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In the generalized caching problem, we have a set of pages and a cache of size k . Each page p has a sizewp ≥ 1

and fetching cost cp for loading the page into the cache. At any point in time, the sum of the sizes of the pages

stored in the cache cannot exceed k . The input consists of a sequence of page requests. If a page is not present
in the cache at the time it is requested, it has to be loaded into the cache incurring a cost of cp .

We give a randomizedO(logk)-competitive online algorithm for the generalized caching problem, improving

the previous bound of O(log
2 k) by Bansal, Buchbinder, and Naor (STOC’08). This improved bound is tight

and of the same order as the known bounds for the classic paging problem with uniform weights and sizes.

We use the same LP based techniques as Bansal et al. but provide improved and slightly simplified methods

for rounding fractional solutions online.

CCS Concepts: • Theory of computation → Caching and paging algorithms; Design and analysis of
algorithms; Online algorithms;
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1 INTRODUCTION
In the basic two-level caching problem we are given a collection of n pages and a cache (a fast access
memory). The cache has a limited capacity and can store up to k pages. At each time step a request

to a specific page arrives and can be served directly if the corresponding page is in the cache; in

that case no cost is incurred. If the requested page is not in the cache, a page fault occurs and in

order to serve the request the page must be fetched into the cache, possibly evicting some other

page, and a cost of one unit is incurred. The goal is to design an algorithm that specifies which page

to evict in case of a fault such that the total cost incurred on the request sequence is minimized.
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uniform sizes arbitrary sizes

uniform costs

2Hk -competitive [10]

Hk -competitive [1, 12]

lower bound Hk [10]

O(log
2 k)-competitive [11]

O(logk)-competitive [4]

arbitrary costs O(logk)-competitive [3]

O(log
2 k)-competitive [4]

O(logk)-competitive

Table 1. An overview of the results for the online caching problem in the randomized setting. The new result
is highlighted in bold.

This classical problem can be naturally extended to the generalized caching problem, by allowing

pages to have non-uniform fetching costs and to have non-uniform sizes. In the general model

we are given a collection of n pages. Each page p is described by a fetching cost cp ≥ 0 and a size

wp ≥ 1. The cache has limited capacity and can only store pages up to a total size of at most k .
The framework of generalized caching has been motivated by applications in web caching and

networking. The non-uniform sizes of the pages can correspond to the scenarios of caching web

pages of different sizes, and the non-uniform costs of fetching a page can model scenarios in which

the pages have different locations in a large network.

Various special cost models have been proposed in the literature. In the bit model [4, 11], each page
p has cp = wp , and thus, for example, minimizing the fetching cost can correspond to minimizing

the total traffic in the network. In the fault model [4, 11], for each page we have the fetching cost

cp = 1 and the sizewp may be arbitrary; in this case the fetching cost corresponds to the number of

times a user has to wait for a page to be retrieved. In the weighted caching model [3, 11], for each

page p we have the sizewp = 1 and the fetching cost cp may be arbitrary; this models situations

where some pages are more expensive to fetch than others because they may be on far away servers,

or slower disks.

We consider the online version of the generalized caching problem. In this version as soon as a

page is requested, it has to be loaded into the cache, and while processing the request we have no

information about the sequence of pages which will be requested later.

1.1 Related Work
The study of the caching problem with uniform sizes and costs (the paging problem) in the online

setting has been initiated by Sleator and Tarjan [13] in their work that introduced the framework

of competitive analysis. They show that well known paging rules like LRU (Least Recently Used)

or FIFO (First In First Out) are k-competitive, and that this is the best competitive ratio that any

deterministic algorithm can achieve.

Fiat et al. [10] extend the study to the randomized setting and design a randomized 2Hk -

competitive algorithm, whereHk is the k-th Harmonic number. They also prove that no randomized

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 1111.



An O(logk)-competitive algorithm for Generalized Caching 1:3

online paging algorithm can be better thanHk -competitive. Subsequently, McGeoch and Sleator [12],

and Achlioptas et al. [1] design randomized online algorithms that achieve this competitive ratio.

Weighted caching, where pages have uniform sizes but can have arbitrary cost, has been studied

extensively because of its relation to the k-server problem. The results for the k-server problem
on trees due to Chrobak et al. [8] yield a tight deterministic k-competitive algorithm for weighted

caching. The randomized complexity of weighted caching has been resolved only recently, when

Bansal et al. [3] designed a randomized O(logk)-competitive algorithm.

The caching problem with non-uniform page sizes seems to be much harder. Already the offline

version is NP-hard [11], and there was a sequence of results [2, 9, 11] that lead to the work of

Bar-Noy et al. [5] which gives a 4-approximation for the offline problem.

For the online version, the first results consider special cases of the problem. Irani [11] shows

that for the bit model and for the fault model in the deterministic case LRU is (k + 1)-competitive.

Cao and Irani [7], and Young [14], extend this result to the generalized caching problem.

In the randomized setting, Irani [11] gives an O(log
2 k)-competitive algorithm for both bit and

fault models, but for the generalized caching problem no o(n)-competitive ratio was known until

the work of Bansal et al. [4]. They show how to obtain a competitive ratio of O(log
2 k) for the

general model, and also a competitive ratio ofO(logk) for the bit model and the fault model. Table 1

presents an overview of the results for the online caching problem in the randomized setting.

Since it has been known that no randomized o(logk)-competitive online algorithm for general-

ized caching exists, the central open problem in this area was whether it is possible to design a

randomized O(logk)-competitive algorithm.

