## A Thesis Submitted for the Degree of PhD at the University of Warwick

## Permanent WRAP URL:

http://wrap.warwick.ac.uk/110622

## Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

# Contributions to the Theory of factorized Groups 

Fiona Jane Helen Reeve

This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Warwisk.

The Mathematics Institute, University of Warwick. Coventry.

September 1992

## Contents

Acknowledgements ..... 3
Declaration ..... 4
Summary ..... 5
Table of Notation ..... 6
1 Introduction ..... $\theta$
1.1 Basic group theory ..... 9
1.2 The main problem ..... 14
2 Certain Group factorizationa ..... 20
2.1 Intruduction ..... 20
2.2 Groupe with a triple fartorization ..... 22
2.3 Groups with an abelian triple factorization ..... 37
2.4 Subgroupa which inherit factorization ..... 48
3 Formation aubgroups which inherit factorization ..... 58
3.1 Introduction ..... 59
3.2 The finite rase ..... 67
3.3 The formation of finite uilpotent groups ..... 75
3.4 Cernikuv groups ..... 92
3.5 The furmation of nilputent-by-nilputent groups ..... 114
CONTENTS ..... 2
4 Products which are merely sets ..... 120
4.1 Introduction ..... 120
4.2 The exponent ..... 21
4.3 Some bounds on the exponent ..... 124
4.4 Av infinite group ..... 130
Bibliography ..... 132

## Acknowledgements

I would like to thank my supervisor Dr Stewart Stouehewer for his help, patience and eudless euthusianm.

Thin thesis was prepared using LTRX-marros written by Silvio Levy for the University of Minneswta Geometry Centre, whirh were kindly installed for me by Greg McShane. Many thanky to him and to Richard Hammersley, David Stevenson and lan Redferu for their help in explaining it to me.

Thiy wurk was beguv whilst I was in receipt of a SERC grant.

## Declaration

The work in this thesis is, to the best of my knowledge, original, except where attributed to others.

## Summary

In chapter 1 we begin by describing certain group theoretical coucepts which appear during the course of this thesis. We also supply a bief survey of results concruing fartorized groups, relating them to our investigations.

In chapter 2, section 2.2 , we consider groups which possess a triple fartorization. We show that if a Cernikov group is factorized by three uilpotent sulugroups it is itself nilpotent. It is then possihle to generalize this result to a wider class of infinite groups, denoted by $\boldsymbol{f}$.

In section 2.3 we continue this theme by examining groups which have a triple fartorization by three abelian sulgroups. If such a group has finite abelian total rank theu it must be nilpotent.

In section 2.4 we investigate the circumstances under whirh a subgroup inherits the factorization of the group. We show that if a Cernikov group is fartorized hy two abelian sulogroups, then its Fitting subgroup factorizes. Once again this result holds for the class $\boldsymbol{f}$, furthermore we are able to show that the Hirsch-Plotkin radical also factorizes.

Chapter 3 examines this question in relation to the formation subgroups of a group. Let $\bar{Z}$ denote a formation of finite soluble groups as defined in section 3.1. We hegin by reviewing the existence and behaviour of the $L \mathbf{Z}$-covering sulgroups and $L \mathfrak{F}$-normalizers of a periodic ( $\mathbf{L N}$ ) 0 -group. Then, by taking $\mathfrak{J}$ to the the formation of finite nilpotent groups, we prove that, if such a group is factorized by two uilpotent subgroups, then there is an $\mathbf{L} \mathbf{Z}$-covering subgroup which also fartorizes. By sperializing to Cervikov groups we are able to show that the above holds for aul arbitrary saturated formation $\mathfrak{f}$.

In the final chapter of this thesis we consider the situation where the product of two theliaus subgroups of a group $G$ is not itself a group. We then examine a subgroup $M$ of $G$ which lies in the product set. By imposing extru ronditions we are able to produce some honode on the exponent of $M$ in terms of those of the farturs. Laytly we show that if the torsion-free nilpotent gronp $G$ is enemerated by two infinite ryclic subgroups then a subgroup which lies in their product is abelian.

## Table of Notation

| $x \in X$ | $x$ is an element of the set $X$. |
| :---: | :---: |
| $\|X\|$ | The cardinality of $X$, or the order of a group $X$. |
| $\boldsymbol{w}(G)$ | The set of prime numbers dividing the orders of the elements of a gruup $\boldsymbol{G}$. |
| $\exp (G)$ | The expunent of $G$. |
| $r_{0}(G)$ | The tursiun-frer rank of $\boldsymbol{G}$. |
| $H \subseteq G$ | $H$ is a subset of $\boldsymbol{G}$. |
| $H \leq G$ | $\boldsymbol{H}$ is a subgronp of $\boldsymbol{G}$. |
| $\boldsymbol{H}<\boldsymbol{G}$ | $H$ is a proper subgroup of $G$. |
| $H \triangleleft G$ | $\boldsymbol{H}$ in a nurmal subgroup of $\boldsymbol{G}$. |
| $H \mathrm{sm} G$ | $H$ is a subnurmal subgroup of $G$. |
| G/H | The fartor group of $G$ by a normal nulogroup $H$. |
| $\|\boldsymbol{G}: \boldsymbol{H}\|$ | The index of $H$ in $G$. |
| $<\boldsymbol{X}$ > | The group gruerated by a set $\boldsymbol{X}$. |
| $X \backslash Y$ | The set $\{x \in X: x \notin Y\}$. |
| ${ }^{*}$ | The element $g^{-1} \mathrm{sg}$. |
| $H^{\boldsymbol{N}}$ | The group < $h^{\boldsymbol{k}}: h \in H, k \in K>$. |
| $[x, y]$ | The elemant $x^{-1} y^{-1} \mathrm{r} y$. |
| $[x, y, z]$ | The elomant [ $[x, y], z]$. |
| $[x, y y]$ | The elenent $[x, y, \ldots, y]$ where $y$ apprars $n$ times. |


| [ $\boldsymbol{H}, \boldsymbol{K}$ ] | The group $\langle[h, k]: h \in H, k \in K>$. |
| :---: | :---: |
| [ $\boldsymbol{H}, \boldsymbol{K}, L$ ] | The group [ $[H, K], L]$. |
| [ $\boldsymbol{H}, \mathrm{n} \boldsymbol{K}$ ] | The group $[\boldsymbol{H}, \boldsymbol{K}, \ldots, K]$, where $K$ appears $n$ times. |
| HK | The set ( $h k: h \in H, t \in K$ ) |
| $\boldsymbol{H} \times \boldsymbol{K}$ | The direct product of groups $H$ and $\boldsymbol{K}$. |
| $\boldsymbol{H} \times \boldsymbol{K}$ | The memi-direct product of groups $H$ and $K$. |
| H1K | The wreath product of groups $H$ and $K$. |
|  | The restricted direct product of groups $X_{4}$. |
| $C_{r_{i, 1}} X_{1}$ | The cartesian product of groupa $X_{1}$ - |
| $\mathcal{N}_{\boldsymbol{r}}(\boldsymbol{X})$ | The normalizer of $X$ in $Y$. |
| $C_{r}(X)$ | The centralizer of $X$ in $Y$. |
| $z(G)$ | The centre of $G$. |
| Z, (G) | Thei'th tern of the upper central series for $G$. |
| $7{ }_{7}(G)$ | The i'th term of the luwer central series for $G$. |
| $G^{\prime \prime}$ | The derived subgroup of $G$. |
| $G^{(n)}$ | The $\mathrm{a}^{\prime}$ th term of the derived series of $G$. |
| $F(G)$ | The Fitting sulgroup of $G$. |
| $\rho(G)$ | The Hirsch-Plotkin radical of $G$. |
| Ф(G) | The Fratini subrroup of $G$. |
| $\mathrm{O}_{\mathbf{F}}(G)$ | The maximal normal $\pi$-subgroup of $\boldsymbol{G}$. |
| Core M | The subgroup $\bigcap_{\text {ge }} M M^{\boldsymbol{q}}$, where $M \leq G$. |
| $C_{m}$ | The cyclic group of order $n$. |
| $C_{p}$ | The quasicyclic $p$-group. |
| $S_{n}$ | The symmetric group of degree $n$. |
| $A_{1}$ | The alteruatiug group of degrex $n$. |
| $p$ | The set of all primes. |
| $\pi^{\prime}$ | The complement of a net of primes $\pi$ in $\mathcal{P}$. |


| N | The set of natural numbers. |
| :---: | :---: |
| 2 | The set of integers. |
| \%) | The class of $\boldsymbol{x}$-by-T) groups. |
| $x^{2}$ | The class $\boldsymbol{X} \boldsymbol{X}$. |
| LX | The class of lucally $\boldsymbol{X}$-groups. |
| 6 | The class of finite soluble groups. |
| $\pi$ | The rlass of tinite uilpetent groups. |
| \% | A formation of finite soluble groups. |

## Chapter 1

## Introduction

Before proreeding to describe the background of the problem which forms the basis of this thesis it is necessary to agree on the terminology empleyed. We shall also state some standard results which will be used frequently in the course of this work.

### 1.1. Basic group theory

Throughont this thexis we shall denote groups by upper case Ruman letters, and elements of a group or a set by lower case letters. A group $G$ is culled periadic if earh element has finite order. In this case we detine $w(G)$ to be the net of primes which divide the orders of the elementr of $G$. We may then define the exponent of $G, \exp (G)$, to be the least common multiple of all the orders of the rlements of $G$ or $\infty$ if no such value exists.

A group ia ralled torsion-free if it contains no elements of finite order other than the identity. The torsion-free rank, $r_{0}(G)$, of an abrian group $G$, is defined to be the cardinality of a maximal independeut sulaset of elenents of infinite urder. In general a group hav finite rank $r(G)$ if every finitely generated wuhgroup ran be geurated $\mathrm{by} \boldsymbol{r}(G)$ elemunts and this is the leart such iuteger with this pruperty.

The abelian group $\boldsymbol{G}$ is called divisible if for every element $g \in G$ and $m \in N$ there is some $g_{1} \in G$ such that $g=m g_{1}$. By an elementary abelian p-group we shall mean a direct product of cyclic groups of order $p$.

The set of all primes shall be denoted by $\mathcal{P}$, and if $\pi \subseteq \mathcal{P}$, then $\pi^{\prime}$ denotes the set $\mathcal{P} \backslash \pi$. A group $G$ will be called a $\pi$-group if it is periodic and $w(G) \subseteq \pi$. Now for any group $G$ and $\pi \subseteq \mathcal{F}$ wremay define a Sylow r-subgroup to be a maximal $\pi$-suligroup of $G$. By Zorn's lemma such a subgroup will exist. If $\pi=\{p\}$, for some prime $p$, and $G$ in a fivite group, then Sylow's theorems will huld for the Syluw $\boldsymbol{\rho}$-subgroups of $G$, sere $[42,6.1 .11]$. If $H$ is a subgroup of the fiuite group $G$ then we call $H$ a $H$ all $\pi$-subgroup of $G$ if | $H \mid$ is a $\pi$-number aud $|G: H|$ is a $\pi^{\prime}$-number. If $G$ is also soluble then the theorems of Hall [18] hold.

We assume that a nou-mpty class of groups coutains the unit group and all groups isomorphir to any oue of ite nurmbers. German Gothic script will be used to denote rlassea of groups. A group in the class $\boldsymbol{X}$ will be referred to as ad $\boldsymbol{X}$-group. The group $\boldsymbol{G}$ in said to be an extension of a group $\boldsymbol{N}$ by a group $Q$ if there exists a normal suligroup $M$ of $G$ such that $M \equiv N$ and $G / M \cong Q$. Then if $\boldsymbol{X}$ and $\boldsymbol{7}$ ) are any two classes of groups we may define their product clans $\boldsymbol{X}$ () to be all the groups $G$ which are an extension of an $\mathbf{X}$-group by an (7)-group. A group is called almost $\boldsymbol{X}$ if it is an extension of an $\boldsymbol{X}$-group by a fiuite gronap, that is, it is an $\boldsymbol{X}$-by-finite gruup. Lastly, $\boldsymbol{L} \boldsymbol{X}$ druotes thr rlans of locally $\boldsymbol{x}$-groups, cousintigg of all gronps $\boldsymbol{G}$ such that every finitely gruerated sulygruup of $\boldsymbol{G}$ lies in an $\boldsymbol{X}$-subgroup of $\boldsymbol{G}$. For an alphaber of group clasmes refer to the table of untation.

We shall now recall the definitiuus of certain hasic clasmes of groups. The derived sulagroup, $G^{\prime}$ of a gronp $G$ in alefined by $\left.G^{\prime}=\mid G, G\right]$. The n'th term $G^{(m)}$ of the derived series for $G$ is then defined inductively by $G^{(n)}=\left[G^{(n-1)}, G^{(m-1)}\right]$, where $G^{[1]}=G^{\prime}$. The group $G$ in naid to be soluble of derived length $d$ if $G^{(d)}=1$ and $G^{(d-1)} \neq 1$. The yormal subgronpy $G^{(n)}$ furm an abelian series for $G$. If $G^{(d)}=1$, then we rall $G$ metabelian

The lower central series of a group $\boldsymbol{G}$ is defined inductively an follows $\gamma_{1}(G)=G$ and for all $n \in \mathbb{N}, \gamma_{n+1}(G)=\left[\gamma_{n}(G), G\right]$. Earh term $\gamma_{n}(G)$ is fully invariant in $G$ and $\gamma_{m}(G) / \gamma_{n+1}(G)$ lies in the centre of $G / \gamma_{n+1}(G)$. The group $G$ is nilpotent if $\mathrm{in}^{( }(G)=1$ for some $n$.

We may also define the upper central seriea of a group $G: Z_{0}(G)=1$ and $Z_{n+1}(G)$ is surb that $Z_{n+1}(G) / Z_{n}(G)$ is the centre of $G / Z_{n}(G)$. If $G$ is uilpoteut then, $Z_{n}(G)=G$ for somer $n$. For a uilpotent group the leugths of the upper and lower central series are equal, and are referted to as thr nilpotent rlaus of $G$.

It is also possible to generalize uilpoteucy by defining a transfinitely exteuded upper rentral series. Here, if $\boldsymbol{G}$ is any group and $\boldsymbol{o}$ is an ordiual, the terms of the series are defined by the uaual rules: $Z_{0}(G)=1$ and $Z_{n+1}(G) / Z_{0}(G)=Z\left(G / Z_{\mathrm{a}}(G)\right)$ together with the completeness cuudition

$$
Z_{\lambda}(G)=\bigcup_{\sigma<\lambda} Z_{\kappa}(G),
$$

where $\lambda$ is a limit ordiual. Since the cardinality of $G$ raunut lo excerded, there is an ordinal $A$ surb that $Z_{A}(G)=Z_{A+1}(G)$, this terminal subgroup is called the hypercentre of $\boldsymbol{G}$. A group $\boldsymbol{G}$ is hypercentral if it coincides with its hypercoutre. It has been shown, see [40, p351], that a hypercentra] group is locally nilpotent. The conversw also holds if we impose the extra condition that the group satisties the minimal coudition for subgronps, defined below.

A group $G$ is said to satisfy the minimal condition for sulgroups if every uon-empty get of suhgroups coutains a mininual elemput. Such a group will then satisfy the deacruding chain rondition; that is it possenses no infinite properily ifrsceuding chains of subgroups. Iu an eutirely analogous way we may detine the maximal condition and the ascendiug chain roudition. A group is called a minimax grnip if it pussesses a series of fiuite leugth whose facturs natiefy the minimal or maximal rondition for suhgroups.

One of the most basic clasmes of groups satisfying the minimal roudition ner the quanicyclic or Prifer groups. Thene have heen characterized in mauy
ways, see for example [34, p.30]. The definition that we shall employ is given below. Let $P$ be the group generated by the infinite set $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ subject to the relations $p x_{1}=0, \mu_{i+1}=x_{i}$, and $x_{i}+x_{j}=x_{j}+x_{i}$. Then $P$ is called a quasicyclic $p$-group, denoted by $C_{p m}$. It is a divisible ahelian $\boldsymbol{p}$-group and may lue thought of as the direct limit of the cyclic suhgroups of orders $\boldsymbol{p}, \boldsymbol{\mu}^{2}, \mu^{3}, \ldots$ via the injections which map $C_{p^{\prime}}$ to the suhgroup of order $p^{\prime}$ contained in $C_{p^{\circ+1}}$ for all i.

We may now define an important class of groups which also satisfy the minimal coudition for subgroups. A group which is an extpusion of a finite direct product of quasicyclic groups by a fivite group is ralled a Cernikov group. Cernikov [9] himself showed that they are precisely the almost soluble groups which satisfy the minimal condition. Furthermore Kegel and Wehrfritz [33] have demonstrated that they also coincide with the class of locally finit groups which satisfy the minimal condition.

We shall be pucountering the class of Cernikov groups a great deal in the following rhapters and no it will prove useful to introduce a notatiunal convention. Ualess otherwise atated $G^{*}$ will denute the minimal subgroup of finite index of a group $G$ if such a subgroup exists. Thus, if $\boldsymbol{G}$ is a Ceruikov group, $G^{*}$ will be a direct produrt of quasicyrlic subgroups, and bence a divisible abelian subgruup. We must also recall that a unaximal subgroup of a Cernikov group has finite index in the group. This observation has been incorporated intu a more complex result by Robiagon [39, 3.44]-

We shall uow define a further class, f, of infinite groups with which we shall work extensively. A gronp lies in $\boldsymbol{R}$ if it is a finite extension of a direct produrt of (possibly infinitely many) quasicyrlic suhgroups. Clearly surli groups may no longer satisfy the minimal rondition for nubgronps.

Auother type of gronp with which we whall be courerued are thome with finite abelian total rank. A group $G$ satisfien this pruperty if for earh abreliau subgroup $N \leq G$ the torsion subgronp of $N$ is a Crruikev gronp, and $r_{0}(N)<\infty$.

Let us now identify certain subgroups of a general group $G$ whirh will be of great use in our studies. If $\boldsymbol{X}$ in any class of groups, then the $\boldsymbol{X}$-radical of $G$ is the group geuerated by all the normal $\boldsymbol{X}$-subgroups of $G$. The $\boldsymbol{X}$-residual of $G$ is the intersection of all normal subgruups of $G$ whose fartor groups in $G$ are 気-groups.

The radicals that we shall eucounter most often are the Fitting subgroup and the Hirsch-Plotkin radical. The Fitting aubgroup of a group $G, F(G)$, is defined to be the group generated by all the normal nilpotent sulugroups of G. Since Fitting's theorem [40, 5.2.8] states that the product of two uurmal nilputent sulgroups is nilputent. if $G$ is a finite group, $F(G)$ is nilpotent. The Hirach-Plotkin radical of a group $G, \rho(G)$, is defiued to be the group generated by all the normad locally nilpoteut subgroups of $\boldsymbol{G}$. It has been showu, by the Hirsch Platkin theorem [40, 12.1.2], that a product of two aormal locally nilpotent sulbgroups is likewise locally nilpotent. Now, since the uniuu of any chain of locally nilpotent sulgroups is lorally nilpotent, the Hirsch-Plotkin radical of any group is locally uilpotent.

Finally we drfine anuther important suligroup. The Frattini suligraup of an arbitrary group $G, \Phi(G)$, is the intersection of all the maximal subgroups of $G$. If $G$ should prove to have no maximal nubgroups, then we let $\boldsymbol{\phi}(\boldsymbol{G})=\boldsymbol{G}$. The Frattini suhgroup is uliviuunly characteristic in $G$, less clear however is the fact that it is always milpotent if it is finite, sew [40, 5.2.15].

We conclude this section by quoting a result which in of immense prartical value:

## Dedekind'y lemuma

Lat $H, K$, and $L$ be sulgromps of a group and assume that $K \subseteq L$. Then

$$
(H K) \cap L=(H \cap L) K .
$$

Any further terminology that we may require will be introduced in the course of the thesis.

### 1.2. The main problem

During the past forty years considerable interest has arisen in the behaviour of fartorized groups. A gronp $G$ is said to be factorized by its subgroups $A$ and $B$ if $G=A B$. The general problem is to investigate in what ways the structure of $G$ is iufluenced by that of its factors. For example, if $A$ and $B$ belong to some rlass $\boldsymbol{X}$ will $G$ then belong to some related class $\boldsymbol{Y}$ ?

An early result, one that in some ways has yet to be surpassed, was proved by Itó [28]. By an elegantly concise commutator calculation be showed that a group which is fartorized by two abelian subgroups must be metabelian. His remains the only result of this type which holds for grorses in geureal. All subsequent attempts to formulate such a theorem require some finiteuess conditions. However, as we shall see later, Fobinson and Stonehewer [41] were ahle to avoid any reatrictions on the group when considering certain properties relating to uilpotency.

After this early sucress, attention turued to a group factorized by two nilpatent sulgromps. By restricting to the case of a finite group where the uilpotent fartors are co-prime Wielandt [47] managed to show solubility. Later Kegel [30] removed the condition that the factors be co-prime. There then followed many attempts to generalize this result for both fiugte and intinite groups.

In the finite came the coudition of nilputency was relaxed whilst retaining the soluhility of the whule group. Typiral of these generalizations is a theorem by Finkel [12], where hr shows that $G$ is solub]e if $A$ bas a nilpatent subgroup of index two aud $B$ in Dedekind. Kazarin [29] manages to kep soluhility reven when hoth fartors have the ntructure of $A$ above.

In the infiuite rase Kegel [31] considered a locally finite group $G$ satisfying the minimal condition for sulogroups, at the time it was not known that they are in fact Cernikuv groups. He showed that if sucha group is the product of pairwise permutable locally uilpotent subgroups, then $G$ is soluble. In 1980 Cornikov [10] proved that any group which is the product of two nilpotent sulogroups satisfying the minimal condition is soluble and extremal, that is a Cernikov group. His paper [11] contains many other similar results.

A way of adapting the prohlem was to consider a group with a triple fartorization. This means that the group $G$ possesses three subgronps $A, B$ and $C$ such that $G=A B=B C=C A$. This extra rondition led to much stronger results being ohtained. In his 1965 paper [32] Kegel showed that a fiuite group which has a triple fartorization by nilpotent subgroups is itself uilpotent. Amherg and Halbritter [3] later extended this regult to almost suluble misimax groups. However in [45] Sysak gives an example of a group $G$ which is fartorized by three torsiou-fres abelian sulgromps $A, B$ and $C$. with $C$ normal in $G$, hut $G$ is not even locally nilpotent. It in with such triple fartorization problems that we shall concern ourselves in chapter 2 sections 2.2 and 2.3.

In section 2.2 we begin by cousideriug the clase of Cernikov groups. Our first major result concerus a Cernikov group which has a triple fartorization by bypercentral sulogroups. We show that such a group will itself be hypercentral. It is then possible to provide an alternative proof of Amberg and Halbritter's theorem in the Ceruikov rane. Next we turu ons attention to the clase $\boldsymbol{N}_{\text {, }}$, defined in sertion 1.1. Using our Cernikov result we succeed in proving that a R-group with a locally nilpotent triple fartorization is locally vilpotent. Finally we are able to prove the main rosult of this sertion: If the $\boldsymbol{R}$-group $G$ has a nilputent triple farturization, then $\boldsymbol{G}$ is itnelf nilpotent.

In section 2.3 we shall consider groupa which have a triple factorization by abelian subgronpe. An we have previoumly stated such a group may not, in grineral. he nilputent. This lexi Robiumon and Stunehewer to inventigate in
[41] certain propertien which in fixite groups are equivalent to uilpotency. We whall use their resulte to prove that, for a group which is a finite extension of a hypercentral subgroup, the existence of an abelian triple factorizatiou is enough to determine that the whole group he hypercentral. In the main theurem of this sertion wo once again apply the results of [41], this time to groups with finite abelian total ramk. We show that if such a group has a triple fartorization by abelian subgroups then it must be nilpotent.

Another way in which we may consider the general problem is to ask which subgroups inherit the factorization of the group, by which we meau. for $H \leq G=A B$ the identity $H=(H \cap A)(H \cap B)$ holds. One of the first results in this ares was due to Peunington [38]. She proved that if a finite group is factorized by two uilpotent subgroups then its Fittiug subgroup also factorizes.

In the infinite case Auberg [1] cousidered a Cernikov group which is factorized by two locally nilputent subgroups. He was able to show that the Hirsch-Plotkin radical then factorizes. In their joint paper [4] Amberg and Rubinson considered the alightly more geteral situation of a soluble minimax group. By restricting to ailpotent factorn they proved that the Fitting sulbgroup facturized.

In section 2.4 of chapter 2 we shall cousider problems of this nature, where the group is factorized by two ahelian sulogroups. We begin by providing an alternative proof of Amberg and Rohinson's result in the case of a Cpruikov group. We then go on to generalize to groups which lie in our class $R$, proving that both the Fitting sulggroup and the Hirsch-Plotkin radical fartorize.

Ancther situation in which the inheritance of factorization hes been cousidered is in the context of formation theory. The development of formatious really began after the pullication of a paper by Carter (7). He showed that every finite soluble group pussesses a unique ronjugary class of uilpotent selfnormalizing subgromps. These berame knowu as the Carter subgroups. His ideas were takeb up and furmalized by Gaarhûtz [15], who introduced the
concept of a 'saturated formation'. He showed that for a given saturated formation 3 . each finite soluble group contains a unique conjugacy class of 'Z-covering sulggroups'. Later Carter and Hawkes [ 8 ] completed the picture by introducing the concept of 'T-normalizers'. These formed another class of conjugate sulggroups, une closely related to that alove. Fur it trauspires that every $\boldsymbol{z}$-normadizar is contained in an $\mathbf{z}$-covering subgronp and every F-covering subgroup routains an $\mathbf{3}$-normalizer. Indeed for rertain clasges of groups they coincide.

After the nucressful development of a theory of formations for finite soluhle grunps attempts were made to gexeralize to au infinite class. In his paper [43] Stunehewer considered priodic ( $L$ NT) -gromps. He began by ratablisbing results analugous to those of Carter's uriginal paper. Ther in [44] Le gemeralized to an arbitrary saturated furmation. Further generalizations were obtained which have since been incorporated into a paper by Gardiurr, Hartley and Tomkiusun [13].

It is in this coutext that Heineken published his recent paper [24], where be cousiders a fiuite group factorized by two nilpotent subgroups. He shows that for an arbitrary saturated formation $\mathfrak{3}$, there exists a unique $\mathfrak{f}$ covering sulgroup which inherits fartorization. Furthernore, if all uilpotent groups belong to $\mathcal{F}_{\text {, then }}$ the intersertion of the two fartors lies in this subgroup. It is our aim to generalize Heineken's result to Stonehewer's class, the periodic (LN) © groupx.

In chapter 3 we begin by defiuing Gaschütz' saturated formations and dewcribing their logal ntructure. We then proceed to review the behavionr of formation sulgaronps for periodic ( $L$ N) grongs, an developed by Stouehewer in [44]. Then, in section 3.2, we provide an alteruative prouf of Heineken's finite result. By a mimilar turthod we are alro able to eatablish the existence of an J-nornualizer which inherits the fartorization. Unfortunately these techniquen fail to generalize to the infinite class. Consequently, in section 3.3, we cunsider an alteruntive approach to the problem. By sperializing to the formation of
finite uilpotent groups, wr at last find a finite proof which will generalize to periodic (LN) $\boldsymbol{L}$-groups. This initial surcess proved difficult to duplicate for an arbitrary furmation until finally. in section 3.4, we restricted ourselves to Ceruikov groups. We couclude chapter 3 with some results which ocrurred during our investigatiun, nutably that if $G$ is a periodic ( $L \boldsymbol{N}$ ) $\mathbf{C}$-group, then $G \in(L N)^{2}$ if and only if $G \in L\left(\mathfrak{N}^{2}\right)$.

Another way in which the structure of a fartorized group has been inverstigated is hy considering certain invariants. For example, the results of Ito, Wielaudt and Kegel gave rise to a conjecture concerning the derived length of a product. If the finite group $G$ in factorized by two nilpoteut subgroups, then one might hope that itn derived length is bounded by the num of the niljotent classes of itn fartors. Although this remains unproven. Pennington [38] has managed to reduce the problem to the case of a $\boldsymbol{j}$-group.

In their paper [25] Hult and Howlett consider the exponent of a finite group which is fartorized by two abelian sulgroups. This led to a paper by Howlett [26] where be shows that the exponeut of the group divides the product of thowe of the fartors.

Now in all our delibrtations so far we have louked at a group $G$ which is the product of two of its suhgroups. However, another interesting situation arisers if we cousider products which are not themselves groups. It is in this context that we shall examine Holt aud Howlett's result.

In chapter 4 we take a mulygroup $M$ of the finite group $G$ which lies in the set AB. The first major result in this arra was due to Busetto and Stonehewer [6]. They manage to generalize Ito's theorem, proving that if $A$ and $B$ are abolian, they $M$ is metalselian. Denpite this sucress many product results fail to hold in the met situatiun. Inderd in sectiun 4.2 we demonetrate that the exponent rrault is annougnt then.

However hy npplying extra conditionn on the fartors, in sertion 4.3, we ere alsir to produce nome bonads on the exponent of $M$. Finally in aection 4.4 wr cousider a finitely gevernted torsiou-frew nilpotent group. If such a group
is generated hy two infinite cyclic sulgroups, then a subgroup which lies in their product is abelian. For many other interesting results hased on the set situation seve Lerves [ 35 , chapter 4].

