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Abstract

This Thesis contributes to the literature of business cycles driven by agents’ be-
liefs. In Chapter 3, we provide novel empirical evidence linking the effects of technology
news shocks to uncertainty shocks. Their correlation implies that when financial un-
certainty shocks hit the economy, utilization-adjusted total factor productivity (TFP)
increases over the medium-term. This leads to an attenuation of the effects on economic
activity from news shocks in the short-term and from uncertainty shocks in the medium-
term. Supported by these results, we propose an identification strategy to measure the
effects of ‘good uncertainty’ shocks and disentangle the importance of technological news,
good and bad uncertainties, and ambiguity shocks in explaining business cycle variation.

In Chapter 4, I investigate the empirical relationship between agents’ responses
to future technological changes and the level of uncertainty in the economy. I show that
the economic responses to news shocks change substantially over time, and that this dy-
namic couples with periods of high and low uncertainty. Periods of high uncertainty are
characterized by higher positive economic effects of news shocks on output, consumption,
investment and real personal income. These results indicate that the continuous updat-
ing of agents’ expectations about the current and future economic situation operates as
a transmission channel for news shocks, amplifying its positive outcomes.

Kurmann and Otrok [2013] show that the effects on economic activity from news
on future productivity growth are similar to the effects from unexpected changes in the
slope of the yield curve. In Chapter 5, I show that these results do not hold in the light
of a recent update in the utilization-adjusted TFP series produced by Fernald [2014].

In Chapter 6, I propose a novel method of identifying technological news shocks
through instrumental variables based on forecast revisions from the Survey of Profes-
sional Forecasters. I construct proxy measures for the slope of the long-run trend of
GDP, investment and industrial production, which are strong instruments for recovering
the underlying news shock. The procedure has the advantage of relying on information
about agents’ expectations, instead of the statistical procedures currently used for the
news shock identification. By employing a proxy SVAR, I show that news shocks produce
substantial effects on impact on GDP and investment. The effects on consumption in
the short-run, however, are milder than usually presented by the news shock literature.

xii



Chapter 1

Introduction



What are the main sources of economic fluctuations in the short and long-run?
This Thesis explores this question by evaluating the role of anticipated changes in the
technology level of the economy, or news shocks, on driving business cycles, and its
relation to uncertainty.

The idea of business cycles is that economic activity can be decomposed into two
parts: a trend, which represents the long-run growth of the economy, and the cycle, which
is the unpredictable fluctuation around the long-run trend. These fluctuations are caused
by temporary shocks, such as unexpected technological innovations, higher uncertainty,
changes in fiscal policy, oil price variations, and money supply, among others.

The Real Business Cycle theory says' that fluctuations are the efficient response
to these random exogenous shocks. There are costs associated to fluctuations, which
arise from the deep and complex relationship among economic variables and agents.
First, heterogeneity across agents makes the effect of recessions hit people unequally.
Second, fluctuations may affect the average level of employment and output. Third, ‘big
shocks’ are different from ‘small shocks’. For example, the strong recessionary impact of
the financial crisis of 2007/08 may have reduced not only the level of the output, but also
the potential of the economy, creating permanent negative effects. Understanding the
main structural sources of these fluctuations, the economic effects, and the underlying
transmission mechanisms are fundamental for the design of stabilization policies.

In this Thesis I focus specifically on business cycles driven by agents’ beliefs,
namely news and uncertainty shocks. News shocks are formally defined as changes in the
future total factor productivity (TFP) that are foreseen by the economic agents.? The
idea behind a news shock is that technological innovations take time to have an impact
on the economy. Part of this technological impact is foreseen by the economic agents,
who react to it in the present. If the agents are rational, positive news should generate
positive (and permanent) co-movement among GDP, consumption and investment. It
follows that the expectation of higher future productivity is capable of generating booms
and busts even before effective technological change materializes.

Bloom [2009] formally defines uncertainty shocks as an increase in the volatility
of TFP shocks that have a temporary negative effect in output growth. The idea is
that, if there is an unexpected hike in the uncertainty level of the economy, firms and
consumers will take precautionary actions in the short-run such as reducing investment,
consumption and employment. As a result, sudden increases in uncertainty produce

short-run negative fluctuations in the economy.

!See Stadler [1994] for an extensive review of the real business cycle literature.
*Beaudry and Portier [2006].



While the economic effects of news and uncertainty have been vastly explored by
the business cycle literature, this is the first research that shows the possible intercon-
nections between them. In Chapter 3, we provide novel empirical evidence linking the
empirical effects of technological news shocks to uncertainty shocks. We identify news
and a series of uncertainty shocks separately, by maximizing the respective forecasting
error variances of productivity and observed uncertainty. Following Barsky and Sims
[2011], news shocks maximize the productivity long-run variance (over 10 years) and
uncertainty shocks maximize the uncertainty short-run variance (over two quarters, as
in Caldara et al., 2016).

After a news shock, it is possible to observe a short-lived hike in financial uncer-
tainty, which is similar to an uncertainty shock. When the financial uncertainty shock is
identified, the result on utilization-adjusted TFP is positive in the medium-run, which
is similar to the expected path of a news shock. As a result, reconstructed news and
uncertainty shocks are positively correlated. If news and financial uncertainty shocks
are, indeed, independent drivers of the business cycle, they should not present such a
correlation. We propose an identification procedure in which it is possible to separate the
news shock from its correlated part with uncertainty (‘truly news’), and the uncertainty
shock from its correlated part with news (‘truly uncertainty’).

In Chapter 4, I study the different effects of a news shock over time, amplified
by uncertainty mechanisms. While in Chapter 3 proxies of uncertainty measures are
taken as observed, in Chapter 4 uncertainty is estimated endogenously from the second
moment of the variables. I propose an empirical model and identification procedure to
investigate whether economic responses to news about future productivity change over
time, and if this behavior depends on economic uncertainty. Investigating for hetero-
geneous responses over time means that the news shock identification should allow for
nonlinear and time-varying models. Investigating for the interaction between uncertainty
and news shocks means that such a model should be flexible enough to capture systemic
changes in the economic responses to a news shock based on the level of uncertainty.

The premise of the model is that uncertainty measures the agents’ expectations
about current and future economic conditions. It is reasonable to think that these
expectations should also be updated when the agents receive news about future produc-
tivity. In other words, the level of uncertainty endogenously responds to exogenous news
shocks. To meet these requirements, I employ a stochastic volatility in mean model that
treats macroeconomic and financial uncertainties as latent variables. The baseline model
builds upon Carriero et al. [2016a], as a nonlinear stochastic volatility Bayesian vector

autoregressive (VAR) model for large datasets.



I also propose an identification method for news shocks that extends the current
standard procedure for nonlinear and time-varying cases. The identification method is
a generalization of the Barsky and Sims [2011] procedure of maximizing the variance
decomposition of utilization-adjusted TFP over a predefined forecast period. Instead of
assuming a constant variance, the identification procedure I propose explicitly accounts
for potential changes of the total forecast error variance at each point in time. More-
over, I modify the identification strategy such that it takes into account the nonlinear
relationship between variables and their volatilities (volatility in mean) through the con-
struction of generalized impulse response functions. This setup allows the evaluation of
whether the impact of a news shock changes in periods of high or low uncertainty, and
if the theoretical assumption of positive comovement? among macroeconomic variables
after a news shock holds.

While Chapters 3 and 4 deal with the relationship between technological news and
uncertainty, in Chapter 5, I explore the relationship between news shocks and the slope
of the term structure, defined as the spread between the yield on a long-term treasury
bond and a short-term bill rate. Kurmann and Otrok [2013] show that reconstructed
news shocks and shocks to the slope of the term structure share a correlation of 0.86.
Since the economic responses after a slope shock are identical to a news shock, the
authors conclude that the uneven effect between the short and long-term rates is the
endogenous response of the monetary policy to a news shock. I revisit these results in
light of an update in the quarterly utilization-adjusted TFP series calculated by Fernald
[2014], which is the series that supports the news shock identification in Kurmann and
Otrok [2013].

Finally, Chapter 6 is solely dedicated to technological news shocks. I propose
a novel identification procedure for news shocks, based on instrumental variables. The
idea is to explore the information about agents’ expectations to empirically identify the
news shock. The application I propose is based on only one assumption: if agents expect
a higher future productivity, they should expect a higher future economic growth as well.
It follows that positive news about productivity should be (positively) correlated with
news about future economic activity.

While news about future TFP is not directly observed, proxies for news about
future economic activity can be constructed through forecast revisions. The Survey
of Professional Forecasters (SPF) provides quarterly forecasts for a series of economic
indicators, up to one year ahead. Three of these series are particularly relevant for

technological news: GDP, investment and industrial production. Positive news about

3Beaudry and Portier [2006].



future technology should be reflected as a higher future GDP, investment and industrial
production. I propose a methodology of measuring revisions about the long-run trend
of these variables by calculating differences between updates on forecasts and nowcasts.
This method allows the construction of a quarterly time series for forecast revisions
about future GDP, investment and industrial production. I employ these measures
as instruments for the news shock through the external validity procedure introduced
by Mertens and Ravn [2013] and Stock and Watson [2012]. This approach identifies
structural shocks based on information not contained on the VAR, which are noisy

measures of the structural shock.



Chapter 2

Literature review



In this Chapter I present a brief literature review which nests this Thesis. A
more detailed review is conducted in each of the four main Chapters (3, 4, 5 and 6).

The main bulk of this Thesis relates to the literature about technological news
shock. Although much has been done to answer the question of how do economic agents
react to information about future technological improvements,! the results are not con-
clusive. Conventional wisdom is that the expectation of technological progress produces
positive economic outcomes, but the empirical research still disagrees on the size and
direction of this effect. There remains an ongoing discussion about (i) the extent to
which the news shock explains business cycles, (ii) how quickly one would observe an
effect on productivity, and (iii) the effect on other important macroeconomic variables.

On an aggregate level, the literature on technological news shocks shows that pos-
itive news generates long-term co-movement among GDP, consumption and investment,
and it is deflationary in the medium-term. These results are demonstrated by Beaudry
and Portier [2006], Barsky and Sims [2011] and Beaudry and Portier [2014]. However,
the empirical evidence is contradictory about the effects on the labor market. While
Beaudry and Portier [2006] show that a news shock generates a positive and significant
effect on hours worked (consistent with the results from Christiano et al., 2003), Barsky
and Sims [2011] present a negative effect of news on hours (in line with the technological
shock from Gali, 1999).

News shocks generate booms and busts based on agents’ beliefs, and the litera-
ture has already shown the predictive power of expectations on driving business cycles.
Miyamoto and Nguyen [2017] argue that the precision of news shocks improves when
forecast data is also considered in the information set. Levchenko and Pandalai-Nayar
[2018] show that a non-technological expectation shock accounts for a large share of
business cycle fluctuations in the short-run. Clements and Galvao [2018] show that data
uncertainty influences the impact of expectation shocks on the economy.

This Thesis also relates to the uncertainty literature. Bloom [2009] shows that
uncertainty shocks are a source of business cycle fluctuations and have a temporary
negative effect on output growth. Bachmann et al. [2013], Jurado et al. [2015], and
Baker et al. [2016] provide evidence of the short-run negative effects of uncertainty
shocks on economic activity. Ilut and Schneider [2014] describe how ambiguity shocks,
that is, changes in Knightian uncertainty, have direct effects on productivity and are an

alternative source of business cycle fluctuation. Periods of high uncertainty are related to

!See, for example, Beaudry and Portier [2006], Jaimovich and Rebelo [2009], Barsky and Sims [2011],
Kurmann and Otrok [2013], Schmitt-Grohe and Uribe [2012], Blanchard et al. [2013], Forni et al. [2014],
Beaudry and Portier [2014], Vukoti¢ [2017], Cascaldi-Garcia and Galvao [2017] and Levchenko and
Pandalai-Nayar [2018].



a higher potential return on investment, increasing the range of growth options (Segal
et al., 2015). While uncertainty reduces the utilization of production factors, it also
creates an incentive to substitute less flexible for more flexible capital (Comin, 2000,
Bloom, 2009, Cascaldi-Garcia and Galvao, 2017).

A recent advance in the uncertainty literature refers to the separation between
macroeconomic and financial uncertainty, the approach also followed by this Thesis.
Jurado et al. [2015] and Carriero et al. [2016a], for example, construct latent macro and
financial uncertainty measures based on common factors across the volatilities of macro
and financial variables. From a methodological perspective, the estimation of these
factors relates to an extensive literature on stochastic volatility VAR models. Mumtaz
and Zanetti [2013], for example, allow for a lagged feedback of the volatilities to the
mean. Alessandri and Mumtaz [2014], Shin and Zhong [2016] and Carriero et al. [2016¢]
propose models with a contemporaneous feedback of a common volatility factor to the
mean.

This Thesis is also aligned with the literature that explores the relationship be-
tween news shocks and financial markets. Beaudry and Portier [2006] and Barsky and
Sims [2011], for example, show how the stock market reacts to news shocks. Harvey
[1988], Estrella and Hardouvelis [1991] and Ang and Piazzesi [2003] show that the slope
of the term structure carries information that helps to predict macroeconomic activity,
and is connected to the transmission of monetary policy. Kurmann and Otrok [2013],
Cascaldi-Garcia [2017] and Kurmann and Sims [2017] debate whether the macroeconomic
predictability of the slope of the term structure relates to the effect of news shocks. Gortz
et al. [2016] present the role of news shocks in light of propagation through frictions in
financial intermediation.

From the methodological perspective, this Thesis is linked to the literature that
deals with the calculation of proxies for the technology level, and its use for the identi-
fication of news shocks. Fernald [2014] calculates such a proxy as a utilization-adjusted
TFP series by employing the methodology described by Basu et al. [2006] and Basu
et al. [2013]. This series is used by both main empirical identification strategies for news
shocks available in the literature: one based on a combination of short and long-run
restrictions (Beaudry and Portier, 2006), the other based on explaining the medium-run
effects on TFP (Barsky and Sims, 2011).

Finally, this Thesis relates to the business cycle literature that employs exogenous
variables as instruments for the identification of structural shocks. Mertens and Ravn
[2013] and Stock and Watson [2012] propose an identification method by relying on
external validity in a Structural VAR (proxy SVAR). Ramey [2016] and Kilian and



Liitkepohl [2017] present an extensive overview of identification based on extraneous
data. The method has been applied to identify monetary policy shocks (Stock and
Watson, 2012, Gertler and Karadi, 2015, Miranda-Agrippino and Ricco, 2018), fiscal
policy shocks (Mertens and Ravn, 2014, Caldara and Kamps, 2017), uncertainty shocks
(Carriero et al., 2015b, Piffer and Podstawski, 2017) and oil supply shocks (Montiel Olea
et al., 2016). With respect to news shocks, extraneous data have been applied to news
about future fiscal spending (Auerbach and Gorodnichenko, 2012) and for news about
future oil supply (Arezki et al., 2017).



Chapter 3

News and uncertainty shocks
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3.1 Introduction

News shocks are anticipated shocks that affect the economy in the current period even
though it may take some time until they materialize. Jaimovich and Rebelo [2009] ex-
plain how news about future total factor productivity affects current output, consump-
tion and investment. Using VARs, Beaudry and Portier [2006] and Barsky and Sims
[2011] provide empirical evidence of the effects of technology news shocks on macroeco-
nomic variables. Schmitt-Grohe and Uribe [2012] show that anticipated shocks explain
a large share of business cycle fluctuations, but they argue that anticipated shocks on
productivity are not very important. Christiano et al. [2014] establish that anticipated
risk shocks explain business cycle fluctuations in a model with financial frictions.