1.2 Result and Techniques
Wepresent a randomizedO(logk)-competitive online algorithm for the generalized caching problem,

improving the previous bound of O(log
2 k) by Bansal et al. [4]. This improved bound unifies all

earlier results for special cases of the caching problem. It is asymptotically optimal as already for

the problem with uniform page sizes and uniform fetching costs there is a lower bound of Ω(logk)
on the competitive ratio of any randomized online algorithm [10].

Our approach is similar to the approach used by Bansal, Buchbinder, and Naor in their results on

weighted caching [3] and generalized caching [4]. In both these papers the authors first formulate

a packing/covering linear program that forms a relaxation of the problem. They can solve this

linear program in an online manner by using the online primal-dual framework for packing and

covering problems introduced by Buchbinder and Naor [6]. However, using the framework as a

black-box only guarantees an O(logn)-factor between the cost of the solution obtained online and

the cost of an optimal solution. They obtain an O(logk)-guarantee by tweaking the framework for

this specific problem. Note that this O(logk)-factor is optimal, i.e., in general one needs to lose a

factor of Ω(logk) when solving the LP online.

In the second step, they give a randomized rounding algorithm to transform the fractional

solution into a sequence of integral cache states. Unfortunately, this step is quite involved. In [4]

they give three different rounding algorithms for the general model and the more restrictive bit

and fault models, where in particular the rounding for the fault model is quite complicated.

We use the same LP as Bansal et al. [4] and also the same algorithm for obtaining an online

fractional solution. Our contribution is a more efficient and also simpler method for rounding the

fractional solution online. In particular, our rounding algorithm maintains a distribution over only

k2
integral cache states. The approaches by Bansal et al. [3, 4] do not give a good bound on the

number of states maintained by the rounding algorithm.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 1111.



1:4 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke

We first give a rounding algorithm for monotone cost models (wherewp ≥ wp′ implies cp ≥ cp′)
and then extend it to work for the general model. Our rounding algorithm only loses a constant

factor and, hence, we obtain an O(logk)-competitive algorithm for generalized caching.

2 THE LINEAR PROGRAM
This section describes an LP for the generalized caching problem. It also shows how to generate

good variable assignments which are used in the rounding algorithm of the next section. Although

there are some minor notational differences, this largely follows the work of Bansal, Buchbinder,

and Naor [4].

We assume that cost is incurred when a page is evicted from the cache, not when it is loaded

into the cache. This means we will not pay anything for the last time we load a page into the cache

that remains in the cache at the end. In the general model, we may assume that the last request

is always to a page of size k and zero cost. This does not change the cost of any algorithm in the

original cost model. However, it does ensure that the cost in our alternate cost model matches the

cost in the original model.

We begin by describing an integer program IP for the generalized caching problem. The IP

has variables x(p, i) indicating if page p has been evicted from the cache after the page has been

requested for the i-th time. If x(p, i) = 1, page p was evicted after the i-th request to page p and has

to be loaded back into the cache when the page is requested for the (i + 1)-st time. The total cost is

then

∑
p
∑

i cpx(p, i).
Let B(t) denote the set of pages that have been requested at least once until and including time t

and let r (p, t) denote the number of requests to page p until and including time t . In a time step t in
which page pt is requested, the total size of pages other than pt in the cache can be at most k −wpt
. Thus, we require ∑

p∈B(t )\{pt }

wp (1 − x(p, r (p, t))) ≤ k −wpt .

Rewriting the constraint gives ∑
p∈B(t )\{pt }

wpx(p, r (p, t)) ≥
∑

p∈B(t )

wp − k .

To shorten the notation, we define the total weight of a set of pages S as W (S) :=
∑
p∈S wp .

Altogether, this results in the following IP formulation for the generalized caching problem.

min

∑
p

∑
i

cp x(p, i)

s.t. ∀t :

∑
p∈B(t )\{pt }

wp x(p, r (p, t)) ≥W (B(t)) − k

∀p,i : x(p, i) ∈ {0, 1}

(IP 1)

To decrease the integrality gap of our final LP relaxation, we add additional, redundant constraints

to the IP.

min

∑
p

∑
i

cp x(p, i)

s.t. ∀t∀S ⊆B(t ):W (S )>k :

∑
p∈S\{pt }

wp x(p, r (p, t)) ≥W (S) − k

∀p,i : x(p, i) ∈ {0, 1}

(IP 2)

Unfortunately, even the relaxation of this IP formulation can have an arbitrarily large integrality

gap. However, in an integral solution any wp >W (S) − k cannot give any additional advantage

overwp =W (S) − k for a constraint involving set S . Therefore, it is possible to further strengthen

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 1111.



An O(logk)-competitive algorithm for Generalized Caching 1:5

Procedure 1 fix-set(S, t ,x ,y)

Input: Current time step t , current variable assignments x and y, a minimal set S ⊆ B(t).
Output: Terminates if S becomes non-minimal or constraint t , S in primal-LP is satisfied and

returns the new assignments for x and y.

1: while
∑
p∈S\{pt } w̃

S
p · x(p, r (p, t)) <W (S) − k do {constraint for t , S violated}

2: infinitesimally increase yS (t)
3: for each p ∈ S do
4: v :=

∑
τ :r (p,τ )=r (p,t ),p,pτ

∑
S ⊆B(τ ):p∈S,W (S )>k w̃

S
p yS (τ ) − cp

{v is a violation of the dual constraint for x(p, r (p, t))}
5: if v ≥ 0 then x(p, r (p, t)) := 1

k exp

( v
cp

)
6: if x(p, r (p, t)) = 1 then return {S is not minimal any more}
7: end for
8: end while
9: return {the primal constraint for step t and set S is fulfilled}

the constraints without affecting an integral solution. For this, we define w̃S
p B min{W (S) − k,wp }.

