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ABSTRACT 

 

Life history effects on neutral polymorphism and divergence rates, in autosomes and sex 

chromosomes 

 

Guy Amster 

 

Much of modern population genetics revolves around neutral genetic differences among 

individuals, populations, and species. In this dissertation, I study how sex-specific life history traits 

affects neutral diversity levels within populations (polymorphism) and between species 

(divergence) on autosomes and sex chromosomes.  In chapter 1, I consider the effects of sex 

specific life histories, and particularly generation times, on substitution rates along the great ape 

phylogeny. Using a model that approximates features of the mutational process in most mammals, 

and fitting the model on data from pedigree-studies in humans, I predict the effects of life history 

traits on specific great ape lineages. As I show, my model can account for a number of seemingly 

disparate observations: notably, the puzzlingly low X-to-autosome ratios of substitution rates in 

humans and chimpanzees and differences in rates of autosomal substitutions among great ape 

lineages. The model further suggests how to translate pedigree-based estimates of human mutation 

rates into split times among extant apes, given sex-specific life histories. In so doing, it largely 

bridges the gap reported traditional fossil-based estimates of mutation rates, and recent pedigree-

based estimates. In chapter 2, I consider the effects of sex- and age- dependent mortalities, 

fecundities, reproductive variances and mutation rates on polymorphism levels in humans. Using 

a coalescence framework, I provide closed formulas for the expected polymorphism rate, 



accounting for life history effects. These formulas generalize and simplify previous models. 

Applying the model to humans, my results suggest that the effects of life history – and of sex 

differences in generation times in particular – attenuate how changes in historical population sizes 

affect X to autosome polymorphism ratios. Applying these results to observations across human 

populations, I find that life history effects and demographic histories can largely explain the 

reduction in X to autosome polymorphism ratios outside Africa. More generally, my work 

elucidates the major role of sex-specific life history traits – and male and female generation times 

in particular – in shaping patterns of neutral genetic diversity within and between species. 
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 1 

Introduction 
 

Much of modern population genetics revolves around neutral genetic differences among 

individuals, populations, and species. Importantly, patterns of neutral polymorphism and 

divergence reflect a wealth of information about evolutionary processes and have been used 

extensively to make inferences about them. Since genetic diversity accumulates slowly over 

millions of years, these inferences provide an opportunity to learn about processes in the distant 

past that cannot be observed directly. Neutral divergence among species reflects the accumulation 

of genetic mutations since their split from a common ancestor and is our primary source of 

information about the chronology and evolutionary relationship among all living species, over time 

scales ranging from millions to billions of years. Neutral polymorphism reflects more recent 

evolutionary history and has been our main source of information about recent demographic 

history as well as basic processes, such as mutation and recombination. Understanding the 

determinants of neutral polymorphism and divergence is therefore of focal importance in 

population genetics. 

A fundamental result in molecular evolution is -the rate at which neutral substitutions accumulate 

on a lineage equals the rate at which mutations arise (1). Thus, divergence patterns allow 

inferences on the average mutation rate over phylogenetic timescales. This result is sometimes 

phrased in terms of “the molecular clock”, as it implies that sequence divergence could be 

normalized to units of years, given an estimate for the mutation rate. In the opposite direction, 

given an estimate for the split times of two species (for example, based on fossil evidence), one 

could infer the mutation rate from their neutral divergence levels. Most estimates of species split 

times over relatively short evolutionary times scales rely on the molecular clock. In particular, 
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until recently, estimates of the chronology of great ape evolution were based on estimating the 

mutation rate in the few splits where fossil evidence is reliable and then rely on this estimate of 

the mutation rate to date the entire phylogeny. 

However, these estimates have recently been put into question over the last decade, since it became 

technologically feasible to estimate the mutation rate directly by sequencing two-generations or 

three-generation families and obtaining direct counts of the number of de-novo mutations per-

generation. Surprisingly, in humans, these new estimates are ~2-fold lower than the previous, 

fossil-based estimates (e.g., (2)). This dramatic reduction in estimates of human mutation rates 

seriously challenged previous estimates of the split times between us and our closest living 

relatives. For instance, they suggest that the split of humans and chimpanzees from a common 

ancestor occurred ~10 MYA instead of ~4 MYA, i.e., more than twofold than the previous 

estimate. Moreover, the new split time estimates appear to be at odds with the catarrhine fossil 

record (3).  

In chapter 1, published in PNAS (4), I suggest a plausible solution to this puzzle and a revision to 

the estimates for split times throughout the great ape phylogeny. To this end, I model how the 

molecular clock is affected by sex-specific life history traits, particularly generation times in males 

and females, relying on a model that approximates known features of the mutational process in 

mammals. Using this model, I provide a quantitative prediction for the effect of sex-specific life 

history traits on divergence rates. A surprising result of the model is that yearly mutation rates in 

humans are fairly insensitive to changes in the mean generation time but are strongly affected by 

relative changes in generation times between males and females. I then rely on plausible values of 

life history traits to derive revised estimates for corresponding split times. For example, 

considering that estimates of generation times are consistently higher in males (e.g., in hunter 
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gatherer societies and chimpanzees groups (5, 6)), that the age of puberty in males is considerably 

lower in chimpanzees and plausibly lower in Homo erectus (e.g., from Nariokotome boy dated 

∼1.5 MYA (7)) than in modern humans, and relying on the pedigree estimates of mutation rates, 

the model suggests humans and chimpanzees might have split from a common ancestor as recently 

as ∼6.6 MYA, compared to a naïve pedigree based estimate of ~10 MYA (3). Moreover, my split 

time estimates for the great-ape phylogeny are consistent with the fossil record and thus reconcile 

them with the pedigree-based estimates of the mutation rate. More generally, these results suggest 

that life-history traits can have a substantial effect on the molecular clock and thus on phylogenetic 

estimates.  

The effects of life history on the molecular clock can also explain several other intriguing patterns 

observed in the molecular phylogeny of great apes and more generally, mammals. Notably, they 

can explain the puzzlingly low X-to-autosome (X:A) ratios of substitution rates observed in the 

human and chimpanzee lineages and the differences in ratios among great apes lineages (8, 9). In 

particular, this provides an alternative, and arguably more natural, explanation for the low X:A 

divergence ratio on the human and chimpanzee lineages than the earlier suggestion that attributed 

this observation to ‘complex speciation’ (8). I also find that life history can explain why autosomal 

substitution rates on the gorilla lineage are substantially greater than rates on the human and 

chimpanzee lineages (10). Finally, considering these effects can help to reconcile recent evidence 

that changes in generation times had only minor effects on mutation rates in humans (11) with 

classic studies suggesting they have had a major effects on the rate of molecular evolution in the 

mammalian phylogeny (12, 13). Overall, these finding help resolve several recent and long-

standing puzzles and highlight the importance of life history traits in shaping patterns of neutral 

genetic divergence. 
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Life history may have an even more pronounced effect on neutral polymorphism levels. The time 

to the most recent ancestor separating alleles from two different species is largely determined by 

the species’ split times (neglecting the effects of ancestral polymorphism), and life history 

therefore affects divergence primarily by affecting the yearly rate of mutation on the lineage. In 

contrast, the time to the most recent common ancestor of two alleles from the same population can 

be affected by life history traits. Thus life history affects polymorphism level through both 

genealogical and mutation processes. 

Comparing relative levels of neutral polymorphism on the X and autosomes is of particular interest 

in this regard. Because autosomes spend an equal number of generations in both sexes while the 

X spends twice as many of generations in females, relative diversity levels on the X and autosomes 

are likely affected by differences in male and female life history and mutation processes. Notably, 

males and females of many species differ in their age-dependent mortality and fecundity, as well 

as in the variance of their number of offspring. These differences would differentially affect 

polymorphism levels on X and autosomes through both mutational and genealogical processes.  

For these reasons and others, there has been a longstanding interest in comparing polymorphism 

levels on X and autosomes (tracing back to Haldane; (14)).  

In particular, over the past decade, when sequence data became available for a variety of different 

populations, there has been considerable interest in these comparisons. Specifically, neutral X:A 

polymorphism ratios have been shown to be consistently lower outside of Africa. The reduction 

outside of Africa could be partially explained by the demographic history of human populations 

in the last 200,000 years (i.e., population bottlenecks, expansions, and migrations), but previous 

works suggest that demography can explain at most ~50% of the reduction in ratios.  
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Motivated by these observations, in chapter 2, I model the effects of life history on neutral 

polymorphism on autosomes and sex chromosomes. The model is quite general and incorporates 

the effects of sex- and age- dependent mortalities, fecundities, reproductive variances and mutation 

rates. Despite its generality, I present an analytic solution for the model, which is formulated in 

terms of the neutral coalescent. The model and its solution generalize and simplify previous 

theoretical results by Hill (15), Charlesworth (16) and others. In particular, I show that the effects 

of life history on the X:A ratio can be summarized in terms of separate ratios of male-to-female 

number of newborns, generation times, reproductive variances, and mutation rates. This 

formulation provides a straightforward understanding of the separate effects of each of these 

factors.  

I then apply my results to humans, relying on estimates of life-history parameters and of the 

observed dependence of mutation rates on age and sex. I find that life history effects, and the 

effects of male and female generation times in particular, may account for much of the observed 

variation in X:A ratios of polymorphism levels across human populations. Finally, I explain why 

the standard approach used to separate the genealogical and mutational effects on the X:A 

polymorphism ratio (i.e., by normalizing by divergence to an outgroup) introduces considerable 

bias and outline alternative approaches for moving forward.  

Chapter 2 has been posted in bioRxiv (17) and is now in revision for PNAS. Following the editor’s 

suggestion, I decided to split the paper into two. One will focus on the theory (which now appears 

mostly in in appendix 2 of this thesis), and I plan to submit it to Genetics. The other, which will 

be resubmitted to PNAS, is focused on the application of the results to explaining the patterns 

observed in humans and includes a number of new analyses that I am now finalizing. First, I show 

that estimates of male mutation bias based on pedigree studies are about two-fold greater than 



 6 

those based on X:A ratios of divergence to an outgroup (the standard approach to date), largely 

due to generation time effects on divergence that substantially bias the latter. I therefore rely on 

pedigree-based estimates and find that human X:A ratios of effective population sizes far from 

genes (where the effect of selection at linked sites is minimal) are considerably greater than 

previously appreciated. Next, I show how the effects of life history – of sex differences in 

generation times in particular – attenuate how historical changes in population size affect X:A 

polymorphism ratios. I therefore rely on inferences about mutation rates and the demographic 

history of human populations to infer a range of sex specific generation times and reproductive 

variances that can explain observed polymorphism ratios across human populations jointly. The 

inferred parameters appear to fall within the range of estimates in extant hunter gatherer societies. 

Thus, the effects of life history – of sex specific generation times in particular – and their 

interaction with demographic history, can go a long way toward explaining the X:A polymorphism 

ratios observed across different human populations.   
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Chapter 1 -  Life history effects on the molecular clock of autosomes and sex 

chromosomes 

 

1.1 Abstract 

One of the foundational results in molecular evolution is that the rate at which neutral substitutions 

accumulate on a lineage equals the rate at which mutations arise. Traits that affect rates of mutation 

therefore also affect the phylogenetic “molecular clock”. We consider the effects of sex-specific 

generation times and mutation rates in species with two sexes. In particular, we focus on the effects 

that the age of onset of male puberty and rates of spermatogenesis have likely had in hominids 

(great apes), considering a model that approximates features of the mutational process in 

mammals, birds and some other vertebrates. As we show, this model can account for a number of 

seemingly disparate observations: notably, the puzzlingly low X-to-autosome ratios of substitution 

rates in humans and chimpanzees and differences in rates of autosomal substitutions among 

hominine lineages (i.e., humans, chimpanzees and gorillas). Importantly, the model further 

suggests how to translate pedigree-based estimates of human mutation rates into split times among 

extant hominoids (apes), given sex-specific life histories. In so doing, it largely bridges the gap 

reported between estimates of split times based on fossil and molecular evidence, in particular 

suggesting that the human-chimpanzee split may have occurred as recently as 6.6 MYA. The 

model also implies that the generation time effect should be stronger in short-lived species, 

explaining why the generation time has a major influence on yearly substitution rates in mammals 

but only a subtle one in human pedigrees. 
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1.2 Significance Statement 

Recent estimates of mutation rates obtained by sequencing human pedigrees have challenged 

conceptions about split times between humans and our closest living relatives. In particular, 

estimates of human split times from chimpanzees and gorillas based on the new mutation rate 

estimates are more than twofold shorter than previously believed, seemingly at odds with the fossil 

record. Here, we show that accounting for the effects of sex-specific life histories on mutation rates 

along the hominid phylogeny largely bridges this apparent gap and leads to more accurate split 

time estimates. Doing so can also explain other intriguing phylogenetic patterns in hominid and 

mammalian evolution. 

 

1.3 Introduction 

Most of our inferences about species split times on short phylogenetic time scales rely on the 

neutral molecular clock. According to the Neutral Theory, the number of substitutions K that 

accumulate in a lineage over T years (e.g., since the split from another species) is " = (%& '̅⁄ )+, 

where %& and '̅ are the average mutation rate per generation and average generation time, 

respectively (1). Inferring split times therefore requires estimates of the yearly mutation rate %& '̅⁄  

on the lineage in question. Such estimates generally derive from securely dated fossils on other 

lineages or from measurements of mutation rates in extant species (2, 11, 18, 19). Using these 

estimates for dating thus necessitates an understanding of the way that yearly mutation rates may 

change over time. 

Neutral substitution patterns in mammals offer some insights. Variation in yearly mutation rates 

on phylogenetic time scales can be assessed by comparing the number of neutral substitutions 

along two branches leading from a common ancestor to extant species. These comparisons show 
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marked variation in yearly rates on autosomes. For example, there are 50% fewer substitutions on 

the human branch compared with rodents (12) and 26% fewer compared to baboons, with more 

moderate differences among hominine lineages (8, 10, 12, 20, 21). The average yearly rates are 

also negatively correlated with generation times (and their correlates) in extant mammals, leading 

to the notion of a generation time effect on the molecular clock (12, 13, 22). 

Neutral substitutions rates vary not only among taxa but also between sex chromosomes and 

autosomes. For brevity, we consider the relative rates on X and autosomes, but these considerations 

extend naturally to Y (or ZW). Because autosomes spend the same number of generations in both 

sexes while the X spends twice as many generations in females, rates of neutral substitutions on 

autosomes reflect a greater relative contribution of male mutations than on the X. In a wide range 

of taxa, neutral substitutions rates on autosomes are greater than on the X (or lower than on the Z), 

suggesting a male biased contribution to yearly mutation rates (23). Moreover, observed X-to-

autosome ratios are extremely variable, ranging between 0.76-0.9 in hominids and up to 1.0 in 

surveyed mammals, indicating that the degree of male bias itself varies greatly on phylogenetic 

time scales (9, 23). 

Our current understanding of mutation can help tie these observations together (11). Pedigree 

studies in humans and chimpanzees establish that most mutations are paternal in origin and that 

the paternal but not the maternal contribution increases strongly with age (2, 24). This has long 

been thought to be true because germ-cell division is arrested before birth in females but proceeds 

continuously post-puberty in males (11, 14, 25, 26). The same reasoning may extend to mammals, 

birds and other vertebrate taxa in which oogenesis ceases before birth or hatching (27-29). These 

considerations suggest that maternal and paternal generation times should affect the molecular 

clock differently. They also imply that the age of puberty in males and the rate of spermatogenic 
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germ cell divisions should affect yearly mutation rates (11). The variation observed among closely 

related extant species indicates that these parameters change over phylogenetic time scales. Here 

we ask how such changes would affect the molecular clock on X and autosomes. 

 

1.3 Model 

The molecular clock with two sexes. We model the accumulation of neutral substitutions 

allowing for different generation times and mutation rates in males and females (cf. (16)). If, for 

example, the paternal generation time, ', (defined as the average time between births), is longer 

than the maternal, '-, then autosomes would spend a greater proportion of time (but not of 

generations) in males than in females (i.e., ', ('- +⁄ ',) in males). Therefore, the yearly 

mutation rate in males, /, ',⁄  (where /, is the rate per generation in males), would have a greater 

relative contribution to the autosomal mutation rate. Taking the corresponding weighted average 

for the expected number of substitutions on an autosomal lineage over T years yields  

"0 = 	 (/0 '0⁄ )+,          [1.1] 

where '0 =
2

3
('- + ',) and /0 =

2

3
(/- + /,) are the expected sex-averaged generation time 

and mutation rate per-generation on an autosomal lineage. By the same token, on the X 

"4 = 	 (/4 '4⁄ )+,          [1.2] 

where in this case '4 =
3

5
'- +

2

5
', and /4 =

3

5
/- +

2

5
/, are the expected sex-averaged 

generation time and mutation rate per-generation on a X lineage (cf. Appendix section A1.1 for 

rigorous derivations and the corresponding Eqs. for Y and Z).  
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Sex and age dependent mutation rates in hominines. We model male and female mutation rates 

per generation, /, and /-, based on the current understanding of the process of accumulation of 

germline mutations (11, 26). Namely, we assume that mutations accumulate linearly with the 

number of germ-cell divisions, and the rate per division varies at different stages of development 

(cf. 11). This is a natural assumption for replicative mutations and has recently been suggested to 

apply to non-replicative mutations that are efficiently repaired (30; cf. Discussion for other kinds 

of mutations). 

 

 

Fig. 1.1. The mutational model. 

In females, all oogonial mitotic divisions occur before birth, so the number of mutations should 

have no dependence on the age of reproduction (28). We therefore model the female per-generation 

mutation rate as a constant. 

In males, cell divisions in the germline exhibit two main phases: pre-puberty, starting from the 

zygote through the proliferation of germ cells in the growing testis, and post-puberty, with 

continuous divisions in the adult testis during spermatogenesis. While age of puberty and testis 

mass varies considerably among hominids (9), the number of germ cell divisions before puberty 

should increase only logarithmically with mass and is similar in species exhibiting large 
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expected number of mutations pre-puberty as constant (6,). Post-puberty, one germ cell division 

is thought to occur at each spermatogenic cycle (i.e., the seminiferous epithelial cycle; 32), and the 

length of the cycle (7) varies among hominines (Table 1.1). We therefore assume a mutation rate 

per-year of 8, 7⁄  in adult males, where 8, is the expected number of mutations per spermatogenic 

division. We then model the average mutation rate per generation in males by 

/, = 6, + (8,/7)(', − ; − <),        [1.3]  

where P is the expected age of puberty and GM-I is the expected generation time excluding 

gestation time (I). Both the constancy with age in females and the piecewise linearity in males 

(Fig. 1.1) are consistent with the observations of pedigree studies in humans and chimpanzees (2, 

24). Moreover, a similar model (e.g., accounting for intermittent spermatogenesis; 27) may provide 

a reasonable approximation for vertebrate species in which oogenesis ceases before birth or 

hatching (e.g., mammals, birds, elasmobranchs, cyclostomes and a few teleosts; 28, 29). 

In Appendix sections A1.1 and A1.2 we consider how the molecular clock is affected by variation 

of mutational parameters (e.g., age of puberty and generation times) both within a population and 

over phylogenetic time. Specifically, we show that the expected number of substitutions is 

insensitive to the variance of the number of mutations or to the variance of the age at reproduction, 

thus justifying our consideration of only the means. 

Parameter values and ranges. To study how changes in life history traits and spermatogenesis 

should affect the rate of the molecular clock, we would like to assign realistic values to the 

parameters of the mutational model. Lacking evidence to the contrary, we assume that the 

parameters associated with the rates of mutation per germ-cell division at different developmental 

stages remained constant throughout the hominine phylogeny. We infer these parameters from the 

relationship between mutation rates and paternal ages in the largest human pedigree study 
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published to date (2), which yields: 6, = 6.13 × 10DE, 8, = 3.33 × 10D22 and /- =

5.42 × 10DE per base pair (see Appendix section A1.4 for details). 

In contrast, life history and spermatogenesis parameters (',, '-, < and 7) are known to vary 

among species and even populations (cf. Table 1.1 and Tables A1.3-A1.7 and references therein). 

We use the variation among extant species to guide our choice of plausible ranges for these 

parameters on the phylogeny. These parameter ranges should be treated only as a rough guide, 

because of the considerable uncertainty associated with estimates in extant species (cf. discussion 

in Appendix section A1.4) and the uncertainty about the extent to which they reflect the variation 

along the phylogeny. 

 

Populations τ (days) P (years) GF (years) GM (years) 

Human: 16 13   

   Hunter-gatherers   26.9* 33.8* 

Chimpanzee: 14 7.5   

   Western  

  

26.3 24.3 

   Eastern  24.8 24 

   Average+ 25.2 24.1 

Gorilla: - 7   

   Mountain gorillas   18.2 20.4 

Table 1.1: Estimates of spermatogenesis and life history parameters in hominines (cf. Appendix 

section A1.4 for details). * Revised from (5) (cf. Appendix section A1.4). + Weighted by sample 

size (6). 

 



 14 

1.4 Results 

The autosomal molecular clock. We first consider the effects of the average and ratio of male 

and female generation times. In general, the impact of changing the ratio or average of generation 

times will depend on the way in which mutation rates vary with sex and age (see Appendix section 

A1.3 for more details). If, for example, mutation rates increase more rapidly with paternal than 

maternal age, as is expected for mammals, then increasing the ratio of male-to-female generation 

times necessarily increases the mutation rate per year. 

Predicting the effect of increasing the average generation time on yearly mutation rates requires 

additional assumptions. If we consider our mutational model (regardless of parameter values) and 

assume a constant proportion of the male generation time spent pre- and post-puberty (Fig. A1.1), 

we find that an increase in the average generation time will decrease the rate of the molecular clock 

(see Appendix section A1.3), consistent with the “generation time effect” observed in mammals 

(12, 13, 22). If instead, we assume that age of puberty remains constant while the average 

generation time increases, which better describes the observations in extant hominids (cf. Table 

1.1 and Table A1.3), then the effect on yearly mutation rates can go either way, depending on 

parameter values (i.e., on 6,, 8, and /-; cf. Appendix section A1.3 and (11, 30)). Intriguingly, 

the parameters estimates from human pedigree studies are close to the boundary where the effect 

of the average generation time changes direction and is therefore negligible (Fig. 1.2A).  

Within the ranges for the average and ratio of generation times estimated in hominines, changes 

to the ratio have a much greater impact (Fig. 1.2A). Replacing the standard (though often implicit) 

assumption of equal generation times in males and females with estimates of their ratio in current 

hunter-gatherer populations increases yearly mutation rates by ~10%. Further considering that the 

ratios in extant hominines range between 0.92 for western chimpanzees and 1.26 for hunter-
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gatherers (cf. Appendix section A1.4) suggests that yearly rates could vary between 4% lower to 

10% higher than the rate with a ratio of 1 (unless noted otherwise, when we vary a single parameter, 

other parameters are assigned their estimated values in humans). By comparison, varying the 

average generation time between 19 years, for gorillas, and 30.4 years, for hunter-gatherer 

populations, impacts rates by less than 2% (see also (30)). 

 

 

Fig. 1.2. Predicted yearly mutation rates on autosomes as a function of the ratio of male-to-female 

generation times (A), male age of puberty (B) and spermatogenic cycle length (C). Rates are 

measured relative to the estimate of 0.4	 ×	10DE per bp per year reported by Kong et al. (2), whose 

data we used to fit our mutational model (cf. Model section). In each panel, we vary one parameter, 

while fixing others to their estimated values in extant humans (brown) or chimpanzees (green) (see 

Table 1.1). Note that the point estimates for humans and chimpanzees (black points) do not 

coincide with those reported in pedigree studies, because ours account for the predicted effects of 

life history and spermatogenesis parameters. The estimated range for gorillas (black line), where 

the spermatogenic cycle length has not been measured, corresponds to cycles between 16 and 20 

days. 

