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ABSTRACT

From Model-Based to Data-Driven Discrete-Time Iterative Learning Control

Bing Song

This dissertation presents a series of new results of iterative learning control (ILC) that

progresses from model-based ILC algorithms to data-driven ILC algorithms. ILC is a type of

trial-and-error algorithm to learn by repetitions in practice to follow a pre-defined finite-time

maneuver with high tracking accuracy.

Mathematically ILC constructs a contraction mapping between the tracking errors of suc-

cessive iterations, and aims to converge to a tracking accuracy approaching the reproducibility

level of the hardware. It produces feedforward commands based on measurements from pre-

vious iterations to eliminates tracking errors from the bandwidth limitation of these feedback

controllers, transient responses, model inaccuracies, unknown repeating disturbance, etc.

Generally, ILC uses an a priori model to form the contraction mapping that guarantees

monotonic decay of the tracking error. However, un-modeled high frequency dynamics may

destabilize the control system. The existing infinite impulse response filtering techniques to

stop the learning at such frequencies, have initial condition issues that can cause an otherwise

stable ILC law to become unstable. A circulant form of zero-phase filtering for finite-time

trajectories is proposed here to avoid such issues. This work addresses the problem of possible

lack of stability robustness when ILC uses an imperfect a prior model.

Besides the computation of feedforward commands, measurements from previous itera-

tions can also be used to update the dynamicmodel. In other words, as the learning progresses,

an iterative data-driven model development is made. This leads to adaptive ILC methods.



An indirect adaptive linear ILC method to speed up the desired maneuver is presented

here. The updates of the system model are realized by embedding an observer in ILC to

estimate the systemMarkov parameters. This method can be used to increase the productivity

or to produce high tracking accuracy when the desired trajectory is too fast for feedback

control to be effective.

When it comes to nonlinear ILC, data is used to update a progression of models along a

homotopy, i.e., the ILC method presented in this thesis uses data to repeatedly create bilinear

models in a homotopy approaching the desired trajectory. The improvement here makes use

of Carleman bilinearized models to capture more nonlinear dynamics, with the potential for

faster convergence when compared to existing methods based on linearized models.

The last work presented here finally uses model-free reinforcement learning (RL) to elim-

inate the need for an a priori model. It is analogous to direct adaptive control using data to

directly produce the gains in the ILC law without use of a model. An off-policy RL method is

first developed by extending a model-free model predictive control method and then applied

in the trial domain for ILC. Adjustments of the ILC learning law and the RL recursion equa-

tion for state-value function updates allow the collection of enough data while improving the

tracking accuracy without much safety concerns. This algorithm can be seen as the first step

to bridge ILC and RL aiming to address nonlinear systems.
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Chapter 1
Introduction

1.1 The Concept of ILC

In 1984, motivated by robots doing repetitive tracking operations in manufacturing, the con-

cept of iterative learning control (ILC) began to flourish [1, 2, 3, 4, 5]. ILC is one type of

trial-and-error control algorithm to learn to follow a finite-time trajectory by repetitions in

practice, aiming to achieve “zero” tracking error after a few runs.

The goal of ILC as presented here is to achieve “zero” tracking error, which refers to the

tracking accuracy approaching the reproducibility level of the hardware. A classical example

to demonstrate the effectiveness of ILC is experiments performed on a 7 degree-of-freedom

robot at Nasa Langley Research Center [6].

In this experiment, a linear model was separately used for each link, while the desired path

was designed to assure a high degree of dynamic coupling and maximization of nonlinear

robot dynamic effects. When the base joints were asked to make a 90 degree turn at the

maximum speed specified by the robot manufacturer, the tracking error was decreased by a

1



factor of nearly 1000 in about 12 iterations for learning. This is close to the reproducibility

level of the robot, which is the limit of possible improvement.

This “zero-error” tracking is realized by using data (previous tracking errors) from di-

rect interaction with dynamic systems to eliminate errors from the bandwidth limitation of

feedback controllers, model inaccuracies, transient response, and unknown repeating distur-

bances. Simply put, ILC adjust feedforward commands for the current iteration according to

measurements from previous iterations in order to improve the tracking accuracy.

Mathematically the trajectory tracking problem is an inverse problem and ILC can take

many forms to solve this inverse problem, for example, based on integral control concepts

from classical control theory but applied in repetitions, based on indirect adaptive control

theory or model reference adaptive control theory operating in time or in repetitions or both,

etc.

The underlying principle of these various forms is to construct a contraction mapping

between the tracking errors of two successive iterations in practice. To form this contrac-

tion mapping, different numerical methods can be used, such as in linear least squares prob-

lems and for root finding. For example, Reference [7] uses Tikhonov regularization for ill-

conditioned systems and Reference [8] applies Newton method for nonlinear systems.

The difference between ILC and numerical methods is that ILC iterates in the real world

with the dynamic system while numerical methods iterate in simulations with the system

model. Iterations in the world lead to (1) a solution to the real system instead of the system

model and hence the tracking accuracy is not limited by the model accuracy, and (2) a cut-off

filter is essential for the ILC implementation in practice due to safety concerns.

For nearly four decades, ILC has achieved fruitful results [9, 10, 11, 12, 13, 14, 15], suc-
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cessfully applied to Chrysler manufacturing assembly line, stroke rehabilitation [16], quadro-

copters controllers [17], surgical robots [18], mobile robots [19], traffic control [20], etc, to

improve the tracking accuracy. In today’s trend of learning from data, ILC (together with

repetitive control and reinforcement learning) is categorized and studied as learning control

for robotics.

1.2 Learning From Data: ILC, Repetitive Control (RC),

and Reinforcement Learning (RL)

With the development of the ability to handle large data, the study of data-driven control

methods attracts more attention [21]. How to enable a system to mimic the human’s learning

process is one of the popular topics.

Karl Popper, one of the 20th century’s greatest philosophers of science, summarized the

philosophy of human’s learning as “our knowledge, our aims, and our standards grow through

an unending process of trial and error” [22]. This trial-and-error principle is shared by three

types of algorithms: ILC, RC, and RL. These are named as “learning control” for robotics in

a review paper [23]. It is helpful to understand ILC in comparison to RC and RL.

RC controllers are feedback controllers that attenuate periodic disturbances with the help

of the error signal from previous periods [24] while ILC control is an off-line controller pro-

ducing feedforward signals to improve the tracking accuracy of a finite-time maneuver. Com-

pared to ILC and RL, the distinct feature of RC is that RC only has one episode with a periodic

trajectory, i.e., the dynamics is continuous between periods.
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The relationship between ILC and RC is well studied by the researchers in control: Refer-

ence [9, 12] have deeply analyzed their difference and connections; Reference [24] develops

the unified formulation for ILC and RC; and Reference [25] studies the cross-fertilization

approaches of these two type of algorithms.

RL solves Markov Decision Processes (MDPs), which can also be seen as direct optimal

control [26, 27]. Classical RL methods, such as Q-learning, SARSA, and the actor-critic

approach, estimate a state-action value (or a state value) for all state-action pairs (or states) and

accordingly choose the actions that maximize this value. Its relationship with linear quadratic

regulator and model predictive control (MPC) has been actively studied [28, 29, 30, 31].

Unlike RC, the understanding of the relationship between ILC and RL is still limited:

Reference [32] compared the basic concepts without analysis of algorithms; sometimes ILC

was misrepresented as a successful RL example for robotics, such as in Reference [33]. This

may be partly due to the barrier between two different fields, control theory and machine

learning. And the interaction of control theory and RL has been focused on RL and optimal

control instead of RL and ILC.

To compare ILC and RL on the higher level, ILC uses previous data to eliminate the part

of error that cannot be eliminated by model-based controllers while RL uses data to implicitly

map the dynamics and finds an optimal policy; ILC solves trajectory tracking problems while

RL can simultaneously solve trajectory tracking problems and trajectory planning problems;

the strength of ILC lies in the use of a not-so-accurate model in order to obtain the monotonic

decay of tracking errors while the advantage of RL stays in using data to find the solutions

for stochastic/nonlinear optimization problems that are hard to be analytically solved. An

interesting and open question is if and how they can mutually benefit by taking advantages

4



of both model and data.

1.3 Research Motivation: From Model-based to

Data-driven

The motivation of this thesis is using data in ILC to relax the restrictions imposed by models.

Model and data represent two sources of information that one can use for control. Models

are approximations of reality while data from direct interaction with dynamic systems carries

information beyond these approximations. The utilization of data therefore has the potential

to release limitations due to approximation and push the performance boundaries of model-

based control methods.

Actually, the development of ILC is a history of how to utilize model and data to im-

prove the finite-time-trajectory tracking accuracy. One of the earliest ILC learning laws is

the Arimoto learning law proposed in 1984 [2, 34], which takes the form of

uj+1(t) = uj(t) + αej(t) (1.1)

where the subscript j denotes the iteration number. This model-free learning law may suffer

from bad learning transients that prevent the practical application of ILC [9, 35].

To avoid the bad learning transients in the practical application, the use of not-so-accurate

models in ILC was intensely studied [9, 10, 11] and those model-based ILC methods can

produce monotonic decay of the tracking errors.

Since the last decade, the study of model-based ILC has focused on two directions: (1)
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practical control problems and theoretical challenges that are associated with practical appli-

cation for linear ILC, and (2) nonlinear ILC [36]. This thesis summarizes the author’s work

to address problems in those two directions, which includes a series of new results of iterative

learning control (ILC) that progresses from model-based ILC algorithms to data-driven ILC

algorithms.

1.4 Thesis Organization

Chapter 1 is the introduction. The series of new results of ILC is presented from Chapter

2 to Chapter 5, which has been published in References [37, 38, 39, 40], followed by the

Conclusions and Future work in Chapter 6. The reference list is at the end of this dissertation.

The organization from Chapter 2 to Chapter 4 not only follows the chronological order,

but also fits the logical flow, from model-based to data-driven:

• Chapter 2 treats model-based ILC where the model is given a priori. It presents an

improved method of ensuring ILC convergence in spite of errors in this model. Specif-

ically, Chapter 2 presents a circulant filter to improve the robustness of model-based

ILC addressing the issue of high frequency model error.

• In the ILC algorithms presented in Chapter 3 and Chapter 4, there exists a data-driven

model development. Chapter 3 presents an indirect adaptive linear ILC method with an

embedded observer to increase the execution speed of the pre-defined maneuver. This

can be used to increase the productivity or to produce high tracking accuracy when the

desired trajectory is too fast for feedback control to be effective.

• Chapter 4 shifts attention to making ILC algorithms for nonlinear systems approxi-

6



mated by bilinear models. The approach uses data to repeatedly create bilinear models

in a homotopy approaching the desired trajectory. This requires that one be able to

measure the full state, not just the tracked variable. Again there is a data driven model

development in the algorithm, and this time it is much more complex.

• Chapter 5 finally uses model-free RL to eliminate the need for an a priori model. It

presents a data-driven model-free ILC method, which uses an off-policy RL approach

in the trial domain to produce the gains in the ILC learning law. It is data-driven in

order to learn what must be known about the system dynamics, and it simultaneously

addresses the ILC problem aiming for perfect tracking in the world.

The chapter of Conclusions and Future work briefly summarizes those achievements dur-

ing the author’s Ph.D. period, and proposes a research plan to investigate learning methods in

the intersection of ILC and RL for nonlinear systems.

7
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Chapter 2
Improvement of Robustness of ILC by

Circulant Filter

2.1 Introduction

In engineering, models of physical systems usually fail to include some high-frequency dy-

namics that may be hidden in the noise. For instance, Reference [6, 41] reported an experi-

ment on a robot at NASA Langley Research Center whose control systems had a bandwidth

of 1.4 Hz and the Nyquist frequency was 200 Hz. Frequency response tests were unable to

create a model above about 20 Hz, much smaller than 200 Hz. In spacecraft applications,

residual vibration modes are always left out of the model. Control terminology talks about

parasitic poles to describe unmodeled high frequency dynamics. It is therefore natural to use

a low-pass cutoff filter to stop the learning process above some frequency.

Reference [6, 41] introduced the use of zero-phase low-pass filtering in ILC. The cut-

off filter in ILC must be a zero-phase filter, otherwise phase distortions introduced by the

9



filter will prevent convergence to zero error even below the cutoff, as well as aggravate the

convergence with extra phase error. One can convert an IIR filter into zero-phase by forward-

backward filtering. The basic forward-backward procedure is as follows. First, a basic filter,

like a Butterworth filter or a Chebyshev filter, is chosen. Then one filters forward through the

data, then reverses the time sequence of the filtered data and filters again, and then reverses

the twice-filtered data back to the original time sequence. The backward filtering brings in a

phase lead that cancels the phase lag of the first forward filtering, while the attenuation above

the cutoff is doubled.

There are difficulties with the use of forward-backward zero-phase filters [42]. The cho-

sen filter is necessarily a difference equation which needs to have initial conditions specified,

with associated transients. Various approaches are given in the literature to pick initial con-

ditions to minimize the size of the transients, aiming to get closer to the desired steady state

frequency response behavior more quickly. It is important to recognize that both the begin-

ning and the end of the data have transients because of filtering starting from both directions.

Initial conditions need to be specified at both ends. Reference [43] presents various methods

to choose initial conditions. MATLAB supplies a filtfilt function for forward-backward zero-

phase filtering and we demonstrate here that using this filtfilt can destabilize an otherwise

stable ILC law. This instability issue stems from the mismatch between frequency response

based filter design and finite time application.

In this chapter, we present a circulant zero-phase filtering approach for ILC that addresses

this mismatch. The chosen basic filter, for example, a Butterworth filter, is converted into a

circulant matrix form representation with the size of the number of total time steps needed.

The singular value decomposition (SVD) of this matrix has precisely the magnitude response

10



in the singular values. The input singular vectors are sines and cosines of the frequencies

that one can see in the given finite number of time steps. And the output singular vectors

are precisely the sine and cosine responses including the phase change. The discrete Fourier

transform (DFT) of this circulant matrix produces a diagonal matrix with the steady state

frequency response on the diagonal. This filter matrix is hence precisely implementing the

desired steady state frequency response and avoiding the complications brought by the mis-

match. This circulant filtering is extending the finite data sequence into an infinite periodic

sequence by repeating the original data. This extended sequence is likely to have discontinu-

ities since the original sequence does not necessarily start and end at the same point. Gibbs

phenomenon will happen and cause wiggles. A pre-reflection method to eliminate this Gibbs

phenomenon is also proposed and demonstrated by numerical experiments.

In all, this circulant zero-phase filter is bridging the mismatch described above, and elim-

inating the difficulties associated with the initial conditions at both the beginning and the end,

and avoiding the potential instability produced by initial condition issues in other forward-

backward IIR approaches. Numerical examples demonstrate the effectiveness of this ap-

proach.

2.2 Discrete-Time Linear ILC

2.2.1 Formulation of Discrete-Time Linear ILC

In ILC, a digital system repeats a p time-step operation and returns to its initial condition

after each iteration. The time starts being counted again when the system starts a new run.

11



Consider a single-input-single-output (SISO) state space system model

xj(k + 1) = Axj(k) +Buj(k)

yj(k) = Cxj(k) +Duj(k) + d(k)

(2.1)

where j denotes the iteration number, k is the time-step number, xj is the state variable, uj is

the input command, yj is the output, d is a repeating disturbance represented as an equivalent

output disturbance. Matrices A, B, C, and D are state matrices. When D ̸= 0, by defining

the command history for iteration j as uj =

[
uj(0) uj(1) uj(2) · · · uj(p− 1)

]T
, the

output history as y
j
=

[
yj(0) yj(1) yj(2) · · · yj(p− 1)

]T
, and the repeated disturbance

as d =

[
d(0) d(1) d(2) · · · d(p− 1)

]T
, the system dynamics can be presented by

y
j
= Puj +Ox(0) + d (2.2)

where x(0) denotes the initial condition; P is a Toeplitz matrix of the system Markov param-

eters representing the unit pulse response history; and O is the system observability matrix:

P =



D

CB D

CB
.. .

. . .
. . .

CAp−3B
.. .

. . .

CAp−2B CAp−3B CB D



and O =



C

CA

...

CAp−2

CAp−1



(2.3)
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Given a desired p time-step maneuver, the error history is defined as ej = y
d
− y

j
where y

d

is the desired output. Moreover, SISO system is assumed and the formulas can be extended

to MIMO systems.

The above formulation handles systems with D ̸= 0. For a system sampled by a zero-

order-hold (ZOH), it is common that there is one time-step delay between input and output,

i.e.,D = 0. In that case, the output history is redefined as y
j
=

[
yj(1) yj(2) · · · yj(p)

]T
while the command history remains the same, resulting in a P by shifting one-step upward,

that is,

P =



CB

CAB CB

CAB
.. .

. . .
. . .

CAp−2B
.. .

. . .

CAp−1B CAp−2B CAB CB



(2.4)

When a low-pass filter is applied to an input (command) history update, one uses a non-zero

D term. To model a differential equation fed by a zero-order hold, D is usually zero.

For linear ILC, a general form of an ILC law with a filter is

uj+1 = F (uj + Lej) (2.5)

where L is the learning matrix and F is a zero-phase low-pass cut-off filter, used to cut off

the learning at high frequencies where substantial model error can destabilize the learning

process. The purpose of this paper is to develop an improved design of the cut-off filter.
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Reference [44, 45] have discussed and summarized various model-based learning laws

and a few examples of L are

Linverse = αP̂ †

LcontractionMapping = αP̂ T

LpartialIsometry = αV̂ T
svdÛsvd

(2.6)

where α is a scalar, † denotes the pseudo-inverse, and V̂svd and Ûsvd are the singular vectors

of P̂ .

2.2.2 Stability Criterion and Monotonic Convergence Criterion

Stability and Monotonic Convergence Conditions

We can present approaches to studying the convergence of an ILC law. Combining Eqs. (2.2)

and (2.5) and using the definition of error, one can write

ej+1

uj+1

 = M

ej
uj

+

yd −Ox(0)− d

0

 where M =

−PFL −PF

FL F

 (2.7)

Difference equation, Eq. (2.7), is asymptotically stable if and only if all eigenvalues are less

than one in magnitude ∣∣∣λi(M)
∣∣∣ < 1, ∀i (2.8)

Reference [9] demonstrates that a simple ILC law that is asymptotically stable can have

prohibitively bad learning transients from iteration to iteration. In simulations of a robot
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control system, the iterations reaches a root-mean-square (RMS) error of 1.1991×1051 radians

but eventually converges to zero. A necessary and sufficient condition for monotonic decay

of the RMS error and command histories is that all singular values of the matrix M are less

than one ∣∣∣σi(M)
∣∣∣ < 1, ∀i (2.9)

The second approach produces a decoupled difference equation for the command history,

by substituting ej = y
d
− y

j
and Eq. (2.2) into Eq. (2.5)

uj+1 = F (I − LP )uj + FL(y
d
−Ox(0)− d) (2.10)

If uj converges to some u∞, then ej , given by ej = −Puj+y
d
−Ox(0)−d converges to some

e∞. Therefore, a necessary and sufficient condition for stability in ILC is that all eigenvalues

of the matrix F (I − LP ) are less than one in magnitude

∣∣∣λi(F (I − LP ))
∣∣∣ < 1, ∀i (2.11)

Monotonic convergence of the command history RMS results if and only if

σi(F (I − LP )) < 1, ∀i (2.12)

where σi is the ith singular value.
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Equivalent stability criterion in DFT domain.