Relaxing the integrality constraint, we obtain an LP. As shown in Observation 2.1 of Bansal et al. [4],

we can assume without loss of generality that x(p, i) ≤ 1. This results in the final LP formulation.

min

∑
p

∑
i

cp x(p, i)

s.t. ∀t∀S ⊆B(t ):W (S )>k :

∑
p∈S\{pt }

w̃S
p x(p, r (p, t)) ≥W (S) − k

∀p,i : x(p, i) ≥ 0

(primal-LP)

The dual of primal-LP is

max

∑
t

∑
S ⊆B(t ):W (S )>k

(W (S) − k)yS (t)

s.t. ∀p,i :

∑
t :r (p,t )=i,p,pt

∑
S ⊆B(t ):p∈S,W (S )>k

w̃S
p yS (t) ≤ cp

∀t∀S ⊆B(t ):W (S )>k : yS (t) ≥ 0 .

(dual-LP)

Procedure 1 will be called by our online rounding algorithm to generate assignments for the

LP variables. Note that, as the procedure will not be called for all violated constraints, the variable

assignments will not necessarily result in a feasible solution to primal-LP but will have properties

which are sufficient to guarantee that our rounding procedure produces a feasible solution. We

assume that all primal and dual variables are initially zero.

For a time step t , we say a set of pages S is minimal if, for every p ∈ S , x(p, r (p, t)) < 1. We note

that by Observation 2.1 of Bansal et al. [4], whenever there is a violated constraint t , S in primal-LP,

there is also a violated constraint t , S ′ ⊆ S for a minimal set S ′. The idea behind Procedure 1 is that

it is called with a minimal set S . The procedure then increases the primal (and dual) variables of the

current solution in such a way that one of two things happen: either the set S is not minimal any

more because the value of x(p, r (p, t)) reaches 1 for some page p ∈ S or the constraint t , S is not

violated any more. At the same time, the following theorem guarantees that the primal variables

are not increased too much, that is, that the final cost is still bounded by O(logk) times the cost of

an optimal solution. Its proof follows exactly the proof of Theorem 3.1 from Bansal et al. [4].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 1111.
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Theorem 2.1. Let x(p, i) be the final variable assignments generated by successive calls to Proce-
dure 1 (with different subsets). The total cost

∑
p
∑

i cpx(p, i) is at most O(logk) times the cost of an
optimal solution to the caching problem.

Observe that our online algorithm generates the calls to Procedure 1. Sometimes it may succeed

in constructing a rounded solution from an infeasible assignment to the x(p, i)’s. In this case it will

not continue to call Procedure 1 and, hence, the final assignment to the x(p, i)’s may not be feasible.

However, this is not a problem for the analysis.

3 THE ONLINE ALGORITHM
The online algorithm for the generalized caching problem works as follows. It computes primal

and dual assignments x and y for LPs primal-LP and dual-LP, respectively, by repeatedly finding

violated primal constraints and passing the constraint together with the current primal and dual

solution to Procedure 1.

Procedure 2 online-step(t )

1: x(pt , r (pt , t)) B 0 {put page pt into the cache}
{some constraints may be violated}

2: S B {p ∈ B(t) | γ · x(p, r (p, t)) < 1}

3: while constraint for S is violated do
4: fix-set(S, t ,x ,y) {change the current solution}
5: adjust distribution µ to mirror new x
6: S B {p ∈ B(t) | γ · x(p, r (p, t)) < 1} {recompute S}
7: end while
{the constraints are fulfilled}

In addition to the fractional solutions x and y, the online algorithm maintains a probability

distribution over valid cache states. Specifically, µ will be the uniform distribution over k2
subsets —

each subset specifying the set of pages that are not present in the cache. Some of the k2
subsets may

be identical. A randomized algorithm then chooses a random number r from [1, . . . ,k2] and behaves

according to the r -th subset, i.e., whenever the r -th subset changes it performs the corresponding

operations. Note that this rounding approach differs substantially from the results by Bansal,

Buchbinder and Naor [3, 4], since it constructs a distribution over a small number of cache states.

The approaches in [3] and [4] do not allow to obtain a good upper bound on the number of states.

We will design the distribution µ in such a way that it closely mirrors the primal fractional

solution x . In Section 3.1 we will show that each set in the support of µ is a complement of a valid

cache state, i.e., the size constraints are fulfilled and the currently requested page is contained in

the cache. In Section 3.2 we will show the way of updating µ in such way that a change in the

fractional solution of the LP that increases the fractional cost by ε is accompanied by a change in

the distribution µ with (expected) cost at most O(ε).
The rounding algorithm loses only a constant factor, which gives us a O(logk)-competitive

algorithm for generalized caching.

Procedure 2 gives the outline of a single step of the online algorithm, whereγ is a scaling factor

which is explained in the following.
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L

S0

S1

Si` w`

Fig. 1. The size classes Si and the set of large pages L obtained from the set S .

3.1 Ensuring that Cache States are Valid
We will set up some constraints for the sets in the support of µ, which guarantee that the sets

describe complements of valid cache states. In order to define these constraints we introduce the

following notation.

Let t denote the current time step and and set xp B x(p, r (p, t)). Let γ ≥ 2 denote a scaling factor

to be chosen later, and define zp B min{γxp , 1}. The variable zp is a scaling of the primal fractional

solution xp . We also introduce a rounded version of the scaling: we define z̄p B ⌊k · zp⌋/k , which
is simply the value of zp rounded down to the nearest multiple of 1/k . Note that due to the way the

LP-solution is generated, zp > 0 implies that zp ≥ γ/k . Therefore, rounding down can only change

the value of zp by a small factor. More precisely, we have z̄p ≥ (1 − 1/γ ) · zp .
We use S to denote the set of pages p that are fractional in the scaled solution, i.e., have zp < 1

(or equivalently z̄p < 1). We divide these pages into size classes as follows. The class Si contains
pages whose size falls into the range [2i , 2i+1). See Figure 1 for an illustration.