## Chapter 2

## Certain Group factorizations

### 2.1. Introduction

In this chapter we shall begin hy examining groups which exhibit triple fartorizatiou. A group $G$ bas a triple factorization if it pussesses sulgroups $A, B$ and $C$ such that $G=A B=B C=C A$. One of the main results for finite groups with this property is due to Kegel [32]. He proves that if a group has a triple factorization by finite uilpotent subgroups then it must itself be nilpotent.

In section 2.2 we shall extend this rather strong result to critain classes of infinite groups. We consider first the Cernilov groups; these are known to satisfy the minimal condition for subgroups. We proceed by showing that a hypercentral triple factorization leads to the whole group being hypercentral. Using this case it in possible to prove that a Cernikov group with nilpotent triple factorization is indeed nilpotent.

We then turn our attention to a much wider class of groups, one which is strictly larger than the Cernikov groups. Recall that a group hes in $\boldsymbol{f}$ if it is a finite extension of a direct product of quasicyclic subgroups. By utilizing the ahove result for Ceruikov groups we prove that a group in $\boldsymbol{f}$ which possesses a triple fartorizatiou by locally uilpotent subgroups is itself locally nilpotent. It in then possible to proreed to the major result of this section; that a group in $\boldsymbol{f}$ which has a nilpotent triple factorization must be nilpotent. We note
that Amberg aud Halbritter [3] have examized the sperial case where $G$ is an almuat soluble minimax group. They show that if such a group bas a nilputrnt triple fartorization then it is itself nilpotent.

In section 2.3 we shall consider the situation where a group has a triple fartorization by abrelian subgroups. Itos bas siouwn in [28] that such a group is metabelian. However, we might hope that, since triple factorization is a murh stronger cundition than factorization, more conld he waid in this rase. As we have sajd Kegel has shown that a triple factorization by finite nilpotent sulogroups gives rise to a uilpotent group. In section 2.2 we shal, as stated, extend this result to certain classes of infinite groups. Thus it is tempting to conjecture that our group shall be similarly nilpotent. Unfurtunately surh optimism is unfounded as Sysat [45] has prosluced an example of a group whirh has a triple fartorization by abelian subgroups hit which is not even locally nilpotent. Alsu Holt aud Howlett [25] have found a gromp which is uot residually uilpotent and which has trivial centre.

The failure of this coujecture has led to the inventigation of certain propertiey which in finite groups are equivalent to nilpotency. Nutable in this arpa is a paper by Robinson and Stonehewer [41] where they prove that if $G / G^{\prime}$ has finite torsiun-frew rank then $G$ is lorally nilpotent. We shall use thin to prove a result for a periodic group which is a finite exteuniou of a byperceutral sulogroup. If surb a group possesses an abelian triple facturization they it must be hypercrentral.

A further consequence of their rewult can be shown if the gronp has finite abelian tutal rank: that is fur each abelian sulhgroup ite torsiun sulogronp is a Cervikov group and its torsion-free rank is fiuite. We shall show that when surh a gronp possesses an alvelian triple factorization it must be nilpotent. It is theu puasible to generalize anuther rewnlt from their paper. We prove that if a Cernikuv group $G$ in the product of two abelian fartark $A$ and $B$ then a minimal infinite normal sulugronp nunt rommute with pither $A$ or $B$.

The final sertion of this chapter in somewhat different in character since it coureras groups which are fartorized by only two abelian sulggroups. However the techniques used are strongly related to thoae emplayed in section 2.2 and for that reasou it is included here. We are interesterd in which subgroups inherit the factorization of the group; that is if $G=A B$ for what $H \leq G$ durs $H=(H \cap A)(H \cap B)$ hold?

In the case of a finite group which is factorized by two nilpotent sulgroups. Prnuingtou has shown in [38] that the Fitting sulugroup of $G, F(G)$, also factorizes. Surh a strong result led to much investigation of the infinite case. Amberg proves in [1] that if a Cernikov group is factorized by two lorally uilputent subgroups theu its Hirsch-Plotkin radical inherits the factorization. Later, with Robinson [4], be showed that for a suluble minimax group with a nilpotent farturization, the Fitting sulgroup factorizes.

We shall provide an alteruative proof of Amberg and Rubinsun's result in the rase of Cernikov groups which are factorized by two abelian subgroups. Wr theu proceed to generalize still further to the class ${ }^{\text {f, }}$, proviug that if surh a group possmases an abelian factorization, then its Fitting subgroup fartorizes. We ronclude hy demonstrating that in these rircmustances the Hirsch-Plotkin radical will also fartorize.

### 2.2. Groups with a triple factorization

In order to prove that a Ceruikuv group is hypercentral if and only if it han a triple facturization by hyperceutral subgroups we shall need the following renulth. Lemise 2.2.3 is of iudeprudent interest siace it bolds for groups in general and unt just Ceruikov gruups.

Lemma 2.2.1 (Baer [ 5 , lemma A.2]). If the locally finite group $G$ satisfies the minimal condition on subgroups, then its Sylow $p$-subgroups are conjugate.

It has now lown shown by Kegel and Wehrfritz [33] that a lorally finite group which satisfies the minimal condition is in fact a Cervikov group. By a theurem of Stouelewer, which appears later as lemma 3.3.5, it is showu that. for a set of primes $\pi$, the Syluw $\pi$-snhgroups of a Cernikuv group are also ronjugate. The fullowing lemma generalizes Wielandt's result [46] which was proved ouly fur tinite gromps. For our proof we require a well knuwn theorem ahuut locally nilpotent groupa.

Theorem 2.2.2 ( $[40,12.1 .1]$ ). Let $G$ be a locally nilpotent group. Then the elemente of finite order in $G$ form a fully-inmariant subgroup $T$ (the torsion subgroup of $G$ ) such that $G / T$ in torsion-free and $T$ is a direct produrt of p-groups.

Lemma 2.2.3. If $G$ is a periodic group whose Sylow $\pi$-subgroups are conjugate and $G$ has locally nilpotent subgroups $A$ and $B$ auch that $G=A B$. then $G_{0}=$ $A_{2} B_{\text {. is a }}$ Sylow $\pi$-subgroup of $G$ where $A_{\text {n }}$ and $B$, are the Sylow $\pi$-aubgroups of $A$ and $B$ respectively.

Proof of 2.2.5: Now $A$ and $B$ are prriudic locally nilpotent gronps and no, by therorem 2.2.2, $A=A_{z} \times A_{z}$ and $B=B_{z} \times B_{z}$ whers $A_{z}$, and $B_{z}$, are the Sylow $\pi^{\prime}$-sulogroups of $A$ and $B$ respectively. Then

$$
\begin{aligned}
G & =A_{\pi} A_{*} B_{\pi} B_{*} \\
& =A_{\pi} A_{\pi}, B_{\pi}, B_{\pi} .
\end{aligned}
$$

Wr know that $A_{\pi} \leq G_{\pi}$ and $B_{\mathbb{\pi}} \leq \bar{G}_{\boldsymbol{\pi}}$ for some Sylow $\pi$-subgroups $G_{\boldsymbol{\pi}}$ aud $\boldsymbol{G}_{\boldsymbol{\pi}}$ of $G$. Since all the Sylow $\pi$-nulagroups of $G$ are roujugate there exista $g \in G$ such that $\left(\overline{G_{\pi}}\right)^{\boldsymbol{n}}=\boldsymbol{G}_{\mathrm{F}}$. Thus

$$
B .^{\prime} \leq\left(G_{*}\right)^{\prime}=G_{t}
$$

and so

$$
A_{\pi} B_{\pi}^{g} \leq G_{\pi}
$$

Since $G=A B=B A$ wr can write $g=b a$ for some $a \in A$ and $b \in B$. Hence


$$
A_{\nabla} B_{\pi} \leq G_{\sigma}^{-1}
$$

If we replace uur $\boldsymbol{G}_{\boldsymbol{z}}$ by $\boldsymbol{G}_{\boldsymbol{*}}^{\text {a we ohtain }}$

$$
A_{\Sigma} B_{x} \leq G_{\pi}
$$

[n the same way Sylow $\pi^{\prime}$-subgroups are also coujugate so we may apply the same argument to find

$$
A_{\mathrm{r}} B_{\mathrm{r}^{\prime}} \leq G_{\mathrm{r}^{\prime}}
$$

Therefore

$$
\begin{aligned}
G & =A_{\pi} A_{\pi} \cdot B_{\pi} \cdot B_{\pi} \\
& =A_{\pi} G_{\pi} \cdot B_{\pi}
\end{aligned}
$$

Let $g \in G_{r}$. Then by the above $g=a g^{\prime} b$ for some $a \in A_{\pi_{1}} g^{\prime} \in G_{\mathbf{F}^{\prime}}$, and $b \in B_{\mathbf{F}}$. We can uow rearrauge the expreasiun to get $a^{-1} g^{-1}=g^{\prime}$ which, since $G_{\#} \cap G_{\boldsymbol{m}^{\prime}}=1$, implien $g=a b$, aul go

$$
G_{*} \leq A_{*} B_{*}
$$

Thus we have $G_{q}=A_{*} B_{*}$ as required.

The following lemma geurtalizes a finite result of O.H. Kegel [32. lemma 1]. For the proof we whall ured a result dise to Hartley and Peug.

Theorem 2.2.4 (Hartley and Peng [21, corollary B2]). Suppnar G natiafies the minimal condition for subgroups and $A \leq G$. If A permutes with each of its ennjugates in $G$, then $A$ sn $G$.

Lemma 2.2.5. Let $G$ be a Cernikov group. If $G$ han three complete clasaes A. $B$ and $C$ of conjugate subgroups such that for all pairs $X, Y$ from different clases $X Y=Y X$, and these pmotucte form a single conjugary ciass $R$. then any two elements of $R$ permute. In particular $K \in R$ is subnormal in $G$.

Proof of 2.2.5: Wi shall follow Kiggel's proof closely, making the necressary adjustments for our infiuite case. Let $A, B$ and $C_{1}$ be members of the classers $A, B$ and $C$ respectively. Suppuse $A B=K$, then $B C_{1}=K^{-1}$ for sume $g \in G$. Thus

$$
K=B^{0} C_{1}^{g}
$$

Now let $C_{1}^{\boldsymbol{\theta}}=C$, then $A \leq K$ and $C \leq K$. Hence

$$
A C \leq K
$$

By our hypothesis $\boldsymbol{A C}$ is roujugate to $\boldsymbol{K}$. Since $\boldsymbol{G}$ is proriodic no sulogroup rath be ronjugate to a proper sulbgroup of itself. Thus $A C=K$. In the same way wn ohtain $B C=K$.

Let $h \in G$, theu

$$
K^{h}=B^{h} C^{h}=A^{h} C^{h} .
$$

Nuw since $A$ promutes with $B^{h}$ and $C^{h}$ it will permute with $K^{-h}$. Sinilarly $B$ permutes with $K^{\text {h }}$. Hpuce $K=A B$ pernutes with $K^{\text {h }}$. We may now apply theurem 2.2.4 to dedure that $K$ is suhnurmal in $G$.

We are now able to prove:

Theorem 2.2.6. A Cernikov group $G$ in hypercentral if and anly if it possesses three hypencentral nubgroups $A . B$ and $C$ such that $G=A B=B C=C A$.

Proof of 2.2.6: (i) The necessary condition is satisfied if we let $A, B$ and $C$ be the whule group $G$.
(ii) For the sufficient coudition we must first show that the Sylow subgroups of $G$ are nornal subgroups. Since $A$ is a hypercentral group it is hocally nilputent. It is also periodic and so by theorem 2.2 .2 it is a direct product of its Sylow sulgroups. Suppose $p$ is a prime and let $A_{p}$ be the unique Sylow $p$-sulgroup of $A$. Similarly $B$ and $C$ have normal Sylow $p$-suhgroups $B_{p}$ and $C_{p}$ respertively.

Now form the following three clasges of sulogroups;

$$
\begin{aligned}
& \mathcal{A}=\left\{A_{p}^{g}: g \in G\right\} \\
& B=\left\{B_{p}^{g}: g \in G\right\} \\
& \mathcal{C}=\left\{C_{p}^{\prime}: g \in G\right\}
\end{aligned}
$$

By lemma 2.2.3 $A_{p} B_{p}$ is a Sylow $p$-subgroup of $G$ and heure $A_{p}$ and $B_{p}$ permute. In the same way $A_{p}, B_{p}$ and $C_{p}$ permute pairwise. We can also shuw that $A_{p}$ permutes with any conjugate of $B_{p}$, that is $A_{p} B_{p}^{g}=B A_{p}$ for any $g \in G$. Siure $g \in G=A B=B A$ we lave $g=b$ for some $a \in A$ and $b \in B$. Therefore $A B^{a}=A B^{a}$, and since

$$
G=G^{a}=A^{a} B^{a}=A B^{a}
$$

we have $G=A B^{a}$. Now we may apply 2.2 .3 to this fartorization to deduce that $A_{p} B_{p}^{\prime}$ is a sulgroup, that is $A_{p}$ permutes with $B_{p}$. Thus if $X$ and $Y$ ase auy two groups from the classws $\mathcal{A}, B$ and $\mathcal{C}$ we have $X Y=Y X$. Here the produrts $X Y$ arp in fart Sylow $p$-subgroups of $G$. Sinct $G$ is a Cruikuv group. by lemma 2.2.1, they art all roujugate and the set of products $X Y$ forms a siugle ronjugary class.

We are now in a position to apply lemma 2.2 .5 to $G$ where $\mathcal{A}, B$ and $\mathcal{C}$ are romplete classest of ronjugate nulogroups. This yields the renult that a Sylow $p$-sulgroup of $G$ is subnormal in $G$. By inducting alung the suluormal chaiu we chas slow that the normal clownre of a Sylow p-silugronp is also a p-group.

Thus a Sylow p-subgroup must equal its normal rlosure in $G$, that is it must be a normal sulbgruup of $G$.

Now that we have shown that, for an arbitrary prime $p$, earl Sylow $p$ suligroup is normal in $G$ we can think of $G$ as a finite direct product of its Sylow $\boldsymbol{P}$-suhgroups. Thus in order to show that $G$ is hypercentral it is suffirient to show that each Sylow $\boldsymbol{p}$-subgroup is hypercentral. However a Cernikuv group is lurally finite, harie a p-subgroup will he lorally nilpotent. Siuce subgronps inherit the minimal condition from $G$ a $p$-sulgruup of $G$ is hypercentral. Therefore every Sylow p-subgroup of $G$ is bypercentral, and mas $G$ itself is hypercentral.

Rerall that a Ceruikov group is hypercentral if and ouly if it in locally nilputent. In order to procopl to the case of a Cernikuv group which hax a triple fartorization hy nilpotent sulgroupe we require the following results.

Theorem 2.2.7 ([40, 5.2.1]). If $G$ is a nilpotent grousp and $1 \neq N \triangleleft G$. then $N \cap Z(G) \neq 1$.

Theorem 2.2.8 (Lennox and Stonehewer [36, corollary 5.3.4]). Adiviaible subgroup of a periodic nilpotent gmoup $G$ lies in the centre of $G$.

Theorem 2.2.g. A Cernikav group is nilpotent if and only if it posacsacs thrre: rilpotent subgroups $A, B$ and $C$ surh that $G=A B=B C=C A$.

Proof of 2.2.9: (i) As hefure take all throw sulgroups to bw G to show the uecrensity.
(ii) Now to prove sulficiency observe that a nilputent group is hypercrutral aud thus by theorem 2.2.6 the group $G$ is Lypercentral. Furtber, as we clemoustrated in the proof of 2.2.6, in this case $G$ is a dirert product of a finite umabry of Sylow sulgroups. Thus it in ruungh to show that the ilewired result hulds for p-groups. Our must uote that by demma 2.2.3 a Syluw $p$-sulogronp of $G$ inherits the triple fartorization.

Let $G^{*}$ deuote the minimal sulggronp of finite iudex in $G$. Then the subgroup $G^{-}$is a direct product of a finite unmber of quasicyclic subgroups. Since $G / G^{-}$is finite there must exist some fivite sulgroup $X \leq G$ such that $G=G^{*} X$, sew figure 2.1. For exanple we could take the subgroup generated by coset representatives of $G / G^{\text { }}$; siure $G$ is locally finite this will he a finite group.


Figure 2.1.

Since $A, B$ and $C$ are also Cernikov groups we rall trent them in the same way to oltain $A=A^{*} A_{1}, B=B^{*} B_{1}$ and $C=C^{*} C_{1}$, where $A^{*}, B^{*}$ and $C^{*}$ are the minimal subgroups of finite index in $A, B$ and $C$ rexpectively aud $A_{1}, B_{1}$ and $C_{1}$ are finite andogroups. Withont luse of generality we may anmume that $\left.X \geq<A_{1}, B_{1}, C_{1}\right\rangle$, for if not we simply iur raser . $X$ by a finite gronp.

Consider the sulogroup $G^{*} \cap X$. Siace $G^{*}$ is abrelian $G^{*} \cap X \triangleleft G^{*}$ and also $G^{*} \cap X \triangleleft X$, w we havp $G^{*} \cap X \triangleleft G$. Thetrfore, if $G^{*} \cap X \neq 1$, we rau
find some minimal uormal sulogronp $N$ of $G$ such that $N \leq G^{-\infty} \cap X$. Now $G$ is locally nilpotent and $X$ is finite so $X$ is nilpotent, beuce, by theurem 2.2.7, $N \cap Z(X) \neq 1$. However $N \cap Z(X) \triangleleft G$. for it is normal in both $X$ and $G^{-}$. Thus the minimality of $N$ inplies that $N \cap Z(X)=N$, that is $N \leq Z(X)$. Siace $N \leq G^{*}=\boldsymbol{Z}\left(G^{*}\right)$ we have

$$
N \leq Z(X) \cap Z\left(G^{*}\right),
$$

and so

$$
N \leq Z(G)
$$

Now consider $G / N$. If we apply the above process again we ohtain a normal subgroup $M \triangleleft G$ such that $M / N$ is a minimal normal subgroup of $G / N$ and $M / N \leq\left(G^{*} \cap X\right) / N$. Heuce

$$
M / N \leq Z(G / N) .
$$

Thus, since $G^{*} \cap X$ is finite, we cau luild up a central series starting from the identity,

$$
1 \triangleleft N \triangleleft M \triangleleft \cdots \triangleleft G^{*} \cap X .
$$

Wh aow only have to prove that $G /\left(G^{-} \cap X\right)$ is niljutent, so we may assume that $G^{*} \cap X=1$.

We shall now nhow that $X$ almo exhibits a triplp fartorization. Siuce

$$
G / G^{*}=G^{*} X / G^{*} \cong X /\left(X \cap G^{*}\right)
$$

and under the isomorphism

$$
A G^{*} / G^{*} \longrightarrow\left(X \cap A G^{*}\right) /\left(X \cap G^{*}\right)
$$

aurl

$$
B G^{*} / G^{*} \longrightarrow\left(X \cap B G^{*}\right) /\left(X \cap G^{*}\right)
$$

$X$ nonst inherit this fartorization and so we lave

$$
X=\left(X \cap A G^{*}\right)\left(X \cap B G^{*}\right)
$$

Since $A^{*} \leq G^{*}$ we have $A G^{-}=A_{1} G^{*}$, aud similarly $B G^{*}=B_{1} G^{*}$. Hence

$$
X=\left(X \cap A_{1} G^{*}\right)\left(X \cap B_{1} G^{*}\right)
$$

Now apply Dedekind's lemma to obtaju

$$
X=A_{1}\left(X \cap G^{*}\right) \cdot B_{1}\left(X \cap G^{*}\right)
$$

and so in this rase

$$
X=A_{1} B_{1}
$$

By considering the other factorizations we have

$$
X=A_{1} B_{1}=B_{1} C_{1}=C_{1} A_{1}
$$

Now form the folluwing three rlasses of subgroups:

$$
\begin{aligned}
& \mathcal{A}=\left\{A_{1}^{p}: g \in G\right\} \\
& B=\left\{B_{1}^{g}: g \in G\right\} \\
& \mathcal{C}=\left\{C_{1}^{p}: g \in G\right\}
\end{aligned}
$$

In order to apply lemma 2.2 .5 to the above we must show that any element of one rlass permutes with that of another, that is

$$
A_{1}^{q} B_{1}=B_{1} A_{1}^{q}
$$

fur any $g \in \boldsymbol{G}$.
First observe that

$$
G=A B=A^{-} A_{1} B^{-} B_{1}
$$

and so $g=a^{*} a_{1} b^{*} b_{1}$ for somr $a^{*} \in A^{*}, a_{1} \in A_{1}, b^{*} \in B^{*}$ and $b_{1} \in B_{1}$. Now siuce $A^{*}$ in a divisible subgronp of the periodic nilpotent subgroup $A$ wr may apply theorem 2.2 .8 to ubtain $A^{*} \leq Z(A) ; B^{*} \leq Z(B)$ follows similarly. Su

$$
\begin{aligned}
A_{1}^{p} B_{1} & =A_{1}^{a^{*} a_{1} b^{*} b_{a}} B_{1} \\
& =A_{1}^{a_{1} b^{*} b_{1}} B_{1} \\
& =A_{1}^{b^{*} b_{1}} B_{1}
\end{aligned}
$$

However $B_{1}^{6 \boldsymbol{t}_{1}}=B_{1}$. and so if $b=b^{-} b_{1}$

$$
\begin{aligned}
A_{1}^{g} B_{1} & =A_{1}^{b-b_{1}} B_{1}^{b^{*} b_{1}} \\
& =\left(A_{1} B_{1}\right)^{b} \\
& =X^{b}
\end{aligned}
$$

In the same way any elements from different classes permute and the products they form age conjugates of $X$. Thus we can apply lemma 2.2 .5 to find $X$ is subnormal in $G$.

Now $G$ is the join of a normal abeliau subgronp $G^{*}$ and a subuormal nilpotent subgroup $X$. We shall show by induction that in this rase $\boldsymbol{G}$ must be nilpotent. Suppose $X$ is subuormal in $G$ in un steps, that is

$$
X \triangleleft X_{1} \triangleleft \cdots \triangleleft X_{n}=G .
$$

Since $G^{-} \cap X_{1} \triangleleft X_{1}$ we may apply Fitting's theorem to ste that $\left(G^{*} \cap X_{1}\right) X$ is a nilpotent normal suhgroup of $X_{1}$. Huwever by Dedekiud's lemma

$$
\left(G^{*} \cap X_{1}\right) X=X_{1} \cap G^{*} X=X_{1}
$$

thus $X_{1}$ is nilpotent and $X_{1} \& X_{3}$. By applying the above to successive terms of the chain we see each une is nilpotent until finally $\boldsymbol{G}$ in rearked. Thus the join of an abelinn normal subgroup and a nilpotent subuormal subgroup is nilpotent aud our rewolt is proved.

We shall now generalize to the much wider class of groups, $\boldsymbol{f}$. Recall that a group lies in $\boldsymbol{a}$ if it is a tinite extension of a dirert prochuct of quasicyclic sulggroups. Uning the above restalts for Cernikov gronps it is possible to prove the following theorem.

Theorem 2.2.10. The group $G \in G$ is locally nilpotent if and only if it possesaes three locally nilpotent subgroups $A . B$ and $C$ such that $G=A B=B C=$ $C A$.

Proof of 2.2.10: (i) for the neressary condition let $A, B$ and $C$ be the whole gromp $\boldsymbol{G}$.
(ii) For the sutticient condition we shall utilize theorem 2.2.6. Let $G^{*}$ be the minimal sulgroup of finite index in $G$. Thus $G^{-}$is a direct product of a possibly intinite number of quasicyclic subgroups. As in the Ceruikov rase there exists a finite subgroup $\boldsymbol{X} \leq \boldsymbol{G}$ surh that $\boldsymbol{G}=\boldsymbol{G}^{\boldsymbol{n}} \boldsymbol{X}$.

We shall uow construct a subgroup whose quotient in $G$ is a Ceruikov gronp. First let

$$
G^{*}=\prod_{\lambda \in \Lambda} C_{\lambda}
$$

where $\Lambda$ is an index set and earh $C_{\lambda} \cong C_{p_{1}^{\infty}}$, for some prime $p_{\lambda}$. Now for earh $\mu \in \Lambda$ form the subgroup

$$
D_{\mu}=\prod_{\substack{\pi=A \\ i \neq \mu}} C_{\lambda}
$$

Then $D_{\mu} \triangleleft G^{*}$ and

$$
G^{*} / D_{\mu} \cong C_{\mu} \cong C_{p_{\pi}^{\alpha 0}}
$$

Since $D_{\mu}$ is not necessarily normal in $G$ we construct the sulogroups

$$
E_{\mu}=\bigcap_{x \in X} D_{\mu}^{x}
$$

then $E_{\mu} \triangleleft G$ for earh $\mu \in \Lambda$, see figure 2.2. Nuw $G^{*} / E_{\mu}$ embeds io the cartesian product

$$
C r_{x \in x} G^{*} / D_{\mu}^{x}
$$

Since $X$ is a finite apt the rarteajan product is in fart direct. However for earh $x \in X$ we have.

$$
G^{*} / D_{\mu}^{x} \cong\left(G^{-} / D_{\mu}\right)^{x} \cong C_{\mu}^{x} \cong C_{p_{\mu}^{\infty}}
$$

Thus $G^{*} / E_{\mu}$ is inomorphic to a fiuite direct product of quasicyclic suthgroups. aud so $G / E_{\mu}$ is a Cernikov group.

The quotieut $G / E_{\mu}$ will inherit the triple factorization of the group, that is
$G / E_{\mu}=\left(A E_{\mu} / E_{\mu}\right)\left(B E_{\mu} / E_{\mu}\right)=\left(B E_{\mu} / E_{\mu}\right)\left(C E_{\mu} / E_{\mu}\right)=\left(C E_{\mu} / E_{\mu}\right)\left(A E_{\mu} / E_{\mu}\right)$


Figure 2.2.
where $\left(A E_{\mu} / E_{\mu}\right),\left(B E_{\mu} / E_{\mu}\right)$ and $\left(C E_{\mu} / E_{\mu}\right)$ are lorally nilputent. Thus, since a Ceruikov gronp is locally uilpotent if and only if it is hypercentral, by theorem 2.2.6 we have $G / E_{\mu}$ is locally uilpotent. Siuce

$$
\bigcap_{M \in A} E_{\nu}=1
$$

$G$ embeds in the cartesian produrt

$$
C r_{\mu \in A} G / E_{\mu} .
$$

It now unly remains to show that a lucally finite gronp that mabeds in a cartesian prodise of locally nilpotent groups is itself lorally uilpotent.

Let $H$ be a finitely generated subgroup of $G$, thus $H$ is a finite group. Now

$$
H /\left(H \cap E_{\lambda}\right) \cong H E_{\lambda} / E_{\lambda}
$$

whers $H E_{\lambda} / E_{\lambda}$ is locally nilputont and so $H /\left(H \cap E_{\lambda}\right)$ is nilpotent. Let $H=$ $\left\{h_{1}, \ldots, h_{n}\right\}$. Since $\bigcap_{\lambda \in A} E_{\lambda}=1$ we can find, for earh $i$, swme $\lambda_{1} \in I$ such that $h_{1} \notin E_{\lambda_{1}}$. Thus

$$
\left(\bigcap_{n=1}^{n} E_{\lambda_{4}}\right) \cap H=1 .
$$

Therefurp, siucre

$$
H \cong \frac{H}{\cap_{0=1}^{n}\left(E_{\lambda,} \cap H\right)}
$$

$H$ embedw in a finite direct product of nilpotent subgroups. Hence $H$ is nilpotest, and $G$ is shown to he locally nilpotent.

This result lesels imuediately to the hypercentral case.

Corollary 2.2.11. The group $G \in\{$ is hypercentral if and only if it possesses three hypencentral subgroups $A, B$ and $C$ such that $G=A B=B C=C A$.

Proof of 2.2.11: (i) Let $A, B$ and $C$ he equal to the whole group $G$. this shows the цесеннагy condition.
(ii) For sufficieury observe that a hypercentral nubgroup is locally nilpotent. Therefore, by theorem 2.2.10, $G$ is locally nilpotent. Now Stourhewer Lan shown [43, Ifmma 2.4] that a locally nilpotent group whirh has a hypercrutral sulgroup $H \triangleleft G$ such that $G / H$ is finitely penerated must itself be byperceutral.

We are now alije to proceed to a triple factorization by nilpotent sulgroups.

Thearem 2.2.12. The gmup $G \in\{$ is nilpotent if and only if it possesses three nilpotent subgroups $A . B$ and $C$ such that $G=A B=B C=C A$.

Proof of 2.2.12: (i) Lat $A, B$ and $C$ lie the whole gronp, to natinly the uecessary condition.
(ii) Fur sufticiency we first obsurve that $G$ must be locally uilpotent ly theorem 2.2.10. Now, by theorem 2.2.2, a periodir larally niputent gromp
may be expressed as a direct product of its Sylow sulgroups, that is

$$
G=\prod_{\lambda \in A} G_{D \lambda}
$$

where each $G_{p_{k}}$ is the unique Sylow $p_{\lambda}$-suhgroup of $G$.
We shall uow show that $G$ is in fart a direct product of an abelian sulugroup and a finite uumber of the $G_{p_{2}}$ 's, and that $G_{p_{\lambda}} \in \mathcal{R}$ for all $\lambda \in \Lambda$. Consider the situation of figure 2.3 .


Figure 2.3.

