
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/110580/

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

On the implementation of P-RAM

algorithms on feasible SIMD computers

A thesis submitted

for the degree o f Doctor of Philosophy

by

RIDHA ZIANI

Department of Computer Science

University o f Warwick

August 1992

A CKNO WLEDGMENTS

I wish to express my gratitude to Dr. Alan Gibbons for his supervision, guidance and

patience during the years I spent at Warwick.

I also would like to thank the members of the Computer Science Department for all

the assistance I had and the Algerian government for financial support.

Finally, I am grateful to my family, to Janette and to many of my friends for all the

moral support I had during the years.

D E C L A R A T IO N

This is a thesis submitted to the University of Warwick in support of my application

for admission to the degree of Doctor of Philosophy. It contains the account of my own

work performed in the Department of Computer Science of the University of Warwick

under the general supervision of Dr. Alan Gibbons. No part of it has been submitted in

support of an application for another degree or qualification of this or any other institution

of learning. The work described in this thesis is the result of my own independent research

except where specifically acknowledged in the text.

Parts o f this work have been presented or appeared as follows:

(i) Techniques fo r the efficient implementation o f some P-RAM algorithms on the Mesh-

connected computer, 5th British Colloquium on Theoretical Computer Science, Royal

Holloway and Bedford New College, London University, Egham, April 1989.

(ii) The Balanced binary tree technique on Mesh-connected computers, Information Pro­

cessing letters 37, January 1991, 101-109.

On the implementation of P-RAM
algorithm s on feasible SIMD com puters

ABSTRACT

The P-RAM model of computation has proved to be a very useful theoretical model
for exploiting and extracting inherent parallelism in problems and thus for designing
parallel algorithms. Therefore, it becomes very important to examine whether results
obtained for such a model can be translated onto machines considered to be more
realistic in the face of current technological constraints.

In this thesis, we show how the implementation of many techniques and algorithms
designed for the P-RAM can be achieved on the feasible SIMD class of computers.

The first investigation concerns classes of problems solvable on the P-RAM model
using the recursive techniques of compression, tree contraction and 'divide and conquer'.
For such problems, specific methods are emphasised to achieve efficient implementations
on some SIM D architectures. Problems such as list ranking, polynomial and expression
evaluation are shown to have efficient solutions on the 2—dimensional mesh-connected
computer.

The balanced binary tree technique is widely employed to solve many problems in
the P-RAM model. By proposing an implicit embedding of the binary tree of size n on
a (y/u x y/ii) mesh-connected computer (contrary to using the usual H -tree approach
which requires a mesh of size « (2y/n X 2y/n)), we show that many of the problems
solvable using this technique can be efficiently implementable on this architecture. Two
efficient 0(y/n) algorithms for solving the bracket matching problem are presented.
Consequently, the problems of expression evaluation (where the expression is given in
an array form), evaluating algebraic expressions with a carrier of constant bounded size
and parsing expressions of both bracket and input driven languages are all shown to
have efficient solutions on the 2—dimensional mesh-connected computer.

Dealing with non-tree structured computations we show that the Eulerian tour
problem for a given graph with m edges and maximum vertex degree d can be solved
in 0{dy/m) parallel time on the 2 —dimensional mesh-connected computer.

A way to increase the processor utilisation on the 2-dimensional mesh-connected
computer is also presented. The method suggested consists of pipelining sets of itera­
tively solvable problems each of which at each step of its execution uses only a fraction
of available PE's.

The techniques and subproblems investigated in this thesis are o f such commonality
in the design of parallel algorithms that they could be usefully implemented as a library
of resources on feasible machines.

Contents

1 Designing algorithms for parallel computers 5

1.1 Introduction... 5

1.2 Machine Models of parallel computation... 8

1.2.1 Flynn's classification.. 8

1.2.2 Schwartz's classification... 10

1.2.3 The SIMD class of computers.. 10

1.3 Complexity theory of parallel computation... 20

1.3.1 Limits of parallel models of computation.. 21

1.3.2 The NC class of problem s.. 23

2 Techniques for efficient problem solving on SIMD computers 25

2.1 Introduction... 25

2.2 The balanced binary tree m ethod.. 26

2.3 The compression technique .. 28

1

2.4 The tree contraction technique ... 29

2.5 The 'divide and conquer’ technique... 29

2.6 The doubling technique .. 30

2.7 Efficient data distribution... 31

2.8 Non-conventional input schemes... 35

2.9 Graph embeddings... 37

2.10 Augmenting architectures... 40

3 Tools for efficient problem solving on SIMD computers 42

3.1 Introduction... 42

3.2 Sorting on SIMD computers.. 45

3.3 Routing on SIMD computers .. 46

3.3.1 The routing problem .. 47

3.3.2 Simulation of P -R A M 's ... 47

3.3.3 Deterministic routing on feasible architectures 48

3.3.4 Randomised rou tin g .. 52

3.4 Prefix su m s... 54

3.4.1 Implementation of the P-RAM prefix computation algorithm on

the 2-dimensional mesh-connected computer................................... 56

3.5 The Euler tour technique ... 59

2

3.5.1 Implementation of the Euler tour technique.................................. 60

3.6 The ear decomposition technique.. 61

4 Compression, tree contraction and ’divide and conquer’ on feasible

SIMD computers 6S

4.1 Introduction... 63

4.2 A simple ca se .. 64

4.2.1 Naive implementation... 66

4.2.2 Some improved results... 67

4.3 Generalisations... 70

4.4 Enlarging the class of problems efficiently solvable on feasible SIMD

computers... 75

4.4.1 Solving the list ranking prob lem .. 80

4.5 Solving the dynamic expression evaluation problem.................................. 83

4.6 Improving the processor utilisation... 87

5 The balanced binary technique on feasible SIMD computers 94

5.1 Introduction.. 94

5.2 Implicit representation of the balanced binary t r e e 97

5.3 Elementary examples... 103

5.3.1 Partial sums com putation... 103

3

5.3.2 Subsequence ranking..104

5.4 Solving the bracket matching problem .. 106

5.5 Another solution to the bracket matching problem115

6 Finding Euler tours on feasible S1MD computers 120

6.1 Introduction...120

6.2 Eulerian property of g ra ph s...121

6.3 Parallel approaches to solve the Eulerian circuit problem122

6.3.1 Outline of algorithm 1 ..123

6.3.2 Outline of algorithm 2 ... 124

6.4 Algorithm on M CC2 ... 125

6.4.1 Detailed description:..126

7 Conclusions l®8

Bibliography ***

4

C h a p te r 1

Designing algorithms for parallel

computers

1.1 Introduction

Unlike serial computation where a more unified approach is taken in the design

and analysis of algorithms, the situation in parallel computing is quite different.

To say the least, the variety of parallel algorithms that exist, do not all fit in

a general framework (see, e.g. [GR88], [A85], [A89], (U84J) since the intricacies

brought to light by the idea o f making a collection of processors cooperate to

achieve a task, are not hilly understood.

Amongst many issues the notions of organisation and nature of the parallel

models of computation have been a dividing factor in the community of algorith­

mic researchers. Those who are motivated by mere intellectual challenge have

5

Chapter 1 : Designing Algorithms fo r parallel computers

taken many liberties regarding the feasibility factor o f parallel machines. In con­

trast, those w ho have been motivated by the desire o f making full use of current

available parallel computers are being more realistic regarding the technological

limits. In this respect, parallel machines can be separated into two broad cat­

egories, namely the abstract or ideal models and the more realistic or feasible

ones.

Parallel algorithms differ from their sequential counterparts in the approach

used in their design. The different ways for proceeding to solve a problem on

a parallel m achine are to parallelise a sequential algorithm, to adapt a parallel

solution from one machine to another or simply to design a new solution right

from scratch.

Benefiting from previous work by trying to detect and exploit any inherent

parallelism in an existing sequential algorithm is a task that has proved not to

be easy. Many elegant sequential solutions to some problems have been found

very hard to parallelise, they include problems such as depth-first search [V91],

the Eulerian circuit problem [AIS84] or simply the very old problem of finding

the great com m on divisor of two natural numbers [H87].

The second alternative which is to implement or readapt a parallel algorithm

initially designed to run on a different model is very appealing. However, practice

has shown that it has many drawbacks if some issues such as inter-processor

communications are not properly handled.

When there is no possibility to follow the above paths then the last resort is

Chapter 1 : Designing Algorithms fo r parallel computers

to invent a new parallel algorithm right from scratch.

This thesis follows the second approach. It will he shown that many algorithms

designed for an ideal model such as the P-RAM (using a predefined amount of

time and resources) can be implemented on more feasible machines within realistic

bounds. This is mainly achieved as follows:

1) by adapting the algorithmic techniques used in the design of these P-RAM

algorithms.

2) by implementing some basic and widely used P-RAM tools incorporated in

these algorithms.

The algorithmic techniques treated in this thesis are introduced in chapter 2

along with techniques of a different nature which also share the goal of facilitat­

ing the design of parallel algorithms. In chapter 3 we present a set o f tools or

library candidate routines which include widely used simple P-RAM algorithms

and utilities as well as routines that are essential to use in a realistic parallel

setting.

But prior to this, the rest o f this chapter is devoted to the different models of

parallel computation concentrating mainly on the SIMD class of computers. The

differences that exist amongst them as well as the ways in which they relate to

each other are highlighted. It will also present the limits o f these parallel models

by introducing a few notions from parallel complexity theory.

Chapter 1 : Designing Algorithms for parallel computers

1.2 M achine M odels o f parallel com putation

Iu the field of parallel algorithmic design, researchers and problem solvers have

used several models o f computation, ranging models such as the sorting network

of the three Hungarians Ajtai, Komlos and Szemerdi [AKS83] to the various ma­

chines that are now commercially available like the highly publicised Connection

Machine [Hi85]. The differences between these lie essentially in their structure

on the one hand and on their behaviour or the way in which they handle data

on the other. As it will be seen later, these factors allow a clear distinction to

be made between what is by today’s technological standards a theoretical model

in contrast to what is called a practical or realistic model. This abundance of

models has pushed for their categorisation or classification under different crite­

ria. In the literature many different such classifications exist. We have retained

the two most commonly used ones and from which the terminology of this thesis

is borrowed. They are the classifications of Flynn [F66] and Schwartz [S80].

1.2.1 Flynn’s classification

The earliest and most used classification of parallel models of computation, based

on the notion o f synchronicity and the number o f data and instruction streams

handled iu parallel, is due to Flynn [F66] who distinguishes four classes of machine

as follows:

1. SISD (Single Instruction stream, Single Data stream) class. Machines iu

this class are those performing one instruction at a time on one set of data.

Chapter 1 : Designing Algorithms fo r parallel computers

The traditional sequential computers belong to this class.

2. SIM D (Single Instruction stream. Multiple Data stream) class. This class

contains the parallel machines that allow the simultaneous execution of one

instruction on possibly different sets of data. A so-called enable/disable

mask (e.g. an if - then block) selects the processing elements that are allowed

to execute operations on their assigned data. The ICL/DAP (Distributed

Array Processor), The ILLIAC IV, the Burroughs PEPE and the Goodyear

Aerospace MPP are examples of computers that belong to this class [HB85].

3. M ISD (Multiple Instruction stream, Single Data stream). This category

which has received very little attention except in domains such as signal

and image processing (computer vision) comprises machines that perform

multiple sets of instructions on a single stream of data [A89].

4. M IM D (Multiple Instruction stream, Multiple Data stream) class. This

class, which is considered as the most general and most powerful class of

machines, includes those performing different sets of instructions on different

sets o f data. An MIMD computer is either synchronous or asynchronous.

In the former case all processing elements perform each successive set of

instructions simultaneously, whereas in the latter, the processors run inde­

pendently and wait only if information from other processors is needed. An

example of an asynchronous MIMD machine is the Denelcor/HEP (Hetero­

geneous Element Processor) (HB85).

Chapter 1 : Designing Algorithms fo r parallel computers 10

1.2.2 Schwartz’s classification

Schwartz [S80] classifies parallel computers according to the method in which

information is passed amongst the processors; an issue which is of crucial impor­

tance in parallel computing environments. He calls a paracomputer, a parallel

computer whose processors can have simultaneous access to a shared common

memory and thus who can communicate in constant time. Whereas a parallel

computer where each processor has its own memory and where inter-processor

communication is achieved only via a fixed interconnection network is referred to

as an ultracomputer.

1.2.3 The SIM D class of computers

The focus of this thesis is on the SIMD class which consists of the two categories

of paracomputers and ultracomputers where PE’s operate synchronously in a

lock-step fashion. That is, the P E ’s «ire synchronised to perform the the same

function at the same time . The next sections look at the standard paracomputer

or shared memory model of computation (the P-RAM) as well as widely used

interconnections networks that have characterised ultracomputers in general.

1.3.2.2 The P-RAM model of computation

The most popular model amongst parallel algorithms designers is the P-RAM

(Parallel Random-Access Machine) model introduced by Fortune and Willie [F78].

This model is much liked because o f its simplicity and great power to express

Chapter 1 : Designing Algorithms for parallel computers 11

Figure 1.1: The P-RAM diagram

parallelism. A P-RAM is a collection o f n processors (throughout the thesis, the

abbreviation PE will be used to denote a processing element and PE(i) will denote

the processor with index i) indexed from 0 to n - 1 which synchronously execute

the same program (through the central main control) and which communicate

via a common random access global memory. Each processor is a RAM (Random

Access Machine [AHU74]) capable of executing standard operations in constant

time. Figure 1.1 schematically shows the P-RAM model.

The P-RAM model neglects the hardware limitations that an actual parallel

computer would impose, particularly arising from how the processors are con­

nected. It implicitly assumes that all different connections between processors

and memory locations exist and thus communication takes constant time. Such

an assumption is unrealistic due to the impracticality of wiring processor to mem­

ory when the number of processors and the size of the memory are large. However

Chapter 1 : Designing Algorithms for parallel computers 12

this does not alter the fact that the P-RAM is a very powerful model for the de­

sign of parallel algorithms in general and explicitly employs the parallelism of

problems.

Variations of the P-RAM model exist, which are based on protocols for reading

and writing information from the global memory. Whether a model will allow or

prohibit concurrent reads (many PE's trying to read the same memory location)

or concurrent writes (many PE’s trying to modify the contents of the same mem­

ory location), affects its strength. Consequently three subclasses of the P-RAM

model are distinguished in order of increasing strength:

(i) Exclusive-Read, Exclusive-Write (EREW) P-RAM. In this model no two

processors are simultaneously allowed to read from or write into the same

memory location.

(ii) Concurrent-Read, Exclusive Write (CREW) P-RAM. Many processors are

allowed to synchronously read from the same memory location, but no con­

current writes are allowed.

(iii) Concurrent-Read, Concurrent-Write (CRCW) P-RAM. Both multiple-read

and multiple-write are allowed.

Writing conflicts o f the CRCW are resolved by setting arbitration rules among

contending processors. Some commonly employed resolution methods we:

(a) All processors writing into the same memory location must write the same

value. If such a rule is adopted, then the model is called a Common model.

Chapter 1 : Designing Algorithms for parallel computers 13

(b) Any processor involved in a writing conflict may succeed and a task per­

formed by the model must work correctly regardless of which one succeeds.

A model where this rule is chosen is called an Arbitrary model.

(c) The minimum indexed processor in a conflict. If this rule is carried out then

the model is called a Priority model.

The following [Ha91] illustrates the relative strengths of the variations of the

P-RAM model:

E R E W < C R E W < Com m on < Arbitrary < Priority

1.3.2.2 Feasible SIMD models

By a feasible or practical model of computation, it is meant (in contrast to the

P-RAM model) a machine that can be constructed using current technology.

A feasible SIMD computer (as shown in figure 1.2) consists of n processing

elements (indexed from 0 to n — 1) all of which are under the control of on control

unit (CU) and communicating through an interconnection network. Each PE has

its own working registers and memory (M). The CU has also its own memory

for the storage o f programs which can be loaded from an external source. The

function o f the CU is to determine where the instructions should be executed and

subsequently bradcasted to the appropriate PE’s. All the PE’s perform the same

function synchronously in a lok-step step fashion under the command o f the CU.

Data is loaded into the PE’s from external sources via a data bus or via the CU.

Chapter 1 : Designing Algorithms fo r parallel computers 14

Figure 1.2: The diagram of a feasible SIMD computer

PE’s may be active or disabled for executing a given operation [HB85]. Data

exchanges among the PE’s are achieved via the interconnection network which is

also under the control of the CU.

Feasibility of machine models o f parallel computation also depends on the

number of links from each PE in the network being bounded by a manageable

integer (i.e. constant or at most growing logarithmically with the size of the net­

work) and the maximum path length within an architecture being small enough

to allow fast communications. These two quantities are often referred to as the

degree (d) and diameter (D) o f the architecture. A simple block diagram for an

SIMD computer is shown in figure 1.2.

Different network topologies lead to different SIMD architectures in respect

to the parameters diameter and degree. In what follows we present a catalogue of

networks referring occasionally to P E ’s as nodes of a graph (the interconnection

network).

Chapter 1 : Designing Algorithms for parallel computers 15

Figure 1.3: 2, 3 and 4-dimesional meshes

a) The Mesh-Connected Computer (M CC) family. The mesh-connected class

of computers has received wide attention in the literature merely because of the

fact that one of the first commercialised parallel computers, the ILLIAC IV had

a mesh structure. In general such a structure may be thought of as a collec­

tion o f n PE’s logically arranged in a «/-dimensional array A(nq- 1, n,_2 , . . . , n0),

where n, is the number of PE’s in the tM dimension and n = n ,_i x n ,_2 x

. . . X no. The PE at location A(iq- 1, . . . z0) is connected to the PE’s at location

A (iq_ i , . . . *>±1, . . . , *o)t 0 < j < q, provided they exist. Varying the sizes of

the dimensions of a mesh obviously modifies the diameter (D) of the architecture

which is given by the simple formulae D = £ ,= i (n ,_ I — 1) and the degree d which

is bounded by 2q. When all the dimensions have the same size, D = q(nl*q — 1).

Figure 1.3.(a) shows a (4 x 4) M C C where the processors are indexed according

to a natural order i.e. from left to right, top to bottom. Other indexing schemes

for the 2-dimensional M C C (M C C q will represent a «/-dimensional mesh) will

be seen in later sections. Figures 1.3.6 and 1.3.c show respectively (4 x 4 x 2) and

(2 x 2 x 2 X 2) meshes.

Chapter 1 : Designing Algorithms for parallel computers 16

T 10 l i
4=1 q*2

Figure 1.4: 1. 2 3 and 4-dimensional hypercubes

b) The Cube-Connected Computer (CCC) or hypercube family. The hy­

percube topology is one o f the most common structures adopted for many recent

parallel computers such as (for instance) the famous Connection Machine men­

tioned earlier [Hi85], [TW91]. A hypercube or CCC of dimension q is a machine

with N = V PE's each having a distinct label or index i € {0 .. N — 1} such that

links exist only between the PE’s having the binary representation of their indices

differ in exactly one position. Formally PE(«) with the binary representation of

i being t,_ i is connected to the q PE's with the binary indices equal to

i,_ i . . . c(ifc). . . i0, where c(*&) is the complement of it, and 0 < 6 < q. The degree

and diameter of the hypercube architecture are both equal to log N — q (all log­

arithms used in thesis are o f base 2). The recursive construction of a hyperctibe

of dimension q from 2 hypercubes of dimension q — 1 is shown in figure 1.4 for

the hypercubes of dimensions 2, 3 and 4.

c) The perfect shuffle and the deBruün family of networks. Another archi­

tecture having the desired property of small degree and diameter is the perfect

shuffle network. Like the hypercube, the perfect shuffle computer (P S C) or shuffle

exchange network o f dimension q has JV = 2* PE's. Each processor whose index is

Chapter 1 : Designing Algorithms fo r parallel computers 17

G 0ooo------ ooi oio on loo-------- ioi i:11 0 -------------1.

Figure 1.5: A shuffle-exchange network with 8 processors

connected to the three processors P E 0), P E (shuf f l e (i)) and PE(unshuf f le (i)) .

The operations s h u ffle (cyclic left shift) and u n sh u ffle (cyclic right shift) are

defined on i as follows : if the binary representation of i is »p_itp_ j . . . tito, then

s h u f f l e (i) = ip—2 ■ ■ • *i»o«p-i and u n sh u ffle(i) = t0tp_i .. .¿i. PE(j) denotes the

PE whose index j differs from t only in the least significant bit. The connections

PE(t') to PEO) are called exchange connections and the remaining are referred to

as shuffle connections. A P SC has constant vertex degree d = 3 and its diameter

is 2 log N — 1. Figure 1.5. shows a shuffle-exchange network with q = 3.

A deBruijn network is similar to the shuffle-exchange network except that the

exchange connections are replaced by the so-called ’exchange-shuffle’ connections.

This last type of connection links P E(i) to P E (j) if and only if the binary repre­

sentation of i and sh u ff le (j) differ in their least significant bit [L92]. A deBruiju

network has d = 4 and D = log N as shown in figure 1.6 for such a network with

9 = 3.

d) The Tree Structured Computer (TSC) family. Trees are an important

tool in structuring computations in both the sequential and parallel domains and

Chapter 1 : Designing Algorithms for parallel computers 18

Figure 1.7: A tree network with 15 processors

therefore it is natural that they have been proposed as useful networks, at least

for some applications. A tree structured network is a collection of N = 2P - 1

PE’s forming a complete binary tree with p levels numbered 0 to p — 1. The PE

at level i is connected to its parent at level i + 1 (except when it is the root) and

to its two children at level i — 1 (except when it is a leaf). The degree o f the tree

architecture is obviously bounded by 3 and its diameter is 21og(JV + 1) . A (15

PE) T C C is illustrated in figure 1.7.

e) Other networks. Other networks commonly encountered are considered to

be variations or enhanced versions of some o f the architectures mentioned above.