Both an earlier onset of male puberty and an increased rate of spermatogenesis increase the yearly 

mutation rates in males, resulting in an increased rate on autosomes (Figs. 2B and C; (11, 30)). 
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Varying their values within the range known for hominines markedly affects yearly rates, by ~18% 

for the male puberty age and ~8% for the spermatogenic cycle length.  

Considered jointly, these factors should generate differences in the branch lengths leading to extant 

hominines. Assuming parameter estimates for extant humans and chimpanzees, our model 

suggests that the human branch would be 15% shorter. Making the more plausible assumption that 

the yearly mutation rate in the ancestor was between extant estimates and that the rates on each 

lineage changed gradually, we would still expect the human branch to be somewhat shorter. The 

human branch has indeed been estimated to be 0.4%-2.9% shorter (8, 10, 20); these estimates 

include the contribution of ancestral polymorphism in common to both branches, suggesting that 

the branch specific difference is larger. 

Our ability to make similar predictions about the gorilla branch is hindered by the lack of estimates 

for the spermatogenic cycle length. Nonetheless, spermatogenic cycle lengths are negatively 

correlated with relative testis mass in mammals (Fig. A1.3), and the variation in both has been 

attributed to differences in the intensity of sperm competition in different mating systems (33, 34). 

In agreement with this hypothesis, the relative testis mass and rate of spermatogenesis in 

chimpanzees (0.27% of body weight and 14 days), which have a promiscuous mating system, are 

greater than in humans (0.07% of body weight and 16 days), which are largely monogamous, and 

the relative testis mass in polygynous gorillas (one male controls reproductive access to many 

females) are smaller than in both (0.02% of body weight) (9, 34). This suggests that the rate of 

spermatogenesis in gorillas is lower than in humans. Varying the length of the spermatogenic cycle 

between 16 days (its value for humans) and 20 days and assuming current estimates for life history 

yields predicted branch lengths 14% to 26% longer than the human branch, respectively. These 

predictions accord with current estimates (again, without accounting for the ancestral 
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contribution), which suggest that the gorilla branch is between 6.1%-11% longer than the human 

branch (8, 10, 20). 

Lastly, we consider how accounting for life history affects estimates of the split time between 

humans and chimpanzees. Current estimates of this parameter are obtained by dividing the neutral 

divergence on the human lineage (~0.4% per bp after subtracting the estimated contribution of 

ancestral polymorphism (35)) by estimates of the yearly mutation rate. This approach yields a split 

time of ~10 MYA ((3) and Appendix section A1.5), given pedigree-based estimates of the mutation 

rate of ~0.4×10-9 per bp per year (2).  

These estimates, however, do not account for most of the effects that we have considered (cf. 

Discussion). Notably, rather than assuming an equal generation times in males and females, one 

may want to consider the ratio estimated in extant hunter-gatherers. Moreover, the earlier age of 

puberty in chimpanzees and possible earlier puberty in Homo erectus (e.g., from Nariokotome boy 

dated ~1.5 MYA (7)) suggest that the onset of puberty may have occurred at younger ages during 

most of the human lineage. Similarly, the longer spermatogenesis cycle in humans than in 

chimpanzees (and all other surveyed primates; Fig. A1.2) indicates that it may have been shorter 

along the human lineage. While it is difficult to translate these considerations into point estimates, 

they all suggest a higher yearly mutation rate (Fig. 1.2) and a split time that is more recent than 

suggested by the standard pedigree-based estimates. As an illustration, if the average mutation rate 

on the human lineage were between the point estimates in extant humans and chimpanzees then 

our model would suggest a split time between 7.7-9.1 MYA (Fig. 1.2 and Appendix section A1.5). 

If we further allow individual life history parameters to vary between their values in extant humans 

and chimpanzees then the lower bound on the split time is further reduced to ~6.6 MYA (see Fig. 

1.5). 
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The relative rates of the molecular clock on X and autosomes. Differences in neutral rates of 

substitutions on sex chromosomes and autosome have generally been attributed to differences in 

mutation rates per generation between sexes. In fact, X-to-autosome ratios have been widely used 

to infer the male mutation bias, α = /,//-, in lineages of mammals, birds, flies, fish and plants 

(13, 23). These inferences rely on Miyata’s formula (36) 

"4 "0⁄ = J(/,//-),          [1.4] 

where J(K) = 3LMN

5LM5
. Critically, Miyata’s formula assumes equal male and female generation times. 

When this assumption is relaxed (using Eqs. 1.1 and 1.2), the X-to-autosome ratio also depends 

on the ratio of male-to-female generation times: 

"4 "0⁄ = J(/,//-) J(',/'-)⁄         [1.5] 

(the corresponding relationships for other sex chromosomes are provided in Appendix section 

A1.1). This suggests a theoretical range between ½ and 2 compared to a range between 2/3 and 

4/3 based on Miyata’s formula. We note that this predicted ratio applies to the accumulation of 

substitutions after species split but not to the contribution of ancestral polymorphism, because the 

average TMRCA also differs between X and autosomes.  

What is made clear by this derivation is that ignoring differences in generation times could 

introduce substantial biases in estimates of the male mutation bias, O (Fig. 1.3). Notably, when O 

is large, a greater increase in O is required in order to explain an incremental increase in the X-to-

autosome ratio (because of the form of f; Fig. 1.3A). In this case, even moderate differences in the 

ratio of generation times translate into large biases in estimates of O (Figs. 1.3B and A1.3). As 

differences in generation times among sexes are common (6), this consideration suggests that 

current estimates of the male mutation bias might suffer from substantial bias and uncertainty (Fig. 
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1.3B and A1.3), and that information about the ratio of generation times (e.g., from extant species) 

is key to assessing this uncertainty.  

 

 

Fig. 1.3. The effects of the male-to-female ratio of generation times on estimates of the male 

mutation bias,	O. (A) The function f mediating the effects of the ratios of male-to-female 

generation times and mutation rates on the X-to-autosome ratio of substitution rates. (B) The 

potential biases in estimates of O in 9 mammalian species, as a function of the ratio of male-to-

female generation times. The curve for each species is based on the X-to-autosome divergence 

ratio reported along its lineage (9; these ratios likely underestimate the X-to-autosome ratios of 

substitutions due to the contribution of ancestral polymorphism, 23).  
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X-to-Autosomes ratios in hominines. We use our model and parameter estimates to investigate 

how life history and spermatogenesis affect the X-to autosome ratio in hominines. Increasing the 

paternal generation time has opposing effects on the ratio (Eq. 1.5), as it increases both the male 

mutation bias (O; Fig. A1.4) and the ratio of generation times (',/'-). In contrast, changing the 

maternal generation time affects only the ratio of generation times, resulting in a greater effect on 

the X-to-autosome ratio (Fig. 1.4A). In turn, both earlier male puberty and an increased rate of 

spermatogenesis increase mutation rates in males, resulting in a lower ratio (Figs. 1.4B and 1.4C). 

Based on the known parameter ranges in hominines, the X-to-autosome ratio varies by ~6.9% due 

to maternal age, whereas the variation due to each of the other parameters is smaller (~1.2-2.7%).  

 

 

Fig. 1.4. Predicted X-to-autosome ratios of substitution rates as a function of male and female 

generation times (A), male age of puberty (B) and rate of spermatogenesis (C). Other details are 

the same as in Fig. 1.2. 

In hominines, X-to-autosome ratios have garnered considerable attention, in part because of what 

seems like puzzlingly low ratios (8, 9, 37). Estimates of the ratios of neutral divergence are ~0.76 

for the chimpanzee lineage, ~0.8 for the human lineage and ~0.9 for gorillas (9). These estimates, 

however, do not correspond directly to the ratios that we are considering. Notably, they include 

the contributions of ancestral polymorphism, which are greater on autosomes (8, 37), suggesting 

that the ratio after the species splits is closer to 1. Also, they do not control for differences in the 
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average mutability of base pairs between X and autosomes (e.g., due to local effects of base 

composition (38)). In that regard, the standard practice of dividing by divergence to an outgroup 

only complicates the interpretation by compounding estimates of the X-to-autosome ratios in 

hominines with the ratio on the outgroup lineage. For all these reasons, we consider existing 

estimates to be rough. 

These caveats notwithstanding, we ask whether the observed values can be explained by 

considering our mutational model. Using parameter estimates from extant species and assuming a 

spermatogenic cycle between 16 and 20 days in gorillas, the model predicts an X-to-autosome 

ratio of 0.80 on the chimpanzee lineage, 0.83 on the human lineage and between 0.85 and 0.87 on 

the gorilla lineage. These estimates recover the ordering of ratios among lineages as well as the 

rough magnitude of the reduction below 1. Further allowing individual mutational parameters to 

vary within their ranges in extant species can explain both a smaller ratio in chimpanzees and a 

greater difference between chimpanzees and gorillas (Table A1.9). Thus, it is plausible that 

observed X-to-autosome ratios could be explained by differences in rates of spermatogenesis (as 

first suggested by (9)) and life history, without recourse to elaborate demographic scenarios. We 

note, however, that these factors cannot explain the greater variation in divergence levels on the X 

compared to autosomes, which has been suggested to reflect the footprints of linked selection in 

the ancestral population or during speciation in the presence of gene flow (8, 37). 

 

1.5 Discussion 

Pedigree-based estimates of the mutation rate in humans should allow for improved inferences 

about the timing of species’ splits and other evolutionary events (e.g., Out-of-Africa migrations). 

To translate estimates from pedigrees into yearly mutation rates, the standard approach is to divide 
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the sex-averaged mutation rate per generation in a study by estimates of the sex-averaged 

generation time along the lineage under consideration. This calculation assumes that the mutation 

rate per generation remains constant, implicitly reflecting an extreme interpretation of the 

generation time effect (11). It also ignores other life history traits and rates of spermatogenesis that 

differ between pedigree studies and the lineage of interest, and whose effects are likely to be 

substantially greater than those of the sex-averaged generation time. Thus, translating the results 

of pedigree studies into yearly rates is not as straightforward as it seems, and requires consideration 

of these life history factors. 

A more appropriate approach is to fit the results of pedigree studies to a mutational model that 

reflects the dependency of yearly rates on age and sex. The fitted model can then be used to 

estimate yearly mutation rates and the uncertainty associated with them, based on estimates of life 

history parameters for the lineage under consideration (e.g., based on estimates for extant species). 

We illustrate this approach with a simple mutational model for hominines and show that it leads 

to substantial changes in estimates of yearly rates and corresponding split times. Importantly, it 

revises split times for the human-chimpanzee split downwards, from ~10 MYA ((3) and Appendix 

section A1.5) to as low as ~6.6 MYA (see Fig. 1.5 and Table A1.9).  

Our mutational model will surely be refined as we learn more about germline mutations. For 

example, molecular evolutionary patterns suggest that rates of certain types of mutations (notably, 

transitions at CpG sites; 21, 38) may track some combination of absolute time and number of cell 

divisions (11). If so, maternal age could affect the accrual of these mutations (11). In addition, 

there is still uncertainty about the number of cell divisions in the male germline during 

spermatogenesis. In particular, it has been suggested that PQRST cells—the stem cells from which 

sperm are generated—are replenished by, or experience turnover with, PURVW spermatogonial stem 
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cells throughout adulthood, resulting in fewer cell divisions in the germline between puberty and 

reproduction (32, 39, 40). If this hypothesis is true, it would suggest that the mutation rate per-

spermatogenic cell division (8,) is higher than our estimates and closer to the (considerably 

higher) rates per-division in females, in males pre-puberty (11) and in other taxa (cf. Table A1.2 

and (41)). In terms of the hominine mutational model, such a revision would introduce an 

additional parameter for turnover, which could lead to greater variation among species in male 

mutation rates post-puberty (40). These refinements notwithstanding, our mutational model 

already suggests several predictions that align with observations. For instance, our predicted 

mutation rates in chimpanzees fall within confidence intervals of a recent pedigree study (24). We 

also predict the reduction in branch length leading to humans compared to gorillas and provide a 

plausible explanation for the X-to-autosome ratios of substitutions rates observed in hominines.  

Our results also bear on the recently invigorated discussion about split times in the catarrhine (i.e., 

old world monkeys and apes) phylogeny (3). For instance, assuming that current pedigree-based 

estimates reflect yearly rates along the hominid phylogeny places the human-orangutan split at 

~40 MYA, much earlier than all hominid or even hominoid fossils (cf. Appendix section A1.5 and 

(3, 35)), putting results from human genetics at odds with those from paleontology. Attempts to 

reconcile pedigree and fossil-based evidence appear to be moving from both ends. From one end, 

it has been suggested that mutation rates may have experienced a slow down in the hominoid 

phylogeny towards the present (cf. 3, 21, 35). From the other, the new mutation rate estimates 

triggered a reevaluation of the (already controversial) phylogenetic positioning of key catarrhine 

fossils, and specifically those used to place bounds on the hominine-orangutan and hominoid-

cercopithecoid (i.e., old world monkeys) split times (42). More realistic models of the molecular 

clock can inform this discussion by suggesting the plausible extent of the mutational slowdown on 
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different phylogenetic timescales and, as a result, by better delineating which fossil positions 

would need to be revised for their ages to be consistent with pedigree studies. 

As an illustration, we use our mutational model, with estimates of life history and spermatogenesis 

parameters from extant species, to suggest plausible ranges for yearly mutation rates on the 

hominoid phylogeny (Fig. 5; Table A1.9 and Appendix section A1.5). We allow each of the 

parameters on branches following a split to vary independently within the range observed in 

descendant species; in the few cases in which we lack estimates in extant species, we also rely on 

information from an outgroup (see Appendix section A1.5). Under these assumptions, ranges for 

individual parameters and the resulting yearly mutation rates can only become larger when we go 

farther back in time. Interestingly, only the upper bound on the range of mutation rates increases 

as we go farther back in time, supporting the notion of a slowdown. Moreover, the inferred ranges 

could, in theory, reconcile the apparent discrepancy between yearly rates of 0.4 × 10DE per bp 

observed in pedigree studies, and yearly rates between 0.65 − 1.1 × 10DE per bp inferred from the 

fossil record (Fig. 1.5 and Table A1.11). The assumption that life history and spermatogenesis 

parameters vary independently might be overly permissive, however, because combinations of 

these traits could be under stabilizing selection.  



 25 

 

Fig. 1.5. Estimated ranges of split times from humans (y-axis) and the yearly mutation rates since 

the split (x-axis). The inference is detailed in Appendix section 1.5. Upper (squares) and lower 

(circles) bounds on spit times are based on the hypothesized phylogenetic positioning of fossils 

(cf. Appendix section 1;42). 

Moving to broader phylogenetic contexts, how can we reconcile our results suggesting that the 

(sex-averaged) generation time has a moderate effect in hominines (Fig. 1.2; also cf. (11, 30)) with 

phylogenetic studies showing that it is a major predictor of the rates of neutral substitutions in 

mammals (12, 13, 22)? Assuming that the number of mutations tracks the number of cell divisions 

in the germline, a possible answer may arise from the way the number of divisions relates to the 

generation time. Comparing mice, with a generation time of ~9 months, and humans, with a 

generation time of ~30 years, the estimated numbers of cell divisions in the germline are: 25 and 

31 in females, 27 and 34 pre-puberty in males, and 35 and 390 during male spermatogenesis, 
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respectively ((31) and Table A1.1). If we assume more generally that only the number of cell 

divisions during spermatogenesis increases rapidly with the generation time, then many of the 

mutations in hominines occur during spermatogenesis because of their exceptionally long 

generation times. In species with short generation times, the relative contribution of 

spermatogenesis would be much smaller and therefore the rate per-generation would be roughly 

constant; equivalently, in such species, the yearly mutation rate would be roughly inversely 

proportional to the generation time (43).  

To draw out these implications, we extrapolate our hominine mutational model to a wider range 

of life history and spermatogenesis parameter values roughly corresponding to mammals (Fig. 

1.6), acknowledging that such an extrapolation provides only a qualitative depiction as underlying 

mutational parameters may vary among mammals ((41) and Table A1.2). We find that the sex-

averaged generation time dominates the variation in yearly mutation rates when species with 

shorter generation times are included in the comparison (Fig. 1.6A). The average generation time 

also affects the expected X-to-autosome ratios (with shorter generation times corresponding to 

lower α and a ratio closer to 1; (43)), though its effect is expected to be much more moderate and 

comparable with those of other life history traits (Fig. 1.6B and Fig. A1.5). Both of these 

predictions accord with observations in mammals (12, 13, 22).  
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Fig. 1.6. The generation time effect on the molecular clock in a broader phylogenetic context. The 

yearly mutation rates (A) and X-to-autosome ratios (B) as a function of the sex averaged generation 

time, based on our mutational model. Other parameter ranges roughly correspond to catarrhines 

and mammals (Table A1.4).  
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Chapter 2 - Life history effects on neutral polymorphism levels of autosomes and 

sex chromosomes 

 

2.1 Abstract 

In human and other hominid (great apes) populations, estimates of the relative levels of neutral 

polymorphism on the X and autosomes differ from each other and from the naive theoretical 

expectation of ¾. These differences have garnered considerable attention over the past decade, 

with studies highlighting the potential importance of several factors, including historical changes 

in population size and linked selection near genes. Here, we examine a more realistic neutral model 

than has been considered to date, which incorporates sex- and age-dependent mortalities, 

fecundities, reproductive variances and mutation rates, and ask whether such a model can account 

for diversity levels observed far from genes. To this end, we derive analytical expressions for the 

X to autosome ratio of polymorphism levels, which incorporate all of these factors and clarify their 

effects. In particular, our model shows that the genealogical effects of life history can be reduced 

to ratios of sex-specific generation times and reproductive variances. Applying our results to 

hominids by relying on estimated life-history parameters and approximate relationships of 

mutation rates to age and sex, we find that life history effects, and the effects of male and female 

generation times in particular, may account for much of the observed variation in X to autosome 

ratios of polymorphism levels across populations and species.  
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2.2 Significance Statement 

All else being equal, the ratio of diversity levels on X and autosomes at selectively neutral sites 

should mirror the ratio of the number of chromosomes in the population and thus equal ¾. In 

reality, the ratios observed in humans and other species differ substantially from ¾ and from each 

other. Because autosomes spend an equal number of generations in both sexes while the X spends 

twice as many generations in females, these departures from the naïve expectation may reflect 

differences between male and female life histories and mutation processes. We derive theoretical 

predictions for these effects, and show that they likely played an important part in shaping X to 

autosome ratios in populations of humans and closely related species.   

  

2.3 Introduction 

Neutral polymorphism patterns on X (or Z) and autosomes reflect a combination of evolutionary 

forces. Everything else being equal, the ratio of X to autosome polymorphism levels should be ¾, 

because the number of X-chromosomes in a population is ¾ that of autosomes. However, 

autosomes spend an equal number of generations in diploid form in both sexes, whereas the X 

spends two thirds of the number of generations in diploid form in females and a third in haploid 

form in males. As a result, the ratio of X to autosome polymorphism levels can also be shaped by 

differences in male and female life history and mutation processes as well as by differences in the 

effects of linked selection (44).  

The differential effects of these factors on X and autosome has been discussed for many species 

(45-47), and in particular, they have been the focus of considerable recent interest in humans and 

other hominids (48-56). In particular, it has been noted that linked selection could affect X and 
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autosomes differently because of differences in recombination rates, the density of selected 

regions, and the efficacy and mode of selection. Notably, the hemizygosity of the X in males leads 

to a more rapid fixation of recessive beneficial alleles and to a more rapid purging of recessive 

deleterious one (57, 58). Accounting for these effects and for differences in recombination rates 

suggests that in humans—in mammals more generally—the effects of linked selection should be 

stronger on the X ((59), but see (47)). To evaluate these effects empirically, several studies have 

examined how polymorphism levels on the X and autosomes vary with genetic distance from 

putatively selected regions, e.g., from coding and conserved non-coding regions (49, 53-55, 60, 

61). In most hominids, including humans, such comparisons confirm that linked selection reduces 

X to autosome ratios. They further suggest that the effects are minimal sufficiently far from genes 

(49, 60), potentially allowing the effects of other factors shaping X to autosome ratios to be 

examined in isolation.  

Even far from genes, however, the X to autosome ratios in humans and other hominids appear to 

differ from the naive expectation (49, 53, 55). To control for the effects of higher mutation rates 

in males and variation in mutation rates along the genome, polymorphism levels on X and 

autosomes are typically divided by divergence to an outgroup. In regions far from genes, the 

normalized X to autosome ratios range between ¾ and 1 among human populations, generally 

decreasing with the distance from Africa (48, 49, 53, 54). Ratios exceeding ¾ have also been 

observed in most other hominids ((55), but see (56)). 

Proposed explanations for these departures from ¾ and the variation among populations and 

species fall into two main categories: those based on population history, such as historical changes 

in population size, and those based on life history, such as differences between male and female 

reproductive variances (i.e., the variance in the number of offspring that individuals have 
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throughout their life). If we assume that the effective population size on the X is generally smaller 

than on autosomes, then changes in population size will have a different impact on polymorphism 

levels on X and autosomes (62-65). Notably, population bottlenecks that occurred sufficiently 

recently, such as the Out of Africa bottleneck in human evolution, will have decreased the X to 

autosome ratio, because a greater proportion of X-linked loci will have coalesced during the 

bottleneck (65). While what is known of human population history (including the Out of Africa 

bottleneck) is indeed expected to lead to lower X to autosome ratios in non-Africans, estimates of 

the expected reduction in diversity levels fall short of explaining its full extent (54). Differences 

in population history between males and females may have also contributed to the differences 

among human populations. For example, Keinan and Reich (50) suggested that an increase in the 

ratio of males to female effective population sizes (or generation times) during an Out-of-Africa 

bottleneck contributed to the lower X to autosome ratios in non-Africans. While the possibility of 

inferring such historical differences from extant polymorphism patterns is intriguing, and there are 

comparable, well established sex-differences in the more recent past (e.g., (66)), differences in life 

history may offer a more straight-forward explanation of the observations. 

Notably, sex differences in life history traits that are readily observed today could have 

substantially affected X to autosome ratios. Among traits, perhaps the most straightforward effect 

arises from the higher reproductive variance in males than in females (e.g., due to sexual selection), 

which causes higher coalescence rates on autosomes and an increased X to autosome ratio (48, 

67). Theoretical studies suggest that the resulting increased ratio is bound by 9 8X  (67). In reality 

the effect is likely much smaller, yet differences in male and female variance among extant human 

populations and hominids (68) suggest that it could have contributed to observed differences in X 

to autosome ratios, as well as account for why ratios often exceed 3 4X .  
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Differences between male and female generation times could have affected X to autosome ratios 

in more intricate but substantial ways. Mutation rates in mammals increase with paternal age (and 

to a lesser extent with maternal age), notably in humans (2, 24, 26, 69). Ignoring genealogical 

effects (see below), we would therefore expect increased paternal generation times to decrease the 

X to autosome ratios of polymorphism and divergence. In that regard, given that male and female 

generation times vary considerably among populations and species (5, 6), the common practice of 

dividing polymorphism estimates by divergence levels might not fully control for male mutational 

biases and could result in X to autosomes ratios that deviate from ¾. Sex differences in generation 

times also affect the genealogical process, with longer generation times in males than in females 

resulting in slower coalescence rates on the X compared to autosomes, and therefore in increased 

polymorphism ratios.  

The overall effect of these factors has not been considered jointly. We do so here, by studying how 

these life history traits and mutational differences between sexes affect neutral polymorphism 

levels on X and autosomes. Earlier work by Felsenstein (70) modeled the effects of age structure 

on the effective population size of haploid populations, and that work was later extended by Hill 

(15), Johnson (71), Charlesworth (16, 67) and Orive (72), who incorporated the effects of age 

structure in diploid populations, as well as the effects of sex- (but not age-) dependent rates of 

mutation. Where our work departs from those is in building on coalescent models of age-structured 

populations developed by Sagitov and Jagers (73) and Pollack (74), which we describe below.  