The normalized DFT of the jth command history is given by ue,j = Huj where the (i, j)

component of H is H(i, j) = (1/
√
p)z

−(i−1)(j−1)
0 , z0 = e2πî/p and î =

√
−1. Using this

normalization H−1 = H∗T , where the superscript ⋆ denotes the complex conjugate and the

superscript T denotes transpose. Stability is a property of the homogeneous equation uj+1 =

F (I−LP )uj . Then ue,j+1 = Huj+1 = HF (I−LP )uj = HFH−1[H(I−LP )H−1]Huj =

Fe(I−LePe)ue,j where Fe = HFH−1, Le = HLH−1, and Pe = HPH−1, relate to the input

frequency to output frequency relationships of F , L, and P .

The ue,j converges for all initial control histories, if and only if uj converges because H

is a full-rank and invertible matrix. Therefore

∣∣∣λi(Fe(I − LePe))
∣∣∣ < 1, ∀i (2.13)

is a frequency based stability condition equivalent to Eq. (2.11).

Note that u∗
e,j

Tue,j = (Huj)
∗T (Huj) = uT

j H
∗THuj = uT

j uj . Therefore the RMS error

of ue,j decreases monotonically if and only if the RMS error of uj decreases monotonically.

Hence, one can write Eq. (2.12) in frequency form

∣∣∣σi(Fe(I − LePe))
∣∣∣ < 1, ∀i (2.14)

where σi is the ith singular value.
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2.3 ILC Necessitates Zero-Phase Filters for

Robustification

Iterative Learning Control initially asks for zero error at every time step. For a long enough

trajectory that one can think in terms of steady state frequency response, this means one asks

for zero error at every frequency component up to Nyquist frequency. When one makes a

model of a physical system one must expect that the model deteriorates at high frequencies,

with the model missing some high frequency residual modes or so-called parasitic poles,

whose dynamics can be hidden in the noise level. If such missing high frequency dynamics

is sufficiently badly modeled to have a 180 degree phase difference between the model and

real world behavior at these frequencies, then the ILC law will add to the error rather than

decrease the error. The ILC action will amplify the the error pulling it out of the noise level,

instead of attenuating the error. Hence, for robustification to high frequency model error, it is

standard practice to include the zero-phase low-pass filter F to stop the learning process for

components of the error above some frequency [6, 41, 43]. Usually, the frequency cutoff is

determined in hardware tests, because one does not know in advance at what frequency the

model error becomes too large for convergence. The filter must be zero-phase, otherwise it

distorts the signal in the pass band, making the ILC aim for zero error following the distorted

signal.

Starting from an IIR filter such as a Butterworth low-pass filter, one can make it into a

zero-phase filter by the following procedure. First filter the signal forward in time. Reverse

the time in the resulting filtered history vector and filter again. Then reverse the time again.

The second filtering in reverse time cancels the phase change produced by the initial forward
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application of the filter, and doubles the attenuation. Using Toeplitz matrix representations

of the filter forward and backward in time, one can write the result y of forward-backward

filtering a vector x as follows

y = J{Pb[J(Pfx+Ofxf (0)) +Obxb(0)]}

= P T
b Pfx+ JPbJOfxf (0) + JPbObxb(0)

= [P T
b Pf + JPbJOfT1(x) + JPbObT2(x)]x

= Fx

where J =



1

1

1

. .
.

1


(2.15)

where x is the signal to be filtered; y is the filtered signal; Pf , xf (0), and Of are correspond-

ingly the Toeplitz matrix, the initial condition and the observability matrix for the forward

filter; and similarly Pb, xb(0), and Ob are for the backward filter. Matrix J is a matrix to

invert the time history. Matrix Pf = Pb to achieve zero-phase.

Matrices Pf and Pb come from the convolution sum solution of the filter difference equa-

tion and hence they produce zero initial condition filter solutions. The steady state response to

sinusoids will not satisfy all zero initial conditions. Since frequency response is a steady state

response concept, the initial condition effects in the convolution sum solution contaminate

the filtered results within a settling time both at the beginning of the trajectory for the for-

ward filtering and the end of the trajectory for the backward filtering. If one could know what

initial conditions xf (0) and xb(0) would be on the steady state response, the contamination

could be eliminated.

When the state variables in the state space model are defined from an autoregressive ex-
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ogenous (ARX) model, then the initial conditions are the outputs at a number of preceding

time steps. This choice of initial conditions can be thought of as making a finite extension

in the desired trajectory. The extensions can be longer than the number of steps needed for

initial conditions. The literature contains various approaches to making these finite exten-

sions: 1. constant-padding or simply repeating the initial value [46, 42], 2. reflection, e.g.

an odd reflection around the initial value [46, 42], and 3. minimization of the difference be-

tween forward-backward filtering and backward-forward filtering [47]. In methods 1 and 2

the xf (0) and xb(0) can be written as a linear function of x and hence there is a matrix F such

that y = Fx,

F = P T
b Pf + JPbJOfT1(x) + JPbObT2(x) (2.16)

where now F represents the forward-backward filter including initial conditions. An earlier

version of MATLAB filtfilt function used method 2 and Reference 8 shows that using this in

ILC can produce instability in an otherwise stable learning law. The current version of filtfilt

uses method 3 above which is based on Reference [47]. Equation 4 in that reference estab-

lishes that the initial conditions xf (0) and xb(0) are again a linear function of x. Hence there is

again a filter matrix F including the initial conditions for the current MATLAB algorithm. In

the next section, we will show that this filtfilt can also produce instability in the ILC context.

If method 1 uses zero initial conditions, then the zero-phase filter reduces to P T
f Pf . Provided

the singular values of (I−LP ) are less than 1, then introducing a zero-phase filter P T
f Pf with

singular values less than 1, will preserve stability. But the filtered results contain transient

contamination. We will develop a circulant filter approach which eliminates contamination

from filter transients and when introduced into an ILC law, preserves its stability.
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2.4 Example of Instability in ILC Produced by Filtfilt

Zero-Phase Low-Pass Filtering

Consider the following transfer function

G(s) =
( a

s+ a

)( ω2
0

s2 + 2ζω0s+ ω2
0

)
(2.17)

which is a reasonably good model of the command to response of the control systems for each

link of a Robotics Research Corporation robot [6]. The constants are a = 8.8, ζ = 0.5 and

ω0 = 37. The DC gain for a constant input is 1. The constants are a = 8.8, ζ = 0.5 and

ω0 = 37. The DC gain is 1. This continuous system is fed by a zero-order hold running at

200Hz (sampling period T = 0.005 s). The total number of time steps in one iteration is 200.

A contraction mapping law L = P T is applied for learning, where P is the system Toeplitz

matrix. This learning law guarantees monotonic convergence without any filter. The singular

values σi of P are all less than 1 and the singular values I − PL satisfy |1− σ2
2| < 1 smaller

than 1.

Identifying the DFT Matrix of MATLAB Filtfilt

Instead of developing an analytical expression for matrix F representing the MATLAB filtfilt

algorithm, we identify the DFT matrix Fe from input-output data produced by the code. This

approach could be used to study other linear extension methods as well. We apply the filt-

filt algorithm to sine and cosine signals of each frequency, and from the input-output results,

we identify the matrix Fe. Then using the stability condition in the frequency based form

20



Eq. (2.14) will establish that filtfilt can destabilize the otherwise stable iterative learning pro-

cess.

Consider an even number p of time steps in a trajectory, which means one can observe

Nyquist frequency in the data. Frequencies that can be seen are DC and f1, f2, · · · , fN where

f1 is the fundamental frequency, f2 is the first harmonic, fN is the Nyquist frequency, and

N = p/2. The (m,n) component of Fe is denoted by Fe(m,n).

The process is as follows:

1. For the first column in Fe corresponding to DC, use input as

u0 =

[
1√
p

1√
p

· · · 1√
p

]T
(2.18)

and the DFT of filtfilt output is vector Y0 = Hy
0
. The first column is Fe(m, 1) =

Y0(m).

2. For column N + 1 corresponding to the Nyquist frequency, the input is

uN(k) =
1
√
p
cos(2πfNkT ) (2.19)

and Fe(m,N + 1) = YN(m) where vector YN(m) is the DFT of the filtfilt output.

3. The inputs are chosen as ûs,n and ûc,n, i = 1, 2, 3, · · · , N−1, produced by normalizing

to unit length us,n(k) = sin(2πfikT ) and uc,n(k) = cos(2πfikT ), k = 1, 2, 3, · · · , p.

4. Do filtfilt in the time domain giving p-component output vectors ŷ
s,n

and ŷ
c,n

and their

DFT vectors are Ys,n = Hŷ
s,n

and Yc,n = Hŷ
c,n
.

5. The components from the second column to column N , i.e. the left half of the
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matrix without the first column, are Fe(m,n + 1) = Yc,n(m) + îYs,n(m), where

m = 1, 2, 3, · · · , p and n = 1, 2, 3, · · · , N − 1. The components of the right half

of the matrix without column N + 1, i.e. from column N + 2 to the last column, are

Fe(m, p− n+ 1) = Yc,n(m)− îYs,n(m).

This method is applied to estimate the DFT matrix Fe of Filtfilt based on a 6th order

MATLAB digital Butterworth filter with a cut-off frequency of 10 Hz providing a sampling

frequency 200 Hz. To test the accuracy of Fe, the filtered results of the estimated Fe and

the real filtfilt from the same original signals are compared. The procedure to filter a signal

through Fe is as follows: do DFT of the to-be-filtered signal, multiply the DFT of the signal

by Fe, and do inverse DFT of the product producing the filtered signal in time domain. An

example comparing the filtered outputs by these two models of filtfilt is demonstrated in

Figure 2.1(a). The dotted line plots the input white Gaussian signal. The dot-dash line and the

dashed line are on top of each other, so the Fe model matches the filtfilt algorithm. To closer

examine the accuracy of Fe, four white Gaussian signals randomly produced by MATLAB

are used as inputs for both filter models and the output differences caused by the error of

the estimated Pe are plotted in Figure 2.1(b). This figure shows the Fe produced by this

method matches the filtfilt algorithm with 12 digits accuracy. In later ILC simulations, the

error reaches a minimum around 4 digits and hence this Fe is accurate enough for stability

analysis.
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2.4.1 Stability Analysis of an ILC System Implemented with Filtfilt

Filtfilt Fe matrices are identified for cut-off frequencies from 1 Hz to 99 Hz in increments

of 1 Hz. Then Toeplitz matrix P is computed for system Eq. (2.17) and the DFT version

Pe = HPH−1 , which makes the learning law Le = P T
e . We study asymptotic stability

condition Eq. (2.14). Figure 2.4 gives the maximum magnitude of eigenvalues, the spectral

radius of Fe(I − LePe) as a function of cut-off frequency. The spectral radius goes above 1

between 8 and 20 Hz with a maximum value of 1.05755 at a 10 Hz, violating the stability

condition. Closer examination reveals that it is also violated for higher cut-off frequencies

between 25 Hz to 40 Hz and 76 Hz to 99 Hz. Thus, introducing a filtfilt zero-phase low-

pass cut-off filter into a learning control law, for the purpose of robustifying the law to high-

frequency errors, can produce its own instabilities.

2.4.2 Demonstration of Instability of the Learning Process using Filtfilt

Consider four different trajectories illustrated in Figure 2.5: Trajectory 1: When t is less than

tmax = 0.5pT , it follows yd1. When t is bigger than tmax, it returns to the initial position along

the mirror-reflection of the incoming trajectory. The trajectory is continuous but has a dis-

continuous first derivative at the mid-point. Trajectory 2: When t is less than tmax = 0.5pT ,

it follows yd2. When t is bigger than tmax, it returns to the initial position along the mirror-

reflection of the incoming trajectory. This trajectory is continuous with a continuous first

derivative. Trajectory 3: It is periodic as yd3 in Eq. (2.20). All derivatives of this trajectory

are continuous, but if the system is at rest before zero, then it has a discontinuity in the ac-

celeration at zero. Trajectory 4: It follows yd4 while tmax = pT . Hence it starts at zero with
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zero velocity and non-zero acceleration and ends at different position.

yd1 =
t

tmax

yd2 =
3

2t2max

t2 − 1

2t3max

t3

yd3 = 0.5− 0.5cos(
6π

pT
t) yd4 =

3

2t2max

t2 − 1

2t3max

t3
(2.20)

A contraction mapping law L = P T is applied to the system Eq. (2.17) fed by a zero-

order hold using filtfilt with a cut-off frequency of 10 Hz. Figure 2.2 plots the error history of

the 200th iteration for each trajectory. The errors for all plots lie on top of each other except

for the filtfilt error history, which in the case of trajectory 3 can reach 300 times the size of

the desired trajectory. Figure 2.3 gives the RMS error history for each trajectory. The dotted

curve corresponding to ILC learning without a filter converges in each case and the ILC law

with filtfilt cutoff at 10 Hz diverges exponentially, linearly when seen on a log plot, in all

cases.

2.4.3 Comments on the Stability Issues

We make several comments summarizing issues in evaluating stability of ILC systems with

zero-phase low-pass filtering. If the ILC without the zero-phase filter satisfies the mono-

tonic decay condition Eq. (2.12), so that (I − LP ) has all singular values less than unity,

then a zero-phase filter design F has all singular values less than unity can be used without

destabilizing the originally stable law. However, zero-phase filters normally have the ini-

tial condition terms xf (0) and xb(0). One must create an expression that incorporates these

terms into the coefficient matrix F , making y = Fx, before one can apply stability condition

Eq. (2.8). Reference [42] showed that it is possible for extensions to create the situation where
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the filtered error has the opposite sign to that of the actual error, and that this can produce in-

stability. This instability is related to the initial and final transient portions of the filtered

trajectory, and is not observed based solely on the P TP term. In addition, the objective of the

filter design is to make a cutoff that is based exclusively on frequency. Reference [48] shows

that when p is large the singular value decomposition (SVD) of P converges to the frequency

response, but for a finite p, the singular vectors can be a mix of more than one frequency. We

seek a method to address both of these issues.

2.5 A Circulant Zero-Phase Filter Can Produce Steady

State Response From Finite-Time Input Signals

2.5.1 The Circulant Form of a Toeplitz Matrix of Markov Parameters

We investigate the use of the circulant form of a low-pass filter to design zero-phase filters

for ILC. Hence D is nonzero. A circulant matrix is a special kind of Toeplitz matrix where

the first column consists of the Markov parameters and other columns follow the pattern that

each is rotated one element down relative to the preceding column while the element at the

bottom goes to the top. For example, the system Toeplitz matrix withD term is Eq. (2.3) and

its asymptotically equivalent circulant matrix is
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P̂ =



D CAp−2B CAB CB

CB D CAp−2B CAB

CB D
.. .

. . .
. . .

. . .

CAp−3B
.. .

. . . CAp−2B

CAp−2B CAp−3B CB D



(2.21)

For SISO systems, CArB becomes a scalar, i.e., the Markov parameter, and both Toeplitz

P and circulant P̂ can be written into a linear combination of some basic matrices multiplied

by the Markov parameters as follows,

P = DI + (CB)R + · · ·+ (CArB)Rr+1 + · · ·+ (CAp−2B)Rp−1

P̂ = DI + (CB)R̂1 + · · ·+ (CArB)R̂r+1 + · · ·+ (CAp−2B)R̂p−1

(2.22)

where

R =



0

1 0

1
. . .

. . .
. . .

1 0


(2.23)
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R̂1 =



1

1

1

. . .

1


(2.24)

ˆ(Rr)i,j =



1 when i− j = r

1 when i− j = r − p

0 otherwise

(2.25)

In equations above, R is a p by p matrix with 1’s in the first sub-diagonal and 0’s otherwise

and R̂r is a cyclic permutation p by p matrix with ones on the rth subdiagonal and (p− r)th

super diagonal (all zeros elsewhere), where i, j = 1, 2, 3, · · · , p and r = 1, 2, 3, · · · , p − 1.

The cyclic matrix R̂r is the circulant form of the matrix Rr. For instance, R̂1 is the circulant

form of R.

2.5.2 The Circulant Matrix of Markov Parameters is the Matrix Form

of the Filter’s Steady State Frequency Response

Reference [48] shows that SVD of the lower triangular Toeplitz matrix of Markov parame-

ters asymptotically converges to the steady state frequency response as p tends to infinity.
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The magnitude response is given by the singular values and the phase change is indicated by

the input and output singular vectors. For a finite p, there is coupling between frequencies.

This coupling is studied in a later section. As discussed below Eq. (2.15), the lower triangu-

lar Toeplitz matrix is associated with zero initial conditions, and hence includes a transient

period before reaching steady state response. By studying the DFT form and the SVD of a

circulant matrix form, this section shows that the steady state response can be obtained from

this circulant matrix, provided the number of time steps in the matrix is larger than that of the

settling time.

Calculate the DFT of P̂ using Eq. (2.22),

P̂e = HP̂H−1

= DI + (CB)HR̂1H
−1 + · · ·+ (CAr−1B)HR̂rH

−1 + · · ·+ (CAp−2B)HR̂p−1H
−1

(2.26)

and

HR̂rH
−1 = diag(1, z−r

0 , z−2r
0 , · · · , z−(p−1)r

0 ) (2.27)

Using the formula for the sum of a geometric series produces the (i, j) component of P̂e

P̂e(i, j) =



D + C(zj−1
0 I − A)−1(I − Ap−1zj−1

0 )B when i = j

0 otherwise

(2.28)

If Ap−1 is negligible, then the diagonal elements of P̂e corresponds to the z-transfer function
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evaluated at the discrete frequencies that can be seen in p time steps,

[D + C(zI − A)−1B]|z=zj−1
0

(2.29)

The same conclusion is obtained for MIMO systems by calculating the components of P̂H−1

first and then computing the matrix product HP̂H−1. The ith row of P̂ (except i = 1) is

[
CAi−2B CAi−3B · · · CB D CAp−2B CAp−3B · · · CAi−1B

]
(2.30)

Thus the ith row components of P̂ Ĥ−1, where i = 1, 2, 3, · · · , p, are

(P̂H−1)i,j =
1
√
p
z
(i−1)(j−1)
0

[
D + C(zj−1

0 I − A)−1(I − Ap−1zj−1
0 )B

]
(2.31)

Therefore, the product of HP̂H−1 can be computed resulting in Eq. (2.28).

The diagonal components of P̂e contains the magnitude response σj and the phase re-

sponse θj of the system where j indicates the discrete frequency. An SVD of the diagonal

complex matrix P̂e can be written as

P̂e = UeSeV
∗
e
T =



eîθ1

eîθ2

. . .

eîθp





σ1

σ2

. . .

