifically in the hematopoietic system (Lee et al., 2015; Kaaij
et al., 2016). Since many tissue-specific fluorescent lines exist in
zebrafish, future research should aim to identify enhancers and
promoters in specific cell types, rather than using whole embryos.

Despite the advantages of ATAC-seq and methylation
analyses, these approaches cannot offer the same information
as ChIP-seq. Thus, improved ChIP-seq protocols, such as the
high sensitivity indexing-first chromatin immunoprecipitation
approach (iChIP) developed in Ido Amit’s laboratory, should be
adapted to zebrafish (Gury-BenAri et al., 2016). Moreover, it
would be important to unravel chromatin interactions in active
enhancer and promoter regions during hematopoiesis. However,
although chromatin conformation has been studied in early
zebrafish embryos (Gomez-Marin et al., 2015; Fernandez-Minan
et al., 2016), to date no studies have addressed this question
specifically in zebrafish hematopoiesis. It is important to mention
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FIGURE 2 | Graph indicating different methods used to study zebrafish hematopoiesis.

the combined effort of many groups to collate all available
genome-wide data in zebrafish in the DANIO-CODE Data
Coordination Center1 (Tan et al., 2016). This recently launched
database will provide an easy access to high-quality genome data
to all scientists.

Proteomics and Metabolomics Studies
In the era of genome-wide technology, gene expression
studies should be complemented with proteomic studies, as
transcriptional and translational outcomes can sometimes
differ. Additionally, the extension of these analyses to
metabolomics may uncover another layer of regulation critical
for hematopoiesis. Indeed, it was recently shown that dormant
stem cell populations have low metabolic activity, and this is
required to maintain the hematopoietic system during aging
and periods of intense stress (Cabezas-Wallscheid et al., 2017).
Although proteomics and metabolomics methods have not
yet been extensively explored in zebrafish, particularly in the
hematopoietic system, some studies have reported differences
between transcript and protein levels in multiple genes by using
proteomic analyses either in whole zebrafish embryos or in
specific cell populations during regeneration (Alli Shaik et al.,
2014; Baral et al., 2014; Rabinowitz et al., 2017). Metabolomics

1https://danio-code.zfin.org

has proven useful to understand the neurological damage
resulting from chemical perturbations in zebrafish embryos (Ong
et al., 2009; Rabinowitz et al., 2017; Roy et al., 2017). Finally,
as mass spectrometry analyses are constantly improving, the
sensitivity of these methods will likely overcome the current
problem of heterogeneous and low cell-number populations.

CONCLUSION

The zebrafish has become an invaluable model system for
understanding how HSCs form and are maintained, and
how hematopoietic cell differentiation is regulated during
embryogenesis and in adulthood. The unique advantages
offered by this model system over traditional mouse models
regarding the use in chemical screens and the accessibility
during embryonic stages allowing easy manipulation and
visualization and tracing into adult stages, in combination
with recent new technologies (Figure 2), have opened the way
for novel exciting hypotheses on the mechanisms promoting
hematopoietic diseases, the role of the niche in normal and
malignant hematopoiesis, and the effect of chemical compounds
on malignant cells. The high conservation between the zebrafish
and human hematopoietic systems means that discoveries in fish
may have strong translational potential and important clinical
implications for the treatment of hematopoietic diseases.
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