For instance the cube connected cycles computer and the butterfly network can

be regarded as hypercubes with a fixed number of connections for every PE. The

cube connected cycles computer is a hypercube where each of the 2V processors

Chapter 1 . Designing Algorithms for parallel computers 19

Figure 1.9: A butterfly network with 32 processors

is replaced by a cycle o f q PE’s, hence it has n = q2?. The diameter of the archi­

tecture is 2 log n and the degree is 3. Figure 1.8 illustrates such an architecture

for <7 = 3.

The butterfly network of dimension q has n = (q + 1)2* processors organised

in (q + 1) ranks numbered from 0 to q and each having 2q PE’s.The diameter

o f the architecture is 21ogn and the maximum degree is 4. Figure 1.9 shows a

butterfly of dimension 3.

Finally, other networks in the same vein are the X-tree computer shown in

Chapter 1 : Designing Algorithms for parallel computers 20

/rX A À
a) b)

Figure 1.10: The X-tree and double rooted binary tree networks

figure 1.10 (a) with 3 levels, and the double rooted binary tree structured com ­

puter shown (with 4 levels) in figure 1.10 (b) which are regarded to be variations

o f the Tree Structured Computer. Some additional networks appear under the

headings of future sections.

For the sake of comprehending the limits of parallel models o f computation in

general, we review a few notions in complexity theory.

1.3 C om plexity theory o f parallel com putation

Bearing in mind the impact that complexity theory has had in sequential com­

putation, a similar theory in the parallel field has proved essential. This section

outlines aspects of that theory relevant to algorithmic design which lead to an

understanding of the theoretical limits of parallel models of computation as well

as providing important tools for assessing parallel computation itself.

Chapter 1 : Designing Algorithms for parallel computers 21

1.3.1 Limits of parallel models of computation

Limits for parallel computation ran he derived on different bases. On an upper

level, these limits are in strict relation with the nature of the problems to be

solved. That is, problems could be classified in terms of computations, between

two extremes. On the one hand, there are those whose computations could be

entirely fragmented into independent tasks and thus are well suited to be executed

in parallel constant time. On the other hand, there are those that are basically

sequential in nature and remain hardly parallelisahle even if unbounded parallel

execution is available.

Regarding intractability, the question whether parallelism can be used to solve

intractable (NP hard) problems in reasonable (polynomial) parallel time is per­

tinent. On sequential models of computation, NP hard problems have polyno­

mial time solutions if nondeterminism is used [Ka86]. Emulating the strategy of

guessing by using sufficient numbers o f PE's on parallel machines, will also lead

to what seems to be reasonable parallel time solutions even for the NP-complete

problems. Nevertheless if that seems to indicate that intractability is removed by

using parallelism, we note that in order to obtain such solutions, the number of

PE ’s needed becomes impractical since computation trees will have exponential

path lengths.

For problems that are conjectured to have no reasonable sequential solutions,

the question whether these problems have reasonable parallel solutions is still

open. This is shown by a key coucept in parallel complexity theory which is the

Chapter 1 : Designing Algorithms for parallel computers 22

so-called parallel computation thesis, see, e.g ([G82], [CKS81]). This thesis states

that 'time bounded parallel machines are polynorntally related to space bounded

sequential machines'. In other words this implies that if a problem is solved se­

quentially using a certain amount of spare, say S (n) for inputs of length n, then

it can be solved in parallel in time that is no worse than 5(n)0 '*) (i.e. polynomial

in S(n)), this is symbolically written : Sequential-PSPACE = Parallel-PTIME.

Thus our question is simply reduced to whether the class PSPACE contains prob­

lems that can be proved not to have polynomial time sequential solutions.

Other limits that ran be derived are those considering technological con­

straints on certain models of computation. Using Schwartz's terminology [S80],

it is an obvious fart that an ultracomputer can never solve a problem faster than

a paracomputer due to communication overheads. However , an ultracomputer

could match the performance of a paracomputer in terms of time complexity for

the solution of a given problem, if the communication pattern is good enough.

As a consequence any theoretical tipper limits derived for ultracomputers hold

for pararomputers and conversely for the lower limits.

On an ultracomputer the performance of an algorithm may depend on the

relationship between the quantity (n) of data handled and the number (p) of

PE’s available (This problem is often ignored on pararomputers because of the

allowance of unbounded parallelism). In real applications one could be faced with

the problem of having fewer PE’s than data items (n > p).

In contrast there is the rare situation where one has to solve a problem with

Chapter 1 : Designing Algorithms for parallel computers 23

fewer data items than the PE’s available. In this rase the processors that could

have been idle may be used to speed up calculations. For instance Nassimi and

Salmi have shown (see [S80]) that n1-4 numbers ran be sorted in 0 (6 ~ l log n)

time on an n-processor ultracomputer despite the fact that n elements are sorted

in O(log* n) time.

For some problems the first situation (as it will be seen in more detail) ran be

adopted to achieve optimal speed ups. For example, to compute the stun or prod­

uct of n integers, a straightforward way could be to structure the computation

in a a binary tree form by assigning one integer to every PE at the lowest level

of the tree. Using such mappings these type of computations can be achieved in

O (logn) due to inter-processor communication as we go up along the tree. This

blind version of a sequential linear time algorithm is considered as not fast enough

and can be much improved by distributing data more efficiently.

1.3.2 The N C class of problems

The major reason for introducing parallelism in problem solving on computers

is unarguably to reduce running times. It is in accordance with this exigence

that the class Parallel-PTIME (the class of problems solvable in parallel polyno­

mial time) cannot really be considered as a good standard for specifying efficient

solutions.

Consequently, another norm to characterize efficiency in parallel environments

was put forward. This norm conveys a main objective namely the achievement

Chapter 1 : Designing Algorithms for parallel computers 24

of subUnear running times for solving a wide range of problems. Solutions are

regarded as efficient only if they are achieved in polylogarithmic time and using

a polynomial number of processors. The problems solvable within these limits

belong to the class NC. NC is an acronym for Nick (Pippenger)’s Class.

Many problems that belong to class P are also known to belong to NC. Multi­

plication, division, sorting and other very well known problems have all been

solved in polylogarithmic 0 (lo g ' ’ 'n) parallel time (see for example [GR88],

where various problems are treated).

Unfortunately, and as for the case of problems in NP for which no polynomial

time sequential algorithms have yet been found, some problems in P seem to be

very difficult to solve in polylogarithmic parallel time. A problem of this kind

is finding the greatest common divisor (gcd) of two integers. Although Euclid

found a polynomial time 'sequential' algorithm for it 2300 years ago, no one has

yet managed to find a way to speed up the computations involved [H87].

This implies the fact that problems in P cannot all be claimed to belong to

NC, whereas the opposite is true, implying (although no concrete proof exists)

that the classes P and NC are distinct.

C h a p te r 2

Techniques for efficient problem

solving on SIMD computers

2.1 Introduction

The advent of parallel computers, whether theoretical or practical has led to the

emergence of new techniques and paradigms for solving problems with the goal

of achieving optimal and/or efficient bounds defined by many criteria. Efficiency

bounds depend on the computational environment. Within the P-RAM model,

the class NC defines efficiency. For shared memory models, the network diameter

provides a natural lower bound on computation time. For instance on a (^ /iixy/ii)

mesh, a useful definition of an efficient algorithm is an algorithm that runs in

0(y/n) parallel time for a problem of size n. For the hypercube family and

networks of diameter = O (logn), algorithms are efficient if they run in O(logn)

25

Chapter 2 : Techniques for efficient problem solving on SIMD computers 26

time. For our purposes we will also define an algorithm to be nearly efficient if it

runs within a logfc n (for some integer k) o f the diameter of an architecture.

Moreover, a parallel algorithm is called optimal ([GR88], [KR91]) if the prod­

uct P = (parallel running time X number of PE’s used) is a linear function of

the input size or equal to the running time o f the best sequential algorithm that

solves the same problem.

Our goal in this chapter is to describe a set of techniques that differ in nature

and to highlight for some the issues related to their future use in later chapters.

At first, emphasis will be put on those which are qualified as algorithmic tech­

niques such as the balanced binary tree, the doubling technique and others. Most

o f these rely extensively on the tree structure which in parallel computation ap­

pears in many facets. Then techniques that help tackle or incorporate solutions to

the important issue o f communication overheads are presented. These appear un­

der the headings efficient data distribution and non-conventional input schemes.

Finally, the technique o f embedding structures (such as trees) on interconnection

networks and that of hardware enhancing are introduced.

2.2 T he balanced binary tree m ethod

Although chapter 5 is almost entirely devoted to the balanced binary tree method

on feasible SIMD computers to solve many problems efficiently, the aim of this

section is to present it in a P-RAM context. Issues related to the implementation

of algorithms where this method is applied on more feasible machines (the same

Chapter 2 : Techniques fo r efficient problem solving on SIMD computers 2 7

is valid for all the algorithmir methods) are highlighted.

This method makes use of a constructed balanced binary tree. Internal nodes

store the result of subproblems with the root corresponding to the global problem.

Solutions to problems structured in this way are found in a bottom-up fashion

with those at the same level of the tree being computed (combined) in parallel.

For instance problems involving the computations of quantities such as <4(0) ff*

<4(l)®<4(n— 2)© .. .©<4(n —1) over an array (<4(0), . . . , (n —1)] where ^ is a binary

associative operator and n is a power of two (otherwise a minimum number of

neutral dummy elements are added) are best achieved using this method [GR88].

On a P-RAM the above quantity is computed in O (logu) parallel time with

a maximum number of n /2 processors (using A(1) to store the final result) by

executing the following :

d *— (n — l) /2

repeat until d = 0

begin

for all j , 0 < j < d in parallel do

A (j) * - A (2 j) Q A (2 j + l)

d *— (d — l) /2)

end

Some algorithms might use the balanced binary tree technique just to com ­

pute some partial results. The implementation or design of such algorithms on

feasible SIMD computers will undoubtedly depend in the first place on the nature

Chapter 2 : Techniques fo r efficient problem solmng on SIMD computers 2 8

o f the computations to be performed after the construction of the tree. These

computations requiring a resident constructed tree in the architecture will have a

variety of data exchanges requirements (as will be seen in later chapters). Thus

necessitating the application of other techniques to satisfy these requirements in

the best possible way.

2.3 The com pression technique

T he aim of using the compression technique is to recursively reduce a set of

entities acted upon by a factor of 2 by performing required computations. In its

simplest manifestation this technique is applied to data structures such as, for

instance, arrays where two entries can be compressed into a single one. This is

in some cases equivalent to the use of the balanced binary tree method. But the

nou-trivial power of compression is highlighted in many graph algorithms where

it is referred to as the vertex collapse technique. Amongst these are the ones that

find the connected components of a graph where the strategy is to reduce sets of

vertices into supervertices (see [QD84]). On a P-RAM, compression usually leads

to O (logn) solutions because of the absence o f communications overheads. But

on distributed memory machines such as feasible SIMD computers where data is

spread across the network, this is not always implemented in a straightforward

fashion. Chapter 4 is partly devoted to the use of the compression technique on

feasible SIMD computers where various problems are treated.

2.4 The tree contraction technique

The tree contraction technique was initially designed to evaluate arithmetic ex­

pression given in a tree form [MR85], [GR88], but since then it has found a much

wider applicability [KR91]. This technique is that of shrinking a binary rooted

tree with an irregular height by recursively computing internal nodes. If a tree

of size n has height log n, then this method is equivalent to the compression

technique. In chapter 4 we show that a P-RAM expression evaluation algorithm

(using this method) can be efficiently implemented on some feasible computers.

2.5 The ’divide and conquer’ technique

The way of proceeding when using the very well known technique of ’divide

and conquer’ ([AHU74], [GR88], [K85]) is to divide a given global problem into a

number of independent subproblems and then to solve these in a recursive manner.

The depth of the recursion is an important factor when adopting this technique

as it determines the parallel running time for solving the overall problem.

At any level of the recursion the solution to anyone problem is found in­

dependently (from problems on the same level) by combining solutions to its

subproblems. On a P -R A M , if subproblems have each a size which is at least a

fixed proportion of the problem they compose, then the depth is logarithmic.

Formally, the divide and conquer strategy has the following recursive struc­

Chapter 2 : Techniques fo r efficient problem solving on SIMD computers 2 9

ture. Given a problem P :

Chapter 2 : Techniques fo r efficient problem solving on SIMD computers 3 0

If P is decomposable into smaller problems

then

Divide P into two or more parts (P i, P i , , P„)

In parallel

Solve Pi

Solve Pj

Solve P„

Combine the partial solutions to obtain a solution to P

else

solve P directly.

The use of the divide and conquer technique on feasible SIMD machines is

also treated in chapter 4 (along with compression and tree contraction) since all

the algorithmic techniques presented are not entirely disjoint.

2.6 The doubling technique

The doubling technique is usually applied to data structures such as 1-dimensional

arrays and lists. A necessary definition before briefly describing this technique

is that of the distance between two elements in these data structures. In a 1

dimensional array this distance may be thought of as the difference between the

indices o f two elements and in a list of it represents the number o f pointer jumps

Chapter 2 : Techniques for efficient problem solving on SIMD computers 31

from one element to another.

T he doubling technique proceeds by a recursive application of the required

calculation to all elements over a certain distance (in the data structure) from

each individual element. This distance is doubled at each iteration. For arrays

or lists o f length n = 2*\ a P-RAM computation using the doubling technique

will be completed for each element after k = log n stages. The implementation

o f the doubling technique for performing some computations such as ranking the

elements of a list on computers such as the M C C 2 is also treated in chapter 4.

2.7 Efficient data distribution

Data distribution can have a significant effect on the amount o f execution time

of parallel algorithms since adopting the right data distribution has proved to

improve on communication costs and consequently on execution times. Data

distribution is affected by the number of PE’s available or the mapping of data

items to PE’s at the start of a computation. Although unbounded parallelism

is allowed, it is often the case that on P-RAM’s fewer PE’s than data items are

used to solve a problem and this within the same time com plexity as if it was to

be solved with a number of PE’s equal to the input size.

A typical example on which this way of proceeding is best illustrated is the

computation of quantities such as Q = A (l) ® A (2) ® A (3) ® . . . ® A(n) over

an array A = (A(1 A(n)] by the use of the balanced binary tree. As seen

earlier a P-RAM algorithm can compute this quantity in O (lo gn) parallel time

Chapter 2 : Techniques fo r efficient problem solving on SIMD computers 3 2

with p < n /2 PE’s.

The idea behind reducing the number of processors comes from the fact that at

each iteration of our algorithm (equivalent o f climbing the balanced binary tree)

the number of PE’s used is reduced by a factor of 2 making a high proportion of

them become idle. One way to reduce such an effect is that p < n/2 PE’s can

be used and still lead to an 0 (log n) solution. The strategy is to partition the n

elements o f the given array into p groups (every PE will be in charge of 1 group)

where p — 1 of them will contain [n/p] elements and the remaining group will only

contain (n — (p — l) [n /p]) elements. All the p PE’s in parallel then compute a

quantity similar to Q within their assigned group in a sequential manner. For any

group the maximum number of computations of the type A (i) ® A (j) is bounded

by \n/p\ — 1 implying that the problem of computing quantities such as Q (o f

size n) could be reduced to a problem of size p in \n/p\ — 1 time units. This

newly created problem is then solved using the balanced binary tree method in

O(logp) parallel time.

Thus, the overall computation of Q can be achieved in [n/p] — 1 + log p parallel

time using p < n /2 processors. If p = n /lo g n , then this is done in an optimal

fashion. A more general approach to this problem is the application of Brent's

theorem which states that if an algorithm A has a parallel running time of t and if

A involves a total number o f l computations, then A can be implemented using p

processors in 0 (/ /p + f) time. [GR88] contains a simple proof of Brent’s theorem.

Incidentally this same approach is sometimes forced to be adopted in real par­

Chapter 2 : Techniques for efficient problem solving on SIMD computers 3 3

allel environments and has proved to he extremely useful as it drastically reduces

inter-processor communication [AL81]. For example the cost of external sorting

is very expensive and thus one would have to adapt existing sorting algorithms

(based on element per PE) ami to assume the availability of enough memory space

to store a reasonable amount of data. A typical example is the fc-fold bitouic sort

algorithm of Hsiao and Shen [HS85] who adapt Batcher’s bitonic sort [B75] on

the M C C 2 to sort sequences containing more elements than the number of PE's

available.

In the case o f a one-to-one mapping of input data items to the PE's o f a parallel

computer, we consider such a mapping to be efficient if it allows the design of

efficient algorithms. On a P-RAM we do not need to worry as on this model

all mappings are equivalent with regard to communication costs. However, on

machines such as the M C C 1, this issue is sometimes fundamentally important

in the design of efficient algorithms. The P E ’s of a (y/ri X y/n) M C C 2 can

be indexed according to many indexing schemes which are one-to-one mappings

from the coordinate space {0 , 1 , . . . , \/n} X {0 , 1 , . . . , \/n} onto the index space

{0 , 1 , . . . , n — 1} each having properties that makes it suitable for particular

applications. Figure 2.1 shows the four most popular indexing schemes of a

M C C 2.

The row-major indexing or identity indexing (Figure 2.1.a) which is based

on a top to bottom, right to left ordering seems to be the most natural way of

indexing the PE’s of a mesh but appears only to be suitable for computations

with very low inter-processor communication [MS88] such as for instance, the

Chapter 2 : Techniques fo r efficient problem solving on SIMD computers 34

Figure 2.1

very simple problem of adding n numbers. Problems with high inter-processor

communication such as sorting do not perform well on the M C C 2 with such an

indexing. The algorithm in [075] requires 0(y/n log n) parallel time to sort a

sequence o f length n due to such an indexing.

Another indexing which has received much attention due to its properties

is the shuffled row major indexing (Figure 2.1.b). Such an indexing which is

based on the recursive division of the PE’s of the mesh into quadrants can be

useful in designing algorithms based on the ’divide and conquer’ strategy and

thus involving a great deal of communication between PE’s.

Two other indexing schemes to be used on a mesh are the snake-like order and

Chapter 2 : Techniques for efficient problem solving on SIMD computers 3 5

the proximity order (Figures 2.1.C aud 2.1.d). The former which has the property

that successively indexed PE's are adjacent has also proved to be very useful.

For instance, Schnorr and Shamir [SS86] use such an indexing to design a very

simple efficient algorithm for sorting on the (MIMD) MCC'1. The latter indexing

combines the advantages of some o f the other indexings and is based on space

filling curves. Like the shuffled row m ajor order, this indexing recursively divides

the mesh into quadrants aud like the snake-like order, successively indexed PE's

are adjacent. Miller and Stout [MS89] use such an indexing to design efficient

algorithms for a wide range of problems in computational geometry.

In later chapters when trying to solve a variety o f problems, other advantages

and shortcomings of indexing schemes such as the ones described in this section

will be highlighted.

2.8 Non-conventional input schemes

Another way for easing difficulties such as communication overheads when solving

problems on feasible parallel computers is to use non conventional input schemes.

In these schemes no data is stored in the PE’s memory at the start of a computa­

tion but is rather input gradually maintaining a balance between communication

and computation.

A very simple algorithm to use such a scheme is the algorithm of Guibas

et al. [GKT79] to compute the transitive closure of a directed graph. In this

algorithm (Boolean) matrix multiplication is achieved in ()(y/n) parallel time

Chapter 2 : Techniques for efficient problem solving on SIMD computers 3 6

b„ N*
*■« ^

bH ^4

N4

•m «jj

V *«

«14 *1J

•w •>.

Ni

•u

s.

Figure 2.2

(for two (y/n x y/n) matrices on a M C C 2 with (y/ii X y/ii) PE’s) by the use of

a skewed input scheme a-s shown in Figure 2.2 (for two matrices denoted A and

B). At each step of the computation, matrix A is pushed one step to the right

and matrix B is pushed one step down, and each PE (identified in this case by

its geometric coordinates (i, j)) multiplies the values it receives (ai} and b,}) and

adds the result to an accumulator. After precisely 2y/n — 1 steps every PE(i, j)

will contain the required value (£ * ? i <i,kl>k})-

Amongst other algorithms that use a similar kind of input scheme and which

can be regarded as a sort of data pipelining, is the 0(y/ii) algorithm of Maggs

and Plotkiu [MP88] for finding the minimum-cost spanning tree of an »-vertex

undirected graph on a (> /» x y/ri) M C C 2.

Chapter 2 : Techniques for efficient problem solving on SIMD computers 3 7

2.9 Graph embeddings

Another general approach for efficient problem solving is the embedding of struc­

tures such as graphs (in particular trees) in interconnection networks. Such em­

beddings are o f a great interest in simulation studies. For example, embedding

trees in some interconnection networks may efficiently simulate a P-RAM algo­

rithm based on such structures. Moreover, inter-mapping o f topologies on which

interconnection networks are based would provide a view on how efficiently a

particular network might simulate another (U84).