We construct a set L ⊆ S of “large pages” by selecting pages from S in decreasing order of size

(ties broken according to page-id) until either the values of z̄ for the selected pages add up to at

least 1, or all pages in S have been selected. We usewℓ to denote the size of the smallest page in L,
and iℓ to denote its class-id. Note that this construction guarantees that either 1 ≤

∑
p∈L z̄p < 2 or

L = S . The following claim shows that the second possibility only occurs when the weight of S is

small compared to the size of the cache k or while the online algorithm is serving a request (for

example when the online algorithm iterates through the while-loop of Procedure 2).

Claim 3.1. After a step of the online algorithm, we either have 1 ≤
∑
p∈L z̄p < 2 orW (S) ≤ k .

Proof. IfW (S) ≤ k there is nothing to prove. Otherwise, we have to show that we do not run

out of pages during the construction of the set L. Observe that after the while-loop of Procedure 2

finishes, the linear program enforces the following condition for the subset S :∑
p∈S

min{W (S) − k,wp } · xp ≥W (S) − k .

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 1111.



1:8 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke

In particular, this means that

∑
p∈S xp ≥ 1 and hence

∑
p∈S z̄p ≥ (1 − 1/γ )γ ≥ 1, as γ ≥ 2. Since the

values of z̄p for the pages p in S sum up to at least 1, we will not run out of pages when constructing

L. �

Let D denote a subset of pages that are evicted from the cache. With a slight abuse of notation

we also use D to denote the characteristic function of the set, i.e., for a page p we write D(p) = 1 if

p belongs to D and D(p) = 0 if it does not. We are interested whether at time t the set D describes a

complement of a valid cache state.

Definition 3.2. We say that a subset D of pages γ -mirrors the fractional solution x if:

(1) ∀p ∈ B(t) : z̄p = 0 implies D(p) = 0 (i.e., p is in the cache).
(2) ∀p ∈ B(t) : z̄p = 1 implies D(p) = 1 (i.e., p is evicted from the cache).
(3) For each class Si : ⌊

∑
p∈Si z̄p⌋ ≤

∑
p∈Si D(p). (class constraints)

(4) ⌊
∑
p∈L z̄p⌋ ≤

∑
p∈L D(p). (large pages constraint)

Here z̄ is the solution obtained after scaling x by γ and rounding down to multiples of 1/k .

We refer to the constraints in the first two properties as integrality constraints, to the constraints

in the third property as class constraints, and the constraint in the fourth property is called the large
pages constraint.

Lemma 3.3. A subset of pages thatγ -mirrors the fractional solution x to the linear program, describes
a complement of a valid cache state for γ ≥ 16.

Proof. Let D denote a set that mirrors the fractional solution x . In order to show that D is a

complement of a valid cache state we need to show that the page pt which is accessed at time t is
not contained in D, and that the size of all pages which are not in D sums up to at most k .

Observe that the fractional solution is obtained by applying Procedure 1. Therefore, at time t the
variable xpt = x(pt , r (pt , t)) has value 0. (It is set to 0 when Procedure 2 is called for time t , and it is
not increased by Procedure 1.) Hence, we have z̄pt = 0 and Property 1 in Definition 3.2 guarantees

that pt is not in D.
It remains to show that the size of all pages which are not in D sums up to at most k . This means

we have to show ∑
p∈B(t )\{pt }

wpD(p) ≥W (B(t)) − k . (1)

Because of the integrality constraints we have∑
p∈B(t )\{pt }

wpD(p) =
∑

p∈B(t )\S

wpD(p) +
∑

p∈S\{pt }

wpD(p) =

=
∑

p∈B(t )\S

wp +
∑

p∈S\{pt }

wpD(p) =W (B(t)) −W (S) +
∑

p∈S\{pt }

wpD(p) .

In order to obtain Equation 1 it suffices to show that∑
p∈S\{pt }

wpD(p) ≥W (S) − k .

For the case thatW (S) ≤ k this is immediate, since the left hand side is always non-negative.

Therefore in the following we can assume thatW (S) > k , and, hence, 1 ≤
∑
p∈L z̄p < 2 due to

Claim 3.1. Recall thatwℓ is the size of the smallest page in L, and that iℓ denotes the corresponding
class-id.
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If 2
iℓ ≥W (S) − k , then∑

p∈S

wpD(p) ≥
∑
p∈L

wpD(p) ≥ 2
iℓ
∑
p∈L

D(p) ≥ 2
iℓ ≥W (S) − k ,

where the third inequality follows from the large pages constraint, and the fact that

∑
p∈L z̄p ≥ 1.

In the remainder of the proof we can assume 2
iℓ <W (S) − k . We have∑

p∈S

wpD(p) ≥
∑
i≤iℓ

∑
p∈Si

wpD(p)

≥
∑
i≤iℓ

2
i ·

∑
p∈Si

D(p)

≥
∑
i≤iℓ

2
i ·

( ∑
p∈Si

z̄p − 1

)
=

1

2

∑
i≤iℓ

∑
p∈Si

2
i+1z̄p −

∑
i≤iℓ

2
i

≥
1

2

∑
i≤iℓ

∑
p∈Si

wp z̄p − 2
iℓ+1

≥
γ

4

∑
i≤iℓ

∑
p∈Si

w̃S
pxp − 2(W (S) − k) .