 

2.4 Results 

The haploid model. To illustrate how we treat the coalescence process in an age-structured 

population, we first consider the haploid model proposed by Felsenstein (70). We assume a haploid 
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panmictic population that is divided into age classes of one year (for convenience), and denote the 

(constant) number of individuals of age Y ≥ 1 by [R, where [RM2 ≤ [R due to mortality (see 

Table 2.1 for a summary of notations). We further assume that each of the [2 newborns is 

independently descended from a random parent, with the parent’s age chosen from a distribution 

P = (]R)R^2
_  with expectation G (the generation time). The parent is then chosen with uniform 

probability within the age class. We begin with the case without endogenous reproductive 

variance, but incorporate this effect below. 

 

 

Notation Definition 

`a Probability that a newborn descends from a parent of age a 

ba Number of individuals of age a 

c Average generation time 

b Effective age-class size 

de⃗  Relative reproductive success, where component gR is the relative 

reproductive success at age a 

hi,j Expected value of gk ⋅ gm conditioned on survival to age j (n ≥ o) 

h Weighted average of pk,m 

Table 2.1: Notation for the haploid model. 

 

This model was solved by Sagitov and Jagers (73) in a coalescent framework, and here we provide 

an intuitive account of the solution. First, we consider the rate of coalescence for a sample of two 

alleles, where to this end, we trace their lineages backward in time. For the alleles to coalesce in a 
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given age class a, one of them would have to be a newborn in the previous generation; this occurs 

with probability ]R/' per year. The other allele would have to be present in the same age class, 

which occurs with probability ∑ ]RmrR /', because it could have been born to a parent of age n ≥

Y, n − Y + 1 generations ago (the rigorous derivation establishes that this is in fact the stationary 

age distribution along a lineage). Both alleles would also have to be in the same individual in age 

class a, which occurs with probability 1/[R. Taken together, we find that the probability of 

coalescence per-year in age class a is 

2 ∙ t
Qu
v
w ∙ t

∑ Qxxyu

v
w t

2

,u
w − t

Qu
v
w
3
t
2

,u
w, 

where we multiplied by 2, because either allele could have been the newborn in the previous 

generation, but subtracted the probability that they both were, because this event should be counted 

only once. The probability of coalescence per generation and corresponding effective population 

size follow from multiplying these probabilities by the generation time, summing them over age 

classes, and rearranging terms: 

2

z{
=

2

v
∑ |u

,u
R ,         [2.1] 

where }R = ]R3 + 2∑ ]R]mm~R . Note that the (a, j)-term in }R is proportional to the probability 

that coalescence in age class a occurs in an individual that fathered a newborn carrying one of the 

alleles at age a, and a newborn carrying the other allele at age j. Moreover, the }R terms add up to 

one, allowing us to define the effective age class size as the weighted harmonic mean 

2

,
= ∑ |u

,u
R .         [2.2] 

The effective population size can then be viewed as the product of the effective age-class size and 

the effective number of age-classes, which is simply the expected generation time G, i.e.,  

�T = 	' ⋅ [.          [2.3] 
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Next, we extend the model to incorporate endogenous reproductive variance (as opposed to the 

variance introduced by stochastic mortality and birth). To this end, we assume that each newborn 

is assigned a vector g⃗ describing its age-dependent, relative reproductive success, such that its 

probability of being chosen as a parent among the individuals of age class a is gR [R⁄  (i.e., gR 

corresponds to the expected, rather than actual, reproductive success of the individual at age a). 

We further assume that the proportion of individuals with a given vector g⃗ that reach age a, JR(g⃗), 

can vary with age, in effect allowing for dependencies between age-specific mortality and 

reproductive success. Thus, the model is set up to allow for dependencies between reproductive 

success, fecundity and longevity, examples of which have been observed in natural populations 

(e.g., between the age of first reproduction and longevity (75, 76), or between reproductive success 

and longevity (76, 77)). 

The model thus extended can be solved along the same lines as described above (see Appendix 

section A2.1.2). Specifically, the coalescence rate per generation and corresponding effective 

population size take a similar form: 

2

z{
=

2

v
∑ |u

,u
R ,         [2.4] 

but in this case 

}R = ]R3pR,R + 2∑ ]R]mpR,mm~R ,      [2.5] 

where pR,m ≡ ÅV⃗ÇgR ⋅ gmÉ	individual	reaches	age ≥ 	n) for n ≥ Y. As in the simpler case, the (a, 

j)-term in }R is proportional to the probability that coalescence in age class a occurs in an 

individual that fathered a newborn carrying one of the alleles at age a, and a newborn carrying the 

other allele at age j; but in this case, the coefficients pR,m factor in the effect of endogenous 
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reproductive variance. In contrast to the simpler case, the }R terms do not necessarily add up to 1. 

We therefore introduce a normalization by p = ∑ }RR , and define the effective age class size as  

2

,
=

2

v
∑ |u/ë

,u
R .         [2.6] 

In these terms, the effective population size takes the form  

�T = ' ∙ [ p⁄ .         [2.7] 

To provide some intuition, we consider the special case in which relative reproductive success is 

independent of age and of mortality rates. Namely, each newborn is assigned a relative 

reproductive success r at birth, and its probability of being chosen as a parent among the 

individuals of age class a is g [R⁄ . The distribution of r values then has expectation 1 (by 

construction) and we denote its variance by íV (íV = 0 when there is no endogenous reproductive 

variance). In this case, the coalescence rates in any given age class are increased by a factor 1 +

íV, and therefore the effective population size is  

�T = 	
2

2Mìî
' ⋅ [.        [2.8] 

Thus, p = 1 + íV and it can be interpreted as the reproductive variance caused by the Poisson 

sampling of parents, which contributes 1, and by the endogenous reproductive variance, which 

contributes íV. In turn, the contribution of age-structure to reproductive variance is reflected in ' ⋅

[.  

More generally, the results of the full model can be recast in terms of the total reproductive 

variance. First consider a haploid Wright-Fisher process, i.e., with non-overlapping generations, 

with endogenous reproductive variance, modeled similarly to the example considered above. In 

this case, Wright (78) showed that the effective population size is 

�T = 	� í⁄ ,         [2.9] 
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where � is the census population size and í = 1 + íV is the total reproductive variance. Second, 

in the case with age-structure but without endogenous reproductive variance, Hill showed that the 

effective population size can also be written as  

�T = ' ⋅ [2/í,       [2.10] 

where ' ⋅ [2 is the number of newborns per generation, and V is the reproductive variance 

introduced by age-structure (15). Comparing Eqs. 2.7 and 2.10, we can express this variance as 

í = [2/[ (≥ 1). This expression makes intuitive sense, as this would be the reproductive 

variance in the case considered by Wright, if the next generation were randomly chosen from a 

reproductive pool including only [ out of [2 individuals in the population. In Appendix section 

A2.1.3, we show that Eq. 2.10 also holds for the general model with age-structure and endogenous 

reproductive variance. In this case, the total reproductive variance is 

í = ([2/[) ⋅ p,         [2.11] 

where the first term in this product,	[2 [⁄ , is the variance introduced by stochasticity in mortality 

and birth, and the second term, p, reflects the contribution of endogenous reproductive variance. 

Thus, we conclude (i.e., in Eq. 2.10) that all the effects of age-structure and endogenous 

reproductive variance (as well as any dependence between them) on the effective population size 

can be summarized in terms of the generation time, ', number of newborns per year, [2, and total 

reproductive variance, í.   

 

The model for X and autosomes. The diploid model with two sexes is more elaborate, but it is 

defined and solved along the same lines that we have described for the haploid model. In Appendix 

section A2.2.2, we describe the model formally, and here, for brevity, we only describe how it 

differs from the haploid model. Notably, in this case, we allow for age-dependent mortality, 
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fecundity, and endogenous reproductive variance to vary between the sexes. We further assume 

equal sex ratios at birth (although we also consider the general case in Appendix section A2.2), 

and accommodate X and autosomal modes of inheritance (i.e., X linked loci in males always 

descend from females, whereas in all other cases the sex of parents is randomly chosen with 

probability ½). In Appendix section A2.2.3, we solve this model for the stationary distributions of 

sex and age and corresponding coalescence rates, by extending Pollack’s results for age-structured 

populations with two sexes (74) to account for endogenous reproductive variance. Here we 

describe the main results relying on the intuition gained from the haploid model. 

 

By analogy with the haploid case (Eq. 2.10), we can express the effective population sizes for X 

and autosomes in terms of the reproductive variance of males and females. To this end, we denote 

the number of newborns per year, including both sexes, by [2 (see Table 2.2 for a summary of 

notations). We further define the generation times for X and autosome linked loci as averages of 

the male and female generation times, ', and '-, weighted by the proportions of generations that 

they spend in each sex, i.e.,  

'4 =
3

5
'- +

2

5
', and '0 =

2

3
(', + '-).      [2.12] 

To draw the analogy with the haploid case, we consider the effective population size in terms of 

alleles rather than individuals (they are equivalent for haploids). Specifically, we define the 

reproductive success of an allele as the number of an individual’s offspring carrying that allele, 

and denote the reproductive variance associated with X and autosome linked alleles by í4∗ and í0∗. 

In these terms, the effective population sizes for X and autosomes are analogous to Eq. 2.10: 

5

3
∙ �T4 = '4 t

5

3
∙ [2w í4

∗X  and 2 ∙ �T0 = '0(2 ∙ [2) í0
∗⁄ ,   [2.13] 
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where the factor of 3/2 for X and 2 for autosomes follow from considering the effective size of 

alleles rather than individuals on the left-hand side, and the number of newborn alleles rather than 

individuals on the right-hand side. Expressing these results in terms of the reproductive variance 

of males, í,, and of females, í-, in Appendix section A2.2.5, we show that 

í4
∗ =

2

N
(2 +

2

5
í, +

3

5
í-) and í0∗ =

2

N
(2 +

2

3
í, +

2

3
í-),    [2.14] 

where the weights reflect the proportion of generations spent in males and females and the additive 

factor 2 results from ploidy. Substituting these expressions into Eq. 2.13 we find that 

�T4 =
Nvñ,ó

3M
ó
ò
ìôM

ö
ò
ìõ

 and �T0 =
Nvú,ó

3M
ó
ö
ìôM

ó
ö
ìõ

.     [2.15]  

 

Notation Definition 

bù Number of male and female newborns per-year 

cb, cû Average generation times in males and females 

cü, c† Average generation times for X and autosomes 

°ü
∗ , °†

∗  Reproductive variance for X and autosome linked alleles 

°b, °û Reproductive variance of males and females 

¢b, ¢û Average mutation rate per generation in males and females 

¢ü, ¢† Average mutation rate on the X and autosomes 

Table 2.2: Notation for the diploid model with two sexes. 

 

Polymorphism levels on X and autosomes. Having solved for the effective population sizes, we 

now turn to polymorphism levels. To this end, we assume that the expected mutation rates in males 

and females depend linearly on age (2, 11), and that their expectations for generation times ', 
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and '- are /, and /- respectively (see Appendix section A2.3 for general dependency). The 

expected mutation rates per generation on X and autosome linked lineages are weighted averages 

of these expected rates,  

/0 =
2

3
(/, + /-) and /4 =

3

5
/- +

2

5
/,.      [2.16] 

The expected heterozygosity on X and autosomes then follows from the standard forms:  

Å(£0) = 4�T0/0		and		Å(£4) = 3�T4/4.     [2.17] 

Note that these expressions are usually derived assuming that the genealogical and mutational 

processes are independent (79). This assumption is violated here, because both the coalescence 

and mutation rates depend on the ages along a lineage. In Appendix section A2.3, we show that 

the standard forms hold nonetheless. 

 

We can now combine our results to derive an expression for the X to autosome ratio of 

polymorphism levels. From Eqs. 2.15 and 2.17 and rearranging terms, we find that the ratio of 

expected heterozygosity is  

§(•ñ)

§(•ú)
=

5

N
⋅
¶(ßô/ßõ)⋅¶(vô/võ)

¶®
ö©™ô
ö©™õ

´
,       [2.18] 

where J(K) = 3LMN

5LM5
 (see Eq. S86 for the case in which the sex ratio at birth differs from 1). When 

the mutation rates, generation times, and reproductive variance are identical in both sexes, this 

expression reduces to the naïve neutral expectation of ¾. When these factors differ between sexes, 

Eq. 2.18 provides a simple expression for the effect of each factor. Notably, the effects of age-

structure and endogenous reproductive variance reduce to effects of male to female ratios of 

generation times and of reproductive variances (more precisely (í, + 2)/(í- + 2)). 
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Comparing ratios of polymorphism and divergence. We can now ask how changes in these 

factors affect X to autosome ratios of polymorphism and divergence. More precisely, considering 

the numbers of substitutions rather than divergence (i.e., ignoring multiple hits) and excluding the 

contribution of ancestral, the equivalent expression to Eq. 2.18 is 

§(¨ñ)

§(¨ú)
=

¶(ßô/ßõ)

¶(vô/võ)
	         [2.19] 

(4, 16). While a higher ratio of male to female mutation rates, O = /,//-, has the same effect on 

X to autosome ratios of polymorphism and divergence, a higher ratio of male to female generation 

times (',/'-) has opposite effects, decreasing the ratio for polymorphism but increasing it for 

divergence (Fig. 2.1). The difference arises because one way in which the male to female ratio of 

generation times affects polymorphism levels is by changing the relative rates of coalescence on 

X and autosomes, whereas there is no such effect on divergence levels, for which coalescence 

times on both X and autosomes equal the species split time (again, neglecting the contribution of 

ancestral polymorphism). By the same token, reproductive variances affect only the coalescence 

rates, and thus polymorphism but not divergence levels. Importantly, the different effects of life 

history factors on polymorphism and divergence complicate the interpretation of X to autosome 

polymorphism ratios that are divided by divergence to an outgroup (e.g., (48, 49, 53, 80)) (see 

Discussion). 
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Fig. 2.1: Generation time effects on X to autosome divergence and polymorphism ratios.  

 

X to autosome polymorphism ratios in humans and other hominids. Thus far, we considered 

general results for the effects of life history on the X to autosome ratio of polymorphism levels, 

and now we turn to the effects in human populations and in other hominid species. To this end, we 

rely on a model that approximates the dependence of hominid mutation rates on sex and age (11, 

26). We assume that mutations accumulate linearly with the number of germ-cell divisions, and 

that the rate per division varies at different stages of development (11). In females, the number of 

cell divisions does not depend on age because all oogonial mitotic divisions occur before birth 

(81). In males, germ-cell division exhibits two main phases, with an approximately constant 

number until puberty, followed by a linear rate of division in adult testis during spermatogenesis 

(31, 32). We previously (4) fitted the corresponding mutation model to the relationship between 

the number of mutations and the parents’ sex and age observed in human pedigrees (2), to obtain 

the following approximations for female and male mutation rates per bp per generation: 

/- = 5.42 ⋅ 10DE and /, = 6.13 ⋅ 10DE + 3.33 ⋅ 10D2≠(', − <)/7, [2.20] 

where P is the puberty age in males and 7 is the duration of the seminiferous epithelial cycle 

(during spermatogenesis). Recent pedigree studies indicate that maternal age also affect mutation 

rates (e.g. (69)), more generally suggesting that some mutations are in fact spontaneous rather than 
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replication driven (11, 30). At present, however, the studies are not sufficiently precise for us to 

incorporate maternal age and spontaneous effects in our mutational model. Once they are, it should 

be straight forward to study how they affect the results that we report below. 

Given our mutational model and relying on prior knowledge about life history parameters, we 

consider how each of the factors detailed in Eq. 2.18 affects deviation of the X to autosome ratio 

from the naïve expectation of ¾, and how they affect variation in the ratio among populations and 

species. We begin with the effect of sex differences in reproductive variance (Fig. 2.2). This effect 

has been noted by many (e.g., (67, 82)) and follows intuitively from the fact that a higher male 

variance results in higher coalescence rates on autosomes than on the X, thus increasing £4/£0. 

In theory, we know that higher reproductive variance in males can increase £4/£0 by as much as 

50% (with an upper bound of 9 8X  compared to 3 4X ), but in practice, the effect is expected to be 

much smaller. Consider, for example, a model in which only a fraction p of the males can 

reproduce and the number of offspring for each follows a Poisson distribution with mean 2/p, while 

all females reproduce with equal probabilities following a Poisson with mean 2, resulting in a ratio 

(í, + 2) (í- + 2)⁄ = ]D2. In this case, assuming that only ] = 0.3 of males can reproduce would 

result in an X to autosome polymorphism ratio that exceeds ¾ by only 22% (i.e., much lower than 

the theoretical limit). Unfortunately, little is known about the plausible range of reproductive 

variances in humans. In five hunter-gatherer groups in which this variance was measured in small 

samples, it was found to be 1.7-4.2 folds higher in males (68), corresponding to an increase of 6-

20% relative to ¾, which translates into a relative difference of ~13% among populations.  
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Fig. 2.2: The effect of male reproductive variance on the ratio of X to autosome polymorphism 

levels, assuming the female reproductive variance equals 2.  

Next, we consider the effect of the ratio of male to female generation times (Fig. 2.3A). In seven 

hunter-gatherer groups in which these were measured, the mean generation times vary between 25 

and 33 years and the ratio of male to female generation times between 1.03 and 1.37 (4, 5). 

Accounting for both mutational and genealogical effects, this variation corresponds to an 18%-

24% reduction, and an ~8% relative difference in X to autosome polymorphism ratios. 

Intriguingly, the relative effect is on the order of the variation in observed X to autosome ratios 

among human populations, which are 6%-9% lower in Europeans and 8%-9% lower in Asians 

compared to Africans (54). However, the effect of generation times on the X to autosome 

polymorphism ratio should be averaged over the period that gave rise to extant polymorphism 

levels. Thus, while these estimates suggest that higher ratios of male to female generation times in 

non-Africans may have contributed substantially to observed differences, a more precise account 

of this contribution should factor in the shared evolutionary history among populations, as well as 

subsequent lineage-specific variation in generation times.  

Differences in ratios of male to female generation times, have also been reported among groups of 

wild chimpanzees, albeit based on small samples (6). Specifically, mean generation times have 

been estimated to vary between 22 and 27 years and the ratio of male to female generation times 
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between 0.8 and 1.2, corresponding to a 14%-24% reduction and a ~13% relative difference in X 

to autosome polymorphism ratios. Assuming such differences in generation times have persisted 

during the millions of years over which neutral genetic variation accumulated, they would have 

therefore contributed substantially to the variation in polymorphism ratios among hominid 

populations and species.  

As we already noted, paternal and maternal generation times affect the X to autosome ratios of 

polymorphism and divergence differently. Based on our mutational model, we can now ask about 

the combined mutational and genealogical effect of paternal and maternal generation times in 

hominids. Changing the paternal or maternal generation times has a genealogical effect of the same 

magnitude (but not direction; see Eq. 2.18), but changing the paternal generation time has a greater 

effect on the mutation rate per generation than changing the maternal one. Thus, overall, changes 

in paternal generation time have a greater effect on the X to autosome polymorphism ratio than 

the maternal one (Fig. 2.3A). In contrast, as we have shown previously ((4)), changes in maternal 

generation times have a greater effect on the divergence ratio (Fig. 2.3B), because the paternal age 

has opposing effects on the mutation rate per generation and on the number of generations along 

a lineage. 
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Fig. 2.3: The effects of maternal and paternal generation times on X to autosome ratios of 

polymorphism (A) and divergence (B) in humans. Note that the range on the y-axis differs between 

(A) and (B), reflecting the added genealogical effect on polymorphism but not on divergence. 

  

Lastly, the degree to which mutation is male-biased depends on the age of puberty in males and 

on the seminiferous epithelial cycle length, suggesting that changes to these parameters would also 

affect the X to autosome polymorphism ratio (Fig. 2.4). For example, varying the age of puberty 

between 13.5 years, the value estimated for humans (83), and 7.5 years, the value estimated for 

chimpanzees (84), while holding other life history parameter at their values in humans, decreases 

X to autosome polymorphism ratios by 3%. Similarly, varying the seminiferous epithelial cycle 

length from 16 days (humans (85)) to 14 days (chimpanzees (86)) decreases polymorphism ratios 

by 1%. Differences in these parameters between humans and more remotely related species may 

be greater, resulting in a more substantial effect on polymorphism and divergence ratios (4). For 

example, using ages of puberty in cercopithecoids, estimated to be between 3.5-6 years (87), leads 

to a reduction of 3-4% in polymorphism ratios compared to humans, and assuming the 

seminiferous epithelial cycle lengths in cercopithecoids is between 9.5-11.6 days (88, 89) leads to 

a reduction of 3-5%. 
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Fig. 2.4: The effects of male puberty age (A) and seminiferous epithelial cycle length (B) on the 

polymorphism ratio. Other parameters are fixed for their estimates in humans, i.e., generation 

times of ', = 33.8 and '- = 26.9 years (estimated in hunter-gatherers (4, 5)), male age of 

puberty of P = 13.5 years (83), and seminiferous epithelial cycle length of t  = 16/365 years (85). 

 

2.5 Discussion 

We have derived general expressions for the effects of life history factors on X and autosome 

polymorphism levels, and explored their plausible effects on levels observed in humans and 

closely related species. The expression for the ratio (Eq. 2.18) clarifies the effect of each factor, 

and in particular, shows that the genealogical effect of life history factors reduces to the effect of 

the ratios of male to female generation times, ',/'-, and of reproductive variances, 

(í, + 2) (í- + 2)⁄ . These results apply to any species with X and autosomes, and can be readily 

generalized to species with Z and autosomes. We focused on hominid species, because more is 

known about the factors affecting their polymorphism levels. Specifically, by considering a 

hominid model for the effects of life history on mutation rates, we have shown that plausible 

variation in ',/'- within human populations and among closely related species can have a 

substantial effect on levels of polymorphism on the X compared to the autosomes. It therefore 
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seems plausible that evolutionary changes in life history contributed substantially to the variation 

in X to autosome ratios among human populations and hominid species, and to their seemingly 

ubiquitous deviation from the naïve expectation of ¾.  

This generation time effect acts jointly with myriad other factors that have been highlighted 

previously (e.g., 48, 50, 54, 67). Notably, the ratio of male to female reproductive variances, 

(í, + 2) (í- + 2)⁄ , which tends to be greater than 1 and varies considerably among human 

populations and closely related species, is likely to have been an important explanatory factor (48, 

67). Another likely contributor is the different responses of polymorphism levels on X and 

autosomes to changes in population size, and to bottlenecks in particular (65). Notably, changes in 

population size (most notably, the Out-of-Africa bottleneck) have been estimated to contribute 

36%-47% of the observed reduction in X to autosome ratios in Asians and 38%-60% in Europeans 

compared to African populations, where the ranges correspond primarily to the use of different 

demographic models (54). Importantly, however, these estimates assume that the X to autosomes 

ratio of effective population sizes in the absence of bottlenecks is ¾, while consideration of sex-

specific generation times and reproductive variances point to a ratio closer to 1, and thus suggest 

a weaker effect of population size changes. Finally, X to autosome ratios have been shown to vary 

substantially along the genome due to variation in the effects of linked selection, e.g., with an 

estimated average reduction of 25-35% near compared to far from genes (54). Taken together, 

these factors are likely to explain most of the variation in ratios observed among human 

populations and along the genome. In considering variation among hominid species, differences 

in other factors affecting the male bias of mutation rates, O = /, /-⁄ ,	such as the male age of 

puberty and the length of the spermatogenetic cycle (11), may have also contributed substantially. 
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Ultimately, we would like to quantify the contributions of each factor to observed X to autosome 

polymorphism ratios. At present, however, a number of practical obstacles stand in the way. Most 

importantly, despite numerous papers characterizing X to autosome ratios, we still lack reliable 

estimates of their absolute values, and thus of their deviations from the naïve expectation of ¾. 