In graph theoretical terms, an embedding o f a graph G (called the guest graph)

into another graph H (called the host graph) is a mapping o f the edges of G into

paths o f H such that each vertex of G maps to a single vertex o f H. The quality

o f an embedding is usually measured by three parameters:

a) dilation which is equal to the maximum length of any path in the host graph

to which an edge of the guest graph is mapped.

b) expansion which is the ratio o f the number of nodes of the host to the

number of nodes in the guest.

c) congestion which is the maximum number of paths (mappings of the guest

graph) using any edge of the host graph.

Considering only embeddings where at most one node of the guest is associated

Chapter 2 : Techniques for efficient problem solving on SIMD computers 3 8

T2 embedded into H2

Figure 2.3

with auy single node of the host and labeling the dilation, the expansion and

congestion respectively as d, e, and c, we note for instance from [Gi91] that the

double rooted binary tree embeds in the hypercube (with the same size n) with

d = 1, e = 1 and c = 1, and that auy mesh with n nodes whose dimensions

are each a power of two is a subgraph of its optimum hypercube. By optimum

hypercube, we mean the smallest possible hypercube with n' nodes such n < « '

Ullmau [U84] describes embeddings of complete binary trees and other graphs in

a VLSI context.

In what follows we describe how the complete binary tree T„ (of height u)

with 2" — 1 nodes can be optimally embedded in the hypercube of dimension n

with 2" nodes (denoted Hu) following Wu’s method [W85]. For n = 1, it is trivial

to see that T\ can be embedded in the hypercube of dimension 0 (Hu). For n > 1

there is no embedding o f T„ into the hypercube H„ with d (dilation) = 1 unless

n = 2. Thus, Tj can be embedded in the 2-dimeusional hypercube with d = 1

and c = 1 as shown in figure 2.3.

From [W85], a complete binary tree of height n > 2 can be embedded into

a hypercube of dimension n + 1 (Hn+1) with d = 1 and into a hypercube Hn

Chapter 2 : Techniques fo r efficient problem solving on SIMD computers 3 9

with d = 2. The second claim is proved by showing first that there exists no

embedding with dilation = 1 and by stating two properties that the embedding

with dilation = 2 must satisfy to finally prove by induction that these properties

hold for all values of n. These properties are called the cost2 Property and the

Free Neighbor Property.

1) Cost2 Property : If A is the root o f T„ and L and R are respectively the

roots of its left and right subtrees, then the distance between the vertices that A

and L are mapped to in the n-dimensional hypercube H j is 2 while that between

the vertices that A and R are mapped to is 1.

2) Free Neighbor Property : The only free (no vertex of the binary tree is

mapped onto it) node in the hypercube is a neighbour to the node to which the

root of Tn is mapped.

From an embedding with d = 2 of a binary tree 7'„_i into a hypercube of

« — 1 dimensions (H n-\) that verifies the two above stated properties, Wu (W85)

obtains an embedding of T„ with d = 2 into the n-dimensional hypercube H„

that will also verify these properties by the following construction.

i) Embed the left subtree of T„ into (0 /f„_i denotes the dimension n — 1

o f H„ comprised by the vertices (PE's) whose most significant bit is 0). Let 0A

be the vertex in H„ to which the root of the left subtree is mapped to and let OB

be its free neighbour.

Chapter 2 : Techniques fo r efficient problem solving on SIMD computers 4 0

ii) Embed the right subtree of T„ into (1B „_ i denotes the dimension

n — 1 of H„ formed by the vertices (PE’s) whose most significant bit is 1). Let

1A be the vertex in H „ to which the root of the right subtree is mapped to and

let IB be its free neighbour.

iii) Map the root of H„ to the vertex (PE) IB .

Again we have given a flavor of the technique of embedding graphs because

we rely on such a technique to show (in chapter 5) that it is important in the

efficient implementation of other techniques (such as the balanced binary tree)

on feasible SIMD computers.

2.10 A ugm enting architectures

Another technique for speeding up applications on parallel computers is the ad­

dition of extra hardware or features to a particular architecture. This consists

of adding extra simple connections between P E ’s, extra PE's and connections or

buses for conveying data in a faster fashion. The issue of adding extra connec­

tion to an architecture is best illustrated on the 2-dimensional mesh connected

computer which can be enhanced by the so-called ‘wrap-around’ (figure 2.4(a))

or ‘ toroidal’ (figure 2.4(b)) connections [HB85]. Unfortunately this type of en­

hancement will only help reduce time complexity terms (for certain problems) by

constant factors due to the fart that it only speeds up communications by offering

shortcuts within the architecture. Iu the case of the M C C 2 with ‘wrap-around’

Chapter 2 : Techniques for efficient problem solving on SIMD computers 41

G n r ~ \ pi G r~ \

C J C
p

C J c
!)

L D c
w w w

<») (b)

Figure 2.4

connections the diameter is halved. The addition of extra connections might add

to the properties of an architecture. In chapter 4, we show that an augmented

perfect-shuffle computer can support some P-RAM algorithms in a better way

than its non-augmented counterpart.

Augmenting architectures by means of extra processing elements can also be

illustrated on previously mentioned architectures. The ’Cube-Connected Cycles’

computer proposed by Preparata and Villeumiu [PV81] can in a way be regarded

as opting for augmenting the cube-connected or hypercube computer by means

of extra processing elements. They showed that if every PE in a C C C is replaced

by a cycle consisting of a fixed number of PE’s, then the result is a very powerful

interconnection network. The same thing could be said about the ^-dimensional

Mesh Connected Computer which can be considered as the superimposition of

q 2-dimensional Jl/CC’s, a structure that has attracted many by its topological

simplicity.

C h a p te r 3

Tools for efficient problem

solving on SIMD computers

3.1 Introduction

The continually growing body of parallel algorithms has undoubtedly highlighted

the importance of many paradigms. In the previous chapter we described a variety

of techniques ranging from algorithmic to hardware enhancing. Our purpose here

is to review some primary algorithms (or library candidate routines) and other

utilities that have proved very useful in the design of parallel algorithms.

A logical consequence of identifying such primary algorithms and utilities is

the establishment of a structural consistency amongst parallel algorithms, at least

for those that relate to a common domain. Vishkin [Vi91] illustrates such a con­

cept very elegantly by compiling different structures for many types o f problems

42

Chapter $: Tools for efficient problem solving on SIMD computers 4 3

and by stressing the usefulness of many simple algorithms and utilities.

For instance, for some list, tree and graph problems, the structure compiled

(of which an extract is shown in figure 3.1) is for problems whose solutions on

the P-RAM model of computation are known to be in NC. This structure shows

that solutions to problems or utilities higher in the diagram incorporate solutions

to problems or utilities lower in the diagram. As an example the solution to the

prefix sums problem (bottom of figure 3.1) is a key subroutine in the solution to

the list ranking problem which is itself a key subroutine used the utility called

the Euler tour technique. Further up, this structure shows that the technique of

tree contraction or the problems of finding the lowest common ancestors (lea’s)

and graph connectivity make use of the Euler technique.

On feasible interconnection networks, Vislikin’s structure [Vi91] holds from a

relational point of view. That is, one can always solve any problem as on the

P-RAM model of computation using the same primary algorithms and utilities

but with modified time complexities. For instance on the M C C 2 (with a diame­

ter of 2y/n) it will take at least ()(y/n) time to solve each problem in figure 3.1.

Communication overheads are closely responsible for this lower bound on this

computation time. Solutions to the communication or routing problem must be

therefore included in such a structure because assumptions about the execution

of algorithms on interconnection networks becomes worthless without their in­

clusion. Another important problem related to the communication problem and

which should also be included in such a structure is sorting.

Chapter 8 : Tools fo r efficient problem solving on SIMD computers 4 4

Figure 3.1: List, tree and graph problems linkage

Chapter S : Tools for efficient problem solving on SIMD computers 4 5

Iu what follows, along with sorting and communication strategies on feasible

machines we look at a set of primary algorithms and utilities that have greatly

facilitated the design of algorithms on the P-RAM model. These are the pre­

fix computation problem, the Euler tour technique and the ear decomposition

technique.

3.2 Sorting on SIM D com puters

Sorting on a parallel computer with n PE's, is the problem of reordering a set

of n keys so that at the end of the computation the tlh smallest key is store«! at

the i,h PE. Understandably it is one of the problems that has attracted a lot of

interest within the community of parallel algorithms researchers. This has led to

numerous solutions on various models of parallel computation which range from

the implementation of known se«iuential sorting algorithms to a variety of new

concepts (see for instance (A85j).

For the P-RAM model of computation, many sorting algorithms have been

proposed (see for example [C86], [BH82], [SV81] and [P78]). The latest result is

the O(log n) (optimal) algorithm of Cole [C86] to sort a se«jueuce of n items using

n processors. Implementing P-RAM sorting algorithms or designing new ones on

many realistic machines within optimal bounds has often been prohibited by the

high inter-processor communication requirements o f the sorting problem.

Instead solutions based on circuit comparators such that of Batcher [B68]

have been propose«! for feasible SIMD machines. For instance Nassimi ami Salmi

Chapter S : Tools for efficient problem solving on SIMD computers 4G

[NS78] and Thompson and Kung [TK77] mapped Batcher’s bitouir sort in 0(y/n)

on the g-dimensioual mesh-connected computer. Similarly it was implemented on

n PE’s architectures such as the hypercube [RS90], the perfect-shuffle [S71] and

the cube-connected cycles architectures [PV81] in O (logan) parallel time.

Unlike the case for the M C C , the question of sorting on these architectures

in times proportional to their diameters (i.e O(log »»)) is still open. More recently

Cypher and Plaxtou [CP90] obtained an O(log »»(log log »*)■*) for sorting a sequence

of n elements on an n-PE's hypercube.

3.3 R outing on SIM D computers

A major problem in parallel computing on distributed memory machines is how to

organise communication through the interconnection network for data exchanges

between the processors. Frequently, the cost o f routing is the dominating term

in the time required to solve a problem on such machines. Amongst others, the

algorithm o f Thompson and Kuug [TK77] for sorting a sequence o f n numbers on

a (y/ii x y/ii) mesh connected computer, where the PE’s are indexed according

to the shuffled row major order, uses only O (logn) comparison steps but has

0(y/n) routing steps. Solving the routing problem also »irises when trying to

simulate particular operations o f a machine such as the P-R AM on more realistic

machines.

Chapter S : Tools for efficient problem solving on SIMD computers 4 7

3.3.1 The routing problem

Depending on the application, routing on a parallel computer can occur in dif­

ferent forms as defined by Ullman [U84] :

Permutation routing occurs when each PE requests access to the memory of

another distinct PE. Partial routing occurs when each PE o f a proper subset

uniquely accesses a memory location. In many-one routing each PE requests an

access to some memory and many PE's may request access to the same memory.

As some requests could be nullified, this form of routing is seen as a generalisation

of Partial routing.

Formally the routing problem on an n PE's parallel (distributed memory)

model of computation could be stated as follows : Each PE with index i €

I = [0 ..n — 1], initially contains an address a(i) £ {0, 1 , . . . , n — 1} U 0 of

another destination PE. The communication requirement to satisfy depends on

the specification of the elements of the set A:

It is a permutation routing iff : Vi, j (i ^ j) £ I we have a (i) ^ a (j) ^ 0. It

is a partial routing iff : Vi, j (i jt j) £ I we have n(i) a {j) provided a (i) ^

0, a (j) ^ 0 and it is a many-one routing iff : Vi £ I we have a(i) ^ 0.

3.3.2 Simulation of P -R A M ’s

Finding solutions to the routing problem in its various forms on distributed mem­

ory machines allows the simulation of read and write operations of ideal parallel

Chapter S : Tool* for efficient problem solving on SIMD computers 48

computers such as the P-RAM. For instance, solutions to permutation routing

can simulate the E R E W P-RAM since it does not allow either concurrent reads

nor concurrent writes. The more powerful C R C W can he simulated by a solution

to the many-one form o f routing on condition that arbitration rules are set to

resolve writing conflicts [U84].

Moreover, there are two ways for solving all forms of the routing problem. The

first is to proceed deterministically and the second is to use randomness. The

difference between the two methods lies in the way of choosing intermediate PE's

when messages are routed. The next two sections outline solutions from both

methods. Having to deal with the SIMD class of computers, we are therefore

restricted to the instance of the problem where all the requests made by the

processors are done in a synchronous fashion.

3.3.3 Deterministic routing on feasible architectures

In deterministic routing, a message is wholly directed from a source PE to a

target PE via other PE’s chosen deterministically.

Permutation routing can be reduced to sorting and therefore messages can

be routed using compare-exchange and near-neighbour routing operations. It has

efficient deterministic solutions on many architectures. On the 2-dimensional

M C C , the algorithms o f Nassimi and Sahni [NS81] and Thompson and Kung

[TK77] that run in 0(y/n) parallel time for «-item s permutations serve our pur­

pose. Further algorithms that also perform the same task in the same time order

Chapter S : Tools for efficient problem solving o n SIMD computers 49

have been designed to improve on the constant factor of the leading complexity

term [SS86]. On architectures such as the (n PE ’s) C C C or P S C , the results of

[RS90], [S71] reported in the previous section for solving the n-items permuta­

tions achieve our goal on these machines but only in 0 (log2 n) parallel time. The

desired complexity is o f course 0 (log n) which is proportional to the diameters of

such architectures, but the only known method is to use randomness.

In the following section, an outline of a deterministic solution to the many-one

form o f the routing problem is presented. Moreover, such a solution encompasses

solutions to all the other forms. The algorithm which is extensively used in this

thesis as a library routing procedure on the M C C 2 is due to Nassimi and Salmi

[NS81]. It achieves the goal of running, within a constant factor o f the optimum

time o f 2y/n. This algorithm was also designed for machines such as cube con­

nected (C C C) and perfect shuffle (P S C) computers and runs in 0 (lo g 2 n) on

such networks of size n. The 0 (lo g n) (probabilistic) algorithms o f Valiant and

Brebner [VB81] (section 3.3.4) and Aleliunas [A182] are rather preferred for these

architecures to execute partial or permutation routing.

Nassimi and Sahni’s routing algorithm

The algorithm of Nassimi and Salmi [NS81] allows the simulation o f concurrent

read and write operations of the P-RAM model of computation on more realistic

machines by the use of the techniques of compacting and replicating data.

Nassimi and Sahui [NS81] identify the routing problem in two forms. The

Chapter S : Tools for efficient problem solving on SIMD computers 5 0

first is called the Random Access Read (R A R) and occurs when a PE wishes to

acquire a data item from another PE, not necessarily a direct neighbour. Tin-

second is called the Random Access Write (R A W), and occurs when a PE wants

to send (transmit) a data item to another processor.

RAR and R A W require some well defined subalgorithms (procedures) called

sort, rank, concentrate, distribute and generalise. These, manipulate records con­

taining data to be routed as well as other routing information. They can be

briefly described as follows :

Sort This procedure simply sorts a sequence of records (¿»(i)'«) held by the

PE’s of the M C C in non-decreasing order on the key target which is the address

to which data is to be sent to, or read from. If H (i) is the key target then after

an application of sort, records will be rearranged so that :

H (i) < H (i + 1), 0 < i < N — 1 (N : total number o f PE 's)

Again, Nassimi and Salmi’s [NS79] and Thompson ami Hung's [TK77] sorting

algorithms are amongst the known algorithms to achieve this task in a strict

SIMD context.

Rank The objective of rank is to assign to each selected record held by a PE

a rank which is the number of selected records held by other PE's having a

smaller index. A record is selected if it is held by the PE with the highest

index amongst the (sorted) set of PE’s requesting the same address. Suppose we

Chapter S : Tools for efficient problem solving on SIMD computers 51

have the following set of records:(a, fc, c, r", a , a m, e*, /*) (a starred value denotes a

selected record), then the output o f rank is (—, —, — ,0, —, 1, —,2,3)

Concentrate The main goal of procedure concentrate is to displace the ranked

records to the PE's whose indices equal the ranks computed iu the previous step.

Let G (i r) (0 < r < j < N) be a set o f records initially stored iu PE(tr) and

assume that these records have been ranked so that H (i r) = r. A concentrate

results iu record G (i r) being moved to PE(r).

Distribute Distribute is the inverse of procedure concentrate. Its purpose is

to move records to the PE's whose indices equal the addresses carried by these

records. Let G (i) (0 < » < i < N) be a set of records with G(t) iu P E (i) . Let

H (i) (0 < i < j) be a set of destinations such that H (i) < H (i + 1) (0 < i < j) .

Distribute routes G (i) t o P E (H (i)) (0 < i < j) .

Generalise The purpose of generalise is to ropy (replicate) a record held by a

PE with an index equal to the rank of this record into all the PE’s whose indexes

are less or equal to the address carried by this record, let G (i) (0 < l < j < N)

be stored in PE(i). Each record has a field H such that 0 < H (0) < H (l) <

. . . < H (j) < N — 1 and H (i) = oo j < i < N . Generalise makes copies of

record G (i) in P E (tf(i - 1) + 1) through P E (ff(i)) 0 < » < j . H { - 1) = 0.

An R A R (simulating concurrent reads) is performed using (iu order) sort,

rank, concentrate, distribute, concentrate, generalise and finally sort.

Chapter S : Tools fo r efficient problem solthng on SIMD computers 5 2

The R A W problem (simulating concurrent writes) is simpler to deal with than

the RAR. W hen no two PE’s are sending data to the same PE then sort followed

by distribute will achieve our purpose. In the event where many PE's have the

same target PE, two cases are distinguished : Either only one PE is made to

succeed and thus, an arbitration rule among contending PE’s has to be set, or

all requests to write are to be honored which results in compacting data from all

PE’s. In both cases, the ordered sequence of subalgorithms to perform is sort,

rank, concentrate and distribute with the difference that dissimilar records

are manipulated for each case.

With all factors considered (including d which is the maximum number of

data items to be written into any one PE), the overall time complexity of execut­

ing RAR's and RAW’s on a «/-dimensional M C C is respectively 0 (q 2nlh) and

0 (q 2nxlq + dqnx,q). For an n PE’s P SC or C C C , the time complexity o f per­

forming a R A R is 0 (log2 n) and it mounts up to O(loga n + «flog n) for executing

a RAW.

3.3.4 Randomised routing

In randomised routing data is forwarded between a source PE and a target PE

via intermediate PE’s chosen at random. The algorithm o f Valiant [V80] was the

first algorithm to realise partial and permutation routing on a cube connected

computer (C C C) with n processors in only O(logrt) parallel time. It performs

well on other interconnections also [VB81]. The strategy employed is a two-

Chapter S : Tools for efficient problem solving on SIMD computers 5 3

phase strategy and consists of first sending data from each PE (involved in the

communication requirement) to another PE chc.»eu randomly and then to send

the data to their true destinations.

Valiant and Brebner’s routing algorithm

A high level description of this algorithm can be stated in two steps as follows:

1. For each PE(t') that wishes to send a data item (packet) to another P E (j),

select randomly another index k by picking each of the n bits in the binary

representation of k to be 0 or 1, independently, each with probability 1/2 and

following a left-to-right routing strategy send (transmit) the data item to PE(fc).

In the i,h step of a left to right strategy the data is routed so as to to correct

the i,k bit (from the left) o f the current address of each datum compared with its

destination. In case of competition for a wire (connection) to leave a PE, packets

are queued and transmitted one at each step. The priority is given to the packet

with the farthest destination. 2

2. The packet, say from PE(t) having reached PE(fc), is given again a left-to-

right route to its true destination P E (j) in a similar manner.

The time complexity o f Valiant and Brebuer's algorithm is O(log n) with over­

whelming probability for both the P S C and C C C architectures with n PE's.

More precisely Valiant [V80] has shown that for the hypercube with n PE's the

probability that messages will take more than 8 log n time to be routed is less

Chapter S : Tool* for efficient problem solving on S IM D computer 5 4

than (0.74,OB"). This probability converges towards zero exponentially with the

dimension of the architecture.

3.4 Prefix sums

The prefix sums or prefix computation problem is an important problem in various

fields (see e.g [Ki90]. For ease of description the problem is described as follows

[GR88]: Given an associative binary operator © (e.g. min, max, + , x) and

an array (4(1), 4 (2) , . . . , A(2n - 1)], compute 4 (n) , A(n) 0 4 (n + 1), 4 (n) 0

4 (n + 1) 0 4 (n + 2) . . . , using the locations (4 (1), 4 (2) , . . . , 4 (n — 1)] to store

intermediate results .

We describe below a P-RAM algorithm which uses the balanced binary tree

method and runs in O (logn) time with n PE’s. T he leaves of the tree initially

contain the values (4 (n) , 4 (n + 1) , . . . , 4(2n — 1)). An auxiliary vector B is also

needed to store intermediate and final results.

There are two phases in the computation. The first consists of constructing

the balanced binary tree. This takes log n steps after which, every non-leaf node

contains (value(l.t)Q value(rs) (Is: left sou, rs: right son). Results are stored in

locations 4 (1) through 4 (n — 1). This phase is described as follows:

for k = (logn) — 1 step -1 to 0

for all j , 2k < j < 2*+l - 1 in parallel do

4(>) - 4 (2 » © 4 (2 j + 1)

Chapter 3 : Tools for efficient problem solving on SIMD computers 5 5

Figure 3.2: Prefix computation on a P-RAM

The second phase is a top-down phase also taking O (logn) time. In the

case where a node is a right son it will store the A value o f its father, and

(v a lu eo f its fa ther © value o f its brother) otherwise, where © is another binary

operator adequately chosen. Usually, this binary operator denotes the reverse

operation. This second phase is described as follows:

fl(l) «- i4(l)

for k = 1 to log n do

for all j, 2k < j < 2*+I — 1, in parallel do

if j is odd then B (j) *— B ((j — l) /2)

else B (j/ 2) e A (j + 1)

Figure 3.2 shows an example of the P-RAM prefix computation algorithm

(using the balanced binary tree method) run on a sequence of eight elements and

with the operator © = + . Arrows represent the data exchanges between the

processors.