(2)

Here the second inequality follows sincewp ≥ 2
i
for p ∈ Si , the third inequality follows from the

class constraints, and the fourth inequality holds since wp ≤ 2
i+1

for p ∈ Si . The last inequality

uses the fact that z̄p ≥ (1 − 1/γ )γxp ≥ γ/2 · xp for every p ∈ S , and thatwp ≥ w̃S
p .

Using the fact that z̄p ≥ γ/2 · xp we get

γ

4

∑
p∈L\Siℓ

w̃S
pxp ≤

1

2

∑
p∈L

w̃S
p z̄p ≤

1

2

(W (S) − k)
∑
p∈L

z̄p ≤W (S) − k ,

where the last inequality uses

∑
p∈L z̄p ≤ 2. Adding the inequality 0 ≥

γ
4

∑
p∈L\Siℓ

w̃S
pxp −(W (S)−k)

to Equation 2 gives∑
p∈S

wpD(p) ≥
γ

4

∑
p∈S

w̃S
pxp − 3(W (S) − k) ≥ (γ/4 − 3)(W (S) − k) ≥W (S) − k ,

for γ ≥ 16. Here the second inequality holds because after serving a request the online algorithm

guarantees that the constraint

∑
p∈S w̃

S
pxp ≥W (S) − k is fulfilled for the current set S . �

3.2 Updating the Distribution Online
We will show how to update the distribution µ over subsets of pages online in such a way, that

we can relate the update cost to the cost of our linear programming solution x . We show that in

each step the subsets in the support of µ mirror the current linear programming solution. Then

Lemma 3.3 guarantees that we have a distribution over complements of valid cache states.

However, directly ensuring all properties in Definition 3.2 leads to a very complicated algorithm.

Therefore, we partition this step into two parts. We first show how to maintain a distribution µ1

over subsets D that fulfill the first three properties in Definition 3.2 (i.e., the integrality constraints

and the class constraints). Then we show how to maintain a distribution µ2 over subsets that fulfill

the first and the last property.
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C`iC2
iC1

iC0
i

Si

Fig. 2. Cost classes.

From these two distributions we obtain the distribution µ as follows. We sample a subset D1

from the first distribution and a subset D2 from the second distribution, and compute D = D1 ∪ D2

(or D = max{D1,D2} if D is viewed as the characteristic function of the set).

Clearly, if both sets D1 and D2 fulfill Property 1 from Definition 3.2, then the union fulfills Prop-

erty 1. Furthermore, if one of D1, D2 fulfills one of the properties 2, 3, or 4, then the corresponding

property is fulfilled by the union as these properties only specify a lower bound on the characteristic

function D.
We will construct µ1 and µ2 to be uniform distributions over k subsets. Then the combined

distribution µ is a uniform distribution over k2
subsets, where some of the subsets may be identical.

In the following we assume that the values of z̄p change in single steps by 1/k . This is actually
not true. Consider for example Line 1 of Procedure 2 where, after the time step t is increased,
the variable x(pt , r (pt , t)) is set to 0. As xpt is a shorthand for x(pt , r (pt , t)), the value of xpt , and
therefore also the value of z̄pt , is set to 0. However, the drop in the value of z̄pt larger than 1/k can

be simulated by several consecutive changes by a value of 1/k .

3.2.1 Maintaining Distribution µ1. In order to be able to maintain the distribution µ1 at a small

cost we strengthen the conditions that the sets D in the support of µ1 have to fulfill. For each size

class Si we introduce cost classes C0

i ,C
1

i , . . . where C
s
i = {p ∈ Si : cp ≥ 2

s } (see Figure 2). Note that

we have Si = C
0

i .

For the subsets D in the support of µ1 we require

A. For each subset D, for each size class Si , and for all cost classes Cs
i⌊∑

p∈Cs
i
z̄p

⌋
≤
∑

p∈Cs
i
D(p) ≤

⌈∑
p∈Cs

i
z̄p

⌉
.

B. For each page p ∑
D
D(p) · µ1(D) = z̄p .

Note that the first set of constraints ensures that class constraints are fulfilled. This holds because

C0

i = Si . Hence, the left inequality for C0

i is exactly the class constraint for class Si . The second
set of constraints imply the integrality constraints. An example of a distribution that satisfies the

constraints A and B is given in Figure 3.

Increasing z̄p . Suppose that for some page p the value of z̄p increases by 1/k (see Figure 4 for

an example). Assume that p ∈ Si and cp ∈ [2r , 2r+1), i.e., p ∈ C0

i , . . . ,C
r
i . As we have to satisfy

the property

∑
D D(p)µ1(D) = z̄p , we have to add the page p to a set D∗

in the distribution µ1,

which currently does not contain p (i.e., we have to set D∗(p) = 1 for this set). We choose this set

arbitrarily.
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D1 :

D2 :

D3 :

D4 :

z̄p1 = 3
4 z̄p2 = 2

4 z̄p3 = 2
4 z̄p4 = 2

4 z̄p5 = 2
4 z̄p6 = 2

4 z̄p7 = 3
4 z̄p8 = 3

4

p1

p1

p1

p2

p2

p3

p3 p4

p4

p5

p5

p6

p6

p7

p7

p7

p8

p8

p8

C3
iC2

iC1
iC0

i

Fig. 3. An example of distribution µ1 for the cache of size k = 4 and the set of pages Si = {p1,p2, . . . ,p8}. The
values z̄pi are given at the top of the figure. µ1 is a uniform distribution over 4 sets: D1 = {p2,p3,p5,p7,p8},
D2 = {p1,p3,p4,p6,p7}, D3 = {p1,p2,p4,p6,p8}, and D4 = {p1,p5,p7,p8}. Constraints A and B are satisfied.