Dencte the subgroup $G_{P_{\lambda}} \cap G^{*}$ by $G_{p_{2}}^{*}$. Since it divides | $\boldsymbol{G}: \boldsymbol{G}^{-} \mid$the index $\left|G_{p_{\lambda}}: G_{p_{2}}^{*}\right|$ is finite for all $\lambda \in A$. We shall uow show that there are only a finite number of $\lambda$ for which $G_{p_{1}} \neq G_{w_{2}}^{*}$. For if we take $\{1, \ldots, n\}$ to be a finite subset of $I$ sucb that $G_{p_{1}} \neq G_{p_{1}}^{*}$ for $i \in\{1 \ldots \ldots, n\}$ the following holds,

$$
\left|G_{p_{1}} \cdots G_{p_{n}}: G_{p_{1}}^{-} \cdots G_{p_{n}}^{*}\right|=\prod_{i=1}^{n}\left|G_{p_{1}}: G_{p_{1}}^{*}\right|
$$

Now earl fartor is finite aud divides | $G: G^{-} \mid$. aull so wr dedure $\left|G_{p_{1}} \cdots G_{p_{m}}: G_{n}^{*} \cdots G_{p_{n}}^{\bullet}\right|$ is Guite and it also divides $\left|G: G^{*}\right|$. Since $\left|G: G^{-}\right|$is finite the numbert $n$ canuut be increased indefinitely: Thus the niminer of such $G_{p,}$ wust be finite, $m$ say.

Let $\Lambda_{1} \subseteq \Lambda$ be the set such that $G_{p_{\lambda}}=G_{p_{\lambda}}^{*}$ for all $\lambda \in \Lambda_{1}$. Then

$$
G=\left(\prod_{\lambda \in \Lambda_{1}} G_{p_{\lambda}}\right) \times G_{p_{1}} \times \cdots \times G_{p_{m}}
$$

where

$$
\prod_{\lambda \in \Lambda_{1}} G_{p_{\lambda}} \leq G^{*}
$$

and hence it is an abelian subgroup. Now

$$
\frac{G}{\left(\prod_{\lambda \in A_{1}} G_{p_{\lambda}}\right) \times G_{p_{1}}^{*} \times \cdots \times G_{p m}^{*}} \cong \frac{\left(G_{p_{1}} \times \cdots \times G_{p_{m}}\right)}{\left(G_{p_{1}}^{*} \times \cdots \times G_{p_{m}}^{*}\right)}
$$

and so the left hand side is finite. However $G^{*}$ is the minimal subgroup of finite index in $G$, and so

$$
G^{*}=\left(\prod_{\lambda \in \Lambda_{1}} G_{p_{\lambda}}\right) \times G_{p_{1}}^{*} \times \cdots \times G_{p_{m}}^{*}
$$

Consider each $G_{p \cdot}^{*}$. Since

$$
G_{p i}^{*} \cong \frac{G^{*}}{\left(\prod_{\lambda \in \Lambda_{1}} G_{p_{\lambda}}\right) \times G_{p_{1}}^{*} \times \cdots \times G_{p i-1}^{*} \times G_{p_{i+1}}^{*} \times \cdots \times G_{p m}^{*}}
$$

it is a divisible abelian subgroup, that is a product of quasicyclic subgroups. Thus $G_{p i} \in \mathcal{G}$ for all $i \in\{1, \ldots, m\}$. Therefore, as promised, $G$ is a direct product of an abelian group and a finite number of subgroups which belong to $\boldsymbol{G}$.

We shall now show that if $G \in \boldsymbol{K}$ and it is a p-group with nilpotent subgroups $A, B$ and $C$ such that $G=A B=B C=C A$, then $G$ is nilpotent. Let $G$ be a finite extension of the direct product

$$
\prod_{\lambda \in \lambda} C_{\lambda}
$$

where $C_{\lambda} \cong C_{p \infty}$ for all $\lambda \in \bar{\Lambda}$. Then using the structure defined in the proof of theorem 2.2 .10 we can find for each $\mu \in \bar{\Lambda}$ a subgroup $E_{\mu} \triangleleft \boldsymbol{G}$ such that $G / E_{\mu}$ is a Cernikov group and $\bigcap_{\mu \in \AA} E_{\mu}=1$. Since $G / E_{\mu}$ inherits the triple factorization of $G$ we may apply theorem 2.2 .9 to see that it is a nilpotent group.

Now $G^{*} / E_{\mu}$ is a divisible ahelian suhgroup of the periodir nilpotent group $G / E_{\mu}$, and wo by theurem 2.2 .8

$$
G^{*} / E_{\mu} \leq 2\left(G / E_{\mu}\right)
$$

This is equivalent to the statement

$$
C_{G / E_{\mu}}\left(G^{-} / E_{\mu}\right)=G / E_{\mu} .
$$

We shall usp this to show that fur any $g \in G$ wr have $g \in \mathcal{C}_{\boldsymbol{G}}\left(G^{*}\right)$.
Firstly $<G^{*} / E_{\mu}, g E_{\mu}>$ must be abrelian. and so

$$
\left\langle G^{-} . g\right\rangle^{\prime} \leq E_{\mu} .
$$

Howrever this holds for all $\mu \in K$. and thus

$$
<G^{\prime}, g>^{\prime} \leq \bigcap_{\mu \in K} E_{\mu}=1
$$

that is $g \in \mathcal{C}_{G}\left(G^{-}\right)$. Siace this Lulds for all $g \in G$ wr have $G^{*} \leq Z(G)$. Nuw $G / G^{*}$ is a finite $p$-group and so nilpotent. Therefore $G$ is nilpotent.

The ahove p-gromp case demosistrates that our group $G$ is a direct product of a finite vumber of nilpotent snbgroups, and thus it is itself nilpotent.

### 2.3. Groups with an abelian triple factorization

In this sertiou we shall cousinder the situntion where a gronu has a triple factorizatiou by alielian sulggronus. Of particular interest will he the resules of Rohiusou nud Stonelyrwer [41]. We whall prove n mumber of corullarirs of their manu theurem the mont imprortnut of which concerns a gromp with tinite abrelian total rauk. If such a group las an abelinu triple fartorizations, then we show that it mave he nilgutent.

Let us begin by stating the main result of Robinson and Stonehewrers paper.

Theorem 2.s.1 (Rabinaon and Stonehewer [41, theorem a]). Let $G$ be a group with abelian subgroups $A, B$ and $C$ such that $G=A B=B C=C A$. If $G / G^{\prime}$ han finte torsion-free rank. then $G$ is locally nulpotent.

This leads to the folluwing corollary.

Corollary 2.3.2. Let the periodic group $G$ be a finite extenszon of a hypercentral subgroup. If $G$ has abelian subgroups $A, B$ and $C$ such that $G=A B=B C=C A$, then the whole group is hypetcentral

Proof of 2.y.2: Siyce $G / G^{\prime}$ is periodic $r_{0}\left(G / G^{\prime}\right)=0$, aud we way apply theorem 2.3.1 to deduce that $G$ is locally nilputent. Now we are in a position to apply Stonehewer's lemma [43, 2.4] which shows that a locally uilpotent group which is a finite extensiou of a hypercentral sulgroup is itself hypercentral.

In order to proceed to the main reault of this section we slall need the following themor-m of Robinsou and Stunehewer.

Theorem 2.3.3 (Robinson and Stonehewer [41, theorem 2]). Let $G$ be a group which is a product of two abelian subgroups $A$ and $B$. Then every chief factor of $G$ is centralized by $A$ or $B$.

This gives rise to the immediate corollary:

Coroliary 2.3.4. Let $G$ be a group with abelian subgroups $A, B$ and $C$ such that $G=A B=B C=C A$. Then the chief factors of $G$ he in the centre.

Finally we require the threw sulgroup lemma of Hall and a result of McLain.

Lemma 2.3 .5 (Hall [20, lemma 1]). Let $H, K$ and $L$ be subgroups of a growp G. If any two of the commutator aubgroups $[H, K, L],[K, L, H]$ and [ $L, H, K$ ] are contained in a nommal subgmup of $G$, so is the third.

Theorem 2.3.6 (McLain [37, theorem 2.2]). If $N$ is a minimal normal subgroup of a locally nilpotent gmup $G$. then $N$ is onntained in the centre of $G$.

We are now ready to turn onr attention to groups with finite abelinu tutal rank.

Theorem 2.3.7. Let $G$ be a group with abelian subgroups A. $B$ and $C$ such that $G=A B=B C=C A$. If $G$ has finite abelian total rank, then it is nilpotent.

Proof of 2.y.7: (1) First we must show that $G$ is a locally nilput'nt group. Siuce $\boldsymbol{A}$ aud $B$ are abelian suhgronps by hypothesis we have

$$
r_{0}(A)<\infty \text { and } r_{0}(B)<\infty .
$$

Hence

$$
r_{0}\left(A G^{\prime} / G^{\prime}\right)<\infty \text { and } r_{0}\left(B G^{\prime} / G^{\prime}\right)<\infty
$$

and so simere

$$
r_{0}\left(G / G^{\prime}\right) \leq r_{0}\left(A G^{\prime} / G^{*}\right)+r_{0}\left(B G^{*} / G^{*}\right)
$$

we have

$$
r_{0}\left(G / G^{t}\right)<\infty .
$$

Wr may nuw apply theorem 2.3 .1 to derduce that $G$ ia locally milpotent.

Let $N=G^{\prime \prime}$.
(2) Suppose $N$ is torsiou-frew. It is uot difficult to show that in this cane $G$ is vilpotent. Let $X$ be any finitely generated suhgroup of $G$. Siuce $G$ is lucally uilpotent $\boldsymbol{X}$ is a nilputent group, and ao all its sulagroups are finitely gruerated. Iu partirular $Y^{\prime}=X \cap N$ is a fiuitely generated. torsion-frep, abelian sulogroup. of rank r say. Heuce

$$
Y \cong<y_{1}>\times \cdots \times<y_{r}>
$$

and if $p$ is any prine

$$
\left.Y^{P} \cong\left\langle y_{1}^{p}\right\rangle \times \cdots \times<y_{1}^{p}\right\rangle
$$

Nuw $Y^{\prime \prime}$ is a chararteristic sulgroup of $Y \triangleleft X$. and so $Y^{p} \triangleleft X$. Thus wp may furm $Y / Y^{\mu}$, an elemputary ahelian $p$-group of order $\boldsymbol{\gamma}^{\boldsymbol{r}}$. Since $\boldsymbol{Y} / Y^{\boldsymbol{p}}$ is a finite normal sulagroup of $X / Y^{\prime \prime}$ it mase contain a minimal oue. Now $X / Y^{*}$ is lorally nilpotent, so this subgroup minst lie in its centre, and heure wo may fartor it cut. We uow reprat the procesk which will terminate an $Y / Y^{p}$ is a finite group. Eventually we obtaiu

$$
Y / Y^{\prime \prime} \leq Z_{r}\left(X / Y^{\mu}\right)
$$

or equivaleutly

$$
[Y ;, X] \leq y^{\prime \mu} .
$$

Huwever the prime $p$ way arbitrary, and so

$$
[Y,, K] \leq \bigcap_{P \in P} Y^{\prime}=1 .
$$

Now $X / Y$ is isomorphic to $X N / N$, and so it is abelias, whicb implies that $\boldsymbol{X}$ is uilpotent with class uo greater than $r+1$. Thus every finitely gruerated sulogroup of $G$ is nilpotent with this buund on the class. It is well known that in this situation the whole group $G$ is nilpotent with the saune hound.
(3) Now suppose that $N$ is not torsion-free, Let $T$ be the torsion suligroup of $\boldsymbol{N}$. Since $N$ dN abeliau $T$ must he a Ceruikov group by the byputhesis on $G$. Therefore let

$$
T=F\left(C_{p i}^{\infty} \times \cdots \times C_{p}^{\infty}\right)
$$

where $F$ is a finite subgroup.
(i) First shuw that we can fartor out by $F$. We may assume that $F$ is a uormal subgroup of $G$, for if nut we simply replare it by $\boldsymbol{F}^{\boldsymbol{G}}$, this is atill a finite group by the following arghment. Conjugates of $\boldsymbol{F}$. being of tivite order, all lie in $T$. Siuce $T$ is a Ceruikov group it has only a fiuite number of elements of any given order, hence ouly a finite unmber of coujugates of $F$ exist. Thus one may assume that $F$ is a finite nurmal sulgroup of $\boldsymbol{G}$. Tberefore $F$ contains a minimal normal suhgroup of $G$. By corollary 2.3 .4 this will lie in the centre of G. Now as above we may fartor out by this nubgroup aud repent the proceas until we finally ohtain

$$
F \leq Z,(G)
$$

for some integer $i$.
Hence wr may counider

$$
T=\left(C_{R_{1}^{\infty}} \times \cdots \times C_{p_{1}^{\infty}}\right) .
$$

(ii) Now culustruct a seriex for $T$.

$$
1 \leq M=M_{1} \leq M_{2} \leq \cdots \leq M_{1}=T
$$

where for each i $\in\{1, \ldots, n\}, M_{1} \triangle G$, and $M_{a+1} / M$, is a divisible group which is minimal with respect to lieing infinite in $T / M_{i}$. Since $T$ has finite rank the aumber of terms in such a series will he finite. Thus we have a finite parameter for $G$ upou which we may use induction. Hence one can ansume that $G / M$ is nilpotent of class $c$.

Nuw define sulgroups which arr the 'projections' of $M$ onto $A$ and $B$. Let

$$
A_{1}=\{a \in A: \exists b \in B \text { such that } a b \in M\}
$$

and

$$
B_{1}=\{b \in B: \exists a \in A \text { such that } a b \in M\}
$$

That $A_{1}$ and $B_{1}$ are judeed subgroups $r$ an be shown by the following argument. It is clear that $A_{1} \leq(A \cap M B)$, where since $M \triangleleft G$ the product $M B$ is a group. Now if $a \in(A \cap M B)$ wr $(\operatorname{can}$ find $m \in M$ and $b \in B$ such that $a=m b$ and hence $n b^{-1}=m$, thus $A_{1} \geq(A \cap M B)$. Since now $A_{1}=(A \cap M B)$ we deduce thet $A_{1}$ is a nuhgrony of $A$. In the same way we ran show that $B_{1}$ is a subgroup of $B$.

We khall now show that $\left|M, B_{1}\right|=1$. Since $M \subseteq B A$ if $m \in M$, then $m=b a$ for some $b \in B$ aud $a \in A$. Suppose that $b_{1} \in B_{1}$, then

$$
\left[m, b_{1}\right]=\left[b a, b_{1}\right]=\left[a, b_{1}\right]
$$

and thum

$$
\left[M, b_{1}\right] \leq\left[A, b_{1}\right] .
$$

Now if $a_{1} \in A_{1}$ is such that $a_{1} b_{1} \in M$, then

$$
\left[M, b_{1}\right] \leq\left[A, b_{1}\right]=\left[A, a_{1} b_{1}\right],
$$

where $\left[A, a, b_{1}\right]$ is finite by the following argument. The sulgroup $\left[A, a_{1} b_{1}\right]$ is grurated by remruta of the form $a^{-1} \cdot\left(a_{1} b_{1}\right)^{-1} \cdot a \cdot\left(a_{1} b_{1}\right) \in M \leq T$. Now $T$ has ouly a fiuite ummber of elements of any given order, no the umber of elements of the furm $\left(\left(a_{1} b_{1}\right)^{-1}\right)^{\alpha}$ is finite. Thus $\left[A, a_{1} b_{1}\right]$ is a finitely getmerated suligromp
contained in the periodic abelian group $T$, and so it is finite as required. hence $\left.\mid M, b_{1}\right]$ in nalso finite.

The map

$$
\theta: M \longrightarrow\left[M, b_{1}\right]
$$

defined by

$$
\theta(m)=\left[m, b_{1}\right]
$$

is a homomorphinm of groups. Thus since [ $M, b_{1}$ ] is the image of $\boldsymbol{M}$ it unst alsu he a divisible group. Howrevt the ouly divisihle finite group is the trivial group, so $\left[M, b_{1}\right]=1$. Since this bolds for all $b_{1} \in B_{1}$ we have

$$
\left[M, B_{1}\right]=1
$$

(iii) Suppose $\left[\boldsymbol{N} . \boldsymbol{B}_{1}\right]$ is an intiuite subgroup. We clains that theu $\left[\boldsymbol{N} . \boldsymbol{B}_{1}\right]=$ H. and it is powail) e to construct a $G$-hamomorphism which proves the nilpotency of $G$.

Let us first counider $\left[N, B_{1} \mid\right.$. If $g \in G, n \in N$ aud $b_{1} \in B_{1}$, then

$$
\left[n, b_{1}\right]^{\prime \prime}=\left[n^{\prime \prime} \cdot\left[g, b_{1}^{-1}\right] b_{n}\right] .
$$

and siuce $n^{0}$ aud $\left[9, b_{1}^{-1}\right] \in N$.

$$
\left[n_{1}, b_{1}\right]^{d}=\left[n^{x}, b_{1}\right] \leq\left[N, B_{1}\right] .
$$

Therefore $\left[\mathcal{N}, B_{1}\right] \triangleleft G$.
Now $n \in N \subseteq B A$, and no $n=b a$ for sume $b \in B$ and $a \in A$. Thus

$$
\left[n, b_{1}\right]=\left[b_{1}, b_{1}\right]=\left[a, b_{1}\right] .
$$

Siuce $b_{1} \in B_{1}$ there reints sumur $a_{1} \in A$ such that $a_{1} b_{1} \in M$. nud sou

$$
\left[n, b_{1}\right]=\left[a, a, b_{1}\right] \in M
$$

Therefore, since $M$ is a minimal infinite normal suligroup of $G$. we rouclude that

$$
\left[\boldsymbol{N} \cdot \boldsymbol{B}_{1}\right]=M
$$

We shall now constriot a $G$-homonorphism of groups. Let $r \in B_{1}$ and define a map

$$
\boldsymbol{\sigma}: N / M \longrightarrow\left[N, B_{1}\right]
$$

by the action

$$
\Pi(y M)=[y, x]
$$

where $y \in N$. This makes sense since $[M, x]=1$. Now check that $a$ is a bomonorphisin. If $y_{1}, y_{2} \in N$, thou since $N$ in abolian

$$
\begin{aligned}
\sigma\left(y_{1} y_{2} M\right) & =\left[y_{2} y_{2}, x\right] \\
& =\left[y_{1}, x\right]\left[y_{2}, x\right] \\
& =\left[y_{1}, x\right]\left[y_{2}, x\right] \\
& =a\left(y_{1} M\right) a\left(y_{2} M\right) .
\end{aligned}
$$

If $g \in G$, then

$$
\begin{aligned}
\sigma\left((y M)^{g}\right) & =a\left(y^{e} M\right) \\
& =\left[y^{g}, x\right] \\
& =\left[y, r^{-1}\right]^{0} \\
& =\left[y,\left[g^{-1}, x^{-1} \mid x\right]^{g}\right. \\
& =[y, z]^{v} \\
& \approx \sigma(y M)^{g}
\end{aligned}
$$

and mu $a$ rommutes with the artion of $G$. Hencr $a$ in a $G$-homomurphism from the normal subgronp $N / M$ to $\left[\mathcal{N}, B_{1}\right]$.

Recall that $G / M$ is nilpotent of class $C$, thos
$[\mathbf{N} / \mathbf{M}, G / \mathbf{M}] \leq M / M$.

When we apply o to this exprowsion we obtain the ideutity

$$
[N, r, r G]=1
$$

Therefore

$$
[N, s] \leq Z_{r}(G)
$$

Nuw siuce

$$
\left.\mid N \cdot B_{1}\right]=\left\langle[N, s]: r \in B_{1}\right\rangle
$$

and the alove Lolds for all $x \in B_{1}$. we have

$$
\left[N, B_{1}\right] \leq Z_{r}(G)
$$

Heyrer

$$
\left[N, B_{1}, r G\right]=1
$$

However from the ahove $\left[N, B_{1}\right]=M$, and so

$$
\left[M,{ }_{c}\right]=1
$$

Now siuce $G / M$ is nilputent the whole group $G$ in nilpotent.
(iv) Consider the final pussibility, that $\left[\mathcal{N}, \boldsymbol{B}_{1}\right]$ is finite. The ahove argument is symmetrical in $A$ aud $B$ so we may also assume that $\left[\mathcal{N}, A_{1}\right]$ is fiuite. Siuce $\left[\mathcal{N}, A_{1}\right]$ is anormal nubgroup, if it is non-trivial, it will cuntain some minimal nurmal sulogroup of $G$ which, since $G$ is locally nilputent, will lie in the centre. Thas we may factur unt by this subgromp and repeat the process until finally wr may assume that $\left[\mathcal{N}, A_{1}\right]=1$.

Siuce $\left[\mathcal{N}, A_{1}\right]=1$ is rquivaleut to $\left[B, A, A_{1}\right]=1$. and wr kuow that $[A, A, B]=1$, lemina 2.3 .5 yidels

$$
\left[A_{1}, B, A\right]=1
$$

Nuw $[\boldsymbol{A P}, B]$ is a untmal sulogruup of $G$. by the samer argument as that used for $\left[\mathcal{N}, B_{1}\right]$, Since $[\boldsymbol{M}, B] \leq M$ it in either finite or equal to $\boldsymbol{M}$. If $[\boldsymbol{M}, B]$ is fivite then divisibility implises that

$$
[M, B]=1
$$

aud so $M$ commutes with $B$. If $[M, B]=M$ wr simply cherere that

$$
\left[A_{1}, B\right]=\left[B_{1} A_{1}, B\right] \geq[M, B]
$$

and so the ahove yields

$$
[M, A]=1
$$

and $M$ commuter with $A$.
Thus we have shown that rither $\boldsymbol{A}$ or $\boldsymbol{B}$ commutes with $\boldsymbol{M}$. Suppose that $A$ commutes with $M$. By a similar argument from the fartorization $G=B C$, we bave $B$ or $C$ commutes with $M$. Therefore $G$ commutes with $M$ and $M \leq Z(G)$. Since $G / M$ is already uilpotent, we couclude that $G$ in itself uilpotent as recpuired.

This leade to the following corollary, a special case of the more geueral throrem 2.2 .9 where we shuwed that only a nilpotent triple factorization is nererssary.

Corollary 2.3.8. If the Cermikov group $G$ has abelian subgroups $A, B$ and $C$ such that $G=A B=B C=C A$, then $G$ is rifpotent.

Proof of 2.5.8: Siure Cernikuv grunps have finite abolian tutal rank this fullows immediately from theorem 2.3.7.

Fiunlly we generalize theorem 2.3 .3 hy cousidering the class of Cernikov groups.

Thearem 2.3.9. Let $G$ be a Cernikov group which is the product of two abelian subgroups $A$ and $B$. If $M$ is a normal subgroup of $G$ which is minimal with respect to being infinite, then $M$ in centralized by either $A$ or $B$.

Proof of 2.3.9: We shall follow closely the proof of Robinson and Stonelnewer. making the neressary adjustmentes for our situation. We may assume that $A \cap B=1$. Let

$$
A_{1}=(A \cap B M)
$$

and

$$
B_{1}=(B \cap A M)
$$

If $N=G^{\prime}$. then $N$ in abrelian. Let us also furm $A_{2}=(A \cap B N)$ and $B_{2}=$ $(B \cap A N)$, then

$$
\text { (*) } \quad A_{2} B_{2}=B_{2} A_{1}=A_{2} N=B_{2} N
$$

is the factorizer of $N$.
Consider the normal suhgroup $\mathbb{M} \cap N$. Since this is contained in $\mathbb{M}$ must rither he finite or equal to $M$. Suppose $M \cap N$ is finite. Then for any $g \in G$

$$
[g, M] \leq(M \cap N)
$$

and so $[g, M]$ is also finite. If we then construct a homemurphism

$$
\theta: M \longrightarrow \mid g, M]
$$

defined by

$$
\theta(m)=[g . m] .
$$

 and hence $[g . M]=1$. Since this holds for all $g \in G$ we have

$$
[G, M]=1
$$

and ma)

$$
M \leq Z(G)
$$

Therefore we may assume that $(M \cap N)=M$. that is

$$
M \leq N
$$

Consider the normal sulbgroup $\left[A_{2}, M\right.$ ]. Since $M \triangleleft G$ this lies in $M$. and so once again we conclude that either $\left[A_{\mathrm{y}}, M\right]=M$ or it is finite. Now since $A_{1} B_{2}$ in a Cernikov group, and by ( $*$ ) it possemses a triple farturization by abelian suhgroups, we may apply rurollary 2.3 .8 to deduce that it is nilpotent. Thus since $A_{2}$ and $M$ hoth lie in $A_{2} B_{2}$ we cannut have $\left[A_{2}, M\right]=M$.

Heure $\left[\boldsymbol{A}_{2}, \boldsymbol{M}\right]$ is a finite group. Now, in the same way as above, divisibility implies $\left[A_{2}, M \mid=1\right.$. Thus sivce $B_{1} \leq A_{1} M$, and $A$ is ahelian, we have

$$
\left[A_{\mathrm{d}}, B_{\mathrm{l}}\right]=1
$$

Therefore, as $B$ is also alselian, $N \leq A_{2} B_{2}$ implipa $\left[N, B_{1}\right]=1$, that is

$$
\left|A, B, B_{1}\right|=1
$$

Since $\left[B, B_{1}, A\right]=1$ from lemma 2.3.5 we dedure

$$
\left[A, B_{1}, B\right]=1
$$

Now consider the normal subgronp $\{A, M]$. Since it lies in $M$ it is either finite or equal to $M$. But once agaiu if $[A, M]$ is finite divisibility implies $[A, M]=1$, and $A$ commutes with $M$. Thus ww newd unly consider the rase where $[A, M]=M$. Since

$$
[A, M] \leq\left|A, A_{1} B_{1}\right|=\left[A, B_{1}\right]
$$

from the above we obtaiu

$$
\| \mid A, M\rceil, B \mid=1
$$

Heace

$$
[M, B]=1
$$

and $B$ commutes with $M$.

### 2.4. Subgroups which inherit factorization

We shall now cousider the gituation where a group $G$ is factorized by two aloflinu sulgroups $\boldsymbol{A}$ and $\boldsymbol{B}$ and ank for which sulggroups $\boldsymbol{H}$ dows the following

Lold, $H=(H \cap A)(H \cap B)$ ? We shall examine the cases of the Fitting suhgroup and the Hirsch-Plutkiu radical wheu the gronp $G$ is firstly a Cernikov group and then a menher of the class $\boldsymbol{f}$. Theorem 2.4 .3 provider an alternative proof of Amberg's result for minimax groups. We shall require the following lemmas.

Lemma 2.4.1. If the group $G$ as a finite extension of a nifpotent subgroup. then the Fitting subgroup of $G$ is nilpotent.

Proof of 2.4.1: Let $G^{\mathbf{*}}$ be a uilpotent uormal sulygroup of $G$ surh that $\left|\boldsymbol{G}: \boldsymbol{G}^{\mathbf{-}}\right|$ is finite. If $H$ is any normal uilpotent subgroup of $G$ it in coutaiurd in the product $H G^{*}$, which is uilputent hy Fitting's theorem. Thus we may cousider an alteruative characterization of the Fitting sulgroup as the product of all normal nilpotent sulhgronizs which coutain $G^{*}$. Since $\left|\boldsymbol{G}: \boldsymbol{G}^{*}\right|$ is finite there are ouly a finite number of such sulogroups, beuce their product is uilpotent.

Lemma 2.4.2. Let the p-group $G$ be a finite extension of a divisible abelian subgroup $G^{-}$. Then the Fitting subgroup. $F(G)$. satisfies

$$
F(G)=C_{i}\left(G^{*}\right)
$$

Proof of 2.4.2: Since $G^{*}$ is a nurmal ahelian subgroup of $G$ we have $G^{*} \leq$ $F(G)$. Now by lemmn 2.4.1 $F(G)$ is a periodir uilpotent subgroup, and no, by theurein 2.2.8.

$$
G^{*} \leq Z(F(G)) .
$$

that is

$$
F(G) \leq \mathcal{C}_{6}\left(G^{-}\right)
$$

Now $G / G^{*}$ is a finite $p$-group, and so $\mathcal{C}_{6}\left(G^{*}\right) / G^{*}$ is uilpotent. However

$$
G^{-} \leq Z\left(C_{i}\left(G^{*}\right)\right)
$$

and so $\mathcal{C}_{i}\left(G^{\mathbf{*}}\right)$ is itself uilpotent and normal in $G$. Thus

$$
\mathcal{C}_{G}\left(G^{*}\right) \leq F(G),
$$

and finally we have

$$
\mathcal{C}_{G}\left(G^{*}\right)=F(G)
$$

We are now able to embark on the proof of the theorem.

Theorem 2.4.3. If $G$ 1s a Cernikov group with abelian subgroups $A$ and $B$ such that $G=A B$, then the Fitting subgroup of $G$ factorizes.

Proof of 2.4.3: Amberg hav shown in [1] that in this situation the HirschPlutkin radical, $\rho(G)$, does factorize. Thus

$$
\rho(G)=(\rho(G) \cap A)(\rho(G) \cap B)
$$

Since $F(G) \leq \rho(G)$ we have

$$
F(G) \cap(\rho(G) \cap A)=F(G) \cap A
$$

and similarly

$$
F(G) \cap(\rho(G) \cap B)=F(G) \cap B
$$

Therefore we may as well take $\rho(G)$ to be the whole group, that is assume $G$ is locally nilpotent.

Now a priodic lorally vilpotent group is a direct product of its Sylow $\boldsymbol{p}$-subgroups. Thus we rau further assume that $G$ is a $p$-group. Cousider the sitiation of figure 2.4, where $G^{*}$ is the minimal subgroup of finite index in $G$, and the $G$, are chosen surb that $G_{+1} / G_{1} \triangleleft G / G$ and each fartor is minimal with respect to beiug infinite. We may now apply theorem 2.3 .9 to see that, for $1 \leq i \leq n$, eark fartor $G_{1+1} / G_{1}$ is centralized by rither $A$ or $B$.