Chapter S : Tools for efficient problem solving on SIMD computers 5 6

3.4.1 Im plem entation o f th e P -R A M prefix com putation algorithm

on the 2-dim ensional m esh -connected com puter.

A straightforward implementation o f the P-RAM prefix sums algorithm just pre­

sented would also consist of two phases. For an array (A (0),. . . , A(n — 1)], the

computation (with a binary operator ©) would require the use of a constant

number of additional registers per PE (registers B, C, D). The syntax of the

algorithm performing this step is different from that on the P-RAM because the

same formulation o f the problem would have required the use o f an (v/2n x \/2n)

M C C 2 to store the array (A (l), -4 (2) ,. .. . A(2n — 1)]. Using the convention that

A (i) is stored at P E (i) at the start of the computation, then the following com­

pletes the first phase.

Chapter S : Tools for efficient problem sohhng on SIM D computers 5 7

Phase 1

for all i, 0 < i < n / 2 — 1 in parallel do

begin

B (n / 2 + i) « - A (2 i) © A (2 i + 1);

C (n / 2 + «)« - A (2 i + 1)

end

for k = m — 2 step - 1 to 0 do (m = log n)

for all i, 2k < t < 2*+1 - 1 in parallel do

begin

B (i) « - B (2 i) © fl(2i + 1);

C (i) « - fl(2i + 1)

end

Chapter S : Tools fo r efficient problem sohnng on SIMD computers 58

After this phase the balanced binary tree is constructed with its leaves in

i4[0..n — 1] and its internal nodes in £ [l..n — 1]. We then proceed to the second

phase by executing:

Phase 2

D(1) := B (l)

for k = 0 to tn — 2

for all i, 2* < » < 2*+l - 1 in parallel do

begin

D(2i + 1) « - B(i)\

D (2i) « - B (,) e C (0

end

for all i , 0 < i < n/2 — 1 in parallel do

begin

D(2i) « - D(n/2 + *) © C(r»/2 + »);

D(2i + 1) « - D(n/2 + i)

end

At the end of phase 2 the results are stored in the D registers. The syntax of

this step is also altered due to the same arguments put in the case of step 1. The

complexity of the whole implementation depends of course on the times taken to

perform «lata routings. In chapter 5 we look at the adaptation of the balanced

Chapter 3 : Tools fo r efficient problem solving on SIMD computers

binary tree on feasible machines and show that the P-RAM prefix algorithm can

be implemented in a simple way.

3.5 The Euler tour technique

Applied to trees, this new technique can lead to many useful computations as

Tarjau and Vishkin [TV85] have showed (see also KR91). Their motivation was

the lack of efficient methods to perform some simple computations. For instance

using this technique, the problem of finding the number of descendants of each

vertex in a tree is reduced to a list ranking problem.

Given an unrooted tree, the Euler tour technique consists of applying two

steps which are the replacement of every edge of the tree by two anti-parallel

edges (the result o f which is an Eulerian digraph) and the computation of an

Euler circuit of the newly obtained graph.

Assuming that the tree is given by its adjacency list, the first step is achieved

by interpreting the adjacency list as a list o f outgoing edges from each vertex.

That is, an edge (u ,v) will appear in u’s list and (v ,u) will appear in r ’s list.

The construction of the Eulerian circuit needs at first the preprocessing step of

making the adjacency list for each vertex circular i.e. causing the last element

to point back to the first. The last element of every list is found by using the

doubling technique. The Euler circuit is then found by defining for each edge

(u ,v) the edge Eulernext(u ,v) adjacent to it in the Euler circuit. If next(u,v)

is the edge next to (u, u) on the circular list for u, then the following completes

Chapter 3 : Tools fo r efficient problem solving on SIMD computers

the task :

for all (edges) in parallel do Eulernext(u ,v) *— next(v ,u)

3.5.1 Implementation of the Euler tour technique

Implementing the Euler tour technique may be done in the following two ways.

For instance, on a (y/ii X y/n) M C C 2, an initial configuration would be to store

the adjacency list of every vertex Vi (t = 0 . . . n — 1) in the memory o f one PE

of the mesh. W ith this configuration, finding the last element of every list can

be done by making every PE search for the last element of the list it holds in a

sequential fashion. If d is the maximum degree of our tree then this step is clearly

achievable in O(d) sequential time. Finding Eulernext(vi,Vj) is done by making

the PE holding (vj,V j) to read (using the RAR procedure o f [NS81]) next(v j, v()

held by P E (j) (P E (j) also finds n ext(v „ v}) sequentially). Every PE will make

at most d such requests which brings the overall time complexity to 0((Py/n)

parallel time.

The second way of proceeding is to convert the adjacency list of each vertex

to a list of edges and to store each edge in the memory of one PE. Atallah and

Hambrusch [AH85] showed that with such a configuration the steps o f the Euler

tour technique can be implemented in (0(y/n) for a tree with n edges.

Chapter S : Tools fo r efficient problem solving on SIMD computers 6 1

3.6 The ear decom position technique

The ear decomposition technique was proposed in parallel environments as a re­

placement for the depth-first search technique (see [KR91], [Vi91]). Since then it

has proved extremely useful in designing many efficient graph algorithms.

An ear decomposition D = [Pq, . . . , Pr- i] of an undirected graph G = (V, E)

is the partition o f the set of edges E into an ordered collection of edge-disjoint

simple paths P0, . . . , Pr-\ called ears, such that Po is a simple cycle, and for i > 0,

Pi is a simple path (cycle) with each endpoint belonging to a lower-numbered ear,

and with no internal vertices belonging to lower-numbered ears [KR91]. An open

ear decomposition is an ear decomposition in which none of P,, i > 0, is a simple

cycle. A graph has an ear decomposition if and only if it is 2-edge connected

and a graph has an open ear decomposition if and only if it is 2 -vertex connected

(biconnected) [KR91]. Briefly the ear decomposition algorithm for an undirected

2-edge connected input graph G = (V, E) can be described by the following : 1 2

1. Preprocess G:

1.1 Find a spanning tree T o f G;

1.2 Root T and number the vertices in preorder;

1.3 Label each non-tree edge by the least common

ancestor (lea) of its endpoints in T.

2. Assign ear numbers to non-tree edges:

number non-tree edges from 0 to r — 1

Chapter S : Tools fo r efficient problem solving on SIMD computers 6 2

iu non-decreasing order of their lea numbers.

3. Assign ear numbers to tree edges:

number each tree edge with the number o f the minimum-numbered

non-tree edge whose fundamental cycle it belongs to.

The steps of the ear decomposition algorithm can be implemented in O(logn)

time on the P-RAM model using the Euler tour algorithm together with efficient

algorithms for finding a spanning tree, sorting, prefix sums and finding the lowest

common ancestors (lea’s) for nodes in a graph [KR91].

In the next chapters it is shown that in the case o f the AIC C 2, efficient

algorithms for prefix sums (chapter 5), an Euler tour of a graph and a spanning

tree (chapter 6) exist.

C h a p te r 4

Compression, tree contraction

and ’divide and conquer’ on

feasible SIMD computers

4.1 Introduction

In this chapter we consider a very large class o f interesting problems which can be

solved on the P-RAM model of computation in O(log n) time using the techniques

o f compression, tree contraction and 'divide and conquer’ . These problems have

the characteristic that they can be solved recursively such that at each recursive

step, a problem of size n is reduced to m similar problems each of size [n /6] + c

(6 > 2, c > 0). We shall say that problems that can be so expressed belong to

the class R.

6 3

Chapter 4 •' Compression, tree contraction and 'D icC ' on feasible SIMD computers 6 4

Our aim is to show what subclasses o f R are efficiently or nearly efficiently

solvable on architectures such as the M C C a, C C C or P SC by implementing

their P-RAM solutions. This is equivalent to showing how the techniques of

compression, tree contraction and 'divide and conquer’ can be used on these

architectures. Recall that we defined a solution (algorithm) to be nearly efficient

on a feasible machine if it runs within a log u factor of its diameter. This definition

can be relaxed for the C C C and P SC by considering that a solution is nearly

efficient on these architectures if it runs within a log n factor o f the time taken

to execute some forms of routing.

The specific techniques employed in implementing solutions to the problems

in the subclasses of R depend on the parameters m, b and c and particular

characteristics of these problems. The approach is to illustrate the methods

employed by taking archetypal but simple examples o f problems o f R for different

values of rn, b and c. These problems include polynomial evaluation, list ranking

and expression evaluation. Also in this chapter, a way for improving the processor

utilisation for some problems in R is suggested.

4.2 A simple case

Those problems with parameters m = 1, 6 = 2 and c = 0 are recursively reducible

to a similar problem of half the original size. They can often be solved using

a repeat statement with a set of instructions embodied in it. These solutions

may have the following structure where the block { instructions} contains the

instructions leading to a reduction (compression) in size for our problems and the

blocks {initialisations} and [reinitialisations] contain variable initialisation of

no great importance to the analysis o f solutions. The block {instructions} might

involve some concurrent reads or concurrent writes, but we do not care since we

can simulate these operations using a library routing procedure such as that of

Nassimi and Salmi [NS81].

{initialisations}

repeat (condition)

{instructions}

{ reinitialisations}

A typical example of this class of problems is polynomial evaluation. This

problem is that of evaluating at x = h, the general polynomial p(x) o f degree

N where : p(x) = a0 + « ix + a2x 2 + . . . + a u xN with (for ease of presentation)

N = 2* — 1. The polynomial p(x) can be written p(x) = p '(x) + x(A,+,)/ap” (x),

where p'(x) and p"(x) are similar polynomials o f degree 2* -1 — 1. Thus, the

following (Algorithm 4.1) provides an iterative evaluation of p(x) at x = h based

on the compression technique and which runs in 0 (log N) parallel time on the

P-RAM (GR8 8).

Chapter 4 • Compression, tree contraction and 'D& C’ on feasible SIMD computers 6 5

1. x *— h

2 . d +- {n — l) / 2

Chapter 4 : Compression, tree contraction and ’D tcC ’ on feasible SIMD computers 6 6

3. repeat until d = 0

4. ¡f 0 < i < d then begin

5. a, *— a2, + xaj'-fi

6. x *— x 2

7. d ^ (d - l) /2

8. end

Algorithm 4.1

4.2.1 Naive implementation

Implementing polynomial evaluation on a distributed memory machine requires

first the mapping of the coefficients a ,’s onto the PE’s of our architectures. For

instance, on a (y/ñ x yjñ) M C C 3 (n = N + 1) each PE(i') can be provided with

one of the constants a, along with the values of N and h. Within the computation

each enabled P E (i) (for 0 < i < d in parallel do . . .) recomputes its associated a,

and the values o f d and x. At the end of the computation (when d = 0) the final

result is stored as a0. Each recomputation o f x and d takes constant time and each

recomputation o f a, requires the values o f coefficients a¿, and a2l+t. These can

be acquired from their associated PE’s by the use of a library routing procedure

such as the Random Access Read (R AR) procedure o f Nassimi and Salmi [NS81],

where each application of RAR takes ü(y/ñ) parallel time. Since the number

of repetitious involved in the repeat statement is O (logn), an 0(y/ñ x logn)

algorithm has thus been described.

Chapter 4 : Compression, tree contraction and 'D kC ' on feasible SIMD computers 6 7

Similar computations on a C C C or a PSC with n PE’s run in 0 (log 2n x

log n) time if the routing algorithm o f Nassimi and Sahni [NS80] is used or in

0(logrt x logn) time probabilistically if the routing algorithms of Valiant and

Brebner [VB81] and Aleliuuas [A182] areused. Clearly, it can be stated that :

Any O(log n) P-RAM based the compression technique is naively implemented on

more realistic machines in 0 (Tr log n), where Tr is the cost o f invoking a library

routing procedure.

4.2.2 Some improved results

The above results can be improved on some architectures if the instructions like

a, «— aj, + n^.+i (line 5 in algorithm 4.1) are carefully looked at. In this respect,

the time complexity for polynomial evaluation can be improved on the A fC C 2 by

a factor of log n. Each iteration o f the repeat statement reduces the number of

active PE’s by a factor of 1/2. If the PE's are taken to be indexed according to

shuffled row major order on a mesh, then after each second iteration and due to

the instruction a, «— a2l + a2l+i the active PE's are made to occupy a square mesh

which is 1/4 the original area. Figure 4.1 shows the successive areas occupied by

the problem.

The result of this is that during the (‘^iteration, the cost 0(y/n) of applying

the RAR procedure is replaced by 0 (v/n /2 (' " , , / i) if i is odd and it is replaced by

0(v/S /2< ‘/ ’ M I if » is even. The overall time complexity o f the algorithm becomes

0(y/n/2^~^ + y/n/2 ^” ^ = ()(y/n) which within a constant factor

Chapter 4 •' Compression, tree contraction and 'D&C' on feasible SIMD computers 6 8

Figure 4.1: compression on a M C C *

is time-efficient and an improvement by a log n factor.

On a C C C , each iteration o f algorithm 4.1 reduces the computation from

within one dimension (d) to the next lower dimension (d — 1) where the number

of active PE’s is halved. Because the dimension d — 1 also induces a C C C ,

then a library routing procedure can be invoked at each ith iteration with a time

complexity of 0(log*(n /2*-1)) (it = lo r A: = 2). This makes the expression that

gives the overall time complexity for the polynomial evaluation example equal to:

logn/2
£ log‘ n /2 1 '- '1 = 0 (log‘ +' n) (i = 1 or k = 2).
1=1

The situation on the PSC differs from the two previous architectures since its

interconnection network is not recursively constructed. A consequence o f this is

that at each iteration of the repeat statement (in algorithm 4.1) communication

between the set of PE ’s where the reduced problem lies cannot be considered to

use just these PE’s but must be regarded as using the whole network. That is,

it is not possible to invoke a library routing procedure at a reduce«! time c«>8t.

Thus, the solution advocated earlier runs in O(log2n) time using probabilistic

Chapter 4 • Compression, tree contraction and 'D$zC' on feasible SIMD computers 6 9

w

Figure 4.2: (a) A perfect shuffle computer and (b) its modified counterpart

routing or 0(log3n) time using deterministic routing. These results follow from

a summation of the type ££•," log* n (k = lo r 2), where successive terms arise

from successive levels o f recursion.

The analysis for the hypercube could only apply to the P S C computer if it

is made to have some identical properties. If the recursive construction o f a new

network with a P SC nature is considered (this new network could be called the

modified or augmented perfect shuffle computer (M P S C)), it becomes clear that

within such a network, the same reasoning applies as for the C C C network. A

M P S C with 2n PE's is recursively constructed by properly linking (according to

the definitions given in Chapter 1) two P S C 's of size n. Figures 4.2.« and 4.2.6

show the difference (bold lines) in terms o f connections between a P SC and a

M P S C each with 16 PE’s.

Chapter 4 ■ Compression, tree contraction and 'D iiC ' on feasible SIMD computers 70

Summarising the results obtained so far for the M C C 2 we can state that :

/it Any O (logn) P-RAM algorithm based on the compression technique and in

which the number o f active PE’s at the i,h iteration are the first N/2' numbered

PE’s, can be implemented in 0 (^ /n) parallel time on an 0(y/n X y/ri) M C C 2

with shuffled row major indexing.

4.3 Generalisations

Our aim here is to expand the results obtained above. It will be shown that

many problems of the general description given to the problem o f evaluating a

polynomial (i.e in terms o f the parameters m, b and c) can, by observing certain

strategic details, be solved in 0(y/n) parallel time on a M C C 2 and O(logn)

(deterministically) on a C C C , P SC or M P S C .

The technique employed when solving the first problem (on the M C C 2, the

C C C , the PSC and the M P S C) relied essentially upon reducing (by a constant

factor) the size of the architecture occupied by the problem (during each iteration

of a repeat statement). By doing so we were able on some architectures to reduce

the costs of the recursive calls to the routing algorithms.

If at an arbitrary time the problem size is a, then the recurrence relation for the

parallel computation time T (s) is given by (1), where / (a) = y/s for the M C C 2

and / (a) = log* a (k = 1 for probabilistic routing or k = 2 for deterministic

routing) for the C C C , P S C and M PSC.

Chapter 4 •' Compression, tree contraction and 'Dk C ' on feasible SIMD computers 71

7 » = T (,/2) + 0 (/ (j)) a > 1

/ b f (l)

T(s)=0 s=l

The solution to (1) is naturally T (s) = O (^ n) for A /C C ’s and 0 (log fc+' n)

for C C C \ PSC's and M PSC's.

For polynomial evaluation the confinement o f successively produced problems

into reduced portions of the M C C 2 was made possible by the use of the shuffled

row major indexing of the PE’s and it took, along with new problem creation,

0 (1) time. On architectures such as the C C C or the M P S C , this was due to

the natural mapping a, —* PE(i) but resulting in higher complexities.

Other problems identical to polynomial evaluation (for which m = 1, b <

2 , c = 0 and where new problem creation takes 0 (1) time) are those where the

block {m sf ructions} inside the repeat statement defines an assignment of the

type aj *— a* o a/, where o is a binary operator and where at each iteration the

PE’s with the j's indices are scattered around the architectures. For these type

of problems to verify (1), it is necessary before each iteration to confine the new

problem instance to a reduced area of the architecture.

This subclass could be divided into two categories. The first category consists

of those where the order of choosing pairs of elements is not important. For

instance, consider the problem of computing the stun of » elements. Due to the

algebraic properties o f addition such as distributivity, any way o f choosing pairs

Chapter 4 : Compression, tree contraction and 'D k C ' on feasible SIMD computers 72

would give the correct result. For this category of problems, confining a new

instance o f the problem to a reduced area (of successively indexed PE’s) of the

architecture would consist of sorting the contents of the active PE's after each

iteration. In this way, the cost of invoking a library routing procedure ran be

reduced. Using the sorting algorithms of Nassimi and Salmi [NS79] or Thompson

and Hung [TK77] will insure on the M C C 2 that the successive stages of confining

recursively produced problems to reduced areas of the architecture are achieved

in E l? , " ' 1 0 (v ^ / ? - ‘) + E ! ^ 1 0 (v'n /2- 1) = 0 (v ^) time.

The phase of confining a new instance of the problem to a reduced area of

the architecture can also be achieved using procedures of the same kind as rank

and concentrate (chapter 3) used in the algorithm of Nassimi and Sahni (NS81).

Procedure rank can be used to assign a rank r(PE (i)) to every active PE(i)

such that ran*(PE(i) < ranfc(PE(j)) if * < j and PE(*) and PE(>) are both

active. Procedure concentrate can used to move the contents o f a P E (i) to

PE(ranfc(PE(s))) which ensures the same result as that of sorting.

Figure 4.3 illustrates the results of the ’rank' and ’concentrate' procedures on

a (4 x 4) M C C 2 with shuffled row major indexing.

The second category of problems consists o f those that can be regarded as

solvable (on the P-RAM model) using the tree contraction technique. In these

problems, at each iteration, particular pairs of the elements acted upon have to

be chosen carefully. Generally, these particular pairs are identified by pointers

and therefore confining a new instance of the problem to a reduced area of the

Chapter 4 ■' Compression, tree contraction and 'D&C' on feasible SIMD computers 73

architecture cannot simply be achieved by sorting or the use of procedures such as

rank and concentrate but will require other activities. The expression evaluation

problem belongs to such a category. In section 4.6 we show what type o f activities

are necessary for an efficient implementation on the M C C 2 o f the solution to this

important problem.

However, for the problems examined above the phase of confining a problem

to a reduced area is only necessary after each second iteration at which time

the size o f problem is reduced by a 4 factor and the cost of invoking a routing

procedure is halved. This makes the overall time complexity o f these stages

= S!=8" 0(y/n/2') = 0(y/n). As a result, the recurrence relation for the parallel

complexity time T (s) for these problems on the M C C 2 will be given by (2).

T (s) = T (s /4) + 0 (v ^)

T(s) = 0

a > 1

(2)

s = 1

Referring to problems which are solvable on the P-RAM model using the

techniques of compression or tree contraction as problems whose solutions are

based on the compression of an input, we can conclude that :

Any O (logn) P-RAM algorithm based on the recursive compression o f an in­

put o f length n can be implemented in 0(y/n) time on a (y/ti X y/n) M C C a

with shuffled row major indexing provided that the successive confinements o f re­

cursively produced problems to areas where the cost o f routing is reduced (by a

constant factor) can be done in 0(y/ri) time.

Chapter 4 : Compression, tree contraction and 'D k C ' on feasible SIMD computers 74

Figure 4.3: The result of procedures ’rank' and ’concentrate’

W ithout any further work, the same reasoning on the activities engaged on the

M C C 2 in each of the cases applies to the C C C , P S C (and M P S C) except that

the resulting time complexities are again not efficient (they are nearly efficient).

This is because the complexities of sorting and procedures rank and concentrate

are 0 (lo g 2 n) for a problem o f size n [NS81].