However, after this step some of the constraints⌊∑
p∈Cs

i
z̄p

⌋
≤
∑

p∈Cs
i
D(p) ≤

⌈∑
p∈Cs

i
z̄p

⌉
corresponding to the cost classes Cs

i for s ≤ r may become violated. We repair the violated

constraints step by step from s = r to 0. We do that by moving the pages between the sets D in such

a way, that while repairing the constraints for the cost class Cs
i we keep the following invariant:

all but one of the sets D from the support of µ have the same number of pages from the set Cs
i , as

they had before we increased the value of z̄p . The remaining set, which we denote by D+, has one
additional page. At the beginning D+ = D∗

.

Notice that

∑
p∈Cs

i
z̄p =

∑
D
∑
p∈Cs

i
D(p) · µ1(D) is equal to the average number of pages from Cs

i
that a set in the support of µ1 has. If the number of pages from Cs

i in the sets D in the support of

µ1 differs by at most one, each set has either ⌊
∑
p∈Cs

i
z̄p⌋ or ⌈

∑
p∈Cs

i
z̄p⌉ pages from Cs

i , and all the

constraints for Cs
i are satisfied.

Fix s and assume that the constraints hold for all s ′ > s , but some are violated for s . Let
a B ⌈

∑
p∈Cs

i
z̄p −

1

k ⌉, i.e., before increasing the value of z̄p each set D contained at most a, and at

least a − 1, pages from Cs
i . As the only set that has now a different number of pages from Cs

i is D
+
,

and some constraints for Cs
i are violated, it must be the case that D+ has now a + 1 pages from

Cs
i , and some set D ′

with positive support in µ1 has a − 1 pages from Cs
i . The constraints for C

s+1

i
are satisfied, so the number of pages in class Cs+1

i differs by at most 1 between D+ and D ′
. Hence,

there must exist a page in Cs
i \C

s+1

i that is in D+ but not in D ′
. We move this page to D ′

, which

incurs an expected cost of at most 2
s+1/k . Now all the sets in the support of µ1 have either a − 1 or

a pages from Cs
i , and so all the constraints for Cs

i are satisfied. As we did not modify any pages

from Cs+1

i , the constraints for values s ′ > s remain satisfied. Now the set D ′
has one additional

page, and it becomes the new set D+.
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a)
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D3 :
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p3 p4

p4
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D1 :
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p1

p1
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p3 p4

p4
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p5
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c)

Fig. 4. In the setting as in Figure 3 the value of z̄p6
increases by 1/k = 1/4. a) To satisfy Constraint B, we add

page p6 to the setD4. After this modification Constraint A is not satisfied for the cost classC2

i = {p5,p6,p7,p8}

and the set D4. b) To satisfy Constraint A for the cost class C2

i we move the page p5 from D4 to D3. Now
Constraint A is satisfied for the cost classes C3

i ,C
2

i and C
1

i , but it is violated for C0

i and the sets D3,D4. c) To
satisfy Constraint A for the cost class C0

i we move the page p2 from D3 to D4. Now all the constraints are
satisfied.
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Performing the above procedure incurs expected cost of 2
s+1/k for s from r to 0. In total we have

expected costO(2r /k). The increase of z̄p increases the LP-cost by at least 2
r /k . Therefore, the cost

in maintaining the distribution µ1 can be amortized against the increase in LP-cost.

Decreasing z̄p . When for some page p the value of z̄p decreases, we have to delete the page p
from a set D in the support of µ1 that currently contains p. The analysis for this case is completely

analogous to the case of an increase in z̄p . The resulting cost of O(2r /k), where cp ∈ [2r , 2r+1), can

be amortized against the cost of LP — at a loss of a constant factor we can amortizeO(2r /k) against
the cost of LP when the value of z̄p increases, and the same amount when the value of z̄p decreases.

Change of the set S . The class constraints depend on the set S that is dynamically changing.

Therefore we have to check whether the constraints are fulfilled if a page enters or leaves the set

S . When a page p with cp ∈ [2r , 2r+1) increases its z̄p value to 1 we first add it to the only set in

the support of µ1 that does not contain it. This induces an expected cost of at most 2
r+1/k . Then

we fix Constraint A, as described in the procedure for increasing a z̄p value. This also induces

expected costO(2r /k). After that we remove the page from the set S . Constraint A will still be valid

because for every cost class Cs
i that contains p and for every set D in the support of µ1 the values

of

∑
p∈Cs

i
z̄p and

∑
p∈Cs

i
D(p) change by exactly 1.

3.2.2 Maintaining Distribution µ2. We will show how to maintain a distribution µ2 over subsets

of pages, such that each set D in the support of µ2 fulfills the large pages constraint and does not

contain any page p for which z̄p = 0. Note that as

∑
p∈L z̄p < 2, the large pages constraint can be

reformulated as follows: if

∑
p∈L z̄p ≥ 1 then each subset D in the support of µ2 contains at least

one page from the set of large pages L.
In the following we introduce an alternative way of thinking about this problem. A variable z̄p

can be in one of k + 1 different states {0, 1/k, 2/k, . . . , 1 − 1/k, 1}. We view the k − 1 non-integral

states as points. We say that the ℓ-th point for page p appears (or becomes active) if the value of z̄p
changes from (ℓ − 1)/k to ℓ/k . Points can disappear for two reasons. Suppose the ℓ-th point for

page p is active. We say that it disappears (or becomes inactive) if either the value of z̄p decreases

from ℓ/k to (ℓ − 1)/k , or when the value of z̄p reaches 1.