Figure 2.4.
We wigh to show that $F(G)$ facturizes, that is when $f \in F(G) \leq A B$ is written $f=a b$ with $a \in A$ and $b \in B$, theu $a \in F(G)$ and $b \in F(G)$. Now by lemina 2.4 .2 we have $f \in \mathcal{C}_{G}\left(G^{*}\right)$. If $A$ rentralizes $G_{1+1} / G_{1}$, then $a$ does and $b=a^{-1} f$ will also. This still holds if $B$ is the centralizing subgroup. Therefore $a$ and $b$ ceutralize every factor $\boldsymbol{G}_{1+1} / \boldsymbol{G}_{\mathbf{1}}$.

Cousider $\left\langle G^{*}, a\right\rangle$. Since $G^{*}$ is a normal subgroup $\left.G^{*} \varangle<G^{*}, a\right\rangle$. The suligrunju $\left\langle G^{-}, a\right\rangle$ is then uilpotent with central series

$$
1 \triangleleft G_{1} \triangleleft G_{2} \triangleleft \cdots \triangleleft G_{n}=G^{*} \triangleleft<G^{*}, a>
$$

Now $G^{*}$ is a divisible abrelian group contained in the periodic nilputent subgroup $\left\langle G^{\mathbf{B}}, a\right\rangle$, and hence, by themrem 2.2.8,

$$
G^{*} \leq Z\left(<G^{\bullet}, a>\right)
$$

Thus a commutes with $G^{*}$, and so

$$
a \in \mathcal{C}_{G i}\left(G^{-}\right)=F(G)
$$

Finally $b=a^{-1} f \in \mathcal{F}(G)$ and

$$
F(G)=(F(G) \cap A)(F(G) \cap B)
$$

We shall nuw geueralize this result to groups. First wr shall cousider the case where $G \in \mathcal{R}$ is also a p-grunp.

Theorem 2.4.4. If $G \in \Omega$ кп a p-group with two abolian subgroups $A$ and $B$ such that $G=A B$. then the Fitting subgroup of $G$ alno factorizes.

Proof of 2.4.4: If $G^{-}$is the minimal subgroup of finite index in $G$, theu

$$
G^{*}=\prod_{\lambda \in A} C_{\lambda}
$$

where $C_{\lambda} \pm C_{p} \approx$ for all $\lambda \in A$. Following the proof of theurem 2.2.10 for earh $\mu \in I$ we ran find a normal sulgroup $E_{\mu} \leq G^{\bullet}$ such that $G / E_{\mu}$ is a Cernikov group and $\cap_{\mu \in A} E_{\mu}=1$. Thiss we have the situation of figure 2.5 .


Finuce 2.5.
Num by lomma 2.4.1 $F(G)$ in a wormal nilputent valigroup of $G$. heure

$$
F(G) / E_{\mu} \leq F\left(G / E_{\mu}\right)
$$

If $f \in F(G) \leq A B$, then $f=a b$ for some $a \in A$ and $b \in B$ and we have

$$
f \cdot E_{\mu}=\left(a E_{\mu}\right) \cdot\left(b E_{\mu}\right),
$$

where

$$
f . E_{\mu} \in F\left(G / E_{\mu}\right)
$$

Since $\left(G / E_{\mu}\right)$ inherits the fartorization of $G$, aud it is a Ceruikuv group, we may apply theorem 2.4 .3 to sep that

$$
F\left(G / E_{\mu}\right)=\left(F\left(G / E_{\mu}\right) \cap A E_{\mu} / E_{\mu}\right)\left(F\left(G / E_{\mu}\right) \cap B E_{\mu} / E_{\mu}\right) .
$$

Hencr

$$
n E_{\mu} \in F\left(G / E_{\mu}\right) .
$$

Now $\left(G / E_{\mu}\right)^{*}=G^{*} / E_{\mu}$, and so by lemma 2.4.2

$$
F\left(G / E_{\mu}\right)=C_{G / E_{\mu}}\left(G^{*} / E_{\mu}\right)
$$

Thus the gruup $<a E_{\mu}, G^{\prime} / E_{\mu}>$ is aluelian, and

$$
\left\langle a, G^{\prime}\right\rangle^{\prime} \leq E_{\mu} .
$$

Siuce this bolds for all $\mu \in \Lambda$, we have

$$
\left\langle a, G^{*}\right\rangle^{\prime} \leq \bigcap_{\mu \in A} E_{\mu}=1
$$

and a rommutes with $G^{*}$. Nuw wr apply lemma 2.4 .2 to rourlude that a $\in$ $F(G)$ and $b=a^{-1} f \in F(G)$. Thins

$$
F(G)=(F(G) \cap A)(F(G) \cap B)
$$

as required.

Let us bow proverd to the cant where $G$ uerel nut low ap-group

Theorem 2.4.5. If the group $G \in\left\{\begin{array}{l}\text { has } t w o ~ a b e l i a n ~ s u b g r o u p s ~\end{array} A\right.$ and $B$ such that $G=A B$, then the Fitting subgroup of $G$ also factorizes.

Proof of 2.1.5: Let $G^{*}$ deute the minimal subgroup of finite index in $G$. then

$$
G^{-}=\prod_{\lambda \in A} C_{\lambda}
$$

where for each $\lambda \in A$ the sulugroup $C_{\lambda} \cong C_{\text {pis }}$ for some prime $p_{\lambda}$. Fullowing the proof of theurem 2.2.10 for each $\mu \in \Lambda$ we can define a normal suligronp $E_{\mu}$ such that $G / E_{\mu}$ is a Ceruikov group aud $\Pi_{\mu 巨 A} E_{\mu}=1$.

We shall uow define a further set of sulgraups. For each $\mu \in A$ let $F_{\mu} \leq G$ be such that

$$
F_{\mu} / E_{\mu}=F\left(G / E_{\mu}\right) .
$$

Since $F(G)$ in a normal nilpotent sulugronp of $G$ we have

$$
F(G) / E_{\mu} \leq F_{\mu} / E_{\mu}
$$

We may represent this situation by figure 2.6. Let $f \in F(G) \leq A B$, where


Fisure 2.6.
$f=a b$ for som $a \in A$ and $b \in B$. Consider

$$
f E_{\mu} \in F(G) / E_{\mu} \leq F_{\mu} / E_{\mu}
$$

where $F_{\mu} / E_{\mu}$ fartorizes by theorem 2.4.3. Therefore we have

$$
a E_{\mu} \in F_{\mu} / E_{\mu} \cap A E_{\mu} / E_{\mu}
$$

which implies $n \in F_{\mu}$. Since this hulds for all $\mu \in \mathbf{A}$,

$$
a \in \bigcap_{\mu \in A} F_{\mu}
$$

In order to courlude the proof we shall show that $\bigcap_{\mu \in A} F_{\mu}=F(G)$. Let

$$
N=\bigcap_{\mu \in A} F_{\mu}
$$

then clearly $N \geq F(G)$. Now $F_{\mu} / E_{\mu}$ is a nilpotent and perivdic group and so $N / E_{\mu}$ is alms. Since $G^{*} / E_{\mu}=\left(G / E_{\mu}\right)^{\prime \prime}$ it is a divixible aberian subgrunp and thus, hy theorem 2.2.8.

$$
G^{*} / E_{\mu} \leq Z\left(N / E_{\mu}\right)
$$

Heuce $\left\{G^{*}, N\right] \leq E_{p}$. This holds for all $\mu \in \mathrm{A}$ and so wo have

$$
\left[G^{*}, N\right] \leq \bigcap_{\mu \in A} E_{\mu}=1
$$

that is $G^{*} \leq Z(N)$. However $N / G^{*}$ is ailpotent. since it is a quotient group of $N / E_{\mu}$, and so $N$ is itself nilpotent. As $N$ is a wormal suligromp of $G$

$$
N \leq F(G)
$$

нund но

$$
N=F(G)
$$

Thercfore finally we uhtain $a \in F(G)$, and then $b \in F(G)$, which impliex

$$
F(G)=(F(G) \cap A)(F(G) \cap B)
$$

as required.

It in also easy to prove that in thim situation the Hirsch Plotkin radical of Gifartorizes.

Theorem 2.4.6. If the group $G \in\{$ has abelian subgroups $A$ and $B$ such that $G=A B$, then the Hirach-Plotkin radical of $G$ also factorizes.

Proof of 2.1.6: Following the proof of theurem 2.2.10 for rach $\mu \in \Lambda$ wre may define a normal subgroup $E_{j}$ such that $G / E_{\mu}$ is a Ceruikuv group and $\cap_{\mu \in A} E_{\mu}=1$. Nuw we shall define fur each $\mu \in A$ sul)groups $\rho(G)_{\mu} \leq G$ sweh that $\rho(G)_{\mu} / E_{\mu}$ is the Hirsch-Plotkin radical of $G / E_{\mu}$. Since $\rho(G) / E_{\mu}$ is locally nilputent and normal in $G / E_{\mu}$ we have

$$
\rho(G) / E_{\mu} \leq \rho(G)_{\mu} / E_{\mu}
$$

and so $\rho(G) \leq \rho(G)$.
Suppose $h \in \rho(G) \leq A B$. thry $h=a b$ for some $a \in A$ and $b \in B$. Now Amberg [1] has shown that $\rho(G)_{\mu} / E_{\mu}$ factorizes, thus siuce $h \in \rho(G)_{\mu}$ wr have

$$
a \in \rho(G)_{\mu} \cap A E_{\mu}
$$

Siuce this bolds for all $\mu \in A$,

$$
a \in \bigcap_{\mu \in A} \rho(G)_{\mu}
$$

Let

$$
N=\bigcap_{\mu \in A} \rho(G)_{\mu}
$$

We rhall uuw nhaw that $N$ is the Hirsch-Plotkin radical of $G$. Counider figure 2.7. Since $\rho(G)_{\mu} / E_{\mu}$ is locally uilpotent $N / E_{\mu}$ is locally uilpotent. Thus $N$ embeds in a cartesian product of locally nilpotent groups,

$$
C r_{\mu \in A} N / E_{\mu}
$$

Nuw $G$ is a lucally fiwite group so, an wr have shown in the proxf of theorem 2.2.10. $\boldsymbol{N}$ munt ithelf le locally uilputeut. Therefore, as $\boldsymbol{N}$ in normal in $G$, wp lave $N \leq \rho(G)$. Thus $N=\rho(G)$ and so $a \in \rho(G)$ and $b \in \rho(\boldsymbol{G})$. Heuce finally we ubtain the fartorization

$$
p(G)=(\rho(G) \cap A)(p(G) \cap B)
$$



Figure 2.7.

Note that later, in theorem 3.3.9. wr ahall inveatigate the situation of a periodir ( $L$ N) B-gront which is factorized by two lorally nilputent mubruaps. We prove that the Hirsch-Plotkin radiral of the group inherits the factorization.

## Chapter 3

## Formation subgroups which inherit factorization

### 3.1. Introduction

In this chapter we shall be coucerued with the formation sulgromps of a farturized group. Now the courept of a formation of finite soluble groups was first intrudined by Gaschūtz in [15]. It was defined by a series of cunditious givan lorlow.

Definition 3.1.1. A class of finite soluble groups $\mathbf{F}_{\mathbf{5}}$ is said to be a formation if it satistirs:
(i) If $G \in \mathcal{J}$, then $G / N \in \mathcal{J}$, and
(ii) If $G / N_{1}$ and $G / N_{2} \in \mathcal{B}$, then $G /\left(N_{1} \cap N_{2}\right) \in \mathcal{J}$. where $N, N_{1}$ and $N_{1}$ are nurmal subgroups of $G$.
We rall 3 a saturated formation if in addition it satistiow:
(iii) If $G / \$(G) \in \mathcal{F}$, theu $G \in \mathcal{F}$.

Gaschinz went on to dearrihe an important method of constructing saturated furmations.

Deffition 3.1.2. With each prime $p$ we assuciate sume formation $\mathfrak{F}_{p}$. Let $\mathfrak{F}$ be the class of finite soluble groups such that: $G \in \mathcal{F}$ if and only if for earh $p$-chief factor $H / K$ of $G$.

$$
\frac{G}{C_{r}(H / K)} \in \mathfrak{F}
$$

Then $\mathfrak{J}$ is indeed a formation which we call the local formation defined by the set $\left\{\mathcal{3}_{p}\right\}$. If $\mathcal{3}_{p}=$ for all $p$, they $\mathfrak{z}=1$.

Gaschintz showed in [15] that every local formation is saturated, and later with Lubeseder in [16], he proved the converse. In fart the same locally defined furmation may arise from many distiuct sets $\left\{\mathfrak{F}_{\boldsymbol{p}}\right\}$, however it is always possible to find one, said to define $\mathfrak{F}$ properly, such that $\tilde{F}_{p} \leq \mathfrak{F}$ for earh prime $\boldsymbol{p}$.

Now for the purposes of our inveatigations it is helpful to assume that an otherwise arbitrary smeturated formation of finite soluble groups $\mathfrak{F}$ contains the class of finite nilpotent groups $\boldsymbol{n}$. Then $\mathrm{F}_{\mathrm{F}}$ may be defined by a set of formations $\left\{\mathfrak{F}_{p}\right\}$, with $\mathfrak{F}_{p} \neq \emptyset$ for each $p$.

In the rase of a finite noluble group $G$. Ganchitz went on to introdure the coucept of $\mathfrak{b}$-covering sulgroups. These form a canunicial class of coujugate sulgroups of $G$. In this chapter. hawever, we wish to consider a much larger -lass of groups, namely that of periodic ( $L \boldsymbol{N}$ ) $\boldsymbol{g}_{\text {-groups. The formation theory }}$ of this rlass has beren investigated extensively by Stonehewer in [44]. Here be exteuds the defiuitions of Gasrluitz to the infinite case. To begin with he translates that of an $\mathfrak{F}$-covering sulygroup into the more general $\boldsymbol{X}$-covering suhgroup, where $\boldsymbol{X}$ is a nou-empty clase of groups.

Definition 3.1.3. Let $G$ he agronp with subgroups $H, K$ and $L$ where $L \leq H$ and $K \triangleleft H$. Then $L$ is said to cover the fartor $H / K$ if $L K=H$.

Now let $\boldsymbol{X}$ be any class of groups and suppose that $L \in \boldsymbol{X}$. If $L$ covers every X-fartor group $H / K$ of earh subgroup $H \geq L$, then $L$ is called an $\boldsymbol{X}$-covering subgroup of $\boldsymbol{G}$.

Stonelower then goes on to state some immediate conserpurnces of the detinition

Lemma 3.1.4 (Stonehewer [44, 2.1]). Let $G$ be any group and let $X$ be any class of groups. If $G$ possesses an $\boldsymbol{X}$-covering subgroup $E$. then $E$ is necessarily a maximal $\mathbf{X}$-subgroup of $\boldsymbol{G}$.

Thus if $G \in \mathfrak{X}$, then the $\boldsymbol{X}$-rovering subgrouss coincide with $G$. Auother fundamental result is given helow.

Lemma 3.1.5 (Stonehewer [44, 2.2]). Let $G$ be a group and let $\boldsymbol{X}$ be any class of groups. If $G$ possesses an $\mathfrak{X}$-covering subgroup $E$, then $E$ is an $X$ covering subgroup of $F$, for every subgroup $F$ of $G$ containing $E$.

For the next resulte $\boldsymbol{X}$ is required to be $\mathbf{Q}$-closed, a property defined below.

Definition 3.1.6. Defiup a class of groups $Q \boldsymbol{X}$ as follows: $G \in Q X$ if aud ouly if there exists an $\boldsymbol{X}$-group $\boldsymbol{\mathcal { G }}$, with a normal suhgroup $\boldsymbol{H}$, such that $\boldsymbol{G} \cong \overline{\boldsymbol{G}} / \boldsymbol{H}$. Thus $\boldsymbol{x} \leq \boldsymbol{Q} \boldsymbol{x}$; and if $\boldsymbol{x}=\boldsymbol{Q} \boldsymbol{x}$, then $\boldsymbol{X}$ is said to be $\mathbf{Q}$-closed.

Olviously, from the defibition above, a formation is surh a class. Employing this extra condition Stonelewer is able to establish the following results.

Lemma 3.1.7 (Stonehewer [44, 2.3]). Let $G$ be any group and let $X$ be any Q-closed class of groups. Suppose that $G$ possesses an $\bar{X}$-covering subgroup $E$. If $K$ is a normal subgroup of $G$, then $E K / K$ is an $\boldsymbol{X}$-covering subgroup of $G / K$.

Lemma 3.1.8 (Stonehewer [44, 2.4]). Let Ge a group with a normal subgnoup $K$ of finite index in $G$, and let $\boldsymbol{X}$ be any $Q$-closed class of groups. If $G / K$ possesses an $\boldsymbol{X}$-covering subgroup $E / K$, and if $E$ possesses an $\mathbf{X}$-covering subgroup $E$, then $E$ as an $\boldsymbol{X}$-covering subgroup of $G$.

Now in the situation of fivite groups, if our substitutes a saturated formation $\mathfrak{F}$ for $\boldsymbol{X}$ in the above, then we recover the results of Gaschūtz [15]. We,
 tuting Lz for $\boldsymbol{X}$ we shall use the above to investigate the behaviour of their $\boldsymbol{L}_{\mathbf{J}}^{\boldsymbol{j}}$-covering sulogrenps. In this situation Stonehewer is able to guaranter their existence by the following theorem.

Theorem 3.1.9 (Stonehewer [44, 日.5]). Let $\mathfrak{3}$ be a local formation of finite soluble groups and let $G$ be a periodic ( $L \mathfrak{N}$ ) $\mathbf{O}$-group. Then $G$ has $L \mathfrak{V}$-covering subgroups, and any two much subgroups are conjugate.

In order to inveatigate the helaviour of the Lis-covering subgroups of a factorized periodir ( $L \boldsymbol{N}$ ) $\boldsymbol{b}_{\text {gromp }}$, werquire a further chararteristic rlans of conjugate sulggruups, namely the $L \mathfrak{J}$-normalizers alfined by Stonehewer in
[44]. First we shall establish the courept of a Sylow basis of a periodic (LI) group.

Definition 3.1.10. A set of Syluw $p$-subgroups $S_{p}$ of $G$, one for each priur $\mu$, is said to be a Sylow basis of $G$ if the subgroup $K$ generated by thuse subgroups $S_{p}$ for which $\mu \in \pi$, an arbitrary set of primes, is such that $w(K) \subseteq$ $\pi$. With rach Syluw hasis $\mathcal{S}$ wn assuriate a basis normalizer.

$$
\mathcal{N}_{r i}(\mathbf{S})=\bigcap_{\mathbb{p} \in \mathcal{P}} \mathcal{N}_{a}\left(S_{p}\right)
$$

The existence of Sylow hases of a periodic ( $L \mathscr{N}$ ) 0 -group was proved by Stonebewer in [43].

Theorem 3.1 .11 (Stonehewer [43, 3.1]). Let $G$ be a periodic lorally soluble group with radical of finite index. Then
(i) G passesses Sylow banes:
(ii) the Sylow bases of $G$ are conjugate:
(iii) given a Sylow basis of G, say E, and a set of primes $\pi$, the subgroup generated by those Sylow $p$-subgroups of © for which $p \in \pi$ is a Sylow *aubgroup of $G$.

Definition 3.1.12. From the ahove it is clear that, given a Sylow basis $\mathcal{E}$ of $G$ and a prime $p$, the subgruup generated by all those $S_{\mathrm{f}} \in \mathcal{E}$ such that $q \neq \mu$, is a Syluw $p^{\prime}$-sulbgrunp $S_{p}$ of $G$. We rall $S_{p}$ the Sylow $p^{\prime}$-sulugruup of $G$ associated with $\mathcal{B}$. The set of all such $S_{p^{\prime}}$ is said to be a Sylow system for $G$. We can then form ita aystem normalizer.

$$
\bigcap_{p \in \nu} \mathcal{N}_{G}\left(S_{p^{\prime}}\right)
$$

In fart it is uot difficult to see that the basis and system normalizers assuciated with a given Sylow basis 0 roincide.

$$
\mathcal{N}_{G}(\mathbb{S})=\bigcap_{p \in P} \mathcal{N}_{G}\left(S_{p}\right)=\bigcap_{p \in P} \mathcal{N}_{G}\left(S_{p}\right) .
$$

We are nuw ready to introduce the $\mathcal{L} \mathfrak{F}$-normalizers.

Definition 3.1.13. Let $G$ be a periodic ( $L 9$ ) group, and let $\mathfrak{z}$ be a local formation defined properly by furmatious $\left\{\mathfrak{Z}_{p}\right\}$. Choome $H \triangleleft G$. such that $H \in L \mathfrak{N}$ and $|G: H|$ is finite. Let $E$ be a Sylow hasis for $G$ with membres $S_{p}$ and assoriated Sylow $p^{\prime}$-suligroups $S_{p^{\prime}}$. Let $\left(M_{p} / H\right)$ be the $\boldsymbol{J}_{p}$ residual of $G / H$. Set $T_{p^{\prime}}=S_{p^{\prime}} \cap M_{p}$ and let $N_{p^{\prime}}=\mathcal{N}_{G}\left(T_{p^{\prime}}\right)$, for all primes $p$. Then the sulgroup

$$
D=\left\langle S_{p} \cap N_{p^{\prime}}: p \in \mathcal{P}\right\rangle
$$

is called the $\mathbf{L} \mathfrak{j}$-normalizer of $\boldsymbol{G}$ defined by $H_{,}\left\{\mathfrak{F}_{p}\right\}$, and $\mathcal{G}$. If $G$ is a finite soluble group, thru we rall $D$ an $\mathfrak{z}$-normalizer of $G$.

Stourbewer shows [44, lemma 3.1], that $D$ may alsu be written as

$$
D=\bigcap_{\mathbb{P} \in \mathcal{P}} N_{p}
$$

Thus the $L \mathfrak{B}$-nomalizers are clusely related to the system normalizers, and thus the hasis normatizers, of the group. ludeed, if une considers the furmation of finite silpotent subgroups, defined locally by formatious $\mathcal{J}_{\boldsymbol{p}}=1$, for al $\mu \in \mathcal{P}$, then they in fart cojucide.

It tranapires that $D$ does uut depend on the choice of pither the subgronp H, or the net $\left\{\mathfrak{Z}_{\boldsymbol{p}}\right\}$. Huwever parh Syluw basis defiues a unique $\mathbf{L Z}$ - uurmalizer. and an indicated wo have:

Theorem 3.1.14 (Stonehewer [44, 7.3]). Let 3 be a local formation of finite soluble groups and let $G$ be a periodic ( $L \mathbb{N}$ )-group. Then the $L \mathcal{B}$ normalizers of $G$ form a characteristic class of conjugate subgroups.

As wan the case for $\mathcal{L} \mathfrak{F}$-covering subgronps, if $G \in L \mathfrak{F}$ then, by [44, Ifmma 8.5], the $L \boldsymbol{z}$-nommalizern ruincide with $G$. In fact they are always L₹-subgroups by [44, theurem 8.8].

The invariance of $L \mathcal{Z}$-normalizers under homomorphisms was established in the following theorem.

Theorem 3.1.15 (Stonehewer [44, 8.6]). Let 3 be a local formation of finite soluble groups and let $G$ be a periodic ( $L$ N) $B$-gmup. Suppose that the Sylow basis $\Theta$ of $G$ defines the $L \mathbb{J}$-narmalizer $D$ of $G$. If $K \triangleleft G$, then $D K / K$ st the L₹-normalizer of G/K defined by $\mathbf{S K} / \boldsymbol{K}$.

Finally he estalilishes the equivalence of $\boldsymbol{L}^{\boldsymbol{z}}$-rovering subgroups and $\boldsymbol{L} \boldsymbol{\xi}$ nurmalizers in a particular situation.

Lemma 3.1.16 (Stonehewer [44, 9.2]). Let $\mathbf{3}$ be a local formation of fimite soluble groups and let $G$ be a periodic (LN) $\begin{aligned} & \text {-group. Then every Lid } \\ & \text { - }\end{aligned}$ normalizer of $G$ is an $L \mathfrak{J}$-covering subgroup of $G$.

Lemma s.1.17 (Stonehewer [44, 9.s]). Let s be a tocal formation of finite
 subgroup of $G$ in an $L \mathfrak{F}$-nomalizer of $G$

Having thus reviewed the development of a formation theory for periodir ( $L \mathfrak{N}$ ) © groups we are now ready to apply it to a factorized situatiou.

In sertiou 3.2 we shall cousider the motivation for this study, uamely a theurem due to Heineken [24]. The statement is given in terms of ' $\mathcal{F}$-projectors' which, by [22, theurem A], coincide for finite soluhle groups with our $\mathfrak{f}$-coveriug subgroups. We shall employ the latter terminology. He olserved that if a finite gruup $G$ way facturized by two uilputent sulgroups, theu for any arlitrafy saturated formation $\mathfrak{F}$. there is a unique $\mathfrak{F}$-covering subgroup which also factorizes. Our aim was to extend this result to a periodic ( $L \mathfrak{N}$ ) gronp.

Having examined Heineken's prowf it was clear that an alternative method would be ueeded to deal with the infinite case. Consequently we developed a much simpler procof for the finite case. It then transpired that similar terbniques could be used to prove the existeuce of an $\mathfrak{J}$ - normalizer which factorizes. Uufurtunately, since the prof relips on the existence of maximal subgroups. it also fails to geueralize.

In section 3.3 we loork at the sperial case where $\mathfrak{F}=9$. Hert, at last, it is possible to erstallish Hejueken's result for periodic ( $L$ N) ©-groups. First we produce another proof for finite gronps. This exploits the equivaleuce of the $\boldsymbol{n}$-coveriug suligroups and $\mathfrak{N}$-normalizers of a $\boldsymbol{\Re}^{4}$-group, yielding the corollary that there exists a system nurmalizer of $G$ which farturizes. It is then possible to extend these methods to the infinite rase. However attempts to replare $\mathfrak{N}$ by a general formation $\mathfrak{z}$ falter. For we show that the $\mathfrak{J}_{\mathbf{p}}$-residuals, which now nppear in the definition of an $\mathcal{L}$-normalizer, may not ueressarily fartorize.

In section 3.4 we are finally able to prove Heineken's result for an arhitrary saturated formation by sperializing to the class of Cervikov gronps. The proof iuvolves identifying a very special Sylow havis of the factorized gronip, referred to an the $f_{A H}$-bevis. Iu urder to proceed we extablisinh a lemma which in of some indeperident interext. This states that if $G^{*}$ is the mivimal sulgromp of finite
index in the Ceruikov group $G$, they there exists a finite supplement of $G^{*}$ in $G$ that alse fartorizes.

In the final section of this chapter we relate some further rasults whirh arose during unr attempts to generalize Heineken's theorem. In particular we prove that if $\boldsymbol{G}$ is a periodic ( $L \mathfrak{N}) \boldsymbol{B}$-group, then $\boldsymbol{G} \in L\left(\boldsymbol{N}^{2}\right)$ if aud ouly if $G \in(L N)^{2}$.

### 3.2. The finite case

In this rection we shall examine the theroren of Heineken and then cousider an alternative proof of his result. Lat ins begin hy stating the theorem

Theorem 3.2.1 (Heineken [24]). Assume that $G$ is the product of two finite nilpotent groups $A$ and $B$. and that $\mathcal{J}$ is a naturated formation. Then
(i) there is a unique $\mathcal{F}$-projector $D$ of $G$ such that $D=(D \cap A)(D \cap B)$,
(ii) if, in addition all nipotent groups belong to $\mathfrak{F}$, then $A \cap B \subseteq D$.

Heineken's proof is somewhat complex. He begins by considering the case where $G / F(G) \notin \mathcal{J}$. By induction on the order of the group be arhieves the recquired factorizing $\bar{s}$-projector of $G$. He then proceeds to the cane whree $G / F(G) \in \mathcal{F}$ hut $G / Z \notin \mathcal{F}$, here $Z$ is defiued by $Z / \Phi(G)=Z(G / \Phi(G))$. Since be is working in a finite group the Frattini sulgroup is nilpotent, and thus it is rontained in the Fitting sulogroup of $G$. He is they able to exploit a remult by Gaschūtz [14, Satz 13], namely that $F / \Phi(G)$ is a direct product of all the ahelian minimal nurnal subgroups of $G / \Phi(G)$. Thus every normal subigroup of $F / \Phi(G)$ han a uormal complement. Using this propesty be is able to guarantion the existeuce of a sul)group $T \triangleleft G$, such that $G / T \notin \mathcal{B}$ and $F / T$ is a noucentral rhiff factor. Then amoug all the uormal subgroups of $G$ intermerting $F$ in $T$ he selertm a maximal our $V$. By proving that $F V / V=C_{i}(F V / V)$ he
is in a position to apply bis lemma 2 of [24]. This concerns a minimal normal self-centralizing subgroup $N$ of a fartorized group $G$. He shows that there exists a unique romplement of $N$ in $G$ which inherits the factorization of the gromp. Thus $F V / V$ posseases a romplement $U / V$ in $G / V$ which fartorizes, it then follown that $U$ also factorizers. Now his $U / V$ is an $\xi$-projector of $G / V$ so when by induction he obtains a factorizing $\mathbb{B}$-projector of $U$ it will in fact be an $\mathbf{3}$-projector of $G$. He concludes his proof with a cousideration of the rase where $G / Z \in \mathcal{F}$.

It is clear that a direct adaptation of Heineken's proof to a periodir (LN) group $G$ would reguire that the Frattini subgroup be coutained in the HirschPlotkin radical of $G$. Unfortnnately the example below shows that this is nut always the case.