However, there are cases where this can be improved. If f (s) is a constant, then

in (1), T (s) is 0 (log n). This is possible if there exists a mapping of the graphical

representation of our problems such that executing the instructions inside the

repeat statement (of the type ay «— a* o a/) is translated by invoking at each

iteration some routing scheme taking a constant number of steps (independently

of the size of the problem). It is easy to see that T (s) = O (logn) for problems

where we can map (store) ay to a PE which is directly linked to the PE’s storing

a* and a/. As for the M C C 2 we can state that : Any 0 (lo g n) P-RAM algorithm

based on the compression o f an input o f length n can be implemented on a C C C or

P S C in O (logn) time provided that the graphical representation o f the problem

can be mapped on these architectures such that routing at any iteration o f the

Chapter 4 •' Compression, tree contraction and 'D icC ’ on feasible SIMD computers 7 5

algorithm is achieved in 0 (1) time.

4 .4 Enlarging the class o f problem s efficiently solvable

on feasible SIM D computers

The subclass of problems of R to be considered in this section are those that

can be regarded as solvable using the 'divide and conquer’ technique (with no

combining stage) and therefore have m > 1. For the M C C 2, it is trivial to see

that for any problem o f size s which at each level of recursion is divided into 4

(or less) similar problems each of size at most s/4 will satisfy (2) provided that

the problem division and the resulting assignment (confinement) of each created

problem to its independent own quarter of the PE’s can be achieved in 0(y/n).

For the case of compression particular methods were used to confine a problem

to reduced areas of the architecture. In the present case (where m > 1, b <

4), the assignment o f each of the created subproblems can be done by means

of some connected components algorithm, followed by sorting. The connected

components algorithm will identify every subproblem by assigning a unique value

to the nodes o f its graphical representation. Sorting on these values will send each

problem to a different area of contiguous locations of the architectures. On an

M C C 2 the algorithm o f Nassimi and Salmi [NS80] is the best known algorithm

to achieve this purpose. Unfortunately this algorithm runs in 0(y/n x lo g »)

parallel time for graphs o f arbitrary but fixed maximum degree d. However an

exception that makes (2) hold is when d = 2 implying that in the general case

Chapter 4 • Compression, tree contraction and ’D ilC ’ on feasible SIMD computers 76

other activities are necessary to convert the degrees of the graphical representation

of the subproblems. Thus, using the best known connected components algorithm

on an M C C 3 brings no improvement unless d = 2, but for any problem there

may exist a way for avoiding the call to a connected components algorithm. For

instance consider a problem (of size n) having a complete binary tree structure

(where d = 3) in which at any iteration we can convert finding the global solution

into that of finding the solutions to two subproblems associated with the right and

left halves of the tree. To allocate each quarter of the tree to its portion of PE's

(after each second iteration), we can for instance allocate a common value to each

quarter of the leaves of the tree and communicate this same value to the internal

nodes spanning those leaves. By simply sorting on the value acquired by each

quarter of the tree we can achieve the confinement o f the subproblems to reduced

areas of the architecture without a connected components algorithm. Provided

that the problem division for this problem and the transmission of values from

the leaves to the internal nodes have overall 0(y/ri) time complexity then the

process described will also take 0(y/ti) parallel time.

Finding the connected components o f a graph on a C C C or P S C (M P S C)

can be achieved respectively in 0 (log 3 n) (see [A89]) and 0 (log 3n) (see [NM82])

regardless of the degrees of vertices of the problem graph. Thus, the complexity

bounds for solving the problems in hand on the C C C P SC (M P S C) become

dominated by the complexity of the algorithm to find the connected components

(if used). That is, for problems which have rn > 1 , the recurrence relation giving

their time complexity is given by 3 where p = 2 for the C C C and p = 3 for the

Chapter 4 • Compression, tree contraction and 'D ilC' on feasible S IM D computers 77

P S C and M P S C

T (s) = T(s/2) + O(\og* n) a > 1

(3)

T (s)=0 s= l

The solution to (3) is naturally 0 (log3 n) (which is nearly efficient) for the

C C C and 0 (lo g 4 n) for the P SC and M PSC.

A further generalisation is to consider replacing the factor 1 /2 in (1) by 1/6

where 6 > 2 is a constant factor. In this case, at each level o f the recursion, a

problem o f size s is replaced with (up to) 6 similar problems each o f size at most

s/b (for simplicity, we take s = 6* for some integer j) . The initial difficulty faced

is how to partition the PE’s of our SIMD architecture so that each recursively

created problem occupies an adequate set of successively indexed PE's. This set

of PE’s o f which the size is determined by the parameter 6 will have to form a

square on an M C C 2, belong to the same (sub)hypercube on a C C C or simply a

set o f adjacent PE’s on the M P S C .

On the M C C 2, the shuffled row major indexing scheme used so far becomes

unsuitable for odd values of the parameter 6 as it is based on the recursive division

of the PE’s into 2 x 2 blocks. Thus instead, a new indexing scheme: the modified

shuffled row major indexing is used which recursively divides the PE’s of our

(y/s x y/s) M C C 2 into a 6 x 6 matrix, where each sub square of the M C C 2

occupying an area of s/b2 successively indexed PE’s. Each sub square may then

be occupied by one of the problems produced after a double application of the

Chapter 4 • Compression, tree contraction and 'D&C' on feasible SIMD computers 78

problem division procedure. Figure 4.4(c) shows the indices of the PE's of an

M C C 2 indexed according to the modified shuffled row major indexing scheme

when 6 = 3.

This new indexing scheme could be thought of as the result of displacing (re­

indexing) blocks of 6 PE’s originally with a row major indexing (figure 4.4(a)). To

obtain a modified shuffled row major indexing scheme from a row major indexing

scheme, we first divide the 62 x 62 PE’s into 6 vertical blocks and 6 horizontal

blocks. The result is 62 blocks of 62 PE’s. To achieve movements of blocks such as

indicated in figure 4.4(6), every PE must know in which block it lies. Firstly, every

PE knowing its index r and 62, can compute its geometric coordinates (*, j) , where

i = rm odb2 and j = rd ivb 2. Then every PE(i , j) computes the four parameters

B t(i , j) , £ 3(1, j) , B3{ i , j) and ra n k (i,j) . B \ (i,j) and B ? (i,j) indicate the position

o f the block of 62 PE's in which PE(i, j) lies, B3(i , j) indicates in which (B\,B3)

block of 6 PE's it lies and ra n k (i,j) indicates its position inside the (B3) block.

These parameters are found as follows : B\(i,j) = idivb, B3(i , j) = jd ivb,

B 3(i , j) = (rdivb2)m odb , ra n k (i,j) = rmodb.

Expressing r in terms o f i and j , we obtain r = jb 2 + i. Furthermore i and j

can be expressed as follows : t = bB\ + rank, j = bBt + B3.

Thus r = (6B2 + B3)b2 + bB\ + rank. The new indexing (r^*,) for every

PE(r) is then obtained by interchanging the values B\ and B3. Thus r,„w =

(bBj + B ,) 6» + bB3 + rank.

On a C C C one application o f the problem division procedure should send

Chapter 4 • Compression, tree contraction and 'D iiC ' on feasible SIMD computers 79

B

(c)

Figure 4.4: A modified shuffled row major indexing for 6 = 3

Chapter 4 ■' Compression, tree contraction and 'D iiC ' on feasible SIM D computers 80

every set of s/b nodes of our problem to a set of PE’s lying in the same dimension

(that is if we want to stay within the same framework as for the A /C C *). Here

the difficulty is that unlike the M C C 1 architecture of which the number o f PE’s is

taken to be any natural number with a natural square root, the C C C has a strictly

even number o f PE's and makes it difficult to apply the the same strategy for all

values of b. The same observation could be applied to the PSC and (M PSC).

Taking into account the constant c. and thus, considering the general case

(where each problem of size « is recursively replaced by at most b similar problems

each o f size [a /6j + c, where b and c are constant integers, b < 2 and c < 1), we

describe the implementation of the simple but archetypal list ranking problem.

4.4.1 Solving the list ranking problem

Given a list of elements, the list ranking problem is to associate with each element

i of the list a parameter d ist(i), where dist(i) is the distance from i to the head

of the list. On a P-RAM, this problem can be solved in O (logn) parallel time by

the use of the doubling technique. Initially, dist(i) contains the (unit) distance

between element i and the adjacent element which P (i) points to. At the start

of the computation the situation is illustrated (for a list of seven elements) at

the top o f figure 4.5.

After successive iterations and provided that P (i) does not point to the head

of the list, then the PE associated with i will execute dist(i) «— dist(i)+ d ist(P (i))

and P(») «— P(P(»)). After k iterations we have P (i) (unless it points to the head

Chapter 4 : Compression, tree contraction and 'D liC' on feasible S1MD computers 81

of the list) pointing 2k elements along the list from «. Therefore, after flog n]

iterations all P(t') point to the head o f the list, placing the problem in the class

S C (GR8 8).

If j is the head element o f the list, then after each iteration within the al­

gorithm outlined all the P(«)’s except P (j) for»» * number of directed paths

terminating at j . If we observe that after each doubling operation the number of

these paths is at most doubled, then it will be natural to use this in a recursive

solution. Each o f the problems o f size a at one level o f the recursion is replaced by

at most two problems o f size at most fs /2] + 1. We obtain strictly disjoint (inde­

pendent) subproblems by just duplicating the element at the head of the original

list into each newly created list. These subproblems will be then distinguished

by the use of the appropriate connected components. It should be noted that in

the case of the M C C *, our problem graph will have a maximum degree d = 2,

a requirement that will let us use the (Oy/n) version the connected components

algorithm of [NS80].

O '

Figure 4.5: Ranking of a list of 7 elements

Generally, it is clear that if an initial problem o f size » is replaced at the

Chapter 4 • Compression, tree contraction and 'D kC ' on feasible SIMD computers 8 2

first level of the recursion by up to b similar problems, then each will be o f size

(fn/61 + c) < (n / 6 + c + 1). This size will decrease to n /62 + (c + 1)(1 + 1/6) at

the second level o f recursion and such that (for each of the 6' problems):

•>««(■) < n /6‘ + (c + l) £ (l / 4 >) = n/b' + fc(l - 1 /4 '), (t = 6(c + l) / (4 - 1)).
J=o

Below a certain level o f the recursion this estimate does not reduce the (integral)

problem size and a minimum is reached when (n — k)/b' < 1 / 2 at which point

* *s logj2(n — k) and sizcn)n s= fib]. This provides the value of i at which the

recursion bottoms out and at which the residual problem is solvable in 0 (1) time.

The implementation of our strategy for the case where the parameter c = 0

is achieved by storing each problem of size size(i) (at the i,h level of recursion)

over n /6* PE's (on the M C C 1 this is done as defined by our modified shuffled row

major indexing scheme when b is odd). However, for the case where c 0, instead

of storing a single node of the problem graph at each PE, we now store up to k

nodes of this graph at each PE, i.e, each problem of size psize(i) is stored over

n/b‘ PE’s and it is an easy technical problem to store the additional < k nodes

evenly over these PE's. Then, within each application of the problem division

procedure each PE in parallel handles in a sequential fashion the nodes it stores.

Since there are a constant number o f nodes at each PE, the time complexity of

executing the problem division procedure will be of the same order as if a single

node o f the problem were stored at each PE. This ensures that the cost of solving

a problem with c = 0 is the same as that o f solving a problem with c 0 .

Chapter 4 : Compression, tree contraction and 'D k C ’ on feasible SIMD computers 83

4.5 Solving the dynamic expression evaluation problem

Dynamic expression evaluation is the problem of evaluating an expression with no

free preprocessing. This problem has seen solutions (based on the tree contraction

technique) on the P-RAM model of computation by Miller and Reif [MR85] and

Gibbons and Rytter [GR89]. The algorithm of [GR89] can be made to run in

O (logn) parallel time using only 0 (n / lo g n) PE’s. The version outlined and

implemented in this section runs within the same time complexity but using

O(n) PE’s. Such a version can be efficiently implemented on the M C C 2 and in

near efficient manner on the C C C , P SC and M PSC.

The input to the algorithm of Gibbons and Rytter [GR88] is the expression

tree, and the first step is to rank the leaves of the tree from left to right. The

algorithm now repeatedly applies a so called leaves cutting operation that consists

of reducing at each step the number of leaves of the expression tree by a factor of

1/2. At the end o f the computation, the tree is reduced to a single node, at which

time, the expression has been evaluated. The leaves cutting operation consists of

the parallel removal of some leaves of the tree and is best introduced by describing

how a single leaf may be removed (cut) by a local reconstruction of the expression

tree. Figure 4.6 shows a portion of the tree before and after the removal of the

leaf wj, where o is an operator and f ,(x) is a function associated with the internal

node to, which when evaluated at x = (value o f the sub-expression associated with

the subtree rooted at te,) is the value to be passed to father of Wj.

Without going into specific details about local computations performed during

Chapter 4 •' Compression, tree, contraction and 'D&iC' feasible SIM D computers 84

Figure 4.6: Illustration of the leaves cutting operation

the expression tree reconstruction which consist essentially o f a constant num­

ber of pointer updates (The reader is referred to [GR88] and [GR89] for such

clarifications), the whole algorithm consists of applying log n times the following

operations that define the parallel leaves cutting operation :

1 . in parallel cut all odd numbered leaves which are left sous

2 . in parallel cut all odd numbered leaves which are right sous

3. in parallel divide the 'rank' of each leaf by two.

Figure 4.7 shows the expression tree for a given expression and Figure 4.8

shows the resulted trees after applying steps 1 and 2 .

We discuss the implementation of the expression evaluation algorithm on the

M C C 2 with its PE’s indexed according to the shuffled row m ajor indexing scheme.

An expression tree is a tree with n — 1 nodes (for ease of description, we asstime

that n is a power o f 2) where (n /2) — 1 nodes are operators and n/ 2 nodes are

operands. Before the construction of the expression tree (the expression is in the

Chapter 4 • Compression, tree contraction and 'D&cC' on feasible SIMD computers 8 5

/ \

Figure 4.7

form of an array), operators can be recognised in 0 (1) time and can be given

numberings from 0 to n / 2 — 2 using a subsequence ranking algorithm that rims

in 0 (y /n) (chapter 5). By the same procedure, the leaves can also be given

numberings from n /2 to n — 1 and can also be ranked form 1 to n/2. The

numberings obtained above will allow the mapping of the operators op, (i =

[0 , 1 , 2 , . . . (n / 2 —2)]) and the leaves leafi (i = ((n /2), (n / 2 + 1) , . . . ,(n — 1)]) onto

the PE’s of the (y/n X y/n) M CCa. When the tree is constructed every PE(i) will

store a record consisting of either an operator op, and two pointers or a leaf lea f,

and a pointer corresponding to the adjacency list of the expression tree. Steps

1 and 2 of the leaves cutting operation are then executed respectively in 0(y/n)

since they can be achieved by the use o f a finite number o f the operations of calls

to the library routing procedure of Nassimi and Salmi (NS81) and step 3 takes

only constant time. In the course o f executing steps 1 and 2 the nodes which

Chapter 4 •' Compression, tree contraction and 'D&iC' on feasible SIMD computers 8 6

will not figure in the newly constructed tree (cut nodes) are marked as ’dead’ .

The tree that has to be constructed (input to the new iteration) will only contain

’live’ nodes that were originally scattered over the PE’s of the architecture. The

problem now is how to achieve new problem creation. That is, how to make the

new problem (set o f live nodes) occupy a reduced portion of the architecture so

that the pointers stay eligible.

We proceed by making each live node (having a record consisting of an op,

and two pointers or a leaf, and a pointer) to record its address (labeled as old

address) before the new problem creation phase. Then these live nodes are ranked

and concentrated as already seen (thus will have new addresses). After this step

every live node will write its new address into his old address. Finally every live

node can update its pointers by reading the (new) information.

If the parallel leaves cutting operation is performed twice before each problem

creation phase, then the newly created problem will occupy a square of size 1/4

the original area and the recurrence relation for the time complexity needed to

evaluate an expression of size .s will be given by(2), implying that expression

evaluation can be achieved in efficient time on our the M C C 1. On the C C C and

PSC computers our implementation will only lead to a nearly efficient solution,

that is a parallel tim e 0 (logfc+1 n) where k = 1 if probabilistic routing is used

and k = 2 if deterministic routing is used.

Chapter 4 ■ Compression, tree contraction and 'DfeC' on feasible SIM D computers 87

/
/ \

/ \

/ \ *" A : /
/ \ “ s \ * , 4 4 \ " / \

V * 0(21 10(2) 12(1

/ \ "
/ \ \

«0

Figure 4.8:A leaves cutting operation performed on the tree o f figure 4.7

4.6 Im proving the processor utilisation

Many o f the solutions to the problems treated in the previous sections had a poor

processor utilisation. Processor utilisation (P U) is the average o f the ratios of the

number of PE’s used at each step to the number o f available P E ’s. For instance

problems (of size n) with m = 1 have :

PU = (n + n/2 + n /4 + n / 8 + . . . + l) /n lo g n = 2 / log n

Barnard and Skillicoru [BS90] have suggested a method for increasing the PU on

the C C C or hypercube by pipelining many identical algorithms. A simple illus­

tration is the problem of computing the sum of kN numbers on N PE‘s. With

the condition that one PE can only hold one data item this type of computa­

tion is broken down to k computations o f the same type which is equivalent to

k algorithms performing identical jobs. The strategy is to load a sequence of N

elements, perform one required computation that makes half the PE ’s idle then to

suspend this computation and input another sequence that will use the idle PE‘s

and so on. At one stage all the PE's are non-idle except one. At any non load­

Chapter 4 • Compression, tree contraction and 'D ilC' on feasible SIMD computers 8 8

ing stage of this pipelining strategy the same operation is performed on different

instances (SIMD case) residing on different portions o f the architecture. These

portions of the architecture must he non-intersecting so as to avoid collision. On

the hypercube with N = 2* PE's the last loaded sequence uses PE’s forming a

(d — 1) hypercube, the one loaded before last uses PE’s in a (if - 2) hypercube

and so on. Barnard and Skillicorn [B90] were able to find an algorithmic descrip­

tion for the non-intersecting sets of processors allocated to any instance of the

pipelined computation at any stage. This was done by using orthogonal hyper-

planes and rotating them around a diagonal of the hypercube. Their description

also guarantees that a set PE's used by any instance at stage t is contained in

the set o f PE’s used in stage t — 1 so as to avoid unnecessary data movements.

To use an identical strategy on the M C C 2 would require finding non-intersecting

planes and rotate them around the centre o f the M C C 2. Unfortunately rotating

planes on the M C C 2 (as shown in figure 4.9) cannot be done in a straightforward

manner. Suppose we load an algorithm A and perform one computation that will

make u /2 PE's idle. If we halt A and input another algorithm B. (B is a copy of

A) then it is possible to find n/2 PE's to perform the computation o f B (plane B

in figure 4.9) and n /4 PE’s to perform the computation o f A (plane A). Further­

more plane B is obtained from rotating plane A around the centre of the M C C 2.

If we halt algorithms A and B and input another algorithm C (C is identical to A

and B), then it will still be possible to find three non intersecting sets of PE’s to

perform the required computations. The PE's used by algorithm C are obtained

by rotating plane B and those used by B are obtained by rotating plane A. Now

Chapter 4 •' Compression, tree contraction and ’D&cC’ on feasible SIMD computers 8 9

>/■-.

Figure 4.7: Rotating n/2 PE's in a mesh

to input another algorithm D and find 4 non-intersecting (planes) sets o f PE’s

cannot be done without moving data around (i.e displacing planes). Therefore

to input the 4"* algorithm D we will have to wait another log n — 2 iterations

for A to finish. This implies that following the method of rotating planes on the

M C C 2 we can only have at most 3 algorithms (performing the same operations)

at any one time. This is not as good as on the hypercube but will nevertheless

increase the PU parameter for many computations.

To allocate the PE’s following the above method, we proceed by assigning to

every algorithm a rank ro (m = O toN - 1) indicating its position in a queue of

N identical algorithms to be input (pipelined). Following the observation made

above, we can determine at which time step the algorithm with rank m will be

loaded. On the M C C 2 between time t = 1 and time t = log n we can only load

the algorithms with ranks 0, 1 and 2. Algorithm with rank 0 is input at t = 0,

algorithm with rank 1 is input at t = 2 and algorithm with rank 2 is input at

time t = 4. The algorithms with ranks 3, 4 and 5 are input between t = log n + 3

and log n + 7. Following the same reasoning we can deduce that every algorithm

with rank m is input at time:

Chapter 4 • Compression, tree contraction and 'DtiC' on feasible SIMD computers 9 0

t = (m div 3) log n + m mod 3 + m

Having determined the loading time for every algorithm, we can now provide

a description of the sets of PE’s that will be used by any algorithm at any stage.

To simplify this description we define the operations Compress Up, Compress

down, Compress Right and Compress Left. Let PEf»,,;)’« (* = a0,a ,,a 2, ..