Bloom [2009] shows that uncertainty shocks are a source of business cycle fluctu-
ations and have a temporary negative effect on output growth. Bachmann et al. [2013],
Jurado et al. [2015], and Baker et al. [2016] provide evidence of the short-run negative
effects of uncertainty shocks on economic activity. Ilut and Schneider [2014] describe
how ambiguity shocks, that is, changes in Knightian uncertainty, have direct effects on
productivity and are an alternative source of business cycle fluctuation.

In this paper, we provide novel empirical evidence linking the empirical effects
of technology news shocks to uncertainty shocks. News and uncertainty shocks are
identified by maximizing the respective forecasting error variances of productivity and
observed uncertainty. Following Barsky and Sims [2011], news shocks maximize the
productivity long-run variance (after 10 years) and uncertainty shocks maximize the
uncertainty short-run variance (after 2 quarters, as in Caldara et al., 2016). If these
shocks are structural from an economic perspective, they should be orthogonal even
when separately identified. However, we find that news and financial uncertainty shocks
are positively correlated, indicating that the interpretation of its economic responses are
inaccurate. It follows that the standard identification assumptions from the literature
are unable to properly identify the true news and uncertainty shocks. We test this
correlation for a specific group of uncertainty measures, which coincides with the financial
uncertainty measures in Ludvigson et al. [2016]. They are measures of quantifiable risk
as in Christiano et al. [2014]. In contrast, news and uncertainty shocks are not correlated
(or are negatively correlated) if we employ macroeconomic measures of uncertainty as in
Ludvigson et al. [2016]. One of these measures includes professional forecaster dispersion,
which is associated with ambiguity changes as in Ilut and Schneider [2014].

When financial uncertainty shocks hit the economy, utilization-adjusted total

factor productivity increases over the medium run. This leads to an attenuation of the
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negative impact of increasing uncertainty on economic activity. Financial uncertainty
shocks are short lived. In contrast, macroeconomic uncertainty shocks have no effect
on utilization-adjusted productivity, so the negative effects of uncertainty shocks are
deeper and more persistent. Also, the positive effects of technology news shocks on
output, consumption, investment and hours are attenuated over the short run. This is
supported by evidence that news shocks are followed by increasing financial uncertainty
over the short run.

Supported by these empirical results, we propose a new identification strategy
to obtain the impact of ‘good uncertainty’ shocks and disentangle the importance of
news, financial uncertainty and ambiguity shocks in explaining business cycle variation.
The strategy requires the identification of ‘truly news’ shocks, uncorrelated with unex-
pected changes in financial uncertainty and ambiguity, and of ‘truly uncertainty’ shocks,
uncorrelated with unexpected changes in technology and ambiguity.

Our identification strategy provides evidence of positive and significant responses
of output, consumption, investment and hours to technology news shocks, even at short
horizons. A recent survey by Beaudry and Portier [2014] indicates that by applying
the Barsky and Sims [2011] identification scheme, the response over hours is normally
positive, but it is not statistically different from zero over short horizons. By removing
the correlation between news and financial uncertainty shocks, we remove the uncertainty
attenuation bias and find a positive and significant effect in hours.

Our identification strategy also provides evidence that not all observed uncer-
tainty measures are equal. By working with the correlation between financial uncertainty
and news shocks, we are able to measure the impact of ‘good uncertainty’ shocks, that
is, shocks that increase the likelihood of technology news shocks. We show that they
explain a larger share of the variation in output over medium-run horizons (2 years),
while bad uncertainty shocks play a more important role over short horizons. We also
demonstrate that ambiguity shocks have more persistent effects than financial uncer-
tainty shocks, implying that they have a role explaining business cycle variation over
long horizons.

Ludvigson et al. [2016] and Carriero et al. [2016a] provide strategies to disentangle
the impact of different uncertainty shocks in the macroeconomy. In this paper, we
exploit a novel strategy to understand whether different uncertainty measures quantify
different types of shocks. The strategy is based on correlations between some uncertainty
shock measures and technology news shocks. Our results support a variety of theories
that consider the role of uncertainty as a business cycle driver, including ‘wait-and-see’
effects (Bachmann et al., 2013), confidence effects (Ilut and Schneider, 2014), growth
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options effects (as suggested in Bloom, 2014) and the possibility of uncertainty traps
(Fajgelbaum et al., 2017).

We survey the structural VAR literature on news and uncertainty shocks in Sec-
tion 3.2, where we also provide the details of our baseline model and analysis of the
responses to news and uncertainty shocks. Section 3.3 describes the identification strat-
egy used to disentangle all sources of business cycle variation and our measure ’good
uncertainty’. Section 3.3 also presents the empirical results obtained with this new
strategy and discusses implications for the DSGE literature on understanding the effects

of uncertainty.

3.2 News, uncertainty shocks and the macroeconomy

We start by measuring the impact of news and uncertainty shocks on measures of eco-
nomic activity. Uncertainty is proxied by a set of financial and macroeconomic uncer-
tainty measures available in the literature. In this section, we provide the details of an
identification scheme for both news and uncertainty shocks, and we show that financial

uncertainty and news shocks are positively correlated.

3.2.1 Literature review

Barsky and Sims [2011] report that news shocks explain approximately 40% of the vari-
ation in output over long horizons (10 years), while Bachmann et al. [2013] provide
evidence that 12% of the long-run variation in manufacturing product is explained by
shocks to stock market volatility — a popular measure of financial uncertainty. In con-
trast to the long-run effects of news shocks, the impact of uncertainty shocks typically
peaks after one year (Jurado et al., 2015; Baker et al., 2016). Bachmann et al. [2013]
report an exception, showing that shocks to a measure of business forecaster dispersion
have a persistent impact on manufacturing output, explaining up to 39% of the varia-
tion after 5 years. The Bachmann et al. [2013] uncertainty measure is computed using
forecaster dispersion from the Business Outlook Survey. In general, uncertainty shocks
explain 10% of the long-run variation in economic activity, as suggested by Gilchrist and
Zakrajsek [2012], Jurado et al. [2015], Caldara et al. [2016].

Recently, Carriero et al. [2016a] results suggest that macroeconomic uncertainty
explains approximately 20% of the variation in economic activity variables, while finan-
cial uncertainty explains approximately 10%. The identification scheme in Ludvigson

et al. [2016] reverts these results in favor of financial uncertainty shocks. In the literature,
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macroeconomic uncertainty measures are typically related to the forecasting uncertainty
of macroeconomic variables, such as real GDP and the aggregate price level. Financial
uncertainty variables are measures of equity markets volatility, that is, of quantified risk.

Bloom [2014] considers professional forecasters’ dispersion as a measure of un-
certainty, but Ilut and Schneider [2014] employ forecasters’ dispersion as a measure of
ambiguity. Table 3.1 describes the measures of uncertainty considered and divides them
into two groups: financial and macroeconomic uncertainty. Policy uncertainty and busi-
ness uncertainty, listed in the bottom panel, are not typical macroeconomic uncertainty
measures, since they are not computed with respect to variables such as GDP and infla-

tion, but they are illustrative of the macroeconomy beyond financial markets.

3.2.2 Identification procedure and estimation

The news shock is identified following procedure proposed by Barsky and Sims [2011],
and is closely related to Francis et al. [2014] and Uhlig [2005)’s maximum forecast error
variance approach. The news shock identification finds the shock that best explains
future unpredictable movements of utilization-adjusted TFP, which is a proxy for tech-
nology. This is equivalent to find the orthogonalization across the innovations that
maximizes the forecasting variance of productivity over a predefined period. Moreover,
this shock is imposed to be orthogonal to TFPs own innovation, which is the unex-
pected TFP shock. This restriction guarantees that the news shock has zero effect on
utilization-adjusted TFP on impact. It follows that two potential structural shocks are
identified: news and unexpected TFP shocks. The full description of the identification
scheme is present in Appendix A.1. Following Barsky and Sims [2011] and Kurmann
and Otrok [2013], the horizon to maximize the forecasting variance of productivity is
set to 10 years (H = 40). Because of the large information set included in the VAR
model described, we are confident that fundamentalness is not an issue affecting these
empirical results, as suggested by Forni et al. [2014].

We employ the same identification procedure for the uncertainty shock, with
two caveats. First, following Caldara et al. [2016], uncertainty shocks are identified by
maximizing the forecast error variance of uncertainty over two quarters, instead of 10
years for the news shock. Second, there are no restrictions of the contemporaneous
effect of the shock on uncertainty. This approach is not very different from the short-
run restrictions implied by the Cholesky decomposition, but it has the advantage of
clearly stating that uncertainty shocks have typically short-run effects in contrast with

the long-run effects of technology news shocks.
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Table 3.1: Description of variables

Name Description Source
1 Utilization- Utilization-adjusted TFP in log levels. Computed by Fernald Fernald’s website
adjusted TFP [2014]. (Nov/2015)
2 Consumption Real per capita consumption in log levels. Computed us- Fred
ing PCE (nondurable goods + services), price deflator and
population.
3 Investment Real per capita investment in log levels. Computed using Fred
PCE durable goods + gross private domestic investment,
price deflator and population.
4  Output Real per capita GDP in log levels. Computed using the real Fred
GDP (business, nonfarm) and population.
5 Hours Per capita hours in log levels. Computed with Total hours Fred
in nonfarm business sector and population values.
6 Prices Price deflator, computed with the implicit price deflator for Fred
nonfarm business sector.
7 SP500 SP500 stock index in logs levels. Fred
8 EBP Excess bond premium as computed by Gilchrist and Za- Gilchrist’s web-
krajsek [2012]. site (Mar/2015)
9 FFR Fed funds rate. Fred
10 Spread Difference between the 10-year Treasury rate and the FFR.  Fred
Financial Uncertainty Measures
1 Realized Volatil- Realized volatility computed using daily returns using the CRPS
ity robust estimator by Rousseeuw and Croux [1993].
2 VXO Option-implied volatility of the SP100 future index. Avail- CBOE
able from 1986Q1.
3 LMN-fin-1 Financial forecasting uncertainty computed by Ludvigson Ludvigson’s
4 LMN-fin-3 et al. [2016]. -1 is one-month-ahead, -3 is three-months and  website
5 LMN-fin-12 -12 is one-year ahead. (Feb/2016)

Macroeconomic Uncertainty Measures

1 Policy Economic Policy Uncertainty Index in logs computed by Bloom’s website
uncertainty Baker et al. [2016]. (Mar/2016)

2 Business Business forecasters dispersion computed by Bachmann et al. AER website
uncertainty [2013] up to 2011Q4.

3 SPF SPF forecasters dispersion on one-quarter-ahead Q/Q real Philadelphia Fed
disagreement GDP forecasts computed using the interdecile range.

4 LMN-macro-1 Macro forecasting uncertainty computed by Ludvigson Ludvigson’s

5 LMN-macro-3 et al. [2016]. -1 is one-month-ahead, -3 is three-months and  website

6 LMN-macro-12  -12 is one-year ahead. (Feb/2016)

Note: All for the 1975Q1-2012Q3 period except when noted. Monthly series converted to quarterly by
averaging over the quarter.

For both the identification of news and uncertainty shocks, the VAR model is
estimated in levels with 5 lags, with the aid of the Minnesota priors (Litterman, 1986)
to address the reasonably large number of endogenous variables, and the ‘dummy ob-
servation prior’. The option for the variables in levels is in line with Barsky and Sims

[2011], allowing for the possibility of cointegration among the variables. The estimation
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of the model and the prior hyper-parameters follow methodology proposed by Banbura
et al. [2010] and Carriero et al. [2015a].1 with 1,000 posterior draws. Confidence bands
for the impulse response graphs are computed using all the draws from the posterior
distribution.?

Relevant forward-looking variables are included among the endogenous variables.?
Following the news shock literature (Beaudry and Portier, 2006, Barsky and Sims, 2011),
technology-induced productivity changes are measured using the utilization-adjusted
total factor productivity computed by Fernald [2014]. The model includes consumption,
output, investment and hours as measures of economic activity. Additional endogenous
variables are measures of aggregate prices, equities prices (S&P500), the policy rate, and
the slope of the yield curve (following the link between news and slope shocks in Kurmann
and Otrok, 2013). The VAR model also includes a measure of credit conditions — the
excess bond premium, as computed by Gilchrist and Zakrajsek [2012], and a measure
of financial uncertainty based on the S&P500 realized volatility. The details of the time
series employed are available in Table 3.1. Quarterly data from 1975Q1 to 2012Q3 is
employed.

3.2.3 Responses to news shocks

Figure 3.1 shows the responses of economic activity variables (output, consumption, in-
vestment, hours), productivity (utilization-adjusted TFP) and uncertainty, as measured
by the realized volatility, to news shocks. These results follow the previous literature
surveyed in Beaudry and Portier [2014]. News shocks have a positive impact effect on
output, consumption and investment, as in Beaudry and Portier [2006] and Barsky and
Sims [2011], but the impact effects are not significantly different from zero, as indicated
by the 68% confidence bands. In the long run, technology news shocks explain 35%
of the variation of the utilization-adjusted TFP, 28% of consumption variation, 22% of
output variation and 15% of investment variation.

A novel interesting result arises from observing the effect of news shocks on finan-

cial uncertainty. News shocks drive a significant increase in uncertainty of approximately

1We obtain the overall prior tightness of 0.2 by maximizing the log-likelihood over a discrete grid, as
in Carriero et al. [2015a].

2 As the VAR parameters change, the signs of the identified shocks might flip because the identification
is based on the forecast error variance. To ensure a positive news shock, we check whether the response of
total factor productivity is positive after 40 quarters. If the response is negative, all computed responses
are multiplied by (—1). In the case of uncertainty shocks, we simply check whether the shock has a
positive impact on the uncertainty measure and multiply the responses by (—1) if they are negative.

3The presence of forward-looking economic variables, such as stock prices, is a necessary condition
for the proper identification of a news shock (Beaudry and Portier, 2006).
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Figure 3.1: Responses to news shocks in the baseline VAR model
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Note: Shaded areas are 68% confidence bands computed with 1,000 posterior
draws.  The baseline identification scheme for news shocks is described in sec-
tion 8.2.2, and appendix A.1. The VAR model includes all variables in the
first panel of Table 3.1 + realized wvolatility.

1.9 p.p., albeit a short-lived effect that is near zero after one year. Although the posi-
tive effect of news shocks on uncertainty is new in this aggregate context, these results
are not surprising, since Bloom [2009] finds a positive correlation between stock market
volatility and cross-sectional standard deviation of industry TFP growth. Matsumoto
et al. [2011] show that news shocks are positively related to equity prices and equity
volatility. An increase in stock market volatility arises from the delayed adjustment of
prices by firms following a news shock, but this effect tends to vanish over time so the
effects are short lived.

Gortz et al. [2016] show that news shocks have negative effects on the excess bond
premium (EBP). The baseline VAR specification includes EBP as endogenous variable
and confirms their results, although, in this paper, we treat EBP as a variable that
should be kept in the information set, but the main aim is to make inference on how

uncertainty responds to news shocks.