σp





1

1

. . .

1


(2.32)

The output singular vector matrix Ve gives the phase shifting when setting the input singular
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vector matrix Ue to the identity matrix. Note that the SVD expression is not unique, because

any eîα can be multiplied to each singular vector pair. Another feature is that the singular

values come in pairs because zj−1
0 and zp−j+1

0 refer to the same frequency.

The DFT version of a matrix has the same singular values as the matrix itself, e.g.

(P̂e)
∗T P̂e = (HP̂H−1)∗T (HP̂H−1) = HP̂ TH−1HP̂H−1 = HP̂ T P̂H−1 (2.33)

the eigenvalues of P̂ T P̂ and (P̂e)
∗T P̂e are the same, and therefore the singular values of P̂e

and P are the same, which come in pairs presenting the magnitude response. The complex

singular vector pairs of P̂ are H−1Ue and H−1Ve. One can make these vector pairs real by

some rotations eîαj . Numerical experience indicates that MATLAB produces input singular

vectors which are sine or cosine waves of the corresponding frequencies, and output singular

vectors are the same sine or cosine waves with phase shifts equal to the phase response.

Figure 2.7 illustrates the relationship between the system magnitude frequency response

of system Eq. (2.17) fed by a zero order hold sampling at 200 Hz, the singular values of a 200

time-step lower triangular P matrix and the singular values of the corresponding circulant Pe

matrix. The DC gain of the system is unity, and the first singular value of Pe corresponding

to DC gives this steady state value. The first singular value of P is smaller because the output

of this matrix contains the build up of the response to a DC input when the system starts

with zero initial conditions. The singular values of Pe come in pairs, two identical magnitude

response values for the sine and cosine inputs at that frequency, and they lie on the steady

state frequency response line. The singular values of the Toeplitz matrix P however, are all

distinct. Reference [48] performs a frequency analysis of each input singular vector. Every
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other singular vector input is observed to have a nearly pure frequency equal to a frequency

that can be observed, and the associated singular value is the frequency response. The singular

values between these have singular vectors that mix the frequencywith its neighbor frequency,

and are plotted half way between. Table 2.1 compares the singular values of Pe and the steady

state frequency response for the first 5 frequencies visible in 200 time steps, and the values

match to within 0.01%.

Table 2.1: Magnitude response (SV) and singular values (SV) at DC and first 5 frequencies
Frequency 0 Hz 1 Hz 2 Hz 3 Hz 4 Hz 5 Hz

MR 1.0000 0.8255 0.6052 0.4705 0.3810 0.3015
SV 0.9998 0.8253 0.8253 0.6051 0.6051 0.4704 0.4704 0.3809 0.3809 0.3015 0.3015

Singular vectors associated with the second harmonic frequency 3 Hz are displayed in

Figure 2.7(b). The singular vector of the Toeplitz matrix is plotted as the dot-dash line, whose

shape is a distorted sinusoidal wave, whose distortion is obviously at the end of the curve.

The solid line corresponds to the left (or input) singular vector and the dashed line to the right

(or the output). Computed from sampled system transfer function, the phase response at 3 Hz

is around 102◦ or 1.7838 rad. Through curve fitting in Matlab, the left singular vector fits the

sine wave 0.1 sin(6πt+1.2−17) with a unity R-square and root mean squared error of 5.36−9,

where each row represents each time step starting from zero to the end of the trajectory. The

curve fitting result of the right singular vector is 0.1 sin(6πt − 1.784) with a unity R-square

and root mean squared error of 4.72−10, which has a phase shift equal to 1.784 rad, the phase

response at 3 Hz. Hence the SVD of the circulant matrix made of system Markov parameters

can serve as an alternative to the transfer function for the frequency response computation.

The circulant matrix comprised of system Markov parameters is actually the matrix form of

the system frequency response.
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2.5.3 Numerical Simulations Demonstrate the Steady State Behavior

of a Circulant Zero-Phase Butterworth Filter

Toeplitz matrix Pf of an IIR filter is causal while the circulant form P̂f is non-causal. Be-

cause of the relationship between a circulant matrix and the corresponding system frequency

response, this non-causal filtering process produces a steady state behavior for a finite data

sequence. That is, a single frequency input going through a circulant filter leads to an output

signal of the same frequency with magnitude and phase adjustment according to the corre-

sponding frequency response. Therefore, it avoids the complexities caused by initial condi-

tions. In other word, y = P̂fx, where x is the data to be filtered and y is the filtered output.

Actually, a circulant filter automatically extends the to-be-filtered data into an infinite data

sequence by periodically repeating the original data.

The zero-phase requirement can be satisfied by forward-backward filtering for circulant

filters as well. The general procedure of circulant filter design is: 1. design a basic IIR

filter sampled the same way as the ILC system; 2. convert the transfer function into a state

space model (A, B, C and D); 3. write down the circulant matrix P̂f , the first column of

which is comprised of D, CB, CAB, · · · , CAp−2B;and 4. the circulant zero-phase filter

by forward-backward filtering, Ffb = P̂ T
f P̂f .

A circulant forward-backward Butterworth filter is numerically tested by basic sine and

cosine waves and the result is compared with that from a filtfilt (forward-backward) Butter-

worth filter. The basic Butterworth filter is chosen as the same in the previous simulation for

filtfilt (6th order and 10 Hz cutoff). The sampling frequency and total time steps of a trajec-

tory are also the same (200 Hz and 200 time steps). The filtered sine and cosine signals are
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sinusoids without phase shift. The filtfilt Butterworth filter distorts two ends due to transients,

while it keeps the middle part of filtered signal as expected.

The simulation results are displayed in Figure 2.6. Here we name the ratio of the 2-norm

of filtered data over that of the original single-frequency data as the “magnitude response”, re-

gardless of the shape of the output signal. Figure 2.6(a) compares the “magnitude responses”

of circulant filter and filtfilt with the designed magnitude response, which is double that of

the basic 6th other Butterworth filter. The circle denotes the circulant and all these circles

lie on the dashed line which plots the designed magnitude response. The stars for filtfilt ob-

viously deviate from the dash line in the stop- band. Closer examination shows that those

stars in passband also lie a little bit beyond the dashed line. This deviation is caused by the

distortion at both ends of the data sequence. Figure 2.6(b) presents the outputs of a 25 Hz

sine wave, which belongs to the stop-band. The output of the circulant filter (solid line) stays

at zero, which implies the high frequency signal is successfully stopped. Wiggles at both

ends appear in the dot-dash line for filtfilt. These wiggles are responsible for the instabilities

brought into ILC systems. Therefore, this simulation demonstrates that the circulant forward-

backward Butterworth filter produces steady state behavior in the DFT domain for finite-time

implementation.
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2.6 The Stability and the Final Tracking Error after

Introducing a Circulant Zero-Phase Filter

2.6.1 Introducing a Circulant Forward-Backward Filter Can Preserve

the Monotonic Decay of an ILC System

Consider an ILC law without a filter, that satisfied the condition for monotonic decay of the

2- norm of the command history. This means that the maximum singular value of (I −LePe)

is less than unity. Now consider any circulant zero-phase low-pass filter Fe having maximum

singular value equal to unity or smaller. This can be the result of using a Butterworth filter to

form the zero phase filter. Note that a typical Chebyshev filter can produce some amplification

and does not satisfy this requirement. Then the singular value of the product Fe(I − LePe)

must also be less than unity. Hence, we conclude that use of a circulant zero-phase low-pass

filter will not destabilize an otherwise stable ILC law, provided the filter maximum singular

value is one or less. Note that this process eliminates the need to analyze the effects of the

initial condition terms in other zero phase filters. These terms have been eliminated, and

the associated transient corruptions of the filter results at the beginning and the end of the

trajectory being filtered have been eliminated.

2.6.2 Reflecting Data to Prevent Discontinuities that Cause the Gibbs

Phenomenon

Since the underlying algorithm of circulant filters is periodically repeating the original data

into an infinite sequence, discontinuities exist in the extended infinite sequence unless the
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original signal starts and ends at the same point. These discontinuities lead to the Gibbs

phenomenon when filter- ing. This will produce a deviation of the filtered desired trajectory

from the real desired trajectory approaching the end points. Pre-reflection can be applied to

decrease the deviation. That is, before filtering, the data is extended twice of the original

length by reflecting the signal. After filtering, extract the first half as the final filtered result.

The equivalent circulant filter with reflection is

F̂cr = [I 0]F̂c[I JT ]T (2.34)

This pre-filtering reflection eliminates jump discontinuities in the extended trajectory.

As for the circulant filtering with pre-reflection, it is not easy to write an explicit formula

about the eigenvalues. We can numerically calculate the eigenvalues of F̂cr(I − LP ) to

check the stability. The ILC system in previous simulations is also tested with pre-reflection

circulant filtering. All parameters remain the same as before. The eigenvalues of F̂cr(I−LP )

are presented as the circles in Figure 2.4. These circles stay below the unity line for all cut-off

frequencies.

2.6.3 Simulations of ILC System with Zero-Phase Circulant

Butterworth Filtering

The same numerical simulation for filtfilt is repeated for circulant forward-backward Butter-

worth filter with or without pre-reflection. In Figure 2.2, the learning processes without a

filter (black dot line), with a typical circulant filter (red dash line) and with a pre-reflected

circulant filter (magenta solid line) lead to “zero” error at the 200th run, tracking each trajec-
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tory. No difference is observed because of tracking error in the learning process with filtfilt is

bigger than 1000 times of others’ error. Figure 2.3 about the RMS of the tracking error in log

scale versus iterations unveils the difference between circulant filtering with and without pre-

reflection. The magenta solid lines are below the red dash lines at the quasi-steady state in all

four subfigures. (The quasi-steady state refers to the time when the learning process slowly

improves the tracking, that is, the plot of RMS of tracking error seems staying horizontally.)

Hence the pre-reflection successfully decreases the final tracking error inevitably introduced

by filtering out high frequency components in desired finite trajectory. The greatest improve-

ment happens at tracking the 4th trajectory, the ends of which are mismatched, implying an

extended infinite discontinuous curve. Comparing all lines including filtfilt, circulant with-

out pre-reflection and circulant with reflection, two conclusions about this simulation can be

achieved: 1. circulant filters can avoid the instability issue that filtfilt introduced; and 2.

pre-reflection can decrease the tracking error between filtered desired trajectory and the real

desired trajectory and the amount of improvement depends on the smoothness of the extended

infinite trajectory.

The underlying algorithm of circulant filters can be understood as an infinite wraparound

extensions, that is, periodically repeating the original trajectory into an infinite data sequence.

Typical circulant forward-backward filters remove the high frequency components of this

infinite signal. And pre-reflection first extends the p-step trajectory into double length by

reflection and then periodically repeats this 2p-step trajectory into an infinite sequence. The

circulant filter than stops the high frequency components in this new infinite sequence. Both

circulant filtering algorithms avoid transients as well as the need for choosing initial condition

choices.
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2.7 The Relationship Between Toeplitz Matrix of Markov

parameters and System Frequency Response

Asmentioned before, Reference [48] showed that SVD of the lower triangular Toeplitz matrix

approaches the steady state frequency response as the dimension of thematrix tends to infinity.

This section analyzes the deviation ∆ of the DFT of a Toeplitz matrix, Pe ≜ DFT (P ) from

the steady state frequency response given by the DFT of the circulant matrix P̂e ≜ DFT (P̂ ).

2.7.1 A Formula for the Deviation from the Frequency Response

A trajectory longer than the settling time is assumed so that Ap−1 can be set to zero. The

deviation ∆ is then given by

Pe = HPH−1 = P̂e −∆ (2.35)

where

∆i,j =
1

p
C(I − z

−(i−1)
0 A)−1(zj−1

0 I − A)−1B (2.36)

This DFT matrix is no longer diagonal and hence there is cross-talk between different fre-

quencies, that is, a single frequency input produces multiple frequencies out.

The calculation of Pe is as follows: First, the sum of a geometric series that is used in later

computation is

p−j∑
k=1

z
−(i−1)k
0 Ak−1 = (zi−1

0 I − A)−1(I − z
(i−1)j
0 Ap−j) (2.37)
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The (k, j) component of P is

P (k, j) =



0 k < j

D k = j

CAk−j−1B k > j

(2.38)

Therefore the (i, j) produce of HP is

(HP )(i, j) =

p∑
k=1

H(i, k)P (k, j)

=
1
√
p

(
z
−(i−1)(j−1)
0 D +

p∑
k=j+1

z
−(i−1)(k−1)
0 CAk−j−1B

)
=

1
√
p

[
z
−(i−1)(j−1)
0 D + z

−(i−1)(j−1)
0 C(

p−j∑
k=1

z
−(i−1)k
0 Ak−1)B

]
(2.39)

Plug Eq. (2.37) into Eq. (2.39)

(HP )(i, j) =
1
√
p
z
−(i−1)(j−1)
0

[
D + C(zi−1

0 I − A)−1B
]
− 1

√
p
C(I − z

−(i−1)
0 A)−1Ap−jB

(2.40)

The (i, k) components of Pe = HPH−1 becomes

Pe(i, k) =

p∑
k=j+1

(HP )(i, j)H−1(j, k)

= δi,k
[
D + C(zi−1

0 I − A)−1B
]
+

1

p
C(I − z

−(i−1)
0 A)−1

p∑
j=1

(z
(j−1)(k−1)
0 Ap−j)B

= δi,k
[
D + C(zi−1

0 I − A)−1B
]
+

1

p
C(I − z

−(i−1)
0 A)−1(zk−1

0 I − A)−1(I − Ap)B

(2.41)

where the Kronecker δ is δi,k = 1 when i = k and zero otherwise. Hence when Ap−1 = 0,
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Eq. (2.41) becomes Pe = P̂e −∆, that is, Eq. (2.35).

Moreover,∆i,j has an interesting property that the sum of its column components is zero,

p∑
k=1

∆i,k =
1

p
C(I − z

−(i−1)
0 A)−1

p∑
k=1

p∑
j=1

(z
(j−1)(k−1)
0 Ap−j)B = 0 (2.42)

This explains the observation of Figure 5 and Figure 6 in Reference [48]. The observation

is that when using test input ue in DFT domain with all unity components, the output vector

more closely approximates the frequency response than the diagonal elements of Pe. Indeed,

the sum of row components

p∑
j=1

Pe(i, j) = P̂e(i, i)−
p∑

j=1

∆i,j = P̂e(i, i) = D+C(zi−1
0 I−A)−1B = G(z)|z=zi−1

0
(2.43)

represents the frequency response.

2.7.2 The Relationship Between the Input and Output Singular

Vectors of the Lower Triangular Toeplitz Matrix

Another interesting property discovered here is the singular vectors of Toeplitz P are related.

P = USV T (2.44)

where S = diag(λ1, λ2, · · · , λp) is the singular value matrix; U is the output singular vector

matrix, and V the input. The time invariant Toeplitz nature of theP matrix makes it symmetric

about the anti-diagonal from lower left to upper right, and this allows the identity P = JP TJ .
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Thanks to this property, ui and (JV )i are eigenvectors of PP T for the same eigenvalue, that

is, λi = σ2
i , where σi is a singular value of P . Vector ui is column i of output singular vector

matrix U , the ith singular vector. Matrix V is the input singular vector matrix. And (JV )i is

the ith column of JV . If the eigenvalues are distinct, all eigenvectors associated with different

eigenvalues are linearly independent and orthogonal for symmetric matrices, like PP T . The

only freedom in the choice of unit length eigenvectors for this eigenvalue is the possibility of

having the vector be multiplied by −1. We conclude that the vector ui and the vector (JV )i

satisfy

ui = (JV )i or ui = −(JV )i (2.45)

2.7.3 DFT of a Toeplitz Matrix without a D Term

Another analogous equation of Eq. (2.35) for a Teoplitiz P (Eq. (2.4)) without a D term is

Pe(i, j) =



C
(
I − A

zi−1
0

)−1

B −∆(i, j) when i = j

−∆(i, j) otherwise

(2.46)

where

∆(i, j) =
1

p
C
(
I − A

zi−1
0

)−1 A

zj−1
0

(
I − A

zj−1
0

)−1

B (2.47)

The extra z term in

p∑
j=1

Pe(i, j) = C(I − A

zi−1
0

)−1B = zG(z)|z=zi−1
0

(2.48)
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implies the one time step difference between u and y. And all relationships described above

remain the same.

2.8 Conclusion

Iterative Learning Control is unusual in control theory in that it asks to converge to zero

error at every time step. To do so requires a system model that has relatively small phase

error all the way to Nyquist frequency. Since such a model is not normally available, it is

natural to ask for a cutoff of the learning process at high frequency. The cutoff needs to

be done with a zero phase filter which normally is not a pure frequency cutoff because it

requires assigning initial conditions both at the start and the end of the trajectory to start the

filter forward and backward. Associated with these are transients that disturb the desired

frequency response. Hence, there is a mismatch between the robustification objective given

in the frequency domain, and the finite time filter implementation. Here it is shown that the

zero phase filter algorithm in Matlab can produce instability of the learning process. This

chapter presents a different approach to making a frequency cutoff in ILC, making use of

the circulant form of a finite time filter that produces the infinite time frequency response

behavior. The approach makes use of an extension of the signal to be filtered, by reflecting the

signal, in order to eliminate the Gibbs phenomenon. The approach eliminates the mismatch,

eliminates the choice of initial conditions, and eliminates the instability issues. The benefits

and improvements from the approaches are demonstrated in examples.
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Figure 2.1: Accuracy test of DFT model of filtfilt
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(a) Error in the 200th iteration for Trajectory 1
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(c) Error in the 200th iteration for Trajectory 3
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(d) Error in the 200th iteration for Trajectory 4

Figure 2.2: Error in the 200th iteration for 4 different trajectories
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(c) RMS of error for Trajectory 3
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Figure 2.3: RMS of error for 200 iterations
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Chapter 3
Adaptive Model-Based Linear ILC to

Increase Execution Speed

3.1 Introduction

Since the output data from previous iterations carries the information of system dynamics, it

can be used to update the system model used in the ILC design. For linear ILC, this leads

to an adaptive linear ILC method that allows different execution speeds of machines. The

motivation to increase the execution speed of machines comes from the way humans learn a

motion.

In 1983, a psychologist Howard Gardner categorized human intelligence into nine do-

mains, among which is the bodily-kinesthetic intelligence. The core elements of bodily-

kinesthetic intelligence are control of one’s bodily motions and the capacity to handle objects

skillfully [49]. Human beings learn how to make motions such as a serve in tennis through

repetitions. A beginner’s serve is slow, but the coach repeatedly corrects his motions until
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the muscle memory is formed. In the repetition process he can simultaneously increase the

speed and the accuracy.