(j = &o, b\, 62, • • • b„-\) be the PE’s used by an algorithm at stage t — 1. The op­

eration Compress up will cause an algorithm to use at step t the PE(i, j) 's (t =

«o, a i, a2, . . . a „_ i), (j = bo, b¡, b-2, . . . &„/2- i). The operation Compress down will

cause the use of PE(i, j)'a (i = a0, « i , a2, . . . a „_ i), (j = b„/2, b„/2+l . . . 6n_ i). The

operation Compress left will cause the use of P E (i,j) ’s (i = a0 ,a ¡,a 2, .. .a n/2_ i) ,(j =

¿»0 , 61, 62, . . . 6„_ i) and operation Compress Right will cause the use of PE(i ,j)’s

(t = o „ /2,a „ /2+¡ , . . . a „/2_i), (j = 60, 61, 62, . . . 6„_ i) . The rank m of every algo­

rithm will determine what type o f operations are to be performed on it. If we

choose to rotate planes in a clockwise fashion then after the loading step we allo­

cate the upper half o f the PE’s to the first loaded (m = 1) algorithm (A in figure

4.10), the right half to the second loaded B (m = 2, the lower half to the third

and the left half to the fourth. The same will happen to the next four algorithms

and so on. Our description is complete if we compute for every algorithm the

parameter type = rn mod 4 and at the time it is loaded we set a step counter to

0. Knowing its loading time and according to the value of type the PE’s used by

any algorithm at any step are described by:

Chapter 4 • Compression, tree contraction and 'D kC ' on feasible SIMD computers 91

For algorithms of type = 0

Loading step : Allocate all the Processors

Odd step : Compress Up

Even step : Compress Left

For algorithms of type = 1

Loading step : Allocate all the Processors

Odd step : Compress Right

Even step : Compress Up

For algorithms of type = 2

Loading step : Allocate all the Processors

Odd step : Compress Down

Even step : Compress Right

For algorithms type = 3

Loading step : Allocate all the Processors

Odd step : Compress Down

Even step : Compress Right

Using such a pipelining strategy increases the computation time of an algo­

rithm from 0 (v/n) to just 0(y/n) + c (c < 2 represents the number of times an

algorithm is halted to load another algorithm) but surely does increase the overall

processor utilisation. To compute the new processor utilisation it is enough to

consider the computation between times 11 = log n + 2 and t? = 2 log « + 5 where

<i is the time at which occurs the first computation after the system has already

Chapter 4 : Compression, tree contraction and 'D kC ' on feasible SIMD computers 9 2

Figure 4.8: Pipelining algorithms on the M CC2

reached a steady state (i.e Vi > ¿i there is always three active algorithms), and t?

is the step time before the system cycles again. Moreover if only the non loading

steps are considered the PU is computed as follows. At time t = t\ an algorithm

loaded at t = tj — 1 is using n/2 PE’s and the two previous active algorithms are

using just 2 + 1 PE's. At t = t + 2 the number o f used PE's becomes n /2 + n /4 + 1

(a second algorithm has been input) and at t = t + 4 (a third algorithm has been

input) the number o f used PE’s is n /2 + n /4 + n /8 . Because no algorithm is again

input up to t = + 1 , the expression giving the PU is:

* {(n /2 + 1 + 2) + (n /2 + n /4 + 1) + (n /2 + n /4 + n /8) + (n /4 + n/ 8 + n /16) + . . .

+ . . . + (1 + 2 + 4) } / log n

3 x 2 / log

C h a p te r 5

The balanced binary technique

on feasible SIMD computers

5.1 Introduction

In the previous chapter, the general techniques of compression, tree contraction

and ’divide and conquer’ were shown to be o f great facility for the design of

efficient algorithms on the mesh for a wide class of problems. In this chapter we

show that the general technique of the balanced binary tree (commonly employed

in optimal P-RAM algorithms) may also lead to efficient problem solving on the

mesh connected computer. In this respect other architectures are dealt with later.

Some P-RAM algorithms employing this technique cannot be implemented on the

mesh by simply using some embedding of a complete binary tree along with calls

to a library routing algorithm. One reason, for example, is that concurrent reads

9 4

in the P-RAM model (the number o f which can be logarithmic in the input size)

may lead to slower computation (i.e O (logn^ n)). However, new and efficient

algorithms avoiding such problems can often be devised which nevertheless use

a related balanced binary tree approach. Such an example will be described in

sections 5.4 and 5.5.

The particular examples of sections 5.4 and 5.5 are efficient algorithms for

bracket matching on the mesh. That is, given a string of n brackets, the i,h

bracket (for all », 0 < * < n — 1) may learn the position (in the string), called

match(i), of its matching bracket in 0 (y/ri) parallel time on a (y/ii x y/ii) M C C 2.

It follows that, given an arithmetic or algebraic expression presented as a string

o f symbols, the tree form of the expression can be constructed (by an easy exten­

sion to the bracket matching algorithm) with similar algorithmic efficiency (see

[BV85], (GR88)). This extends a number of previous results. It was shown in

the last chapter that, if an expression is presented as an expression tree, then the

expression can be evaluated in 0{y/ri) parallel time on a (y/n x y/ri) M C C 2.

For algebraic expressions, such an evaluation requires that the corresponding

algebra has a carrier of constant-bounded size. The recognition of bracket and

input driven languages can be reduced to the computation of such algebraic ex­

pressions (see [GR8 8]). It follows that if the input is in the form of a string (of

the symbols making up the expression) stored in an array, the following problems

have efficient solutions on the mesh :

Chapter 5 : The balanced binary technique on feasible SIMD computers 9 5

(a) Evaluation o f arithmetic expressions.

Chapter 5 : The balanced binary technique on feasible SIMD computers 9 6

(b) Evaluation of algebraic expressions with carrier of const ant-bounded size.

(c) Parsing expressions of both bracket and input driven languages.

As a by-product, two further (but comparatively trivial) problems, prefix sums

and sub-sequence ranking, are shown to have efficient solutions in section 5.3.

Indeed, this general technique is likely to yield efficient solutions for many more

problems.

The balanced binary tree method (chapter 2) over a string o f n characters

(co, C i,. . . , c „ - i) employs a balanced binary tree with the characters placed at

the leaves. Figure 5.1 shows such a tree for n = 16.

As indicated in chapter 2, some computations over such a tree might be simple

and therefore will have a straightforward implementation. However for other

problems (such as the bracket matching problem) this might not be the case and

it would be necessary to devise some specific adaptations such as embedding the

balanced binary tree.

A standard (explicit) way o f embedding a balanced binary tree in the mesh

is to use the so called H -tree representation (see for example [U84],[A89]). The

Chapter 5 : The balanced binary technique on feasible SIMD computers 9 7EH rP
- 6 -

-

ffll 4 - =ì
(•) H4 (b) Construction of H

Figure 5.2

ith H -tree, if,, is an embedding o f the balanced binary tree with 4* leaves. Thus,

figure 5.2(a) shows if, (the embedding of the tree o f figure 5.1), the leaves of if,

are numbered according to the left to right order o f figure 5.1). Figure 5.2(b)

indicates the inductive construction of i f +, from i f .

Although we have dilation = 0(y/n), expansiou=l and co n g e stio n i, a draw­

back o f this construction is that the balanced binary tree n leaves requires a large

mesh of (2y/ri — 1) X (2\/n - 1) PE’s. However, it is possible to employ a strictly

(y/ri x \/n) mesh for our purposes as described in the next section.

5.2 Im plic it representation o f the balanced binary tree

The H -tree embedding of balanced binary trees in the mesh requires more PE’s

than necessary. Some of the additional elements are used for the disjoint represen­

tation of all tree edges (i.e. routing paths on the mesh) and others an* completely

unused. It is not necessary for all such edges to be disjointly represented (i.e we

do not need the congestiou= 1), in fact (for our purposes) only those edges at the

same height have to appear in disjoint regions o f the mesh. We therefore adopt

Chapter 5 : The balanced binary technique on feasible SIMD computers

Processing element index *

Figure 5.3

the approach of associating binary tree nodes with PE's indices (at this point we

do not specify where each such indexed element is placed in the mesh) as indi­

cated in figure 5.3. Two tree nodes (a leaf and an internal node) are associated

with (or 'stored at’) each PE. In figure 5.3, vertical lines (either solid or dashed)

connect the two nodes which are associated with the PE whose index appears at

the bottom of each vertical line.

Figures similar to figure 5.3 are inductively constructed as indicated in figure

5.4. This construction which associates tree nodes with PE's has the following

properties:

(1) Consecutive tree nodes at level j which are both left (or right) sons are

stored at PE’s whose indices differ by 2’ +} .

(2) At level j , the first non leaf node which is a left son occurs at PE index

(2J-1 — 1) and the first non-leaf node which is a right son occurs at index

(3 x V~x - 1).

Chapter 5 : The balanced binary technique on feasible SIM D computers

(3) Every PE with au even (respectively, odd) index stores a leaf which is a left

(right) son.

Thus, if every PE knows its own index i and the number of leaves rt, and if

every PE executes the following instructions:

k *— 2 , level«— 'none', typeofson«— 'none'

for j = 1 step 1 until log n do

begin

k *— 2k

if remainder ((i + 1)/k) = k/ 4 then

begin

le v e l«— j , typeofson «— le ft

end

if remainder!(i + l)/k) = 3fc/4 then

begin

level *— j, typeofson «— right

end

end

Then after 0 (logn)-tim e (and because of properties (1) and (2)), every PE

knows the type of non-leaf tree node left or right) associated with it and at what

level in the tree this node is. Additionally each PE may determine whether it is

associated with the root by checking if j = log n. Similarly (employing property

Chapter 5 : The balanced binary technique on feasible SIMD computers 1 0 0

2 ° leaves 2 n leaves 2 n*1 leaves

Figure 5.4

(3)), each PE may easily determine in 0 (log n) time if the leaf associated with it

is a left or right son.

Consider now the distribution of PE’s across the M CC*. We use the shuffled

row major indexing scheme which is important to establish the lemma stated at

the end of this section. With this indexing the binary tree construction has the

property that son to to father (and father to son) routing can be performed on

the basis of local information only. Figure 5.5 shows how each PE (knowing the

level = j and type o f an associated tree node) knows the route to the next PE

(associated with the father node). For example, a PE associated with a tree node

which is a left son at level j (j > 0 and odd) will find the processing element

storing the father o f this node at a distance of mesh steps to the right.

Figure 5.6 shows (through (a) to (d)) routing from the leaves to the root for

the balanced binary tree with 16 leaves.

lemma 5.1 For a complete binary tree with n leaves, the total time to route (in

parallel) messages o f constant bounded length from leaves to root (or vice versa)

of the tree can be achieved in 0 (y/ti) parallel time on (y/ti x y/ti) M C C 2.

m
?

Chapter 5 : The balanced binary technique on feasible SIMD computers 101

Son to father routing
(distances in mesh steps)

level
ot son

left
son

right

1-0 0 ---------

)>0
j odd U-'W

2

^ (I-'»
- - 2

(Ml*
2

i>o
) even

! o«-i)« ! (!*-»

„ . I 1
1«

2

Figure 5.5

3 3

3 3

Figure 5.6

Chapter 5 : The balanced binary technique on feasible SIMD computers 10 2

Proof It is sufficient to consider only routing from the leaves to the root. Figure

5.5 shows that the maximum length path (in terms o f mesh steps) from a leaf

to the root as traced on the mesh is that corresponding to repeated right-son to

father routing. A section from such a path in moving from an odd level j > 0 in

the tree to the next odd level j + 2 , has length (in mesh steps):

(2<>-‘ >/2 + 2(,_ ,)/a) + (2(>+,)/a_I + 2(>+I)/a) = 5 x 2(,“ ')/a

In going from level 0 to level 1, such a path uses one mesh step. Thus if the root

(at level log ») is at an odd level, the path has overall length:

(<log»)-2)/2 ____
(1 + £ 5 x 2>) = 5y/n/2 - 4

J=0

mesh steps.

On the other hand, if the root is at an even level, then the path has overall

length:
((logn)-3)/2

(X + (£ 5 x 2 ‘)+y/T,) = W r,/2 - 4
J=0

mesh steps, where on the left hand side of the equation, the term y/tl is the

length of the final section o f the path from level (lo g ») — 1 to the root and we

immediately state the following corollary:

Corollary 1. Any P-RAM algorithm based on the balanced binary tree will have

(within a constant multiplier) an efficient implementation on the M C C 2 (That

is a parallel computation time of 0(y/n) for inputs o f size ») provided that :

Chapter 5 : The balanced binary technique on feasible SIM D computers 1 0 3

(a) Its parallel updowu activity on the binary tree is time-bounded by a constant

number of leaf to root (or root to leaf) routings

(b) All operations at nodes are performed in const ant-bounded time

(c) It sends father to son (and sou to father) messages of constant bounded

length only.

5.3 Elementary exam ples

In this section we describe the problems of partial sums computations (already

seen in chapter 3) and subsequence ranking which satisfy corollary 1. These

algorithms appear as sub-tasks in the algorithm of the next section. Moreover,

at the end of this section we describe how the tree nodes of the balanced binary

tree may be pre-order numbered by an efficient algorithm.

5.3.1 Partial sums computation

Given n values (t»(0), t>(l),. . . , v(n — 1)), a partial sums computation evaluates,

for all i, (0 < t < n — 1), each of the sums '£,,J=0v(j). The computation starts with

(for all s, 0 < s < n — 1) t>(s) being stored at the PE associated with leaf s (the

leaves are numbered from left to right). During a computation a PE associated

with tree node i uses three storage locations A,, B, and C,. At the outset of the

computation, (for all s, 0 < a < n — 1) v(s) at the s>h leaf is assigned to A} . Then

Chapter 5 : The balanced binary technique on feasible SIMD computers 10 4

at successively higher levels in the tree, all non-leaf nodes (those at the same level

in parallel) compute:

A, *— + Arlghtum(i)

B, « - Ar,ght.a»U)

After the root has computed these values it sets CTOot = Aroot and then non-

root nodes at successively lower levels in the tree (those at the same level in

parallel) compute:

Ct(i»o/r/«.on) «— C/alAerp) — Bfa,h,T{i)
a right ton) * C /al/irr(i)

An invariant o f the computation is that if tree node i is the root o f a subtree

spanning leaves r to s then C, equals £*_ , value(j). Thus when the computation

stops, for each leaf », Cj is the partial sum value(j).

5.3.2 Subsequence ranking

Given a string (e.g. YABBABBAXABABA), the subsequence ranking problem

is to rank the items in a sublist of distinguished items (e.g. the B 's). The

characters of the string are placed at the leaves o f the tree. Each PE (storing a

leaf) has a memory location which is initially made to contain 1 if the associated

character is distinguished (is a B in the example) otherwise it contains 0. This

is schematically shown in (i) below. A prefix computation is then performed

on these values (the result for such a computation for our example is shown in

Chapter 5 : The balanced binary technique on feasible SIMD computers 105

(ii) below). For each distinguished item, the associated storage location then

contains its ranking (the contents of such storage locations can be locally nulled

for uou-distinguished items as (tit) below illustrates).

String:

Y A B B A B B A X A B A B A

(i) assign values

00110110001010

(ii) perform a prefix computation

0 0 1 2 2 3 4 4 4 4 5 5 6 6

(iii) zero non-distinguished items

0 0 1 2 0 3 4 0 0 0 5 0 6 0

Sometimes it is useful (and this is true feu the example of next section) for each

each tree node to have a unique defining integer (perhaps its preorder number).

The following algorithm determines a preorder numbering of the tree nodes. Each

PE associated with a tree node t has two storage locations (registers) A, and B,.

Initially, for all leaves, Ai *— 1. Then the computation proceeds up the tree in

the usual way with the non-leaf nodes computing:

Ai «— A u f , + Aright^i) + 1

In this way, Ai for all tree nodes becomes equal to the number of nodes in the

subtree rooted at tree node t. When A root has been computed, the assignment

Chapter 5 : The balanced binary technique on feasible SIMD computers 1 0 6

Braot *— 1 is made and then the computation proceeds down the tree with non-

root nodes computing:

B fa,hrr(l, + 1

B,{aright ton) £ /a t /w r(i) + 1 + Ai

When the PE's associated with the leaf nodes have finished their computation,

B, for all nodes is the preorder number of that node.

5.4 Solving the bracket matching problem

Given a sequence of n brackets [the sequence (() ((())) (()) ()) is

used as an example], the bracket matching problem is to compute the function

match[i] which for all j, 0 < t < n — 1 is the position (in the string) of the bracket

matching that at position i. For our example match[2] = l match[3]=8 . The P

RAM algorithm of Bar-On and Vishkiu [BV85] is essentially an algorithm that

computes the function match. Knowing match (as [BV85] indicates), it is an easy

extension to compute (in constant time on a P-RAM) the expression tree from

an expression presented as a string.

The algorithm described in [BV85] is not readily implemented on the mesh

in time 0(y/n). This is because (c) o f corollary 1 is not satisfied. Bar-On and

Vishkin's algorithm consists mainly o f an upward phase in the tree followed by

a downward phase in the course o f which each bracket follows its unique path in

the tree of partial results from the leaf at which it is stored to the leaf storing

Chapter 5 : The balanced binary technique on feasible SIMD computers 10 7

only A,.howi.

Figure 5.7

its matching bracket. Figure 5.7 illustrates such a tree for our example sequence.

During the upward phase many paths intersect thus violating (c) of corollary

1. In our following algorithm, the upward phase of [BV85] is simulated by a

downward (step 2), and the downward phase (of [BV85]) is replaced by a new

technique contained in steps 3 and 4. This new algorithm satisfies corollary 1.

Given a sequence S o f brackets, reduced(S) is the sequence obtained from S

by repeatedly deleting adjacent pairs '() ’ [GR88], e.g. reduced[))(())(] =))(. In

general, any irreducible sequence of brackets is of the form)'(•*’. Therefore, a pair

of integers are sufficient to represent any reduced form. Given any two reduced

sequences S\ =) '(J and Sj =)k(l, it is possible to compute reduced[5|5a] in 0 (1)

time :

reductd[Y(J)k(l) « - if k > j then)*+*-*(• else)'('+ ,~*

In order to compute the function match, we employ the balanced binary tree

with the brackets placed at the leaves o f the balanced binary tree. After the

execution of step 1, A, will store the reduced form of the sequence of brackets

which are stored at the leaves of the subtree rooted at t. Moreover, B{* (respec­

Chapter 5 : The balanced binary technique on feasible SIMD computers 1 0 8

tively A /1) will store the reduced form of the sequence o f brackets stored at the

leaves o f the tree rooted at the left (right) sou of i. The superscript here refers

to the direction in which the contents of the location B ,H or () will be passed

down the tree in step 2 of the algorithm and so is contrary to a seemingly natural

superscripting at this point. Initially every PE storing a leaf of the tree. A, is set

equal to the type of bracket associated with that leaf.

Step 1. We start with the input sequence of brackets at the leaves of the bal­

anced binary tree (for each leaf, A, is the bracket stored at that leaf) and in an

upward phase we compute, for all non-leaf nodes i :

B * -

* " Arighi„m{t)

A, — red u ced ^ * B fi

Figure 5.7 shows the result o f applying this step for our example string.

Step 2 In this step, each non-leaf node i (in parallel) sends down the tree the

value of (respectively, B,L) to every node of the tree rooted at the right (left)

sou of i. When each of these values passes through a node, it is copied to both

sons of that node. Thus each leaf receives a stream of B values (the first from

its father, the next from its grandfather and so on). On receiving the current B

value a computation taking 0 (1) time is performed at each leaf. Internal nodes

(in turn those at level 1 , than those at level 2 and so on) send their values to

Chapter 5 : The balanced binary technique on feasible SIMD computers 1 0 9

the leaves. The parallel computation time for internal nodes covering k leaves is

0(y/k), and so overall 0(y/n) parallel time is required.

After this step of the algorithm, the i,h leaf (for all i, 0 < i < (n —1)) will know

the pre-order number of the least common ancestor of the leaves with indexes i

and match(t). The least common ancestor of two leaves is that ancestor with the

lowest level number. During the computation each non-root tree node i stores a

triple T„ initialised as follows :

Ti(l) «—prefix number o f tree node i

Tt(2) «— if i is a left son then Bjfalher^

■«

T;(3) «— if i is a left son then L else R

Chapter 5 : The balanced binary technique on feasible SIM D computers 1 1 0

III addition, if i is a leaf then there is a second triple L,, initialised as follows :

1 . (1) - 0

1.(2) - 0

Li(3) *— if t stores a left bracket then L else R

Chapter 5 : The balanced binary technique on feasible SIMD computers 11 1

The stream o f B values that each leaf receives is in fact transmitted by sending

down the tree the triples T,. The additional information stored in these triples is

employed to guide the computation that takes place at the leaves. If i is a leaf,

then the arrival of each new T, induces the following computations :

if L i(1) = 0 then

if L i (3) = T,(3) then

begin

if ¿,(3) = L then

begin

1 ,(2) « - reduced[£,(2)T,(2)]

if L i (2) begins with')' then

¿ . (l) - r , (i)

end

else

begin

Li(2) « - reduced(T,(2)Li(2)]

if Li(2) ends with '(' then

£ .(i) - r é(i)

end

end

Chapter 5 : The balanced binary technique on feasible SIMD computers 11 2

y ’\ y " \
/"\ A A A A_ A

Figure 5.8

After all leaves have performed this romputatiou for the last time, L ,(l) stores

the prefix number o f the least com m on ancestor of leaf i and the leaf which stores

the bracket matching the one at leaf i . For our example input sequence, the result

of applying this step is shown in figure 5.8.