The main reason being that current estimates are based on dividing polymorphism levels by 

divergence to an outgroup (e.g., to macaques (49, 53), chimpanzees (48, 49), orangutans (48, 49), 

gorillas (49), marmosets (49), olive baboons (80) or, when non-human species are considered, to 

humans (80)), in an attempt to control for differences in mutation rates on X and autosomes. The 

“normalized” ratios are assumed to reflect only genealogical differences between X and 

autosomes, but this assumption is wrong. Notably, changes to life history traits should lead to 

changes in the X to autosome ratio of divergence over evolutionary time (4), and indeed this ratio 

has been found to vary substantially with the choice of outgroup (9, 13).   

Our results make the problematic nature of this normalization procedure quite clear, by allowing 

us to write down an explicit form for the normalized ratio: 

•ñ/¨ñ
•ú ¨ú⁄

= ∞
¶(ßô ßõ⁄ )

¶Çßô
∗ ßõ

∗⁄ ±
∙ J(',

∗ '-
∗⁄ )≤ ∙

5

N

¶(vô võ⁄ )

¶((3Mìô)/(3Mìõ))
,    [2.21] 

where parameters corresponding to the outgroup lineage are denoted by “*”. The second term (on 

the right-hand side) in this expression reflects the genealogical component of the X to autosome 

ratio, and will henceforth be referred to as “the genealogical ratio”, whereas the first (in brackets) 

includes the mutational effect on the ratio and the terms introduced by the normalization. For the 

normalization to fulfill its purpose of canceling out the mutational effects, the first term must equal 

1. As noted, however, the male bias in mutation rates (O = /, /-⁄ ) has evolved substantially over 

phylogenetic time scales (9, 23), and therefore the mutational terms J(/, /-⁄ ) J(/,
∗ /-

∗⁄ )⁄  do not 

cancel out. Even if they did, the different dependencies of polymorphism and divergence ratios on 
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the ratio of male to female generation times introduces the additional term J(',∗ '-
∗⁄ ) into the 

“normalized” polymorphism ratios. If we assume that generation times in males are greater than 

in females, as observed in extant hunter-gatherers (5), gorillas and some chimpanzee groups (6), 

this term would introduce a downward bias (e.g., up to 6%, for estimated generation times in 

different hunter-gatherer groups). The combined effect of male mutation bias and generation times 

on the normalization in hominoids, i.e., the term J(',∗ '-
∗⁄ )/J(/,

∗ /-
∗⁄ ), is dominated by the 

maternal generation time '-∗  (4). Varying '-∗  along the lineage to the outgroup from 18 to 30, while 

fixing other parameters to human values, results in a 10% increase in the normalized ratio. Taken 

together, these factors make existing, “normalized” estimates of the X to autosome ratio of 

polymorphism levels (e.g., (54)) difficult to interpret. Specifically, they cannot be interpreted as 

estimates of the genealogical X to autosome ratios, and are thus not comparable with the naïve 

expectation of ¾. 

These difficulties suggest that it may be preferable to consider X to autosome polymorphism ratios 

without normalization, and find alternative means to account for differences in the mutability of 

X and autosomes. We can begin by separating polymorphism ratios by types of mutation and 

genomic contexts, e.g., look at the ratio of C to T mutations in an ancestral ACA context (38). If 

we knew the sex specific mutation rates corresponding to these types and contexts during the 

genealogical history of extant samples, then we could divide out the mutational effects on these 

polymorphism ratios (i.e.,	J(/, /-⁄ )) to obtain estimates of the genealogical X to autosome ratio. 

In principle, we can learn about these mutation rates from the extant mutational spectrum, and 

specifically from the dependency of the rates of different types of mutations on sex and life history 

parameters (see below). While we currently lack a sufficiently accurate characterization of the sex 

and age specific mutational spectrum to do so, it may very well be within reach in the near future, 



 51 

at least in humans, owing to the increasing power of pedigree studies of mutation (69). Meanwhile, 

focusing on specific categories of mutations, the rates of which have been fairly stable over 

phylogenetic timescales (e.g., CpG transitions and ACA->ATA (38, 90)), may provide initial 

approximations for the genealogical X to autosome ratio. 

One can also apply new approaches to learn about the relative contribution of the different factors 

that shaped the genealogical ratio. Notably, as different types of mutations have distinct 

dependencies on life history parameters but X to autosome ratios corresponding to these types 

share the same genealogical history, one can make inferences about life history parameters (and 

the corresponding mutational spectrum) by requiring the same genealogical X to autosome ratio 

for different types of mutations (Gao, Moorjani et al., in preparation). Specifically, this approach 

may allow one to learn about the effects of the ratio of male to female generation times on the 

genealogical ratio. In addition, one could imagine using pairwise sequentially Markovian 

coalescent (PSMC) based inferences about historical effective population sizes on X and 

autosomes, to learn about the effects of bottlenecks, e.g., the OoA bottleneck, on the genealogical 

ratio directly rather than through simulations (cf. (54, 91)). Moreover, it may be possible to extend 

PSMC to use data from X and autosomes jointly in order to infer historical changes in female and 

male effective population sizes over time, and examine, for example, if they exhibited dramatic 

changes during the Out of Africa bottleneck (i.e., to examine the hypothesis of (50)).  

More generally, all the factors that are thought to affect neutral polymorphism levels on X and 

autosomes can now be integrated into a coalescent framework, providing a natural way to quantify 

how their effects combine, and an efficient model from which to simulate. Our results describe 

how life history factors affect the effective population sizes on X and autosomes in the Kingman 

coalescent. The integration of other factors then follows from their known descriptions in terms of 
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the coalescent, starting from these effective population sizes. For example, the effects of changes 

in population size and generation times can thus be integrated as appropriate changes to the 

effective population sizes on X and autosomes backwards in time. Moreover, the effects of linked 

selection on relative diversity levels along the genome also follow from their description in terms 

of the coalescent (e.g., (92-94)), starting from these effective population sizes. Lastly, the effects 

of life history on mutation can be incorporated in terms of mutational models akin to our hominid 

model. With the theoretical framework in place, and the data needed to infer the effects of each 

factor either already present or around the corner, a comprehensive, quantitative understanding of 

diversity levels on X and autosomes in hominoids and other taxa should be within reach.  
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Appendix 1 – Supplementary Information for Chapter 1 

A1.1. The expected substitution rate with sex and age dependent mutation rates 

If mutation rates depend on age and sex then the expected rate of substitutions will depend on the 

distributions of male and female reproductive ages in a population. Here we provide an intuition 

for as well as formal derivations of the rate of substitutions under general assumptions about these 

distributions. We show that, assuming the linear mutational model described in chapter 1, the 

substitution rate depends on the average reproduction ages in males and females, but is unaffected 

by the variance of these ages in the population. We also consider the rate of substitutions for the 

case in which these distributions and the mutation rates per cell division change over time.  

 

Intuition. We begin with an informal argument for the expected rate of substitutions on autosomes 

(also cf. Charlesworth (1), pp. 92-93). We denote the expected mutation rates per-generation in 

males and females by /, and /- and the expected generation times by ', and '-, respectively. 

The yearly substitution rates in males and females are therefore /,/', and /-/'-, respectively. 

The expected yearly substitution rate on autosomes can be calculated as a weighted average over 

yearly rates in males and females, where the weights are the proportions of time an autosomal 

locus spends in each sex: i.e., ',/(', + '-) for males and '-/(', + '-) for females. The 

expected yearly rate on autosomes is therefore (/, + /-)/(', + '-). Equivalently, consider a 

branch of X generations. The expected number of substitutions along the branch at an autosomal 

locus is 2
3
(/, + /-)≥, whereas the expected length of the branch in years is 2

3
(', + '-)≥. The 

expected yearly mutation rate autosomal is therefore (/, + /-)/(', + '-).  
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Assumptions and notation. We consider the genealogical process along a lineage backward in 

time. We denote the distributions of paternal and maternal ages at offspring birth by P, and P- 

and their expectations by ', and '-, respectively. For brevity, we consider these distributions to 

be discrete (i.e., in years). The number of mutations that a parent of sex s and age a bequeaths to 

its newborn, ≥¥,R, is a random variable with expectation /¥,R (averaging over any other factors that 

could affect mutation rates, e.g., age of puberty). We later show that the variance (or higher 

moments) of ≥¥,R do not affect the expected substitution rates, and therefore we require no further 

assumptions about the distribution of ≥¥,R. Since mutation rates can vary with age, the expected 

mutation rate per-generation depends on the distribution of reproduction ages. We define the 

paternal and maternal mutation rates per-generation as the appropriate weighted averages, /, =

Å0ô(/,,R) and /- = Å0õ(/-,R). Thus, if we sample a random newborn, /, and /- are the expected 

numbers of mutations it inherits from his father and mother. Note that for a linear mutational model 

(i.e., /¥,R = 6¥ + 8¥Y where 6¥ and 8¥ are constants), /, and /- depend only on the expected (but 

not the variance of) ages of reproduction (i.e., /¥ = Å0µÇ/¥,R± = 6¥ + 8¥'¥). We first consider the 

case in which all distributions remain constant in time. 

 

Autosomal substitution rate. The number of substitutions "0 over T years is affected by the 

stochasticity in both the genealogical history on the lineage and the mutational process. First we 

consider the genealogical history. Tracking an autosomal site backwards in time, at generation i 

we have a parent of sex ∂k and age Yk, where ∂k is either male or female with probability ½ and 

(Yk|∂k)~P¥π. The number of de-novo substitutions at generation i, ∫k, is a random variable with 

conditional expectation /¥π,Rπ. We assume that the variables ℎk = (Yk, ∂k) are independent between 
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generations (the derivation can be readily generalized so long as the autocorrelation time between 

ages in subsequent generations is short relative to the lineage length). It follows that the number 

of generations in a lineage of T years is a random variable defined as 

ºv(+) = 	ΩYK{º|∑ Yk ≤ +}¿
k^2    

and that 

"0 = 	∑ ∫k
¿¡(¬)
k^2 .   

"0 is a renewal-reward process (with time T), so 

Å("0) = 	
¬

§(Rπ)
Å(∫k) + √(1)   

(2). The expected autosomal generation time is '0 = Å(Yk) =
2

3
(', + '-) and the expected 

autosomal mutation rate per-generation is /0 = Å(∫k) = ÅÇ/¥π,Rπ± =
2

3
(/, + /-). The √(1) term 

is negligible as long as + >> '0 (and is at most /0≈∆), so  

Å("0) = 	 (/0 '0⁄ )+.          [A1.1] 

 

Substitution rates on the X. The derivation for substitution rates on the X requires a small 

adjustment, because in this case the sexes in consecutive generations are dependent variables (as 

males necessarily inherit their X from the maternal side). We therefore take each step backwards 

in time to extend back to the next female ancestor instead of the next generation. We denote the 

length of the ith step in years by «k and the number of de-novo substitutions in that step by ∫k. If the 

X-linked allele is directly inherited from a female (with probability ½), then «k~	P-	and 

Å(∫k|», «k) = /-,Rπ. Otherwise, the X is inherited from a male, and only then from a female, 
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yielding «k = Y¶ + Y… and Å(∫k|[, Y¶, Y…) = /-,R + /,,RÀ where Y¶	~	P- and Y…	~	P,. The 

average length of a step (in years) is Å(«k) = '- +
2

3
', =

5

3
'4 (where '4 =

2

5
', +

3

5
'- is the 

sex-averaged generation time) and the average number of de-novo substitutions in a step is 

Å(∫k) = /- +
2

3
/, =

5

3
/4 (where /4 =

2

5
/, +

3

5
/- is the sex-averaged mutation rate per-

generation on the X). 

The steps ℎk = (lÃ, yÃ) are i.i.d and "4 is a renewal-reward process (with time T) defined by 

ºv(+) = 	ΩYK{º|∑ Yk ≤ +}¿
k^2  and "4 = 	∑ ∫k

v(¬)
k^2 . It follows that 

Å("4) = 	
¬

§(Sπ)
Å(∫k) + √(1) =

ßñ
vñ
+ + √(1), 

Again, neglecting the √(1) term we attain 

Å("4) =
ßñ
vñ

 +.         [A1.2] 

 

Substitution rates on the Y. By the same token,  

Å("Œ) =
ßô
vô
+.         [A1.3] 

 

Relative substitution rates on sex chromosomes and autosomes. From Eqs. A1.1- A1.3, we 

attain  

§(¨ñ)

§(¨ú)
=

¶(ßô/ßõ)

¶(vô/võ)
,			

§(¨œ)

§(¨ú)
=

–(ßô/ßõ)

–(vô/võ)
	 and  §(¨œ)

§(¨ñ)
=

—(ßô/ßõ)

—(vô/võ)
,         [A1.4] 

where J(K) = 3LMN

5LM5
	 , ℎ(K) =

3L

LM2
 and “(K) = 5L

LM3
. In the case where both sexes have the same 

expected generation times, Eqs. A1.4 reduce to Miyata’s formulae (3). Note that Eqs. A1.4 imply 
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that the X-to-autosome ratio is bound between ½ and 2 whereas the Y-to-autosome and Y-to-X 

ratios do not have a theoretical bound. 

 

Corresponding results for the ZW system. By the same token, 

Å("0) = 	 (/0 '0⁄ )+  , Å("”) =
ß‘
v‘

 + and	Å("ë) =
ßõ
võ
+,    [A1.5] 

where '” =
3

5
', +

2

5
'- is the sex-averaged generation time, /” =

3

5
/, +

2

5
/- is the sex-

averaged mutation rate per-generation on the Z and the other parameters are defined as in the XY 

system. It follows that  

§(¨‘)

§(¨ú)
=

¶∗(ßô/ßõ)

¶∗(vô/võ)
,			

§(¨’)

§(¨ú)
=

–∗(ßô/ßõ)

–∗(vô/võ)
	 and §(¨’)

§(¨‘)
=

—∗(ßô/ßõ)

—∗(vô/võ)
,         [A1.6] 

where J∗(K) = NLM3

5LM5
	 , ℎ∗(K) =

3

LM2
 and “∗(K) = 5

3LM2
. In the case where both sexes have the same 

expected generation times, Eqs. A1.6 reduce to Miyata’s formulae for the ZW system (3). Note 

that Eqs. A1.6 imply that the Z-to-autosome ratio is bound between ½ and 2 whereas the W-to-

autosome and W-to-Z ratios do not have a theoretical bound. 

 

Changing substitution rates. The sex-specific distributions of reproduction age and the 

dependency of mutation rates on age and sex likely change over phylogenetic timescales. To derive 

the substitution rates in this case, we assume that the distributions of reproduction ages P,(÷) and 

P-(÷) and the expected mutation rates /¥,R(÷) are time-dependent. Under standard smoothness 

requirements on these functions, we can divide the lineage into a large number of segments with 

almost constant parameters, where in the limit  
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"0 = ∫
ßú(∆)

vú(∆)

¬

≠
ÿ÷ , "4 = ∫

ßñ(∆)

vñ(∆)

¬

≠
ÿ÷ and "Œ = ∫

ßô(∆)

vô(∆)

¬

≠
ÿ÷.      [A1.7] 

Here, /0(÷), '0(÷), etc. denote the expectations at time t.  

 

A1.2. Linear mutation model: averaging 

Our linear model relates mutation rates with life history and spermatogenetic parameters. Yet each 

of these parameters can vary in the population and along a lineage. Here we consider how to 

average over these parameters to obtain the expected rate of substitutions.   

 

A1.2.1. Averaging over the population  

In the previous section we have shown that the dependency of mutation rates on age and sex affects 

the substitution rates through the expectations /, = Å,(/,,R) and /- = Å-(/-,R) (where the 

expectation is over the sex-specific distributions of ages at offspring birth, P, and P-; see Section 

A1.1). According to our model, the mutation rate per generation in females is constant, but the rate 

in males depends on age of reproduction, age of puberty and the spermatogenic cycle length, all 

of which vary in the population. For a specific father f, we assume that the expected number of de-

novo mutations is 

/,,RŸ(Y⁄, ;, «) 	= 6, + 8,
(RŸDR¤D‹)

S
, 

where age at puberty and at offspring birth, Y⁄ and Y›, and the spermatogenic cycle length « are 

values specific to an individual. We assume that /-, 6,, 8, and the gestation time I are constant 

in the population, and first consider a simplified scenario in which l is constant in all germ cells 

within an individual.  
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It follows from the derivations in the previous section that the average per-generation male 

mutation rate in the population is  

/, = 6, + 8,Å(
	RŸDR¤D‹

S
), 

where the expectation is over the population of fathers to newborns and each male is weighted by 

the number of children he has and the ages at which he has them, thereby excluding individuals 

that never become parents (see definition of /, in the previous section). If we assume that the 

spermatogenic cycle length is independent from both age of puberty and age of reproduction, it 

follows that   

/, = 6, + 8,Å(
	2

S
)(', − Å(Y⁄)). 

Hence, Eq. 1.4 holds if < = Å(Y⁄), the average age of puberty in fathers, and 7 = 1/Å(
2

S
), the 

harmonic average of the spermatogenic cycle length in fathers.  

These averages differ from those reported in the literature in several ways. Notably, they are taken 

over the population of fathers as opposed to the population average. For example, if fathers with 

earlier puberty tend to have more offspring then < would be lower than the population average. A 

similar argument might apply to 7 (e.g., if males with shorter spermatogenic cycles tend to produce 

more offspring). In addition, the definition of 7 as a harmonic mean differs from the simple 

averages reported in the literature.  

If the length of the spermatogenic cycle varies among germ cell lineages or changes with age 

within an individual then an individual’s average length l should account for the variability. Similar 

considerations to those that applied to the population suggest that one should use a harmonic 
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average over germ cell lineages and changes with age in these lineages. At present, the data 

required for correctly averaging over individuals, let alone within individuals is not available.  

 

A1.2.2. Averaging over a lineage  

Next we derive the appropriate averages when life history and spermatogenesis parameters vary 

along lineages. To this end, we substitute the linear mutation model into Eq. A1.7  

"0 = ∫
ßú(∆)

vú(∆)

¬

≠
ÿ÷ =

fiôMßõ
3

∫
2

vú(∆)

¬

≠
ÿ÷ + 8, ∫

2

fl(∆)

¬

≠
⋅

¡ô(‡)

¡õ(‡)

2M
¡ô(‡)
¡õ(‡)

[1 −
⁄(∆)

vô(∆)
]ÿ÷,   

where the parameter values at a given time reflect the population averages we considered above. 

It follows that the sex averaged generation time along a lineage should be defined as the harmonic 

mean '0&&& = „+D2 ∫
2

vú(∆)

¬

≠
‰
D2

. Assuming that vô(∆)
võ(∆)

, ⁄(∆)

vô(∆)
 and 7(÷) evolve independently, it also 

follows that the average ratio of male puberty age to generation time is +D2 ∫ ⁄(∆)

vô(∆)

	¬

≠
 and the 

average spermatogenic cycle length is given by the harmonic mean 7̅ = „+D2 ∫
2

fl(∆)

¬

≠
‰
D2

. Assuming 

independence also implies that the ratio of male-to-female generation times affects substitution 

rates through the term +D2 ∫
¡ô(‡)

¡õ(‡)

2M
¡ô(‡)
¡õ(‡)

ÿ÷
¬

≠
. Using the average male-to-female ratio of generation 

times g = +D2 ∫
vô(∆)

võ(∆)

¬

≠
, this term can be approximated by V

2MV
, where the accuracy of the 

approximation satisfies  

Â+D2 ∫
¡ô(‡)

¡õ(‡)

2M
¡ô(‡)
¡õ(‡)

ÿ÷
¬

≠
−

¬Êó ∫
¡ô(‡)

¡õ(‡)
Á
Ë

2M¬Êó ∫
¡ô(‡)
¡õ(‡)

Á
Ë

Â ≤
ì

(VM2)ö
 , 
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and therefore depends on the variability of the ratio over time í = +D2 ∫ „
vô(∆)

võ(∆)
− g‰

3
ÿ÷

¬

≠
. 

 

A1.3. Linear mutation model: dependency on parameters 

Here we consider whether changing one parameter while leaving the others constant increases or 

decreases the rate of substitutions on autosomes. It is apparent from Eqs. 1.4 and A1.1 that the 

autosomal substitution rate monotonically decreases with both the male age of puberty (<) and the 

spermatogenic cycle length (7). 

In order to consider the effects of the average and ratio of generation times, '0 and ',/'-, we 

reorganize Eqs. 1.4 and A1.1 to obtain the yearly substitution rate "ÈTRV = "0/	+, 

Å("ÈTRV) =
fiôMfiõDÍô(⁄M‹)/fl

3vú
+

Íô
fl
⋅

vô/võ
2Mvô/võ

.     [A1.8] 

In this form it is apparent that the substitution rate increases monotonically with the ratio of male-

to-female generation times (',/'-); this would be the case for any linear mutation model in which 

mutation rates increase more rapidly with paternal than maternal age (which follows from Íô
fl
> 0 

in our case) and monotonically decreases otherwise.  

While the generation time effect in mammals would suggest that substitution rates increase when 

the average generation ('0) decreases, Segurel et al. (4) and Gao et al. (5) used a model similar to 

ours to show that this is not necessarily the case. Specifically, they show that rates would decrease 

only if 6, + 6- > 8,(< + ;)/7 (using our notation) and increase otherwise. This derivation, 

however, is predicated on the assumption that puberty age and gestation time remain constant 

when the generation time changes. 
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If, instead, we assume that the proportion of a generation before puberty and in gestation, (< +

;)/',, remains constant, then substitution rates necessarily increase when the average generation 

('0) decreases. This becomes apparent when we reorganize Eq. A1.8 as follows 

Å("ÈTRV) =
fiôMfiõ
3vú

+
Íô
fl
(1 −

⁄

vô
−

‹

vô
)

vô/võ
2Mvô/võ

 . 

Using this parameterization does not affect our conclusions with respect to the effects of 

parameters other than '0 and P. 

 

A1.4. Linear mutation model: parameter estimates 

A1.4.1. Inference from human pedigrees  

We infer the parameters associated with rates of mutation per germ-cell division from the Kong et 

al. human pedigree study (6). The Kong et al. study is based on 78 trios and is one of the largest 

published to date (6). We choose not to combine data across multiple studies to circumvent the 

problems that arise from the use of different methodologies, e.g., for controlling for false positives 

and negatives ((4); but see (5)).  

We infer the parameters /-, 6, and 8,. To that end, we rely on the Kong et al. fit of a linear 

model to the relationship between mutation rates and paternal ages. Further assuming an average 

male puberty age of 13.4 years (cf. section A1.4; the puberty age in Iceland aligns with the age in 

other western European populations (7)) yields an estimate of 

(fiôMßõ)

3
= 5.77 × 10DE	per bp,       [A1.9] 

corresponding to the mutation rate averaged over females and pre-pubertal males, and an average 

mutation rate of 1.245 ⋅ 10DÏ per bp in males during spermatogenesis (taken together these 
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estimates correspond to a sex averaged mutation rate of 1.2 ⋅ 10DÏ per bp per generation). Given 

that the average age of reproduction in the sample is 29.7 years, corresponding to 374 stem cell 

divisions (cf. Table A1.1), the per-division rate in spermatogenesis is thus  

	8, = 3.33 × 10D22 per bp per division.      [A1.10] 

We rely on the smaller phased sample of five trios to separate /- and 6,, yielding  

/- = 5.42 × 10DE	 per bp and 6, = 6.13 × 10DE per bp.    [A1.11] 

Since autosomal mutation rates depend on (/- + 6,) but are invariant to the separation between 

the male and female component, this implies that our inferences are more accurate on autosomes 

than on the X.  

 

A1.4.2. Mutation rates per cell division in humans and other taxa 

We rely on estimates of the number of germ cell divisions at different developmental stages (Table 

A1.1) to translate the pedigree based estimates into estimates of the mutation rate per cell division 

(Table A1.2). This inference reveals that the per-division rates in females and pre-pubertal males 

are similar but the rates during spermatogenesis are five-folds lower (and 2-20 times lower than 

estimates in other species; see Table A1.2 and (5)). The lower rates during spermatogenesis could 

reflect real differences in replication fidelity or the accumulation of other kinds of mutations (cf. 