Note that if for a page p we have z̄p = 1, the page p is not in the set S , and it only enters S once

the value of z̄p is decreased to 0 again. The appearance of a point for page p corresponds to a cost

of cp/k of the LP-solution. At a loss of a factor of 2 we can also amortize cp/k against the cost of

the LP-solution when a point for page p disappears.

Observation 3.4. The set of pages with active points is the set of pages in S with the value z̄p , 0.

The above observation says that if we guarantee that a set D in the support of µ2 can contain

only those pages from S which have an active point, we guarantee one of our constraints — the set

D does not contain any page p for which z̄p = 0.

We assign priorities to the active points, according to the size of the corresponding page, where

points corresponding to larger pages have higher priorities. Ties are broken first according to

page-ids, and then to the point-numbers. At any time step, Q denotes the set of the k active points

with highest priority, or all active points if there are less than k (see Figure 5). The following

observation follows directly from the definition of Q and L, as we used the same tie-breaking

mechanisms for both constructions.

Observation 3.5. For any time step, the set of pages p in L that have a value of z̄p , 0 is exactly
the set of pages that have at least one point in Q .

We assign to active points labels from the set {1, . . . ,k}, with the meaning that if a point q has

label ℓ, then the ℓ-th set in the support of µ2 contains the page corresponding to q. At each point in
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L

z̄p1 = 1
6 z̄p2 = 2

6 z̄p3 = 3
6 z̄p4 = 3

6 z̄p5 = 0
6 z̄p6 = 1

6

Q

Fig. 5. Each page p ∈ S with z̄p = i/k has i corresponding points (here k = 6). The set of k points with highest
priority (Q) and the set of large pages (L) are marked in grey.

time the ℓ-th set consists of pages for which one of the corresponding points has label ℓ. In general

we will allow a point to have several labels. Note that this definition of the sets in the support of µ2

directly ensures that a page that has z̄p = 0 is not contained in any set in the support of µ2, because

a page with this property does not have any active points.

Adding a label to a point q increases the expected cost of the online algorithm by at most cp(q)/k ,
where p(q) is the page corresponding to the point q. Deleting a label is for free, and in particular if

a point disappears (meaning its labels also disappear), the online algorithm has no direct cost while

we can still amortize cp/k against the LP-cost.

The following observation forms the basis for our method of maintaining the distribution µ2.

Observation 3.6. If the points in Q have different labels, then all sets in the support of the
distribution µ2 fulfill the large pages constraint.

This means that we only have to show that there is a labeling scheme that on one hand has a

small re-labeling cost, i.e., the cost for re-labeling can be related to the cost of the LP-solution, and

that on the other hand guarantees that at any point in time no two points from Q have the same

label. We first show that a very simple scheme exists if the cost function is monotone in the page

size, i.e.,wp ≤ wp′ implies cp ≤ cp′ for any two pages p, p ′. Note that the bit model and the fault

model that have been analyzed by Bansal et al. [4] have monotone cost functions. Therefore, the

following section gives an alternative proof for an O(logk)-competitive algorithm for these cost

models.

3.2.3 Maintaining µ2 for Monotone Cost. We show how to maintain a labeling of the set Q such

that all labels assigned to points are different. Assume that currently every point in the set Q has a

single unique label.

Appearance of a point q. Suppose that a new point q arrives. If q does not belong to the k points

with the highest priority, it will not be added to Q and we do not have to do anything.

If the set Q currently contains strictly less than k points, then the new point will be contained in

the new set Q , but at least one of the k labels has not been used before and we can label q with it.

In the new set Q all points have different labels. The online algorithm paid a cost of cp(q)/k , where
p(q) denotes the page corresponding to the point q.

If Q already contains k pages, then upon appearance of q, a point q′ with lower priority is

removed fromQ and q is added. We can assign the label of q′ to the new point q, and then all points

in the new set Q have different labels. Again the online algorithm pays a cost of cp(q)/k .
In all cases the online algorithm pays at most cp(q)/k whereas the LP-cost is cp(q)/k .

Disappearance of a point q. Now, suppose that a point q in the current set Q is deleted. This

means that a point q′ with a lower priority than q may be added to the set Q (if there are at least k
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z̄p1 = 1
6
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6
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z̄p5 = 0
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z̄p6 = 1
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Fig. 6. Each page p ∈ S with z̄p = i/k has i corresponding points (here k = 6). The sets Qi of points with the
highest priority that correspond to the pages with cost at least 2

i have been marked. The sets Q0 and Q1

have k points each, and the set Q2 has less than k points.

points in total). We give q′ the same label that q had. This incurs a cost of cp(q′)/k ≤ cp(q)/k , where
the inequality holds due to the monotonicity of the cost function (note that this is the only place

where monotonicity is used). Since we can amortize cp(q)/k against the cost of the LP-solution we

are competitive.

3.2.4 Maintaining µ2 for General Cost. We want to assign labels to points in Q in such a way that

we are guaranteed to see k different labels if the set Q contains at least k points. In the last section

we did this by always assigning different labels to points inQ . For the case of general cost functions

we proceed differently.

Let Qi denote the set of k active points with the highest priority that correspond to

pages with cost at least 2
i
. In case there are less than k such points, Qi contains all

active points corresponding to pages with cost at least 2
i
(see Figure 6). Note that

Q = Q0.

Essentially our goal is to have a labeling scheme with small re-labeling cost that guarantees that

each set Qi sees at least |Qi | different labels. Since Q = Q0, this gives the desired result. However,

for the case of general cost, it will not be sufficient any more to assign unique labels to points, but

we will sometimes be assigning several different labels to the same point. At first glance, this may

make a re-labeling step very expensive in case a point with a lot of labels disappears.