Example 3.2.2. Cousider $G=C_{p o s} C_{4}$. Then $G$ is a Cernikov group, and therefore a periodic ( $L$ N) -gronp. Then

$$
G=A \times X
$$

where

$$
A=A_{1} \times A_{1} \times A_{3} \times A_{4}
$$

and for earh i

$$
A_{1} \cong C_{m \infty},
$$

and

$$
X=\langle x\rangle \cong C_{4}
$$

Then $x$ acts un each $A$, thins,

$$
A_{1}^{x}=A_{2}, A_{2}^{r}=A_{3}, A_{3}^{x}=A_{4}, A_{4}^{x}=A_{1} .
$$

Suppuse $M$ is a maximal snhgroup of $G$, then, since $G$ is a Cernikov group.

$$
|G: \boldsymbol{M}|<\infty .
$$

### 3.2. The finite cane

It follows that

$$
|A M: M|<\infty
$$

and siuce $A M / M \equiv A /(A \cap M)$ we have

$$
|A: A \cap M|<\infty
$$

Now $A$ has no subgroups of finite index, so $A=A \cap M$ aud thum

$$
M \geq A
$$

Since $G / A \equiv X$ there must exist ouly one maximal subgroup of $G$, and

$$
M=\left\langle A, s^{2}\right\rangle
$$

This we have the situation of figure 3.1. The index $|G: M|=2$ and


Figure 3.1 .

$$
\Phi(G)=M
$$

If $\Phi(G) \subseteq \rho(G)$, then the Frattini subgroup would be locally uilpotent and heucre, ly theorem 2.2.2, we rould expreme it an a dirert produrt of its Sylow sulhgromipes.

$$
\left.\Phi(G)=A \times<x^{2}\right\rangle
$$

### 3.2. The finite case

However wr kuow that $x^{\mu}$ does nut ceutralize $A$, for $A_{4}^{y^{*}}=A_{3}$. Thus if $\mu \neq 2$, then $\Phi(G)$ is not lorally nilputmint, and so

$$
\Phi(G) \notin \rho(G)
$$

The failure of thin first step dirtated a upw approarly to Heineken's throrem. Consedueutly wo developed a much simpler prouf for finite groups. We used a new reanlt by Heineken, proved in 1991. Siuce it is currently available only as a preprint we reproduce it here in its eutirety.

Lemma 3.2.3 (Heineken [23, lemma 1]). If $G=A B$ is the product of two finite nilpotent subgroups $A$ and $B$, and if $M$ is a non-normal maximal subgroup of $G$. then there is a conjugate $T$ of $M$ such that

$$
T=(T \cap A)(T \cap B)
$$

and $T \cap A=A$ or $T \cap B=B$
Proof of 5.2.5: By the renulte of Kegel [30] and Weilandt [47], $G$ is soluble. Let ux denote the intersection of all roujugates of $M$ in $G$ by $D$. By Ore's theorem, $G / D$ possessex just oue minimal normal subgronp, $K / D$ say, which is self-ceutralizing, and $M / D$ is ita romplement in $G / D$. Siuce $M$ is not normal in $G$, we have $M / D \neq 1$. By theorem 1 of Gruan [17] and [24, lemman 2] we Lave that $K / D$ is rontaiued in $A D / D$ or $B D / D$ and $A D \cap B D=D$. Ansume that $K / D$ is a $\rho$-group and that it is routained in $A D / D$. Thon $F(M / D)$, which is upreator inomorphic to $F(G / K)$, is a $p^{\prime}$-group. Since $K / D$ in self-rentralizing.

$$
F(G / K)=\frac{F(M / D)(K / D)}{(K / D)}
$$

is routained in $B K / K$, and

$$
B D / D \cap((K / D) F(M / D))
$$

is a Hall- $p^{\prime}$-subgroup of $(K / D) F(M / D)$. So there is a ronjugate $T / D$ of $M / D$ such that

$$
F(T / D) \subseteq B D / D
$$

The normalizer of $F(T / D)$ in $G / D$ is $T / D$; and it contains $B D / D$. Now $B$ is contained in $T$ and, by Declekind's lemma, $T=B(A \cap T)$. By symmetry, $T$ can be chosen such that $T=A(B \cap T)$ if $B D$ contains $K$.

We shall also need the following definition and a theorem from Carter and Hawkes, [8].

Definition 3.2.4. Let $\left\{\mathfrak{F}_{p}\right\}$ be a set of formations defining a loral formation f. A maximal sulgroup $M$ of a finite soluble group $G$ is called $\mathfrak{F}$-abnormal if

$$
M / \text { Core } M \notin \mathfrak{z}_{p}
$$

where $p$ is the prime dividiug $|G: M|$.

Lemma 3.2.5 (Carter and Hawkes [ $\mathbf{6}, 5.1$ ]). The $\mathbf{3}$-covering subgroups $E$ of a finite soluble group $G$ can be characterized by the conditions:
(2) $E \in \mathcal{F}$;
(ii) Every link of every maximal chain joining $E$ to $G$ is F-abnormal.

We are now ahte to present our alternative proof of Heineken's result. As indirated in arction 3.1 we shall nue the rquivalent terminology of $\mathfrak{F}$-rovering subgroups'. So we may reword Heinmben's theorem in the following manuer.

Thearem 3.2.6. If the finite group $G$ has nilpotent subgroups $A$ and $B$ such that $G=A B$ and $\mathcal{S}$ is a saturated formation, then there exiats some $\mathcal{F}$-covering subgroup $E$ of $G$ such that

$$
E=(E \cap A)(E \cap B)
$$

Proof of 9.2.6: If $G \in \mathcal{F}$, then $G$ would itwelf be an $\mathcal{F}$-covering subgroup and since $G$ fartorizes unr theorem is ubviously true. Thus we may assume that $G \notin$ 3. We now apply theorem 3.1 .9 to obtain $L$ an $\mathfrak{F}$-covering suligroup of $G$. Clearly $L<G$. Let $M$ be a maximal subgroup of $G$ that contains L. By lemma 3.2 .5 the subgroup $M$ is $\mathbf{j}$-abnormal and so, by the following argument, it is self normalizing in $G$. Since $M$ is maximal either $\mathcal{N a}_{\boldsymbol{G}}(\boldsymbol{M})=\boldsymbol{M}$ or $G$. Suppose that $\mathcal{N}_{\sigma}(M)=G$, then

$$
M / \text { Core } M=1 \in \mathcal{J}_{p}
$$

where $p$ divides | $G: M \mid$. This runtradicts the definition of $\mathbf{3}$-abnormal and so $M$ is self-normalizing as stated.

We are now in a position to apply Heineken's new result, lemma 3.2.3, to oltain a cunjugate of $M, T=M^{\text { }}$, such that

$$
T=(T \cap A)(T \cap B)
$$

Since $\boldsymbol{T}<\boldsymbol{G}$ we can use induction to find $E$, an $\mathfrak{z}$-covering subgroup of $\boldsymbol{T}$. such that

$$
E=(E \cap A)(E \cap B)
$$

Now $L^{*}$ is an $\mathcal{F}$-rovering sulogroup of $G$ contained in $T$, so by lemma 3.1 .5 it is un $\boldsymbol{o}^{-c o v e r i n g ~ s u l a g r o n p ~ o f ~} T$. Thus there exists some $t \in T$ surh that

$$
E=L^{n t} .
$$

Heure $E$ in runjugate to $L$ in $G$, and no ly throrem 3.1 .9 it is an $\mathcal{F}$-rovering suhgroup of $G$.

Similar terhuiques can he used to show that there is an $\bar{F}$-normalizer of $G$ which fartorizes. In order to apply them successfully the following drtinition and sume traults from Carter and Hawkes [8] are required.

Definition 3.2.7. A maximal sul)group $M$ of a finite soluble group $G$ will be called an $\mathfrak{z}$-critical maximal subgroup if $M$ in $\mathfrak{z}$-abuormal and

$$
F(G) M=G
$$

The authors nute that if $G \notin{ }^{\circ}$ then such $\boldsymbol{j}$-critical maximal sulogronps do exist. We shall also uepd their lemmes 4.2 and 4.6.

Lemina 3.2 .8 (Carter and Hawkes [ $8,4.2$ ]). A maximal subgroup $M$ of a finite soluble group $G$ contans anme $\mathcal{J}$-normalizer of $G$ if and only if $M$ wa F-abnormal in $G$.

Lemma 3.2.9 (Carter and Hawkes [8, 4.6]). If $M$ is an $\mathbf{~ B - c r i t i c a l ~ m a z i m a l ~}$ subgroup of a finite soluble group $G$, then each $\mathfrak{J}$-normalizer of $M$ is an $\mathfrak{z}$ normalizer of $G$.

We are now ready to prove the $\overline{3}$-normalizer result.

Theorem 3.2.10. If the finite gmup $G$ han nilpotent subgroups $A$ and $B$ such that $G=A B$, and $\mathfrak{J}$ is a saturated formation, then there exisk an $\mathfrak{F}$ normalizer $D$ of $G$ such that

$$
D=(D \cap A)(D \cap B) .
$$

Proof of s.e.10: If $G \in \mathcal{F}$ theu by [44. lemma 8.5] the $\mathcal{F}$-uormalizers coincide with $G$ and we are tinished. Therefore assume that $G \notin \mathfrak{F}$. Hence there exists an $\mathfrak{F}$-critical maximal sulogroup $\boldsymbol{M}$ of $G$. Since $M$ is $\mathbb{J}$-abuormal aud maximal by lemma 3.2 .8 it moth contain nome $\boldsymbol{z}$-uormalizer $L$ of $\boldsymbol{G}$.

Now $M$ is self uormalizing in $G$, aud so we may apply lemma 3.2 .3 to obtain $T=M^{g}$ such that

$$
T=(T \cap A)(T \cap B)
$$

We shall show that $T$ is also an $\boldsymbol{j}$-critical maximal sulgronp of $G$. Since it is conjugate to $M, T$ is maximal in $G$. The subgroup $L^{a}$ lies in $T$ and it is an $\mathfrak{J}$-normalizer of $G$, thus from lemman 3.2 .8 we deduce that $T$ in $\boldsymbol{J}$-ahnormal Finally

$$
F(G) M=G
$$

yields

$$
F(G) M^{\prime}=G
$$

and so $\boldsymbol{T}$ is indeed an $\mathbf{T}$-critical maximal subgroup of $\boldsymbol{G}$.
Apply induction to $T<G$, to uhtain $D$, an 3 -normalizer of $T$, such that

$$
D=(D \cap A)(D \cap B)
$$

Now by lemma 3.2 .9 this will he an $\mathfrak{f}$-nomalizer of the whole group. Hence there does exist an $\bar{y}$-uormalizer of $G$ whirh factorizes.
 lu order to mirror the pronf of theorem 3.2 .6 we need to be able to guarantow the exinteucr of a maximal subgroup of $G$ which rontains an $\mathbf{J}$-rovering sulatunp. Cousider the situation where $G$ is a Ceruikev group with $G^{*}$ its minimal subgroup of finite index. If $G / G^{\prime} \in \mathcal{J}$ then an $\boldsymbol{j}$-covering subgroup $E$ of $G$ satinfies

$$
E G^{-}=G .
$$

Thus we have the situation of figure 3.2.


Figure 3.2.

If $M$ is maximal in $G$ and $E \leq M$, then by Dedekind's lrmma

$$
\begin{aligned}
M & =M \cap E G^{*} \\
& =E\left(M \cap G^{*}\right)
\end{aligned}
$$

Thus if $M$ in maximal in $G$, then ( $M \cap G^{*}$ ) must be maximal in $G^{*}$. However since $G^{\boldsymbol{0}}$ in a dirert product of quasicyclic subgroups no such maximal subgroupe exiat, a contradiction.

Hence we cannot guaranter that for a periodic (LTI) 6 -group a maximal sulugroup exists which coutains an 3 covering mugroup. This indicaten that yet auother approach to the problem is required.

### 3.3. The formation of finite nilpotent groups

In this swetion we whall consider the case where the formation in that of finite uilpotent gronps. Thik sperialization will allow ne to find an alteruative prosf of Heinnken's rewult, which we can then generalize to the clans of periutic ( $L$ N) groupe. In this sithation the $\mathbf{3}$-rovering mubgroupe of a fiuite moluble
group become the Carter subgroups. that is the self-normalizing nilpotent voligroups.

Before rmbarking on the finite case we shall identify a particular Sylow basis of the group.

Lemma 3.3.1. If the finste group $G$ has nilpotent subgroups $A$ and $B$ such that $G=A B$. and for each prime $p$ the Sylow $p$-subgroups of $A$ and $B$ are $A_{p}$ and $B_{\mu}$ respectively, then the set

$$
\left\{A_{\nu} B_{\nu}: p \in \mathcal{P}\right\}
$$

is a Sylow basia for $G$.
Proof of S.S.1: Firstly, by Wielandt [46], $A_{p} B_{p}$ is a Sylow $p$-subgroup of $G$, whirh we shall denote by $G_{p}$. Thus it remains to show that for any distinct primes $p$ and $q$ dividing the order of $G$ the following holds,

$$
G_{p} G_{q}=G_{q} G_{p}
$$

Since $A$ is nilpotent, and therefore a direct product of its Sylow $p$ suhgroups, the sulgroup $A_{p} A_{q}$ is a Hall $\{p, q\}$-subgroup of $A$. Similarly $B_{p} B_{q}$ is a Hall $\{p, q\}$-suhgroup of $B$. Then, by [27, lemma 4.8], we have

$$
G_{\{p, q\}}=A_{p} A_{q} \cdot B_{p} B_{q}
$$

is a Hall $\{p, q\}$-suligroup of $G$.
Nuw

$$
G_{(p, q]} \geq A_{p} B_{p}=G_{p}
$$

and similarly

$$
G_{[p, q]} \geq A_{\mathbf{q}} B_{q}=G_{\mathbf{q}}
$$

Hence

$$
G_{(p, a)} \geq G_{p} G_{q}
$$

and since

$$
\left|G_{(m a)}\right|=\left|G_{p} G_{q}\right| .
$$

we have equality. Thus the product $G_{p} G_{q}$ is in fact a group, and so $G_{p}$ and $G_{q}$ commute an required.

Nuw let us distinguish this particular Syluw basis.

Definition 3.3.2. Suppose the group $G$ has nilpotent suhgroups $A$ and $B$ surh that $G=A B$, and for each prime $p$ the Sylow $\boldsymbol{f}$-suligroups of $A$ and $B$ are $A_{\text {p }}$, and $B_{p}$ respertively. Then the nnique fartorized Sylow basis

$$
\left\{G_{p}=A_{p} B_{p}: p \in \mathcal{P}\right\}
$$

slall be called the $f_{A B}$-basis of $\boldsymbol{G}$.

Nuw we are realy to procered to the finite case.

Theorem 3.3.3. If the finite group $G$ has nilpotent subgroups $A$ and $B$ such that $G=A B$, and $\mathfrak{N}$ is the formation of finite nilpotent groups, then there exista an N-covering swhgroup $E$ of $G$ such that

$$
E=(E \cap A)(E \cap B) .
$$

Proof of 8.s.s: Let $F$ denote the Fitting sulagroup of $G$. We shall proceed by induction on the order of $G$. Suppose that the theormm holds for all groups whose order in strictly less than that of $G$. Rerall that hy Wielandt [47] and Kegel [30], $G$ in a soluble group, and thins $F \neq 1$.
(i) Suppose that $G / F$ in not nilpotent. Then since

$$
|\boldsymbol{G} / \boldsymbol{F}|<|\boldsymbol{G}|,
$$

we may apply induction to

$$
G / F=(A F / F)(B F / F)
$$

to obtain $L / F$. an $\boldsymbol{N}$-covering sulngroup of $G / F$ which fartorizes. Tbum

$$
L / F=(L / F \cap A F / F)(L / F \cap B F / F)
$$

and so

$$
L=(L \cap A F)(L \cap B F) .
$$

Using Dedekind's lemma wr can rearrange the expreasion to get,

$$
\begin{aligned}
L & =(L \cap A) F(L \cap B) F \\
& =(L \cap A) F(L \cap B) .
\end{aligned}
$$

Since by Pennington [38] F factorizes,

$$
\begin{aligned}
L & =(L \cap A)(F \cap A)(F \cap B)(L \cap B) \\
& =(L \cap A)(L \cap B)
\end{aligned}
$$

and $L$ facturizes.
Now aince $G / F$ is but nilpotent $L<G$. and wr may therefore apply indurtion to ohtain an $\mathfrak{N}$-covering sulggroup $E$ of $L$ which factorizes, thus

$$
\begin{aligned}
E & =(E \cap(L \cap A))(E \cap(L \cap B)) \\
& =(E \cap A)(E \cap B) .
\end{aligned}
$$

By lemma 3.1.8 $E$ is an $\boldsymbol{N}$-rovering nubgroup of $G$, and we are finished.
(ii) Suppose $G / F$ is uilpotent. Then, by fomma 3.1.17, the N-covering suhgroups coincide with the $\mathfrak{N}$-normalizers of $\boldsymbol{G}$. In this situation thry will in fart be the hasis normalizern of $G$. Thun wre winh to conatruct a basis nornulizer which factorizen. Take the $f_{A B}$-lawis of $G$ and form the normalizer.

$$
N=\bigcap_{m \in T} \mathcal{N}_{N}\left(G_{p}\right) .
$$

We shall show that $N$ factorizes.
Following the proof of Scott's result [42, 13.2.7] we let

$$
H_{p}=\left\langle A_{p}, B_{p}\right\rangle=A_{p} B_{p}
$$

for all $p \in \mathcal{P}$. If $g \in N \leq A B$, then there exist some $a \in A$ and $b \in B$ such that $g=a b^{-1}$. Now $H_{p}=G_{p}$, thus

$$
H_{p}^{g}=H_{p}
$$

and so

$$
H_{p}^{e}=H_{p}^{\downarrow}
$$

for all $\mu \in \mathcal{P}$. Now

$$
H_{p}^{a} \geq A_{p}^{a}=A_{p}
$$

and similarly

$$
H_{p}^{b} \geq B_{p}^{b}=B_{p} .
$$

Heuce

$$
H_{p}^{a} \geq A_{p} B_{p}=H_{p}
$$

and since $G$ is finite,

$$
H_{p}^{a}=H_{p} .
$$

Thus $a \in \mathcal{N}_{G}\left(H_{p}\right)=\mathcal{N}_{G}\left(G_{p}\right)$ for every $p \in \mathcal{P}$, and so

$$
n \in \bigcap_{p \in p} \mathcal{N}_{G}\left(G_{p}\right)=N
$$

Since $b=g^{-1} a$, we cunclude that $b \in N$ and finally

$$
\boldsymbol{N}=(\boldsymbol{N} \cap \boldsymbol{A})(\boldsymbol{N} \cap \boldsymbol{B})
$$

The following corollary may lee extracted from the almove result.

Carollary 3.3.4. If the finite group $G$ has nippotent subgroups $A$ and $B$ such that $G=A B$, then the system normalizer of the $f_{A B-b a s i s ~ a l e o ~ f a c t o r i z e s . ~}^{\text {a }}$

In urder to grarialize the above to the class of periodic (LN) groups we must recall some of their basic propertips, invertigated by Stonehewer in [43]. The hehaviour of their Sylow subgroups was dealt with in his lemma below.

Lemma 3.3.5 (Stonehewer [43, 1.1]). Let $G$ be a pertodic locally soluble group with radical of finite index, and let $M$ be a normal subgroup of $G$. Let $\mu$ be any prime, and let $\pi$ be any set of primes.
(i) The Sylnw $\pi$-subgmoups of $G$ are conjugate.
(ii) If $S_{p}, S_{p}$ are any Sylow $p, p^{\prime}$-subgroups of $G$. respectively. then $G=S_{\mu} S_{\mu}$
(isi) If $M_{p}$ is a Sylow p-subgroup of $M_{\text {, and }}$ if $N=\mathcal{N}_{G}\left(M_{p}\right)$, then $\boldsymbol{M N}=\boldsymbol{G}$.
(iv) If $S_{p}$ in a Sylaw $p$-subgroup of $G$, then $S_{p} \cap M$ and $S_{p} M / M$ are Sylaw $\boldsymbol{p}$-subgroups of $M$ and $G / M$ respectively.

We are now ready to generalize lemma 3.3 .1 to periodic ( $L$ N) $\mathbf{O}$-groups.

Lemma 3.3.6. If $G$ in a periodic ( $L$ N) -group with nilpotent subgroups $A$ and $B$ such that $G=A B$. and for each prime $\rho$ the Sylow $p$-subgroups of $A$ and $B$ are $A_{p}$ and $B_{p}$ reapertively. then the aet

$$
\left\{A_{p} B_{p}: p \in \mathcal{F}\right\}
$$

in a Sylow hasis for $G$.

Proof of s.s.6: Now, by lemma 3.3.5 ahove, all Sylow p-suhgroups of $G$ are conjugate. Hence we may apply our lemma 2.2 .3 to deduce that $A_{p} B_{p}$ is a Sylow $p$-subgroup of $G$. We shall let $G_{p}=A_{p} B_{p}$ for all $p \in \mathcal{P}$. Thus it remains to prove that, for any distinct primes $p$ and $q$, the following holds,

$$
G_{p} G_{q}=G_{q} G_{p}
$$

Let $R$ deuote the Hirsch-Plutkin radical of $G$, thon $G / R$ is a finite group. Since $R$ is preriodic and locally nilpotent, by theorem 2.2.2, it may be expreswed as a direct proctuct of its Sylow subgroups.

$$
R=\prod_{p \in \mathcal{P}} R_{p}
$$

where parb $R_{p}$ is rharacteristic in $R$ and mo $R_{p} \triangleleft G$. It follows that $R_{p} \leq G_{p}$, and then $R_{p} \leq\left(G_{p} \cap R\right)$. Since $\left(G_{p} \cap R\right)$ is a p-group contained in $R$. we havr

$$
R_{\mathrm{p}} \geq\left(G_{\mathrm{p}} \cap R\right)
$$

Thetefore

$$
R_{p}=\left(G_{p} \cap R\right)
$$

Now

$$
G_{p} / R_{p}=G_{p} /\left(G_{p} \cap R\right) \cong R G_{p} / R
$$

and thus $G_{p} / R_{p}$ in a finite group. We whall use this property to redure to a finite situation.

Lrt $X=R_{p} \times R_{\mathrm{f}}$, this in a uormal subgroup of $G$. Since

$$
G_{p} G_{q} \geq R_{\mu} \times R_{q}=X
$$

and

$$
G_{q} G_{\mu} \geq R_{q} \times R_{p}=X
$$

we shall work modulo $X$ to prove that $G_{p}$ and $G_{q}$ permute.

## Now

$$
G_{p} X / X \cong G_{p} /\left(G_{p} \cap X\right)=G_{p} / R_{\nu}
$$

which is a finite group. Similarly $G_{q} X / X$ is finite. Therefore since $G$ is locally finite,

$$
\frac{<G_{0}, G_{\mathrm{A}}>X}{X}
$$

is a finite group, with Syluw p-suhgroup $G_{p} X / X$, and Sylow $q$-suhgraup $G_{q} X / X$.

Cousider

$$
G_{p} X / X=\left(A_{\nu} B_{p}\right) X / X=\left(A_{p} X / X\right)\left(B_{p} X / X\right)
$$

nund

$$
G_{\varepsilon} X / X=\left(A_{q} B_{q}\right) X / X=\left(A_{q} X / X\right)\left(B_{q} X / X\right)
$$

Nuw, by lemma 3.3.5. $\left(A_{\nu} X / X\right)$ and $\left(A_{\downarrow} X / X\right)$ are Syluw sulggronps of the uilpotent group $A X / X$, and similarly for $B X / X$. Therefore $\left(A_{p} A_{q}\right) X / X$ is a Sylow $\{\mu, q\}$-suhgroup of $A X / X$, and $\left(B_{p} B_{q}\right) X / X$ is one of $B X / X$. Then, by lemma 2.2.3, there is a Sylow $\{p, q\}$-sulogroup $G_{(p, q)} X / X$ of $G / X$ satisfying

$$
\begin{aligned}
G_{(p, q)} X / X & =\left(A_{p} A_{q}\right) X / X \cdot\left(B_{p} B_{q}\right) X / X \\
& =\left(A_{p} X / X\right)\left(A_{q} X / X\right)\left(B_{p} X / X\right)\left(B_{q} X / X\right)
\end{aligned}
$$

Heमेe

$$
G_{(p, 4)} X / X \geq\left(A_{p} X / X\right)\left(B_{p} X / X\right)=G_{p} X / X
$$

and similarly

$$
G_{(. .)]} X / X \geq G_{\odot} X / X
$$

However $G_{(p, q)} X / X \leq<G_{p,} G_{q}>X / X$, and since we are in a tivite group,

$$
G_{(p-f)} X / X=\left(G_{p} X / X\right)\left(G_{\&} X / X\right)
$$

Thus

$$
\left(G_{p} X / X\right)\left(G_{q} X / X\right)=\left(G_{q} X / X\right)\left(G_{p} X / X\right)
$$

and we are almont threre.
It follows that

$$
\frac{\left(G_{p} G_{q}\right) X}{X}=\frac{\left(G_{q} G_{p}\right) X}{X}
$$

aud so

$$
G_{p} G_{\mathrm{q}} X=G_{q} G_{p} X
$$

Fiually, since $X \leq G_{p} G_{q}$ and $X \leq G_{q} G_{p}$, we bave

$$
G_{p} G_{q}=G_{q} G_{p}
$$

and $\left\{G_{p}=A_{p} B_{p}: p \in P\right\}$ is a Sylow basig for $G$.

Definition 3.3.7. As in the finite case we shall refer to the above fartorized Sylow hasis as the $f_{A}$-basis of $G$.

Before procerding to the main result we need to prove that the HirschPlotkin radical of $G$ inherits facturization. In their paper [2] Amberg, Franciusi, and de Giovanui comment that the above holds if $G$ is a group such that every nou-trivial epimorphic image of $G$ coutaine a nou-trivial finite or lucally nilpotent normal subgronp. They claim this is min ensy consequence of the resulte of Wielandt [47] and Kiggel [30] together with their corollary of theurem B. Since this dors not appear at all ohvious we shall instead provide a generalization of Pruningtou'n tiuite result [38], which cuucerus the Fitting sulogroup. Wie shall nered the folluwing theorem due to Wielaudt.

Theorem 3.3.8 (Wielandt [48, Satz 1]). Suppose that $G$ in a finte group, $A$ and $B$ are subgroups of $G$, and $A B^{x}=B^{r} A$ for all $x$ in $G$. Then the following hold:
(a) If $G=A B^{i}=B A^{(i}$. then $G=A B$.
(b) $A^{H} \cap B^{A} \operatorname{sn} G$.
(c) If $A B \leq H \leq G$. then $A^{H} \cap B^{H}$ sn $G$.
(d) If X, Y are arbitrary subsets of $G$. then $\left\{A^{X}, B^{\gamma}\right]$ sn $G$.

Theorem 3.3.8. If $G$ in a prriodic (LN) ${ }^{(L N}$-group with locally nilpotent subgroups $A$ and $B$ such that $\boldsymbol{G}=\boldsymbol{A B}$, then the Hirsch-Plotkin radical of $\boldsymbol{G}$ alan factorizes.

Proof of 5.5.9: We shall follow closely Pennington's finite proof, making the urreasary adjustments for our infinite case. Our first aim is to show that if $A_{\text {a }}$ and $B_{\pi}$ arm Syluw $\pi$-sulugruups of $A$ and $B$ respertively, then

$$
\left[A_{i}^{G}, B_{\nabla}^{<i}\right] \subseteq \mathrm{O}_{\pi}(G)
$$

where $O_{-}(G)$ denotes the maximal normal $\pi$-suhgroup of $G$.
We begin by letting $H=A_{f} B_{\text {. }}$. By lemma 2.2 .3 this is a Sylow $\pi$-subgroup of $G$. If $R$ denotes the Hirsch-Plotkin radiral of $G$, then a Sylow a-subgroup of $\boldsymbol{R}, \boldsymbol{R}_{\mathrm{F}}$, in a normal subgroup of $\boldsymbol{G}$. Thus by [40, page 246] it lies in all Sylow $\pi$-subgroups of $G$, and we have

$$
H \geq \boldsymbol{R}_{\mathbf{R}}
$$

Huwever since $H$ is itself a $\pi$-group it fulluws that $H \cap \boldsymbol{R}=\boldsymbol{R}_{\mathbf{z}}$. Therefore

$$
H / R_{\mathrm{z}}=H /(H \cap R) \cong H R / R
$$

is a fiuite group.
Nuw since $A_{8} B_{z}$ is a Sylow $\pi$-sulogronp of $G$ it is possible to show that $A_{e}$ cummuter with all conjugates of $B_{n}$. For if $g \in G=A B=B A$, then $g=b a$ for sume $b \in B$ and $a \in A$, and

$$
\begin{aligned}
A B^{\natural} & =A B^{b a} \\
& =A B^{a} .
\end{aligned}
$$

Since

$$
G=G^{a}=(A B)^{a}=A B^{a}=A B^{d} .
$$

$A B^{\boldsymbol{s}}$ is a group and sa taking a Sylow $\pi$-subgroup reveals,

$$
A_{\varepsilon} B_{\pi}^{q}=B_{*}^{\rho} A_{\pi}
$$

Now pass to thr fartor group $G / R_{\text {r }}$. Consider a subgroup $\boldsymbol{K} \geq H$ such that $K / R_{n}$ in finite. Since $H / R_{n}$ is finite auch $n \operatorname{subgroup}$ will exist. Then we have the situation of figure 3.3 .