(4, 5)) but they may also reflect errors in estimates of the numbers of cell divisions during 

spermatogenesis, e.g., associated with the possibility of stem cell turnover in testis (see chapter 1).   
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 Human Mouse 

Females 31(8) / 33(9) 25(8) /27(9) 

Males until puberty 34(8) / 40(9) 27(8) / 29(9) 

Spermatogenesis (stem cell 

divisions) 

1 every 16 days from puberty until 

74 days before reproduction(8) 

1 every 8.6 days from puberty (~6 

days) until 43 days before 

reproduction(8) 

Spermatogenesis (non-stem 

cell divisions) 

7(8) / 5(9) 9(8) / 10(9) 

Table A1.1. Number of germ cell divisions at different developmental stages in humans and mice. 

Estimates from Drost and Lee (8) are used throughout the paper.  

 

 

 Per-division mutation rate 

(× 10D2≠ per-base) 

H. sapiensa 

 

Females 1.75 

Pre-pubertal 

males 

1.80 

Spermatogenesis 0.33 

Average 0.54 

M. musculusb Females 0.78 

Males 1.49 

Average 1.25 

D. 

melanogaster(10) 

 1.3 

A. thaliana(10)  1.6 

C. elegans(10)  6.5 

S. cerevisiae (10)   3.3 

E. coli(10)  2.6 

Table A1.2. Comparison of estimates of per-division mutation rates in different taxa. Average per-

division rates at different developmental stages are calculated assuming a paternal generation time 

of 30 years in humans and 6 months in mice. a) Using data from Kong et al. (6) (cf. Eqs. A1.10- 

A1.11 and division rates from Table A1.1). b) Using data from Adewoye et al. (11) assuming an 
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average paternal reproduction age of 2 months in their control sample, an average per-generation 

rate of 3.75 ⋅ 10DE per bp, a male bias of O = 20/7 and dividing by the estimated numbers of 

germ cell divisions (Table A1.1).  

  

A1.4.3. Life history and spermatogenesis parameters in extant catarrhines and 

mammals 

We use the variation in life history and spermatogenesis parameters (i.e., ',, '-, < and 7) among 

extant populations and species to guide our choice of plausible ranges for these parameters over 

different phylogenetic timescales. An extended list of parameter estimates based on our survey of 

the literature, including life history, physiological and mutational studies, is provided in Table 

A1.3. As we note in chapter 1, there is considerable uncertainty about many of these estimates, for 

reasons including limited data availability and differences in methodology and operational 

definitions among studies. We provide a brief account of the issues regarding each parameter 

(excluding gestation time and rates of spermatogenesis for which the estimates are satisfactory for 

our purposes), as well as additional details when those appear relevant. We also consider modified 

estimates of the generation time in humans (cf. discussion regarding generation times). 
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 Generation times 

(years) 

Puberty 

age in 

males 

(years) 

Gestation 

time 

(days) 

Spermatogenic 

cycle length (days) 

 

Human Hunter-gatherer societies: average 

generation times between 24.5-33 

years (mean 30.3) and male-to-female 

ratios between 1.03-1.37 (mean 1.26) a 

(cf. Tables A1.7, A1.8). 

Agrarian and industrialized societies: 

average generation times between 29-

32.4 years and male-to-female ratios 

between 1.11-1.19b  (cf. Table A1.5). 

 

13.4 (S) (12), 

11.6 (TG) 

(13). 

 

 

280c 16(14) 

 

Chimpanzee In wild communities, observed 

average generation times between 

22.5-28.9 years (mean 24.6) and 

male-to-female ratios between 0.79-

1.22 (mean 0.96)d (cf. Table A1.6). 

 

7.5 (S)(15),  

6.7 (TG) 

(15),  

8 (H)(16, 17)  

 

 

229c 14(18) 

Bonobo Maternal generation time is likely 

shorter than in Chimpanzees: Puberty 

is 3 years earlier in female Bonobos 

(16) and captive female Bonobos give 

first birth earlier than captive female 

Chimpanzees (19). 

 

Same age 

as the male 

chimpanzee    

(H)(16). 

232c - 

Gorilla Two wild mountain gorilla 

communities: average generation time 

of 19.3 years, male-to-female ratio of 

1.12 (20). 

 

6-8(21), 6-

8(H)(22), 7-

10(H)(23)  

 

256 c - 

Orangutan Likely higher than in chimpanzees: in 

Sumatran orangutans age at first 

6.4\7.7 

(S)(25),  

249 c - 
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reproduction and interbirth interval 

are higher than in wild chimpanzees 

whereas mortality rates are lower 

(24). 

  

6-7(21),  

5-7(H) (22), 

5-9(TD)(26)  

 

Gibbon Life history resembles great apes 

more than cercopithecoids of similar 

weight; mean age at first reproduction 

is 11 years, comparable to Gorillas 

(27). 

Less than 6 

years(21) 

Between 

207 and 

243 days 

in 

different 

speciesc. 

 

- 

Old World 

Monkeys 

Estimated between 10-12 years in 

most species (28). 

Maternal generation time of 12.6 

years in wild M. fascicularise.  

Maternal generation time of 11.8 

years in wild  Amboseli P. 

cynocephalusf. 

Between 

3.5 and 6 

years in 

different 

species(21) . 

Between 

132 and 

211 days 

in 38 

species 

for which 

data is 

available 

c. 

M. mulatta 9.5(29) \ 

10.5(30), 

M. fascicularis 

10.16(31), 

C. aethiops 10.2(21), 

P. cynocephalus 

10.2(21), 

P. anubis 11(32), 

M. arctoides 

11.6(33). 

Table A1.3. Life history and spermatogenesis parameters in extant catarrhines. We use the 

following notation for the different methodologies used to infer male puberty ages: ‘S’ – 

spermarche, ‘TG’ - onset of testicular growth, ‘H’ - hormonal changes and ‘TD’ - testis descent. 

References: a) Matsumura and Forster (34) and revised estimates from Fenner (35) (cf. Tables 

A1.7, A1.8 and section A1.4). b) Table A1.5 and references therein. c) AnAge: The animal ageing 

and longevity database, build 13 (36). d) Table A1.6 and references therein; mean values from 

Langergraber et al. (20). e) Approximated based on reported survival and birth rates (37). f) 

Approximated based on reported birth (38) and survival (39) rates. 
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 Ratio of male-to-

female generation 

times (GM/GF) 

Ratio of gestation 

time to paternal 

generation time 

(I/GM) 

Ratio of male age of 

puberty to paternal 

generation time 

(P/GM) 

 

Spermatogenic 

cycle length (τ) 

Catarrhines 0.75 – 1.25 2.5% - 6% 25% - 40% 9.5 – 16 days 

Mammals 0.7 – 1.3 0% - 6% 0% - 40% 6.7 – 17 days 

Table A1.4. Spermatogenic cycle lengths and co-variation of life-history parameters in catarrhines 

and mammals. Reported ranges correspond to observed values in different species or populations, 

and reflect our assumptions in Figs. 6 and 5S. Life history parameter ranges in catarrhines are 

summarized from table A1.3. Life history values in mammals roughly correspond the majority of 

species ((40); Fig. A1.1). Spermatogenic cycle lengths correspond to 48 surveyed mammals ((41); 

Fig. A1.2 and Table A1.3). 

 

Male age of puberty and spermatogenic cycle length. Published estimates for male puberty ages 

are based on a variety of criteria (specified in Table A1.1), and even studies that apply the same 

criterion often vary in methodology. The criteria include the time of testicular descent or 

enlargement, depending on whether testis are scrotal or inguinal before the onset of puberty, 

changes in hormonal levels and the presence of spermatozoa in ejaculates or urine samples. As the 

onset of puberty and its manifestations are gradual, even studies using the same criterion often 

apply different thresholds (42). For studies based on enlargement, we therefore report the age at 

the onset of growth (when it is available). In addition, most available studies in primates, excluding 

humans, are limited to individuals in captivity. Since spermarche occurs shortly after the onset of 

stem cell divisions (74 days in humans (8)), age of spermarche is the most relevant criterion for 

the purposes of our study (assuming that the onset of spermatogenesis is discrete). To the best of 
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our knowledge, however, reliable estimates based on the age of spermarche exist only for humans 

and chimpanzees (excluding an estimate in orangutan based on a sample of two individuals; (25)). 

If the onset of spermatogenesis is gradual, then current measurements (based on first occurrence 

of sperm in urine or ejaculate samples) underestimate the average age in which a germ cell starts 

dividing (the most appropriate criteria for our model). The observed increase in daily sperm 

production over several years until reaching adult levels in humans supports the notion of a gradual 

onset, although other explanations are also possible (43, 44).  

 

Generation times. To the best of our knowledge, estimates of sex-specific generation times exist 

only for hominines. Moreover, while there are indications of considerable variation among 

populations within species, this variation is often poorly quantified. In hunter-gatherers (Tables 

A1.7 and A1.8), there appear to be substantial differences between societies but confidence 

intervals for individual societies have not been reported impeding our ability to assess their 

statistical significance. Estimates for agrarian and industrialized societies rely on considerably 

more data and are generally better (Table A1.5), but they are probably less relevant for our 

purposes.  In chimpanzees (Table A1.6), estimates by Langergraber et al.  (20) show statistically 

significant variation between communities, with male-to-female generation times ratios ranging 

from 0.79-1.22 (20). In gorillas, estimates are available for only two communities (20).  
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 Maternal 

generation 

time (years) 

 

Paternal 

generation 

time (years) 

Average 

generation 

time (years) 

Ratio of male-

to-female 

generation 

times 

Icelanders, 1698-1742(45) 28.72 31.93 30.3 1.11 

Icelanders, 1848-1892(45) 28.12 31.13 29.6 1.11 

Icelanders, 274 patrilines(46) - 34 - - 

Developed nations average(35) 27.3 30.8 29.1 1.13 

Less-developed nations average(35) 28.3 31.8 30.1 1.12 

French Canadians, late 16th 

century – present(35) 
28.9 / 30.3 34.5 / 34.4 31.7 / 32.4 1.19 / 1.14 

Table A1.5. Generation times in agrarian and industrialized societies.  

 

 Maternal 

generation 

time (years) 

 

Paternal 

generation 

time (years) 

Average 

generation 

time (years) 

Ratio of male-to-

female 

generation times 

     

Western chimpanzee (Taї, 3 

sites) (20) 

23-31.7 23.1-26.1 23-28.9 0.82-1 

Western chimpanzee (Taї) (34) 19 - - - 

Eastern chimpanzee (5 

communities) (20) 

23.3-26.1 19.9-28.4 22.5-26.4 0.79-1.22 

Eastern chimpanzee (Mahale) 
(34) 

24 - - - 

Eastern chimpanzee (Gombe) 
(47) 

19.6 - - - 

Table A1.6. Generation times in wild chimpanzee populations. Ranges from Langergraber et al. 

(20) are for mean values in different communities.  
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Generation times in hunter-gatherers. We consider estimates of generation times in hunter-

gatherers in greater detail, because they play an important role in our analyses; moreover, similar 

estimates would likely play an important role in future work. Fenner’s meta-analysis (35) relies on 

mean maternal ages at first and last birth, af and al, in 11 hunter-gatherers societies (Table A1.7). 

Importantly, the mean ages at last birth do not include mothers that died within their reproductive 

lifespan. To the best of our understanding, he derives estimates of the maternal generation time 

assuming that: 1) the probability of surviving to age a is described by the arithmetic relationship   

}(Y) =
2D… (RDR )

RÌDR M2
,        [A1.12] 

where Ω¶ is the yearly mortality rate in females, which is assumed to be 0.6%; 2) conditional on 

surviving, maternal ages at birth are distributed uniformly between the mean ages of first and last 

birth.  

Ideally, one would like to estimate the mean generation time directly from an unbiased sample of 

ages of birth, thus circumventing the aforementioned assumptions. It is easy to imagine how these 

assumptions could be violated, e.g., by relationships between the number of births and mortality 

or the age of last birth, but harder to foresee how these violations would affect estimates of the 

mean maternal generation time. However, even equipped with just the data employed by Fenner 

(2005), we believe that the estimates can be improved. In particular, we suggest using a geometric 

model for survival, i.e.,  

}(Y) ∝ Ç1 − Ω¶±
RDR .        [A1.13] 

Importantly, the probabilities of survival should be normalized to one. These revisions yield 

estimates that are 4%-8% higher than the original ones, with an average maternal generation time 

of 26.9 instead of 25.6 (see Table A1.7; assuming the same yearly mortality rate in females).   
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Hunter-gatherer society 

 

 

Mean 

Maternal 

age at first 

birth 

Mean 

Maternal 

age at last 

birth 

Maternal 

generation 

time 

Maternal 

generation 

time 

(revised) 

 

Africa Dobe Ju/’hoansi (1963–

1973) 21.40 34.40 26.71 27.80 

Australia Anbarra 15.90 35.00 23.79 25.25 

 Arnhem Land 

(polygamous) 19.20 34.30 25.41 26.62 

 Arnhem Land 

(monogamous) 19.30 34.10 25.39 26.58 

 All 18.13 34.47 24.86 26.15 

Asia Batek (Palawan) 18.00 26.30 21.56 22.11 

North 

America 

Mistassini Cree (1828) 

21.90 39.00 28.72 30.29 

 Kutchin (pre-1900) 22.80 35.00 27.76 28.81 

 Kutchin (post-1900) 19.80 39.00 27.50 29.20 

 All 21.50 37.67 27.99 29.44 

South 

America 

Northern Ache (born 

before 1959) 19.50 42.10 28.43 30.52 

 Northern Ache 

(reservation period) 17.70 38.50 26.11 27.86 

 Yanomama (Mucajai) 16.80 39.90 26.10 28.06 

 All 18.00 40.17 26.88 28.81 

Average over 

5 continents 

 

19.41 34.60 25.60 

 

26.86 

Table A1.7. Maternal generation times in hunter-gatherer societies. Mean ages at first and last 

births taken from Fenner (35).  
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Fenner (35) estimates the paternal generation time indirectly, using the difference between paternal 

and maternal ages at first marriage to obtain the paternal ages at first and last birth. He then 

estimates the paternal generation time based on the model described above, assuming a yearly 

mortality rate of 0.9% in males. Applying our corrections, we obtain an average paternal age of 

33.79 instead of 31.5 years.  

Fenner’s data suggests that the male-to-female ratio of generation times is generally greater than 

1, but also highly variable across societies. Notably, the sex-differences in age at first marriage are 

highly variable, ranging between -1.5 years in the Bella-Coola and 26 years in the Tiwi. While 

confidence intervals are not provided, given that in only one out of 157 societies reported females 

married at an older age than males, the observation that paternal generation times are generally 

higher is obviously significant. In the few societies where data is available to assess both maternal 

and paternal generation times, estimates of the ratio of male-to-female generation times vary 

between 1.03-1.37 (Table A1.8).  
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Hunter-gatherer society 

 

 

Mean age 

difference 

at first 

marriage  

(M – F, 

years) 

Maternal 

generation 

time 

(years) 

Paternal 

generation 

time 

(years) 

Revised 

maternal 

generation 

time  

(years) 

 

Revised 

paternal 

generation 

time  

(years) 

Australia Anbarra(35) 11.5 23.79 32.71 25.25 34.75 

Asia Batek (Palawan) (35) 4.8 21.56 25.88 22.11 26.89 

South 

America 

Northern Ache (born 

before 1959) (35) 

5 28.43 31.74 30.52 35.38 

 Northern Ache 

(reservation period) (35) 

5 26.11 29.65 27.86 32.74 

North 

America 

Mistassini Cree (1828) 

(35) 

3 28.72 30.63 30.29 33.20 

 Kutchin (pre-1900) (35) 1 27.76 28.13 28.81 29.77 

 Kutchin (post-1900) (35) 1 27.50 27.47 29.20 30.09 

 North Greenland polar 

Eskimos (34) 

 27 32   

Table A1.8. Estimates of maternal and paternal generation times in societies for which raw data 

is available. Measurements of maternal generation times and mean age differences are from the 

same societies but not necessarily from the same time period.  

 

A1.5. Dating species split times 

A1.5.1. Inferences 

We use our mutational model alongside estimates of life history and spermatogenesis parameters 

in extant species to suggest plausible ranges for yearly mutation rates on the great apes phylogeny. 

Specifically, we consider four splits on the human lineage: with chimpanzee, gorilla, orangutan 

and cercopithecoids. For each split, we assign plausible parameter ranges primarily based on 
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estimates in the extant species that descend from that split.  The parameter ranges are translated 

into ranges of yearly rates based on our mutational model, which, in turn, are converted into ranges 

for split times based on sequence divergence. 

 

Parameterization. We make the simplifying assumption that life history traits can evolve 

independently within the parameter ranges assigned to a given split. This assumption, however, 

might be implausible for certain combinations of parameter values; for example, a combination of 

the male puberty age of 3.5 years observed in macaques with the paternal generation time of 33.8 

years observed in humans. To avoid (at least some of) these unrealistic combinations, we 

parameterize the model in terms of: the relative age of male puberty (P/GM) (instead of the absolute 

age (P)), the sex-averaged generation time (') and the ratio of male-to-female generation times 

(',/'-). We do not change the parameterization of the spermatogenic cycle length (7) and 

gestation time (;) (using relative gestation times has negligible effects on our results). 

 

Parameter ranges. Our assumptions about the parameter ranges associated with each split are 

detailed in Table A1.9. In cases where we have estimates for a parameter in each of the extant 

species that descend from the split, we use the ranges spanned by these estimates (Table A1.3). 

When we have estimates for several populations of a given species, we include these estimates as 

well.  
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Assumptions 

 

Predictions 

 Mean 

generati

on time 

Ratio of 

male-to-

female 

gen. 

time 

Ratio of 

male 

puberty 

age to 

male 

generati

on time  

 

Gestatio

n time 

(days) 

Spermat

ogenic 

cycle 

length 

(days) 

Autosomal 

yearly 

mutation 

rate 

(× 10DE per 

bp) 

 

Genom

ic 

diverge

nce 

times 

(MYA) 

Split 

times 

(MYA)

* 

Ratio of 

X-to-

autoso

me 

substitu

tion 

rates 

Chimpan

zee 

 

23 – 30 0.79 – 

1.26 

0.26 – 

0.39 

229-280 14 - 16 0.39 – 0.6 11.4 – 

17.6 

 

6.6 – 

10.2 

0.77 – 

0.86 

Gorilla 19 - 30 0.79 – 

1.26 

 

0.26 – 

0.39 

229-280 12.5 – 

16 

0.39-0.69 12.7 – 

22.4 

9.4 – 

16.6 

0.76 – 

0.87 

Oranguta

n 

15-30 0.79 – 

1.26 

 

0.26 – 

0.39 

229-280 11 - 16 0.39-0.82 20.7 – 

43.6 

3MY 

after 

genom

e 

diverge

nce 

date 

0.75 – 

0.89 

Cercopit

hecoids 

11-30 0.79 – 

1.26 

 

0.26 – 

0.39 

132-280 9.5 - 16 0.39-1.03 30.2 – 

79.9 

0.74 – 

0.92 

Table A1.9. Parameter ranges and corresponding predictions for the different splits. Parameter 

ranges that require additional assumptions (i.e., for which we lack estimates in one or more species) 

are underlined. * Values used in Fig. 1.5. 

Other cases, in which we lack estimates for one or more extant species, and our corresponding 

assumptions, are the following: 

• As far as we can ascertain, paternal generation times have only been estimated in 

hominines. We therefore lack estimates for the ratio of male-to-female generation times 
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(',/'-) and relative male puberty age (</',) in orangutans and cercopithecoids. For 

these splits, we conservatively assume the parameter ranges spanned by the estimates in 

hominines. 

• We lack an estimate for the average generation time in orangutans. We assume a lower 

bound on the average generation time following the split with orangutans that is 

intermediate between the lower bound for hominines and cercopithecoids (which generally 

have lower generation times than hominines). While our bound of 15 years is likely lower 

than the average generation time in extant orangutans, it may be a plausible value for this 

lineage, given the observed increase in body mass in great apes over the past 15-20 million 

years (48) and the correlation between body mass and generation time ((40, 49); but note 

that few putative Miocene hominoids are not smaller than extant hominids).  

• We also lack estimates for spermatogenic cycle lengths in gorillas and orangutans. We 

assume that the rates along the corresponding lineages were between the low lengths 

observed in cercopithecoids and the high lengths observed in humans and chimpanzees.  

 

Estimating split times. To obtain split times we divide estimates of divergence since the split by 

yearly mutation rates. To this end we rely on the average genome-wide divergence reported by 

Scally et al. (50) (Table A1.10). For the chimpanzee and gorilla splits (from humans), these 

estimates have been corrected for the contribution of ancestral polymorphism (inferred from 

patterns of ILS). For the macaque and orangutan splits from humans, we follow Scally and Durbin 

(49) in assuming a (relatively high) ancestral coalescence time of 3MY (cf. 51). 
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 Chimpanzee 

 

Gorilla Orangutan Macaque 

Average divergence 1.37% 1.75% 3.4% 6.23% 

Divergence post-split 0.796% 1.292% - - 

Ancestral contribution 0.697% 0.376% - - 

Table A1.10. The genome-wide average divergence from humans. Estimates correspond to the 

Scally et al. (2012) ‘FULL’ dataset. Estimates of the contribution of ancestral polymorphism and 

divergence after the splits were obtained using CoalHMM (52, 53). The estimates of divergence 

post-splits and levels of ancestral polymorphisms do not add up to the total divergence, because 

of CoalHMM’s assumption of an ultra-metric hominine tree.  

 

A1.5.2. Fossil-based estimates 

Given the position of a fossil on a phylogeny, e.g., the branch on which it occurred, the fossil’s 

dating provides lower or upper bounds on the timing of splits along the phylogeny. With estimates 

of sequence divergence corresponding to these splits, these bounds can be translated into bounds 

on the average yearly mutation rate along the corresponding branches. In practice, such inferences 

about split times and mutation rates in catarrhines are severely limited by the paucity of fossils and 

uncertainties about their position in the fossil record. Here we briefly review the fossil evidence 

used in our analyses of split times on the hominoid phylogeny (Fig. 1.5).   

Several catarrhine fossils have been suggested to flank the splits between orangutan and hominines 

and between hominoids and cercopithecoids, although most of these positions are debated.  The 

association of fossils with splits among hominines is regarded as less reliable (54), and evidence 

is lacking in particular for the last common ancestor of humans and chimpanzees as well as for the 

early gorillins (i.e., species related to the gorilla lineage following the split with humans and 
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chimpanzees). In general, lower bounds on split times are considered to be more reliable than 

upper bounds, because fossils that share derived characters with extant species on a given branch 

are more likely to have occurred after that branch has split off whereas fossils that share derived 

characters with the descendants of the branch that preceded the split might have occurred after it 

and gone extinct (55). For that reason, conservative maximal bounds for the hominine-orangutan 

and hominoid-cercopithecoid splits should be inferred from the earliest (rather than latest) putative 

ancestor (cf. (56, 57)); i.e., from the earliest catarrhine fossil for the hominoid-cercopithecoid split 

and the earliest hominoid fossil for the hominine-orangutan split. For all these reasons, the 

common practice is to infer mutation rates by considering the hominine-orangutan and hominoid-

cercopithecoid splits and distinguish between estimates derived from lower and upper bounds 

(Table A1.11).  

Maximal bounds for the hominoid-cercopithecoid split time rely on the earliest catarrhine species 

following the catarrhine-platyrrhine split. The earliest widely accepted stem-catarrhines are 

propliopithecids (Propliopithecus, earliest appearance 31-31.5 MYA and the later 

Aegyptopithecus (58)). Catopithecus and Oligopithecus (earliest appearance ~34 MYA (58)) are 

generally considered to be stem-anthropoids, although they have also been argued to be the earliest 

stem-catarrhines (48). Lower bounds for the hominoid-cercopithecoid split rely on either the 

earliest cercopithecoid or the earliest hominoid. The earliest possible cercopithecoid is the recently 

discovered Nsungwepithecus (~25 MYA) (59), but it remains to been seen whether its positioning 

becomes widely accepted (57). The next candidate on the cercopithecoid lineage is 

Victoriapithecus (~19.5 MYA), which is unanimously recognized as a cercopithecoid but provides 

a much lower bound. While there are earlier hominoid candidates, none is unanimously accepted. 