Enormous efforts have been made to enable robots to have a similar learning ability via

trial-and-error algorithms. There is currently little literature that aims to extend these algo-

rithms for human-like speeding up during learning. One possible reason is that robots nor-

mally start at the desired speed. However, when tasks push robots to hardware limits, one

may prefer starting at a slower speed and then tentatively increasing the speed, as is often

done when training a robot and one is checking for possible collisions with the environment

that might happen at the higher speeds. Also, in some cases a maneuver is initially learnt by

demonstration, but then one wants to execute it faster, speeding up the machine. This pa-

per proposes a trial-and-error algorithm for learning in iterations, and the algorithm includes

methods that learn to execute the maneuver faster and faster.

Several publications have considered finding a way to apply ILC while successively

speeding up the trajectory to be tracked. Prof. D’Andrea’s group in ETH sped up the motion

of a quadcopter following a figure eight trajectory [50]. The problem they addressed is not a

standard ILC problem because it continuously performs the figure eight motion without stop-

ping, and as a result they make use of steady state frequency response modeling. To handle

the frequency response at higher speeds, they use linear extrapolation instead of adaptation

based on the input-output data. The standard ILC problem performs a repeating maneuver al-

ways resetting to the same initial conditions before the next iteration. Thus, ILC asks for zero

tracking error during the time-domain transients as well as during the steady state response

portions of the trajectory that are characterized by steady state frequency response. Here we

make use of the data obtained during ILC iterations to adaptively adjust the ILC law, and aim
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to have zero error during the time-domain transients as well.

A second publication applies ILC to make a robot perform suturing [18]. Initially the

surgical robot learns the suturing by human-guided demonstration, made it imitate themotions

of a surgeon performing the task. This suturing process is then sped up, using ILC to maintain

accuracy, resulting in “superhuman” performance. The approach uses the simplest form of

ILC that can only work on very low order dynamic systems. In fact the dynamic model had

no dynamics, the state in the next time step is the same as the current time step unless an input

is applied. The suturing problem must however deal with geometric nonlinearities of robot

kinematics. In more dynamic systems, the phase lags encountered at high frequency must be

addressed by the ILC law in order to avoid instability. In this chapter an adaptive form of ILC

is proposed can be applied to general LTI systems to speed up the trajectory.

The ILC approach proposed here is robust and adaptive in three respects. First, we can

make ILC laws that are robustified to prescribed uncertainties in model parameters. The

learning rate is lowered to improve robustness in any frequency range where extra robustness

is needed, and the learning in the remaining parts of the error space can be left unaltered [45].

Second, if the model at high frequencies is sufficiently wrong, this model error will be

revealed gradually, and instability in tracking will evolve slowly from the desired trajectory.

This is because the magnitude frequency response of typical systems is small at high frequen-

cies. And this allows time to apply a zero-phase low-pass cut-off filter to stabilize the learning

law [51, 42, 48, 37] One can then progress to the third respect that is more than robust, and is

truly adaptive. Because ILC can generate data that is specifically focused on what is wrong

with the model, i.e. what in the model is sufficiently wrong that there is growth of error, one

can use the data generated in this process to fix the model. Reference [52] investigates the use
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of ILC as an alternative to the methods presented by the field of optimal experiment design

for identification. Here we do Markov parameter estimation, making adaptive updates of the

model, in order to stabilize the learning law.

Two approaches of Markov parameter estimation are discussed: the direct estimation for

short trajectories and the observer method for long trajectories. The direct estimation method

utilizes the Toeplitz matrix form of input-output mapping to calculate the system Markov

parameters [53]. In the observer method, one identifies the Markov parameters of an asymp-

totically stable observer, and from these one can then develop the system Markov parameters

[54]. This reference developed the method using deterministic observers. The OKID [55, 56]

algorithm for system identification used the observer on stochastic models, in which case the

observer Markov parameters become the steady state Kalman filter Markov parameters. Be-

cause the observer converges faster than the system, the process compresses the number of

parameters that must be identified. From this small number of parameters one can obtain a

full set of system Markov parameters.

In summary, this chapter analyzes the changes in the systemmodel resulting from increas-

ing the sampling rate, proposes methods to adjust learning rates, and discusses the implemen-

tation of Markov parameter estimation during learning. The result is a procedure for adaptive

ILC to speed up the tracking along a desired trajectory.
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3.2 Problem Formulation

In this chapter, because we will be repetitively identifying the system model from previous

data, one may not need to use a cutoff filter, and thus the learning law can be represented by

uj+1 = uj + Lej (3.1)

The system dynamics is still described by Eq. (2.2). The product Pu is the convolution sum

particular solution of the system’s difference equation. An asymptotic relationship between

the singular value decomposition (SVD) of this Toeplitz P matrix and the system frequency

response was presented in Reference [48]. The singular values of P correspond to the system

magnitude Bode plot and the differences between input and output singular vectors of P

give the Bode phase information. A recent publication, Reference [37] further unveils the

underlying relationship of the Toeplitz P , the discrete Fourier transform (DFT) of P , and the

system frequency response.

Reference [45] presents understanding of the learning law convergence rate associated

with different singular values and their associated parts of the error space (i.e. the components

of the error on the orthogonal unit vectors that form the columns of U ). And then one can

decide to specify the learning rate for each singular value. Based on the correspondence

between the SVD of P and the frequency response of the sampled system, this adjustment of

the learning rate for each singular vector becomes specifying the learning rate for different

frequency components of the error. This interpretation is helpful whenwe speed up the desired

trajectory, and hence raise its frequency content.
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3.3 Choice of Sample Rate While Increasing the Execution

Speed

ILCmust be implemented in discrete time, because it must store the error history from the pre-

vious repetition. To increase the execution speed for discrete systems, two possible scenarios

are considered.

Scenario 1 simply uses the same sample rate throughout the speeding up process. This

implies that if the final trajectory is much faster than the original trajectory, the initial trajec-

tory must have a large number of time steps in order to maintain fidelity of the trajectory after

speeding up is completed. This could be a disadvantage because it may need large data sets

and perhaps slower convergence as a result. The approach does have the advantage that the

correct Markov parameters in the P matrix used to design L do not change. Note, however,

that as the trajectory goes faster, the frequency content of the trajectory increases. Two situa-

tions might apply. One is that the desired trajectory is composed of frequencies all of which

are low enough that one’s model for P is good enough for convergence directly at the desired

speed, and in this case there is no need to use a speeding up procedure. If a speeding up

procedure is needed, we then need to re-evaluate the Markov parameters during the learning

process, to correct the model at high frequencies.

Scenario 2 describes the desired trajectory in terms of a fixed number of equally spaced

samples throughout the speeding up process. In order to make the digital control system per-

form the desired trajectory faster, one successively reduces the sampling time interval T . This

approach maintains the same fidelity of representation of the desired trajectory throughout the

speeding up process. It also has the advantage that one can directly use the command history
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from the previous sample rate as a good starting point for the iterations at the faster sample

rate. The disadvantage is that each time the sampling rate is increased, the sampled system

has new dynamics. One needs to update the Markov parameters in the model P not only for

the reasons described above, but because the Markov parameters are different for different

sample rates. This paper studies the speeding up problem using this scenario, maintaining a

constant number of sample times in the trajectory, but increasing the sampling rate.

3.4 Approaches to Updating the Model as Sample Rate is

Increased

For the ILC laws that are based on the P matrix of Markov parameters, i.e. the pulse response

history of the system, one wants to update these parameters based on data as execution speed

is increased. This could be done using the data being generated during the iterative learning

process, but to ensure richness one may desire to make some special tests for identification.

If one has a continuous time model, one can always re-compute the Markov parameters

for any desired sample rate. As the sample rate increases, we need to compute better models

of high frequency dynamics, so one would be re-identifying the system during the iterations.

Note, however, that many system identification algorithms (e.g. Reference [57, 55]) use

input-output data to identify the Markov parameters, and from them identify the associated

state space difference equation model, and then the state space differential equation. The con-

version to state space model involves some subtleties in making the choice of model order,

and elimination of states, sometimes called noise modes, that are modeling the noise in the
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data set instead of the system. Various tests are used to make such decisions, and it is perhaps

not easy to automate. Hence, it seems natural to re-identify the Markov parameters.

If a relatively small change is made in the sample rate, one wonders if it is possible to

make some modification to the Markov parameters without going back to the continuous time

model, and not performing a new identification of Markov parameters from data. This could

happen at several different levels: (1) Perhaps one could expand the Markov parameters in a

Taylor series as a function of sample time interval. (2) Perhaps knowing the system matrices

at one sample rate can allow one to know the matrices at a faster rate. (3) Another option

could be using input-output data to find frequency response using discrete Fourier transforms

of the input and output sequences, and invert it to find the unit pulse response, or Markov

parameters.

Given the continuous LTI system model,

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t) +Dcu(t)

(3.2)

The discrete system model fed by a zero order hold (ZOH) with sampling period T is

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

(3.3)
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where

A = A(T ) = eAcT = I + AcT +
1

2!
A2

cT
2 + · · ·+ 1

n!
An

cT
n + · · ·

B = B(T ) =

∫ T

0

eAcτdτBc = A−1
c (eAcT − I)Bc

C = Cc D = Dc

(3.4)

The Markov parameters D, CB, CAB, · · · , CAnB of the sampled system can be cal-

culated by Eq. (3.4). The expansion of the Markov parameters in a Taylor series through first

order terms, i.e. a linear model of the change with sample time, needs the Markov parameter

derivatives with sample time, for example,

d(CAkB)

dT
= kCAcA

kB + CAk+1Bc (3.5)

Note that using this expression asks that one know the continuous time system matrices Ac

and Bc, which is asking us to find the continuous time model, and this defeats the purpose

of using the expansion. We comment that for the surgical robot the system matrix of a single

motor, Ac = I , and then the equation simplifies to

CAkB
∣∣∣
Ac=I

= (
1

T
+ 1)e(k+1)TCcBc (3.6)

Now consider that we know the discrete time state space modelA1,B1 for a given sample

rate T1. Can we modify these matrices to directly change the matrices to a different sample

time T2, A2, B2? Matrix A2 can be estimated based on A1 by
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A2 = eAcT2 = eAcT1
T2
T1 = A

T2
T1
1 = M−1



λ
T2
T1
1,1

λ
T2
T1
1,2

. . .

λ
T2
T1
1,m


M (3.7)

where λ1,j is the jth eigenvalues of A1,M is the corresponding eigenvector matrix, andm is

the dimension of A1. However, to obtain B2, one needs to go to Eq. (3.4). Again one goes

back to the continuous model Bc, and again it appears that there is no direct way to change

the matrices to a new sample rate.

The final consideration was to look at the frequency response. It is computed from

G(z) = (1− z−1)Z
(G(s)

s

)
(3.8)

by substituting z = eîωT where î is the imaginary unit. Experience with this conversion

to the discrete time z-transfer function makes it clear that one cannot simply do some kind

of interpolation or extrapolation to have the frequency response at a different sample rate.

For example, the phase response is the same at both sample rates at the associated different

Nyquist frequencies.

Because of all the complications discussed above, after the sample rate is changed, we

choose to re-identify the Markov parameters using the data from that sampling rate gener-

ated during the learning process. The proposed trial-and-error algorithm is an adaptive ILC

approach–an ILC control law robust to model errors implemented with Markov parameter

estimation based on the data during learning. This idea is similar to the exploration-and-
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exploitation in RL, which describes the tradeoff between acquiring new information (explo-

ration) and capitalizing on the information available so far (exploitation). Here the difference

is that the exploration done by Markov parameter estimation can be accomplished during

the learning process, and may not require the use of special inputs solely for the purpose of

parameter estimations/exploration.

3.5 Markov Parameters Estimation

Two Markov parameter estimation approaches are discussed, one direct estimation method

for short trajectories and the other deadbeat observer method for long trajectories.

3.5.1 Direct Markov Parameter Estimation for Short Trajectories

The product Pu is the convolution sum particular solution to the system difference equation

and the order of the two sets of data in the convolution sum can be switched. To cancel the

repeated disturbance from the input-output relationship, we need to difference two iterations,

that is, δj,My = y
j+M

− y
j
= P (uj+M − uj) = Pδj,Mu. One may wish to difference succes-

sive iterations or iterations that are more separated creating larger differences. By switching

the order, the equation becomes a standard linear equation with the Markov parameters as the

unknowns

δj,My = δj,MUh (3.9)

55



where

δj,MU =



δj,Mu(1)

δj,Mu(2) δj,Mu(1)

δj,Mu(2)
. . .

. . .
. . .

δj,Mu(p− 1)
. . .

. . .

δj,Mu(p) δj,Mu(p− 1) δj,Mu(2) δj,Mu(1)



, h =



D

CB

CAB

· · ·

CAp−3B

CAp−2B


(3.10)

An unique solution of h exists if and only if δj,MU is of full rank, in other words, if and only

if δj,Mu(1) ̸= 0. The solution is h = δj,MU−1δj,My. One characteristic of this estimation

method is that one first solves for the first Markov parameter since it is uncoupled, that is,

the first Markov parameter satisfying δj,My(1) = h(1)δj,Mu(1) and then this solution is used

in the second which is uncoupled, etc. This chain of equations can have errors from the

first equation propagating to the second, etc., making larger error in latter parameters. Latter

parameters are hence less accurate.

There is a Markov parameter for every time step of the data. But the Markov parameters

decay with time, and after one settling time of the system, may be small enough that one

need not estimate them or use them in the learning gain matrix. Suppose first N Markov

parameters are obviously above the noise-level. Eq. (3.9) can be modified to include only the

first N Markov parameters in the column vector h, but continue to use all of the equations.

Then the matrix δj,MU can be replaced by the truncated δj,MU (N)
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δj,MU (N)

=



δj,Mu(1)

δj,Mu(2) δj,Mu(1)

... δj,Mu(2)
. . .

...
...

. . .

...
... δj,Mu(1)

...
... δj,Mu(2) δj,Mu(1)

...
...

...
...

δj,Mu(p− 1) δj,Mu(p− 2) · · · · · · δj,Mu(p−N + 3) δj,Mu(p−N + 2)

δj,Mu(p) δj,Mu(p− 1) · · · · · · δj,Mu(p−N + 2) δj,Mu(p−N + 1)


(3.11)

This is a set of equations withN unknowns, but more thanN equations, and using the pseudo-

inverse solution minimizes the equation error.

Reference [58] discusses designing ILC controllers from a limited number of Markov

parameters. This reference suggests filling in other parameters in P by zeros, or making use

of a window. This window aims to smooth the cliff in the Markov parameters from N th

to N + 1th parameters. For example, the accelerated exponential window produces some

nonzero value, exp[(−k)/(N − k + 1)], instead of zero for the kth parameter when k > N .

The reference also points out that increasing the sampling rate may imply a linear increase

of the minimum number of parameters needed for stability and monotonic decay. Intuitively,
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the system model we used would have more significant Markov parameters if the sampling

rate is increased, since there are more time steps within the settling time of the system.

3.5.2 Markov Parameter Compression Through a Deadbeat Observer

System identification of lightly damped satellite structures requires many time steps in the

matrix Eq. (3.11). Methods were developed in Reference [56, 55] to identify the Markov pa-

rameters of a deadbeat observer first and from these parameters one can compute the Markov

parameters of the system. Since a deadbeat observer has Markov parameters to go to zero in

the number of time steps equal to the number of state variable in the system, this very signif-

icantly compresses the number of parameters to identify. In the case of a stochastic model,

the deadbeat observer in OKID becomes the steady state Kalman filter. Here we suggest the

use of the deadbeat observer in Reference [56] for longer desired trajectories.

An interaction matrix is used in the development of the deadbeat observer, which is done

by adding and subtracting a term containing this interaction matrix from the filter equations.

Then there exists a choice of this matrix with the purpose of canceling the initial condition in-

fluence of the observer inN steps, whereN is equal to or bigger than the system order n. Here

we show themath of the observer propagating the state forwardN steps for disturbance/noise-

free SISO systems including a D term. In ILC, we need to use δj,Mu and δj,My instead of u

and y shown below in order to eliminate any repeating disturbance from the equations.
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First we package the outputs and commands into N -step vectors,

y
N
(k) =

[
y(k −N) · · · y(k − 2) y(k − 1)

]T
uN(k) =

[
u(k −N) · · · u(k − 2) u(k − 1)

]T (3.12)

Then adding the observerM into the system,

x(k +N) = ANx(k) + C̄NuN(k)−M [y
N
(k)− y

N
(k)]

= ANx(k) + C̄NuN(k)−My
N
(k)−M(ONx(k) + PNuN(k))]

= (AN +MON)x(k) + (C̄N +MPN)uN(k)−My
N
(k)

y(k +N) = Cx(k +N) +Du(k +N)

(3.13)

whereON andPN are theN -step observability matrixO andN -step ToeplitzP matrix instead

of p steps. The controllability matrix C̄N is [AN−1B, · · · , AB, B]. As long as the system is

observable and N is equal to or bigger than the system order n, there exists an M such that

the sum AN +MON becomes a zero matrix. A is a n by n matrix; On is a N by n matrix;

andM is a n by N matrix. Hence the output y(k) (k = N + 1, N + 2, · · · , p) can be treated

as the output of an ARX model,

y(k +N) = [C(C̄N +MPN), −CM, D]

[
uN(k) y

N
(k) u(k +N)

]T
= [βN , · · · , β2, β1, αN , · · · , α2, α1, D]

[
uN(k) y

N
(k) u(k +N)

]T
= γTΓ(k +N)

(3.14)

The unknown parameters in the ARXmodel can be solved off-line directly from input-output
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data and the least square solution is

γ̂ = YW † (3.15)

where

Y =

[
y(N) y(N + 1) · · · y(p)

]
andW =


uN(0) uN(1) · · · uN(p−N)

y
N
(0) y

N
(1) · · · y

N
(p−N)

u(N) u(N + 1) · · · u(p)


(3.16)

By plugging the −CM = [αN , · · · , α2, α1] matrix into

C(C̄N +MPN) = CC̄N + (CM)PN = [βN , · · · , β2, β1] (3.17)

the first N Markov parameters which composes CC̄N and PN can be recovered. Rewrite the

matrixM asM = [M1, M2, · · · , MN ] whereM1, M2, · · · , MN are the n by 1 partitions of

matrixM . ThisM enables

AN +MON = AN +MPCAN−1 + · · ·+M1C = 0 (3.18)

Multiplied by C from left and then by B from right, we can compute CANB from equation

CANB + (CMp)CAN−1B + · · ·+ (CM1)CB = 0 (3.19)

where CMi = −αN−i+1. Analogously an unlimited number of Markov parameters can be
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recursively recovered

CB = β1 + α1D

CAB = β2 + α2D + α1CB

...

CAN−1B = βN + αND + αN−1CB + · · ·+ α1CAN−2B

CANB = αNCB + αN−1CAB + · · ·+ α1CAN−1B

CAN+1B = αNCAB + αN−1CA2B + · · ·+ α1CANB

...