17



3.2.4 Responses to uncertainty shocks

Table 3.1 describes a list of 11 uncertainty measures considered in the literature. We
apply the uncertainty shock identification scheme described in section 3.2.2 by including
one uncertainty measure at a time in a VAR model with the 10 variables described in
the top panel of Table 3.1. These exercises allow us to check whether the responses of
economic activity and technology to uncertainty shocks are robust to how uncertainty
is measured. Responses for each uncertainty measure listed in Table 3.1 are in the
Appendix A.2, Figures A.2.1 to A.2.11. The main differences are between financial
and macroeconomic uncertainty measures. As a consequence, Figure 3.2 presents the
responses for our baseline financial uncertainty variable — realized volatility — and Figure
3.3 shows the responses when uncertainty is measured by Ludvigson et al. [2016] 3-

month-ahead macroeconomic volatility.

Figure 3.2: Responses to financial uncertainty (realized volatility) shocks in the baseline
VAR model
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Note: Shaded areas are 68% confidence bands computed with 1,000
posterior  draws. The  baseline identification  scheme  for  uncer-
tainty shocks is described in  section 3.2.2. The VAR model in-
cludes all wvariables 1in the first panel of Table 3.1 + realized wvolatility.

As in Bachmann et al. [2013], Jurado et al. [2015], Baker et al. [2016] and Cal-

dara et al. [2016], uncertainty shocks have significant negative effects on economic ac-
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Figure 3.3: Responses to macroeconomic uncertainty (LMN-macro-3) shocks in the base-
line VAR model
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Note: See notes to Figure 3.2. The VAR model includes all variables in the first panel
of Table 3.1 + macroeconomic uncertainty (LMN-macro-3).

tivity variables. The responses to macroeconomic uncertainty shocks (Figure 3.3) are
stronger and more persistent than the responses to financial uncertainty (Figure 3.2).
Surprisingly, financial uncertainty shocks have positive effects on technology (utilization-
adjusted TFP), while macroeconomic uncertainty shocks have no significant effects on
technology changes. The effect of financial uncertainty on technology peaks at 5 quarters,
but it is persistent, dying out only over the long run.

These differences in the effects of macro and financial uncertainty on technology
hold even if the proxy for financial and macroeconomic uncertainty is changed. Figure
3.4 presents the effect of a financial uncertainty shock on utilization-adjusted TFP for all
the five measures of financial uncertainty considered here, and Figure 3.5 considers the
six measures of macroeconomic uncertainty. The negative effects of financial uncertainty
on economic activity have been attenuated by the positive effects of financial uncertainty
on productivity by comparing responses in Figures 3.2 and 3.4 with the macroeconomic
uncertainty effects in Figures 3.3 and 3.5.

The persistent positive effect of financial uncertainty shocks on technology might

be seen as counterintuitive. Bloom et al. [2014] and Bloom [2014] note that uncertainty
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Figure 3.4: Responses of utilization-adjusted TFP to different measures of financial
uncertainty shocks in the baseline model
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Note: See Table 3.1 for description of uncertainty measures. Dotted lines are 68% con-
fidence bands computed with 1,000 posterior draws. These responses are computed for
one financial uncertainty variable at a time in a VAR that also includes the 10 vari-
ables in the top panel of Table 3.1. Identification scheme as described in section 3.2.2.

makes productive firms less aggressive in expanding and unproductive firms less aggres-
sive in contracting. This reallocation of production factors after an uncertainty shock
should reduce total productivity.

We shed a light on this puzzle by examining the responses of non-adjusted TFP to
uncertainty shocks. They allow us to evaluate the impact of utilization adjustment, that
is, the removal of productivity changes due to factor utilization, on these results. Figure
3.6 provides the impulse responses of TFP to financial uncertainty shocks, and Figure
3.7 shows similar results for macroeconomic uncertainty shocks. The results are now
consistent with Bloom et al. [2014] and Bloom [2014], since both types of uncertainty
shocks have short-lived negative effects on productivity. This implies that responses of
productivity to uncertainty shocks reflect a combination of two effects: a short-lived
negative effect driven by a reduction of factor utilization and a positive medium-horizon
effect generated by technology improvements.

This novel medium-run effect of financial uncertainty shocks to technology changes
might be the result of firms reaction to the new economic environment. After the initial
negative effect, firms seek to become more productive to reduce the impact of possible

similar future shocks. The notion of an adaptation period recalls Comin [2000], who
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Figure 3.5: Responses of utilization-adjusted TFP to different measures of macroeco-
nomic uncertainty shocks in the baseline model
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Note: See notes to Figure 3.4. These responses are computed for one macroeconomic
uncertainty variable at a time in a VAR that also includes the 10 variables in the top
panel of Table 3.1. Identification scheme as described in section 3.2.2.

focus on the impact of uncertainty on the productivity of specialized capital. The ini-
tial negative impact of uncertainty shocks induces firms to substitute old technologies
(inflexible and obsolete in an uncertain business environment) for more flexible ones,
generating a positive shift in TFP. Bloom et al. [2014] also provide support for these
‘good uncertainty’ medium-run effects. Uncertainty delays firms’ investment projects,
affecting expansion decisions and hiring of new employees. However, when uncertainty
recedes, firms re-evaluate their suspended investment plans in order to attend to the con-
strained demand. Bloom et al. [2014] argue that after the uncertainty period vanishes,

firms increase hiring and investment, which can lead to increasing productivity.

3.2.5 Correlation between news and uncertainty shocks

Our empirical results so far suggest that financial uncertainty shocks generate a positive
medium-run effect on technology that resembles the effects of a news shock. Financial
uncertainty and news shocks only differ in the long-run, as uncertainty shock effects die
out, whereas news shocks persist. This section investigates the correlation between news
and uncertainty shocks, which is measured by employing the set of uncertainty measures

in Table 3.1. We recover the news and uncertainty structural shocks for the 1975-2012
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Figure 3.6: Responses of non-adjusted TFP to different measures of financial uncertainty
shocks in the baseline model
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Note: See notes to Figure 3.4. These responses are computed for one financial uncer-
tainty variable at a time in a VAR that also includes the 10 variables in the top panel
of Table 3.1. The difference between these results and Figure 3.4 is that here TFP is
not adjusted for utilization. Identification scheme as described in section 3.2.2.

period using the identification schemes discussed in section 3.2.2. We then calculate the
correlations between news and each measure of uncertainty shocks. These values are
presented in Table 3.2 and include the results of a test of the null hypothesis that the
correlation is equal to zero.

The main result from Table 3.2 is that there is a positive and significant cor-
relation between news and financial uncertainty shocks, which indicates that these are
not structural shocks. The correlation is stronger if financial uncertainty is proxied by
the VXO (0.59), although this might be the effect of the shorter period for which this
series is available (since 1986). The correlation decreases with the forecasting horizon
employed by Ludvigson et al. [2016] in the computation of uncertainty measures. In con-
trast, the correlations between news and macroeconomic uncertainty shocks are either
zero in the case of professional forecaster dispersion measures or negative in the case of
macroeconomic forecasting uncertainty measures.

The fact that news and financial uncertainty shocks are positively correlated in-
dicates that these identified shocks are not structural. It reinforces our previous results
that uncertainty shocks may have positive medium run effects on productivity and eco-

nomic activity measures. They also imply that the positive effects of technology news
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Figure 3.7: Responses of non-adjusted TFP to different measures of macroeconomic
uncertainty shocks in the baseline model
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Note:  See mnotes to Figure 3.4. These responses are computed for one
macroeconomic uncertainty variable at a time in a VAR that also includes
the 10 wariables in the top panel of Table 3.1. The difference between
these results and Figure 3.5 is that here TFP is not adjusted for utiliza-
tion. Identification scheme as described in section 35.2.2.

shocks may be attenuated by the fact that news shocks tend to increase financial uncer-
tainty over the short run.
We see this novel interesting result as motivation for our new identification scheme

discussed in the next section.

3.3 Disentangling uncertainty and news as sources of busi-

ness cycle fluctuation

Our previous results suggest that the positive effects of news shocks on economic activity
are attenuated by rising financial uncertainty at the time of the shock. Likewise, the
negative effects of financial uncertainty shocks on economic activity are attenuated by
increasing productivity over the medium run as a result of the improving likelihood of
technology news shocks from the increase in financial uncertainty. In this section, we
identify both news and uncertainty shocks in the same model such that we are able
to measure their relevance in explaining business cycle variation, while also considering

that macroeconomic uncertainty, as measured by professional forecaster disagreement,
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Table 3.2: Correlation between news and uncertainty shocks for different uncertainty
measures

Correlation

Financial uncertainty

Realized volatility 0.43  [0.000]

LMN-fin-1 0.49  [0.000]

LMN-fin-3 0.36  [0.000]

LMN-fin-12 0.34  [0.000]

VXO 0.59  [0.000]
Macro uncertainty

Policy uncertainty -0.22  |0.008

Business uncertainty  0.05 [0.553

[0.008]
[0.553]
SPF disagreement 0.02 [0.811]
[0.000]
[0.000]
[0.011]

LMN-macro-1 -0.37 ]0.000
LMN-macro-3 -0.28 |0.000
LMN-macro-12 -0.21  [0.011
Note: The p-values for the test with zero correlation under the null hypothesis are
in brackets. The statistic is calculated as t = pg 1T—_p22‘ These results are based on
0

a VAR model with the 10 variables in the first panel of Table 3.1 + one measure of
uncertainty at time, as indicated. For details on data and availability, see Table 3.1.

is also a source of business cycle fluctuation.

3.3.1 Identification of news, financial and ambiguity shocks

In this section, we describe our two identification schemes: the ‘truly news’ and the ‘truly
uncertainty’. In both cases, we use a VAR model with the 10 variables in the top panel
of Table 3.1 plus two measures of uncertainty. We include realized volatility as the mea-
sure of financial uncertainty and SPF disagreement as the measure of macroeconomic
uncertainty. We choose SPF disagreement as the measure of macroeconomic uncertainty
because it is uncorrelated with news shocks (as discussed in section 3.2) and measures
changes in Knightian uncertainty (Ilut and Schneider, 2014).# At the end of this sec-
tion, we check the robustness of this choice using business uncertainty, as computed by
Bachmann et al. [2013], instead of SPF disagreement as a measure of macroeconomic
uncertainty.

The main advantage of considering two identification schemes is that together

they allow us to measure the impact of ‘good uncertainty’ shocks in explaining business

4For an alternative measure of ambiguity obtained by exploiting the SPF, see Rossi et al. [2016].
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cycle variation. We call ‘good uncertainty’ shocks the unexpected changes in financial
uncertainty that are correlated with news shocks. These are ‘good uncertainty’ shocks
because they typically improve technology in the medium run.

The identification of the ‘truly news’ shock can be understood as a sequential
identification of the maximization of the variance decomposition (Section 3.2.2), con-
ditional on the orthogonality with respect to the previous identified shocks. The first
identified shock is the unexpected TFP shock, which is TFP’s own innovation. The sec-
ond shock is the financial uncertainty shock, which is the orthogonalization that brings
the maximum of the variance decomposition of the financial uncertainty measure over
two quarters ahead, conditional on being orthogonal to the unexpected TFP shock. The
third shock is the ambiguity shock, which is the orthogonalization that brings the max-
imum of the variance decomposition of the ambiguity measure over two quarters ahead,
conditional on being orthogonal to the unexpected TFP and financial uncertainty shocks.
Finally, the fourth shock is the ‘truly news’ shock, which is the orthogonalization that
brings the maximum of the variance decomposition of productivity over 40 quarters
ahead, conditional on being orthogonal to the unexpected TFP, financial uncertainty and
ambiguity shocks. 1t follows that all four shocks constructed under the ‘truly news’
identification are orthogonal and structural.

The ‘truly news’ identification scheme implies that both uncertainty and ambi-
guity shocks are able to affect the technology news shock and that financial uncertainty
shock have an impact on ambiguity. This is motivated by the fact that ambiguity in-
creases during periods of high volatility (Bachmann et al., 2013; Ilut and Schneider,
2014) and that the likelihood of news shocks may increase during periods of high volatil-
ity (Bloom, 2009).

The ‘truly news’ identification scheme is built sequentially by imposing orthogo-

nality between the news identification vector v5““® and those obtained for identification

inunc amb

of the financial -3 and ambiguity v§™’ shocks. The ‘truly news’ identification
scheme is based on a four-step procedure. In the first step, the procedure for the identi-

fication of the unexpected TFP and news shocks, described in Appendix A, is applied to

news unexrp inunc

obtain (and 7, ). Then, the financial uncertainty identification vector v;
is obtained by maximizing the variance decomposition of financial uncertainty up to
horizon 2. The third step obtains ’yffmb by maximizing the variance decomposition of the
SPF disagreement up to horizon 2. The fourth and last step imposes the orthogonality
between the news shock, the financial uncertainty shock and the ambiguity shock. This

is achieved by employing a QR decomposition® over the four v vectors such that we ob-

®The QR decomposition is an application of the Gram-Schmidt orthonormalization procedure. In our
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tain yQews* ’yg munet and 49M%* from the orthonormal, ‘Q part’ of the decomposition. As

newsx*

72
part of the news shock that is correlated with both financial uncertainty and ambiguity.

is ordered last in the QR decomposition, this identification scheme removes the

The ‘truly uncertainty’ identification scheme is similar to the ‘truly news’, but it
implies a different ordering in the orthonormalization. In the case of the ‘truly uncer-
tainty’ scheme, the news shock vector is ordered first in the orthogonalization structure,
so we extract the news shock effect from both the ambiguity and financial uncertainty
shocks. The ‘truly uncertainty’ identification scheme implies that news shocks are not
affected by both uncertainty shocks and that the financial uncertainty shock is affected
by news shocks. Although this identification has less support in the literature than
the previous one, it helps us to show that the ordering assumptions between news and
financial uncertainty shocks have a crucial impact on the empirical evidence based on
structural VARs.

By computing both identification schemes, we are able to measure the impact of
‘good uncertainty’ on business cycles. The impact of ‘good uncertainty’ shocks is mea-
sured by the differences between the ‘truly uncertainty’ and the ‘truly news’ identification
strategies on the variation explained by financial uncertainty shocks. The intuition is
that under the ‘truly news’ identification, we measure the impact of ‘bad uncertainty’,
which is mainly a short-run phenomenon, since raising uncertainty does not affect the
arrival of technological changes in this case. Based on the ‘truly uncertainty’ identifi-
cation, financial uncertainty shocks have an impact on the arrival of news about future

technological changes.

3.3.2 Responses to ‘truly’ news and uncertainty shocks

Figures 3.8, 3.9 and 3.10 show the responses to news, financial uncertainty and ambi-
guity shocks, respectively. We present the results for both the ‘truly news’ and ‘truly
uncertainty’ identification schemes, and 68% confidence bands are included.

Figure 3.8 clearly shows that news shocks have larger effects on economic activity
variables (consumption, investment, hours and output) if we assume that news shocks
are orthogonal to uncertainty and ambiguity shocks as in the case of the ‘truly news’
identification scheme. The difference between the red and blue lines is a measure of

the attenuation effect of increasing uncertainty with the arrival of technology news.

application, the first vector (orthonormal by construction) remains unchanged. The second is computed
by subtracting its projection over the first one. The third is obtained by subtracting its projection over
the first two. Finally, the fourth vector is computing by subtracting its projecting over the previous
three vectors.
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Figure 3.8: Responses to news shocks with the ‘truly news’ (red lines) and the ‘truly
uncertainty’ (blue lines) identification schemes
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Note: Shaded areas are 68% confidence bands computed with 1,000 posterior draws.
The ‘truly news’ and ‘truly uncertainty’ identification schemes are described in sec-
tion 3.3.1. The VAR model includes all 10 variables in the first panel of Table 3.1
+ realized volatility + business uncertainty.