The putative hominoids Rukwapithecus (~25 MYA), Kamoyapithecus (~25 MYA), Ekembo 
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(earliest appearance ~23 MYA; for clarity we use the previous classification, Proconsul, in Fig. 

1.5 (60)) and Morotopithecus (~20.6 MYA) have also been argued to be stem-catarrhines, and the 

dating of Ekembo and Morotopithecus has been challenged with revised estimates of ~21 and ~17 

MYA respectively  (cf. (57, 59-61)). Other putative hominoids do not provide useful bounds since 

they are younger than Victoriapithecus (e.g., Harrison suggests Kenyapithecus, ~14 MYA, as the 

earliest unanimously accepted hominoid (61)). In summary, the narrowest (and thus speculative) 

range inferred for the hominoid-cercopithecoid split time appears to be 25-31.5 MYA, whereas a 

more conservative range appears to be 19.5-34 MYA (cf. (56, 57, 61) and Table A1.11).  

Maximal bounds for the hominine-orangutan split time rely on the earliest hominoid species 

following the hominoid-cercopithecoid split (see above), with possible upper bounds as high as 

~25 MYA. We note that such upper bounds (e.g., 23 MYA as suggested by (56)) are substantially 

higher than the those assumed by most molecular studies (e.g., (62) and (50)).  Lower bounds rely 

on either the earliest pongine (i.e., species related to the orangutan lineage following the split with 

hominines) or the earliest hominine. The earliest fossil widely interpreted as pongine is 

Sivapithecus (earliest appearance 12.5 MYA), but its classification as pongine still raises some 

challenges and the Orangutan-like facial-palatal features of Sivapithecus are not found until ~9 

MYA (cf. (63); D. Pilbeam Personal Communication). Other possible pongines include 

Khoratpithecus (earliest appearance ~13 MYA, but the identification of early samples has been 

contested (57)), Ankarapithecus (10 MYA), Lufengpithecus (9 MYA) and Indopithecus (6.5 

MYA; sometimes classified as Gigantopithecus). None of these is unanimously accepted. There 

is even less certainty regarding putative early hominines, with early candidates including 

Dryopithecus (12.5 MYA), and (with even less certainty) Pierolapithecus (12.5 MYA) and 

Anoiapithecus (12.5 MYA); Later candidates include Rudapithecus (10 MYA), Hispanopithecus 
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(10 MYA) and Ouranopithecus (9.5 MYA) (57). In summary, lower bounds for the hominine-

orangutan split are still under debate, where the most widely accepted based on Sivapithecus, 

supports a lower bound of 12.5 MYA. 

Fossil based estimates of yearly mutation rates in conjunction with sequence divergence have been 

used to date split times that lack reliable fossil dating, where these estimates typically assume that 

mutation rates have remained constant on different branches of the phylogeny (55) (see Table 

A1.11; (49, 50, 62)). By comparison, the naïve pedigree based estimate of 0.4 ⋅ 10DE per bp per 

year (6) places the Human-Chimpanzee split 9.95 MYA and the Human-Gorilla split 16.2 MYA 

(see Table A1.10). 

  



 87 

Species Dating 

(MYA) 

Putative 
position 

(relative to 
splits from 
the human 
lineage) 

Inferred 
mutation 

rate 
(x10-9 

per 
year) 

Implications for other split times from the 
human lineage (MYA) 

Macaque Orangutan Gorilla Chimpanzee 

Catopithecus or 
Oligopithecus 

34 Predating 
split from 
macaque 

> 0.84 - < 17.2  < 7.7  < 4.7  

Propliopithecus 31.5 Predating 
split from 
macaque 

> 0.90 - < 15.8  < 7.2  < 4.4  

Rukwapithecus, 

Kamoyapithecus 

or 
Nsungwepithecus 

25 Following 
split with 
macaque 

< 1.11 - > 12.3 > 5.8 > 3.6 

Ekembo 23 Following 
split with 
macaque 

< 1.20 - > 11.2 > 5.4 > 3.3 

Victoriapithecus 19.5 Following 
split with 
macaque 

< 1.38 - > 9.3 > 4.7 > 2.9 

Ekembo 23 Predating 
split with 
orangutan 

> 0.65 < 44.6 - < 9.9 < 6.1 

Sivapithecus or 
Dryopithecus 

12.5 Following 
split with 
orangutan 

< 1.10 > 25.4 - > 6.9 > 3.6 

        

Pedigree studies (6) 0.4 74.9 39.5 16.2 9.95 

Table A1.11. Fossil evidence associated with catarrhine species splits and the corresponding 

bounds on yearly mutation rates, based on divergence  (Table A1.10; also see Fig. 1.5 and (49)). 
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While the positions of hominine fossils are more contentious, it is still interesting to see how their 

hypothesized positions match-up with our bounds on split times. To this end, we consider the 

following fossils (Fig. 1.5): Chororapithecus (~8 MYA (64)), is suggested to be related to the 

gorilla lineage following the split with humans (65), although this hypothesis has been contested 

(57, 61, 65); Ardipithecus (5.6-5.8 MYA), Orrorin (5.8 MYA) and Sahelanthropus (6.5-7.5 

MYA), hypothesized to be hominins (i.e., following the split with chimpanzees). If we assume 

Chororapithecus is related to the gorilla lineage, it would imply an average yearly mutation rate 

of at most 0.81 × 10DE per-bp on the human and gorilla branches. Placing the other fossils on the 

hominin lineage would imply average yearly rates of at most 0.7 × 10DE (Ardipithecus), 

0.69 × 10DE (Orrorin) and 0.57 × 10DE (Sahelanthropus) per bp on the human and chimpanzee 

branches. 
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A1.6. Notation 

 

Notation 

 

Short definition 

cû Average generation time in females (years) 

cb Average generation time in males (years) 

c† Average sex-averaged generation time on autosomes (years) 

cü Average sex-averaged generation time on the X (years)  

¢û Average mutation rate in females (per bp per generation) 

¢b Average mutation rate in males (per bp per generation) 

¢† Average autosomal mutation rate (per bp per generation) 

¢ü Average mutation rate on the X (per bp per generation) 

Ô Gestation time (years) 

 Average age of puberty in males (years) 

Ò Spermatogenic cycle length (days) 

Úb Mutation rate per pb in pre-pubertal males 

Ûb Mutation rate per pb per spermatogenic stem cell division 

Ù Lineage length (years) 

ı† Average rate of autosomal substitutions over a lineage (per 

bp) 

ıü Average rate of substitutions on the X over a lineage (per bp) 

Table A1.12. Notation for Appendix 1. 
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A1.7. Supporting Figures 

 

 

 

Fig. A1.1. Maximum longevity vs. age of male sexual maturity for 482 species (A) and gestation 

time for 806 species (B) in mammals. The correlations accords with our assumption that age of 

puberty and gestation time scale with generation time (cf. Fig. .6, Fig. A1.5 and section A1.3). 

While the graphs are shown in logarithmic scales, the fit was performed on the linear scale. The 

parameter estimates are: male sexual maturity = 13% of maximum longevity and gestation time = 

2% of maximum longevity. While maximum longevity and age at maturity are reasonable proxies 

for the generation time and age at puberty, they are obviously expected to be larger. Data from 

AnAge: The animal ageing and longevity database, build 13 (36). 
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Fig. A1.2. Spermatogenic cycle length vs. relative testis mass in 48 mammals. The dashed gray 

lines denote the relative testis mass in orangutans and gorillas, in which the spermatogenic cycle 

length has not been measured. The dashed black line denotes the linear regression of 

spermatogenesis rates against relative testis mass (ˆ∫ˆ«˜	«˜º¯÷ℎ	(ÿY∫∂) = 12.3 − 0.74 ×

log	(g˜«Y÷o˙˜	ΩY∂∂	(¯/"¯)). Data from (41, 66).  

  

● ������� ● �������� � ����� � ���������� � ������� � ���������

������ �� �������� ������ ���� (����� ������ �������)
��

��
�
��
��
��
��
��
��
�
��
��
��

(�
��
�)

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

��

��

�� ��

��� � �� ���
�

�

��

��

��

��

��

�������� ������ ���� (�/��)



 92 

 

Fig. A1.3. (A) Bias in estimates of O based on Miyata’s formula as a function of the male-to-

female ratio of generation times. The orange range corresponds to values of α ranging between 1 

and 4, where the absolute value of the bias increases with α. Note that the bias can be substantial 

even when the sex-bias in mutation rates is small (i.e., when α is near 1). (B) True male mutational 

bias (O) as a function of the X-to-autosome substitution ratio, under a range of male-to-female 

ratios of generation times. The marked values for hominines are rough estimates of the X-to-

autosome substitution ratio (as they include the contribution of ancestral polymorphism). 
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Fig. A1.4. Predicted male mutational bias as a function of paternal generation time (A), male age 

of puberty (B) and rate of spermatogenesis (C). Other details are the same as in Fig. 1.2. 
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Fig. A1.5. Male mutation bias (α) as function of paternal generation time in a broader phylogenetic 

context, based on our mutational model. Other parameters roughly correspond to catarrhines and 

mammals (Table A1.4). 
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Appendix 2 – Supplementary Information for Chapter 2 

 

A2.1 Haploid Model 

Here we rigorously solve the haploid model with age-structure and endogenous reproductive 

variance, and relate our results with those of previous work that considered special cases of our 

model. In Section A2.1.2 we consider the implications of our assumptions about endogenous 

reproductive variance. In Section A2.1.3 we solve for the joint stationary distribution of the age 

and relative reproductive success associated with an allele, going backwards in time. Based on this 

distribution, we derive the stationary per-generation coalescence rate for a sample of two alleles, 

to obtain Eq. 2.7 in chapter 2: 

�T =
,⋅v

ë
.           (A2.1) 

In Section A2.1.4, we recast these results in terms of total reproductive variance, showing that the 

relationship derived by Hill for the case with age-structure alone (1): 

�T = ' ⋅ [2/í,          (A2.2) 

applies to the extended model with endogenous reproductive variance, and derive Eq. 2.11 in for 

the total reproductive variance in this case, i.e., 

í = p ⋅ ([2/[).          (A2.3) 

In section A2.1.5 we consider the case without endogenous reproductive variance, to show that 

the our results for the effective population size (Eq. A2.1) reduce to the formula obtained by 

Felsenstein (2), and to consider a simple example of how age-structure affects the effective 

population size. 
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A2.1.1 Requirements on ˚a  

When we introduced the haploid model with endogenous reproductive variance, we assumed that 

each newborn is assigned a relative reproductive success vector g⃗, and denoted the (constant) 

proportion of individuals with a given vector g⃗ in age class a by JR(g⃗) (see Table A2.1 for summary 

of notation). Here we describe the requirements on the probability mass function JR that these 

assumptions entail. First, given that the probability of being born to a parent of age a is ]R, and to 

a specific parent of age a and with reproductive success g⃗ is ]R ⋅
Vu
,u

, we require that Å¶u(gR) =

∑ JR(g⃗) ∙ gR =V⃗ 1 for any age a. Second, given that the number of individuals with a given g⃗ can 

only decrease with age (due to mortality), we further require that [R ⋅ JR(g⃗) ≥ [RM2 ⋅ JRM2(g⃗).  

Third, requiring that the number of individuals of a given age a and with a given g⃗ is constant and 

equal to [R ⋅ JR(g⃗), implies that this number needs to be an integer. Notably, if we would like to 

model the distribution of relative reproductive success using a given (continuous or discrete) 

distributions JŖ(g⃗), which satisfies the first two requirements, we would need to discretize JŖ to 

obtain a probability mass function J̋R˛ such that [R ⋅ J̋R˛	(g⃗) is always an integer. However, if we 

assume that the relative sizes of the age-class, i.e., the ratios [k/[m, are constant, and increase the 

total population sizes, the discretized functions J̋R˛ will approach JŖ, and the value of the pk,m =

Å¶̋xˇ	Çgk ⋅ gm± = ÅÇgk ⋅ gm|survival to age	n± terms, which summarize the effect of endogenous 

reproductive variance on the effective population size, will approach Å¶!̧Çgk ⋅ gm±. We implicitly 

assumed this limit when we considered the special case in which relative reproductive success is 

independent of age and of mortality rates. More generally, while the assumption that for any age 

a,  [R ⋅ JR(g⃗) is an integer, might appear highly restrictive, these restrictions are relaxed under the 

standard coalescent assumption that the population size is sufficiently large.   
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Notation Definition Remarks 

`a Probability that a newborn descends from a parent of age a " ]R
R

= 1 

#a Probability that a newborn descends from a parent of age ≥ Y “R =" ]k
krR

 

c Average generation time ' =" Y ⋅ ]R
R

 

ba Number of individuals of age a 

([2 is the number of newborns per-year) 
[RM2 ≤ [R 

de⃗  Relative reproductive success, where component gR is the relative 
reproductive success at age a 

 

˚a(de⃗ ) The frequency of individuals with relative reproductive success g⃗ 
among individuals of age a 

 

$a(de⃗ ) Given an individual I of age a and a newborn n, ¯R(g⃗) is the probability 
that I has relative reproductive success g⃗, conditioned on n being 

descended from I  

¯R(g⃗) = gRJR(g⃗) 

%(a, de⃗ ) Joint stationary probability of age a and relative reproductive success g⃗ 
along a lineage, going backwards in time 

&(Y, g⃗)

=
1
'
" ]m¯m(g⃗)

mrR
 

%a Marginal stationary distribution of age a &R = 	
“R
'

 

b Effective age-class size See Eq. A2.16 

hi,j Average value of gk ⋅ gm among individuals of sex s and age a Defined for o ≤ n 

h Weighted average of the pk,m See Eq. A2.15 

ü,üa An individual’s number of offspring, throughout its life or at age a, 
respectively 

 

° Reproductive variance (i.e., í = íYg(≥)) See Eq. A2.28 

'a The event of surviving to age ≥ Y  

Table A2.1: Notation for the haploid model, with parameters of the model in red. 

A2.1.2 Solution backwards in time  

Here, we extend the derivations of Sagitov and Jagers (3) to account for endogenous reproductive 

variance. Tracing an allele backward in time, the age Y∆ and relative reproductive success g⃗∆ of the 

individual ;∆ who carries the allele t years in the past defines a Markov chain (Y∆, g⃗∆). To define 

the transition probabilities of the chain, we distinguish between two cases.	First, if the individual 

carrying the allele is not a newborn, i.e., Y∆ > 1, then at time t+1 that individual will be one year 
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younger and its relative reproductive success g⃗ will remain unchanged, i.e., (Y∆M2, g⃗∆M2) = (Y∆ −

1, g⃗∆) with probability one. Second, if individual carrying the allele is a newborn, i.e., Y∆ = 1, then 

Y∆M2 equals a with probability ]R. The probability mass function of g⃗∆M2 conditional on Y∆M2, 

follows from Bayes’ theorem, further conditioning on the fact that the parent, ;∆M2 = ;, necessarily 

reproduced successfully 

         <(g⃗‹ = g⃗|;∆M2 = ;, Y∆M2 = Y) 

=
⁄(‹‡©ó^‹|V⃗‡©ó^V⃗,R‡©ó^R)⋅⁄(V⃗(^V⃗|	R‡©ó^R)

⁄(‹‡©ó^‹)
 = (Vu/,u)⋅¶u(V⃗)

∑ 	(Vu/,u)⋅¶u(We⃗ ))ee⃗
= gR ⋅ JR(g⃗).  (A2.4) 

We denote this probability by ¯R(g⃗) ≡ gR ⋅ JR(g⃗), and conclude that  

<((Y∆M2, g⃗∆M2) = (Y, g⃗)|Y∆ = 1) = ]R ⋅ ¯R(g⃗).     (A2.5) 

 

¯R is a proper probability mass function since ∑ ¯R(g⃗)V⃗ = ∑ gR ⋅ JR(g⃗)V⃗ = 1. Moreover, the 

parent’s expected value of gR is ÅV⃗~*u(gR) = ÅV⃗~¶u(gR
3) = 1 + íV⃗~¶u(gR) ≥ 1. The latter inequality 

makes intuitive sense, as it implies that the allele is more likely to be descended from an individual 

that has higher than average relative reproductive success in its age class. 

 

We rely on the transition probabilities to derive and solve a recursion for the stationary probability 

&(Y, g⃗) of age, a and relative reproductive successes, g⃗, of the individuals carrying the allele. 

Namely, 

&(Y, g⃗) = &(Y + 1, g⃗) + Ç∑ &Ç1, +e⃗ ±We⃗ ± ⋅ ]R ⋅ ¯R(g⃗),     (A2.6) 

where the first term corresponds to aging within the same individual and the second corresponds 

to parenting a newborn. In order to solve these recursions we first consider the marginal stationary 

distribution of age, &R = ∑ &(Y, g⃗)V⃗ . To this end, we sum the recursions over g⃗ to obtain recursions 

on the marginal distribution,  
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&R = &RM2 + &2 ⋅ ]R,         (A2.7) 

where we also require that ∑ &RR = 1. This recursion was solved by Sagitov and Jagers (3) for the 

case without endogenous reproductive variance, yielding 

&R = “R/',          (A2.8) 

 where “R ≡ ∑ ]mmrR . Substituting this expression into Eq. A2.6, the recursions simplify to 

&(Y, g⃗) = &(Y + 1, g⃗) +
2

v
⋅ ]R ⋅ ¯R(g⃗),      (A2.9) 

where we further require that ∑ &(Y, g⃗)R,V⃗ = 1. The solution of these recursions is 

&(Y, g⃗) = 2

v
∑ ]m¯m(g⃗)mrR .         (A2.10) 

The marginal stationary probability mass function of g⃗ is ∑ &(Y, g⃗)R =
2

v
∑ Çn ⋅ ]m± ⋅ ¯m(g⃗)m , which 

is a proper probability mass function because   2
v
∑ n ⋅ ]mm = 1, and ∑ ¯R(g⃗)V⃗ = 1 for any age a. 

  

We rely on the stationary distribution to derive the probability of coalescence of two alleles, along 

the same lines as detailed in chapter 2 for the case without endogenous reproductive variance. For 

the coalescence to occur at time t in the past, one of the alleles (A) would descent from the other 

(B) or both would descent from the same parental allele at that time (this is contrary to the case of 

non-overlapping generations, in which coalescence necessarily occurs when both alleles descent 

from the same parental allele in the previous generation). Specifically, if allele B is in an individual 

of age a and relative reproductive success g⃗ at time t (with probability &(Y, g⃗)), then allele A must 

be in a newborn at time t-1 (with probability &2) having descended from the same individual 

carrying allele B (with probability ]R ⋅
Vu
,u

). Summing over the individual’s possible ages and 

reproductive success vectors, we obtain the probability 

∑ &(Y, g⃗) ⋅ &2 ⋅ ]R ⋅
Vu
,u

R,V⃗ =
2

vö
∑

∑ QuQx ∑ Vu*x(V⃗)îee⃗xyu

,u
R =

2

vö
∑

∑ QuQxëu,xxyu

,u
R ,   (A2.11) 
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where for n ≥ o,  

pk,m = ∑ gk¯m(g⃗)V⃗ = ∑ gkgmJm(g⃗)V⃗ = ÅV⃗~¶x(gk ⋅ gm)      (A2.12) 

is the expectation of (gk ⋅ gm) conditional on surviving to age ³ j. Further allowing for either allele 

or both to be the newborn (using the inclusion-exclusion principal to subtract the probability 

&23 ∑
Quöëu,u	

,u
R  that both alleles were in a newborn prior to coalescence), and measuring the 

coalescence rate in generations (rather than years), we obtain the per-generation coalescence rate 

and corresponding effective population size: 

2

z{
=

2

v
∑

Quöëu,uM3∑ QuQxëu,xx,u

,u
R .       (A2.13) 

 

Eq. A2.13 can be rearranged to obtain Eq. 2.7 of chapter 2. To this end, we define  

}k = (]k
3pk,k + 2∑ ]k]mpk,mm~k )/p,       (A2.14) 

where  

p =	∑ ]k
3pk,kk + 2∑ ]k]mpk,mk-m        (A2.15) 

is a weighted average of the pk,m. Noting that ∑ }RR = 1, we then define the effective age class 

size as a weighted harmonic average of the age class sizes, 

2

,
= ∑ |u

,u
R .          (A2.16)   

Substituting this expression into Eq. A2.13, we obtain Eq. 2.7 of chapter 2: 

2

z{
= p/([ ⋅ ').         (A2.17) 
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A2.1.3 Reproductive variance  

To recast our results for �T in terms of the total reproductive variance í, we first consider the case 

with non-overlapping generations in a haploid population of constant size, i.e., with Wright-Fisher 

sampling.  We denote the number of offspring of the ith individual by +k and the census size by �. 

The expected number of offspring is 1, i.e., 2
z
∑ +k = 1k , and we denote the variance in number of 

offspring, which we also refer to as the reproductive variance, by í = 2

z
∑ (+k − 1)3k . In the 

standard neutral model, without endogenous reproductive variance, í = 1.   Since the probability 

that two distinct gametes descend from the same ancestor in the previous generation is 

∑ Wπ
z
⋅
WπD2

zD2k =
ì

zD2
, we find that the effective population size is 

�T =
zD2

ì
≅ z

ì
,          (A2.18) 

which is the expression derived by Wright (4) and presented in Eq. 2.9 of chapter 2. 

 

To extend Eq. A2.18 to the case with overlapping generations, we consider the first two moments 

of an individual’s number of offspring, ≥, throughout its lifetime. First, we note that an individual’s 

number of offspring can be expressed as a sum over the number at each age, i.e., ≥ = ∑ ≥RR , where 

≥R is the number of offspring at age a; ≥R = 0 if the individual does not survive to that age. In 

these terms, the first two moments are 

Å(≥) = ∑ Å(≥R)R  and Å(≥3) = ∑ Å(≥R3)R + 2∑ Å(≥k ⋅ ≥m)k-m .    (A2.19) 

Denoting the event of surviving to age ³ a by /R, we note that  

ÅÇ≥Rk ± = <g(/R) ⋅ ÅÇ≥Rk É/R± =
,u

,ó
⋅ ÅÇ≥Rk É/R±,     (A2.20)  

The latter term, ÅÇ≥Rk É/R±, can be simplified further by conditioning on g⃗. Since the probability 

mass function of g⃗ conditional on /R is JR, 
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ÅÇ≥Rk É/R± = ÅV⃗~¶uÅÇ≥R
k É/R, g⃗±.        (A2.21) 

Moreover, the distribution of ≥R conditional on /R and g⃗ is simply (≥R|g⃗, /R)	~0oº([2, ]R ⋅

gR/[R), and therefore  

       		Å(≥R|/R) = ÅV⃗~¶u t
,óVuQu
,u

w =
,óQu
,u

   

and   

Å(≥R3|/R) = ÅV⃗~¶u ®[2
VuQu
,u

+ 2 t[2
2
w t

VuQu
,u

w
3
´ =

,óQu
,u

+ 2 t[2
2
w t

Qu
,u
w
3
pR,R. (A2.22) 

Substituting these expression into Eq. A2.20, we find that  

Å(≥R) = ]R  and	Å(≥R3) = ]R +	
,óD2

,u
]R3 ⋅ pR,R.      (A2.23) 

To calculate the remaining terms in Eq. A2.19, Å(≥k ⋅ ≥m) for n > o, we note that conditioning on 

/m, and on g⃗|/m, 

ÅÇ≥k ⋅ ≥m± = <gÇ/m± ⋅ ÅÇ≥k ⋅ ≥mÉ/m± =
,x

,ó
⋅ ÅV⃗~¶xÅÇ≥k ⋅ ≥mÉ/m, g⃗±.   (A2.24)  

The latter term is easily calculated, since conditional on /m and g⃗, ≥k and ≥m are independent 

binomial variables, with Ç≥kÉg⃗, /m±~0oº([2, ]k ⋅ gk/[k) and Ç≥mÉg⃗, /m±~0oºÇ[2, ]m ⋅ gm/[m±, 

yielding  

ÅÇ≥k ⋅ ≥m± =
,x

,ó
⋅ ÅV⃗~¶x ®

,ó
öQπQxVπVx
,π,x

´ =
,óQπQxëπ,x

,π
.     (A2.25)  

Substituting the expressions from Eqs. A2.23 and A2.25 into Eq. A2.19 we find that 

Å(≥) = 1	 and Å(≥3) = 1 +[2 ∑ 	
Qπ
ö⋅ëπ,πM3∑ QπQxëπ,xx,π

,π
k − ∑

Qπ
ö⋅ëπ,π

,π
k .  (A2.26) 

 

Assuming that the total population size is sufficiently large for the ratios [k/[m and terms pk,m to 

be approximated as fixed, and for the higher order term ∑ Qπ
ö⋅ëπ,π

,π
k  to be negligible, we find that   
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Å(≥) = 1	 and Å(≥3) ≅ 1 +
,ó

,
p,        (A2.27) 

and therefore the total reproductive variance is 

í = Å(≥3) − Å3(≥) =
,ó

,
p,        (A2.28) 

which is Eq. 2.11 of chapter 2. These assumptions correspond to the standard practice of neglecting 

higher order terms in 1/� in models with non-overlapping generations. From Eqs. A2.17 and 

A2.28 we find that the effective population size is   

�T = (' ⋅ [2)/í,          (A2.29) 

which is the same form as in the case without age-structure (Eq. A2.18), and the general form 

presented in Eq. 2.10 of chapter 2. 