Figure 3.3.
By the above $A_{\mathbf{F}} R_{\mathbf{z}} / R_{\mathbf{F}}$ permutes with every coujugate of $B_{\mathbf{z}} R_{\mathbf{z}} / R_{\mathbf{z}}$ in the fiuite group $K / R$. We are uuw in a position to apply (d) of theorem 3.3.8 to deduce that

$$
\left|A_{F}, B_{\#}\right| R_{\nabla} / R_{\nabla} \text { sn } K / R_{ت}
$$

Now, since $\left[A_{\pi}, B_{*}\right] R_{m} / R_{z}$ is a $\pi$-group, induction on the subuormal defect reveala that

$$
\left|A_{n}, B_{*}\right|^{\kappa} R_{n} / R_{*}
$$

is a $\pi$-group.
Our aim in to ahow that $\left[A_{\pi}, B_{\pi}\right]^{6} R_{\pi} / R_{\pi}$ in a $\pi-$ gruup. Consider an element of thin group. It involven a finite number of generators, and hence the number
of cunjugating elements is finite. Since $G$ in locally finite they generate a finite sulgronp, and so, by the above, our element lies in a $\pi$-group. Therefure $\left[A_{\pi}, B_{\pi}\right]^{C^{\prime}} R_{\pi} / R_{\pi}$ is itself a $\pi$-group.

It folluws that $\left[A_{\pi}, B_{\mathbf{x}}\right]^{\text {C }}$ is a $\pi$-group and thus

$$
\left[A_{n}, B_{\pi}\right]^{i} \leq O_{F}(G) .
$$

Nuw we have $\left[A_{r}, B_{\pi}\right] \leq O_{\mathbb{F}}(G)$, and conjugating through by a $\in A$ yields,

$$
\left[A_{\pi}, B_{\pi}^{a}\right] \leq \mathbf{O}_{\pi}(G)
$$

Since this holds for all $a \in A$, we have

$$
\left[A_{\sim}, B_{\sim}^{A}\right] \leq \mathbf{O}_{\sim}(G),
$$

and then

$$
\left[A_{\pi}, B_{\pi}^{(i}\right] \leq \mathbf{O}_{\pi}(G) .
$$

Therefore we obtain

$$
\left[A_{\pi}^{G}, B_{\pi}^{(i)}\right] \leq O_{\pi}(G)
$$

Let denotc the uatural homomorphism from $G$ to $G / O_{\boldsymbol{F}}(G)=G$. Siner $\mathrm{O}_{\pi}(G)$ is a normal $\pi$-subgroup of $G$ we have $\mathrm{O}_{n}(G) \leq A_{\pi} B_{\mathrm{F}}$. and wo if $\leq \in$ $\mathrm{O}_{n}(G)$, then $\boldsymbol{r}=\mathrm{ab}$ for some $a \in A_{\mathrm{n}}$ and $b \in B_{\mathrm{a}}$. Applying the homomorphism yields

$$
a=b^{-1}
$$

Now siace $\mathrm{O}_{\mathrm{r}}(\boldsymbol{G})=\langle\mathrm{I}\rangle$ we Luver

$$
<\bar{I}\rangle=\left[a, B_{*}^{C}\right]=\left[b^{-1}, B_{\pi}^{c i}\right]
$$

and $b$ lies in the rentre of $B_{r}^{d}$. Thus $b$ lies in a normal $\pi$ - wnbgroup of $G$. and sos $b \in \mathbf{O}_{\boldsymbol{n}}(G)=\langle 1\rangle$. This indirates that $b \in O_{\boldsymbol{n}}(G)$, and similarly $a \in O_{n}(G)$, thins

$$
O_{\pi}(G)=\left(O_{n}(G) \cap A\right)\left(O_{+}(G) \cap B\right)
$$

Now if $\pi=\{p\}$, then $\mathbf{O}_{\boldsymbol{p}}(\boldsymbol{G})$ is just the maximal normal $p$-subgroup of $\boldsymbol{G}$. The radical $R$ is lucally nilpotent and periodic, beuce it astiefies

$$
R=\prod_{p \in p} \mathbf{O}_{p}(G)
$$

Thus $R=(R \cap A)(R \cap B)$, As required.

We arr now ready to emhark on the main result of thin section.

Theorem 3.3.10. If $G$ is a periadic (LN)B-group with nilpntent subgroups $A$ and $B$ such that $G=A B$, and 9 in the formation of finite nilpotent groups, then there exinta an $L \boldsymbol{N}$-covering subgroup $E$ of $G$ such that

$$
E=(E \cap A)(E \cap B)
$$

Proof of 9.s.10: Let $R$ denote the Hirsch-Plutkin radical of $G$. We shall proced by induction on the finite index $|G: R|$. Lat $G$ be the counter example with minimal index.
(i) Suppome $G / R$ in not uilpotent. Then we may apply theorem 3.3.3 to

$$
G / R=(A R / R)(B R / R)
$$

to obtain $L / R$ at $N$-rovering subgroup of $G / R$ which fartorizen. Thus

$$
L / R=(A R / R \cap L / R)(B R / R \cap L / R)
$$

aud so

$$
L=(A R \cap L)(B R \cap L)
$$

Uning Dedkind'n lemana wr tan tearrange the expression to get,

$$
\begin{aligned}
L & =(A \cap L) R(B \cap L) R \\
& =(A \cap L) R(B \cap L)
\end{aligned}
$$

Since by theorem 3.3.9 $R$ fartorizes,

$$
\begin{aligned}
L & =(A \cap L)(A \cap R)(B \cap R)(B \cap L) \\
& =(A \cap L)(B \cap L)
\end{aligned}
$$

Now by lemma 3.1.8 an $L \mathfrak{N}$-covering subgroup of $L$ is our of $G$. Therefore since $L<G$ we may apply indurtion to $L$ to obtain $E$, an $L \mathfrak{N}$-covering sulogronp of $L$ and bence $G$, such that

$$
E=(E \cap A)(E \cap B)
$$

(ii) Now suppose that $G / R$ is uilpotent. In this situation hy lemma 3.1.17 the $L \mathfrak{N}$-covering subgroupa are $L \mathfrak{N}$-normalizers of $\boldsymbol{G}$. Since $\boldsymbol{N}$ is the formation of finite uniputent subgroups the $L \mathfrak{N}$-normalizers are in fact basis normalizers. Thus we newd to find a Syluw bavis of $G$ for which the normalizer fartorizes.

Cunsider the $f_{A B}$-hasis, and form the nurmalizer,

$$
N=\bigcap_{p \in(p)} \mathcal{N}_{G}\left(G_{p}\right)
$$

As in the finite case we modify the proof of Scott $[42,13.2 .7$ ) to obtsin the required factorization. If $g \in N$, then $g=a b^{-1}$ for somm $a \in A$ and $b \in B$. Lat

$$
H_{p}=<\boldsymbol{A}_{p}, B_{p}>
$$

for all $p \in \mathcal{P}$.
Nuw $H_{p}=G_{p}$, thus wr have

$$
H_{p}^{a b-1}=H_{p}
$$

and es

$$
H_{p}^{\prime \prime}=H_{p}^{\mathrm{t}}
$$

for all $p \in \mathcal{P}$. Theu since

$$
H_{p}^{\prime} \geq A_{p}^{\Delta}=A_{p}
$$

and

$$
H_{p}^{b} \geq B_{\mathrm{p}}^{b}=B_{p}
$$

we have

$$
\left.H_{p}^{a} \geq<A_{p}, B_{p}\right\rangle=H_{p}
$$

Huwever a bas finite order, so

$$
H_{p}^{a}=H_{p}
$$

and

$$
a \in \mathcal{N}_{G}\left(H_{p}\right)=\mathcal{N}_{G}\left(G_{p}\right)
$$

Since this holds for all $p \in \mathcal{P}$.

$$
a \in \bigcap_{p \in \mathcal{P}} N_{G}\left(G_{p}\right)=N
$$

Finally $b=g^{-1} a \in N$, and so

$$
\boldsymbol{N}=(N \cap A)(N \cap B)
$$

As in the finite case the shove yields an immediate corollary.

Corollary 3.3.11. If $G$ 上s a periodic ( $L$ श) $B$-group with nilpotent subgroups $A$ and $B$ such that $G=A B$, then the system normalizer of the $f_{A B}$-basis alno factorizes.

In order to adapt the above to a general formation 3 . defiued lorally by formations $\left\{\mathfrak{Z}_{p}\right\}$, we whall uned to consider $\mathbf{Z}_{\boldsymbol{p}}$-reaidualk. Let $\boldsymbol{R}$ denote
the Hirsch-Plotkin radical of $G$. Recall that an $\mathbf{L \mathcal { B }}$-normalizer of a periodic (LN) B-group bas the form

$$
D=\left\langle\mathcal{N}_{s,}\left(S_{p} \cap M_{p}\right): \mu \in \mathcal{P}\right\rangle
$$

where the $S_{p}$ form a Sylow basis for $G$, and for earh prime $p$ the subgroup $M_{p}$ is defined such that $M_{p} / R$ is the $\mathcal{F}_{p}$-residual of $G / R$. Then we may, by [44, lemma 3.1], also express this as

$$
D=\bigcap_{p \in \mathcal{P}} \mathcal{N}_{\mathrm{C}}\left(S_{\mathrm{p}^{\prime}} \cap M_{\mathrm{p}}\right) .
$$

Therefore, in order to apply dirertly the methods of theorems 3.3.3 and 3.3.10 above, we need only show that earh $M_{p}$ factorizes. Unfortunately this is not always the case as the following example demonstrates.

Example 3.3.12. Cousider the group

$$
G=P \times L
$$

where $P=\langle p\rangle \triangleq C_{3}$ and $L \neq S_{3}$. We may express the $\operatorname{subgroup} L$ as

$$
L=N \nsim Q
$$

where $N=\langle n\rangle \cong A_{1}$ and $Q \cong C_{2}$. Now take $H=\langle p n\rangle$, where $|H|=3$. and form $K=P \times Q$, which, siuce it is a direct product of its Sylow subgronps. is uilpotent.

We rlaim that $G=H K$. For $P \triangleleft G$ and $G / P$ rontains hoth $K / P \cong Q$ and $H / P \equiv N$, therefore $G / P \geq L / P$. Thus the whole of $G$ lies in $H K$, and we have equality. Then $G$ is soluble by the results of Wielandt and Kegel.

Consider the 3 -residual of $G$, which we denote by $O^{3}(G)$. We claim that $O^{\prime}(G)=L$. For $G / L \cong P$, a 3 -gronp, and since 2 divides the order of $G / N$. $L$ must be the minimal sheh smbgroup. Now $L \cap H=1$ and $L \cap K=Q$. for if $L \cap K>Q$, then $L \cap K=L=K$, a contradiction. Thus

$$
(L \cap H)(L \cap K) \cong Q \neq L
$$

Therefore the $p$-residuals of $G$ do not alwayn fartorize, even in a product of two finite nilpotent groups.

Since the $\mathbf{J}_{p}$-residuals do not uecessarily factorize it seems natural to paquire whether we might replace then by the $\mathbf{J}_{p}$-radicals in the definition of an LE-uormalizer. For if we consider the formation of finite uilpotent-hyuilpotent groups earb $\mathbf{J}_{p}=\boldsymbol{N}$. Then the nilpotent radical of $G / R, H / R$. factorizes by Pruningtou [38], aud since $\boldsymbol{R}$ factorizes, the suhgroup $\boldsymbol{H}$ will also facturize. It would then be possible to apply the methods of theurems 3.3.3 and 3.3.10 ahove to uhtain an $L \mathbb{Z}$-uormalizer which fartorizes. Unfortunately the example below shows that such a substitution is not possible.
 tion of finite uilpotent-hy-nilpotent groups. Then $\mathfrak{F}$ is defined locally by the set $\left\{\mathcal{X}_{p}\right\}$, where earlh $\mathcal{F}_{\boldsymbol{\mu}}=\boldsymbol{N}$. Let $R$ dmute the Hirsch-Plotkin radiral of $\boldsymbol{G}$.

Later, in theormin 3.5.1, we shall prove that in this situation $L\left(\boldsymbol{N}^{2}\right)=$ $(L \text { N })^{2}$ as clanses of gruups. Thus

$$
G \in(L N)^{n} \subseteq(L N)^{2}=L\left(\Re^{2}\right)
$$

aud so hy $[44,8.5]$ the $L \mathcal{F}$-uormalizers coincide with $G$.
Nuw if $H_{p} / R$ is the $\boldsymbol{N}$-ralical of $G / R$, then $H_{p}=G$ for all primen $p$. If we now sulastitute $H_{p}$ for $M_{p}$ in the definition of an $L_{B}$-normalizer we obtain.

$$
\begin{aligned}
\left\langle\mathcal{N}_{s_{p}}\left(S_{p} \cap H_{p}\right): p \in \mathcal{P}\right\rangle & =\left\langle\mathcal{N}_{S_{p}}\left(S_{\nu^{\prime}} \cap G\right): p \in \mathcal{P}\right\rangle \\
& =\left\langle\mathcal{N}_{s_{p}}\left(S_{\nu}\right): \mu \in \mathcal{P}\right\rangle
\end{aligned}
$$

This in in fart the definition of a hasis uormalizer of $G$. Thun siace


### 3.4. Cernikov groups

The difficulties encountered in our attempts to geueralize Heineken's result to a priodir ( $L$ N) group ran he rircumvented if we specialize to the rlass of Cernikuv groups. In this case we may return to a general saturated formation $\mathcal{J}$ in order to prove the existence of a factorizing $L \boldsymbol{Z}$-covering subgroup. It is even possible to recover the uniqueness of such a subgroup, thus arhirving a complete generalization of Heineken's theorem.

Before procerding to the procif of this result we shall require the folluwing Irmmas. The first is valid for our more general situation.

Lemma 3.4-1. Suppose $G$ in a periodic ( $L$ N) B-group with nilpotent subgroups $A$ and $B$ such that $G=A B$. If $\mathfrak{F}$ is a saturated formatzon containing $\mathfrak{N}$, then the $L \mathfrak{J}$-normalizer of $G$ which is defined using the $f_{A B}$-basis of $G$ containa $A \cap B$.

Proof of 9.4.1: Now the $f_{A B}$-hasis is defiued to be

$$
\left\{G_{p}=A_{p} B_{p}: p \in \mathcal{P}\right\}
$$

where $A_{p}$ and $B_{p}$ are the Sylow $p$-subgroups of $A$ and $B$ respectively. If $D$ is the $L \mathcal{F}$-normalizer of $G$ iffined uning this basis, then

$$
D=<N_{C_{p}}\left(G_{p} \cap M_{p}\right): p \in \mathcal{F}>
$$

where $M_{p} / \rho(G)$ is the $\mathbb{J}_{\mu}$ - residual of $\boldsymbol{G} / \rho(\boldsymbol{G})$.
Siare $A \cap B$ is a periodir uilpoteut group it rau be expressed av the dirert product of its Sylow subgroups,

$$
A \cap B=\prod_{\mapsto \in P}(A \cap B)_{p}
$$

where $(A \cap B)_{p}=A_{p} \cap B_{p}$. So if $g \in(A \cap B)_{p}$, thon $g \in A_{p}$, and siare $A$ in nilpoteat it romunter with $A_{p}$. Thus

$$
\left(A_{\nu}\right)^{\varphi}=A_{\nabla}
$$

Similarly

$$
\left(B_{p^{\prime}}\right)^{g}=B_{p^{\prime}}
$$

Therefore

$$
\begin{aligned}
\left(G_{w^{\prime}}\right)^{v} & =\left(A_{p^{\prime}} B_{p^{\prime}}\right)^{g} \\
& =\left(A_{p^{\prime}} B_{p^{\prime}}\right) \\
& =G_{p^{\prime}}
\end{aligned}
$$

and $g \in \mathcal{N}_{\boldsymbol{G}}\left(G_{\mu^{\prime}}\right)$.
Since $M_{p} \triangleleft G$, we lave $g \in \mathcal{N}_{r_{i}}\left(M_{p}\right)$, and so

$$
g \in \mathcal{N}_{G}\left(G_{p} \cap M_{p}\right)
$$

Hence

$$
(A \cap B)_{p} \subseteq \mathcal{N}_{G}\left(G_{p} \cap M_{p}\right)
$$

Now $(A \cap B)_{p} \subseteq G_{p}$, and so

$$
(A \cap B)_{p} \subseteq \mathcal{N}_{G_{p}}\left(G_{p^{\prime}} \cap M_{p}\right) \subseteq D
$$

Since this bolds for all primes, $p$ we conclude that

$$
(A \cap B) \subseteq D
$$

The following simple result is completely general.

Lemma 3.4.2. Let $G$ be a group with subgroups $A$ and $B$ wuch that $G=A B$. Suppose that for earh,$\in\{1, \ldots, \eta\}$ there exinta a subgroup $H_{1} \leq G$ such that $H_{1}=\left(H_{1} \cap A\right)\left(H_{1} \cap B\right)$. If $A \cap B \subseteq \cap_{1=1}^{r} H_{1}$. then the intersection $H=\cap_{1=1}^{\prime} H_{1}$ alan factorizes.

Proof of S.4.\&: Let $h \in H$. Then $h \in H$, fur all ; $\in\{1, \ldots, r\}$. Thereforr $h=a, b_{1}$ for somp $a_{1} \in(H, \cap A)$ and $b_{1} \in(H, \cap B)$. Siuce

$$
h=a_{1} b_{1}=a_{3} b_{3}
$$

where 1 and $\} \in\{1, \ldots, r\}$, wr ohtain

$$
a_{3}^{-1} a_{1}=b, b_{4}^{-1} \subseteq(A \cap B) \subseteq \bigcap_{v=11}^{*} H_{1} \subseteq H_{3}
$$

Thus $a_{1} \in H_{1}$, and siure $\boldsymbol{j}$ was arbitrary,

$$
a_{1} \in \bigcap_{3=1}^{\infty} H_{3}=H
$$

Henre $a_{1} \in(H \cap A)$, and similarly $b_{1} \in(H \cap B)$. Therefore $h \in(H \cap A)(Y \cap B)$, and finally we conclude,

$$
\boldsymbol{H}=(\boldsymbol{H} \cap \boldsymbol{A})(\boldsymbol{H} \cap \boldsymbol{B})
$$

Onr next lemma is of sume judepeudeut interest, prypaling as it dops, much about the structure of factorized Cernikov groups. In order to prove it we shall require the fulluwing results due to Hall. Rohiusou, aud Kegel respertively.

Theorem 3.4.3 (Hall [19]). If $G$ is a gmup such that $\gamma_{1+1}(G)$ in finitr for some integer $i$, then $\left|G: Z_{21}(G)\right|$ is finite.

In the statrment of his resule Rohinson uses the altertative terminology 'radirahle' fur 'divisible'.

Lemma 3.4.4 (Robinson [39, 3.13]). Let $A$ be a normal, rodicable, abelian subgrovp of a group $G$ and let $H$ be a subgroup of $G$ such that

$$
\left[A_{1 r} H\right]=1
$$

for some positive integer $r$. If $H / H^{\prime}$ in periodic. then $[A, H]=1$.

In the statement of Krgel's theorem we use $G^{*}$ to denote the minimal subgroup of finite index in the group $G$

Theorem 3.4.5 (Kegel [31, 1.6]). For the factorized group $G=A B$ the" following pmpertics are equivalent:
(a) $G$ satisfiea the minimal condition for subgroups and is almont abelian.
(c) $G$ atisfies the minimal condition for subgroups, $A$ and $B$ are almost abeliar, and $G^{*}=A^{*} B^{*}=B^{*} A^{*}$.

Lemma 3.4.6. Suppose $G$ is a Cernikov group and $G^{*}$ is its minimal subgroup of finite sndex. If $G$ has nilpatent subgroups $A$ and $B$ such that $G=A B$, then there exista a finite supplement of $G^{*}$ in $G$ which alsn factorizes.

Proof of 9.4.6: We shall proceed by induction on the number of quasicyrlic factors which appant when $G^{*}$ in written as a dirert product of $C_{p o s}$ "s. Assune that the theorem holds for all groups where the number defined above in strictly less than that for $\boldsymbol{G}$. Since $\boldsymbol{A}$ aud $\boldsymbol{B}$ are buth Cernikov groups we may express them an

$$
A=A_{1} A^{*}
$$

and

$$
B=B_{1} B^{\circ} .
$$

where $A_{1}$ and $B_{1}$ are finite subgroups of $A$ and $B$ respectively, and $A^{*}$ and $B^{-}$ are their minimal subgroups of fiuite index. Now by theorem 2.2.8 $A^{\prime \prime} \leq Z(A)$, aut so $A_{1} \triangleleft A$. Similarly $B_{1} \triangleleft B$.

Form the finite group

$$
J=\left\langle A_{1}, B_{1}\right\rangle .
$$

Now romsider $N=\boldsymbol{N}_{\mathrm{G}}(J)$. We shall apply the proof of Scott's result |42, 13.2.7| tu show that $N$ farturizen. Let $x \in N \leq G$. Then $x=a b^{-1}$ for some $a \in A$ and $b \in B$. and it follows that

$$
J^{a}=J^{b}
$$

Siuce

$$
J^{*} \geq A_{1}^{a}=A_{1}
$$

and

$$
J^{b} \geq B_{1}^{b}=B_{1}
$$

we have

$$
J^{a} \geq\left\langle A_{1}, B_{1}\right\rangle=J
$$

But $J$ in finite, so

$$
J^{\Perp}=J
$$

and $a \in N$. Siuce $b=x^{-1} a$ we oltain $b \in N$. whirh reveals $x \in(N \cap A)(N \cap B)$. Thisw

$$
N=(N \cap A)(N \cap B)
$$

as required.
Rerall that by theurem 3.4.5 $G^{*}=A^{*} B^{*}$, and so

$$
G=J G^{\circ}
$$

Siurt $J \leq N$, we have

$$
G=N G^{\bullet}
$$

and | $N: N \cap G^{*} \mid$ is finite. Also

$$
N^{-} \leq G^{-}
$$

Suppose that $N^{\boldsymbol{*}}<G^{-}$. Then, since $N$ factorizes, we may apply induction to find a subgroup $M \leq N$ such that $M$ is finite,

$$
N=M N^{*},
$$

and

$$
M=(M \cap A)(M \cap B) .
$$

Huwever

$$
\begin{aligned}
\boldsymbol{G} & =\left(M N^{*}\right) G^{-} \\
& =M G^{*}
\end{aligned}
$$

and so $M$ is a finite supplement for $G^{\text {- }}$ in $G$.
Therefore we may assume that $N^{*}=G^{*}$. and consequently $G=N$. Consider figure 3.4.


Figure 3.4.

Now

$$
N / J=N^{*} J / J \cong N^{-} /\left(N^{-} \cap J\right)
$$

Therefore $N / J$ in all abelian group, and so

$$
\mathbf{N}^{\prime} \leq \boldsymbol{J}
$$

This $N^{\prime}=\gamma_{2}(N)$ is an finite group, aud wr may apply theorem 3.4 .3 above tu dedure that

$$
\left|N: Z_{\mathbf{2}}(N)\right|
$$

is also finite. Huwever $\boldsymbol{N}^{*}$ is the minimal sulogroup of finite index in $\boldsymbol{N}$, su

$$
N^{-} \leq Z_{\mathbf{1}}(N)
$$

Now

$$
\left[Z_{2}(N), N, N\right]=1
$$

and so

$$
\left[N^{*}, N, N\right]=1
$$

Since $N^{*}$ in a divisible abelian uormal suhgroup of $N$. and $N / N^{*}$ is periodic. we may apply lemma 3.4.4 ahove to oltain

$$
\left[N^{*}, N\right]=1
$$

Therefore $N^{*} \leq \boldsymbol{Z}(N)$, and this

$$
G^{\prime} \leq Z(G) .
$$

Now ruusider

$$
\begin{aligned}
G & =A B \\
& =A_{1} A^{*} \cdot B_{1} B^{*} \\
& =A_{1} B_{1} \cdot A^{*} B^{*} \\
& =A_{1} B_{1} \cdot G^{*}
\end{aligned}
$$

Then, by Dedekind's lemma,

$$
\begin{aligned}
J & =J \cap G \\
& =J \cap\left(A_{1} B_{1} G^{*}\right) \\
& =A_{1} B_{1}\left(J \cap G^{*}\right)
\end{aligned}
$$

Nuw ( $J \cap G^{\prime \prime}$ ) in a finite gronp and for all $j \in\left(J \cap G^{*}\right)$ we can find some $a, \in A^{*}$ and $b, \in B^{*}$ sucb that $j=a, b$. Then we can define the finite subgroups

$$
A_{2}=<a_{3}: j \in\left(J \cap G^{*}\right)>\leq A^{*} \leq Z(G)
$$

and

$$
B_{2}=\left\langle b_{j}: j \in\left(J \cap G^{*}\right)\right\rangle \leq B^{*} \leq Z(G) .
$$

Clearly $\left(J \cap G^{*}\right) \leq A_{2} B_{2}$.
Consider the finite subgronp,

$$
\begin{aligned}
J\left(A_{2} B_{2}\right) & =A_{1} B_{1}\left(J \cap G^{*}\right) \cdot A_{2} B_{2} \\
& =A_{1} B_{1} \cdot A_{2} B_{2} \\
& =A_{1} A_{1} \cdot B_{1} B_{2}
\end{aligned}
$$

where $A_{1} A_{2}$ is a finite subgroup of $A$ and $B_{1} B_{2}$ is a fisite subgroup of $B$. If we let $L=J .\left(A_{2} B_{1}\right)$, they

$$
\boldsymbol{L} \leq(L \cap A)(L \cap B)
$$

It follows that

$$
L=(L \cap A)(L \cap B)
$$

Now since $G=J G^{*}$, we have

$$
G=L G^{*}
$$

and so $L$ is a finite supplement for $G^{\mathbf{*}}$ which factorizes.

Before procereding to the main resule we first cousider a particular casp where $G^{*}$ is a $\boldsymbol{p}$-groip. In order to do wo we require the following general remult.

Lemma 3.4.7. Let the periodic (LT) -group $G$ have a Sylow basis, 5 with members $S_{\text {p }}$ for each prime $\boldsymbol{p}$. Suppose $G$ has a subgroup $H \triangleleft G$ such that $H$ is a p-group, $H \in L \mathfrak{N}$ and $|G: H|$ is finite. If $\mathfrak{F}$ in a saturated formation defined locally by a set of formatinns $\left\{\mathfrak{Z}_{4}\right\}$, where $\mathfrak{J}_{4} \in \mathfrak{Z}$ for each prime $q$. Let $M_{4} \triangle G$ be such that $M_{q} / H$ in the $\mathfrak{F}_{9}$-residual of $G / H$. Then if $G / H \in \mathfrak{J}$ and $D$ is the Lz-nomalizer defined using the basiv ©

$$
D=N_{g}\left(S_{r} \cap M_{p}\right) .
$$

 of $G$, recall that

$$
D=\left\langle\boldsymbol{N}_{\mathbb{N}_{q}}\left(S_{q}, \cap M_{q}\right): q \in \mathcal{P}\right\rangle
$$

Our immediate aim is to rearrange the chief fartors of $G$ which lie betweru $M_{q}$ and $H$ until we obtain the roufiguration of figure 3.5 , wherer $M_{q} / T_{q}$ is a $q$-group and $T_{q} / H$ is a $q^{\prime}$-group.


FIgure 3.5.
Since we shall be working in $G / H \in \mathcal{T}$ we may apply a remark by Stonehewer which apprars in [44]. He notes that $X \in 3$ if and only if $X / \mathcal{C}_{G}(K / L) \in \mathcal{F}_{\mathbf{q}}$ for all $q$-chief fartorn $K / L$ of $X$. Thus in our situation

$$
\mathcal{C}_{r}(K / L) \geq M_{\sigma}
$$

for all $q$-chief fartors $K / L$ of $G$ whirb lie hetween $M_{q}$ and $H$.
Now let $J, K$ and $L$ be normal suhgroups of $G$ such that $M_{q} \geq J \geq K \geq$ $\boldsymbol{L} \geq \boldsymbol{H}$. Suppose that $K / L$ is a $q$-rhirf factor and $J / K$ au $r$-chief fartor of $\boldsymbol{G}$. for some prime $\mathrm{r} \neq q$. By the shove, $K / L$ lies in the centre of $J / L$, and so the latter is a vilpotent gronp. This we may apply Sylow's theorems to ohtain a complement $C / L$ of $K / L$, such that

$$
J / L=C / L \times K / L
$$

Since $C / L$ is characteristic in $J / L$ we have $C \& G$ and there is a $G$ isonorphism frum $J / C$ to $K / L$, nep figure 3.6 .


Ficure 3.6.
Therefore we courlude that $q$-chief factors which be betweru $M_{q}$ and $H$ may be pushed upwards until we obtain the desired configuration.