In order to understand how this step works, consider the case that a left

bracket is stored at a particular leaf. For this leaf L,(3) = L. Each time a value

!T,(2) arrives at the leaf, L,(2) which is initially the empty sequence, is updated

as follows : L%(2) *—reduced[L,(2)7i(2)]. When L,(2) begins with a right bracket,

the least common ancestor is given by £.,(1). The computation works (for left

brackets at leaves) because of the following invariant. Suppose that i is the root

of a subtree spanning leaves p to q and that the leaf is at position r (between

p and q), then after the assignment : 1,(2) «— reduced[L,(2)T,(2)], £.-(2) is the

reduced form of the brackets stored from positions (r + 1) to q.

Step S. Following step 2, the subsequence of brackets all having the same least

common ancestor form a string o f left brackets followed by the string of their

A A

Chapter 5 : The balanced binary technique on feasible SIMD computers 1 1 3

right matching brackets :

(, (........ (,) ,))■

For a given least common ancestor, we rank (by the previously described

algorithm for subsequence ranking) the brackets to obtain :

(1* (a* •••,(* .)*+!•)*+a,■ ■ ■ i)a*

where subscripts denote the ranks of the brackets. However, the desired sub­

scripting should be as follows :

(i* (a.•••»(*.)k,)* - i,

This is easily achieved by causing each PE storing a right bracket with rank

r (and knowing k which is passed down the tree in the ranking computation) to

compute the new subscript (2k — r + 1) in constant time. Now such a subscripting

has to be obtained for all possible least common ancestors. Every non-leaf tree

node is such a possible ancestor. The computations for all non-leaf nodes at the

same level can be performed in parallel and if the subtrees rooted at a certain

level have k leaves, all computations for this level will take 0(\/k) parallel time.

Summing over all levels gives a computation time for this step of:

lo * n -l

Chapter 5 : The balanced binary technique on feasible SIMD computers 11 4

Step 4 At this stage every bracket stored at a leaf knows :

(a) The least common ancestor (A) shared with its matching bracket.

(b) Its subscript (5) from step 3.

(c) Whether it is a left (L) or right (R) bracket. Denote L or R by B.

This step then simply sorts in 0(y/n) parallel time all brackets according to

the triple (A, 5. B) associated with each bracket using the sorting algorithm of

[NS79] or [TK77]. Let L < R for sorting purposes. If ’ (’ ends up at P E (i), then

its matching bracket will be stored at PE(i + 1). If in the sorting phase each

bracket carries with it its initial address, then matching brackets can exchange

addresses and then return to their original positions by resorting on their own

addresses.

Summing up the time complexities for all phases, we obtain an 0(y/n) parallel

time algorithm for the bracket matching problem. The 0(y/n) time complexity

for most steps relied heavily on the routing schemes induced by the implicit em­

bedding of the balanced binary tree. Our algorithm can also be implemented in

time O (logn) on a C C C using complete binary tree embeddings on this archi­

tecture such that of Wu [W85] and Gibbons and Raviudran [GRa92]. In these

embeddings routing form father to son or vice versa is achieved in constant time.

Chapter 5 : The balanced binary technique on feasible SIMD computers 11 5

5.5 A nother solution to the bracket matching problem

This section is at the crossroad between the last chapter and the last section.

We describe a second algorithm that provides a recursive solution to the bracket

matching problem.

For a given correct sequence of parenthesis we start by computing the so

called tree o f partial result. Then for each bracket stored at PE(i') a parameter

c, is computed which will indicate whether a bracket has its match lying in the

same half as itself (such a bracket is called a matched or unmatched bracket) or

not. The operations to be performed after this step are those of shifting specific

subsets of unmatched brackets from the left half to the right half and vice versa to

obtain two sequences (halves) where all the brackets and their matchings lie in the

same (half) sequence. We then consider each half separately as an independent

subproblem and recursively repeat the process. The algorithm terminates after

log n iterations (for a sequence of length n), time when a bracket and its matching

will be in contiguous locations. To understand how this algorithm runs, we

illustrate the steps o f its first iteration (on the M C C 2) on the following input

sequence of 16 brackets:

(l (a (3 (4)s)«(7 (s)s)io (11 (ia)i3)h)is)ie

Subscripts indicate the positions o f the brackets in the array. The computation of

the tree of partial results is obtained as in the first step of the previous algorithm.

Using this search tree and proceeding as in step 2 of the same algorithm it can

Chapter 5 : The balanced binary technique on feasible SIMD computers 1 1 6

be decided for every bracket if its matching lies in the same ‘half or not. This

is done by checking the level in the tree o f its least common ancestor which its

shares with its matching bracket. This information is contained in Cj. A bracket

will know that its match lies in the same half if c, < logn.

The next sequence shows the set of brackets (indices in bold) that do not have

their matching in the same half (unmatched brackets). The number (M) of such

brackets is computed by assigning a value u, to every bracket, where u, = 1 for

every matched one and = 0 for the unmatched ones and then sort the records

Hi's consisting of the bracket, its address (i) and its v* value as follows: Hi < H,

if Vi < Vj or Vi = Vj and i < j . We can then determine M by making every PE(t)

compare t>, to u,+i. The number M is equal to the index k o f the PE(fc) for which

Vk i u*+i. After this computation, the brackets are sent back to their original

addresses. For our example M = 8 .

(l (2 (3 (4)s)e (7 (o -)• ho (11 (12)l3)u) l5) l6

It is obvious to see that in each half o f the sequence M /2 (for our example 4)

brackets are unmatched. Our strategy is to shift M /4 brackets from the left half

to the right half and vice versa, so that the result is two correct subsequences.

The M /4 unmatched brackets to be shifted are determined by the following ob­

servation: If we divide a correct sequence o f brackets into two halves and after

that we match in every half every bracket that can be matched, then the remain­

ing brackets in the left half are all left brackets ami the ones in the right half

are all right brackets. Moreover, every kth leftmost unmatched bracket in the left

Chapter 5 ; The balanced binary technique on feasible SIMD computers 1 1 7

half must have as its matching the k,h rightmost unmatched bracket in the right

half. Therefore the sets of unmatched brackets to be shifted from each half (to

give two correct sequences) are those consisting o f half the number o f unmatched

parenthesis in each half lying at the rightmost positions.

The shifting operation is achieved by first sorting in each half separately the

records Hi's consisting of the bracket B,, and i according to : Hi < H} if

i), < Vj or (t>, = Vj and i < j) . For our example, the result of such sorting follows:

(l (a (7 U (3 (4)s)e -)») l0) l5) l 8 (11 (12)l3) l4

The the shifting is simply achieved by the following procedure (where C is just

an auxiliary register):

for all i , A //4 + 1 < i < A //2 in parallel do

begin

C, — B,

B, «— B„/2+i

B„/2+i *— C |i

end

For our example, the brackets shifted are (7, (s from the left half and)is,)ie

from the right half and we obtain the following two sequences.

(l (2)i5)i« (3 (4)s)e —)s)io (7 is (11 (12)l3) l4

However, such a shifting causes that in the right half we have a set of left

brackets standing on the right of their matching right brackets. For our example

Chapter 5 : The balanced binary technique on feasible SIMD computet 11 8

where (7 and (g should be ou the left of)9 aud)io. Therefore, another shifting

(correcting) operation is necessary for the second half. This is simply achieved

by executing:

for all i, 1 < * < M /4 in parallel do

begin

C, - B ,

Bi *— B*//4+j

^ M /4 + i ♦— C i

end

The corrected sequences for our example are:

(1 (a)is)i« (3 (4)s)s — (7 (a)»)io (11 (12)i3)i4

We now consider each half separately by reconstructing the tree of partial

results for each half aud perform the same type of computations. The two trees

to be reconstructed are in fact obtained by reconstructing the whole tree but

disregarding its root. These two subtrees arc therefore, each located in a set of

consecutively indexed PE’s. This insures that after the second iteration (at which

time we have 4 subproblems) the cost of performing the required computations is

reduced by a factor of 2. Our algorithm terminates in log n iterations when every

left bracket at position i will have its matching right bracket in position i + 1 and

has complexity v /n /2 ') = 0(y/n).

C h a p te r 6

Finding Euler tours on feasible

SIMD computers

6 .1 I n t r o d u c t i o n

Iu previous chapters we dealt with explicitly tree-structured problems and showed

that known techniques used to solve them on the P-RAM model can be efficiently

implemented on some feasible machines. Here, we deal with the implementation of

a generally useful tool namely Euleriau tour finding in a graph, which in contrast

is not explicitly tree-structured.

Finding an Euleriau tour (circuit) iu a graph is one o f the oldest problems iu

graph theory [Gi85]. The problem is to find a way of traversing every edge exactly

once iu a tour of the graph. Besides its own right, the importance o f the solution

to this problem is further stressed iu P-RAM algorithms such as those for finding

120

Chapter 6 : Finding Elder tours on feasible SIM D computers 12 1

a maximal matching in a graph [IS86] or computing the ear decomposition of a

2-edge connected graph [KR91].

In a sequential fashion the existence o f an Eulerian tour in a graph (or the

Eulcrian property o f the graph) is easy to decide and there are several algorithmic

ideas to solve the problem. However, these sequential algorithms such as the linear

time algorithms of [EJ73] and [B62] are not easy to parallelise.

Solutions in parallel environments appeared in [AV84] and [AIS84] but on

models such as the C R C W P-RAM. No known attempt has been made on more

realistic machines such as for instance the M C C 1. In section 6.4, we show that

such a problem can also be solved in efficient parallel time on such a machine by

simulating the procedures used by Awerbush et al [AIS84].

In the following two sections, we state some used definitions and briefly review

the P-RAM solutions of [AV84] and [AIS84] for the Eulerian tour problem.

6 .2 E u l e r i a n p r o p e r t y o f g r a p h s

An Eulerian graph is an undirected graph or digraph, which contains an Eulerian

circuit.

An undirected graph G = (V, E) is Eulerian if and only if it is connected and

all vertices are o f even degree.

A digraph H = (V, E) is an Eulerian digraph if and only if its underlying

graph is connected and Vu € V we have d,„(u) = d ^ fu) , where d„,(u) represents

Chapter 6 : Finding Euler tours on feasible SIMD computers 1 2 2

the iu-degree o f vertex u and (u) represents its out-degree.

A partition of the set of edges of a digraph H = (V, E) to (edge-disjoint)

circuits (C i, C i, . . . , Cfc) is an Eulerian partition of G if each edge appears exactly

once in its circuit. An Euler partition is unique if for every edge e £ E, a unique

’successor’ is specified. A successor of c can be any edge emanating from a vertex

which e enters. Any one-to-one mapping of entering edges to leaving edges in

each vertex can determine an appropriate successor for each edge.

6 .3 P a r a l l e l a p p r o a c h e s t o s o l v e t h e E u l e r i a n c i r c u i t p r o b ­

l e m

The parallel algorithms of [AV84] and [AIS84] use the same strategy. They both

start by finding an Euler partition o f the input graph, then find a way to stitch the

edge disjoint cycles obtained. Their complexities (for a given graph G = (V, E))

are respectively 0(log|£|) using |£| PE’s and 0(log|Vj using |V| + \E\ P E ’s

on the C R C W PRAM model of computation. Both algorithms take a directed

Eulerian graph as input. To find an Eulerian circuit of an undirected Eulerian

graph, both sets of authors use a preprocessing phase to orientate the graph. This

preprocessing ensures that the oriented graph is Eulerian.

Chapter 6 : Finding Euler tours on feasible SIMD computers 1 2 3

6.3.1 Outline of algorithm 1

The algorithm of Atallah and Vishkin [AV84] proceeds as follows: After partition­

ing the edges of the input graph into edge-disjoint circuits, this algorithm finds

a spanning tree of a suitably defined auxiliary graph. Then an Eulerian circuit

of the spanning tree of the auxiliary graph is found (such a problem is easier to

solve using the Euler tour technique o f Tarjan and Vishkiu [TV85]). Finally, the

Eulerian circuit of the spanning tree is expanded to an Euleriau tour of the input

graph. A high level description o f the algorithm is as follows :

1. Find an Euler partition o f the input graph G = (V, E) by means of lexico­

graphical sorting.

2. Construct an auxiliary undirected bipartite graph G b = (W, E) defined as

follows : G b has two sets o f vertices : circuit vertices and real vertices. The

circuit vertices are the circuits obtained from step 1 anti every vertex o f G

is a real vertex. There is an edge between a real vertex and a circuit vertex

if and only if the (corresponding) vertex lies on the corresponding circuit in

G.

3. Find a spanning tree T = (W , F) of Gb and replace each edge T by two

antiparallel edges to obtain an Euler digraph T'.

4. Find an Euler circuit of T' ami use it to guide the stitching of the circuits

found in step 1 into an Euler circuit.

Chapter 6 : Finding Euler tours on feasible SIMD computers 12 4

6 .3 .2 Outline of algorithm 2

The interesting feature of the algorithm o f Awerbush et al [/AIS84] is that it uses

two other algorithms that seem not to be closely related to our problem namely

ones that find the connected components and a spanning tree of an undirected

graph. This algorithm starts by finding an Euler partition of the input graph, then

using a connected components algorithm, a so called circuit-graph is computed.

A spanning tree is then extracted from this circuit graph and the weights of its

edges are used to modify the Euler partition so that the result is an Eulerian

tour o f the input graph. The steps performed by this algorithm can be briefly

described as follows :

1. Generate an Euler partition P o f the input graph G = (V, E) by means of

lexicographical sorting.

2. Name the circuits of P. i.e tell each edge to which circuit of P it belongs (By

means of a connected component algorithm).

3 . Construct a circuit graph Ca defined as follows: The vertices of Ca are the

circuits obtained from step 1 and there exists an edge (link) between two

vertices (circuits) if they have a common vertex (of G). Edges are labeled

(e j, ca) where ei and e2 are the edges entering that same vertex.

4. Find a (weighted) spanning tree T o f Cc,-

5. Execute the switch operations on T i.e. exchange the successors o f every two

edges labeling an edge o f T.

Chapter 6 : Finding Euler tours on feasible SIMD computers 12 5

6.4 Algorithm on M CC'2

The Algorithm presented is an adaptation of that of Awerhush et al. [AIS84].

The initial configuration for our problem is that each edge (i , j) o f the directed

Eulerian graph G = (V, E) (|£| = in) will be stored in one PE of the (y/m x ^/m)

M C C 2 (with shuffled row m ajor indexing). Our implementation consists o f the

following six steps which are illustrated in detail in section 6.4.1.

Step 1. Find an Euler partition by means o f lexicographical sorting.

Step 2. Construct the line graph of the graph consisting of the edge-disjoint

cycles obtained in step 1 .

Step S. Find the connected components of the line graph obtained from step 2.

Step 4. Construct a circuit graph Co = (P, I) where P is the set of edge-disjoint

cycles obtained in step 1 and L is a set of links defined as follows: There is a link

(Ci, C j) where C,, Cj € P if C, and C, have a common vertex.

Step 5. Select switches.(to stitch the edges disjoint cycles obtained in step 1)

by finding a spanning tree o f Co-

Step 6. Execute the switching operations on T to finally obtain an Euler tour

of the input graph.

Chapter 6 : Finding Euler tours on feasible SIMD computers 1 2 6

Figure 6.1: A 16-edge Eulerian digraph

6.4.1 Detailed description:

We will be illustrating the romputations o f earh step using the graph of figure

6.1(a) The input consists of a list of edges initially stored in register E D G E (i)

for earh PE(i) (figure 6.1(6)). Furthermore, every step of our implementation will

require the use o f an additional number of registers (memory locations) bounded

by the maximum vertex degree of our input graph.

Step 1. The aim in this step is to partition the input graph into edge disjoint

cycles i.e. find an Euler partition. The following computations perform a 1-to-l

mapping of the entering edges to exiting edges for each vertex [GR88]:

Chapter 6 : Finding Euler tours on feasible SIMD computers 127

1.1 Sort the edges in E D G E (i) according to the following lexicographical order:

(j , k) < (l,m) if fc < m or (fc = m and j < /).

1.2. Copy vector E D G E (i) into vector SU CCESSO R(i).

1.3. Set pointer P (i) = i for all i

1.4. Sort records (SUCC ESSO R (i), P (i)) on key SU CC ESSO R(i) according

to the following lexicographical order : (j ,k) < (l,m) if (j < l) or (j = /

and k < m). Each edge of EDGE will recognize its successor by the pointer

/*(.)■

Step 1 finds an Euler partition of G (i.e. a set of edge-disjoint circuits)

and can be achieved in 0(y/m) time on a (y/rri X m) M C C 2 using the sort­

ing algorithms of [NS79] or [TK77]. Table 6.1 shows the contents o f registers

E D G E (i), SU CC ESSO R (i) and P (i) for all PE's after applying the above com­

putations and figure 6.2 shows the corresponding Euler partition for our example

graph. The output from this step will mainly constitute the input for a connected

components algorithm to achieve circuit identification.

I

Step 2. The 'special' line graph LG to be constructed is defined as follows : For

each edge o f G there is a vertex o f LG and two vertices of LG are adjacent if one

of the corresponding is a successor of the other in the Euler partition. The idea

behind this step is to prepare an input to the connected components algorithm of

[NS81] that runs in 0(y/m) time for a graph where the maximum vertex degree is

d = 2. The circuits obtained by the Euler partition can have a maximum vertex

Chapter 6 : Finding Euler tours on feasible SIMD computers 128

Figure 6.2: An Euler partition of the graph of figure 6.1

Chapter 6 : Finding Euler tours on feasible SIMD computers 1 2 9

degree greater than 2 and therefore if it is proceeded otherwise the complexity of

applying the algorithm of [NS81] to determine for each edge the circuit it belongs

would be y/ri x log n (as seen in chapter 4) whereas our goal is to stay as close as

possible to 0 (y/ n) complexity overall. Moreover, the algorithm of [NS81] works

on adjacency lists and therefore a refinement is required.

After step 1 each PE of the M C C 2 contains an element of EDG E(i) and the

pointer P (i) specifying its successor in the Euler partition. Note that elements

in SU C C E S SO R (i) need not to be kept. The correspondence edge - vertex will

be done as follows : The edge (in E D G E (i)) contained in PE(i) will be named

vertex v,, and the adjacency list for that vertex is stored in registers AD .I(i,0)

and AD J(i, 1).

The pointer P (i) associated with the successor of the edge concerned will be

A D J(i,0). A D J (i, 1) will store the label of the vertex (edge) of which vertex

(edge) i is the successor. This is done by sorting records (v ,,P (i)) on key P (i)

and the value to be kept in A D J(i, 1) is the vertex label o f the record just sorted.

Columns 2 and 4 of table 6.2 show (for our example) the contents o f ED G E and

P for every PE(«) and columns 3, 5 and 6 show respectively the labeling o f the

edges and contents of AD J{i,0) and AD J(i, 1). Clearly, this step is achievable

in 0(y/m) parallel time as it mainly involves sorting procedures.

Step S. This step consists of applying the algorithm o f [NS81] that finds the

connected components of an undirected graph (max vertex degree < 2) given

by its adjacency list representation (in our rase this is given by A D J(i,0) and

Chapter 6 : Finding Euler tours on feasible SIMD computers 1 3 0

Figure 6.3: Output of the ronnerted components algorithm

A D J(i, 1) for every vertex *). After fiuishing all vertices belonging to the same

component will point to that vertex o f least index belonging to this component,

that is, every component is named after its vertex of least index. This information

will be stored in registers C (i) (we will refer to this information as C* where k =

C (t)). For our example, figure 6.3 shows the output o f the connected component

algorithm (a set of reduced trees) and table 6.3 shows the sets of edges (renamed)

and the identifier o f the circuit they belong to. The complexity of this step is

0(y/Fi) (NS81).

Chapter 6 : Finding Euler tours on feasible SIMD computers 131

Step 4. Now that each edge knows to which circuit it belongs, we can construct

the so-called circuit graph Cg • We require for every P E 2d additional (d =

maximum in-degree o f vertices in G) memory locations or registers D (i , j) and

C (i , j), (1 < * < n , 0 < j < d — 1) (n is the number o f vertices in our graph)

to store the iu-edges o f each vertex of G along with their circuit identifiers. The

strategy is to compress such records into the 2d locations o f the PE with the

same index that the vertex these edges (E D G E) enter (we assume that such

a correspondence exists). For our example the edges (3 ,2) and (8,2) entering

vertex 2 will be stored in ¿7(2,0) and ¿7(2,1) o f PE(2) and C (2,0) and C (2 ,1)

will respectively contain the values 1 and 3.

The above is achieved by sending the records consisting of (the edge (i, j) and

the circuit identifier C (i)) stored in the PE’s with an index / j to the PE with

Chapter 6 : Finding Enter tour» on feasible SIMD computer» 1 3 2

PE(i) D(i.O) C(I.O) D(i.l) C(l.l)

1 (2,1) 1
2 0 .2) 1 (8.2) 3
3 (1.3) 1 (4.3) 3
4 (2.4) 3 (6.4) 7
5 (4.5) 7 _
6 (7.6) 7 _
7 (5.7) 7 (8.7) 3
8 (7.8) 3 (10,8) 13
8 (3.8) 3 (8.9) 13
10 (8.10) 13 - -_ _ _ _
12 _ _ _ _
13 _ _ _ _
14 - - - -
15 _ _ _ —
16 - - - -

Table 6.4

index j . Such an operation is just an R A W (Random Access Write) where many

PE's are trying to write into the same PE but onto different registers. This can be

performed by the use of the routing algorithm of Nassimi and Salmi [NS80] either

by comparting the many requests to write into the same PE. Table 6.4 shows the

contents of the D registers for each PE. The circuit graph Ca constructed is

identified as follows: Its vertices are the circuit identifiers C*’s stored in registers

C (i , j)'s and there exists a link between two such vertices every time that two

edges stored in the D locations o f every PE are combined (equivalent to two edges

entering the same vertex).