(3.20)

As in the direct estimation Eq. (3.9), Eq. (3.20) is a recursive computation and the error from

the term CB can accumulate successively solving for the next parameter. But in that direct

estimation approach, the CB is calculated from one time step of data, and in this deadbeat

observer approach, the coefficients β1 and α1 used to calculate CB are computed from many

time steps. This should give improved results.

As for the choice of N , one can choose based on the order n of the nominal model, or

pick a larger value in order to be confident that one has made N larger than n.

3.5.3 Data Richness in Markov Parameter Estimation

As in system identification, identifying Markov parameters needs to have a rich input-output

data set. Data from the start of the iterations is likely to have relatively large components

at lower frequencies, with the result that the contribution to the data from high frequency

parasitic poles is buried in the noise level and not reflected in the resultingMarkov parameters.
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On the other hand when the model is sufficiently wrong at high frequencies due to parasitic

poles, ILC will amplify the error at these frequencies, helping to produce data in the later

iterations where the parasitic pole contribution is evident. This suggests that one may need to

retain information from early iterations along with later iterations in order to get goodMarkov

parameters.

When the problem being addressed contains a deterministic disturbance d that repeats

every iteration, then one must difference the data from two different iterations in order elimi-

nate this disturbance from the data used to identify the Markov parameters. The ILC learning

based on the ToeplitzmatrixP will eliminate low frequency errors in early iterations relatively

quickly, but the learning at high frequencies becomes slow. Therefore, taking a difference

between later iterations that are not separated by many repetitions, can lose accuracy because

one is taking differences of nearly equal numbers. And in addition the information content

emphasizes high frequencies and the lower frequencies may not be well represented in the

data. Thus, a decision process is needed to decide what runs need to be used when taking

differences in the data. Note that in case the identification process is failing to produce con-

vergence, one can decide to input test signals not resulting from the ILC law, to obtain rich

data for identification.

Some other considerations include possible scaling of data. Data from early iterations

containing relatively fast convergence of low frequency error ej = y
d
− y

j
corresponding to

larger signals when differenced. When used simultaneously with later runs where the error

is mostly high frequency and smaller amplitude, may require scaling of the two signals to be

of similar magnitude. The scaling is limited by the amplification of noise in the data it can

produce.
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3.6 Maintaining the Learning Rate as the Execution Speed

is Increased

For the L = P T learning law, one can easily describe the learning speed of different parts of

the error space in terms of the singular values of the P matrix. We set F = I because we are

doing model updates to produce robustness. Otherwise one might use a cutoff and increase it

as sample rate increases. The law L = αP T can be written as

ej+1 = (I − PL)ej = (I − αPP T )ej = (I − αUSV T (USV T )T )ej

= U(I − αS2)UT ej = U



1− ασ2
1

1− ασ2
2

...

1− ασ2
p


UT ej

(3.21)

where S = diag(σ1, σ2, · · · , σp) is the singular value matrix of P ; U and V are the singular

vector matrices. We can convert the error into its components on the singular vectors in

the orthogonal unit vectors that form the columns of U . The mapped error hence decreases

according to UT ej+1 = (1 − αS2)(UT ej). Writing the error in these coordinates does not

influence the square of the Euclidean norm error vector,

||UT ej+1||2 = (UT ej+1)
T (UT ej+1) = eTj+1(UUT )ej+1 = eTj+1ej+1 = ||ej+1||2 (3.22)
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Therefore, one can use 1 − αS2 to evaluate the uncoupled rate of convergence from one

iteration to the next for each component of the error in this space.

Recalling that the singular values approximate the magnitude frequency response, the fac-

tor 1−ασ2
i is the amount of decrease in one iteration of the associated frequency component.

Because the magnitude response at high frequencies is usually low, i.e. some of the σ’s are

small, and the learning rate is correspondingly small. Small learning is beneficial for robust-

ness to model error, but we are doing model updates to achieve robustness to learning. Hence

we might want to adjust the learning law to maintain the learning rate for the fundamental,

and for each harmonic, as the execution speed is increased.

The fastest learning law is the inverse of P , if P is invertible, which produces zero error

immediately in the second iteration, i.e. I − PL = I − PP−1 = 0, provided the model is

perfect. This law is not normally used, because of its lack of robustness, and because P is

usually very ill-conditioned. One can use a quadratic learning law,

L = (P TP + γI)−1P T (3.23)

which minimizes cost Jj+1 = eTj+1ej+1 + γδj+1u
T δj+1u where δj+1u = uj+1 − uj . For this

quadratic learning law, the convergence of error components satisfies,

UT ej+1 =
[
I − S(S2 + γI)−1S

]
UT ej = diag(

γ

σ2
i + γ

)UT ej (3.24)

The convergence rate is similar for high frequencies. Details about the learning rate is dis-

cussed in Reference [45].
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Each singular value approximately corresponds to a frequency that one can enumerate by

index i, corresponding to DC, the fundamental frequency, and all harmonics up to Nyquist

frequency associated with the fixed number of time steps in the trajectory. As the execution

time is decreased, the sample time interval is decreased, the Nyquist frequency increases, and

so do the frequencies of the fundamental and each harmonic. The total number of harmonics

remains the same as does the number of singular values, but each singular value becomes

associated with a higher frequency as the sample rate increases. Consider L = P T and

denote the fundamental frequency by f0, and the ith harmonic frequency by fi. When the

sampling rate is increased, fi becomes smaller and the related singular value becomes smaller.

The convergence hence becomes slower. We can design a modified P transpose law that

maintains the same learning rate, i.e. the same value of the singular value associated with

any given harmonic, as the sample rate increase. Denote the Toeplitz matrix of the sampled

system by Ps with the slower sampling rate, the SVD of Ps by Ps = UsSsV
T
s , and Pf with the

faster sampling rate and Pf = UfSfV
T
f respectively. When one uses Ls = P T

s and Lf = P T
f

for these two learning rates, the faster sampled system needs more iterations to converge to

zero error because (1 − σ2
s,i) < (1 − σ2

f,i), where σs,i is the ith singular value of the slower

system Toeplitz Ps, and σf,i of Pf . To maintain the same learning rate, the adjustment of the

contraction mapping law is

L = VfS
2
sS

−1
f UT

f (3.25)

The inverse cancels the singular values of the system, and the squared term supplies the de-

sired singular values for the product of P and P T . The convergence rate (with respect to the

mapped error, UT ej) is then kept at (1 − σ2
s,i) instead of (1 − σ2

f,i). One can substitute the

65



pseudo-inverse for the inverse so that bad singular values in Sf are ignored.

Theoretically, one can freely tune the singular values. The partial isometry law makes

the learning rate correspond to one minus the magnitude frequency response, instead of its

square as in the P transpose law above. Of course, one could make L have the inverse of

the system singular values, and this produced the P inverse solution which has very poor

robustness properties, and is too aggressive.

3.7 Procedural Issues While Increasing the Tracking

Speed

Figure 3.1 presents a flow chart describing the procedure and decision points for the speeding

up algorithm.

(1) The first item is to pick the initial command. When ILC is adjusting the command to a

feedback control system, this should be the desired trajectory at the initial sample rate. Then

one picks a learning rule for the first update. One might develop a model in advance from

hardware tests for the purpose, and start using anL that employs this model. Alternatively one

can apply the model free simplest learning law L = αI and then identify Markov parameters

from the resulting data.

(2) One might want to do Markov parameter updates during the learning process at the

initial rate. No matter where the model comes from, there are model uncertainties, and the

possibility of parasitic poles that are still not represented in the model. Certainly, anytime the

root mean square (RMS) of the error grows (or grow beyond the statistical fluctuation level),
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one needs to do a Markov parameter update to correct what is sufficiently wrong to produce

the growth. The growth produced by high frequency parasitic poles is a slow growth because

the frequency response is small at high frequencies. And this allows both time to perform a

Markov parameter update, and also input-output data is specifically created by what is wrong

with the model, and therefore helps to correct it.

(3) A decision needs to be made of a threshold, that when the RMS error decays to this

level, one increases the sample rate and start the learning process at the new rate. There will of

course be enlarged error because the model is no longer appropriate. And one makes Markov

parameter updates to find the parameters for this increased sample rate. The learning law is

modified when the sample rate is increased as in Eq. (3.25) in order to maintain the speed of

for each harmonic and the fundamental.

(4) When there is a repeating disturbance, one needs to take differences of the data from

different runs. A decision must be made concerning which runs to use for this difference. A

difference between two successive runs when the learning is slow, can made data with poor

signal to noise ratio. When error is growing, it probably emphasizes high frequency error,

and may need earlier runs to maintain the low frequency information in the model.

3.7.1 Numerical Experiments

A numerical experiment is first performed to illustrate the slow growth of the instability re-

sulting from a parasitic pole. The system is then sped up by increasing the sampling rate, and

adaptive ILC is applied to track a desired trajectory. A quadratic learning law with a rela-

tively fast convergence rate is used, produced by a small penalty in the change of control in
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the cost function. The RMS errors of each iteration during learning are plotted using Matlab,

to demonstrate the learning process.

The System Model Used for Simulations

A 3rd order continuous system is used, where the real root is higher frequency and serves as

a parasitic pole

G(s) =
Kr

(s+ a)(s2 + b1s+ b2)
(3.26)

The a = 18π corresponding to a high frequency (9 Hz) pole, b1 = 12.5664 and b2 = 157.9137

correspond to a mass-spring-damper system with 1 kg mass, 2 Hz natural frequency, and 0.5

damping ratio. The model used in the initial ILC design is the above equation without the

parasitic pole, as if it was not observed in the identification data.

The initial sample rate is 20 Hz, and this is progressively increased to 40 Hz, increasing

the sample time interval in units of 0.005 increments. Figure 3.2(a) shows the first 40Markov

parameters. The third Markov parameter at 20 Hz is the biggest, and forms the peak above

0.3. As the sampling rate is increased, this biggest Markov parameter becomes smaller and

moves from the third one (20 Hz) to the six (40 Hz). The Markov parameters with higher

sampling rate are on average smaller than the ones with the slower sampling rate, which

implies a slower learning rate if L = P T is used. The desired trajectory (solid line) and the

repeated disturbance (dashed line) in the simulation are plotted in Figure 3.2(b). When the

sampling rate is 20 Hz, these two signals last for 5 s and after speeding up, the time needed

is decreased to 2.5 s.
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The Influence of the High Frequency Mode in Normal ILC

This simulation illustrates the behavior of ILC when a parasitic pole is missing in the model.

The ILC first improves the error level and then starts to diverge with high frequency error

growing, but growing relatively slowly. The quadratic learning lawL = (P TP+10−8I)−1P T

is applied. First, ILC is applied to system Eq. (3.26), sampled at 20 Hz aiming to track the

solid line in Figure 3.2(b) in the presence of the disturbance, the dashed line in Figure 3.2(b).

Two sets of Markov parameters are used to create the quadratic learning laws. When the law

designed with the second order model is applied to the real world third order system, the result

is the left plot of Figure 3.3 (dashed curve for 20 Hz, solid line for 40 Hz), which illustrates

initial decay of the error followed by instability. When the law designed using the third order

model is applied to the third order world, the results are in the right plot of Figure 3.3, and

one observers monotonic decay to a numerical zero RMS error.

The dashed curve in the left figure shows the RMS error decreases initially and reaches

a minimum error level above 10−3, and then grows. Instability caused by the model error

is seen after iteration 4 and grows to the same level (10−1) at iteration 10 as that of the first

iteration. Therefore, one can have at least 6 iterations to stabilize the system again before the

instability may lead to any damage to the hardware or the system’s environment. The RMS

error when learning with the real system model (dashed line in the right figure) reaches 10−15

in 4 iterations. Similar observations are made when the sampling rate is increased to 40 Hz.

Comparing the solid lines and dashed lines in both figures, the slope of dashed lines (sam-

pling rate 20 Hz) is bigger than that of the solid lines (sampling rate 40 Hz) when the RMS

is decreasing. This bigger slope means the convergence rate of the system with the slower
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sampling rate (20 Hz) is bigger than the system with the faster sampling rate. When the in-

stability appears, i.e. the RMS error grows in the left figure, the slope of the dashed line is

smaller than that of the solid line. Also, the minimum RMS error level at 40 Hz is bigger

than that at 20 Hz. These differences show that the system when sampled at the faster rate

suffers more from the model error at high frequency. Therefore, starting ILC from a slower

sampling rate can be more robust to the system model errors at high frequencies.

Speeding Up ILC by Increasing Sampling Rate

This simulation demonstrates the adaptive ILC to speed up this 3rd order system following

the trajectory in Figure. 3.2(b) with the presence of a repeated disturbance in the same figure.

Simulations are made with and without measurement noise. The system sampling rate is

increased from 20 Hz to 40 Hz, that is, the sampling period from 0.05 s to 0.025 s, either by

step size δT = 0.005 s or δT = 0.001 s. No prior system knowledge is assumed and L = I

for the first two iterations is used to establish a nominal model. The quadratic learning law

with the penalty of learning rates, L = (P TP + 10−8I)−1P T using the estimated Markov

parameters is applied otherwise.

The sampling rate is increased when the RMS error reaches a numerical zero or the mea-

surement noise level. The last command fed to the system with the previous sampling rate is

directly applied as the initial command to the system with the increased sampling rate. The

Markov parameters of the slower system are used temporarily to design the L for the faster

system until theMarkov parameters are estimated again. Markov parameters are updated once

using data from two iterations (the initial iteration and the other picked near the quasi-steady

state) for each sampling rate by the deadbeat observer method.
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Figure 3.4 plots the RMS error of each iteration during the two complete speeding up pro-

cesses (δT = 0.005 s and δT = 0.001 s), without noise or with an uniformly distributed noise

in the interval
[
−10−3 10−3

]
. The spikes in the figure are caused by the inconsistency of

system dynamics after increasing the sampling rate, i.e., the same command produces differ-

ent output after increasing the sampling rate. This difference will be different each time the

sample rate is increased, so the spikes need not be the same height. The maximum RMS error

level is around 0.5 from the initial iteration for all cases. In fact, the RMS error level of the

spikes is around 0.05 or 10% of the maximum RMS error for δT = 0.005 s and 0.01 or 2%

for δT = 0.001 s (the dashed line in Figure 3.4(b)). Therefore, by gradually increasing the

sampling rate, one can avoid big RMS error during learning. Provided there is no noise, zero

RMS tracking error (Matlab) is achieved as shown in Figure 3.4(a) and 3.4(b). Figure 3.4(c)

and 3.4(d) demonstrates the cases with noise level 10−3. The speeding up ILC successfully

learns the trajectory and achieves the tracking accuracy around the noise level.

3.8 Conclusions

In this chapter, we propose an adaptive ILC method by incorporating Markov parameter esti-

mation during the learning process, which can enable a human-like learning process, learning

to execute a desired maneuver faster and faster. The faster execution of a specific maneuver

is achieved via increasing the system sampling rate while maintaining the desired trajectory

values at the sample times.

The model used by the ILC laws is based on the system model in the form of the Toeplitz

matrix of Markov parameters. The nature of the changes in Markov parameters with sample
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rate is studied. Two approaches to update Markov parameters during learning are presented, a

direct estimation for short maneuvers and a deadbeat observer approach for long maneuvers.

TheMarkov parameter estimation implemented in ILC serves the same purpose as exploration

approaches in RL. The difference is that in RL, lack of exploration can result in a local optimal

solution. But in ILC, the tracking error either diverges (often gradually) or it converges. In

other words, the necessary exploration data will automatically appear during the learning

process itself. One can then use Markov parameter estimation to finish the exploration and

update the ILC law for exploitation again as needed. As for the exploitation, the method to

maintain a desired learning rate is also discussed. Unlike RL, this adaptive ILC algorithm

has control of the learning behavior or learning transients, showing its effectiveness as a safe

exploration-and-exploitation for LTI systems.
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Figure 3.1: The flowchart of speeding up ILC by increasing sampling rate
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Figure 3.2: The system model, the desired trajectory and the repeated disturbance
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Figure 3.3: RMS error history of iterations during normal quadratic cost learning process
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(c) Noise level 10−3 and δT = 0.005
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Figure 3.4: RMS error history during the speeding up ILC process
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Chapter 4
Model-Based Nonlinear ILC through

Carleman Bilinearization

4.1 Introduction

Given the measurements of all states, an ILCmethod based on bilinearization is developed for

nonlinear systems in this chapter. For nonlinear ILC, until now, most publications focus on

continuous nonlinear systems without sampling [59, 60, 36]. For discrete cases, the Arimoto-

type ILC directly applied on nonlinear systems has been intensively investigated [61, 62, 63].

One application example is for freeway traffic control [20]. However, the issue of the bad

learning transients of Arimoto-type ILC has not been discussed, which may be due to the

fact that this phenomenon will not appear until the tracking error approaches zero. Other

than the Arimoto-type approaches, Lin, Owens, and Hatonen have successfully developed a

Newton-type ILC based on the Jacobian of nonlinear systems [8]. Longman, and Mombaur

successfully apply model-based discrete linear ILC laws to linearized models of a nonlinear
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system along a reference trajectory [64].

This chapter starts from ILC algorithms for a general system by minimizing a cost func-

tion, which results in an approach using Picard iteration that needs the analytical form of the

Jacobian of a system model. However, there is difficulty having a general purpose model

that applies to the large variety of nonlinear behaviors. Neural networks is one approach, but

it often precludes development of analytical properties, the Jacobian for ILC design. ARX

models have the potential to be applied here but with tedious computation needed. On the

other hand, through Carleman bilinearization, a nonlinear system can be approximated by a

bilinearized model to arbitrarily high accuracy, at the expense of increased dimensionality

[65, 66].

Thus, in an effort to create ILC approaches to handle a large class of nonlinear systems, it

is natural to develop ILC methods that can address bilinear models. These bilinear methods

can then be applied to nonlinear systems through their bilinearized models. The bilinearized

model can be a considerable improvement over the linearized model because a linearized

model eliminates quadratic and higher order terms in an expansion, while the bilinear model

remains bilinear as one makes the bilinearization more accurate by increasing the state di-

mension to capture higher order nonlinear effects.

The bilinearized model along the trajectory of the previous iteration is used in ILC, which

is a good approximation of the nonlinear system in the close vicinity along the reference tra-

jectory. The use of a bilinearized model can capture more nonlinear dynamics and hence leads

to faster convergence. At the same time, the error in the bilinearized model is more sensitive

to the distance with respect to the reference trajectory. For a desired trajectory outside the

vicinity where the bilinearized model is valid, one can specify a series of trajectories, starting
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with a feasible trajectory and converging to the desired trajectory to guide the ILC process.

By using this homotopy of the desired trajectory, the bilinear method can learn to fol-

low the desired trajectory in a reasonable number of runs, which is a considerate improve-

ment compared with the corresponding linear method. Numerical examples are performed to

demonstrate the improvement. The material in this chapter has been presented in Reference

[40] by the author, which takes an important step to fill the gap in the development of ILC

laws specifically designed to handle nonlinear systems.