Now if $q \neq p$ we have $S_{p} \leq S_{q^{\prime}}$, and so $H \leq S_{q^{\prime}}$. Then by figure 3.5 it is easy to sep that

$$
\left(S_{\varepsilon} \cap M_{v}\right)=T_{\varepsilon} .
$$

Heutr $\left(S_{q} \cap M_{q}\right) \triangleleft G$, and su

$$
N_{S_{q}}\left(S_{q} \cap M_{q}\right)=S_{4}
$$

Subatituting this hack into the definition of $D$ yiflds,

$$
\begin{aligned}
D & =\left\langle S_{q}: \forall q \neq p, \mathcal{N}_{\psi_{p}}\left(S_{p} \cap M_{p}\right)\right\rangle \\
& =\left\langle S_{p}, \mathcal{N}_{\sim_{p}}\left(S_{p} \cap M_{p}\right)\right\rangle .
\end{aligned}
$$

Now since $\left(S_{\nu^{\prime}} \cap M_{p}\right) \triangleleft S_{p^{\prime}}$, and by lemma $3.3 .5 G=S_{p^{\prime}} S_{p}$, we may apply Dedekind's lemma to uhtain

$$
\begin{aligned}
\mathcal{N}_{f:}\left(S_{p^{\prime}} \cap M_{p}\right) & =\mathcal{N}_{G}\left(S_{p^{\prime}} \cap M_{p}\right) \cap S_{p^{\prime}} \cdot S_{p} \\
& =S_{p^{\prime}}\left(\mathcal{N}_{G}\left(S_{p^{\prime}} \cap M_{p}\right) \cap S_{p}\right) \\
& =S_{p^{\prime}} \cdot \mathcal{N}_{s_{p}}\left(S_{p^{\prime}} \cap M_{p}\right)
\end{aligned}
$$

Thus since the product of $S_{p^{\prime}}$ and $\mathcal{N}_{S_{p}}\left(S_{p^{\prime}} \cap M_{p}\right)$ is a group it must be $D$, beuce

$$
D=\mathcal{N}_{G}\left(S_{p^{\prime}} \cap M_{p}\right)
$$

This allows us to prove that, in the finite rase, Heineken's unique fartorizing $\mathcal{F}^{\text {-projertor }}$ is in fact the one defined using the $\boldsymbol{f}_{A B}$-basis of the gronp. We shall use the alternative term $\mathfrak{y}$-rovering subgrunp.

Lemma 3.4.8. Suppose the finite group $G$ has nilpotent subgroups $A$ and $B$ such that $G=A B$. If $\mathfrak{F}$ in a saturated formation and $G \in \mathbb{N} \mathfrak{F}$. then the unique factorizing $\mathfrak{j}$-covering subgroup $D$ of $G$, which exista by Heineken, is the one defined waing the fat -bavis of $G$.

Proof of 9.4.8: We sball proceed by iudinction on | G |, this we may assume that the atuove hulds for all groups with order less than that of $G$. Let $F=$ $F(G)$. Then $G / F \in \mathcal{J}$, and by lemma 3.1 .17 the -covering suligronips of $G$ are in fart $\mathbf{J}$-uormalizers.
(i) Suppose that $F$ is a p-gronp. Now, as we remarked in section 3.2, when $G / F \in \mathbb{Z}$ Heingen's proof develope the situation of figure 3.7. Herr $T$ aud $V$ are normal subgroups of $G$ and $U / V$ is the mique fartorizing ofovering sulagroup of $G / V$. Heineken shown we may ansume that $U / V$ contains rither


Figure 3.7.
$A V / V$ or $B V / V$. Suppose that $U / V \geq B V / V$. Then $V \geq B$ and it follows that $U=(U \cap A)(U \cap B)$.

Nuw since $U / T \cong G / F \in \mathcal{F}$ and $T$ is a normal nilpotent subgroup of $U$
 3-covering suhgronp $D$ of $U$, and henre of $G$, is the $\mathcal{J}$-normalizer defined using the $f_{A H}$-hasis of $U$.

Since we are assuming $\boldsymbol{U} \geq B$ we obtain $G=A U$, thus from $|\boldsymbol{G}: \boldsymbol{U}|=|\boldsymbol{F}: T|$ we deduce that $|A \boldsymbol{U}: \boldsymbol{U}|$ is a power of $p$. Thus $|A: A \cap U|$ is a power of $p$, and if $A$, is the nuique Sylow $p^{\prime}$-subgroup of $A$,

$$
A \downarrow \leq(A \cap U)
$$

Thus the unique Syluw $p^{\prime}$-subgroup of $A \cap U$ is

$$
(A \cap U)_{W}=A_{p}
$$

Now siuce $(U \cap B)=B$ we Lave

$$
(B \cap U)_{F}=B_{F}
$$

Hencr the unigue fartorizing Sylow $p^{\prime}$-suhgroup of $U$ is

$$
U_{\mu}^{\prime}=\left(A \cap()^{\prime}\right)\left(B \cap()_{\mu}=A_{p} B_{\mu}\right.
$$



Figure 3.8.
thus it is $G_{p^{\prime}}$ the unique fartorizing Sylow $\boldsymbol{p}^{\prime}$-subgroup of $\boldsymbol{G}$.
Consider the situation of figure 3.8 where $M_{p} / F$ is the $\mathfrak{F}_{p}$-residual of $G / F$. It follown that $\left(M_{p} \cap U\right) / T$ is the $\bar{J}_{p}$-residual of $U / T$. Now since $T$ is a $p$-gromp by lemma 3.4 .7 we have

$$
\begin{aligned}
D & =\mathcal{N}_{11}\left(U_{p} \cap\left(M_{p} \cap U\right)\right) \\
& =\mathcal{N}_{V}\left(U_{p^{\prime}} \cap M_{p}\right) .
\end{aligned}
$$

But as wre have shuwn $U_{\nu}=G_{\sigma^{\prime}}$, and mo

$$
D=\mathcal{N}_{U}\left(G_{p} \cap M_{p}\right)
$$

Thus

$$
D \leq N_{\sigma}\left(G_{F} \cap M_{F}\right) .
$$

where the right hand mide in the $\boldsymbol{F}$-uormalizer of $G$ defined using the $f_{A B}$-basis. Therefore by theorem 3.1.14 we have equality.
(ii) Suppose that $F$ in not a $p$ gronp. Then we are in the geupral situatiou where if, for any priume $r, M_{r} / F$ is the $\mathcal{F}_{\text {reresidual of }} G / F$.

$$
\bigcap_{* \in} \mathcal{N}_{d}\left(G_{\sigma} \cdot \cap M_{r}\right)
$$

is the $\mathcal{F}$ - onnmalizer defined using the $f_{A B}$-basis of $G$.
Let $p$ and $q$ he different primes such that $P=O_{p}(G) \neq 1$ and also $Q=$ $O_{4}(G) \neq 1$. By induction $D P / P$ is the 3 -normalizer of $G / P$ defined usiug the $f_{A B}$-basis, thus $D P / P$ uormalizes ( $G_{r} P / P \cap M_{r} / P$ ), for every prime $r$. Therefore.

$$
D \leq \mathcal{N}_{r}\left(G_{r} P \cap M_{r}\right),
$$

and similarly

$$
D \leq \mathcal{N}_{r}\left(G, Q \cap M_{r}\right)
$$

Hence

$$
D \leq \mathcal{N}_{(\prime}\left(G_{r^{\prime}} P \cap G_{r} Q \cap M_{r}\right) .
$$

Let $X=G_{r}, P \cap G_{r}-Q$. Then

$$
\left|\boldsymbol{X}: \boldsymbol{G}_{r^{\prime}}\right| \text { dividen }\left|\boldsymbol{G}_{r^{\prime}} P: \boldsymbol{G}_{r^{\prime}}\right|=\left|\Gamma: \boldsymbol{G}_{r^{\prime}} \cap P\right|
$$

and

$$
\left|X: G_{r^{\prime}}\right| \text { divides }\left|G_{r^{\prime}} Q: G_{r^{\prime}}\right|=\left|Q: G_{r} \cap Q\right|
$$

and so $\left|X: G_{r^{\prime}}\right|=1$. Therefore $X=G_{r^{\prime}}$ and

$$
D \leq \mathcal{N}_{G}\left(G_{r} \cap M_{r}\right)
$$

Since this holds for all primes r we have

$$
D \leq \bigcap_{r \in D} \mathcal{N}_{G}\left(G_{r}, \cap M_{r}\right)
$$

Thus, applying theurem 3.1.14 unce again, $D$ munt be the $\bar{J}$-nornalizer of $G$ defined using the $f_{A B}$-haxis of $\boldsymbol{G}$.

Lemma 3.4.9. Let $G$ be a Cernikov group, with $G^{\prime \prime}$ its minimal subgroup of finite index, and suppose that $G^{*}$ is also a p-group. Suppose that $G$ has nilpotent subgroups $A$ and $B$ such that $G=A B$. If $\mathfrak{J}$ is a saturated formation containing $\mathfrak{N}$, and $G / G^{-} \in \mathcal{J}$, then there exsats an $L \mathcal{J}$-normalizer $D$ of $G$ which factorizes, and it is the one defined using the the $f_{A B}$-basis.

Proof of 5.4.9: We may immediately apply lemma 3.4.6 to obtain a finite supplement $N$ of $G^{*}$ in $G$ whirh fartorizen. Thus

$$
G=N G^{\prime}
$$

where $N=(N \cap A)(N \cap B)$.
 eark prime $q$. Using the notation of definition 3.1 .13 let $M_{q} / G^{*}$ be the $\mathcal{F}_{q}$ residual of $G / G^{\bullet}$. thus $M_{q} \triangleleft G$. Thus we have the nituation of figure 3.9 .


Flare 3.9.

Recall that by lemma 3.4 .7 the $L$ zormalizer $D$ of $G$ defined using the $f_{A B}$-basis of $G$ han the form

$$
D=\mathcal{N}_{i}\left(G_{p} \cap M_{p}\right)
$$

Wr shall now redure to the finite rase by considering layers of $G^{\prime \prime}$. For earh,$\in N$ drine a subgroup $R_{i} \leq G^{*}$ by

$$
R_{1}=\Omega_{1}\left(G^{*}\right)=\left\{x \in G^{\prime}: x^{p^{\prime}}=1\right\}
$$

Thus the $R$, form an ascevding sequence of finite groups such that

$$
G^{*}=\bigcup_{1 \in \mathbb{N}} R_{i}
$$

We shall show that we may ansume that each $\boldsymbol{R}$, factorizes.
Let $A^{*}$ and $B^{*}$ be the minimal sulggroups of finite index of $A$ and $B$ respertively. Then by theorem $3.4 .5 G^{*}=A^{*} B^{*}$. We would like to be able to arsump that $A^{*} \cap B^{*}=1$. By theorem $2.2 .8 A^{*} \leq Z(A)$ and $B^{-} \leq Z(B)$, hence

$$
\left(A^{*} \cap B^{*}\right) \leq Z(G)
$$

Since $D=\mathcal{N}_{G}\left(G_{p} \cap M_{p}\right)$ it follows that $Z(G) \leq D$, and so

$$
\left(A^{*} \cap B^{*}\right) \leq D
$$

Therefore it in anough to shaw that $D /\left(A^{*} \cap B^{*}\right)$ fectorizes, for then

$$
\begin{aligned}
D & =\left(D \cap A\left(A^{*} \cap B^{*}\right)\right)\left(D \cap B\left(A^{*} \cap B^{*}\right)\right) \\
& =(D \cap A)(D \cap B)
\end{aligned}
$$

Thus wr may assume that $A^{*} \cap B^{*}=1$.
Nuw let $x \in R_{1} \leq A^{*} B^{*}$. Then $x=a b$, wherw $a \in A^{*}$ and $b \in B^{*}$. By the definitiou of $R_{1}$.

$$
(a b)^{\prime \prime}=1
$$

Since $G^{*}$ is alrelian.

$$
\mathrm{l}=(a b)^{p^{\prime}}=a^{p^{\prime}} ⺊^{p^{\prime}}
$$

and nu $a^{P^{\prime}}=b^{-p^{\prime}}$. However, wr arr anximing that $A^{-} \cap B^{-}=1$, thins

$$
a^{\prime \prime}=\forall P^{\prime}=1
$$

and so $a \in R$, and $b \in R$. Hence for rarb $t \in \mathbb{N}$

$$
R_{1}=\left(R_{1} \cap A\right)\left(R_{1} \cap B\right)
$$

Sincr $R_{\text {, }}$ is chasacteristic in $G^{*}, R, \triangleleft G$, and we may form the finite group

$$
\boldsymbol{N} \boldsymbol{R}_{1} \leq \boldsymbol{G} .
$$

Clearly

$$
G=\bigcup_{\bullet \in N} N R_{\bullet} .
$$

Siuce hoth $R_{\text {a }}$ and $N$ factorize, aud $R_{1}$ is uormalized by $N$, the group $N R_{\text {, }}$ factorizen. Conmider the following diagran, where $i$ is chowen sutticiently large no that $R_{1}$ contaiun the finite sulugroup $N \cap G^{*}$. We illuntrate this aituation in figure 3.10. Note that $\left(N R_{1} \cap M_{q}\right) / R_{1}=\left(N \cap M_{q}\right) R_{4} / R_{4}$ is the $\mathfrak{F}_{q}$-residual


Figure 3.10.
of $N R_{1} / R_{1}$

In the same way as above, for earh $i \in \mathbb{N}$ we nay drfine $D_{1}$. the $\mathcal{F}$ nurmalizer of $N R_{1}$, uning the $f_{A M}$-hasis. Siucr $R_{\text {, }}$ is a $\boldsymbol{f}$-group by lemme 3.4 .7

$$
\begin{aligned}
D_{1} & =\mathcal{N}_{\left(N H_{1}\right)}\left(\left(N R_{1}\right)_{p} \cap\left(N R_{1} \cap M_{p}\right)\right) \\
& =\mathcal{N}_{\left(N R_{1}\right)}\left(\left(N R_{1}\right)_{p} \cap M_{p}\right)
\end{aligned}
$$

Now a Sylow $p^{\prime}$-sulgroup of $N R_{1}$ is a Sylow $p^{\prime}$ subgroup of $G$. Thus the fartorizing one, $\left(N R_{i}\right)_{p^{\prime}}$, derived from the $f_{A B}$-hasis, is in fart $G_{p^{\prime}}$, the fartorizing Sylow $p^{\prime}$-subgromp of $G$. Therefore we may rewrite the definition of $D_{1}$ as

$$
D_{1}=N_{\left(N M_{1}\right)}\left(G_{p} \cap M_{p}\right)
$$

Since the subgroup $R_{\text {, was }}$ chosen surb that $R_{1} \geq\left(N \cap G^{*}\right)$, referriug to figute 3.10, wp have

$$
N /\left(N \cap G^{*}\right) \geqq N R_{1} / R_{1} \cong G / G^{\circ} \in \mathfrak{F}
$$

Heure we may apply lemma 3.4 .8 to see that $D_{i}$ is the unique $\mathfrak{J}$-normalizer of NR, which farturizes,

$$
D_{1}=\left(D_{1} \cap A\right)\left(D_{1} \cap B\right)
$$

Consider $U_{i \in N} D_{1}$. We shall show that this is in fart our original $D$. Since $D, \leq D$ for all $i \in \mathbb{N}$ it follown that

$$
\bigcup_{1 \in N} D_{0} \leq D
$$

Let $d \in D$. Theu $d \in G=\mathcal{U}_{\text {i }} N R$, and $d \in N R$, for some $i \in N$. Huwever $d$ normalizes ( $G_{p} \cap M_{p}$ ), and so $d \in D_{\mathbf{c}}$. Thum

$$
D \leq \bigcup_{\bullet \in \mathbb{N}} D_{n}
$$

and finally

$$
D=\bigcup_{1 \in \mathbb{N}} D_{0} .
$$

It follows that $D$ fartorizes, as required.

We are uow ready to draw the above results tugether in order to prove our main theorem.

Theorem 3.4.10. Suppose $G$ is a Cernikov group with nilpotent subgroups $A$ and $B$ such that $G=A B$. If $\mathbf{3}$ is a saturated formation containing $\mathfrak{N}$, then there exists a unique $L \hat{\xi}$-covering subgroup of $G$ which factorizes.

Proof of S.4.10: Let $G^{*}$ denote the minimal subgroup of finite index in $G$.
(i) Suppowe $G / G^{*} \notin \mathfrak{F}$. Then we shall procerd by induction on $\left|G: G^{*}\right|$. Assume that the theorem holds for all groups whuse index is strictly lesa than that of $G$. Siure

$$
G / G^{+}=\left(A G^{-} / G^{+}\right)\left(B G^{-} / G^{-}\right)
$$

we may apply theorem 3.2 .1 to obtain $U / G^{-}$, the unique $\mathfrak{F}$-covering subgroup of $G / G^{-}$such that

$$
U / G^{-}=\left(U \cap A G^{-}\right) / G^{-} .\left(U \cap B G^{*}\right) / G^{*}
$$

Therefore

$$
\boldsymbol{U}=\left(\boldsymbol{U} \cap A G^{*}\right)\left(U \cap B G^{*}\right)
$$

and by Dedekiud's lemma,

$$
U=(U \cap A) G^{-}(U \cap B) G^{-} .
$$

Now by theorem 3.4.5 $G^{*}=A^{*} B^{*}$, and so

$$
\begin{aligned}
\boldsymbol{U} & =(\boldsymbol{U} \cap A) \boldsymbol{A}^{\bullet} \boldsymbol{B}^{\bullet}(\boldsymbol{U} \cap \boldsymbol{B}) \\
& =(\boldsymbol{U} \cap A)(U \cap B)
\end{aligned}
$$

Since $G / G^{*} \notin \mathcal{J}^{\circ}$ it fullows that $U / G^{*}<G / G^{*}$. Hence we may apply induction to $\boldsymbol{U}$ to chtain a unique $\mathcal{L} \mathfrak{F}$-rovering sulugronp $E$ whirh fartorizes,

$$
\begin{aligned}
E & =(E \cap(U \cap A))(E \cap(U \cap B)) \\
& =(E \cap A)(E \cap B)
\end{aligned}
$$


(ii) Suppuse that $G / G^{\mathbf{*}} \in \mathbb{E}$. Then by lemma 3.1.16 and lemma 3.1.17 the $L \mathbf{F}$-covering subgroups and $L \mathcal{Z}$-normalizers of $G$ coincide. Let $D$ be the $L \mathcal{F}$-uormalizer which is defiued usiug the $f_{A G}$-basis of $G$. Then we chain that $D$ facturizen.

Now siner $G$ is a Cernikuy grong, $G^{*}$ is abelian, and we may write it as a finite direct prorluct of its Sylow sulggroups,

$$
G^{+}=P_{1} \times \cdots \times P_{r}
$$

where $\Gamma_{1}$ is a Sylow $p_{1}$-nulugroup of $G^{*}$. We shall proceed by indurtion on the number of non-trivial Sylow subgroups, r. Since, by lemma 3.4.9, the claim holds for $r=1$ we may assume that it lolds for all values less than $r$.

Now for rach i $\in\{1, \ldots, r\}$ the subgroup $P$ is characteristic in $G^{\bullet}$, and thus $P_{1} \triangleleft G$. Consider the fartur grunps $G / P_{1}$ and $G / P_{2}$. Then

$$
\left(G / P_{1}\right)^{*}=G^{*} / P_{1}
$$

and

$$
\left(G / P_{3}\right)^{\prime \prime}=G^{*} / P_{3}
$$

hence the number of Sylow sulggrunpe in earh in $r-1$. Therofore, by induction, the $L \mathcal{Z}$-ummalizers of $G / P_{1}$ and $G / P_{2}$ which are defined using the $f_{A B}$-bases factorize. Hencr, by theorem 3.1.15, they are $D P_{1} / P_{1}$ and $D P_{2} / P_{2}$ respertively. Siuce $P_{1}$ and $P_{1}$ are hoth Sylow subgroups of $G^{*}=A^{*} B^{*}$, by lemma 2.2.3, they will fartorize. Thus the nubgruups $D P_{1}$ and $D P_{3}$ fartorize.

We shall uow show that $D=D P_{1} \cap D P_{2}$. It is rlpar that $D \leq D P_{1} \cap D P_{2}$, so suppome that thry are uut equal. Theu siuce $G$ natisfies the miuimal conditiou for subgroups ther exiats some $E \leq D P_{1} \cap D P_{2}$ which is minimal with reapert to containiug $D$. Thin $D$ is maximal in $E$, sep figure 3.11 .

However, as stated in chapter 1, a maximal suhgroup of a Cernilav gromp, Las finite iuclox. Thus $|E: D|$ is fiuite. Nuw siuce

$$
D P_{1} \geq E \geq D
$$



Figure 3.11.
we may apply Dedrkind's lemma to uhtain.

$$
\begin{aligned}
E & =E \cap D P_{1} \\
& =D\left(E \cap P_{1}\right) .
\end{aligned}
$$

Therfore

$$
\begin{aligned}
|E: D| & =\left|D\left(E \cap P_{1}\right): D\right| \\
& =\left|\left(E \cap P_{1}\right):\left(D \cap E \cap P_{1}\right)\right| \\
& =\left|\left(E \cap P_{1}\right):\left(D \cap P_{1}\right)\right|
\end{aligned}
$$

Siuce $\left(D \cap P_{1}\right) \triangleleft\left(E \cap P_{1}\right)$, the index is a finite power of $p_{1}$. Huwnver the same argument cat be used to show that $|E: D|$ in a power of $p_{2}$. Thus $|E: D|=1$, and so $E=D$, a routradiction. Therefore, an rlaimed,

$$
D=D P_{1} \cap D P_{2}
$$

Nuw by lrmma 3.4.1 $(A \cap B) \subseteq D$, and no wr may apply lenma 3.4 .2 to courlude that $D$ facturizes,

$$
D=(D \cap A)(D \cap B)
$$

We shall now nhow that $D$ is indeed the only $L \mathbb{J}$-covering subgroup of $G$ whirls fartorizes. Suppune $E$ ia anuther fartorizing LE-cuvering suhgroup of
G. Then since $G / G^{*} \in \mathcal{F}^{\mathcal{F}}$ it is clear that

$$
G=D G^{-}=E G^{-} .
$$

Now ronsider $D \cap G^{*}$ which, siuce it is normal in buth $D$ nud $G^{+}$, must he a normal sulogroup of $G$. Since $D$ and $E$ are hoth $L \mathbb{Z}$-covering subgroups of $G$ hy theorem 3.1 .9 there exists some $g \in G$ such that $D^{0}=E$. Thus

$$
\begin{aligned}
\left(D \cap G^{*}\right) & =\left(D \cap G^{*}\right)^{\bullet} \\
& =\left(E \cap G^{*}\right)
\end{aligned}
$$

Let $N=\left(D \cap G^{*}\right)=\left(E \cap G^{*}\right)$, and pass to the factor group $G / N$. Since buth $D / N$ and $E / N$ are factorizing $L \boldsymbol{Z}$-covering sulgatoups of $G / N$, and it in enough to show that $E / N=D / N$, we may assume that $N=1$. Hewre $D$ and $E$ arp huth finite.

Now form the finite gromp $J=\langle D, E\rangle$. By Dedekiad's lemma

$$
\begin{aligned}
J & =J \cap D G^{*} \\
& =D\left(J \cap G^{*}\right)
\end{aligned}
$$

aud similarly

$$
J=E\left(J \cap G^{*}\right)
$$

Consider $\left(J \cap G^{*}\right) \leq G^{*}=A^{*} B^{*}$, which, in the notation of lemma 3.4.9, muat lie in some finite layer $\Omega,\left(G^{*}\right)=L$. Since $D$ and $E$ are hoth $L \mathfrak{J} \boldsymbol{\sim}$ ouvering subgroups they are self-vormalizing, heuce

$$
\left(A^{*} \cap B^{*}\right) \leq Z(G) \leq D
$$

autl similarly

$$
\left(A^{*} \cap B^{*}\right) \leq Z(G) \leq E .
$$

Thas we need only show that $D /\left(A^{*} \cap B^{*}\right)=E /\left(A^{*} \cap B^{*}\right)$. Therrfore we may assump that $\boldsymbol{A}^{*} \cap \boldsymbol{B}^{*}=1$. It follows, by the same mpthuds an thome used in the prouf of lemme 3.4.9, that $L$ fartorizen.

Now

$$
J L=D L
$$

where $L \triangleleft G$ and $D$ factorizes, thus $D L$ and heure $J L$ factorize. We may now cousider the finite group $J L$. By lemma $3.1 .5 D$ and $E$ are $\boldsymbol{J}$-covering sulugruups of $J L$. Hence we may apply Heineken's reanlt 3.2 .1 to see that thry coincide. Thus $D$ is the uniqu $L \mathfrak{J}$-rovering subgronp of $G$ which fartorizen.

In view of our surcess in extending results which hold for Cernikov groups to the rlass $\boldsymbol{R}_{\text {, }}$ defined in chapter 2, one might ask if we can do the same for theorem 3.4.10. Unfortunately, in this situation, all attempts at such a geveralization proved unsuccersful.

### 3.5. The formation of nilpotent-by-nilpotent groups

In this final section of the chapter we return to the class of periodic (LTI) gronps to give some results which may prove useful in the investigation of their formation subgroups. After the sucreasful treatment in sertion 3.3 of the case where the formation is that of finite nilpotent groups it sermed natural to prucerd to the formation of finite uilpotent-hy-nilpotent gromps. Unfortunately. in this situation, a proof of the existence of an $L \sqrt[3]{ }$-rovering subgroup which fartorizes remains elusive.

However, the following reault, which does not appear to be mentioned elsewhere, may help in the search.

Thearem 3.b.1. If $G$ in a periodic ( $L N$ ) $\boldsymbol{D}_{\text {-group. then } ~} G \in L\left(N^{2}\right)$ if and only if $G \in(L N)^{2}$.

Proof of s.5.1: (i) Suppose $G \in(L \mathfrak{M})^{2}$. Since $G$ is lurally finite, a finitely generated subgroup of $\boldsymbol{G}$ is finite and hence lies in $\boldsymbol{N}^{2}$. Therefure $G \in L\left(\boldsymbol{N}^{2}\right)$.
(ii) Now suppose $G \in L\left(\boldsymbol{N}^{2}\right)$. Let $R$ denote the Hirsch-Plotkin radical of $G$. thus $R \in L$ In. Then. siuce $G / R$ is finite, there exists a fivite supplement $F$ of $R$ with

$$
G=F R .
$$

Note that $\boldsymbol{F} \in \boldsymbol{N}^{\mathbf{2}}$.
Our aim in to show that $G / R$ is nilputent. Let $f \in F \backslash(F \cap R)$. Then we shall prove that there is sume finite subgroup $F_{f} \geq F$ such that $f \&\left(F_{f}\right)$. If not, fur every finite subgrunp $F \geq F$ we have $\langle f\rangle \in \rho(F)$. Siuce $\rho(F) \triangleleft F$, we then have

$$
\langle f\rangle^{F} \in \rho(\bar{F})
$$

and so $<f>^{F} \in$ 91. Now this holds for all finite groups $F \geq F$, thus

$$
\langle f\rangle^{d} \in L \eta
$$

and so

$$
f \in \rho(G)
$$

a cuntradiction.
Therefore we may form

$$
\hat{F}=<F_{f}: \forall f \in F \backslash(F \cap R)>.
$$

Since $F$ is generated by a finite unmber of finite gronps it is itself finite. We shall now show that $(\mathcal{F} \cap R)=\rho(F)$.

Since $(\boldsymbol{F} \cap \boldsymbol{R}) \triangleleft \tilde{F}$, and it is nilpoteut, we have

$$
(\dot{F} \cap R) \leq \rho(\dot{F})
$$

Now if $\rho(\hat{F})>(\hat{F} \cap R)$, then wr may pirk some $\leq \in \rho(\hat{F}) \backslash(\tilde{F} \cap R)$. Siure $G=F R$.

$$
F /(F \cap R) \cong F /(F \cap R)
$$

and there must exint sump currespuading $f^{\prime} \in F \backslash(F \cap R)$ with $r^{\prime} \in(F \cap \rho(\dot{F})) \leq$ $p(\hat{F})$.

Since $\rho(F) \triangleleft \bar{F}$. we have

$$
\rho(\bar{F}) \cap F_{x^{\prime}} \triangleleft F_{x^{\prime}}
$$

and siure it is nilpotent,

$$
\rho(\bar{F}) \cap F_{x^{\prime}} \leq \rho\left(F_{x^{\prime}}\right)
$$

Hownver, $x^{\prime} \in \rho(\tilde{F})$ and $x^{\prime} \in F_{x^{\prime}}$, thus

$$
r^{\prime} \in \rho\left(F_{R^{\prime}}\right),
$$

coutradicting the definition of $\boldsymbol{F}_{x^{\prime}}$. Therefore no such $I$ exists and

$$
\rho(\bar{F})=(\bar{F} \cap R)
$$

Finally, siure $\bar{F}$ is finite, $\vec{F} \in \boldsymbol{N}^{2}$ and so

$$
\tilde{F} / \rho(\bar{F})=\tilde{F} /(\bar{F} \cap R) \in \mathfrak{N}
$$

Now

$$
G / R \cong \dot{F} /(\dot{F} \cap R) \in \mathfrak{n}
$$

and su $G \in(L \mathfrak{N})^{2}$ as required.

A further curiousity which occurred during this investigation was the following result. Recall that the Carter subgroups of a finite group are the selfnormaliziup uilpotent subgroups, and that, for a soluhle group, they roincide with the श-coveriug sulgroups.

Thearem 3.5.2. Sutppose $G$ as a finite group with nilpotent subgroups $A$ and $B$ such that $G=A B$. Let $R=F(G)$ and $F \leq G$ be such that $F / R=F(G / R)$. Then if $C$ is the Carter atbogroup of $F$ which factorizes, then $\mathcal{N a}_{\mathrm{G}}(C)$ alsa factorizes.

Proof of 9.5.2: By definition $F \in \boldsymbol{N}^{2}$, and thus a Carter subgroup of $F$ is in fart a hasin mormalizer. It is rlear from the prouf of throrem 3.3.3 that $C$ will be the oue defined using the far-bacis of $F$.