  

A2.1.4 Age-structure alone  

Felsenstein used a different approach to solve the haploid model without endogenous reproductive 

variance, relying on the definition of the effective population size as the inbreeding effective 

number (2). To see that his results agree with ours (as well as with those of Sagitov and Jagers 

(3)), consider the case without endogenous reproductive variance, where Eq. A2.17 reduces to 

�T = [' =
v

∑
1π
ö©ö∑ 1π1xx,π

ôπ
π

=
v

∑
1π
ôπ
(—πM—π©ó)π

,      (A2.30) 

where “k = ∑ ]kmrk . Noting that ]k(“k + “kM2) = (“k − “kM2)(“k + “kM2) = “Ã
3 − “kM2

3 , we find that 

�T =
v

∑
1π
ôπ
(—πM—π©ó)

=
v,ó

∑ôó
ôπ
Ç—π

öD—π©ó
ö ±

=
v,ó

2M∑ —π©ó
ö (

ôó
ôπ©ó

D
ôó
ôπ
)π
,     (A2.31) 

where Felsenstein’s functional form (p. 585 in (2)) is on the rightmost side. 

To better understand the effect of age-structure on the effective population size, consider a simple 

example in which there is no endogenous reproductive variance, and no age-dependence in 
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reproductive success. In other words, the only difference among individuals’ numbers of offspring 

arise from the stochasticity of mortality and reproduction. In this case, the probability of having a 

parent of age a is proportional to the size of the age class, i.e.,  ]R = 	[R �⁄  where � = ∑ [RR  is 

the census size. Following our derivations, the effective population size (Eq. 2.3 in chapter 2) then 

reduces to �T =
v

(3vD2)
�, and if the generation time ' ≫ 1 then �T ≈

2

3
�. In other words, the age 

structure reduces the effective population size to half of the census size 

 

A2.2. Diploid Model  

A2.2.1 Overview  

Here we rigorously define and solve the diploid model with two sexes and endogenous 

reproductive variance, and derive formulas for the effective population sizes of X and autosomes. 

While the diploid model is more elaborate, the model and results follow along the same lines as 

we described for the haploid model.  In Section A2.2.2 we detail the assumptions of the diploid 

model and introduce the notation required for the derivations that follow. In Section A2.2.3 we 

solve for the joint stationary distribution of the age and relative reproductive success of autosomal 

and X-linked alleles. We build on the joint stationary distribution to solving for the stationary per-

generation coalescence rates and corresponding effective population sizes on X and autosomes. 

Since some of the explicit equations we derive are not presented in the chapter 2, we briefly review 

them here.  

Notably, to extend the haploid formula for the effective population size, �T = ['/p (Eqs. 2.7 

and A2.17), to the diploid case, we require explicit expressions for the effective age-class size [, 

generation time ', and p, corresponding to the X and autosomes. First, we define these measures 
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for each sex in the same way that we did in the haploid model (i.e., as in Eqs. A2.15 and A2.16). 

We then define ' and p for X and autosomes, as simple weighted averages over their values in 

males and females: 

'4 =
3

5
'- +

2

5
', and '0 =

2

3
(', + '-)       (A2.32) 

(which is Eq. 2.12 in chapter 2), and 

p4 =
3

5
p- +

2

5
p, and p0 =

2

3
(p, +p-),      (A2.33) 

where the weights reflect the relative number of generations that X and autosomal linked loci 

spend in males and females (see Table A2.2 for notation). The effective age class sizes on X and 

autosomes are defined as weighted harmonic averages. In the case without endogenous 

reproductive variance, they are defined as 

2

,ñ
=

2 5⁄

,ô
+

3 5⁄

,õ
  and  2

,ú
=

2 3⁄

,ô
+

2 3⁄

,õ
.        (A2.34) 

To account for sex-specific endogenous reproductive variances, the weights further account for 

the endogenous reproductive variances effect on the relative probability of coalescence in males 

and females, 

2

,ñ
=

2 5(ëô ëñ)⁄⁄

,ô
+

3 5(ëõ ëñ)⁄⁄

,õ
 and 2

,ú
=

2 3(ëô ëñ)⁄⁄

,ô
+

2 3(ëõ ëñ)⁄⁄

,õ
.    (A2.35) 

Using these definitions, the effective population size for the X and autosomes take the form 

�T0 =
3vú,ú

ëú
 and �T0 =

3vñ,ñ

ëñ
,        (A2.36) 

where the factor 2, which is absent in the haploid case (Eqs. 2.7 and A2.17), accounts for the 

effective number of age classes in the population (i.e., ' classes in the haploid population, but 2' 

classes in the case with two sexes). To translate these effective sizes into coalescence rates, we 

also account for ploidy, yielding per generation rates of 1 2�T0⁄ = p0 4'0[0⁄  on autosomes and 

1 (3 2⁄ )�T4⁄ 	= p4 3'4[4⁄  on the X. Based on Eq. A2.36, the mutation rate on X and autosomes, 
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and the standard forms for polymorphism levels, we obtain the following expression for the ratio 

of X to autosome polymorphism levels: 

§(•ñ)

§(•ú)
=

5

N
⋅
¶®

4ô
4õ
´⋅¶®

¡ô
¡õ
´

¶®
’ô ’õ⁄

ôô ôõ⁄
´

          (A2.37) 

(note that this differs from Eq. 2.18 of chapter 2). 

 

In Section A2.2.4, we recast the results for the effective population size (Eq. A2.36) and 

polymorphism ratio (Eq. A2.37) in terms of male and female reproductive variances. First, we 

show that the reproductive variances in males and females, í, and í-, are given by 

í¥ =
,ó

5µ

ëµ

,µ
−

2D5µ
5µö

,          (A2.38) 

where the index s corresponds to M or F, and 6, and 6- are the proportions of males and females 

among newborns, respectively. Thus, this equation does not assume a sex ratio of 1. Rewriting Eq. 

A2.36 in terms of male and female reproductive variances we find that 

�T4 =
Nvñ,ó

ö
ò
5ôìô	M	

7
ò
5õìõ	M

ö
ò
	
8õ
8ô

M
7
ò
	
8ô
8õ

 and �T0 =
Nvú,ó

5ôìô	M	5õìõ	M	
8õ
8ô

M	
8ô
8õ

,   (A2.39) 

where [2 is the number of newborns of both sexes per year, and that 

§(•ñ)

§(•ú)
=

5

N
⋅
¶(ßô/ßõ)⋅¶(vô/võ)

J®
6»/6[	+	6[í[
6[/6»	+	6»í»

´
.       (A2.40) 

These equations reduce to Eqs. 2.15 and 2.18 in chapter 2 when the sex ratio at birth equals 1.  

In Section A2.2.5, we derive the expressions for the effective population sizes in terms of the 

allelic reproductive variances for X and autosomes, í4∗ and í0∗ (Eq. 2.13 in chapter 2):  

�T0 =
vú⋅,ó

ìú
∗  and �T4 =

vñ⋅,ó

ìñ
∗ ,        (A2.41) 

where the expression for the X only hold when the sex ratio at birth equals 1 (see below).   
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Notation Definition Remarks 

`9,a Probability that a parent of sex s is of age a Σ;]-,R = Σ;],,R = 1 

#9,a Probability that a parent of sex s is of age ³ a “¥,R = ΣkrR]¥,k 

cb,cû Male and female generation times  '¥ = Σ;Y ⋅ ]¥,R 

cü, c† Generation times for X and autosomes See Eq. A2.32 

b9,a Number of individuals of sex s and age a [¥,RM2 ≤ [¥,R 

bù Number of newborns of both sexes per-year  

<b,<û  Proportions of males and females among newborns 6¥ = [¥,2/[2 

de⃗  Relative reproductive success  

˚9,a(de⃗ ) The proportion of individuals with relative reproductive success g⃗ among 
individuals of sex s and age a 

 

$9,a(de⃗ ) Given a newborn that descended from a parent of sex s and age a,  ¯¥,R(g⃗) is 

the probability that the parent has relative reproductive success g⃗  

¯¥,R(g⃗) = gRJ¥,R(g⃗) 

%ü(9, a, de⃗ ), 

%†(9, a, de⃗ ) 

Joint stationary probability of sex s, age a and relative reproductive success g⃗ 
for the X and autosomes 

See Eqs. A2.49 and 
A2.50 

%9,aü , %9,a†  Marginal stationary distribution of age a for the X and autosomes  

bb,bû Effective male and female age-class sizes See Eq. A2.61 

bü,b† Effective X and autosome linked age-class sizes  See Eq. A2.65 

h9,i,j Expectation of gk ⋅ gm among individuals of sex conditional of surviving to age 

Y ≥ n 

Defined for n ≥ o 

hb,hû Weighted averages of the p,,k,m and the p-,k,m, respectively See Eq. A2.60 

hü,h† Weighted averages of W_M and W_F for X and autosome linked loci See Eq. A2.33 

ü9, ü9,a X>,; and X> are Random variables describing the numbers of offspring an 

individual has at age a or throughout life, respectively 

 

°b, °û Male and female reproductive variances (i.e., í¥ = í(≥¥)) See Eq. A2.83 

'9,a The event of a newborn of sex s surviving to age ³Y  

˚(?) J(K) ≡ (2K + 4)/(3K + 3)  

¢b, ¢û Male and female expected mutation rates per generation  See Section A2.3 

¢ü, ¢† Expected mutation rates per generation on  X and autosomes; 

/4 =
2

5
/, +

3

5
/- and /0 =

2

3
/, +

2

3
/- 

 

ü@ü , ü@†  The number of newborns carrying a random X or autosome linked allele m  

°ü
∗ , °†

∗  Reproductive variances of X and autosome linked alleles, respectively 
(i.e., í4∗ ≡ í(≥…4) and í0∗ ≡ í(≥…0)) 

See Eqs A2.89 and 
A2.93 

Table A2.2: Notation for the diploid model with two sexes, with parameters of the model in red.  
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A2.2.2 Assumptions and notation 

We consider a panmictic, diploid population of constant size, with two sexes, and sex- and age-

dependent mortalities, fecundities and reproductive variances. We measure age in years, and 

assume that the number of individuals of sex s and age a, [¥,R, is constant. Specifically, the sizes 

of the newborn age classes, [,,R and [-,R, may take any integer values, meaning that at this point 

we make do not assume that the sex-ratios at birth equals 1. More generally, the size of classes can 

vary between sexes, but for each sex they decrease with age, i. e. , [¥,RM2 ≤ [¥,R, reflecting sex- 

and age-specific mortalities. We further assume that age classes are partitioned according to 

individuals’ age-dependent reproductive success. Namely, individuals are randomly assigned a 

vector g⃗ at birth, reflecting their expected relative reproductive success at each age (see below). 

We then assume that the number of individuals in the population of sex s, age a and relative 

reproductive success g⃗, is constant and equal to [¥,R ⋅ J¥,R(g⃗), where J¥,R is the probability mass 

function of g⃗ among individuals of sex s and age a. Individuals with the same value of g⃗ are chosen 

to survive to the next age class at random, i.e., there are no differences in viability, but [¥,R ⋅

J¥,R(g⃗) ≥ 	[¥,RM2 ⋅ J¥,RM2(g⃗) due to mortality, where rates of mortality can depend on the value of  

g⃗.  

  

Sex and age dependent fertility and reproductive success are described backwards in time, in terms 

of the probability of an individual being chosen as a parent. Every newborn has a mother and a 

father, which are chosen independently. The probability that the parent of sex s is of a given age 

is described by a discrete distribution P¥ = (]¥,R)R^2
_ , where the expectations ', = Å(P,) and 

'- = Å(P-) are the generation times for males and females, respectively. The average probability 

per individual of age a is therefore ]¥,R [¥,R⁄ , which can be viewed as the fertility associated with 
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that age and sex. The probability of being born to a specific parent of age a and relative 

reproductive success g⃗ is ]¥,R ⋅
Vu
,µ,u

, where gR is the a-th component of g⃗. The value of gR thus 

reflects an individual’s expected (rather than actual) relative reproductive success.  

Similar to the haploid case (cf. Section A2.1.1), our assumptions imply several requirements on 

the form of the probability mass functions J¥,R. First, requiring that the probability of a parent of 

sex s being of age a is ]¥,R, implies that for any sex s and age a,  Å¶µ,u(gR) = 1. Second, requiring 

that [¥,R ⋅ J¥,R(g⃗) ≥ 	[¥,RM2 ⋅ J¥,RM2(g⃗) implies that J¥,R(g⃗) J¥,RM2(g⃗)⁄ ≥ [¥,RM2 [¥,R⁄ . Third, 

requiring that for any sex s and age a [¥,R ⋅ J¥,R(g⃗) is an integer, implies that the probability mass 

functions J¥,R are discrete and can only take values o [¥,R⁄  for o = 0, 1,… , [¥,R. While the latter 

requirement may appear to be highly restrictive, if we fix the ratios [¥,R/[¥˛,R˛ and assume that 

the total population size is sufficiently large, we can relax this requirement and assume any 

continuous or discrete  distributions J¥,R that satisfy the first two requirements (by the same 

reasoning we applied to the haploid case in Section A2.1.2).  

 

A2.2.3 Solution backwards in time 

Here, we extend the derivations of Pollak (5) to account for endogenous reproductive variance. 

Tracing an allele backward in time, the sex ∂∆, age Y∆ and relative reproductive success g⃗∆ of the 

individual ;∆ carrying the allele t years in the past defines a Markov chain, (∂∆, Y∆, g⃗∆). To define 

the transition probabilities of the chain, we distinguish between two cases. First, if the allele is not 

carried by a newborn, i.e., if Y∆ > 1, then at time t+1 the individual carrying it was one year 

younger, and its sex s and relative reproductive success g⃗ remain unchanged, i.e., 

(∂∆M2, Y∆M2, g⃗∆M2) = (∂∆, Y∆ − 1, g⃗∆) with probability one. Second, if the allele is carried by a 
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newborn, i.e., if Y∆ = 1, then the sex of the parent, ∂∆M2, is equally likely to be male or female if 

the allele is autosomal or if it is X-linked and the newborn was a female, but if it is X-linked and 

the newborn was a male then the sex of the parent will be female with probability 1. Conditional 

on the parent’s sex, ∂∆M2, its age Y∆M2 = Y with probability ]¥‡©ó,R. The probability mass function 

of g⃗∆M2 conditional on (∂∆M2, Y∆M2), follows from Bayes’ theorem, further conditioning on the fact 

that the parent, ;∆M2 = ;, necessarily reproduced successfully 

        <(g⃗‹ = g⃗|;∆M2 = ;, Y∆M2 = Y) 

=
⁄(‹‡©ó^‹|V⃗‡©ó^V⃗,R‡©ó^R)⋅⁄(V⃗(^V⃗|	R‡©ó^R)

⁄(‹‡©ó^‹)
 = ÇVu/,µ,u±⋅¶µ,u(V⃗)

∑ 	ÇVu/,µ,u±⋅¶µ,u(We⃗ ))ee⃗
= gR ⋅ J¥,R(g⃗)  (A2.42) 

We denote this probability by ¯¥,R(g⃗) ≡ gR ⋅ J¥,R(g⃗), and conclude that when Y∆ = 1, ∂∆M2 is 

distributed as we described above and  <Ç(Y∆M2, g⃗∆M2) = (Y, g⃗)É∂∆M2± = ]¥,R ⋅ ¯¥,R(g⃗).  

 

¯¥,R is a proper probability mass function since ∑ ¯¥,R(g⃗)V⃗ = ∑ gR ⋅ J¥,R(g⃗)V⃗ = 1. Moreover, the 

parent’s expected value of gR is ÅV⃗~*µ,u(gR) = ÅV⃗~¶µ,u(gR
3) = 1 + íV⃗~¶µ,u(gR) ≥ 1. The latter 

inequality makes intuitive sense, as it implies that the allele is more likely to be descended from 

an individual that has higher than average relative reproductive success in its age class. 

 

We rely on the transition probabilities to derive and solve recursions for the stationary 

probabilities, &0(∂, Y, g⃗) and &4(∂, Y, g⃗), of sex, s, age, a, and relative reproductive successes, g⃗, of 

autosome and X linked alleles, respectively. For autosomal alleles 

&0(∂, Y, g⃗) = &0(∂, Y + 1, g⃗) + Ç∑ &0Ç÷, 1, +e⃗ ±∆,We⃗ ± ⋅
2

3
]¥,R ⋅ ¯¥,R(g⃗),    (A2.43) 

where the first term corresponds to aging by one year and the second term corresponds to parenting 

a newborn. For X linked alleles 
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&4(∂, Y, g⃗) = &4(∂, Y + 1, g⃗) + t
2

3
∑ &4(», 1, +e⃗ )We⃗ + B¥^- ∑ &4([, 1, +e⃗ )We⃗ w ⋅ ]¥,R ⋅ ¯¥,R(g⃗),  

(A2.44) 

where B denotes an indicator function, and, similar to the autosomal case, the first term corresponds 

to aging by one year and the second term corresponds to parenting a newborn.  

 

In order to solve these recursions, we first consider the marginal stationary distribution of age and 

sex, &¥,R0 = ∑ &0(∂, Y, g⃗)V⃗  for autosomes and &¥,R4 = ∑ &4(∂, Y, g⃗)V⃗ . To this end, we sum the 

recursions over g⃗ to obtain recursions on the marginal distributions, 

								&¥,R0 = &¥,RM20 + Ç&,,20 + &-,20 ± ⋅
2

3
]¥,R and &¥,R4 = &¥,RM24 + t

2

3
&-,24 + B¥^-&,,24 w ⋅ ]¥,R,  

(A2.45) 

where we also require that ∑ &¥,R0¥,R = ∑ &¥,R4¥,R = 1. These recursions were solved by Pollack (5) 

for the case without endogenous reproductive variance, yielding 

&¥,R0 = “¥,R/2'0, &,,R4 = “,,R/3'4 and &-,R4 = 2“-,R/3'4,     (A2.46) 

where “¥,m ≡ ∑ ]¥,mmrR  is the probability that a parent of sex s is at least j years old. Substituting 

these expressions into Eqs. A2.43 and A2.44, the recursions simplify to 

&0(∂, Y, g⃗) = &0(∂, Y + 1, g⃗) +
2

3vu
]¥,R ⋅ ¯¥,R(g⃗)      (A2.47) 

for autosomes and 

&4(∂, Y, g⃗) = &4(∂, Y + 1, g⃗) +
2MBµCõ
5vñ

⋅ ]¥,R ⋅ ¯¥,R(g⃗)     (A2.48) 

for the X, where we further require that ∑ &0(∂, Y, g⃗)¥,R,V⃗ = ∑ &4(∂, Y, g⃗)¥,R,V⃗ = 1. The solution to 

these recursions is   

&0(∂, Y, g⃗) = 2

3vú
&(∂, Y, g⃗)         (A2.49) 

for autosomes and  
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&4(∂, Y, g⃗) = 2MBµCõ
5vñ

&(∂, Y, g⃗)        (A2.50) 

for the X, where &(∂, Y, g⃗) ≡ ∑ ]¥,m ⋅ ¯¥,m(g⃗)mrR . 

 

The marginal stationary probability mass function of g⃗ follows,  

&V⃗
0 = ∑ &0(∂, Y, g⃗)¥,R = ∑

m⋅Qµ,x
3vú

⋅ ¯¥,m(g⃗)¥,m        (A2.51) 

for autosomes, and  

&V⃗
4 = ∑ &4(∂, Y, g⃗)¥,R = ∑

(2MBµCõ)⋅m⋅Qµ,x
5vñ

⋅ ¯¥,m(g⃗)¥,m       (A2.52) 

for the X. These are proper probability mass functions since they are weighted averages of the 

probability mass functions ¯¥,m, since ∑ m⋅Qµ,x
3vú

¥,m = ∑
(2MBµCõ)⋅m⋅Qµ,x

5vñ
¥,m = 1.  

 

Similar to the haploid case, we rely on the stationary distribution to derive the probability of 

coalescence of two alleles. Consider the autosomal case first. For coalescence to occur at time t in 

the past, one of the alleles (A) would descent from the other (B) or both would descent from the 

same parental allele at that time. Specifically, if allele B is in an individual of sex s, age a and 

relative reproductive success g⃗ at time t (with probability &0(∂, Y, g⃗)), then allele A must be in a 

newborn at time t-1 (with probability &,,2 + &-,2), having descended from the same individual 

carrying allele B (with probability 2
3
]¥,R ⋅

Vu
,u

) and from allele B specifically (with probability 1 2X ). 