4.2 ILC Formulation for a General System

4.2.1 Problem Description and Input-Output Model used in ILC

The mathematical description of ILC for a general system is as follows. By representing the

system dynamics by the input-output relationship for the entire trajectory,

y
j
= f(uj) + d (4.1)

where d represents the influence of the initial state and repeating disturbances, the tracking

error propagation between two successive runs is

ej = ej−1 + f(uj−1)− f(uj) (4.2)
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To construct a contraction mapping between ej−1 and ej , an ILC learning law is of the form

uj = h(uj−1, ej−1) (4.3)

By using data from previous iterations, ILC can improve the tracking accuracy beyond the

limit of the model accuracy used in the learning algorithm. The robustness of ILC towards

the model error depends on the robustness of the contraction mapping, which is negatively

correlated with the learning rate. That is, the faster an ILC law can learn, the less robust it is

towards model error. For linear ILC, the monotonic decay of tracking errors and the learning

rate of various ILC laws have been investigated [45]. These results for linear systems can be

helpful to develop ILC algorithms for nonlinear systems. The most straightforward way is to

develop ILC algorithms based on the linearized models of the nonlinear systems. Here in this

paper, the ILC algorithms based on bilinearized models are proposed and the methods based

on linearized models are used to form a homotopy of the desired trajectory to guide the ILC

learning.

4.2.2 ILC for Time-Varying Linear Systems

Given a time-varying linear system of the form,

x(k + 1) = Al(k)x(k) +Bl(k)u(k)

y(k) = Cl(k)x(k) +Dl(k)u(k)

(4.4)
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the input-output relationship Eq. (4.1) for iteration j becomes

y
j
= Pluj + d (4.5)

where Pl is made of the system Markov parameters,

Pl =



Dl(0)

Cl(1)Bl(0) Dl(1)

Cl(2)Al(1)Bl(0) Cl(2)Bl(1) Dl(2)

...
. . .

Cl(p− 1)Al(p− 2) · · ·Al(1)Bl(0) · · · · · · · · · Dl(p− 1)



(4.6)

Similar to ILC for LTI systems, some examples of L include

Transpose Law: L = αP̂ T
l

Partial Isometry Law: L = αV T
svdUsvd

Optimal Law: L = α(P̂ T
l QP̂l +R)−1P̂ T

l Q

(4.7)

The scalar α is a scaling factor to make the singular values of I−PlL less than unity, leading

to monotonic decay of the tracking errors. The matrix P̂l denotes the model used in ILC

that contains model errors compared to the real system model Pl in Eq. (4.6). In the partial

isomethry law, Usvd and Vsvd are the singular vector matrices of P̂l. The optimal law, also
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named as the quadratic learning law, is derived from minimizing a cost function

Vj =
1

2

[
eTj Qej + (uj − uj−1)

TR(uj − uj−1)
]

(4.8)

whereQ andR are positive-definite weighting matrices. One advantage of the optimal learn-

ing law compared to other learning laws is that by adjusting Q and R, one can control the

learning step size across iterations. This is essential for ILC algorithms for nonlinear sys-

tems based on linearized/bilinearized models because the linearized/bilinearized models are

valid in the vicinity along the reference. However, when a big R is necessary, it will take

an enormous number of iterations to learn the trajectory. In that case, a homotopy of desired

trajectory is preferred instead to control the learning step size.

4.2.3 Optimization Formulation of ILC for a General System

The optimal learning law that minimizes the cost function Eq. (4.8) for a general system can

be solved by the necessary condition for the optimality, i.e., dVj/duj = 0,

dVj

duj

=
1

2

[d(eTj Qej)

dej

dej
duj

+
d(uj − uj−1)

TR(uj − uj−1)

duj

]

= eTj Q(
dej
duj

) + (uj − uj−1)
TR

= −(y
d
− f(uj)− dj)

TQ∇uj
f + (uj − uj−1)

TR

= −(ej−1 + f(uj−1)− f(uj))
TQ∇uj

f + (uj − uj−1)
TR

= 0

(4.9)
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where ∇f is the Jacobian of the vector function f and ∇uj
f denotes the Jacobian evaluated

at uj ,

∇uj
f =

df

du
(uj) =



df(0)
du(0)

(uj)
df(0)
du(1)

(uj) · · · df(0)
du(p)

(uj)

df(1)
du(0)

(uj)
df(1)
du(1)

(uj) · · · df(1)
du(p)

(uj)

...
...

...

df(p)
du(0)

(uj)
df(p)
du(1)

(uj) · · · df(p)
du(p)

(uj)


(4.10)

Therefore the optimal solution u∗
j should satisfy the equation

(∇u∗
j
f)TQf(u∗

j) +Ru∗
j = (∇u∗

j
f)TQ

(
ej−1 + f(uj−1)

)
+Ruj−1 (4.11)

This is a nonlinear equation and can be numerically solved by Picard iteration. To summarize,

the ILC algorithm byminimizing the cost function, Eq. (4.8), for a general system is presented

in Table. 4.1.

Table 4.1: ILC algorithm for a General System

Initialize a feasible u0, Q, R, and j = 0.
Record the output of the initial iteration, y

0
, and compute the error e0

ILC Iterations:
Loop until the tracking error decreases below the desired threshold.
For iteration j (starting from j = 1):
Numerically compute u∗

j according to Eq. (4.11)
Run the system with u∗

j ,
measure the system output y

j
,

and compute the tracking error ej .
j = j + 1.

However, because of the complexity of the system dynamics, a generalmodel for the entire

trajectory of the form as in Eq. (4.1) may not be analytically computed, such as a nonlinear
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system model in the form of neural networks. One method is to use a linearized model to

approximate the nonlinear system along the previous iteration. The ILC algorithm can be

simplied into Table 4.2.

Table 4.2: ILC algorithm for nonlinear systems based on linearized models

Initialize a feasible u0, Q, R, α, j = 0, and the threshold for the tracking error.
Loop until the tracking error decreases below the desired threshold.
For iteration j (starting from j = 0):
(1) Run the system with uj ,

measure the system output y
j
,

and compute the tracking error ej .
(2) Linearize the nonlinear model along uj and xj,m

wherem denotes the component of x;
Compute the P l

j based on the linearized model
(3) Update uj+1 according to some ILC law (e.g., Eq. (4.7))

based on the linearized model P l
j .

The loop number of ILC iteration: j = j + 1.

However, a more accurate model can be obtained by Carleman bilinearization, which can

approximate an nonlinear input-affine system to arbitrarily high accuracy at the cost of high

dimensionality [65, 66]. This more accurate model including the nonlinear dynamics can lead

to faster convergence. In this paper, the ILC methods based on this Carleman bilinearized

model is developed and studied.

4.3 Discrete Bilinearized Model to Approximate Nonlinear

Dynamics

To compute a bilinear model to approximate the nonlinear dynamics for ILC designs, it gen-

erally includes two steps: (1) rewriting the system in terms of the δ variables with respect to

a reference, (2) Carleman bilinearization, and (3) discretization.
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4.3.1 The Nonlinear δ-Model with Respect to a Reference Trajectory

The state in the δ space is the difference between the state xj(t) with respect to the state xr(t)

of the reference; similarly defined are the control signal and the system output,

δxj(t) ≜ xj(t)− xr(t)

δuj(t) ≜ uj(t)− ur(t)

δyj(t) ≜ yj(t)− yr(t)

(4.12)

By plugging xj(t) = δxj(t)+xr(t), uj(t) = δuj(t)+ur(t), and yj(t) = δyj(t)+yr(t) into

the nonlinear model, the δ-model of a nonlinear system can be obtained, of which xr(t), ur(t),

and yr(t) are the parameters inside of the state matrices. In ILC, the previous trajectory is used

as the reference trajectory, that is, xr(t) = xj−1(t), ur(t) = uj−1(t), and yr(t) = yj−1(t). This

leads to

δxj−1(t) = xj−1(t)− xr(t) = xj−1(t)− xj−1(t) = 0

δuj−1(t) = uj−1(t)− ur(t) = uj−1(t)− uj−1(t) = 0

δyj−1(t) = yj−1(t)− yr(t) = yj−1(t)− yj−1(t) = 0

(4.13)

4.3.2 Carleman Bilinearization

Carleman bilinearization is an approach that constructs a bilinear model to approximate non-

linear input-affine dynamics at the expense of high dimensionality, i.e., adding new states

that are the higher order terms of the Taylor expansion of the input-output relationship. Bilin-

earization along equilibrium points is presented in Reference [65]. Carleman Bilinearization

of the δ-model is presented through the following example, in which iteration j − 1 is the
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reference trajectory.

If the original states of the nonlinear system are x(t) =
[
x1(t) x2(t)

]T
, the new states of

the bilinearized model at jth iteration are made from the terms in the Taylor expansion with

respect to xj−1(t) =

[
xj−1,1(t) xj−1,2(t)

]T
, that is,

δxj,1, δxj,2,

(δxj,1)
2, (δxj,2)

2, δxj,1δxj,2,

(δxj,1)
3, (δxj,1)

2δxj,2, δxj,1(δxj,2)
2, (δxj,2)

3,

...

(4.14)

The bilinearized model is obtained by taking the derivatives of the new states and ignoring

the higher order terms. For instance, to compute a second-order Carleman bilinearized model,

all the third and higher order terms are assumed zero,

zj(t) =

[
δxj,1 δxj,2 (δxj,1)

2 δxj,1δxj,2 (δxj,2)
2

]T
(4.15)

The resultant continuous bilinearized model with zj(t) denoting the new state of the bilin-

earized model is of the form

żj(t) = Ac
jzj(t) +Bc

jδuj(t) +
m∑
i=1

N c
j,izj(t)δuj,i(t)

yj(t) = Cc
jzj(t) +Dc

jδuj(t)

(4.16)

whereAc
j , Bc

j ,N c
j,i, Cc

j , andDc
j are iteration-dependent, i.e., functions of uj−1(t) and xj−1(t).

The vicinity where this bilinearized model is valid requires |δxj,i| < 1. Compared with
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linearized models, the model error in a bilinearized model is O(δxn
j,i), where n > 2 is the

number of order one chosen to ignore. This implies that outside the area of |δxj,i| < 1, the

bilinearized model contains bigger model errors than the linearized model, while inside of

the area of |δxj,i| < 1, the bilinearized model is more accurate than the linearized model by

including higher order dynamics.

4.3.3 Discretization

Because ILC needs to store the output measurements of the previous runs, discretization of

the continuous model is essential. Reference [67] has discussed and compared different dis-

cretizationmethods. Here we use the forward Euler methodwhich results in a discrete bilinear

model of the form

zj(k + 1) = Aj(k)zj(k) +Bj(k)δuj(k) +
m∑
i=1

Nj,i(k)zj(k)δuj,i(k)

yj(k) = Cj(k)zj(k) +Dj(k)δuj(k)

(4.17)

where with the sampling period Ts

Aj(k) = I + TsA
c
j(kTs)

Bj(k) = TsB
c
j(kTs)

Nj,i(k) = TsN
c
j,i(kTs)

Cj(k) = Cc
j (kTs)

Dj(k) = Dc
j(kTs)

(4.18)
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4.4 ILC for a Nonlinear System Based on Its Bilinearized

Model

4.4.1 ILC Algorithms for Bilinear Systems

The Input-Output Relationship of the Bilinearized Model

For simplicity, the subscript of the iteration number is ignored and the bilinearized model

Eq. (4.17) can be written as a time-varying bilinear system,

z(k + 1) = A(k)z(k) +B(k)δu(k) +
m∑
i=1

Ni(k)z(k)δui(k),

y(k) = C(k)z(k) +D(k)δu(k)

(4.19)

By defining,

Nz(k) =

[
N1z(k) N2z(k) · · · Nmz(k)

]
(4.20)

which is actually a function of δu, the input-output relationship for one iteration, the vector

function f in Eq. (4.1) can be written as

f(δu) = P (δu)δu (4.21)
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where the (k + 1, i+ 1) component of P (δu) is

Pk+1,i+1 =



C(k)A(k − 1) · · ·A(i+ 1)(B(i) +Nz(i)), p− 1 ≥ k > i+ 1

C(i+ 1)(B(i) +Nz(i)), k = i+ 1

D(i), k = i

0, 0 ≤ k < i

(4.22)

and where i = 0, 1, 2, · · · , p − 1. The (k + 1, i + 1) component of its Jacobian ∇f , i.e.,

PJ(δu) can be calculated according to

PJ,(k+1,i+1) =



C(k)Ã(k − 1) · · · Ã(i+ 1)(B(i) +Nz(i)), p− 1 ≥ k > i+ 1

C(i+ 1)(B(i) +Nz(i)), k = i+ 1

D(i), k = i

0, 0 ≤ k < i

(4.23)

where Ãk = A(k) +
∑m

i=1 Ni(k)ui(k) and i = 0, 1, 2, · · · , p− 1.

The Optimal Solution of Iteration j

In ILC, the bilinearized model is iteration-dependent (Eq. (4.17)), i.e., P = Pj and PJ = PJ,j .

By plugging f = Pj and∇f = PJ,j into Eq. (4.11), the optimal solution for iteration j is then

δu∗
j =

(
(P ∗

J,j)
TQ(P ∗

j ) +R
)−1[

(P ∗
J,j)

TQδej−1 +
(
(P ∗

J,j)
TQPj−1 +R

)
δuj−1

]
(4.24)
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and this can be solved by Picard iteration, which is,

δuj,k =
(
(PJ,j,k−1)

TQ(Pj,k−1)+R
)−1[

(PJ,j,k−1)
TQδej−1+

(
(PJ,j,k−1)

TQPj−1+R
)
δuj−1

]
(4.25)

When the previous trajectory is chosen as the reference trajectory, the tracking error in

the δ space is the same as the original tracking error, that is,

δej = (y
d
− yr)− (y

j
− yr) = y

d
− y

j
= ej (4.26)

and δuj−1 = 0. Therefore, Eq. (4.24) becomes

δu∗
j =

(
(P ∗

J,j)
TQ(P ∗

j ) +R
)−1

(P ∗
J,j)

TQej−1 (4.27)

which can be solved by Picard iteration, (corresponding to Eq. (4.25))

δuj,k =
(
(PJ,j,k−1)

TQ(Pj,k−1) +R
)−1

(PJ,j,k−1)
TQej−1 (4.28)

The input to the nonlinear system for the jth iteration is

u∗
j = δu∗

j + uj−1 (4.29)
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4.4.2 ILC Algorithms for Nonlinear Systems based on a Bilinearized

Model

The ILC algorithm for nonlinear systems based on a bilinearized model is summarized in

Table 4.3

Table 4.3: ILC algorithm for nonlinear systems based on a bilinearized model

Initialize a feasible u0, Q, R, α, j = 0, and the threshold for the tracking error.
Loop until the tracking error decreases below the desired threshold.
For iteration j (starting from j = 0):
(1) Run the system with uj ,
measure the system output y

j
,

and compute the tracking error ej .
(2) To compute the u∗

j+1 for iteration j + 1
(Initialize the threshold for Picard iteration):

(a) Bilinearize, discretize, and normalize the nonlinear model along
ur = uj and xr

m = xj,m

wherem denotes the component of x:
Compute the bilinearized model Aj+1, Bj+1, Cj+1, Dj+1, and Nj+1’s
Compute the initial Pj+1,0 and PJ,j+1,0 with δuj+1,0 = 0.

(b) For Picard iteration k (starting from k = 1):
Compute δuj+1,k according to Eq. (4.28).
Update Pj+1,k and PJ,j+1,k by using δuj+1,k.
The loop number of Picard iteration: k = k + 1
until δuj+1,k − δuj+1,k−1 is smaller than some pre-defined threshold.
the optimal solution δu∗

j+1 = δuj+1,k.
(3) Update u∗

j+1 = uj + δu∗
j+1.

The loop number of ILC iteration: j = j + 1.

4.4.3 Homotopy of the Desired Trajectorie to Guide the Learning

Because the bilinearizedmodel is a good approximation of the nonlinear dynamics only inside

of the close vicinity (|δx| < 1) along the reference trajectory, the learning step size needs to be

limited around the boundary of the vicinity. The choice ofQ andR can adjust the learning step

size, however, to a limited extent. Here we propose another method: applying a homotopy of
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the desired trajectory.

The homotopy of the desired trajectory is a series of pseudo-desired trajectories that grad-

ually leads to the desired trajectory. For iteration j, the pseudo-desired trajectory y
d,j

=

y
d
− (1− αj)ej−1, where αj is computed based on the linearized model as follows.

Given ej−1, one can compute δu<est>
j based on the linearized model of the nonlinear

system according to the optimal linear ILC law,

δu<est>
j = [(Pl,j)

TQPl,j +R]−1(Pl,j)
TQej−1 (4.30)

where Pl,j is the Pl matrix in Eq. (4.6) of the linearized model for the jth iteration along the

previous trajectory. The scaling factor αj is chosen as the inverse of the maximum absolute

value of δu<est>
j , for example, for a single input system

αj =
1

max(δu<est>
j )

(4.31)

Plugging ej = y
d,j

− y
j
into the cost function Eq. (4.9), the learning law with homotopy

based on bilinear systems becomes

δu∗
j =

(
(P ∗

J,j)
TQ(P ∗

j ) +R
)−1

(P ∗
J,j)

TQαjej−1 (4.32)

and the learning law based on linear systems with homotopy becomes

δuj = αjLej−1 (4.33)
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4.5 Numerical Examples

4.5.1 Rigid Body Rotation Problem

The Nonlinear Model with Embedded Feedback Controllers:

The rotation of a rigid body can be described by Euler’s rotation equations

Iω̇ + ω × (Iω) = M (4.34)

where M is the applied torque vector, I is the inertia, and ω is the angular velocity about

the principal axes. In 3D principal orthogonal coordinates, M =

[
M1 M2 M3

]T
, I =

diag(I1 I2 I3), and ω =

[
ω1 ω2 ω3

]T
, the Euler equations become

I1ω̇1 + (I3 − I2)ω2ω3 = M1

I2ω̇2 + (I1 − I3)ω3ω1 = M2

I3ω̇3 + (I2 − I1)ω1ω2 = M3

(4.35)

The tracking problem to be solved is to design ILC controllers for all three axes applied

outside given feedback controllers that enables the rigid body to rotate with the pre-defined

angular velocities. The feedback controllers are needed to stabilize the system and ILC con-

trollers can eliminate tracking errors from the bandwidth limitation of these feedback con-

trollers.
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The driving torques with feedback controllers and ILC controllers are

Mi = −biωi + fi (4.36)

where the subcript i = 1, 2, 3 denotes the principal axis, bi is pre-designed feedback gain

and the feedforward signals fi needs to be designed by ILC.