As for an example, consider the following two edges: (2 ,4), (6 ,4) (stored in

ZJ(4,0) and D(4,1) of PE(4)) anti belonging respectively to circuits C3, C?, Then

this implies the existence of the link (C 3, Cr) in Ca and labelled ((2 ,4), (6 ,4)).

Chapter 6 : Finding Euler tours on feasible SIMD computers 13 3

However, in the general rase the number of links in the connected circuit

graph Cg can be reduced by the use of an observation in [AIS84] stating that

a connected subgraph of Cg will still lead to the same result. Therefore, the

links of Cg that are considered are those with labels stored in locations D (i,j) ,

D (i , j + 1), 0 < j < d — 2 instead of all possible combinations. In figure 6.4 we

illustrate the circuit graph C G for our example. The complexity of this step is

dominated by the cost of invoking the routing algorithm of Nassimi and Salmi

[NS80] to perform an RAW operation where at most d PE's attempt to write

into the same location.

Step 5. This step consists of selecting a set of links o f the " reduced” circuit

graph, previously computed, such that after properly exchanging the successors

of their labels in the Euler partition , an Euler tour o f the input graph is obtained.

From our previous example, if the link ((2,4), (6 ,4)) is selected then this operation

means the exchange of the successors of the edges (2 ,4) and (6,4) by simply

modifying the P pointers.

One way of finding the set of links needed is to find any spanning tree of

the subgraph of Ca [AIS84). For this purpose, we make use of the efficient

algorithm o f Atallah and Kosaraju [AK84] for finding a minimum spanning tree

of an undirected graph given by its adjacency matrix on a M C C 2.

The number of circuits in an Euler partition of an Eulerian graph with in

edges is < m /3. Thus a (y/rn X y/rti) M C C 2 could easily store the adjacency

matrix of Co- To construct the adjacency matrix o f the graph Co we proceed as

follows : Every PE stores at most d records consisting o f the edges entering the

vertex with the same label and their circuit identifiers. The circuits have been

named according to the output of the connected components algorithm and if we

suppose the existence o f say k circuits, their labels are in the range [1 .. m] (m

number o f edges in the input graph). But what we require is an identification of

the circuits within the range [1 .. k] so that a simple routing operation will give us

the adjacency matrix o f our circuit graph. To change the range [1.. m] to [1 .. A*]

we execute the following :

for all t, 1 < t < n in parallel do

for all j , 0 < j < d — 1 in parallel do

M (C (i, j)) *— C (i , j) (M is a new register required)

Many PE’s will attempt to write into the same M location, but we do not

care as they will be attempting to write the same data item. We then confine

(compress) the M locations to an area o f successively indexed PE's by using,

for instance, a sorting procedure and can easily obtain a ranking of our circuits

within the desired range i.e. (1 .. fc].

Chapter 6 : Finding Euler tours on feasible SIMD computers 1 3 4

Now that each circuit has been renamed, what is required is to update the

Chapter 6 : Finding Euler tours on feasible SIMD computers 1 3 5

information for all edges. We achieve this by distributing the new ranks (A /) to

the positions they were stored at before the compression and and then we let all

the PE’s read from those positions to finally update their information.

Now our task is to construct the weighted adjacency matrix W of CV;. This

is simply achieved by the following instruction :

for all i, 1 < i < m in parallel do

for j = 1 to d — 1 do begin

W(C(i,j) <- C(i,j + 1));
- D (i . j + 1))

end

Having constructed W , we invoke the minimum spanning tree procedure with

the convention that: ((a, 6), (c, b)) < ((d, e), (/ , e)) if 6 < e

The time complexity of this step is dominated by that of constructing the

adjacency matrix W o f our circuit graph and is thus 0(dy/m) due to some se­

quential handling. Figure 6.4 shows the minimum spanning tree (edges in bold

lines) computed for our example graph.

Step 6. The output of the minimum spanning tree procedure is a set of (5 <

rn/3 — 1) marked edges stored as special pairs (i , j) ’s carrying their weights with

them. In our case, this set is a collection of edges of the form (C,, Cj) («, j €

[1 •• &]) with the weights or labels (IT s). What remains to be done now is for

every PE storing links (edges) o f the circuit graph Ca to proceed to exchange

Chapter 6 : Finding Euler tours on feasible SIMD computers 13 6

the successors o f the labels of those belonging to the minimum spanning tree. To

achieve this, we allow each PE to store d — 1 additional data items consisting of

the weights (W 's) of the edges of the minimum spanning tree (S P A N registers).

We begin by routing these W ’s which are of the form ((k , v), (/, v)) to the appro­

priate PE(t’) (they will stored in registers S P A N). Again and as in step 4 this

computation can be achieved using the routing algorithm of Nassimi and Salmi

[NS81] by compacting the information involved.

The last computation to be performed which is the execution o f the switching

operations is achieved by first identifying sequentially (for each PE) the edges

that are involved in these operations by searching the registers D and SPA N

and then by modifying the P pointers accordingly, that is, exchanging the suc­

cessors o f the edges in S PA N . Table 6.5 illustrates the results of changing the

adequate P pointers for our example. For each P E (i), these internal operations

take respectively O(d) and 0 (d ?) sequential time to perform. The overall time

complexity of achieving this step is 0(dy/m).

It is easy to see that the overall time complexity o f the operations advocated

for the implementation of the P-RAM algorithm of [AIS84] is (0(dy/n). For

architectures such as the PSC the same operations can be performed and will lead

to 0 (log3 n). Such a time complexity is dominated by that o f finding the spanning

tree and the connected components of a graph using the O (log3 n) algorithms of

[NM82].

Chapter 6 : Finding Euler tours on feasible SIMD computers 1 3 7

Tabi«* 6.5

C h a p te r 7

Conclusions

This thesis has investigated the implementation of many techniques and basic

tools which evolved from research within the natural P-RAM model. As a result,

many efficient algorithms designed within this model were shown to he imple-

meutable in optimum time on more feasible machines ami particularly on the

2 -dimeusional mesh-connected model.

In chapters 2 and 3 we have surveyed a set of aids that frequently occur the

ever growing literature on parallel computation. For instance, by showing that

many of these aids can be implemented efficiently on an 2-dimensional mesh-

connected computer we showed or indicated that many o f the N C algorithms

and utilities in Vishkiu’s structural algorithmics [Vi91](chapter 3) retain their

inter-dependence and that their time complexities frequently translate to 0 (y/ti)

which is optimal.

In chapter 4, some important recursively reducible problems were categorised

1 3 8

Chapter 7 : Conclusions 13 9

and shown to be efficiently implement able on feasible machines. Problems such

as polynomial evaluation, list ranking and expression evaluation were shown to

be possible in 0(y/ii) on the 2 -dimeusioual mesh-connected computer for inputs

of length n. Moreover, for many of the problems treated in chapter 4 which had

a poor processor utilisation, we suggested a way for improving it by the use of

pipelining.

Chapter 5, a natural extension of the previous chapter, showed how the bal­

anced binary tree technique (also commonly employed in the design of efficient

algorithms on the P-RAM model) can be effectively utilised (to solve problems

of size n and implying a balanced binary tree with n leaves) on a 2 -dimensional

mesh-connected computer with (y/ii x \/n) PE's. Such a utilisation is likely to

yield optimal implementations of many P-RAM algorithms (based on the bal­

anced binary tree) on the 2 -dimensional mesh-connected computer that run in

0(y/ri) time using n PE's (rather than as 4n, as implied by the H -tree approach).

As examples we showed in particular how, if the input is in the form of a string

(of the symbols making up the expression) stored in an array, the uou-trivial

problems o f evaluating arithmetic expressions, evaluating algebraic expressions

with a carrier of constant bounded size and parsing expressions of both bracket

and input driven languages have efficient solutions on the 2 -dimensioual mesh-

connected computer.

Dealing with non-tree structured problems it was shown in chapter 6 that

using an initial configuration of one edge per PE for a digraph G = (V, E) with

m edges and where the vertices have maximum iu-degree d, the Eulerian circuit

Chapter 7 : Conclusions 1 4 0

problem ran be solved ou a (y/in x y/m) M C C 2 in 0(dy/m) parallel time. The

same operations devised on the 2-dimensional inesh-connerted computer lead to

an 0 (log 3n) solution on the perfect shuffle computer. Our solution was based on

that of Awerbush et nl. [AIS84] and is likely to be equivalent in complexity terms

to a solution based ou the method of Atallali and Vishkiu [AV84]. One interesting

fact though is whether combining techniques from both P-R AM algorithms would

lead to another solution for the Euleriau circuit problem. It is likely that applying

the Euler tour technique (used by [AV84]) to the spanning tree of the circuit graph

in [AIS84] will yield the same solution.

The studies of this thesis concerned general techniques for P-R AM algorithm

implementation on distributed memory machines. These investigations showed

that many of these techniques can be usefully and optimally automated in the

guise o f methods and programs on such machines. This is particularly true for the

2-dimensional mesh-connected computer where, at present, completely general P-

RAM emulation is not well understood.

Bibliography

[A83] Atallah, M. J., Finding Euler tours in parallel, Proceedings of the

7th Annual Conference on Information Sciences and Systems, 1983, pp.

685-689.

[A85] Akl, S. G., Parallel Sorting Algorithms, Academic Press, Orlando,

Florida, 1985.

[A89] Akl, S. G., The Design and Analysis o f Parallel Algorithms, Prentice-

Hall, Englewood Cliffs, New Jersey, 1989.

[A82] Aleliuuas. R.. Randomised parallel communication, A C M S IG A C T —

S IG O P S Symposium on principles o f distributed computing, August

1992, pp. 60-72.

[AH85] Atallah, M. J. and Hamhrusrh, S. E., Solving tree problems on a mesh-

connected processor array. Proceedings o f 26,h annual IEEE symposium

on Foundations o f Computer Science, 1985, pp. 222-231.

[AHU74] Aho, A. V., Hopcroft, J. E. and Ullinau, J. D.. The design and Analy­

sis o f Computer Algorithms, Addison-Wesley, Reading, Massachussets,

141

Bibliography 142

1974.

[AIS84] Awerbush, B., Israeli, A. aud Shiloarli, Y., Finding Euler circuits iu

logarithmic parallel time, Proceedings of 16‘h ACM symposium ou

Theory of Computing, May 1984, pp.249-247.

[AK84] Atallah, M. J. aud Kosaraju, R.. Graph problems on a mesh-connected

processor array, Journal of the ACM , Vol. 31, No. 3, 1984, pp. 649-667.

[AKS83] Ajtai, M., Komlos, J., and Szemeredi, E., An fj(logu) sorting network,

Proceedings ACM Symposium on Theory of Computation, April 1983,

pp. 1-9.

[AL81] Agerwala, T. aud Lint, B., Communication issues in the design and

analysis o f parallel algorithms, IEEE Transactions on Software Engi­

neering, Vol. SE-7, No. 2, March 1981, pp.174-188.

[AV84] Atallah, M. .1. aud Vishkiu, U., Finding Euler tours in parallel. Journal

o f Computer Systems Science, 29, 1984, pp. 330-337.

[B62] Berge, C., The theory o f graphs and its applications, Wiley, New York.

1962.

[BK80] Brent, R. P., aud Kuug, H. T ., On the area o f binary tree layout»,

Information Processing Letters, 11, 1980, pp. 46-48.

[BH82] Borodin, A. and Hopcroft, J., Routing, merging and sorting on parallel

models o f computation. Proceedings o f 14,fc Annual ACM Symposium

on Theory of Computing, , 1982, pp. 338-344.

Bibliography 14 3

[BV85] Bar-On, I. and Vishkin, U., Optimal generation o f a tree form , ACM

Transactions on Programming Languages and Systems, Vol. 7, 1985,

pp. 348-357.

[BS90] Barnard, D. T. and Skillirorn, D. B., Pipelining tree-structured algo­

rithms on SIMD architectures Information Processing Letters, 35, 1990,

pp. 79-84.

[C86] Cole, R., Parallel merge sort, Proceedings of the 21th Annual Sympo­

sium on Foundations o f Computer Science, 1986, pp. 511-516.

[CKS81] Chandra, A. K., Kozen, D. C. and Stockmeyer, L. J., Alternation,

Journal of the ACM , Vol. 28, 1981, pp. 114-133.

[CP90] Cypher, R. and Plaxton, C. J., Deterministic sorting in nearly loga­

rithmic time on the hypercube and related computers. Proceedings of

the 22nd ACM Symposium on Theory o f Computing, 1990, pp. 193-203.

[E88] Ebert, J., Computing Eviction trails Information Processing Letters,

28, 1988, pp. 93-97.

[EJ73] Edmonds, J., and Johnson, E. L., Matching, Euler tours and the Chi­

nese postman. Mathematical Programming, 5, 1973, pp. 88-124.

[F66] Flynn, M. J., Very high speed computing systems. Proceedings IEEE

54, 1966, pp. 1901-1909.

[FW78] Fortune, S. and W illie, J., Parallelism in Random Access Machines,

Bibliography 1 4 4

Proceedings of the 11th Annual ACM Symposium on Theory o f Com­

puting, 1978, pp. 114-118.

[G82] Goldshlager, L. M., A universal interconnection pattern fo r parallel

computers, Journal of the ACM, Vol. 29, 1982, pp. 1073-1086.

[Gi85] Gibbons, A. M., Algorithmic Graph Theory, Cambridge University

Press, Cambridge, 1985.

[Gi91] Gibbons, A. M., A tutorial introduction to distributed memory models

o f parallel computation, Research Report 185, Department of Computer

Science, University o f Warwick, 1991.

[GKT79] Guibas, L. J., Kung, H. T. and Thom pson C. D.. Direct VLSI imple­

mentation o f combinatorial algorithms. Proceedings of the Conference

on VLSI, Caltech, Pasadena, California, January 1979, pp. 509-525.

[GR88] Gibbons, A. M. and Rytter. W., Efficient Parallel Algorithms, Cam­

bridge University Press, Cambridge, 1988.

[GR89] Gibbons, A. M. and Rytter, W ., Optimal parallel algorithms for dy­

namic expression evaluation and context free recognition, Information

and Computation, Vol. 81, No. 1, April 1989, pp. 32-45.

[GRa92] Gibbous, A. M. and Raviudrau, S., D ense edge-disjoint embedding o f

complete binary trees in the hypercube, Internal Report No. 223, De­

partment of Computer Science, University of Warwick, 1992.

Bibliography 14 6

[KH86] Krishuau, M. S. aud Hayes, J. P., An array layout methodology for

VLSI circuits, IEEE Transactions on Computers, Vol C-35, No. 12,

December 1986, pp. 1055-1067.

[KL85] Kindervater, G. A. P. and Leustra, J. K., An introduction to paral­

lelism in combinatorial optimisation, Research Report OS — 728501,

Department o f Operations Research and System Theory, Centre for

Mathematics aud Computer Science, Amsterdam, February, 1985.

[KR91] Karp, R. M. and Ramachaudrau, V., Parallel Algorithms for Shared-

Memory Machines. In Handbook of Theoretical Computer Science,

Volume A : Algorithms and Complexity, J van Leeuwen (ed.), 1991.

[L92] Leighton, F. T ., Introduction to parallel algorithms and architectures:

Arrays-Trees-Hypercubes. Morgan Kaufman, 1992.

[MR85] Miller, G. L. and Reif, J., Parallel tree contraction and its applica­

tions. Proceedings 26th Animal IEEE Symposium on Foundations of

Computer Science, 1985, pp. 478-489.

[MS89] Miller, R. and Stout, Q. F ., Mesh computer algorithms for computa­

tional geometry, IEEE Transactions on Computers, Vol. C-38, No. 3,

March 1989, pp. 321-340.

[MP88] Maggs, B. M. and Plotkin, S. A., Minimum-cost spanning tree as a path

finding problem. Information Processing Letters, 26, 1988, pp. 291-293.

[NM82] Nath, D. aud Malieshwari, S. N., Parallel algorithms for the connected

Bibliography 1 4 7

components and minimal spanning tree problems, Information Process­

ing Letters 14, 1982, pp. 7-11.

[NS79] Nassiini, D. and Salmi, S., Bitonic sort on a mesh-connected parallel

computer, IEEE Transactions on Computers, Vol. C-28, No.l, January

1979, pp. 2-7.

[NS80] Nassimi, D. and Salmi, S.. Finding connected components and con­

nected ones on a mesh-connected parallel computer, SIAM Journal on

Computing, Vol. 9, No. 4, November 1980, pp. 745-757.

[NS81] Nassimi, D. and Sahni, S., Data broadcasting in SIMD computers,

IEEE Transactions on Computers, Vol. C-30, No. 2, February 1981, pp.

282-288.

[074] Orcutt, S. E., Computer organization and algorithms for very high

speed computations, Pli. D. Thesis, Stanford University, 1974.

[P78] Preparata, F., New parallel sorting schemes, IEEE Transactions on

Computers, Vol. C-27, 1978, pp. 669-673.

[Q87] Quinn, M. J., Designing efficient algorithms fo r parallel computers,

McGraw-Hill, Singapore, 1987.

[QD84] Quinn, M. J., and Deo, N., Parallel graph algorithms, ACM Computing

Surveys 16, 1984, pp. 319-348.

[RS90] Ranka, S. and Salmi, S., Hypercube algorithms with applications to

image processing and pattern recognition, Springer Verlag, 1990.

Bibliography 1 4 8

[S80] Schwartz, J. T ., Ultracomputers, ACM Transactions on Programming

Languages and Systems, Vol. 2, 1980, pp. 484-521.

[S71] Stone, H. S., Parallel processing with the perfect shuffle, IEEE Trans­

actions on Computers, Vol. C-20, February 1971, pp. 153-161.

[SSc88] Saad, Y. and Schultz, M. H., Topological properties o f hypercubes, IEEE

Transactions on Computers, Vol. C-37, July 1988, pp. 867-872.

[SS86] Schnorr, C. P. and Shamir, A., An optimal sorting algorithm for mesh

connected computers, Proceedings of the 18,,‘ ACM Symposium on

Theory of Computing, 1986, pp. 255-263.

[SV81] Shiloach, Y. and Vishkin, U., Finding the maximum, merging and

sorting in a parallel model o f computation. Journal of Algorithms, Vol.

2., pp. 88-102, 1981.

[TK77] Thompson, C. D. and Hung. H. T ., Sorting on a mesh-connected paral­

lel computer, Communications o f the ACM, Vol. 20, No. 4, April 1977,

pp. 263-271.

[TV85] Tarjau, R. E., and Vishkiu, U., Finding biconnected components and

computing tree functions in logarithmic parallel time, SIAM Journal o f

computing, Vol. 14., 1984, pp. 580-599.

[TW91] Trew, A. and Wilson, G. (Eds) Past, Present, Parallel - A survey o f

available parallel computers, Springer-Verlag, 1991.

Bibliography 14 9

[U84] Ullman, J. D., Computational Aspects o f VLSI, Computer Science

Press, Rockville, Maryland, 1984.

[V80] Valiant, L. G., Experiments with a parallel communication scheme,

Proceedings IS'* Allertou Conference on Communication, Control and

Computing, 1980, pp. 802-811.

[V83] Valiant, L. G., Optimality o f a two-phase strategy for routing in inter­

connection networks, IEEE Transactions on Computers, Vol. C-32, No.

9, September 1983, pp. 861-863.

[Vi91] Viskkin, U., Structural parallel algorithmics. Proceedings of the 18,h

ICALP, Springer-Verlag, pp. 363-380, 1991.

[VB81] Valiant, L. G. and Brebner, G. J., Universal schemes fo r parallel com­

munication, Proceedings of the 13,,‘ ACM Symposium on Theory of

Computing, 1981, pp. 263-277.

[W85] Wu, A ., Embedding o f tree networks into hypercubes. Journal of Parallel

and Distributed Computing, 2, 3, 1985, pp. 238-249.

[WC90] Wang, B. and Chen, G., Two-dimensional processor array with reconfig-

urable bus system is at least as powerful as CRCW model, Information

Processing Letters 36, 1990, pp. 31-36.

TH E B R IT IS H LIBRARY
BRITISH THESIS SERVICE

On the implementation o f P-RAM

TITLE ... algorithms on feasible SIMD computers ••••

AUTHOR R ID H A Z IA N I

DEGREE...

AWARDING BODY „ . . rw ..
University o f Warwick

THESIS
NUMBER

T H IS T H E S IS H A S B E E N M IC R O F IL M E D E X A C T L Y A S R E C E IV E D

The quality of this reproduction is dependent upon the quality of the original thesis
submitted for microfilming. Every effort has been made to ensure the highest quality of
reproduction.

Some pages may have indistinct print, especially if the original papers were poorly
produced o r if the awarding body sent an inferior copy.

If pages are missing, please contact the awarding body which granted the degree.

Previously copyrighted materials (journal articles, published texts, etc.) are not
filmed.

This copy o f the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its author
and that no inform ation derived from it m ay be published w ithout the
author's prior written consent.

Reproduction of this thesis, other than as permitted under the United Kingdom
Copyright Designs and Patents Act 1988. o r under specific agreement with the
copyright holder, is prohibited.

cm *1 | ' 2 | ' 3 | ' 4 | ' 5 | ' 6 REDUCTION X

C A M ERA * 5

No. of pages