Now by Peunington [38] buth $F / R$ and $R$ farturize, thus

$$
F=(F \cap A)(F \cap B)
$$

We are now in a position to apply lenma 3.4.1 to ohtain.

$$
(F \cap A) \cap(F \cap B) \leq C .
$$

and su

$$
F \cap(A \cap B) \leq C
$$

Since $A$ and $B$ are hoth milpotent groups, $(A \cap B)$ sn $A$ and $(A \cap B)$ an $B$ Heuce we may apply Weilaudt [49, Satz 1] which states that

$$
(A \cap B) A n A B=G
$$

Therefore, since $(A \cap B)$ is a nilpotput subuormal subgroup of $G$, it is contajuod in R. and su

$$
(A \cap B) \leq R \leq F
$$

Thus, the above yields

$$
(A \cap B) \leq C
$$

We shall now proreed to shuw that $\mathbf{N}=\mathbf{N}_{G}(C)$ factorizes. Let $g \in \mathcal{N}$. Then $g=a b^{-1}$ for some $a \in A$ and $b \in B$. Thus

$$
C^{a}=C
$$

and so

$$
C^{a}=C^{b}
$$

Let $X=C^{\text {a }}$. we must shuw that $X=C$. In urder to do so we shall aeed the followisg formula for the order of a product of two groups. ser [40, 1.3.11].

If $T$ and $S$ are sulugroups of $G$. then

$$
\text { (*) } \quad|S T| .|S \cap T|=|S| \cdot|T|
$$

Apply this to $C=(C \cap A)(C \cap B)$,

$$
|C| \cdot|(C \cap A) \cap(C \cap B)|=|(C \cap A)| \cdot|(C \cap B)|
$$

Now $(C \cap A) \cap(C \cap B)=(A \cap B)$, and siuce $|(C \cap A)|=\left|\left(C^{a} \cap A\right)\right|$ and $|(C \cap B)|=\left|\left(C^{\star} \cap B\right)\right|$, we may rewrite the above an

$$
|C| \cdot|(A \cap B)|=\left|\left(C^{a} \cap A\right)\right| \cdot\left|\left(C^{b} \cap B\right)\right|
$$

If we then apply (*) to the right hand side of this equation we obtain,

$$
\begin{aligned}
|C| \cdot|(A \cap B)| & =\left|\left(C^{a} \cap A\right)\left(C^{b} \cap B\right)\right| \cdot\left|\left(C^{a} \cap A\right) \cap\left(C^{b} \cap B\right)\right| \\
& =\left|\left(C^{\bullet} \cap A\right)\left(C^{b} \cap B\right)\right| \cdot\left|C^{a} \cap(A \cap B)\right|
\end{aligned}
$$

Now

$$
|(A \cap B)| \geq\left|C^{\bullet} \cap(A \cap B)\right|
$$

and su we ileduce

$$
|C| \leq\left|\left(C^{a} \cap A\right)\left(C^{\phi} \cap B\right)\right| .
$$

However $|C|=\left|C^{a}\right|=|X|$, and so wr have

$$
|X| \leq\left|\left(C^{\infty} \cap A\right)\left(C^{+} \cap B\right)\right| .
$$

Since $X$ coutains both $\left(C^{a} \cap A\right)$ and $\left(C^{b} \cap B\right)$ it follows that it contaius their product, aud so

$$
|X| \geq\left|\left(C^{-} \cap A\right)\left(C^{+} \cap B\right)\right|
$$

Therefore we Lave rquality, tund thin

$$
X=\left(C^{a} \cap A\right)\left(C^{b} \cap B\right)
$$

that in

$$
X=(X \cap A)(X \cap B)
$$

Now $X$ is a conjugate of $C$ so it must also. by theorem 3.1.9, be a Carter subgroup of $F$. Siuce. by Heineken's result, there exists only one factorizing Carter sulgroup we unst have $X=C$.

Therefore $a \in N$ and $b \in N$, and heure

$$
N=(N \cap A)(N \cap B)
$$

as required.

## Chapter 4

## Products which are merely sets

### 4.1. Introduction

So far we have bewn considering groups which are the product of two or more of their sulpgroups. In this chapter we shall look at products of subgroups which are merely sets. What can we say about a subgroup whirh is coutained in such a product? Will its structure be influruced by that of the fartors? Study in this ares is mutivated by the following renult of Busetto and Stunehewer. [6]. They managed to geseralize Ito's famons theorem to the set situation.

Theorem 4.1.1 (Buaetto and Stonehewer [6]). If $A, B$ and $M$ arr subgroupn of the group $G$, with $A$ and $B$ abelian, and $M \subseteq A B$, then $M$ is metabelian.

Other resulte coucrening products have not transferred so nuccespfully to sete. For example it in kuown that a group which in the product of two cyrlir sulgronps is a supersoluble group. In the set situation a connter example has bren fonnd hy Leeven and Stonelhewer, example 4.3 .1 of [35]. They have a suhgroup isomorphic to the alteruating granp on 4 objects which is contained in a product of two cyrlic grompin of urder 18.

In this rhapter we shall examiue how the results of Holt and Howlett [25], concerning the expone ut of a product. genpralize to sets. Sertion 4.2 will Iraw together the available information, whilst in section 4.3 some bounds on the exponent are obtained in particular situations. In sectiou 4.4 we shall examine a finitely generated uilpotent torsion-free group, $G$, which rontains subgroups $A, B$ and $M$. If $A$ aud $B$ are intinite ryclic gronps, and $M \subseteq A B$. we shall show that M is an abelian gronp.

### 4.2. The exponent

In their joint paper of 1984 Holt and Huwlett [25] considered the exponent of a group which is the product of two abelian subgroups. This led eventually to the result:

Theorem 4.2.1 (Howlett [26]). Assume that $A$ and $B$ are abelian subgroups of the group $G$ (finite or infinite), that $G=\{a b: a \in A, b \in B\}$, and that $A$ and $B$ have finite exponents $e$ and $f$ respectively. Then the exponent of $G$ is a divisor of ef.

Now in the nat sitnation one might hope fur: Let the gronp $G$ have suls groupen $A, B$ and $M$, where $A$ and $B$ are abelian with exponeves $e$ and $f$ renjertively, and $M \subseteq A B$. Then the expubent of $M$ is a divisor of $r f$.

For the rase where $e=f=2$ it in pany to ser that the exponent of $M$ is 4. Since if $m \in M \subseteq A B \cap B A$ we have $m=a b$ for sume $a \in A$ and $b \in B$. Then $m^{-1}=b_{a}=a_{1} b_{1}$ for nome $a_{1} \in A$ and $b_{1} \in B$ and it follows that $b_{1} a_{1}=a b$. Nuw

$$
a b \cdot n b=a \cdot a b_{1} b_{1} \cdot b
$$

null m,

$$
(n b)^{4}=a a_{1} b_{1} b_{1} a a_{1} b_{1} b
$$

$$
\begin{aligned}
& =a a_{1} b_{1} a_{1} b_{1} a_{1} b_{1} b \\
& =a a_{1} a b a b b_{1} b \\
& =a_{1} b_{1} b_{1} \\
& =a_{1} a_{1} b_{1} b_{1} \\
& =1 .
\end{aligned}
$$

Hence $\boldsymbol{m}^{4}=1$ for all $m \in M$, and $M$ han exponeut 4.
However if we take $e=f=3$ there is an olvious counter example. Cousider the ulternating gronp $\boldsymbol{A}_{4}$. Let

$$
A=<(123)\rangle \cong C_{3}
$$

and

$$
B=\langle(124)\rangle \cong C_{3} .
$$

Thw there exinte a suhgroup $M$, satisfying

$$
M=\langle(123)(124)\rangle \not C_{2}
$$

which is coutaiued in the product $A B$. Thus the Hult and Howlett result dower uot hold for sets.

Further examples rau be found in finite thelds using methods similar to those of example 4.3.1 [35]. Lervea and Stunehewer have developed the general rase, which we describe below, to show that elementary ahelian gromps of arbitrary rauk call occur in a product of two cyclic groups, sep [35, example 4.3.2].

Suppose $F$ is a finite field with $q$ elementa, where $q=\mu^{\boldsymbol{n}}$ for nome prime $p$ and $n \in \mathbb{N}$. Cunsider the multiplicative group of the field, which we druote by $F^{n}$, thens

$$
F^{x} \cong C_{Q-1}
$$

Therefore wer can pick $\theta \in F \backslash\{0\}$ Nurh that

$$
\langle\theta\rangle \neq F^{\star} .
$$

Now consider the additive group of $F$, written $F^{+}$. Multiplication of $F^{+}$by $\theta$ gives rise to a gromp antomorphasm, for if $f_{1}$ and $f_{2} \in F^{+}$, then

$$
\left(f_{1}+f_{2}\right) \theta=\left(f_{1} \theta\right)+\left(f_{2} \theta\right) .
$$

Let a genprate a cyclic group of urder $q-1$ and drfine a runjugation actiou of $a$ on $F^{+}$in the following manuer,

$$
f=f . \theta
$$

for all $f \in F^{+}$. Thus if $\langle n>=A$, then we can furm the semidirect product

$$
G=F^{+} \times A .
$$

Nuw let $b=\left\{a^{-1}\right)^{\prime} \in G$, where $f \in F^{+} \backslash\{0\}$, aud writer $\langle b\rangle=B$. Then $|A|=|B|=q-1$.

Now furm the product $A B$. We claju that $A \cap B=1$, for if $A \cap B \neq 1$, then

$$
a^{m}=\left(a^{-n}\right)^{\prime} \neq 1
$$

for some mand $n<q-1$. It then follows that

$$
\left[f, a^{w}\right] \in A \cap F=1
$$

and $f$ and $a^{n}$ commute. Thus

$$
f=f^{a^{\prime \prime}}=f . \theta^{n \prime \prime}
$$

and so $\theta^{\prime \prime}=1$ for somenen<q-1. This contradicts the chuicr of $\theta$ an a getureator of $F^{x}$. Hence $A \cap B=1$ an rlaimed

Cousider the set

$$
X=\left\{a^{\prime} B^{\prime}: 1 \leq 1 \leq q-1\right\}
$$

We shall show that $X \subseteq F$. Since $a h=a f^{-1} a^{-1} f \in F$ and $F$ in normalized by $A$ we have

$$
h_{x_{1}}=(a b)^{a} \in F^{a}=F \text {. }
$$

Therefore

$$
a b b a \in F .
$$

and conjugating by a ${ }^{-1}$ yields

$$
a^{2} b^{2} \in F
$$

In the same way $a^{\prime} b^{\prime} \in F$ for any $i \in\{1, \ldots, q-1\}$. Thus $X \subseteq F$ an required. Now siuce $A \cap B=1$ it follows that $a^{\prime} b^{\prime} \neq a^{3} b^{j}$ for any $; \neq j$, aud $X$ is a set of $q-1$ distiurt plemputs.

Hence there is just our plement of $F$ which durs not lie in $X$. Let $f_{1}$ be the unigue element of $\boldsymbol{F} \backslash \boldsymbol{X}$, nute that $f_{1} \neq 0$. Extend $f_{1}$ to a basis, $\left\{f_{1+\ldots}, f_{n}\right\}$, of $F$ as an elemputary ahelian p-gruup. Then

$$
<f_{2}, \ldots, f_{n}>\subseteq X \subseteq A B
$$

and so we conclude that $A B$ coutains an elementary abelian $\boldsymbol{\rho}$-gronp of rank $n-1$.

Using the above we find an rementary abelian 2-group of rank 2 contained in a product of two cyclic groups of order 7. One of rank 4 ocrurs in a product of two ryclic groups of urder 31. By similar methods we discover a cyclic group of order 3 rontained in a product of two cyclic groups of order 13.

### 4.3. Some bounds on the exponent

Althongh the result of Holt and Howlett dows not bold for nets it is pussible to give nome bound on the exponent in rertaiu situatious. The following lemma, due to Loverer, will be of groat use.

Lemma 4.3.1 (Leeven [35]), Let the finite group G have aubgroups A. B and $M$. with $A$ and $B$ abelian. and $M \subseteq A B$. If $A \cap M=1$ and $B \cap M=1$,
then

$$
|M|<\operatorname{mmn}\{|A|,|B|\} .
$$

Proof of 4 . Y. $f$ : If $m \in M$, then $m=a b$ for some $a \in A$ and $b \in B$. Suppose $M$ also contains $w^{\prime}=a d^{\prime}$ fur $b^{\prime} \in B \backslash\{b\}$. Then

$$
\begin{aligned}
m^{-1} \cdot m^{\prime} & =b^{-1} a^{-1} \cdot a b^{\prime} \\
& =b^{-1} b^{\prime}
\end{aligned}
$$

Therefore $M \cap B \neq 1$, a routradictiou. Hence for each $a \in A$ there exists at most one $b \in B$ such that $a b \in M$. Siuce this argument is rompletely symmetrical in $A$ and $B$ wr conclude that

$$
|M|<\min \{|A|,|B|\} .
$$

We shall now produce our first lound an the exponent.

Theorem 4.3.2. Let $G$ be a nilpotent group genereted by two subgroups $A$ and $B$. where $A$ and $B$ are elementary abelian p-groups of rank $r$ and $n$ reapectively. If $M$ is a subgroup of $G$ such that $M \subseteq A B$, then

$$
\exp M<p^{(\operatorname{man}(r s)+1)}
$$

Proof of 4.S.2: Now $G$ in a uilputent group geurated by two finite p-groups, so it must it melf he a fivite p-group. Since we are only interenterl in the exponent of $M$ we may ansump that $M$ in cyclic. The sulugtomp $A \cap M$ is uormal in hoth $A$ and $M$ since they are abelian groups. Let us uow take $A$ to be the gromp genmated by only thome elenents of $A$ that appear in an element of $M$. that in

$$
A=\langle 爪 \in A: \exists b \in B \text { with } a b \in M\rangle
$$

Similarly for $B$. Then
$\langle A, M\rangle=G$
Lat
$N=(A \cap M)(B \cap M)$
We cau repressent this situation by figure 4.1


Figure 4.1.
Nuw cousider the group $G / N=\langle A N / N, B N / N\rangle$. Simce $N \leq M$ wr ran apply Dedekiudis intersection lennman to ohtain
$A N / N \cap M / N=(A \cap M) N / N=N / N$,
aud nimilarly
$B N / N \cap M / N=N / N$.
Now by lemma 4.3.1
$\exp (M / N)<\min \{|A . N / N| .|B N / N|\}$.
(i) If $\min \{|A N / N|,|B N / N|\}=\min \{|A|,|B| \mid$, then

$$
\exp (M / N)<P^{\text {manes }(\sim, \Delta)}
$$

Suppose $|A| \leq|B|$, then we have $|A N / N|=|A|$, and so $N \cap A=1$. Now by Dedekind's lemman

$$
\begin{aligned}
A \cap N & =A \cap(A \cap M)(B \cap M) \\
& =(A \cap M)(A \cap B \cap M) \\
& =(A \cap M)
\end{aligned}
$$

Therefore $A \cap M=1$, and so $N=(B \cap M)$. Hence $\exp N=p$ or 1. If $\exp N=1$, then $N=1$, and we may apply the formula

$$
\exp M=\exp (M N / N) \cdot \exp (M \cap N)
$$

to obtain

$$
\exp M<\boldsymbol{F}^{\text {mine }(r, d)} .
$$

If $\exp N=p$, then

$$
\exp M<p^{\min (n, s)+1}
$$

(ii) If min $\{A N / N|,|B N / N|\}<\operatorname{miu}\{|A|,|B|\}$, then

$$
\exp (M / N)<p^{\operatorname{man}(p, 0)-1} .
$$

Nuw cousider the exposurut of $N$. Since $M$ ia cyclic it follows that $N$ is ryclic. But $N$ is geurrated by alements of order $p$. thus $|N|=p$. and wo

$$
\operatorname{Nxp} M<\boldsymbol{P}^{\operatorname{mon}(r, 0)}
$$

Therefore in rither rage one can say that

$$
\exp M<p^{\min (r, s)+1}
$$

The sanne methorls applied when $A \equiv C_{p m}$ and $B \equiv C_{p m}$ yielding the result $\exp M<p^{m+n-1}$. This is smmewhat disappointing siuce $|A B| \leq$ $\mu^{m+n}$ anyway. A considerahly mtronger homed can he found if we apply more stringent courlitions on the smlogroups.

Theoren 4.3.3. Let $G$ be a finite soluble group unth subgroups $A . B$ and $M$. If $A$ and $B$ are elementary abelian p-gmups. both subnormal in $G$ with defect 2, and $M \subseteq A B$. then the exponent of $M$ divides $p^{2}$.

Proof of 4.9.S: Suppose the theorem is false. Let $G$ be a minimal counterexam ple such that the exponent of $\mathbf{M}$ dones mot divide $\boldsymbol{p}^{2}$. Since $G$ is a finite soluhle gromp there exists a minimal normal smbgronp, $N$ of $G$. which is elementary alelian. Cousider $G / N$, siuce it satisfies the cunditions of the throrem wr may apply induction to dedure that $\exp (M N / N)$ divides $p^{2}$. Nuw

$$
\operatorname{*xp} M=\operatorname{rxp}(M N / N) \cdot \exp (M \cap N)
$$

and su if $M \cap N=1$ we are tinished. Therefore assume that $M \cap N \neq 1$.
Since $A$ is a $p$-grunp, and it is suhuormal in $G$, it follows that $A^{6}$ is alsu a
 prodict $A B$ aurl we may therefure nemane that $G$ is itself a p-group. Sincr $N$ in a misimal uormal subgromp of $G$ wi conclude that $|N|=p$. Nuw $G$ is uilpotent, *s $N \subset Z(G)$ and it fullows that $N \cap M \triangleleft G$. Thus since $M \cap N \neq 1$. we have $N \cap M=N$.

Now exp $(M / N)$ divider $p^{4}$, sat the exponent of $M$ must divite $p^{3}$. Siure $G$ in a comuter example the expounent of $M$ in $p^{3}$, and $M$ contajus an element of urcher $\boldsymbol{p}^{3}$. Ass.1nu that $M \equiv C_{p,}$. Siuce $M \subseteq A B$ we haver $M \equiv<a_{1} b_{1}>$ fur мome $a_{1} \in A$ and $b_{1} \in B$. Let $M^{P}=\left\langle a_{2} b_{2}\right\rangle$ where $a_{2} \in A$ nud $b_{1} \in B$. From the above wa have $M^{p^{3}}=\boldsymbol{N}$. Wir ilhontrate this mituation in figure 4.2 .


Figure 4.2.
Now let $A_{1}=A^{(i} \triangleleft G$, and cousider

$$
G / A_{1}=A_{1} B / A_{1} \cong B /\left(A_{1} \cap B\right) .
$$

an elementary abrlian $p$ group. Therefore the $p$ 'th power of any element of $G$ lies in $A_{1}$, in particular $M^{p} \subseteq A_{1}$. Since $a_{2}$ and $a_{2} b_{2} \in A_{1}$ we luave $b_{2} \in A_{1}$. Now $A$ in subuormal in $G$ in two steps, beuce $A \triangleleft A_{1}$ and thus $A^{b_{7}}=A$. In a similar way $B^{a_{2}}=B$.

If $a_{2}$ and $b_{d}$ wrese to comminte we would have

$$
\left(a, b_{2}\right)^{P}=a_{2}^{t} V_{2}=1
$$

which coutradirts the fart that $a_{2} b_{2}$ geuerates a group of order $\boldsymbol{p}^{2}$. Therefore $\left[a_{2}, b_{2}\right] \neq 1$. Since $a_{4}$ normalizes $B$ and $b_{4}$ normalizes $A$ we have

$$
\left|a_{2}, b_{2}\right| \in A \cap B \subseteq Z(G)
$$

Thus

$$
1 \leq\langle | a_{2}, b_{2}| \rangle \leq\left\langle a_{3}, b_{2}\right\rangle
$$

is a crutral spries.
Nuw Robiuson has nhown in [40, theorem 5.3 .5 | that fur groups with nilpotent class at must 2 the folluwing indentity bolds,

$$
\left(a_{2} b_{2}\right)^{\mu}=a_{2}^{n} b_{2}^{n}\left[b_{2}, a_{2} \left\lvert\,\binom{ n}{2}\right.\right.
$$

If $\mu=\mathbf{2}$ we know that the exponent of $M$ divides 4, so we may assume that $p$ is odd. If $n=p$ in the above expression we have

$$
\left(a_{2} b_{2}\right)^{p}=\left[b_{2}, a_{2}\right]\binom{p}{2}
$$

Now $\binom{p}{2}$ is divisible by $p$, and since $\left[a_{2}, b_{2}\right]$ has order $p$ we conclude that $\left(a_{2} b_{2}\right)^{p}=1$, a contradiction. Thus no such counterexample exists. 4.3 .3

Attempts tu relax the condition on the deferts of $A$ and $B$ proved unsurressful, even in the case where one subgrunp remained of defect two.

### 4.4. An infinite group

Busetto and Stumehewer have shown that a subgroup which lies in the product of two abelian sulogroups is metabelian. By inposing extra conditions on the group we can show that a subgrunp contained in a product of two infinite cyrlic subgroups must in fart be abelian. We shall nerd the following result dur to Mal'rev.

Theorem 4.4.1 (Mal'cev [40, theorem 5.2.19]). If the centre of a group $G$ is torsion-free, each upper central factor is torsion-free.

Theorem 4.4.2. Let $G$ be a finitely generated tormion-free nilpotent group. If $G$ is generated by two infinite cyclic subgroups $A$ and $B$. and if $M$ in a subgroup of $G$ such that $M \subseteq A B$, then $M$ is abelian.

Proof of 4.4.2: Suppous the theurems is falme. Let $G$ be the counter example with lpant uilputency class. Siuce $G$ in uilpotent. $Z(G) \neq 1$, aud $G / Z(G)$ Lan nilpotrucy class atrictly lras than that of $G$. Nuw $G / Z(G)$ is tursiuu-free, fur if
not there exists sume rentral factor of $G$ which is not torsion-free, contradirting theorem 4.4.1 aliove.

If $A \cap Z(G) \neq 1$ we have

$$
A Z(G) / Z(G) \cong A /(A \cap Z(G))
$$

where $A /(A \cap Z(G))$ is finite. Thus $A Z(G) / Z(G)$ is finite, aud since it is rontained in the corsion-froe $\operatorname{group} G / Z(G)$, we couclinde that $A \leq Z(G)$. However, if $A \leq Z(G)$, then $G$ is abelinn and we have nothing to prove. So let us assume that $A \cap Z(G)=1=B \cap Z(G)$.

Nuw siber $G / Z(G)$ is a finitely generated nilpotent and torsion free gronp we may apply induction to deduce that $M Z(G) / Z(G)$ is abelian. However $M \cap Z(G)=1$, for if not there is some $m \in(M \cap Z(G)) \backslash\{1\}$. If $A=<a>$ and $B=\langle b\rangle$, theu $m=a^{x} b^{\nu}$ for sume integers $x$ and $y$. Now siuce $a^{n} b^{v} \in Z(G)$, and $B$ is abeliau, $a^{x}$ must commute with $B$. Hence $a^{x} \in Z(G)$, a routradiction. Thus

$$
M \cong M / M \cap Z(G) \cong M Z(G) / Z(G)
$$

and so $M$ is abrelians.

## Bibliography

[1] B. Ambrg. Artinian and Nurtherian facturized groups. Rend. Sem. Mat. Univ. Padova. 55:105-122, 1976.
[2] B. Amberg, S. Franciosi, aud F. de Giovanni. Groups with a nilpotent triple factorization. Bull. Aust. Math. Soc., 37:69-79, 1988.
[3] B. Amberg and N. Halbritter. Groups with a triple factorization. Ricerche di Matematica, 38:51-62, 1989.
[4] B. Amberg aud D.J. Robinson. Suluble gronps which are products of nilputeut minimax groups. Arch. Math, 42:385. 390, 1984.
[5] R. Bary. Gruppen mit Minimalbediuguvg. Math. Ann., 150:1-44. 1963.
[6] G. Busetto aud S.E. Stonehewer, 1990. Uupublished.
[7] R. Carter. Nilpotent self-nurmalizing suligroups of soluble groups. Math. Z., 75:136-139, 1961.
[8] R. Carter and T. Hawkes. The $\mathbf{3}$-nurmalizers of a finite solnble gronp. Journal of Algebra, 5:175-202, 1967.
[9] N.S. Cernikov. Iufinite locally soluble groups. Mat. Sb., 7:35-64, 1940.
[10] N.S. Crruikuy. Infinite groups that are products of nilpotent sulggroups. Sowiet Math. Dokl. 21:701-703, 1980.
[11] N.S. Cernikuv. Sume factorization theorems for infinite gronps. Sotriet Math. Dokl, 22:729-731, 1981.
[12] D. Finkel. Ou the nolubility of certain factorizalbe groupk II. J. Algebra, 57:271-278. 1979.
[13] A.D. Gardiuer, B. Hartley, aud M.J. Tomkinson. Saturated formatious and Syluw strueture in lorally finitr groups. Journal of ALgebra, 17:177 211. 1971.
[14] W. Gashintz. Uher dip \$ Uutergruppe eudlicher Grippen. Math. Z.. 58:160-170, 1953.
[15] W. Gaschintz. Zur Theorie der endlicheu audiölaren Gruppen. Math. Z., 80:300 315, 1963.
 Math. Z.. 82:198-199. 1963.
[17] F. Gross. Finite groups which are the product of two nilpotent gromps. Bull. Aust. Math. Soc., B:267-274. 1973
[18] P. Hall. A uute on soluhle groups. J. London Math. Sor., $\mathbf{3 : 9 8}$ 105. 1928.
[19] P. Hall. Finite-hy-uilpoteut gronpr. Prac. Cam. Philos. Soc.. 52611616. 1956.
[20] P. Had. Sume sufficient couditions for a group to be nilpotent. Ahnais J. Math., 2:787-801. 1958.
[21] B. Hartley and T.A. Peng. Suhnormality, ascrendancy, aud the minimat rouditiou ov suligroups. J. Algebra. 41:38 78, 1976.
[22] T. Hawkes. On formation sulggronps of a finite suluble group, J. Landon Math. Sor. 44:243 250, 1969.
[23] H. Hriueken. The produrt of two finite uilputent groups and ita Fitiag series. Tu apprar.
[24] H. Heinekeu. Products of finite vilputent groups. Math. Ann.. 287:643 652. 1990.
[25] D.F. Hult aud R.B. Howlett. On groups which are the product of two aheliau snligroups. J. London Math. Sac., 29:453 461, 1984.
[26] R.B. Howlett. On the expourut of rertain fartorizable groups. J. Landon Math. Soc.. $31: 265$ 271. 198.3.
[27] B. Huppert. Endliche Gruppen I. Spriuger-Verlag, 1967.
[28] N. Itō. Ūhet das Prudukt von zwri abmelschru Gruppen. Math. Z., 62:400 411.1955.
[29] L.S. Kazariv. The product of two cloee to nilpotent groups. Mat. Sb., 110(152):51 65. 1979. Nu. 1,159.
[30] O.H. Krgel. Produkte uilputenter Gruppey. Arch. d. Math., $12: 9093$. 1961.
[31] O.H. Kegel. On the sulubility of some fartorized linear groups. Minoin J . Math., 9:535 547. 1965.
[32] O.H. Kegel. Zur Striktur mehrfach faktorisierter endlicher Gruppen. Math. Z., 87:42-48, 1965.
[33] O.H. Krgal and B.A. Wehrfritz. Strong finiteness couditiuns in lurally finite groups. Math. Z. $117: 309$ 324, 1970.
[34] O.H. Kegel aul B.A. Welorfritz. Locally finite groups. North-Hollaud Amsterdain. 1973.
[35] A. Latwew. Contributions to the theary of subnormal subgroups and factorized groups. PhD thesis, Uuiversity of Warwick, 1991.
[36] J.C. Lenucox nud S.E. Stonelower. Subnormal Subgroups of Groups. Oxford mathematical monographs, 1987
[37] D.H. McLain. On lurally uilputrut groups, Proc. Cam. Phalos. Soc., 82:5-11, 1956.
[38] E. Pruyingtou. Ou producth of finite uiljutent groups. Math. Z., 134:81 83. 1973.
[39] D..J. Rohiusun. Finiteness conditions and generalized soluble groups, vulmime 1. Spuringer-Verlag. 1972.
[40] D.I. Rolliumon. A Courae in the Theory of Gmups. Spriuger-Verlag, 1982.
[41] D.J. Rehiuman aud S.E. Stonelower. Triple fartorizatioum lyy abeliau groups. Arch. Math.. 1992. To appenr.
[42] W.R. Scott. Group Theory. Prentice-Hall, 1964.
[43] S.E. Stonelbewer. Abnormal subgroups of a class of periodic lorally soluble grunps. Proc. London Math. Soc., 14:520-536, 1964.
[44] S.E. Stouebewer. Formations and a class of locally soluble groups. Proc. Camb. Phil. Soc., 62:613-635, 1966.
[45] Y.P. Sysal. Products of infinite groupis. Akad. Nauk Ukrain. Inat. Mat., Prepriat 82.53:1-36. 1982.
[46] H. Wielandt. Uber das Produkt paarweise vertausbbarer nilpotenter Gruppen. Math. Z., 55:1-7, 1951.
[47] H. Wirlandt. Ūher Prudukte von uilpotenten Gruppen. Ilinozs J. Math., 2:611-618, 1958.
[48] H. Wielandt. Vertausrhbarkeit vou Untergruppen und Subnormalităt. Math. Z., 133:275-276, 1973.
[49] H. Wielandt. Subuurmalitāt in faktorisierten endlichen Gruppen. J. Algebra, 69:305-311, 1981.