Plugging Eq. (4.36) into Eq. (4.35), the Euler equations then become

ω̇1 = −a1ω2ω3 − c1ω1 + u1

ω̇2 = −a2ω1ω3 − c2ω2 + u2

ω̇3 = −a3ω1ω2 − c3ω3 + u3

(4.37)

where

a1 =
I3 − I2

I1
a2 =

I1 − I3
I2

a3 =
I2 − I1

I3
ci =

bi
Ii

ui =
fi
Ii

(4.38)

The Nonlinear Model in δ Space:

Given an input-output-history pair, ur and ωr, the δ variables are defined as

δω =


δω1

δω2

δω3

 ≜ ω − ωr δu =


δu1

δu2

δu3

 ≜ u− ur (4.39)
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The system dynamics Eq. (4.37) become


δω̇1

δω̇2

δω̇3

 =


−c1

−c2

−c3




δω1

δω2

δω3

−


a1(ω

r
2δω3 + ωr

3δω2 + δω2δω3)

a2(ω
r
1δω3 + ωr

3δω1 + δω1δω3)

a3(ω
r
1δω2 + ωr

2δω1 + δω1δω2)

+


δu1

δu2

δu3

 (4.40)

4.5.2 Linearized Model and Bilinearized Model used in ILC

Discrete Linearized Model:


δω̇1

δω̇2

δω̇3

 = −


c1 a1ω

r
3 a1ω

r
2

a2ω
r
3 c2 a2ω

r
1

a3ω
r
2 a3ω

r
1 c3




δω1

δω2

δω3

+


δu1

δu2

δu3

 (4.41)

This linearized model then can be discretized by the forward Euler method


δω1(k + 1)

δω2(k + 1)

δω3(k + 1)

 = (I−Ts)


c1 a1ω

r
3(k) a1ω

r
2(k)

a2ω
r
3(k) c2 a2ω

r
1(k)

a3ω
r
2(k) a3ω

r
1(k) c3




δω1(k)

δω2(k)

δω3(k)

+Ts


δu1(k)

δu2(k)

δu3(k)

 (4.42)

Discrete Carleman Bilinearized Model:

By defining the state variable z(t) as

z(t) =

[
δω1 δω2 δω3 (δω1)

2 (δω2)
2 (δω3)

2 (δω1)(δω2) (δω1)(δω3) (δω2)(δω3)

]T
(4.43)
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the model obtained by the 2nd-order Carleman bilinearization (after discretization by the for-

ward Euler method) is

z(k + 1) = (I + TsAc(k))z(k) + TsBc(k)δu(k) +
3∑

i=1

TsNic(k)z(k)δui(k)

ω(k) = Ccz(k) +Dcδu(k) + ωr(k)

(4.44)

where

Bc(1, 1) = Bc(2, 2) = Bc(3, 3) = Cc(1, 1) = Cc(2, 2) = Cc(3, 3) = 1,

N1,c(4, 1) = 2, N1,c(7, 2) = N1,c(8, 1) = 1,

N2,c(5, 2) = 2, N2,c(7, 1) = N2,c(9, 3) = 1,

N3,c(6, 3) = 2, N2,c(8, 1) = N3,c(9, 2) = 1,

Ac =

−c1 −a1ω
r
3 −a1ω

r
2 0 0 0 0 0 −a1

−a2ω
r
3 −c2 −a2ω

r
1 0 0 0 0 −a2 0

−a3ω
r
2 −a3ω

r
1 −c3 0 0 0 −a3 0 0

0 0 0 −2c1 0 0 −2a1ω
r
3 −2a1ω

r
2 0

0 0 0 0 −2c2 0 −2a2ω
r
3 0 −2a2ω

r
1

0 0 0 0 0 −2c3 0 −2a3ω
r
2 −2a3ω

r
1

0 0 0 −a2ω
r
3 −a1ω

r
3 0 −(c1 + c2) −a2ω

r
1 −a1ω

r
2

0 0 0 −a3ω
r
2 0 −a1ω

r
2 −a3ω

r
1 −(c1 + c3) −a1ω

r
3

0 0 0 0 −a3ω
r
1 −a2ω

r
1 −a3ω

r
2 −a2ω

r
3 −(c2 + c3)


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4.5.3 Simulations and Results

Optimal ILC methods based on the linearized model Eq. (4.42) and the bilinearized model

Eq. (4.44) are tested in simulations. The first numerical experiment is to compare the linear

and bilinear ILC methods without using the homotopy while increasing the amplitude of a

sinusoidal desired trajectory. As the amplitude is increasing, one of these two methods should

fail to improve the tracking accuracy, or even diverge. The second simulation is to track the

trajectory that cannot be learned in Simulation 1, by applying a homotopy of the desired

trajectory using the bilinear method and the linear method. The method of adjusting R to

learn the same trajectory is also included to show the its limitation.

The numerical tests are performed in MATLAB and the nonlinear dynamics is simulated

by ode113 for each time step. The learning methods tested are summarized in Table 4.4

and 4.5. Learning curves, i.e., the RMS error of each iteration as the iteration number in-

creases, are plotted to compare the convergence rates of the tested ILC methods.

Table 4.4: ILC Methods Tested in Simulation 1
Linear Method Bilinear Method

Model in ILC Eq. (4.42) Eq. (4.44)
ILC Algorithm Table 4.2 Table 4.3

ILC Learning Law L = [(Pl,j)
TQPl,j +R]−1(Pl,j)

TQ Eq. (4.27)

Table 4.5: ILC Methods Tested in Simulation 2
Homotopy Linear Homotopy Bilinear Bilinear with Big R

Model in ILC Eq. (4.42) Eq. (4.44) Eq. (4.44)
ILC Algorithm Table 4.2 Table 4.3 Table 4.3

ILC Learning Law δuj = αjLej−1 Eq. (4.32) Eq. (4.27)

Parameters in the simulations are I =

[
30 20 10

]T
, b1 = b2 = b3 = 3, p = 200,

Ts = 0.01.
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Simulation 1: Learning Desired Trajectories without Guidance by a Homotopy

The desired trajectories are chosen as

yd,1 = 0.5 ∗ [3− cos(
5.5π

pTs

kT )− cos(
1.5π

pTs

kT )− cos(
15π

pTs

kT )] + 2

yd,2 = k ∗ [3− cos(
5.5π

pTs

kT )− cos(
1.5π

pTs

kT )− cos(
15π

pTs

kT )] + 2

yd,3 = 0.5 ∗ [1− cos(
17π

pTs

kT )] + 2

(4.45)

where yd,i is the desired angular velocity for axis i and the amplitude of yd,2 for the second

axis is increased gradually (i.e., the convergence region becomes more twisted when only

considering the size of δx), while the other coefficients are fixed. A deviation from the origin

(the equilibrium point for the system) is added to make the tracking harder. This set of trajec-

tories can represent the problem when a rotating body needs to change its angular velocity.

All the tests start with the same initial command history u0 created by randn. In the optimal

learning law, Q = I , and R = 0 is used. Note that when R = 0, it is asking for the inverse

solution in only one iteration, which refers to the fastest convergence rate the method could

possibly achieve and the least robust to model errors.

Table 4.6: RMS error of the first 8 iterations by bilinear method with k = 1.274

Iteration Number 1 2 3 4 5 6 7 8
Axis 1 1.99 19.26 42.90 21.77 85.02 103.12 32.31 74.46
Axis 2 7.49 3.64 24.72 66.41 35.94 15.30 2.29 82.45
Axis 3 1.41 3.46 20.90 11.27 125.62 29.93 123.97 4.15

The amplitude k of y
d,2

is increasing gradually from 1with step size 0.001. At k = 1.274,

Method 2 (the bilinear method) failed to decrease the tracking error and the RMS errors jumps

approximately between 5 to 200, the first 8 iterations of which are listed in Table 4.6.
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From k = 1 to k = 1.274, the bilinear method initially shows a faster convergence rate

than the linear method. As k increases, the bilinear method is approaching the boundary of its

convergence region where it needs more iterations to converge. The final tracking accuracy

for all cases remains the same, between 10−14 to 10−13 as long as both methods converge. The

learning curves of four values of k ∈ (1, 1.1, 1.265, 1.27) are plotted to demonstrate this

trend in the right figures of Figure 4.1 and their corresponding desired trajectories Eq. (4.45)

are plotted in the left ones.

Simulation 2: Learning a Desired Trajectory that Necessitates Guidance by a

Homotopy

The amplitude of the desired trajectories for all three axis are increased to

yd,1 = [3− cos(
5.5π

pTs

kT )− cos(
1.5π

pTs

kT )− cos(
15π

pTs

kT )] + 5

yd,2 = 5 ∗ [3− cos(
5.5π

pTs

kT )− cos(
1.5π

pTs

kT )− cos(
15π

pTs

kT )] + 4

yd,3 = 7 ∗ [1− cos(
17π

pTs

kT )] + 6

(4.46)

which are plotted in Figure 4.2(a).

For the homotopy linear and bilinear methods, Q = I , and R = 0 is used. For the

bilinear method with adjustment ofR, the initialR is chosen to be 10 and decreases following

Rj+1 = 0.99Rj , which means at iteration 500, R700 ≈ 0.008.

The learning curves of these three methods are plotted in Figure 4.2(b). The bilinear

method with the homotopy (blue lines) converges to 10−13 around iteration 430, while the

linear method with homotopy (red lines) needs 560 iterations. The bilinear method with ho-
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motopty needs 130 iterations less to learn to follow the desired angular velocities. By ad-

justing R, the tracking error converges slightly to the magnitude level of 100 and then the

Picard iteration failed to converge with R380 ≈ 0.2217, which demonstrates the limitation of

adjusting R to control the learning step size for nonlinear systems.

4.6 Conclusions

This section starts with a general ILC method by minimizing a cost function consisting of a

quadratic term of the tracking error and a penalty of the difference of control actions between

two successive iterations, which can be numerically solved by Picard iteration. To apply

this general method to nonlinear systems, one needs to compute the input-output relationship

for the entire trajectory for nonlinear systems, which is a tedious task. On the other hand,

one can use a Carleman bilinearized model to approximate a nonlinear system to arbitrarily

high accuracy, at the expense of increased dimensionality. Hence, the ILC method for bilin-

ear systems is developed based on the general ILC method. The application of this bilinear

ILC approach to nonlinear input-affine systems is then studied as well as its advantages and

limitations when compared with the ILC method based on linearized models. Because of

more nonlinear dynamics captured by the bilinear model, it converges slightly faster than the

method using a linearized model. At the same time, the bilinear method is more sensitive to

the model error caused by δx bigger than unity. Therefore, limitation of the learning step size

is important. For a trajectory outside the convergence region, one can apply the homotopy

technique, that is, by specifying a series of trajectories that eventually converges to the final

desired trajectory to guide the ILC process. Using this technique, the bilinear method can
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learn to follow the desired trajectory outside the convergence region with a faster learning

rate compared with the correspond linear method.
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Figure 4.1: The learning curves as the amplitude of the desired trajectory for (i.e., k) Axis 2
increases.
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Chapter 5
Data-Driven Linear ILC using

Reinforcement Learning

5.1 Introduction

This chapter focuses on data-driven model-free ILC algorithms. The classical model-free ILC

algorithm is the Arimoto-type learning law, which was originally proposed for continuous

systems in [2, 34].

A possible version of this Arimoto-type ILC for discrete-time systems is of the form

uj+1 = uj + αej (5.1)

where

uj =

[
uj(0) uj(1) · · · uj(p− 1)

]T
(5.2)

These Arimoto-type learning laws suffer from the bad learning transients as analyzed in [9,
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35], which means asymptotical but not monotonic decay of the tracking error. Approaches

to adjust the Arimoto-type learning law for the monotonic convergence include applying a

linear quadratic tracker to condition the plant in [68], a time-varying learning gain [69] and

using a zero-phase filter in [70]. However, these adjustments necessitate the knowledge of a

system model.

Recently some other model-free ILC methods are proposed. For example, Reference [71,

72, 73] use a finite impulse response (FIR) filter to approximate the system output in terms

of the outputs from previous iterations, i.e., the system output of the next iteration is written

as the output of the current iteration added by the convolution summation of the FIR filter

and the output of some previous iteration. The parameters of this FIR filter are estimated by

minimizing the quadratic term of the difference between the estimated output and the desired

output. However, the improvement of tracking accuracy by this method is limited because of

the limited number of parameters of the FIR filter. The same group then developed another

model-free method for LTI systems by estimating the system P matrix [74], which can be

corrupted by noises and disturbances and thus lead to divergence.

References [75, 76, 77] used a cost function instead to evaluate the control command and

the gradient descent method was used to update the command, the process of which needed

numerical methods such as the Broyden-Fletcher-Goldfarb-Shanno method to approximate

the Hessian matrix of the objective function (i.e., the cost function). This method is similar to

the principle of reinforcement learning and without taking advantage of knowledge of model-

based ILC algorithms, the convergence of this method is hard to be predicted; there is little

control of the learning transients.

Generally speaking, model-free RL algorithms have little control of the learning process.
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Directly applying RL for ILC problems is likely to be infeasible in practice due to safety

concerns, not to mention the number of iterations needed.

On the other hand, a data-driven model predictive control (MPC) algorithm has been de-

veloped in [31], which can be seen as a Q-learning method in some extent. By rewriting and

extending this MPC algorithm as an off-policy RL method, and adjusting for ILC problems,

we develop a data-driven model-free ILC algorithm by RL in the trail domain for linear sys-

tems which can avoid bad learning transients. This method has the following distinct features.

(1) A quadratic parameterized value function: The value function for RL is defined as a

cumulative cost function that consists of the quadratic costs of the current iteration and the

future iterations. For linear systems, this can be of a quadratic form of the error and control

differences for the current iteration and the future control actions together with the system

dynamics which are implicitly included in the parameters.

(2) A ILC learning law that allows the improvement of tracking accuracy and collection

of data simultaneously: As the goal is to improve the tracking accuracy instead of an accurate

estimation of the value function, the tracking error can still converge to a desired level as long

as there is a contraction mapping between two successive iterations.

(3) Batch update of the value function by least squares method: Least squares is chosen

here instead of gradient descent or semi-gradient descent due to safety concerns.

(4) An off-policy RL method: “Off-policy” means that one can use an L that is safe for

learning in practice while estimating the value function for a different L. This ensures that

one can collect enough data for the estimation of the value function without safety concerns.

This chapter first introduces the notations in RL and ILC. The data-driven model-free ILC

algorithm for linear systems is then presented in the RL language. A numerical example is
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performed to demonstrate the feasibility of this method. One limitation of this method is the

curse of dimensionality, which can be relaxed by function approximations.

5.2 Problem Formulation

For two successive trials, the error transmission can be described by

ej+1 = ej − Pδj (5.3)

where

δj = uj+1 − uj (5.4)

and a general linear ILC learning law is of the form

δj = Ljej (5.5)

Because ILC approaches the inverse solution, it is possible that the inverse problem is

ill-posed. Actually, Reference [78] states that for any zero-order-hold sampled systems with

order higher than 3, P is ill-conditioned and the inverse problem is ill-posed if the sample rate

is not particularly slow. Reference [79] suggests several approaches to find a stable inverse.

Onemethod is to not ask for zero tracking error at the first few time steps, the number of which

is equal to the number of bad singular values of P . For example, if there is one bad singular

value, the learning matrix L then becomes a p by (p− 1) matrix and Eq. (5.5) becomes
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δj = Ldel
j edelj = Ldel

j


ej(2)

...

ej(p)

 (5.6)

5.3 ILC Design in the Trial Domain by Optimization

By defining the cost of each iteration as

rj = eTj+1Qeej+1 + δTj Rδδj (5.7)

where Qe and Rδ are positive-definite diagonal matrices, a discounted cumulative cost is

defined as

Vj =
∞∑
i=0

γirj+i =
∞∑
i=0

γi
(
eTj+i+1Qeej+i+1 + δTj+iRδδj+i

)
(5.8)

where γ ∈ (0, 1) is the forgetting factor (or the discount rate).

The ILC problem then can be rewritten as an optimization problem in the iteration do-

main, i.e., to find the optimal learning matrix L’s in Eq. (5.5) that minimizes the discounted

cumulative cost Vj for the system Eq. (5.3).

Given the system model, this optimization problem can be solved by Linear Quadratic

Regulator (LQR) theory

L∗ = (Rδ + γP TKP )−1(γP TK) (5.9)

whereK satisfies the Riccati equation

K = γK − γ2KP (Rδ + γP TKP )−1P TK +Qe/γ (5.10)
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This optimalL∗ can produce zero tracking error with enough iterations, adjust the learning

rate by tuning Rδ, and avoid the bad learning transients. The goal of this paper is to develop

an ILC approach that uses data to find the optimal L∗ when the system model is unknown.

5.4 An Off-Policy RL Approach

One concern about applying RL algorithms for control problems is the safety issue during

exploration. Here we rewrite and extend a model-free MPC method proposed in Reference

[31] into an RL algorithm that has better control over the learning transients.

5.4.1 Notations and Assumptions

In the trial domain, the environment is depicted by Eq. (5.3), where e is the state s and δ is

the action a, which can be rewritten into the RL form,

St+1 = St − PAt
(5.11)

where St = ej , and At = δj . The notations are summarized in Table. 5.1.

Table 5.1: Notations in ILC and RL
state action environment

ILC notation e δ Eq. (5.3)
RL notation s ∈ S a ∈ A Eq. (5.11)

Note that in the RL community, the capital letters are the symbols of variables while the

lower case letters denote values in the set. For example, st ∈ S is the value that the state St
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equals, at the “time” step t. Also, the definition of trajectory in RL is a sequence like

S0, A0, R0, S1, A1, R1, S2, · · · (5.12)

The cost for each iteration in ILC, Eq. (5.7), is defined as the reward for each (st, at, st+1)

transition, that is,

Rt = sTt+1Qest+1 + aTt Rδat (5.13)

The discounted cumulative cost in ILC, Eq. (5.8), is defined as the return Gt, that is,

Gt =
∞∑
i=0

γiRt+i (5.14)

A state-action value function in RL is defined as

qπ(s, a) ≜ E[Gt | St = s, At = a]

=
∑
s′,r

Pr(s′, r | s, a){r + γE[Gt+1 | St+1 = s′]}
(5.15)
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5.4.2 The Recursion Equation

For deterministic cases, Pr(s′, r | s, a) = 1 for all (s, a) pairs and Gt is an unbiased sample.

Given a deterministic policy π(a | s) as a = Ls, for each (s, a, r, s′) transition,

q̂π(s, a,Θ) ≜ E[Ĝt(St, At,Θ) | St = s, At = a]

=
∑
s′,r

Pr(s′, r | s, a){r + γE[Ĝt+1(St+1, At+1,Θ) | St+1 = s′]}

= r + γE[Ĝt+1(St+1, At+1,Θ) | St+1 = s′]

= r + γ
∑

π(a′ | s′)E[Ĝt+1(St+1, At+1,Θ) | St+1 = s′, At+1 = a′]

= r + γE[Ĝt+1(St+1, At+1,Θ) | St+1 = s′, At+1 = Ls′]

= r + γq̂π(s
′, Ls′,Θ)

(5.16)

Since L is computed through ∂q̂π(s′, a′,Θ)/∂a′ = 0, which is equivalent tomaxa′q(s
′, a′) in

the Q-learning algorithms, one can treat this algorithm as a Q-learning method.