Interestingly, the ‘truly news’ identification scheme recovers responses that show that
hours, consumption and investment move together with output, including responses that
are significantly different from zero (based on the 68% bands) at the time of the impact
of the news shock. This comovement is suggested by Beaudry and Portier [2006], but it
is normally not observed when news shocks are identified by maximizing the forecasting
variance, as in Barsky and Sims [2011] and this paper.

Figure 3.9 indicates that financial uncertainty shocks have a relatively muted
negative effects on the economic activity variables under the ‘truly news’ identification
scheme. This is mainly explained by the medium-run positive effects on technological
changes, measured by the utilization-adjusted TFP changes. The difference between
the red (‘truly news’) and the blue (‘truly uncertainty’) responses is our measure of the
impact of ‘good uncertainty’ shocks. In the case of output, the response is -0.4% after
four quarters but only -0.3% if we allow for good uncertainty effects. This difference,

although small, persists over various time horizons.
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Figure 3.9: Responses to financial uncertainty shocks with the ‘truly news’ (red lines)
and the ‘truly uncertainty’ (blue lines) identification schemes
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Note: See notes to Figure 3.8.

Our previous results suggest that ambiguity shocks, measured using SPF disagree-
ment, are not correlated with news shocks and have no impact on utilization-adjusted
TFP. As a consequence, it is no surprise that Figure 3.10 suggests very small differences
between identification schemes. It is interesting to note that economic activity vari-
ables’ responses to ambiguity shocks are typically not significantly different from zero
(using 68% bands) over short horizons but are significantly negative for horizons longer
than a year. This suggests that responses to ambiguity shocks are less immediate than

responses to financial uncertainty.

3.3.3 Explaining business cycle variation

Table 3.3 presents the variance decomposition of economic activity variables (output,
consumption, investment and hours) explained by three shocks (news, financial uncer-
tainty and ambiguity) based on three identification schemes (baseline, ‘truly news’, ‘truly
uncertainty’). In the baseline identification scheme described in section 3.2.2, the shocks
are identified separately. The values are computed at the posterior mean for horizons

after zero quarters (at impact) and eight quarters (two years), 16 quarters (four years)
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Figure 3.10: Responses to ambiguity shocks with the ‘truly news’ (red lines) and the
‘truly uncertainty’ (blue lines) identification schemes
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Note: See notes to Figure 3.8.

and 40 quarters (10 years).

There are two main results from Table 3.3. First, the identification scheme has
a limited impact on the importance of ambiguity in explaining business cycle variation.
Over long horizons, ambiguity explains 13% of output variation, 8% of consumption
variation, and 8% of investment variation.

Second, the relative importance of news and financial uncertainty shocks depends
on whether we are able to assume that technology news shocks are orthogonal to financial
uncertainty. If that is the case, then technology news shocks explain a large share of the
variance in the long run: 29% of output variation, 45% of consumption variation and
21% of investment variation. However, if we let news shocks to have a contemporaneous
impact on financial uncertainty, then the shares of the variation explained by news
shocks decrease and are similar to the baseline results. The shares of variation explained
by financial uncertainty shocks are larger based on the ‘truly uncertainty’ identification
scheme.

We explain these results using the notion of ‘good uncertainty’ shock. A ‘good

uncertainty’ shock is the one that raises the likelihood of technology news shocks. Based
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Table 3.3: Variance decomposition of output, consumption, investment and hours to
news, financial uncertainty and ambiguity shocks

(a) Output

News Shocks Financial Uncertainty Good Unc SPF Disagreement,
h Base- Truly Truly Base- Truly Truly Base- Truly Truly

line News Unc. line News Unc. line News Unc.
0 5.7 124 5.7 5.2 5.2 13.1 7.9 24 2.1 0.9
8 14.2 24.6 14.2 5.8 5.8 18.9 13.1 6.2 5.5 2.8
16 14.0 299 140 3.8 3.8 14.7 10.9 129 121 8.1
40 199 281 199 34 34 16.6 13.2 146 136 8.7

(b) Consumption

News Shocks Financial Uncertainty Good Unc SPF Disagreement
h Base- Truly Truly Base- Truly Truly Base- Truly Truly
line News Unec. line News Unc. line News Unec.
0 5.1 13.8 5.1 6.8 6.8 15.5 8.7 0.2 0.1 0.1
8 13.8 278 138 9.6 9.6 25.8 16.2 4.5 3.6 1.5
16 19.3 339 193 8.6 8.6 27.4 18.8 10.1 8.7 4.5
40 26.4 454 269 8.5 8.5 31.3 22.8 9.3 7.8 34

(c) Investment

News Shocks Financial Uncertainty Good Unc SPF Disagreement,
h Base- Truly Truly Base- Truly Truly Base- Truly Truly
line News Unc. line News Unc. line News Unc.
0 6.8 11.0 6.8 2.3 2.3 8.4 6.1 4.5 4.2 2.1
8 10.6  21.0 10.6 7.4 74 19.7 12.3 4.2 3.5 1.6
16 9.3 15.7 9.3 4.4 44 13.2 8.8 7.8 4.1 4.6
40 140 214 140 3.6 3.6 14.2 10.6 9.0 8.2 5.1
(d) Hours
News Shocks Financial Uncertainty Good Unc SPF Disagreement
h Base- Truly Truly Base- Truly Truly Base- Truly Truly
line News Unec. line News Unc. line News Unec.
0 5.4 11.7 5.4 4.6 4.6 11.9 7.3 2.7 1.6 0.6
8 7.0 19.5 7.0 13.0 129  26.8 13.9 4.0 2.5 1.1
16 4.6 12.0 4.6 9.1 9.1 18.5 9.4 9.8 7.7 5.7
40 2.6 6.9 2.6 6.7 6.7 12.7 6.0 11.1 9.0 7.3
Note: The  baseline  identification  scheme s  described in  section

3.2.2, and the ‘truly mnews’ and ‘truly wuncertainty’ schemes in sec-
tion 8.3.1. In all cases, the VAR model includes all 10 wvariables in
the first panel of Table 3.1 + realized wolatility + SPF disagreement.
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on the computation in Table 3.3 using both identification schemes, a good uncertainty
shock explains a large share of variation at the two-year horizon. In the case of output
variation at the two-year horizon, 5.8% is explained by ‘bad uncertainty’ shocks, 13.1%
by ‘good uncertainty’ shocks and 5% by ambiguity shocks.

As a consequence, we provide evidence that not all uncertainty shocks are equal.
An increase in equity market volatility may improve technology and productivity after
one year if it is followed by a higher likelihood of technology news shocks. The proportion
of variation in output due to this ‘good uncertainty’ is actually larger than the negative

effects of typical uncertainty shocks, including ambiguity shocks.

3.3.4 Robustness check

The results in section 3.2.5 suggest that news shocks are not correlated with the business
uncertainty measure computed by Bachmann et al. [2013]. Although business uncer-
tainty may not be a good measure of ambiguity, it is based on a forecasters’ dispersion
measure as the SPF disagreement. We recomputed all results in Table 3.3 using busi-
ness uncertainty as a proxy for ‘ambiguity’. The results presented in Table 3.4 suggest
that the relative importance of news, good and bad uncertainty shocks are similar to
the model using SPF disagreement. However, shocks to business uncertainty explain a
larger share of business cycle variation than shocks to SPF disagreement. Over longer
horizons, business uncertainty explains 34% of output variation, 12% of consumption
variation, and 50% of investment variation. These results are consistent with Bachmann
et al. [2013], but they suggest that not all uncertainty measures are equal in the sense

of measuring the same economic concept.

3.3.5 Discussion

Employing an unexpected correlation between technology news shocks and different
measures of uncertainty shocks, we are able to provide evidence that not all uncer-
tainty shocks are equal in their impact on the macroeconomy. The consensus is that
we normally expect negative short-run effects from uncertainty shocks (Leduc and Liu,
2016), so our results are novel and unexpected. Bloom [2014] argues, however, that many
mechanisms might explain the impact of uncertainty shocks in the economy, so our novel
evidence that different uncertainty measures deliver shocks with different effects on the
economy is consistent with this view.

Typical uncertainty-driven business cycle theories (Bloom et al., 2014) are based

on the idea that uncertainty reduces investment because when uncertainty is high, the
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Table 3.4: Variance decomposition of output, consumption, investment and hours to
news, financial uncertainty and business uncertainty shocks

(a) Output

News Shocks Financial Uncertainty Good Unc Business Uncertainty
h Base- Truly Truly Base- Truly Truly Base- Truly Truly

line News Unc. line News Unc. line News Unc.
0 7.6 174 7.6 54 5.4 14.7 9.3 2.8 2.0 2.4
8 13.5 28.3 13.5 6.2 6.3 19.4 13.1 17.5 15.6 17.2
16 13.3 258 13.3 3.9 3.9 14.4 10.5 28.4  26.7  28.7
40 16.1 289 16.1 2.8 2.8 13.3 10.5 34.0 325 348

(b) Consumption

News Shocks Financial Uncertainty Good Unc Business Uncertainty
h Base- Truly Truly Base- Truly Truly Base- Truly Truly

line News Unec. line News Unc. line News Unec.
0 5.3 14.5 5.3 7.2 7.2 16.2 9.0 0.4 0.1 0.2
8 13.0 206 13.0 9.8 9.8 25.4 15.6 6.9 5.4 6.5
16 18.0 37.0 18.0 8.1 8.2 25.5 17.3 123 105 121
40 234 448 234 7.4 7.4 27.1 19.7 122 106 123

(c) Investment

News Shocks Financial Uncertainty Good Unc Business Uncertainty
h Base- Truly Truly Base- Truly Truly Base- Truly Truly
line News Unc. line News Unc. line News Unc.
0 9.8 17.7 9.8 2.1 2.1 9.3 7.2 4.1 3.5 4.1
8 9.2 22.6 9.2 7.5 7.5 19.0 11.5 29.2  26.8 28.6
16 7.2 16.6 7.2 4.1 4.1 11.6 7.5 42.6  40.8 426
40 7.6 16.2 7.6 2.9 2.9 9.4 6.5 51.5 49.8 51.9
(d) Hours
News Shocks Financial Uncertainty Good Unc Business Uncertainty
h Base- Truly Truly Base- Truly Truly Base- Truly Truly
line News Unc. line News Unc. line News Unc.
0 8.2 16.8 8.2 4.1 4.0 12.5 8.5 0.1 0.0 0.1
8 6.9 224 6.9 140 14.0 28.3 14.3 11.2 9.4 10.5
16 4.6 15.8 4.6 10.1 10.0 19.9 9.9 21.7 19.9 21.0
40 2.5 9.1 2.5 7.0 6.9 12.6 5.7 30.9 294  30.3

Note: See notes to Table 3.3. The VAR model includes all 10 variables in the first
panel of Table 3.1 + realized volatility + business uncertainty.

price of the wait-and-see option is higher. Business cycle theories that focus on risk

as a cause of business cycles (Christiano et al., 2014) employ financial constraints to
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explain how uncertainty affects growth. In both cases, we expect short-run negative
effects from increased uncertainty, which is compatible with our results for financial
uncertainty shocks.

The evidence that uncertainty may have a positive effect on productivity is related
to the idea that uncertainty increases the size of the potential return on an investment,
that is, uncertainty increases the range of growth options. Segal et al. [2015] employ a
long-run risk consumption-based asset pricing model to disentangle the impact of good
and bad uncertainty from that of positive and negative innovations on consumption
growth. Although both measures of uncertainty have an impact on asset pricing within
their model, they do not attempt to measure the relative impact of good and bad un-
certainty on business cycle variation. Our results suggest that good uncertainty is more
important at medium-term horizons (two years) and that bad financial uncertainty is
typically a short-run phenomenon.

Our results support ambiguity (Ilut and Schneider, 2014) as a cause of business
cycles in addition to the effects of financial uncertainty. They also support the idea
that professional forecaster dispersion measures confidence rather than uncertainty. The
impacts of ambiguity shocks are more long lasting than those of typical uncertainty
shocks. Our results based on two measures of ambiguity (SPF and business survey
dispersion) differ from those of Rossi et al. [2016], who find no economic effects from
shocks to disagreement when employing a novel decomposition based on SPF forecasts.

Our results suggest that the business cycle variation explained by macroeco-
nomic uncertainty shocks (Tables 3.3 and 3.4) is normally higher than that explained
by financial uncertainty, in particularly over long horizons. As a consequence, our re-
sults support Carriero et al. [2016a] on the relative importance of macroeconomic over
financial uncertainty in explaining business cycle variation rather than Ludvigson et al.
[2016]. However, we agree with Ludvigson et al. [2016] that to measure the impact
of uncertainty on business cycles, we have to remove variation that is correlated with
macroeconomic shocks. In this paper, we show that the relevant variation is related to
news about future technological changes.

When macroeconomic uncertainty shocks are measured by the Bachmann et al.
[2013] uncertainty measure, we find long-lasting negative effects on output, consumption,
investment and hours, even though we consider many other sources of shocks, including
technology news shocks. A possible explanation is that the business uncertainty measure
is able to identify the periods in which the economy enters an uncertainty trap, as in

the theory proposed by Fajgelbaum et al. [2017].
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3.4 Conclusion

Financial uncertainty and news shocks are correlated when standard identification as-
sumptions are employed. It follows that the standard procedures fail to identify the true
structural shocks. The implication is that responses of economic activity to news and
uncertainty shocks include attenuation bias. In the case of news shocks, attenuation bias
plays a role in the short run and implies that positive effects are lower than they would
be if news shocks were assumed to be orthogonal to financial uncertainty shocks. For
financial uncertainty shocks, the attenuation bias plays a role in the medium run, and
it is characterized by an increase in utilization-adjusted total factor productivity. The
bias implies that the negative effects of uncertainty shocks are not as deep or persistent
as they could have been.

Based on our identification strategy to disentangle the effects of difference sources
of business cycle variation, we find that in the long run, technology news shocks explain
30% of output growth variation, ‘good uncertainty’ and ambiguity shocks explain 13%
each, and bad uncertainty explains 4%. In general, our novel empirical evidence support
the development of theories that focus on anticipated shocks (Jaimovich and Rebelo,
2009), confidence (Ilut and Schneider, 2014) and uncertainty (Bloom et al., 2014; Fa-

jgelbaum et al., 2017) as sources of business cycles.
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Chapter 4

Amplification effects of news

shocks through uncertainty
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4.1 Introduction

How do economic agents react to new information about future technological improve-
ments? Although much has been done by the literature on business cycles driven by
agents’ beliefs to answer this question,! the results are not conclusive. Conventional
wisdom is that the expectation of technological progress produces positive economic
outcomes, but the empirical research still disagrees on the size and direction of this ef-
fect. In this paper, I show that a plausible reason for these differences is that agents
react differently over time to news about technology. More importantly, these changes
are intrinsically related to the degree of uncertainty about the economy.

The idea behind business cycles driven by ‘news shocks’ — changes in the future
total factor productivity (TFP) that are foreseen by the economic agents (Beaudry and
Portier, 2006) — is that technological innovations take time to have an impact in the
economy. Part of this technological impact is foreseen by the economic agents, who
react to it in the present. A new oil discovery is an example of a news shock.?