Summing over the individual’s possible sexes, ages and reproductive success vectors, we obtain 

the probability 

        ∑ &0(∂, Y, g⃗) ⋅ Ç&,,20 + &-,20 ± ⋅
2

3
]¥,R ⋅ 	

Vu
3,µ,u

¥,R,V⃗ =
2

Ï(vú)ö
∑

∑ Qµ,uQµ,x ∑ Vu⋅*µ,x(V⃗)îee⃗xyu

,µ,u
¥,R   

=
2

Ï(vú)ö
∑

∑ Qµ,uQµ,xëµ,u,xxyu

,µ,u
¥,R ,         (A2.53) 
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where, for n ≥ o, 

p¥,k,m ≡ ÅV⃗~¶µ,xÇgk ⋅ gm± = ÅV⃗~*µ,x(gk) = ∑ gk ⋅ ¯¥,m(V⃗ g⃗)     (A2.54) 

is the expectation of Çgk ⋅ gm± over individuals of sex s and age j. Further allowing for either allele 

or both to be the newborn (using the inclusion-exclusion principal to subtract the probability  

Ç&,,20 + &-,20 ±
3
∑ t

2

3
]¥,Rw

3
⋅
Vu*µ,u(V⃗)
3,µ,u

¥,R,V⃗ =
2

Ï(vú)ö
∑ Qµ,uQµ,uëµ,u,u

,µ,u
¥,R     (A2.55) 

that both alleles were in a newborn prior to coalescence), the autosomal stationary coalescence 

rate per year is 

2

Ï(vú)ö
∑

Qµ,uö ëµ,u,uM3∑ Qµ,uQµ,xëµ,u,xx,u

,µ,u
¥,R .       (A2.56) 

The per generation coalescence rate (in terms of the autosomal generation time '0) and 

corresponding effective population size are therefore 

2

3z{
ú =

2

Ï⋅vú
∑

Qµ,uö ëµ,u,uM3∑ Qµ,uQµ,xëµ,u,xx,u

,µ,u
¥,R .       (A2.57) 

For the X,  the stationary coalescence rate per year is  

         2 t&,,24 +
2

3
&-,R4 w∑ &4(», Y, g⃗) ⋅ ]-,R ⋅ 	

Vu
3,õ,u

;,V⃗ + 2 ⋅
2

3
&-,R4 ∑ &4([, Y, g⃗) ⋅ ],,R ⋅ 	

Vu
,ô,u

;,V⃗  

         −t&,,24 +
2

3
&-,24 w

3
∑ ]-,R

3 ⋅
Vu*õ,u(V⃗)
3,õ,u

R,V⃗  −t2
3
&-,24 w

3
∑ ],,R

3 ⋅
Vu*ô,u(V⃗)

,ô,u
R,V⃗   

=
2

E(vñ)ö
∑ (1 + B¥^-)∑

Qµ,uö ëµ,u,uM3∑ Qµ,uQµ,xëµ,u,xx,u

,µ,u
R¥  ,    (A2.58) 

and the corresponding per generation coalescence rate, which defines the effective population size 

for the X, �T4, is  

2

Ç5 3X ±z{
ñ =

2

Evñ
∑ (1 + B¥^-)∑

Qµ,uö ëµ,u,uM3∑ Qµ,uQµ,xëµ,u,xx,u

,µ,u
R¥      (A2.59) 

(defined in terms of the X-linked generation time '4). 
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As outlined in Section A2.2.1, the effective population sizes, �T4 and �T0, can be rewritten in terms 

of the effective age class sizes, to obtain expressions that are analogous to Eqs. 2.7 and A2.17 in 

the haploid case. To this end, the terms ', p and [ in Eq. A2.17 need to be defined for the X and 

autosomes. First, we define these terms separately for males and females, by applying the haploid 

definitions. Specifically, we define  

p¥ = 	∑ ]¥,k
3 p¥,k,kk + 2∑ ]¥,k]¥,mp¥,k,mk-m        (A2.60) 

as a weighted average of the p¥,k,m, and define 

2

,µ
= ∑ |µ,u

,µ,u
R             (A2.61) 

as a weighted harmonic average of the age classes sizes of sex s, with weights 

}¥,k = (]¥,k
3 p¥,k,k + 2∑ ]¥,k]¥,mp¥,k,mm~k )/p¥       (A2.62) 

(note that ∑ }¥,RR = 1).  

To extend the definitions of ', p and [ to the X and autosomes, we define them as weighted 

averages over males and females. Specifically, G and W are defined as simple weighted averages, 

'0 =
2

3
(', + '-) and '4 =

3

5
'- +

2

5
',       (A2.63) 

(this is Eq. 2.12 in chapter 2) and 

p0 =
2

3
(p, +p-) and p4 =

3

5
p- +

2

5
p,.      (A2.64) 

The effective age class size M for X and autosomes is defined as a weighted harmonic average, 

2

DE
=

2 3(FG FE)⁄⁄

DG
+

2 3(FH FE)⁄⁄

DH
 and 2

DI
=

2 5(FG FI)⁄⁄

DG
+

3 5(FH FI)⁄⁄

DH
.    (A2.65) 

Expressing Eqs. A2.57 and A2.59 in these terms, we find that 

�T0 =
3,úvú
ëú

and	�T4 =
3,ñvñ
ëñ

.        (A2.66) 
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The factor 2, which is absent in the haploid case (Eq. A2.17), reflects the effective number of age 

classes (i.e., ' classes of size M in the haploid model, but 2G classes in the diploid model with 

two sexes). 

Assuming the standard expressions for neutral heterozygosity, Å(£0) = 4�T0/0 and Å(£4) =

3�T4/4 (see Section A2.3), and rearranging the expressions in Eq. A2.66, we find that 

§(•ñ)

§(•ú)
=

5

N
⋅
¶(ßô/ßõ)⋅¶(vô/võ)

¶®
’ô/’õ
ôô/ôõ

´
.         (A2.67) 

When the mutation rate, age structure, and endogenous reproductive variance are identical in both 

sexes Eq. A2.67 reduces to the naïve neutral expectation of ¾. When these factors differ among 

sexes, Eq. A2.67 provides a simple expression for the effect of each factor.  

 

A2.2.4 Reproductive variance  

To recast our results for the effective population sizes in terms of total reproductive variances in 

males and females, í, and í-, we follow the same steps as described for the haploid case (Section 

A2.1.3). First, we consider the case with non-overlapping generations in a diploid population of 

constant size, with �, males and �- females. We denote the total population size by � ≡ �, +

�-, the proportions of males and females by 6¥ ≡
zµ
z

, and the number of offspring of the ith 

individual of sex s by +k¥. To maintain a constant population size, we require that the number of 

offspring arising from parents of each sex equals N, and therefore the sex-specific expectations are 

Å(+k¥) =
2

zµ
∑ +k¥k =

z

zµ
. We denote the sex-specific variances by í¥ ≡ í(+k¥). 

We are interested in the probability that two distinct alleles descend from the same allele in the 

previous generation, as this probability equals 1 2�T0⁄  for autosomes and 1 (3/2)�T4⁄  for the X. 
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For autosomes, the probability that the two alleles descend from individuals of sex s is ¼, the 

probability that they descend from the same individual of that sex is ∑ Wπ
µ

z
⋅
Wπ
µD2

zD2

zµ
k^2 , and the 

probability that they descend from the same allele is 1/2 , therefore 

2

3z{
ú =

2

Ï
∑ ∑ Wπ

µ

z
⋅
Wπ
µD2

zD2

zµ
k^2¥ .        (A2.68) 

Substituting ∑ Wπ
µ

z
⋅
Wπ
µD2

zD2

zµ
k^2 =

5µ
zD2

tÅÇ+k¥
3± − Å(+k¥)w =

2

zD2
(6¥í¥ +

2

5µ
− 	1) into Eq. A2.68, we 

find that 

�T0 =
N(zD2)

5ôìôM5õìõM	
8õ
8ô

M	
8ô
8õ

≅ Nz

5ôìôM5õìõM	
8õ
8ô

M	
8ô
8õ

     (A2.69) 

(cf. (4)).  

For the X chromosome, the probability that two alleles descend from individuals of sex s depends 

on 6, and 6-. However, as we go further backwards in time, this probability approaches 1/9 for 

both being male and 4/9 for both being female, regardless of 6, and 6-. The probability that both 

alleles descend from the same individual of that sex is ∑ Wπ
µ

z
⋅
Wπ
µD2

zD2

zµ
k^2 , and the probability that they 

descend from the same allele is ½ for females and 1 for males, and therefore  

2

(5/3)z{
ñ =

2

E
∑ Wπ

ô

z
⋅
Wπ
ôD2

zD2

zô
k^2 +

2

3
⋅
N

E
∑ Wπ

õ

z
⋅
Wπ
õD2

zD2

zõ
k^2  ,      (A2.70) 

and thus 

�T4 =
N(zD2)

ö
ò
5ôìô	M

7
ò
5õìõ	M

ö
ò
	
8õ
8ô

M
7
ò
	
8ô
8õ

≅ Nz
ö
ò
5ôìô	M

7
ò
5õìõ	M

ö
ò
	
8õ
8ô

M
7
ò
	
8ô
8õ

 .     (A2.71) 

Assuming a sex ratio of 1 (i.e., 6, = 6- = 1/2), Eqs. A2.69 and A2.71 reduce to  

�T0 =
Nz

3M
ó
ö
ìôM

ó
ö
ìõ

 and �T4 =
Nz

3M
ó
ò
ìôM

ö
ò
ìõ

.    (A2.72) 

To extend Eq. A2.72 to the case with overlapping generations, we consider the first two moments 

of an individual’s number of offspring, ≥¥, throughout its lifetime. First, we note that an 
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individual’s number of offspring can be expressed as a sum over the number at each age, i.e., ≥¥ =

∑ ≥¥,RR , where ≥¥,R denotes the number of offspring at age a; and ≥¥,R = 0 if the individual does 

not survive to age a. In these terms, the first two moments are 

Å(≥¥) = ∑ Å(≥¥,R)R  and Å(≥¥3) = ∑ Å(≥¥,R3 )R + 2∑ Å(≥¥,k ⋅ ≥¥,m)m~k .   (A2.73) 

Denoting the event of surviving to age ³	Y by /¥,R, we note that  

ÅÇ≥¥,Rk ± = <gÇ/¥,R± ⋅ ÅÇ≥¥,Rk É/¥,R± =
,µ,u

,µ,ó
⋅ ÅÇ≥¥,Rk É/¥,R±.    (A2.74)  

The latter term, ÅÇ≥¥,Rk É/¥,R±, can be simplified further by conditioning on g⃗. Since the probability 

mass function of g⃗ conditional on /¥,R is J¥,R, 

ÅÇ≥¥,Rk É/¥,R± = ÅV⃗~¶µ,uÅÇ≥¥,R
k É/¥,R, g⃗±.       (A2.75) 

Moreover, the distribution of ≥¥,R conditional on /¥,R and g⃗ is  

Ç≥¥,RÉg⃗, /¥,R±	~0oºÇ[2, ]¥,R ⋅ gR/[¥,R±,       (A2.76) 

where [2 = [,,2 + [-,2 is the number of newborns of both sexes per-year, and therefore 

        ÅÇ≥¥,RÉ/¥,R± = ÅV⃗~¶µ,u ®
,óVuQµ,u
,µ,u

´ =
,óQµ,u
,µ,u

     

 (A2.77)  

and   

        ÅÇ≥¥,R3 É/¥,R± = ÅV⃗~¶µ,u J[2
VuQµ,u
,µ,u

+ 2 t[2
2
w®

VuQµ,u
,µ,u

´
3

K = ,óQµ,u
,µ,u

+ 2 t[2
2
w®

Qµ,u
,µ,u

´
3

p¥,R,R.  

Substituting these expression into Eq. A2.74, we find that 

Å(≥¥,R) =
Qµ,u
5µ

  and	ÅÇ≥¥,R3 ± =
Qµ,u
5µ
+ 	

,óD2

,µ,u

Qµ,uö

5µ
	 ⋅ p¥,R,R,     (A2.78) 

where 6, and 6- are the proportions of males and females at birth (i.e., 6¥ = [¥,2/[2). To 

calculate the remaining terms in Eq. A2.73, Å(≥¥,k ⋅ ≥¥,m) for n > o, we note that conditioning on 

/¥,m, and on g⃗|/¥,m, 
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ÅÇ≥¥,k ⋅ ≥¥,m± = <Ç/¥,m± ⋅ ÅÇ≥¥,k ⋅ ≥¥,mÉ/¥,m± =
,µ,x

,µ,ó
⋅ ÅV⃗~¶µ,xÅÇ≥¥,k ⋅ ≥¥,mÉ/¥,m, g⃗±. (A2.79)  

The latter term is easily calculated, since conditional on /¥,m and g⃗, ≥¥,k and ≥¥,m are independent 

binomial variables: Ç≥¥,kÉg⃗, /¥,m±~0oºÇ[2, ]¥,k ⋅ gk/[¥,k± and Ç≥¥,mÉg⃗, /¥,m±~0oºÇ[2, ]¥,m ⋅ gm/

[¥,m±, and therefore 

ÅÇ≥¥,k ⋅ ≥¥,m± =
,µ,x

,µ,ó
⋅ ÅV⃗~¶µ,x ®

,ó
öQµ,πQµ,xVπVx
,µ,π,µ,x

´ =
,óQµ,πQµ,xëµ,π,x

5µ,µ,π
.    (A2.80)  

Substituting the expressions from Eqs. A2.78 and A2.80 into Eq. A2.73 we obtain 

Å(≥¥) =
2

5µ
	 and Å(≥¥3) =

2

5µ
+

,ó

5µ
∑ 	

Qµ,π
ö ⋅ëµ,π,πM3∑ Qµ,πQµ,xëµ,π,xx,π

,µ,π
k − ∑ 	

Qµ,uö ⋅ëµ,u,u

5µ,µ,u
R . (A2.81) 

Assuming that the total population size is sufficiently large for the ratios [¥,k/[∆,m and terms p¥,k,m 

to be approximated as fixed, and for the higher order terms ∑ 	
Qµ,uö ⋅ëµ,u,u

5µ,µ,u
R  to be negligible, we find 

that 

Å(≥¥) =
2

5µ
	 and Å(≥¥3) ≅

2

5µ
+

,ó

5µ

ëµ

,µ
.        (A2.82) 

The total reproductive variances of sex s, are therefore 

í¥ = Å(≥¥3) − Å3(≥¥) ≅
,ó

5µ

ëµ

,µ
−

2D5µ
5µö

.       (A2.83) 

From Eqs. A2.66 and A2.83, we obtain that   

�T0 =
Nvú,ó

5ôìô	M	5õìõ	M	
8õ
8ô

M	
8ô
8õ

 and �T4 =
Nvñ,ó

ö
ò
5ôìô	M	

7
ò
5õìõ	M

ö
ò
	
8õ
8ô

M
7
ò
	
8ô
8õ

 ,   (A2.84) 

where '0[2 and '4[2 are the total numbers of newborns per-generation, for autosomes and the 

X, respectively. Eq. A2.84 thus generalizes Eqs. A2.69 and A2.71 to the case with age-structure. 

Assuming that Å(£0) = 4�T0/0 and Å(£4) = 3�T4/4 (see Section A2.3), we find that 

§(•ñ)

§(•ú)
=

5

N
⋅
¶(ßô/ßõ)⋅¶(vô/võ)

J®
6»/6[	+	6[í[
6[/6»	+	6»í»

´
 .       (A2.85) 



 123 

Further assuming that the sex ratio at birth is 1 (i.e. that 6, = 6- = 1
2X ), Eqs. A2.84 and A2.85 

reduce to  

�T0 =
Nvú,ó

3M
ó
ö
ìôM

ó
ö
ìõ

, �T4 =
Nvñ,ó

3M
ó
ò
ìôM

ö
ò
ìõ

 and  
§(•ñ)

§(•ú)
=

5

N
⋅
¶(ßô/ßõ)⋅¶(vô/võ)

Jt
2+í[
2+í»

w
,  (A2.86) 

which are the expressions presented in Eqs. 2.15 and 2.18 of chapter 2.  

 

A2.2.5 Allelic reproductive variance 

In chapter 2, we derived the effective population size for X and autosomes in terms of alleles rather 

than individuals, on the premise that we can then use the expressions obtained in the haploid model 

(Eqs. 2.10 and A2.29). Here we establish this premise, showing it to always be correct for 

autosomal alleles, whereas for the X it applies so long as the sex ratio at birth equals 1 (i.e., γD =

γM = 1/2). 

Consider an allele m carried by an individual ;… of sex ∂…. We define the allele’s (realized) 

reproductive success as the number of ;…’s offspring who endogenous a copy of m, and denote it 

by ≥…0  when m is autosomal and by ≥…4  when it is X-linked. To obtain expressions for the effective 

population size in allelic terms, we calculate the first two moments of ≥…0  and ≥…4 , where m is 

chosen at random among alleles in newborns (in particular., m is carried by a male with probability 

2[,,2/(2[,,2 + 2[-,2) for autosomes and [,,2/(2[,,2 + 2[-,2) for the X).  

First consider the case of an autosomal allele. To that end, we denote the total number of offspring 

of individual ;… by ≥‹. Since each offspring of ;… carries a copy of m with probability ½, the 

conditional distribution ≥…0 |≥‹~0oº(≥‹,
2

3
). Based on the law of total variance, therefore  

Å(≥…0) =
2

3
Å(≥‹) and í(≥…0) =

2

N
[Å(≥‹) + í(≥‹)].     (A2.87) 
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Further conditioning on the sex of the individual carrying the allele, ∂‹, we note that Å(≥‹|∂‹) =

1/6¥( (Eq. A2.82) and í(≥‹|∂‹) = í¥(, where the individual ;… is male with probability 6, and 

female with probability 6-. Applying the law of total variance again, we obtain 

Å(≥‹) = 2 and í(≥‹) = 6,í, + 6-í- +
(5ôD5õ)ö

5ô5õ
.      (A2.88) 

Substituting these expressions into Eq. A2.88, we find that Å(≥…0) = 1 and 

í0
∗ ≡ í(≥…0) =

2

N
[6,í, + 6-í- +

5ô
5õ
+

5õ
5ô
].      (A2.89) 

When the sex-ratio at birth is 1, and thus 6, = 6- = 1 2⁄ , Eq. A2.89 reduces to Eq. 2.14 for í0∗ in 

chapter 2. From Eqs. A2.84 and A2.89, we obtain 

�T0 =
vú⋅,ó

ìú
∗            (A2.90) 

for any sex-ratio, which is Eq. 2.13 in chapter 2. While direct analogy with Eqs. 2.10 and A2.29 

for the haploid case would result in an effective population size of �T = 2'0 ⋅ [2/í0
∗, given that 

the effective population sizes are defined by requiring coalescence rates of 1/�T in haploids and  

1/(2 ⋅ �T0) in diploids, Eq. A2.90 is, in fact, analogous to Eqs. 2.10 and A2.29. 

 

Next, consider the case of an X-linked allele. If the individual carrying the allele, ;…, is a male, 

then only his female offspring will inherit the allele, and thus, ≥…4|(∂‹ = [, ≥‹)~0oº(≥‹, 6-). 

Since Å(≥‹|∂‹ = [) = 1/6, (Eq. A2.82) and í(≥‹|∂‹) = í¥(, the law of total variance implies 

that 

Å(≥…4|∂‹ = [) = 6-/6, and í(≥…4|∂‹ = [) = 6-3í, + 6-.    (A2.91) 

The case in which ;… is a female is similar to the autosomal case, and thus, ≥…4|(∂‹ =

», ≥‹)~0oº(≥‹, 1/2	), 

Å(≥…4|∂‹ = ») =
2

35õ
 and í(≥…4|∂‹ = ») =

2

N
í- +

2

N5õ
.     (A2.92) 
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Given that there are [,,2 X-linked alleles in newborn males and 2[-,2 in newborn females, the 

probability that an X-linked allele in a newborn is in a male is 6,/(1 + 6-) and the probability it 

is in a female is 2γM/(1 + γM). Applying the law of total variance therefore implies that  

Å(≥…4) = 1 and í4∗ = íYg(≥…4) =
5ô5õ

ö

2M5õ
í, +

5õ
3(2M5õ)

í- +
2M35ô5õ
3(2M5õ)

+
(2D35õ)ö

35ô5õ
.  (A2.93) 

When the sex-ratio at birth is 1, and thus 6, = 6- = 1 2⁄ , Eq. A2.93 reduces to Eq. 2.14 for í4∗ in 

chapter 2. From Eqs. A2.84 and A2.93, we find that  

�T4 =
vñ⋅,ó

ìñ
∗ ,           (A2.94) 

which is Eq. 2.13 in chapter 2, only holds when 6, = 6- = 1 2⁄ . Thus, the haploid result (Eqs. 

2.10 and A2.29) applies to X-linked alleles only when the sex ratio at birth equals 1.  

To gain some intuition as to why this result fails in the general case, consider the reproductive 

success of an X-linked allele in consecutive generations. As we have shown above, an allele’s  

expected reproductive success is 6-/6, in males and 1/(26-) in females (averaged over the sexes 

the expectation is 1). Now consider the expected reproductive success in the next generation: if 

the allele was in a male in the previous generation it will necessarily be in a female, and the 

expected reproductive success of the offspring allele would be 1/(2γM); if the allele was in a 

female in the previous generation, the expected reproductive success is obtained by averaging over 

the sex of the offspring, and is 2
3
+ 6-. Thus, unless 6, = 6- = 1

2X , the reproductive success of 

an X-linked allele will be negatively correlated between parents and offspring. Thus, the 

assumption of the haploid model that the reproductive success of individuals and their offspring 

are independent variables is clearly violated in this case.  
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A2.3. Mutational process 

Here we describe the assumptions on the mutational model and derive formulas for the expected 

levels of heterozygosity. To incorporate what has recently been revealed about the dependencies 

of mutation rates on sex and age (e.g., (6-8)), we allow for mutation rate in the diploid model to 

depend on sex and age. Namely, we assume that the number of de novo mutations that a parent of 

sex s and age a bequeaths to its newborn is a random variable with expectation /¥,R per base pair. 

While in chapter 2, we consider a specific model for /¥,R motivated by pedigree studies in humans, 

our derivation here treat (/¥,R)R^2_  as parameters and assumes no specific form. Since mutation 

rates vary with sex and age, the mutation rates per generation in males and females depend on the 

distributions of their breeding ages (i.e. P, and P-, which were defined in Section A2.2). We 

denote the expected mutation rate per generation in males by /, = Å0ôÇ/,,R± = ∑ ],,R ⋅ /,,RR  

and the expected rate in females by /- = Å0õ(/-,R). The average rates on the autosomes and the 

X are given by /0 =
2

3
(/, + /-) and /4 =

3

5
/- +

2

5
/,. For the haploid model, we assume the 

expected number of mutations /R to be dependent of age and define the per generation rate as / =

Å0(/R). In the special case in which the parameters /¥,R (or the /R in the haploid case) depend 

linearly on age, these expectations will depend only on the expected generation times ', and '-, 

i.e., they are insensitive to higher moments of the distributions of breeding ages in males and 

females. As we show below, higher moments of the distributions of mutation rates per generation 

do not affect our results, which is how we avoid any further assumptions about these distributions.  

The standard expressions for heterozygosity (e.g., Å(£0) = 4�T0/0) are usually derived assuming 

that the genealogical and mutational processes are independent (9). This assumption is violated in 

our case, because both the time to the most recent common ancestor and the number of 

accumulated mutations depend on the ages of the individuals along the lineage. To derive the 
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expected autosomal heterozygosity Å(£0) under these conditions, we track alleles A and B 

backwards in time. Let ≥k denote the number of mutations occurring on the lineage leading from 

allele A in the ith generation and T denote the number of generations until the alleles coalesce. The 

number of mutations on the lineage leading to allele A is then ∑ ≥k
¬
k^2 . Although ≥k and T are 

dependent variables, Wald’s equation (10) implies that Å(∑ ≥k) = Å(+) ⋅ Å(≥k)
¬
k^2  (to see that 

Wald’s equation holds, note that the indicator function B¬r¿ is independent of ≥¿, since the first 

depends on the sexes and ages in the first º − 1 generations, and the second on the ºth generation). 

We have shown previously that Å(+) = 2�T0. Since Å(≥k|∂k, Yk) = /¥,R (where ∂k and Yk are the 

sex and age in the ith generation), it follows that Å(≥k) = ÅÇ/¥,R± = 	/0. We conclude that the 

lineage leading to allele A has on average Å(∑ ≥k) = 2�T0 ⋅ /0
¬
k^2  mutations and therefore 

Å(£0) = 4�T0/0. A similar argument shows that for the haploid model Å(£) = 2�T/.  

The same argument cannot be readily applied to the X-chromosome, as the sexes ∂k and ∂kM2 in 

consecutive generations along the lineage are dependent variables, leading to a dependence 

between ≥kM2 and ∂k, in violation of the conditions for Wald’s equation to hold. Instead, we define 

T as the number of females on the lineage until the coalescence occurs, and define ≥k as the number 

of mutations between the oth and o + 1 females on the lineage. Under this definition, Wald’s 

equation holds and Å(£4) = 2Å(∑ ≥k
¬
k^2 ) = 2Å(≥k)Å(+). It is easily shown that Å(≥k) =

5

3
/4 

and Å(+) = 	�T4, so that Å(£4) = 3�T4/4. 
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