To avoid this problem we say that a set Qi has to commit to a unique label for every point q
contained in it, where the chosen label is from the set of all labels assigned to q (see Figure 7).

The constraint for Qi is that it commits to different labels for all points contained in it. If a point

currently has labels ℓ and ℓ′, then a set Qi may either commit to ℓ or ℓ′, but furthermore during

an update operation it may switch the label it commits to for free, i.e., no cost is charged to the

online algorithm. Recall that if a point corresponding to a page p has several labels then all sets D
corresponding to these labels contain the page p; therefore committing to a different label is for

free as no change has to be made for any set D from the support of µ2. The label to which a set Qi
commits for a point q ∈ Qi is denoted by Qi (q).

Appearance of a point q. Suppose that a point q0 corresponding to a page p with cp ∈ [2r , 2r+1)

appears. This increases the cost of the LP by at least Ω(2r /k). We assign an arbitrary label ℓ0 to
this point and, as ℓ0 is the only label of q0, we set Qs (q0) = ℓ0 for all subsets Qs that contain q0.

Assigning a new label corresponds to evicting the page in some cache state D, and, consequently,
induces an expected cost of at most 2

r /k for the online algorithm.
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Fig. 7. Labelings for the sets Qi (k = 4). The 8 active points are ordered increasingly with respect to the
priority. The size of the dots corresponds do the cost of 1, 2 or 4 of the respective pages — larger dots represent
larger costs. Each point has a set of labels assigned to it. Each set Qi contains 4 points with the highest
priorities amongst the points with cost at least 2

i . For each set Qi we are given a valid labeling.

It remains to adjust the labeling so that the labeling of every setQi becomes valid again. The sets

Qs where s > r are not affected by the appearance of q0, and their labelings remain valid. We only

have to fix the labelings for the sets Qs where s ≤ r . We will do this while only paying at most

O(2s/k) for every s ≤ r . This cost can be amortized against the cost of the LP.

Assume that labelings for all sets Qs ′ where s
′ > s are valid, but the labeling for Qs is violated.

We want to fix it, paying only O(2s/k). We call a label ℓ a duplicate label for Qs if there exist two

points in Qs for which Qs commits to ℓ. We call the corresponding points duplicate points. The
labeling is valid iff there exist no duplicate points. We call a label ℓ free for Qs if currently there is

no point in Qs for which Qs commits to ℓ. When we start processing Qs there exists at most one

duplicate label, namely the label ℓ0 that we assigned to q0, and for which we have Qs (q0) = ℓ0.
Since the total number of labels is k and there are at most k points in Qs , there must exist a

free label ℓfree. We could fix the condition for Qs by assigning the label ℓfree to one of the duplicate

points q, and setting Qs (q) = ℓfree. However, this would create a cost that depends on the cost of

the page corresponding to the chosen point q. This may be too large, as our aim is to only pay

O(2s/k) for fixing the condition for set Qs . Therefore, we will successively switch the labels that

Qs commits to for the duplicate points, until the cost of one of the duplicate points q is in [2s , 2s+1).

During this process we will maintain the invariant that there are at most two duplicate points for

Qs . Hence, in the end we can assign the free label ℓfree to a duplicate point q with cost at most 2
s+1

,

set Qs (q) = ℓfree, and obtain a valid labeling for Qs .

The process of switching the labels for the set Qs is as follows. Suppose that currently ℓ denotes
the duplicate label and that the two duplicate points both correspond to pages with cost at least

2
s+1

. This means that both points are in the set Qs+1. As the labeling for Qs+1 is valid, we know

that Qs+1 commits to different labels for these points. One of these labels must differ from ℓ. Let q′

denote the duplicate point for which Qs+1 commits to a label ℓ′ , ℓ. We set Qs (q
′) = ℓ′. Now, ℓ′

may be the new duplicate label for the set Qs .

The above process can be iterated. With each iteration the number of points in the intersection

of Qs and Qs+1 for which both sets commit to the same label increases by one. Hence, after at most

k iterations we either end up with a set Qs that has no duplicate points, or one of the duplicate

points corresponds to a page with cost smaller than 2
s+1

.
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Q0 :

Q1 :

Q2 :

{1, 2} { , 4}2

4→ 2

{3} {2, 3}

2

3→ 2

{1, 4}

4

{2}

2

2

{1}

1

1

1

{3, 4}

3

4→ 3

3

{4}

4

4

4

Fig. 8. In the setting as in Figure 7 a new point (marked in grey) arrives, which is assigned Label 4. Then the
point with lowest priority disappears from each Qi . Afterwards Q2 contains k different labels. For Q1 the
rightmost element re-commits to Label 3, and afterwards the label of the leftmost element is changed to 2 at
small cost. For Q0 only the label of the third element is changed.

An example of fixing the labeling after adding a new point can be seen in Figure 8. As we only

pay cost 2
s+1/k for fixing the labeling of Qs , the total payment summed over all sets Qs with s ≤ r

is O(2r /k), which can be amortized to the cost of LP.

Disappearance of a point q. Now, suppose that a point q corresponding to a page p with cp ∈

[2r , 2r+1) is deleted. Then a new point may enter the sets Qs for which s ≤ r . The only case for

which this does not happen is when Qs already contains all active points corresponding to pages

with cost at least 2
s
. For each Qs we commit to an arbitrary label for this point (recall this doesn’t

induce any cost, as any point, when it becomes active, gets a label). Now, for each Qs we have the

same situation as in the case when a new point appears. The set either fulfills its condition or has

exactly two duplicate points. As before we can fix the condition for set Qs at cost O(2
s/k), and the

total cost of O(2r /k) can be amortized to the cost of LP.
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