On an aggregate level, the literature on technological news shocks shows that pos-
itive news generates long-term co-movement among GDP, consumption and investment,
and it is deflationary in the medium-term.? However, there is still an ongoing discussion,
both theoretical and empirical, about (i) the extent to which this shock explains busi-
ness cycles, (ii) how quickly one would observe an effect on productivity, and (iii) the
effect on other important macroeconomic variables. For example, there is contradictory
empirical evidence about the effect of a news shock on hours worked. While Beaudry
and Portier [2006] show that a news shock generates a positive and significant effect on
hours (consistent with the results from Christiano et al., 2003), Barsky and Sims [2011]
present a negative effect of news on hours (in line with the technological shock from
Gali, 1999).

In fact, both results can be empirically observed just by changing the time-span
of the estimation. Figure 4.1 presents the deciles of the impulse responses after a news
shock identified over different periods in time, with a 20-year rolling window from 1975Q1

to 2012Q3. On average, the effect of a news shock on hours worked is positive in the

!See, for example, Beaudry and Portier [2006], Jaimovich and Rebelo [2009], Barsky and Sims [2011],
Kurmann and Otrok [2013], Schmitt-Grohe and Uribe [2012], Blanchard et al. [2013], Forni et al. [2014],
Beaudry and Portier [2014], Vukoti¢ [2017], Cascaldi-Garcia and Galvao [2017] and Levchenko and
Pandalai-Nayar [2018].

2 Although it will take years to be effectively explored, the expectation of future higher oil production
induces the companies to invest now. Arezki et al. [2017] explore the news shock properties related to
oil discoveries.

3 As demonstrated by Beaudry and Portier [2006], Barsky and Sims [2011] and Beaudry and Portier
[2014].

36



medium-term, and negative in the long-term. However, depending on the identification
period considered, the effect on hours can be positive in the medium-term and converging

to zero, or zero in the medium-term and negative in the long-term.

Figure 4.1: Percentiles of responses to news shocks over different time periods
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Note: Impulse responses of a news shock computed over a rolling window of 20
years, with quarterly data ranging from 1975Q1 to 2012Q3. The first window is
from 1975Q1 to 1994Q4, while the last one is from 1992Q4 to 2012Q)3. FEach
line corresponds to the deciles of the impulse responses calculated at the poste-
rior mean from the 71 rolling window estimations, while the red line is the me-
dian. The identification follows the Barsky and Sims [2011] methodology, in a
large Bayesian VAR consisting of the variables described in tables B.2 and B.S3.

While the effect on hours worked changes both quantitatively and qualitatively,
there are still differences in the size of the responses of real macroeconomic variables.
Figure 4.1 shows that, on average, a news shock leads to a long-term positive effect on
consumption, GDP and investment. However, depending on the time-span considered,
this effect may be substantially stronger or converge to zero, with no long-term effects.

The economic effects of a news shock are far from robust to time changes. More
broadly, these discrepancies show that the agents react to information about future tech-
nological improvements in different ways over time, and raises the question of whether
such behavior is random or systemic. This question can be addressed by studying how
the economic agents acquire information about future productivity, for example through
the financial market.

Shen [2015] argues that agents are more responsive to information when signals

are sufficiently precise. Uncertainty plays a role in how information is assimilated by the
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agents: information can be interpreted in different ways in periods of high or low un-
certainty, indicating a potential amplifying effect of news shocks through an uncertainty
transmission channel.

The rolling window identification exercise supports this relationship between news
about future productivity and uncertainty. Figure 4.2 presents the long-term effects of
a news shock on consumption identified in a 20-year rolling window, and compares it
with a measure of macroeconomic uncertainty.* There is a clear period of high long-
term effects until 2001, followed by a period of low long-term effects, increasing again
after 2007. This behavior is systematic, and matches with periods of high and low

macroeconomic uncertainty.

Figure 4.2: Long-term effects of a news shock on consumption and macroeconomic
uncertainty
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Note: In red: Mean of a macroeconomic uncertainty measure calculated by Lud-
vigson et al. [2016]. In blue: Long-term effects of a mews shock on consump-
tion.  Long-term defined as 40 quarters ahead of the news shock. The news
shock is computed over a rolling window of 20 years, with quarterly data rang-
ing from 1975Q1 to 2012Q8. The first window is from 1975Q1 to 1994Q4, while
the last one is from 1992Q4 to 2012Q3. The xz-axis shows the mid-point of the
window. The identification follows the Barsky and Sims [2011] methodology, in a
large Bayesian VAR consisting of the variables described in tables B.2 and B.S3.

In this paper, I propose a model and identification procedure to investigate

whether agents change the way they respond to news about future productivity over

4Macroeconomic uncertainty measure calculated by Ludvigson et al. [2016].
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time, and if this behavior depends on economic uncertainty. Investigating for hetero-
geneous responses over time means that the news shock identification should allow for
nonlinear and time-varying models. Investigating for the interaction between uncertainty
and news shocks means that such a model should be flexible enough to capture systemic
changes in the economic responses to a news shock based on the level of uncertainty.

The premise of the model is that uncertainty measures the agents’ expectations
about current and future economic conditions. It is reasonable to think that these ex-
pectations should also be updated when the agents receive news about future higher
productivity. In other words, the level of uncertainty endogenously responds to exoge-
nous news shocks. To meet these requirements, I employ a stochastic volatility model
that treats macroeconomic and financial uncertainties as latent variables.

The baseline model builds upon Carriero et al. [2016a], as a nonlinear stochastic
volatility Bayesian vector autoregressive (VAR) model for large datasets. With this
structure, it is possible to identify first moment shocks, as news shocks, allowing for
unrestricted interrelationship between the first and second moments of the data. The
estimated volatilities are divided into two components: an idiosyncratic and a common
component. The common component is either a latent factor across all macroeconomic
variables included in the VAR, or across all financial variables. These common factors
are the prozies for macroeconomic and financial uncertainties. The common volatility
factors are included in the VAR, contemporaneously affecting the conditional mean of
the variables. Finally, the common volatility factors also depend on the lagged variables,
creating a complete nonlinear feedback effect between first and second moments of the
variables.

I also propose an identification method for news shocks that extends the current
standard procedure for nonlinear and time-varying cases. The identification method is
a generalization of the Barsky and Sims [2011] procedure of maximizing the variance
decomposition of utilization-adjusted TFP over a predefined forecast period. Instead
of assuming a constant variance, the identification procedure proposed here explicitly
accounts for potential changes of the total forecast error variance at each point in time.
Moreover, I modify the identification strategy such that it takes into account the non-
linear relationship between variables and their volatilities (volatility in mean) through
the construction of generalized impulse response functions.

I bring two contributions to the empirical literature on measuring the economic
effects of news shocks. First, I evaluate whether the impact of a news shock changes over

time and whether the theoretical assumption of positive co-movement® holds in different

®Beaudry and Portier [2006].
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periods. The evidence provided here of heterogeneous responses over time indicates that
news shock identifications based on processes with time invariant covariances may not
be appropriate.

Second, I show that news shocks interact with uncertainty. The results indicate
that there is a close link between the arrival of information about future productivity
and how this information is absorbed by the agents. This information is interpreted in
different ways in periods of high or low uncertainty, influencing the impact of the news.
The positive economic effects led by technology news are systematically higher in periods
of high uncertainty, depending on the initial degree of uncertainty (level effect) and on
how agents update their expectations about macroeconomic and financial conditions
(transmission effect).

These results are consistent with Bloom [2009]’s interpretation of an overshooting
of productivity in the medium-term after a period of high uncertainty. Productivity
grows as firms address their pent-up demand for investments, and substitute less flexible
for more flexible capital (Comin, 2000). Cascaldi-Garcia and Galvao [2017] show that
high uncertainty increases the likelihood of news shocks, creating a ‘good uncertainty’
effect.

This paper is aligned with literature about the relationship between news shocks
and financial markets. Beaudry and Portier [2006] and Barsky and Sims [2011], for
example, show how the stock market reacts to news shocks. Kurmann and Otrok [2013],
Cascaldi-Garcia [2017] and Kurmann and Sims [2017] debate the effect of a news shock
on short and long-term interest rates. Gortz et al. [2016] present the role of news shocks
in light of propagation through frictions in financial intermediation. This paper also
relates to an extensive literature on stochastic volatility VAR models. Mumtaz and
Zanetti [2013], for example, allow for a lagged feedback of the volatilities to the mean.
Alessandri and Mumtaz [2014], Shin and Zhong [2016] and Carriero et al. [2016¢]| propose
models with a contemporaneous feedback of a common volatility factor to the mean.

The outline of the paper is as follows. I present the underlying model that allows
for stochastic volatility in mean and the estimation procedure in Section 4.2. Section
4.3 introduces an identification procedure for the news shock that takes into account
nonlinear and time-varying models, and a procedure for identifying uncertainty shocks.
Section 4.4 presents the estimated latent macro and financial uncertainty measures.
Section 4.5 summarizes the results for a news shock and its relations with uncertainty
measures, while Section 4.6 describes the results of macroeconomic and uncertainty

shocks. Section 4.7 concludes this paper.
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4.2 A stochastic volatility in mean model

The empirical model aims at allowing a full interaction between uncertainty and macroe-
conomic variables so that orthogonal shifters of first and second moments can be identi-
fied. The proposed model setup is a large heteroskedastic VAR built upon Carriero et al.
[2016a], in which the individual volatilities are a combination of a common uncertainty
factor and an idiosyncratic volatility component. I modify its baseline framework to
handle variables in levels. The choice of two common factors follows the recent litera-
ture on unobserved uncertainty components as a way of separating macroeconomic and
financial sources of uncertainty (Jurado et al., 2015 and Carriero et al., 2016a).

The non-observed macroeconomic and financial factors (prozies for macro and
financial uncertainties) are included in the conditional mean of the VAR, which allows
for a contemporaneous effect on the variables. In addition, the factors are dependent on

the lagged variables, permitting a nonlinear feedback of the variables on their volatilities.

4.2.1 Model description

The model is estimated as a structural nonlinear VAR, with y; representing a (n x 1)
vector that stacks the n,, macroeconomic endogenous variables v, s and the ny = n—ny,
financial endogenous variables yy ¢, in levels, as in y; = (Ym; yre). g¢ is a (2 x 1) vector
that stacks the non-observed macroeconomic and financial uncertainty factors, denoted
as g = (Inmy;In f;). Here renamed as ‘Main VAR’ for notation purposes, the model is

represented under the reduced form
Y = A1yi—1 + ... + Apyi—p + Bogi + ... + Bigi— + v, (4.1)

where A; are (n x n) matrices that collect the coefficients of the lags of y; from 1 to p, B;
are (n x 2) matrices that collect the coefficients of the lags of g; from 0 to [. This setup
is similar to a VAR-X configuration, where g; is modeled as an exogenous component.

The reduced form shocks v; are modeled as
—141/2 ..
ve=Ag A, "€e, € ~iid N(0,1), (4.2)

where Ay is a lower (nxn) triangular matrix with ones in the main diagonal, and Ay is the
time-varying (n x n) diagonal matrix that collects the variance of each variable. Each
element of A; is composed of an idiosyncratic component and a common uncertainty

factor, which may be macroeconomic or financial depending on the chosen variable.
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The first n,, variables form the macroeconomic factor measure, while the ny =n —ny,

variables form the financial factor measure. The elements of A; (in logs) are defined as

i Inmy -+ In h; ifj=1,...,nny
In ) = Py fome " ’ : (4.3)
Bﬁjh’lftﬁ—lnh]’,t 1fj:nm+1,,n

where f3,,; and ff; are the individual loadings to the common macroeconomic and
financial factors, respectively. For identification purposes, I set 8,1 = 1 and B¢, 11 =
1.

The common macroeconomic factor is part of the volatility of all macroeconomic
variables, and the financial factor is part of the volatility of the financial variables. The

idiosyncratic component In h;; follows an AR(1) process of the form
In hj,t =750 + V4,1 In h]’7t_1 + €t ij=1,..,n, (44)

where e; = (e14,...,en)" is jointly and independently distributed as iid N(0, ®¢), and
O, = diag(d1, ..., Pn)-

I define the common macroeconomic and financial volatility factors as proxies
for macroeconomic and financial uncertainty measures, respectively. These uncertainty
measures g; = (Inmy;In f;) also follow a VAR structure, and is referred to as ‘Uncertainty

VAR’ for notation purposes. The Uncertainty VAR is modeled as
gt =Digi—1+ ... + Drgr—r + 6Ay—1 + uy, (4.5)

where D; are (2 x 2) matrices that collect the coefficients of the lags of the uncertainty
factors g¢ from 1 to k. § is a (2 x n) matrix that collects the coefficients of the lagged
variables y; (in differences). The shocks to the uncertainty factors us = (up s uys,) are

independent from e; and €, with mean 0 and full covariance matrix defined as

B, — [¢n+1 ¢n+3] . (4.6)

Ont3  Pni2

The covariance matrix of the uncertainty measures is purposely constructed as
full, to allow for co-movement between macroeconomic and financial uncertainty mea-
sures. I adapt the model structure by using lagged y; variables in differences and not in
levels. Carriero et al. [2016a] present a rich discussion on the suitability of this structure

for identifying macroeconomic and financial uncertainties, and how this setup relates to
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the stochastic volatility literature.

The model embeds the assumption that uncertainty measures are affected by
feedback from the lagged variables, and that uncertainty measures have a contempora-
neous effect on the mean of the variables. It is not possible to have contemporaneous
feedback to and from uncertainty simultaneously, for identification reasons. The choice
of contemporaneous (and not lagged) feedback from uncertainty to the mean follows
the assumption that the economic variables rapidly react to uncertainty shocks, and
uncertainty causes short-term economic fluctuations (Bloom, 2009).

This setup imposes the limitation that shocks to the mean of the variables can
only influence the level of uncertainty with, at least, one lag. One obvious alterna-
tive would be to assume that uncertainty measures are affected contemporaneously by
the variables, and that uncertainty measures have a lagged effect on the mean of the
variables. However, under such an assumption, economic variables would only react to
uncertainty shocks after one lag. This seems implausible in a quarterly data information
set, especially with respect to financial variables such as stock prices.

The non-observed idiosyncratic volatilities h;; are estimated by the standard
algorithm proposed by Kim et al. [1998], using a 10-state mixture of normals approx-
imation from Omori et al. [2007]. The estimation of the non-observed macroeconomic
and financial uncertainties is substantially more complex, presenting a multi-variate non-
linear state-space representation. I follow Mumtaz and Theodoridis [2015] and employ a
particle Gibbs step to estimate In m; and In f;. The particle Gibbs construction is based
on Andrieu et al. [2010] and the ancestor sampling improvements proposed by Lindsten
et al. [2014], with 100 particles.

I estimate the full model with p = 4 lags, [ = 1 lag of the macro and financial
factors in the Main VAR (equation 4.1), and k = 1 lag of the macro and financial factors
in the Uncertainty VAR (equation 4.5). The full estimation procedure is described in
detail in the Appendices.®

4.2.2 Data

The dataset comprises both macroeconomic and financial variables in levels. The vari-

ables are measured quarterly, which allows the use of macroeconomic variables such as

5 Appendix B.1 describes the triangularization procedure for drawing the coefficients in large VARs
proposed by Carriero et al. [2016b]. This procedure is statistically equivalent to a conventional Bayesian
stochastic volatility Monte Carlo Markov Chain (MCMC) estimation, but has the advantage of being
less computationally intensive. Appendix B.2 presents the steps of the MCMC algorithm. Appendix B.3
describes the particle Gibbs with ancestor sampling.
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utilization-adjusted TFP (necessary for the news shock identification) and gross domes-
tic product (GDP). For variables which are available at a higher frequency, I construct
the time-series by taking the quarterly average. The period is from 1975Q1 to 2012Q3.