5.4.3 Estimation of the State-Action Value

The qπ(s, a) can be approximated by

q̂π(s, a,Θ) = ΘTϕ(s, a) (5.17)

where ϕ(s, a) are the basis functions.

For the linear ILC problem, we can prove that

ϕ(s, a) = ϕ(ej, δj) =
( [

ej δj

]
⊗

[
ej δj

] )T (5.18)
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where ⊗ denotes the Kronecker product. The proof is presented in the appendix.

By using the estimated value, the recursion equation becomes

q̂π(s, a,Θ) = r + γq̂π(s
′, Ls′,Θ) (5.19)

Plugging Eq. (5.17) into Eq. (5.19), the recursion equation that is valid for each transition

(St, At, Rt, St+1) becomes

ΘTϕ(s, a) = r + γΘTϕ(s′, Ls′) (5.20)

To compute Θ, here the least squares method is chosen. In RL, there exist other methods

like the semi-gradient TD(0) and the gradient descent method to update Θ. However, these

methods usually converge slower than the least squares method and have little control over the

process before convergence. It is possible that the tracking error grows dramatically before

it converges to a reasonable estimation of the real Θ. In control problems, safety is a priority

and hence the least squares method is chosen to update the estimation of Θ.

One advantage of using Eq. (5.20) (or Eq. (5.19)) is that the learning matrix L used in

those equations can be different from the L used for learning in practice, i.e., the L used to

choose a according to s. This is named as “off-policy” in RL. The estimated Θ corresponds

to the L used in Eq. (5.20) instead of the L used to create (s, a, s′) pair. This allows one to

use a feasible L in practice, such as with a much smaller learning rate to collect enough data

for the estimation.
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5.4.4 Improvement of the Policy

The policy (the learning law) needs to serve two purposes: exploitation and exploration. The

exploitation role of the ILC law needs to form a contraction mapping between the tracking

errors of two successive iterations and the exploration part needs the control actions to be

able to do some probing of the system dynamics. Thanks to the robustness of ILC, these two

roles do not contradict to each other, especially for linear systems. This means the stochas-

tic learning law allows the improvement of the tracking accuracy and the collection of data

simultaneously, which may decrease the number of iterations needed for convergence.

Instead of directly adding some randomness as δj = αLej+βν, the learning law is chosen

as

δj =


α + βν1

. . .

α + βνp

Lej ≜ L̃ej (5.21)

where νi is a random signal produced according to some stochastic distribution. The values

of α and β in Eq. (5.21) determine the ratio between the exploitation term and the exploration

term. This learning law can lead to monotonic convergence as long as I−PL̃ has all singular

values less than unity. As the learning progresses, the weight of exploration can be decreased

gradually until zero. If the tracking error suddenly increases, one can choose to use an earlier

history of e with a different set of α and β to create the control action (the command history)

again or one can use a safer L if any, for example, in some cases an Arimoto-type learning

law with small learning gain.
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The learning law can be written as the policy, that is,

a = L̃s (5.22)

The improvement of policy is chosen by min
a

q̂π that is, by solving the equation

∂q̂π(s, a,Θ)/∂a = 0, which leads to

L = −(Θδ,δ)
−1(Θe,δ)

T (5.23)

5.5 Data-Driven Model-Free ILC Algorithm

The model-free ILC algorithm is summarized in Table 5.2. This method can simultaneously

lead to the optimal L and “zero” tracking error. It is possible that the tracking accuracy has

been achieved before the optimal L is accurately learned.

Table 5.2: Model-Free ILC Algorithm

Initialize γ, Qe, Rδ, α, β, L and u.
Loop until the tracking error is smaller than some threshold

In each batch j = 1, 2, · · · , Nbat where Nbat ≥ (length(e) + length(δ))2

uj+1 = uj + δj where δj is computed by Eq. (5.21)
record the output y

j
and compute the error ej .

Compute the estimation of Θ by least squares method.
Compute the update of L according to Eq. (5.23).

Currently, the limitation of this algorithm is the tremendous number of iterations needed in

one batch update, (length(e)+ length(δ))2. This limitation is due to the high dimensionality

used in the RL context, St = ej . The solution to this issue is to use function approximation,
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that is,

êj = wT
e ϕe(ej)

δ̂j = wT
δ ϕδ(δj)

(5.24)

The number of iterations needed in one batch then becomes (length(we) + length(wδ))
2.

5.6 A Numerical Example

5.6.1 Problem Description

To demonstrate the effectiveness of the model-free ILC algorithm, we performed numeri-

cal experiments on a 4th-order system consisting of two masses, two springs, and only one

damper (Figure 5.1). A desired trajectory is chosen, to keep the position of the second mass

at 2 for 2 seconds and then go back to the origin, being stabilized there for 1 second (the red

circled solid line in Figure 5.2). Given the lightly damped system, this trajectory is hard to

followed, as the system tends to oscillate instead making it hard to hold steady.

The parameters of the dynamic system are m1 = m2 = 1, c1 = 0.01, k1 = k2 = 1,

sampled at 5 Hz, whose discrete state space model is

A =



0.9603 0.0198 0.1972 0.0013

0.0198 0.9801 0.0013 0.1987

−0.3930 0.1958 0.9584 0.0198

0.1960 −0.1974 0.0198 0.9801


B =



0.0199

6.637e− 5

0.1972

0.0013


C =

[
0 1 0 0

]
D = 0

(5.25)
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Other parameters are γ = 0.9, Qe = I and Rδ = 10−7I where I is the p by p identity matrix.

5.6.2 Simulation Process

Simulations are performed in MATLAB as follows:

1. Create and store Ldel
initial by 0.001randn(p, p− 1) and uinitial by randn(p, 1).

2. Simulation 1: The learning curve of the optimal Lopt computed based on a model.

According to Eq. (5.9), the optimal Lopt is computed and its deleted form (deleting the

first row) Ldel
opt is used to learn to follow the desired trajectory (the red circled solid line

in Figure 5.2). The updating of commands follows

uj+1 = uj + Ldel
opte

del
j (5.26)

The learning curve using the optimal Ldel
opt, i.e., the RMS error of each iteration as the

learning with Ldel
opt progresses, serves as the standard to evaluate how close the learned

L’s are to the optimal Lopt.

Note that because of the ill-conditioned P matrix of this 4th order system, the deleted

version of the learning matrix, Ldel as in Eq. (5.6), is applied to replace the square

matrix L. This implies that the tracking accuracy at the first time step is not considered

and hence when computing RMS error of each iteration, the error at the first time step

is not included.

3. Simulation 2: the learning curve of the Arimoto-type learning.

An Arimoto-type learning law is applied as a comparison to the model-free method to
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learn the desired trajectory. The updating of the control actions follows

uj+1 = uj + 0.001edelj (5.27)

Its learning gain (0.001) is chosen to be on the same level with the gain of the initial

learning matrix Ldel
initial for the model-free ILC methods and hence the bad learning

transients caused by the Arimoto-type law are not exaggerated or diminished because

of a different gain value.

4. Simulation 3: the learning curve of the data-driven model-free ILC, compared with

three model-based learning laws.

The model-free ILC algorithm (Table 5.2 with Ldel
initial and uinitial) is used to learn the

desired trajectory and α and β used for each batch are shown in the Table 5.3 After

4 batches, the updates of L are stopped. The learning curve of this process is plotted.

Three model-based ILC methods, the transpose learning law L = P T , the quadratic

learning law L = (PP T + R−1
) P T , and the optimal learning law Eq. (5.9) are also

applied to learn the same trajectory.

Table 5.3: α and β

Batch 1 2 3 4 5
α 0.1 0.1 0.1 0.1 1
β 2 0.1 0.1 0.1 0

5.6.3 Results and Discussions

The desired trajectory (the red solid circled line) and the output (the blue dashed dotted line)

after learning by the data-driven ILC (Simulation 3) are plotted in Figure 5.2. These two
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plots are overlapping except for the first time step. The tracking errors are less than 1% with

respect to the desired trajectory. The deviation at the first time step is caused by the deleted

learning matrix as in Eq. (5.6) used to approach the stable inverse. In practice, the desired

trajectory is supposed to be adjusted by adding one more time step at the beginning, which is

to be compromised to achieve high tracking accuracy for the entire real desired trajectory.

The learning curve of the data-driven ILC using RL with 4 batch-updates of L are plotted

in Figure 5.3. Each batch contains 2304 iterations. The minimum requirement of the number

of iterations in each batch is (23+24)2 = 2209. Here we used around 100 more, (24+24)2 =

2304, and the more iterations included in one batch the more accurate the solution obtained

by the least squares method.

In the first batch, without any prior information of the system dynamics and also with the

purpose of exploration, Ldel
initial was created by 0.001randn(p, p− 1), and hence the tracking

error is slightly increased. Because of the small value of the Ldel
initial, the RMS errors stay

below 2 in the first batch.

During the second batch, the RMS error decreases by using the updated L based on the

data from the first batch and the wiggles are caused by the exploration signal. (There are not

any obvious wiggles in the first batch because of the already increasing error and the initial

Ldel
initial created by randn.) The decreasing trend of the tracking error in the second batch is

realized by the learning law, Eq. (5.21), which allows the contraction mapping while doing

exploration at the same time. At the end of the first batch, the tracking error has reached the

level of 10−2, which is actually the first plateau of the learning curve of the optimal L, plotted

by the red solid line in Figure 5.3.

For the sake of rich enough data, the tracking error of the initial run in the previous batch
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is used as the tracking error to compute the command for the first run in the new batch. Hence

the tracking error is increased when the updated L is used at the beginning of the third batch.

And the tracking error is decreased again while data is collected for a better estimation of L.

The same process is repeated for the fourth batch. From the fifth batch, the updating of L is

stopped by resetting β to zero and α to 1. Figure 5.3 plots the RMS error for the first 15000

iterations to demonstrate the process of updating L. The tracking RMS error is decreased to

the level of 10−14 after 25000 iterations.

This learning curve is compared with three model-based learning laws in Figure ??. The

learning curve of the L with 4 updates is plotted by black dashed line; the green dash-dot

line represents the learning curve of the transpose law; the magenta dot line of the quadratic

learning law, and the solid red of the optimal learning law. Because of the little damped

dynamics, the transpose learning law and the quadratic learning law learn the high frequency

motions a lot slower than the optimal learning laws (both model-based and model-free) as the

green line stays around 0.7 and the magenta line around 10−3 even after 200000 runs. The

model-free ILC by RLmethod (black) can follow the model-based optimal ILC (red) after the

exploration stage (the four-batch updates of L but one can obtain the same results just by one

batch depending on the richness of data), and the tracking error can be decreased to 10−13,

around the numerical zero after 200000 runs.
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5.7 Conclusion

This chapter presents the data-driven model-free ILC by an off-policy RL in the trial domain

for linear systems, which can be seen as the first step to bridge ILC and RL leading toward

treatment of nonlinear systems. In this data-driven ILC method, the exploration of the dy-

namics can be limited in the action space where the contraction mapping of the errors between

two successive iterations is still valid. Therefore, the improvement of the tracking accuracy

can be achieved before the estimation of the parameters is accurate enough. Moreover, the

off-policy method allows one to use a safer learning law to learn the trajectory and create

data, while using the data to estimate the parameters of a value function for another learning

law. This implies the collection of enough data while learning to follow the desired trajectory

without safety concerns. Due to the extensive measurements needed, the number of iterations

before convergence can be huge. Function approximation can relax this limitation. However,

it probably cannot be completely avoided due to the model-free nature.
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Figure 5.1: A spring-mass-damper system.
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Figure 5.2: A 24-point desired trajectory and the learned trajectory by data-driven ILC.
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Figure 5.3: The learning curves of the data-driven ILC.
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5.8 Appendix

The proof in the control context, i.e., in terms of Vj , ej , and δj , is as follows: Because of the

forgetting factor γ is less than 1, there exists a big enough l ∈ Z such that γl ≈ 0. Therefore

the finite-horizon cost

Vj =
l∑

i=0

γirj+i (5.28)

is used to compute the infinite cost Eq. (5.8).

The following steps prove that the accumulative cost Vj can be written as a quadratic

function with respect to ej and δj .

1. Rewrite the cost Vj as a quadratic function of super-super vectors by stacking the error

histories and control action differences for all iterations in the horizon.
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By defining super-super vectors

e<l>
j+1 =



ej+1

ej+2

...

ej+l


δ<l>
j =



δj

δj+1

...

δj+l−1


(5.29)

the finite-horizon value function Eq. (5.28) becomes

Vj = (e<l>
j+1 )

TQle<l>
j+1 + (δ<l>

j )TRlδ
<l>
j (5.30)

where

Ql =



Qe

γQe

. . .

γl−1Qe


Rl =



Rδ

γRδ

. . .

γl−1Rδ


(5.31)

2. The accumulative cost Vj is a function with respect to ej and δj with future L’s and the

dynamics P implicitly included as parameters.

Assuming a learning matrix L for future iterations (j + 1, j + 2, · · · , j + l − 1), the

future error histories and future control action differences can be written as
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ej+1 = ej − Pδj

ej+2 = (I − PL)ej+1 = (I − PL)ej − (I − PL)Pδj

ej+3 = (I − PL)2ej+1 = (I − PL)2ej − (I − PL)2Pδj

...

ej+l = (I − PL)l−1ej+1 = (I − PL)l−1ej − (I − PL)l−1Pδj

δj+1 = Lej+1 = Lej − LPδj

δj+2 = Lej+2 = L(I − PL)ej − L(I − PL)Pδj

...

δj+l−1 = Lej+l−1 = L(I − PL)l−2ej − L(I − PL)l−2Pδj

(5.32)

Package the above future data as super-super-vectors,

e<l>
j+1 =



ej+1

ej+2

ej+3

...

ej+l


= Peej + Pδδj δ<l>

j =



δj

δj+1

δj+2

...

δj+l−1


= Leej + Lδδj (5.33)
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where

Pe =



I

I − PL

(I − PL)2

...

(I − PL)l−1


Pδ =



−P

−(I − PL)P

−(I − PL)2P

...

−(I − PL)l−1P



Le =



0

L

L(I − PL)

...

L(I − PL)l−2


Lδ =



I

−LP

−L(I − PL)P

...

−L(I − PL)l−2P



(5.34)

The cost Vj then becomes

Vj(ej, δj) =

ej
δj


T Θe,e Θe,δ

Θδ,e Θδ,δ


ej
δj

 (5.35)

where

Θe,e Θe,δ

Θδ,e Θδ,δ

 =

PT
e QlPe + LT

e RlLe PT
e QlPδ + LT

e RlLδ

PT
δ QlPe + LT

δ RlLe PT
δ QlPδ + LT

δ RlLδ

 (5.36)

For convenience, we define

Θ =

Θe,e Θe,δ

Θδ,e Θδ,δ

 (5.37)
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and Eq. (5.35) becomes

Vj =

ej
δj


T

Θ

ej
δj

 (5.38)

Hence, Vj is a quadratic function with the parametric matrix Θ in terms of
[
ej δj

]
,

whereΘ includes the influence of future control inputs and the system dynamics. The

state-value function then can be parameterized as

qπ(s, a) = qπ(ej, δj) = Vj =

ej
δj


T

Θ

ej
δj

 (5.39)

3. An alternative form that fits the function approximation

By using the Kronecker product, Eq. (5.39) can be rewritten as

Vj = ΘT
(ej

δj


T

⊗

ej
δj


T )T (5.40)

where Θ is a column vector by stacking the rows of theΘ matrix. Therefore, the basis

function is of the quadratic form.
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Chapter 6
Conclusions and Future Work

An ILC algorithm uses the tracking error from previous iterations to compute a feedforward

signal that can compensate a feedback controller and aims to increase the tracking accuracy

approaching the reproducibility level of the hardware. Generally speaking, the use of models

in ILC can lead to algorithms that are less computational demanding, have faster convergence,

and have better stability and performance guarantees. The use of data can relax the restrictions

brought by the model.

Because ILC asks for zero error at all frequencies, model-based ILC can be destabilized by

high frequency model errors from residual modes or parasitic poles. Infinite impulse response

zero-phase low-pass filtering is used to robustify to such model inaccuracy. These filters fail

to produce the intended steady state frequency cutoff objective and can cause an otherwise

stable ILC law to become unstable. Here we consider the circulant form of a zero-phase filter

for ILC and show that it represents the desired steady state response cutoff and can guarantee

that the circulant filter design will not destabilize a stable ILC law. This is the first time to

introduce a circulant filter into ILC and take advantage of the off-line property of ILC.
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Besides the computation of a feedforward control signal, the measurements from previous

repetitions can also be used to update the systemmodel used in ILC design. For linear systems,

this leads to an indirect adaptive ILCmethod with an embedded observer to update the system

Markov parameters. This adaptive ILC approach can produce high tracking accuracy when

the trajectory is too fast for feedback control to be effective. It can also keep learning transients

small so that constraints are not violated during the learning process.

For nonlinear systems, when the measurements of all system states are available, one

can use a Carlemen bilinearized model to approximate the nonlinear dynamics, to arbitrarily

high accuracy at the expense of increased dimensionality. Hence here an ILC approach for

nonlinear systems based on Carleman bilinearization is proposed. This ILC approach uses

data to repeatedly create bilinear models in a homotopy approaching the desired trajectory,

and can converge considerably faster when compared to the corresponding method based on

a linearized model. The ILC algorithm for a bilinear system is developed for the first time. It

is also an important step to fill the gap in the development of ILC laws specifically designed

to handle nonlinear systems.

At last, a data-driven model-free ILC for linear systems is developed by applying an off-

policy RL method in the trial domain. This data-driven method has two important features:

the improvement of tracking accuracy before accurate estimation of state-action values and

the collection of enough data while learning the desired trajectory without safety concerns.

The limitation of this method is the number of iterations needed, which can be relaxed by

using function approximation. This algorithm can be seen as the first step to bridge ILC and

RL aiming to address nonlinear systems.

As noted before, the research contributions in this thesis can be viewed as a progression
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from model-based ILC algorithms to data-driven ILC algorithms. Chapter 2 is totally a pri-

ori model based, and seeks ways to robustify ILC convergence in the presence of modeling

errors. Chapters 3 and 4 use data to update models, in the first case updating the system

Markov parameters, and in the second case updating a progression of models along a homo-

topy. Chapter 5 finally eliminates the use the a priori model and performs ILC totally model

free using RL.

The next step and the first step of future work is to (1) extend this data-driven ILC by RL

method to nonlinear dynamics, and (2) directly use RL in the time domain for ILC problems to

compute the feedforward signal. Then four ILC methods can be compared while increasing

the nonlinearity of a system: (1) nonlinear ILC based on linearization, (2) nonlinear ILC

based on Carleman bilinearization, (3) data-driven ILC by RL, and (4) model-free RL. This

may result in a qualitative answer to the question when to use data-driven ILC and when to

use system identification and a model-based ILC algorithm. The ultimate goal is to mutually

benefit from both data and model for nonlinear ILC problems.
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