The dataset contains 14 macroeconomic variables, namely utilization-adjusted
TFP, personal consumption per capita, GDP per capita, private investment per capita,
hours worked, GDP deflator, Federal funds rate, total nonfarm payroll, industrial pro-
duction index, help wanted to unemployment ratio, real personal income, real manu-
facturing and trade sales, average of hourly earnings (goods producing) and producer
price index (finished goods). These are the macroeconomic variables that are usually
considered in the news shock literature.

The 14 financial variables are the spread between the 10-year yield and the Fed-
eral funds rate, S&P500 stock prices index, S&P dividend yields, excess bond premium,
CRSP excess returns, small-minus-big risk factor, high-minus-low risk factor, momen-
tum, small stock value spread (R15-R11), and five industry sector-level returns (con-
sumer, manufacturing, high technology, health and other). The financial variables mostly
matches those used by Jurado et al. [2015] and Carriero et al. [2016a] to construct their
measures of financial uncertainty.

A full description of the sources and construction of the 28 variables can be found

in Appendix B.7.

4.3 Identification procedure for news and uncertainty shocks

In this Section I present the strategy for identifying news and uncertainty shocks. These
procedures can be considered as two separate computation methods, one time-varying
and the other is time-invariant. The first is an innovative identification procedure for
news shocks that takes into account nonlinear and time-varying models, in which the
news shock presents different economic responses in each point in time. The second
is a standard generalized impulse response procedure for macroeconomic and financial
uncertainty shocks. Since the latent macro and financial factors have time invariant

covariances, the identification procedure is also invariant over time.

4.3.1 News shocks identification for nonlinear and time-varying models

The identification for the news shock is constructed upon the procedure proposed by
Barsky and Sims [2011]. This approach is based on the assumption that a technology

news shock is the structural shock that best explains the unpredictable movements of
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utilization-adjusted TFP over a fixed long-term horizon,” with the imposition of no effect
on impact (¢ = 0). It is constructed following the maximum forecast error variance
approach presented in Uhlig [2005] and Francis et al. [2014].

The identification procedure presented by Barsky and Sims [2011] is broadly
adopted in the news shock literature.® However, this identification method is only appli-
cable to time invariant covariance cases. A more flexible identification method is needed
to investigate the idea of an underlying transmission mechanism relating the technology
news (a shock to the mean of the variables) and the variables’ volatilities.

I start from the model presented in equation 4.1. Considering a model with a
fully exogenous uncertainty measure g¢, I rewrite equation 4.1 as a function of the lag

operator L, leading to a VAR-X representation of the form
v = ALy +B(L)gi + Ay ' A e, (4.7)

where A(L) = A1L + A3sL? + ...+ A,LP and B(L) = Bo + B1L + ... + B;L!. A moving
average representation of this model® is defined as the infinite polynomial of the lag
operator L as C(L) = Co + C1L + ... = [I, — A(L)]™!, where Cq = I,,, as

yr = C(L)B(L)g: + C(L)A A, %e,. (4.8)

Suppose that there is a linear mapping of the innovations (¢;) and the structural
shocks (s¢) as in
€t — PSt, (49)

which implies
A'A e, = AJTA P, (4.10)

The innovations ¢ and the structural shocks s; are i.i.d. N(0,I,). To ensure
that E[AalAzmete;Atl/QlAal/] = E[A61A2/2Psts;P/At1/2/Aall] = 3, it suffices that

PP = 1,. P can take the form of any of the infinite alternatives that satisfy this

condition. Under this structure, the moving average representation can be rewritten as

y = C(L)B(L)g: + C(L)A; A}/ *Ps,, (4.11)

"I follow Barsky and Sims [2011] by fixing the horizon at 40 quarters ahead.

8For example, Coibion and Gorodnichenko [2012], Kurmann and Otrok [2013], Forni et al. [2014],
Ben Zeev and Khan [2015], Gortz et al. [2016] and Cascaldi-Garcia and Galvao [2017]. See Beaudry and
Portier [2014] for an extensive discussion about identification methods for news shocks.

?See Ocampo and Rodriguez [2012] for a comprehensive description of the moving average represen-
tation of VAR-X models.
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where s; = P~ le,.

Now, the Barsky and Sims [2011] identification procedure for the news shock relies
on finding one of the infinite alternatives of P that maximizes the variance decomposition
of the utilization-adjusted TFP over a predefined forecast horizon, and has no effect
on impact (¢ = 0). It is derived from the assumption that technology is a stochastic
process driven by two shocks: a surprise (or unanticipated) technological shock, and an
anticipated news shock. The total unexplained variance of utilization-adjusted TFP can
be decomposed as

11 (k) surprise + T'1,2(E)news = 1Vh, (4.12)

where I'; j(h) is the share of the forecast error variance of variable i of the structural
shock j at horizon k, i = 1 refers to utilization-adjusted TFP (where this variable is
ordered first in the VAR), j = 1 is the unexpected TFP shock, and j = 2 is the news
shock.

While the K-step ahead forecast error in this model is given by

K
Yerk — By k] = Z(CkBkQHk + CkAalA;J/ngst—l—K—k)v (4.13)
k=0

the share of the forecast error variance of the news shock is

/ K 14172 —141/2 /
¢i (ZI0(CiBgire + CeAT' AL Py (CiBrgrir + CrAT A Pa) ) 0y
FI,Q(K>t,news - ; K ; = ...
a4y (Zk:O Ck2t+kck) 4
_14,1/2 —141/2 v
- Zf;o(cl,kBl,kgt-i-k + Cl,kAo 1At_{_k7')(cl,kB1,k9t+k + Cl,kAO 1At—{—k7—)
- K ’ )
Zk:O C1,k2t+kc1,k
(4.14)
where ¢ is a selection vector with 1 in the position ¢ = 1 and zeros elsewhere, g9

is a selection vector with 1 in the position ¢« = 2 and zeros elsewhere, and Cj is the
matrix of moving average coefficients measured at each point in time until period k.
The combination of selection vectors with the proper column of P can be written as 7,
which is an orthonormal vector that makes Ay 1At1 /27 the impact of a news shock over
the variables.

One additional complication that arises is that the share of the forecast error
variance of the news shock depends on g, Atl/ % and 3. In other words, the variance
decomposition depends on the time ¢ in which it is measured. The news shock is identified

by picking 7 that maximizes the share described in equation 4.14, but the dependence of
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this share on ¢ can lead to a different 7 in each point in time. This characteristic forms
the basis of the identification procedure for the news shock proposed here. The news

shock is identified by solving the optimization problem

K

%Y = argmax Z [y 2(k)tmewss (4.15)
k=0

subject to

Ao(1,5)=0,Vj>1
7(1,1) =0 (4.16)

!
7,7 =1,

where K is an truncation period, and the restrictions imposed imply that the news shock
does not have an effect on impact (¢ = 0) and that the 74 vector is orthonormal.

In practice, two elements introduce additional nonlinearity to the forecast error
described in equation 4.13: the contemporaneous feedback effect that the uncertainty
factors g; have on the variables y; (because of the stochastic volatility in mean), and the
dependence of the time-varying volatility Ai /% on the uncertainty factors g¢. I deal with

0 in substitution

this nonlinearity by employing a generalized impulse response structure?
for the forecast error described by equation 4.13. Since generalized impulse response
structures do not depend on the model functional form, this substitution makes the
procedure even more broad by allowing the identification of news shocks under different
forms of nonlinear and time-varying relationships.

The generalized impulse responses are constructed by creating simulated shocked
and baseline paths. The difference between these two paths captures the effect of the
desired shock, conditional on a random simulated innovation w;;, where j identifies the
variable. The overall effect of the identified shock is the average of the difference between
the baseline and shocked paths across a significant number of random innovations w7 .

The full identification procedure and steps for the generalized impulse responses
are described in Appendix B.6. To summarize, it is possible to show that, conditional

on the draw r of the random innovation w?’,, on the information set containing all

]7t,
the known history up to time ¢ defined as Z; = (yt—p, ..., Yt; Gi—p» ..., g¢),'t and on the

coefficient matrices IT = [A;, B;, Dy, 8;,7;, 0], the generalized impulse response at time

10 Adapting the procedure proposed by Koop et al. [1996] and Pesaran and Shin [1998].
"YWhere g; = (Inm;In f).
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k of a generic utilization-adjusted TFP shock is given by

T T T _ T T 's ' T
GITFP,t(kv TTFPs Wyt Z,10) = E[yt-i-k,TFPa gt+k,TFP‘TTFPv At—i—k,TFPv Wi ts Z, 11

- E[y:—l—k,base’ g;—l—k,base’A;—i—k,base? w;,tv Zy, H]7
(4.17)

where 77, p is a vector with 1 in the first position (where utilization-adjusted TFP is
ordered first in the VAR) and zeros elsewhere.

With this setup, it is possible to substitute the TFP impulse responses (Cy ;B1 xg:+1+
ClykAO_lAiﬁgT) in equation 4.14 for GI:’}FRt(k:, TR Wi Lt, IT), or simply GI’}FP,t(k)
for notation purposes.

A news shock for a draw 7 of the random innovation w’, can be identified in each

J
period t as
K ’
r > k=0 GI:?FP,t(ka T)GI’;FP,t(kv 7)
Tt news — argmax i n s (418)
> k0 C1214£C)
subject to
Ajl(1,5) =0, Vj>1,
7(1,1) =0, (4.19)

/
Tr =1

After obtaining the identification vector for the news shock 77, for the draw

r of the random innovations w;’t,
b

responses for the news shock at each point in time. Conditional on the draw r of

it is possible to construct the generalized impulse

the random innovation w;-"t, on the information set Z;, and on the coefficients II, the

generalized impulse response at time k of the technology news shock is given by

r r r _ r r r r r
GIt,news(k7 Tt,news> Wit Zt7 H) - E[ytJrk,newsv gtJrk,news’Tt,newsv AtJrk,news? Wi ts Zt? H]

- E[yIJrk,basev gg+k,base‘A¥+k,basev w;,tﬂ Zy, H] :
(4.20)

Taking the averages of each path across a sufficiently large number of draws of

the random innovations w”

it the overall generalized impulse response at time k of a news

48



shock, conditional on the information set at time ¢, is given by

GIt,news(k7 Tt,news Zy, H) = [yt-i—k,news (ka Tt,news Zy, H), Gt+k news (ka Tt,news Zy, H)]

- [gt—i-k,base(ka Zta H), gt-{—k,base(ky Zt) H)} .
(4.21)

Note that this identification procedure is a generalization of the standard ho-
moskedastic Barsky and Sims [2011] identification. With a time invariant covariance
model and no exogenous variables, the Barsky and Sims [2011] procedure can be nested
by the structure presented here. Consider, for example, equation 4.7. If there are no

time-varying volatility or exogenous variables, this equation is reduced to
ye = A(L)ys + Ag ' AY e, (4.22)
and its moving average representation is simply
ye = C(L)Ay A e (4.23)

Now, considering the same linear mapping between the innovations (¢;) and the
structural shocks (s;) as in equation 4.9, the share of the forecast error variance of the

news shock defined in equation 4.14 becomes

Ty 5(k) a0 (Ef:o(CkAalAlmp%)(CkAglAl/Qqu)/> Q
1,2 news — -
7 / K ’
" <Zk:0 Ckzck> " (4.24)
_ Sio(CiLrAGAY2T)(C A A )

K /
> k=0 C1,k;201,k

and I't 2(k)news does not depend on ¢ anymore. The procedure of finding 7 that maxi-
mizes the share of the forecast error variance of equation 4.24 under the same restrictions
described in equation 4.16 is equivalent to the Barsky and Sims [2011] procedure.

4.3.2 Measuring the uncertainty transmission effect

In this section I present two counterfactuals to evaluate the relation between news shocks
and the level of uncertainty. The different effects of the news shock over time may come

from three sources of nonlinear transmission channels:

(i) the time-varying volatility (A¢ in equation 4.2);
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(ii) the contemporaneous reaction of the variables to the uncertainty level (coefficients

B; in equation 4.1); or
(iii) the lagged reaction of uncertainty to the variables (coefficients ¢ in equation 4.5).

The first counterfactual relates to the time-varying volatility (i), and its purpose
is to check whether the initial uncertainty condition matters for the effect of the news
shock. Since the time-varying volatility is a linear (positive) function of the uncertainty
measures, higher uncertainty increases the size of the shock, creating a direct level ef-
fect. One way to measure the level effect of uncertainty on the transmission of the news
shock is to fix the uncertainty level across time. I fix the macroeconomic and finan-
cial uncertainties to their means, and compare it to the identification with time-varying
uncertainty. In this procedure I still allow for the transmission channels (ii) and (iii)
of reaction of the variables to (and from) uncertainty. The procedure consists of cal-
culating the difference between the (baseline) generalized impulse responses from the
time-varying procedure described by equation 4.21, and an artificial generalized impulse
response in which the initial condition is changed. Since the only difference between this
counterfactual and the baseline is the level of uncertainty (and, consequently, the size of
the shock), this counterfactual isolates the level effect of uncertainty to the news shock.

Formally, define the artificial information set containing all the known history up
to time ¢ and the means of the macro and financial uncertainties as Z; = (Yt—p, ..., Yt; 9),
where g = (% Zthl In my; % Zle In f;). Following the steps described in section 4.3.1,
the artificial generalized impulse responses with fixed initial uncertainty conditions can

be constructed as

Glznews(kv thnewsv Z;fk7 H) = E[ytJrkv gt+k’7_t>‘jnews7 ;EkJrk,news? Z;fkv H] (4 25)

- E[yt+k7 9t+k\A;tk+kv Z;‘, H]-

The final effect of the initial uncertainty condition on the news shock can be
calculated as the difference between the generalized impulse responses from equation

4.21 and from equation 4.25, as in
GIt,level = GIt,news(ka Tt,news Zt7 H) - GIZnews(k) Ttﬂjnews) Z:7 H) (426)

The second counterfactual aims to check whether there is a nonlinear feedback
between uncertainty and the news shock. It involves shutting down the transmission

channels (ii) and (iii) of the contemporaneous feedback of uncertainty to the mean of
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the variables and the lagged feedback effect of the variables to uncertainty. The transmis-
sion effect (i) of time-varying volatility is still on, which means that higher uncertainty
increases the size of the shock both on the baseline and on this counterfactual. It follows
that the only difference between the baseline and this counterfactual is the transmission
(to and from) uncertainty, so calculating the difference between the generalized impulse
responses isolates the transmission effect.

Recalling the Main and Uncertainty VARs (equations 4.1 and 4.5), the contem-
poraneous feedback of uncertainty to the mean of the variables is captured by the coef-
ficients B; in equation 4.1, and the lagged feedback effect of the variables to uncertainty
by the coefficients 0 in equation 4.5. Shutting down the nonlinear feedback (to and from)
uncertainty means restricting to zero the coefficient matrices B; and ¢. Following these

restrictions, the Main and Uncertainty VARs would be respectively written as

Y = A1ye1 + o+ Apyrp + vy, (4.27)

and
9t = D1gi—1+ ... + Drgi— + uys. (4.28)

The procedure for the second counterfactual consists of calculating the difference
between the generalized impulse responses from the time-varying procedure described
by equation 4.21, and an artificial generalized impulse response in which the coefficients
matrices B; and ¢ are restricted to zero. Formally, define a restricted set of coefficients
as I = [A;,B; = 0, D;, Bj,7j,0 = 0]. Following the steps described in section 4.3.1, the
artificial generalized impulse responses with no uncertainty feedback can be constructed

as

Glzj,news(kﬂ Tt-r,newsﬂ Zy, HT) = E[yt—i-k? gt+k’TtJr,news7 AT

t+k,news’

— E[yt+, 9t+k\AI+k7 Z, 117).

.
% IT] (4.29)

The final effect of the transmission (to and from) uncertainty on the news shock
can be calculated as the difference between the generalized impulse responses from equa-
tion 4.21 and from equation 4.29, as in

GIt,feedback = GIt,news(ka Tt,news, Zy, H) - GIT

t,news

(k’ thr,newsv Zt') HT) (430)
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4.3.3 Identification procedure for macroeconomic and financial uncer-
tainty shocks

The uncertainty shocks are modeled as a shock to the common uncertainty factors that
compose the volatilities of each variable. Since these factors are also included in the
Main VAR, the uncertainty shock can affect both the mean and the variance of the
variables of interest y;.

In this model, there are two uncertainty factors (macro and financial), which

share a full variance-covariance matrix defined as

[¢n+1 ¢n+3] '

u =

4.31
nt3  Pn+2 (431

This setup demands imposing an orthogonalization structure to achieve the struc-
tural macro and financial shocks. Employing a Cholesky structure leads to two possible
orthogonalizations: macro uncertainty ordered first with financial uncertainty ordered
last, and the inverse.

As a benchmark, I define financial variables as “fast” variables, while macro vari-
ables are “slow” variables. It means that financial uncertainty can react contempora-
neously to macroeconomic uncertainty shocks, but macroeconomic uncertainty can only
react to financial uncertainty shocks with one lag. This ordering is equivalent to model-
ing macro uncertainty first and financial uncertainty last in the Cholesky identification
structure.

In contrast to the news shock, the variance-covariance matrix of the uncertainties
does not change across time. I identify both shocks at the last observation 7', so the
information set here is Zp = (Yr—p, -, YT GT—p» - 97) - 12

The full identification procedure is described in Appendix B.6, but the general
idea is to produce a baseline and a shocked path for 1, g; and A; based on each of the

uncertainty shocks (macro and financial). The shocks are identified as

r & macro
Tmacro - (I)U * qi )

(4.32)

T & in
Tfin_i)u*qi ’

where ®,, is the lower triangular Cholesky decomposition of ®,,, r is the index of the set

of randomly drawn w?; innovations, ¢;"*“"®

i is a 2 x 1 vector with 1 in the first position

and zero in the second, and qu ™ i5 a 2 x 1 vector with zero in the first position and 1 in

2Where gr = (lnmyp;In fr).
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the second. For T'+ 1, I construct a one standard deviation shock on macro uncertainty

by substituting (¢, us)" in equation B.33 for 77, I then construct by simulation a

acro*
macro shocked path from T'+1 to T+ K for ¥y 1,405 9t macro 30d Af 1 q0r0 USING equation
B.33. I repeat the process for the financial uncertainty by using T}in to construct paths
for y;,firw g{,fin and A:,fzn

By employing the generalized impulse response structure described in Appendix

B.6, the final economic effect of the uncertainty shock is measured as

GImacro(k, Tmacros ZT) H) = E[yT-l—ka gT-‘rk’TmaCT‘Oa AT—}-k,macroa ZTv H]

— Elyrir, 97+ Artk, Zp, 11, (4.33)

Glin(k, Trin, L, XX) = Elyr 1k, 974%|Tfins Ar+k, fin, L7, 1]
— Elyrin, 974k | A sk, Zr, I1].

4.4 Latent uncertainty measures

In this Section I present the estimated macro and financial uncertainties from the stochas-
tic volatility in mean model presented in Section 4.2. The (estimated) stochastic volatil-
ity of each variable is composed of a common factor, which can be macroeconomic or
financial depending on the underlying variable, and an idiosyncratic component. The
common factors across the volatilities are the estimations of aggregate macroeconomic
and financial uncertainties.

Figure 4.3 displays the estimated aggregate macroeconomic uncertainty, and Fig-
ure 4.4 shows the estimated financial uncertainty. The stochastic volatilities of the
macroeconomic and financial variables are presented in Appendix B.8. The economic as-
sumption that macro and financial uncertainty may be related to each other is captured
by the interaction between the two uncertainty measures included in the Uncertainty
VAR (equation 4.5) and the full variance-covariance matrix between the two factors
(equation 4.6). Figures 4.3 and 4.4 show that some periods in time share high macro
and financial uncertainties, but some are marked by either a hike mainly in macro or
financial uncertainty. Comparing these series with the recessions identified by the Na-
tional Bureau of Economic Research (NBER), it is possible to match each recession with
a macroeconomic uncertainty hike, a financial uncertainty hike, or both.

The Great Moderation period (mid-1980s) for example, characterized by a decline
in the business cycle volatility of aggregate macroeconomic variables, is captured by a
hike in the macroeconomic uncertainty. During the dot-com crisis (1999-2001), which

was mainly a speculative financial bubble in the stock market, there is a higher financial
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Figure 4.3: Aggregate macroeconomic uncertainty
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Note: Macroeconomic uncertainty measured as the common factor on macroe-
conomic wvolatilities.  The dotted lines define the 68% confidence bands com-
puted with 200 posterior draws. The VAR model includes all variables in Ta-
bles B.2 and B.3. Shaded areas are the recession periods calculated by the NBER.

uncertainty. The 2008 crisis shows high macro and financial uncertainties.

While the uncertainty measures match crisis periods, they also follow closely the
monthly macro and financial uncertainties estimated by Ludvigson et al. [2016], which
I take here as a benchmark for comparison purposes. The macroeconomic uncertainty
presented in Figure 4.3 and the 1-month ahead macroeconomic uncertainty from Lud-
vigson et al. [2016] share a correlation of 0.76 over the period 1975Q1 and 2012Q3,'3
with 0.77 for both the 3-months ahead and 12-months ahead versions. The correlation
of the financial uncertainty presented in Figure 4.4 and the 1-month ahead financial
uncertainty from Ludvigson et al. [2016] is 0.68, with same coefficient when taking into
consideration the 3-months or 12-months ahead versions of the financial uncertainty.

The two series estimated here are also correlated with each other, a direct result
of the possibility of transmission of macro-to-financial uncertainty, and vice versa. The
correlation coefficient of the two series is 0.36. The uncertainty measures from Ludvigson
et al. [2016] present a higher correlation with each other. Considering the 1-month
ahead macro and financial uncertainty, the correlation coefficient is 0.53 over the period
1975Q1 and 2012Q3. The correlation coefficients of the 3-months and 12-months ahead

131 transform the uncertainty measures calculated by Ludvigson et al. [2016] from monthly to quarterly
by averaging across the quarter.
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Figure 4.4: Aggregate financial uncertainty
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Note:  Financial wuncertainty measured as the common factor on financial
volatilities.  The dotted lines define the 68% confidence bands computed with
200 posterior draws. The VAR model includes all variables in Tables B.2
and B.3. Shaded areas are the recession periods calculated by the NBER.

uncertainty versions are, respectively, 0.52 and 0.45.

It is important to notice that the estimation procedure for the measures presented
here is substantially different from the Ludvigson et al. [2016] methodology. First, Lud-
vigson et al. [2016] use of the FRED-MD database!# with stationary monthly data,
while I use quarterly data in levels. Second, Ludvigson et al. [2016] construct uncer-
tainty measures by averaging the conditional volatility of unforecastable components of
the future value of the macroeconomic or financial series. Here, I estimate the uncer-
tainty measures with a particle filter, where these uncertainties depend on the (lagged)
dependent variables, and the dependent variables can react contemporaneously to the
uncertainties (stochastic volatility in mean). Lastly, Ludvigson et al. [2016] and this
paper use different variables. While Ludvigson et al. [2016] employ 132 macro series and
147 financial series,'® I construct the uncertainty measures using only 14 macro and 14

financial series.

“McCracken and Ng [2016].
5Please refer to the On-line Appendix of Jurado et al. [2015] for a detailed description of the database
employed by the authors.
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4.5 Time-varying impulse responses to a news shock

In this Section I present the results of the news shock identification. For every point
in time the news shock economic responses are different, conditional on the estimated
time-varying volatility. This procedure makes it possible to understand the different
effects of a news shock on periods of high and low macro and financial uncertainty.
Figures 4.5 and 4.6 present the economic responses of selected variables after
a news shock, identified and calculated for each point in time as generalized impulse
responses.'® The graphs in Figure 4.5 show impulse responses in three dimensions:
period in time of identification (x-axis), size of impact (y-axis) and the effect h quarters
ahead (each line). Figure 4.6 presents these same impulse responses “sliced” at selected

forecast horizons.

Figure 4.5: Time-varying effects of news shocks
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Note: The news shock is identified for each period in time under the procedure
proposed in Section 4.3.1. The generalized impulse responses for each period are
the average of 1,000 simulated random innovations, as described in Appendir B.6.

The top-left graph of Figure 4.6 shows the effect of a technology news shock over
the utilization-adjusted TFP. The identification procedure of the news shock maximizes
the variance decomposition of this variable over a fixed forecast horizon of 40 quarters

ahead, imposing a zero effect on impact (h = 0). This graph provides evidence for how

16 A5 described in Appendix B.6. The generalized impulse responses for all the variables included in
the VAR can be found in Appendix B.10.
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Figure 4.6: Time-varying effects of news shocks over different forecast horizons
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Note: The news shock is identified for each period in time under the proce-
dure proposed in Section 4.3.1. The generalized impulse responses for each pe-
riod are the average of 1,000 simulated random innovations, as described in Ap-
pendiz B.6.  Fach line corresponds to the effect of the mnews shock h-quarters
ahead from the point in time, as “slices” of the graphs from Figure 4.5.

different the effects of a news shock can be over time when a time-varying volatility is
taken into account. The long-term effect of a news shock identified in the period 1980-
1983 or during the 2008 crisis is about twice the effect in more stable periods, as for
example, the early 1990s.

These differences over time are also found in the impulse responses for consump-
tion, GDP, investment and real personal income. The positive effect of a news shock
on consumption and personal income peaks after about 12 quarters. This new higher
level of consumption and real personal income is sustained in the long-term, while GDP
and investment peak at about 12 quarters and decay in the long-term. Nevertheless,
the positive effects on consumption, personal income, GDP and investment are more
intense during periods in which the effect of a news shock on utilization-adjusted TFP
is stronger.

The responses of hours worked are positive in the medium-term (h = 12), and
negative in the long-term (h = 36). These effects are substantially more intense in

periods of higher volatility (early 1980s and 2008). There is a deflationary effect in
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the medium-term after a news shock, as evidenced by the literature.!” By employing
a covariance-stationary identification procedure, Barsky et al. [2014] point out that the
peak of the negative effect on inflation is about 10 quarters after the news shock. Figure
4.6 shows that, after 12 quarters, there is indeed a deflationary effect, but this is much
more intense in periods of high volatility.

The effect on stock prices is positive, as initially indicated by Beaudry and Portier
[2006]. These effects peak on impact (h = 0) and converge to zero in the long-term. It is
worth noting, however, that the effect on stock prices is largely unrelated to the size of
the effect of the news shock on utilization-adjusted TFP. The positive news about future
technology is interpreted by the stock market in similar way across time, with positive

effects on impact.

4.5.1 News shocks and the relationship to uncertainty

As shown, the effects of a news shock are substantially different across time. In this
Section I investigate if these differences come from a potential connection between tech-
nology news shocks and uncertainty.

Bloom [2009] shows that uncertainty'® creates an ‘inaction zone’ in investment,
due to firms becoming more cautious. With firms close to the investment threshold, small
positive volatility shocks generate an investment response, while small negative shocks
generate no response. The idea is that, after the initial recessive effect of uncertainty,
firms would want to scale up their investment plans to address pent-up demand. The
result is a medium-term overshoot in productivity growth. Periods of high uncertainty
are also related to a higher potential return on investment, increasing the range of growth
options (Segal et al., 2015).

Cascaldi-Garcia and Galvao [2017] suggest that uncertainty shocks generate two
effects on total factor productivity: a short-term negative reduction on utilization fac-
tors, and a medium-term positive effect on the utilization-adjusted productivity. This
medium-term positive effect relates to the overshoot in productivity growth idea pre-
sented by Bloom [2009]. It follows that uncertainty foresees future technology improve-
ments, as a ‘good uncertainty’ effect. From this literature, one would expect a positive
relationship between high uncertainty periods and the positive economic outcomes from
a higher expected future technology growth, as in a news shock.

I first evaluate this proposition by calculating the correlation between a series of

17See, for example, Christiano et al. [2010], Barsky and Sims [2011] and Barsky et al. [2014].
18Bloom [2009] defines uncertainty as an increase in the volatility of total factor productivity shocks
that have a temporary negative effect on output growth.
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uncertainty measures and the medium (h = 12) and long-term (h = 36) effects of a news
shock on utilization-adjusted TFP, consumption and GDP. Tables 4.1 and 4.2 present
these correlations, while the description and availability of the uncertainty measures can
be found in Table B.4 in Appendix B.7.

Table 4.1: Correlations between medium-term news shock economic responses and un-
certainty measures

Medium-term

TFP Consumption GDP
Macro uncertainty measures
Macro uncertainty 0.96 [0.000] 0.92 [0.000] 0.93 [0.000]
LMN-macro-1 0.79 [0.000] 0.73 [0.000] 0.76 [0.000]
LMN-macro-3 0.80 [0.000] 0.74 [0.000] 0.77 [0.000]
LMN-macro-12 0.80 [0.000] 0.74 [0.000] 0.78 [0.000]
Policy uncertainty 0.01 [0.949] -0.02 [0.772] 0.02 [0.860]
Business uncertainty -0.01 [0.936] -0.02 [0.791] -0.08 [0.373]
SPF disagreement 0.53 [0.000] 0.50 [0.000] 0.55 [0.000]
Financial uncertainty measures
Financial uncertainty 0.52 [0.000] 0.27 [0.000] 0.39 [0.000]
LMN-fin-1 0.45 [0.000] 0.32 [0.000] 0.39 [0.000]
LMN-fin-3 0.45 [0.000] 0.31 [0.000] 0.39 [0.000]
LMN-fin-12 0.45 [0.000] 0.30 [0.000] 0.39 [0.000]
Realized volatility 0.47 ]0.000] 0.39 [0.000] 0.43 [0.000]
VXO 0.65 [0.000] 0.49 [0.000] 0.64 [0.000]

Note: The Macro uncertainty and Financial uncertainty in bold are the measures cal-
culated in this paper, and presented in Figures 4.3 and 4.4. Medium-term responses
are calculated 12 quarters ahead. The p-values for the test with zero correlation under

the null hypothesis are in brackets. The statistic is calculated as t = pg 1T_;22. For
0

details on the uncertainty measures and availability, see Table B.4 in Appendiz B.7.

Tables 4.1 and 4.2 show that the responses to a news shock are (positively) corre-
lated with both macro and financial uncertainties. Generally speaking, the correlation is
higher with macroeconomic uncertainty measures, and is higher in the medium-term than
in the long-term. There is a high correlation with the aggregated macroeconomic uncer-
tainty estimated here and with the macro uncertainties from Ludvigson et al. [2016].19
The correlation is also positive and significant with the disagreement measure from the

Survey of Professional Forecasters (SPF), ranging from 0.50 to 0.55 in the medium-term,

9Between 0.78 and 0.96 in the medium-term across TFP, consumption and GDP, and between 0.68
and 0.95 in the long-term.
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Table 4.2: Correlations between long-term news shock economic responses and uncer-
tainty measures

Long-term

TFP Consumption GDP
Macro uncertainty measures
Macro uncertainty 0.95 [0.000] 0.87 [0.000] 0.85 [0.000]
LMN-macro-1 0.76  [0.000] 0.67 [0.000] 0.67 [0.000]
LMN-macro-3 0.77 [0.000] 0.68 [0.000] 0.68 [0.000]
LMN-macro-12 0.76  [0.000] 0.69 [0.000] 0.68 [0.000]
Policy uncertainty 0.00 [0.973] -0.03 [0.750] 0.03 [0.757]
Business uncertainty -0.02 [0.831] -0.10 [0.231] -0.08 [0.355]
SPF disagreement 0.51 [0.000] 0.48 [0.000] 0.46 [0.000]
Financial uncertainty measures
Financial uncertainty 0.45 [0.000] 0.28 [0.000] 0.27 [0.001]
LMN-fin-1 0.41 [0.000] 0.29 [0.000] 0.28 [0.001]
LMN-fin-3 0.40 [0.000] 0.29 [0.000] 0.28 [0.001]
LMN-fin-12 0.40 [0.000] 0.29 [0.000] 0.26 [0.001]
Realized volatility 0.44 [0.000] 0.34 [0.000] 0.35 [0.000]
VXO 0.60 [0.000] 0.52 [0.000] 0.48 [0.000]

Note: The Macro uncertainty and Financial uncertainty in bold are the measures cal-
culated in this paper, and presented in Figures 4.8 and 4.4. Long-term responses are
calculated 40 quarters ahead. The p-values for the test with zero correlation under

the null hypothesis are in brackets. The statistic is calculated as t = pg, /fl;p%. For
0

details on the uncertainty measures and availability, see Table B.4 in Appendiz B.7.

and from 0.46 to 0.51 in the long-term. There is no correlation of the responses with the
policy uncertainty calculated by Baker et al. [2016] and with the business uncertainty
from Bachmann et al. [2013]. Although smaller, all the correlations between financial
uncertainties and the effects on utilization-adjusted TFP, consumption and GDP are
statistically significant.

It is important to note that the news shocks identified across time are normalized
to one standard deviation. Since the time-varying volatility is a linear function of the
uncertainty level, the size of the shock increases in periods of high uncertainty. The
high correlation of the medium and long-term effects presented in Tables 4.1 and 4.2
is a result of the transmission mechanism of the uncertainty measures to the mean of
the variables presented in equations 4.1 and 4.5. This transmission mechanism makes
the news shock stronger in periods of higher macroeconomic and financial uncertainty,

as suggested by the data when viewed through the stochastic volatility in mean VAR
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model.

Figure 4.7 presents a clearer image of the differences between the effects of a news
shock during high and low macroeconomic uncertainty periods. The red lines correspond
to the average of generalized impulse responses on periods of high uncertainty, while the
blue lines correspond to the average of generalized impulse responses on periods of low
uncertainty. I define high uncertainty as the periods with the highest 10% of values for
macroeconomic uncertainty, and low uncertainty with the lowest 10% of values.

Figure 4.7: Impulse responses to news shocks in periods of high and low macro uncer-
tainty
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Note: The news shock is identified for each period in time under the proce-
dure proposed in Section 4.3.1. Red and blue lines correspond to the aver-
age of generalized impulse responses on periods of high and low wuncertainty,
respectively.  High and low wuncertainty are the periods with the higher and
lower 10% walues for the macroeconomic uncertainty, respectively.  Each im-
pulse response is evaluated at the posterior mean.  Dashed lines correspond
to 68% distribution of the impulse responses in the high and low periods.

In the high uncertainty period, the positive effects of a news shock on utilization-
adjusted TFP, consumption, investment and real personal income are substantially
higher. The path of utilization-adjusted TFP (top-left graph of Figure 4.7) is flatter
in the low uncertainty period, while it has a positive peak about 20 quarters ahead in
the high uncertainty period. Cascaldi-Garcia and Galvao [2017] show that, after an un-
certainty shock, utilization-adjusted TFP rises in the medium-term, converging to zero

in the long-term. This hump-shaped path of utilization-adjusted TFP observed in the
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high uncertainty period is in line with the view that uncertainty predicts a medium-term
positive effect on technology.

The positive effect on consumption is higher in the high macroeconomic uncer-
tainty period over the entire forecast horizon of 40 quarters, following same pattern as
real personal income. With respect to GDP, the biggest difference between the high and
low uncertainty periods is in the medium-term. This divergence is a direct result of the
economic response of investment, which peaks about two to three years after the news
shock occurred. In the long-term, the path of investment in the high uncertainty period
converges to the path of the low uncertainty period.

The deflationary effect of the news shock is more pronounced in the high macroe-
conomic uncertainty period. In the low uncertainty period the response of the GDP
deflator is flatter, and close to zero. The effect of the news shock on the hours worked is
positive in the medium-term and negative in the long-term under the high uncertainty
period, while it is closer to zero under the low uncertainty period. There is no percep-
tible difference between the responses of the stock prices in the high or low uncertainty
macroeconomic periods. It is positive on impact, converging to zero in the long-term in
both cases.

In summary, these results provide evidence that news shocks have quantitatively
different effects in periods of high and low uncertainty. In periods of high uncertainty
the positive effects of news shocks are boosted, in line with the notion of a transmission

mechanism of technology news through uncertainty.

4.5.2 The uncertainty transmission mechanism of news shocks

How important is uncertainty for the effect of news shocks on the economy? Does it
depend only on the level of uncertainty at the time of the shock, or is there an uncertainty
transmission mechanism that influences the effect of a news shock throughout time? I
investigate these questions by providing two counterfactuals: what would happen to a
news shock (i) if uncertainty would remain unchanged across time, or (ii) if there was
no feedback effect from uncertainty. Section 4.3.2 provides the full description of the
procedure for these two counterfactuals.

The first counterfactual checks if the initial uncertainty condition matters for the
effect of the news shock. Figure 4.8 presents the impulse responses of a news shock
identified with a fixed uncertainty. Differently from Figure 4.6, the effects of the news
shock do not change over time when the initial uncertainty condition is fixed. Figure 4.9

outlines the importance of the initial uncertainty condition, by showing the differences
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between the impulse responses with time-varying uncertainty and with fixed uncertainty.
This is constructed by taking the responses from Figure 4.6 and subtracting the responses
from Figure 4.8. The effects of a news shock are more substantial in periods of high
uncertainty, confirming the level effect that the initial uncertainty condition generates

in the responses to a news shock.

Figure 4.8: Time-varying effects of news shocks over different forecast horizons with
fixed uncertainty
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Note: The news shock is identified for each period in time under the procedure pro-
posed in Section 4.5.2. The generalized impulse responses for each period are the aver-
age of 1,000 simulated random innovations, as described in Appendix B.6. Fach line
corresponds to the effect of the news shock h-quarters ahead from the point in time.

The second counterfactual checks if there is nonlinear feedback between uncer-
tainty and the news shock. Figure 4.10 presents the generalized impulse responses of a
news shock without feedback effect from uncertainty. The pattern of these responses is
quite similar to the responses from the full model, in which there is a feedback effect
from uncertainty (Figure 4.6). However, these effects differ in magnitude. Figure 4.11
depicts the differences between the impulse responses with and without feedback from
uncertainty. This is constructed by taking the responses of Figure 4.6 and subtracting
the responses from Figure 4.10.

Overall, the presence of an uncertainty feedback creates a positive bias in the
effect of a news shock on consumption, GDP and investment. This can be easily ob-

served by averaging these time-varying impulse responses, as in Figure 4.12. This Figure
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Figure 4.9: Differences between responses to a news shock computed with time-varying
uncertainty and with fixed uncertainty
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Note: The news shock is identified for each period in time under the procedure pro-
posed in Section 4.3.2. The generalized impulse responses for each period are the aver-
age of 1,000 simulated random innovations, as described in Appendix B.6. Fach line
corresponds to the effect of the news shock h-quarters ahead from the point in time.

summarizes the nonlinear feedback effect of uncertainty over the news shock. On aver-
age, the feedback effect generates a positive medium-term effect on utilization-adjusted
TFP, investment and GDP. Interestingly, the positive bias on investment peaks after
about 10 quarters, a period in which there is still no positive bias on utilization-adjusted
TFP. This is evidence that investment is anticipating future expected productivity, in
line with the findings of Beaudry and Portier [2006]. In the long-term, this positive
bias on utilization-adjusted TFP, investment and GDP tends to die out. With regard
to consumption and real personal income, there is a positive bias that tends to persist
in the long-term.

In summary, the counterfactuals presented here indicate that uncertainty and
news shocks are linked through two mechanisms: an initial condition effect and a trans-
mission effect. The initial condition effect means that, if the initial level of uncertainty
in the economy is high, the effects of the news shock will also be high. This evidence is
in line with the ‘good uncertainty’ shock literature, described before.

The transmission effect is more complex. The empirical results from the second

counterfactual show that when macro and financial uncertainties are allowed to react
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Figure 4.10: Time-varying effects of news shocks over different forecast horizons with no
feedback effect from uncertainty
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Note: The news shock is identified for each period in time under the procedure pro-
posed in Section 4.3.2. The generalized impulse responses for each period are the aver-
age of 1,000 simulated random innovations, as described in Appendix B.6. Fach line
corresponds to the effect of the news shock h-quarters ahead from the point in time.

to news shocks, the positive effects of such news are amplified. These results are in
line with a new stream in the literature on news and uncertainty shocks, which explores
the dynamics of uncertainty updating based on the arrival of news. Forni et al. [2017]
propose a model in which uncertainty is generated by news about future developments
in economic conditions. Uncertainty arises from the fact that these conditions are not
perfectly predicted by the economic agents. Berger et al. [2017] define an uncertainty
shock as a second-moment news, or changes in the expected future volatility of aggregate
stock returns. The authors argue that news about the squared growth rates are changes
in the conditional variance, which is equivalent to an uncertainty shock.

In summary, the results from the second counterfactual suggest that the arrival
of information about future technology makes the economic agents update not only their
expectations about future productivity, as in the news shock literature, but also their
expectations about macroeconomic and financial conditions, prozies to uncertainty. This
process is continuous, with consecutive updates as the effects of this new information
materialize. More broadly, the level of uncertainty reacts to information about the state

of the economy, and the state of the economy reacts to the level of uncertainty.
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Figure 4.11: Differences between responses to a news shock computed with and without
feedback effect from uncertainty
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Note: The news shock is identified for each period in time under the procedure pro-
posed in Section 4.3.2. The generalized impulse responses for each period are the aver-
age of 1,000 simulated random innovations, as described in Appendix B.6. Fach line
corresponds to the effect of the news shock h-quarters ahead from the point in time.

4.6 Responses to macroeconomic and financial uncertainty
shocks

In this Section I present generalized impulse responses of macroeconomic and finan-
cial uncertainty shocks.?? These responses help to better understand the link between
uncertainty and news shocks. The uncertainty shocks are disturbances to the common
macroeconomic and uncertainty volatility factors, or a second-moment shock to the vari-
ables. The benchmark results presented here consider the macro uncertainty as the first
orthogonalization position, and the financial uncertainty as the last.?!

Figure 4.13 shows the generalized impulse responses of a financial uncertainty
shock for selected variables. The full generalized impulse responses can be found in
Appendix B.10. The most interesting result here is the effect on utilization-adjusted

TFP. After the financial uncertainty shock, utilization-adjusted TFP increases in the

20 Appendix B.6 presents the procedure of identification of the macro and financial uncertainty shocks
and the calculation of the generalized impulse responses.

2!The alternative impulse responses considering the inverted ordering (first financial and second macro
uncertainty) are presented in Appendix B.9.
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Figure 4.12: Percentiles of the differences between responses to a news shock computed
with and without feedback effect from uncertainty
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and calculated at the posterior mean. The red line s the median.

medium-term, starting from a zero effect on impact (¢ = 0), and converging to zero in
the long-term. This path resembles the expected result of a news shock on this variable.
This result is in line with Cascaldi-Garcia and Galvao [2017], who show that a financial
uncertainty shock foresees a medium-term positive hike in utilization-adjusted TFP.22

The similarity of the responses on utilization-adjusted TFP presented here and
in Cascaldi-Garcia and Galvao [2017] are noteworthy, in the sense that the identifica-
tion method for the financial shock is substantially different. While Cascaldi-Garcia
and Galvao [2017] identify the financial uncertainty shock as the orthogonalization that
maximizes the variance decomposition of an observable proxy of financial uncertainty
in the short-term, here the financial uncertainty shock is a second moment shock to a
latent estimated financial uncertainty measure from a stochastic volatility process. Nev-
ertheless, the impact of financial uncertainty on technology follows the evidence from
Cascaldi-Garcia and Galvao [2017].

22Tt is also robust to the alternative identification with financial uncertainty ordered first, as presented
in Figure B.9.3 in Appendix B.9.
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Figure 4.13: Impulse responses to a financial
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Note: The uncertainty shocks are identified through Cholesky decomposition with

macroeconomic uncertainty ordered first, and financial

The effect of the financial shock on other variables is distinct from the utilization-
adjusted TFP. There is no significant effect on consumption. GDP falls after the shock,
driven by a reduction on investment. Both GDP and investment paths converge to zero

in the medium-term, confirming the short-lived characteristic of uncertainty shocks.

There is a deflationary effect, and the Federal funds rate

recessionary impact.

Figure 4.14 presents the generalized impulse responses of a macroeconomic uncer-
tainty shock on selected variables. The full generalized impulse responses can be found
in Appendix B.10. Although smaller, the effect on utilization-adjusted TFP is similar to
that observed in the financial uncertainty shock, with a medium-term positive effect.?3

The effect on consumption, GDP and investment are virtually zero. There is a negative

uncertainty ordered last, as
described in Section 4.3.3. The generalized impulse responses of the uncertainty shock

are the average of 1,000 simulated random innovations, as described in Appendiz B.6.
The shaded areas define the 68% confidence bands computed with 200 posterior draws.

goes down to counteract the

impact on hours worked, and a deflationary effect in the medium-term.

23Gimilar results can be found in the alternative identification with financial uncertainty ordered first,

as presented in Figure B.9.4 in Appendix B.9.
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Figure 4.14: Impulse responses to a macroeconomic uncertainty shock
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Note: The uncertainty shocks are identified through Cholesky decomposition with
macroeconomic uncertainty ordered first, and financial uncertainty ordered last, as
described in Section 4.3.3. The generalized impulse responses of the uncertainty shock
are the average of 1,000 simulated random innovations, as described in Appendiz B.6.
The shaded areas define the 68% confidence bands computed with 200 posterior draws.

4.7 Conclusion

This paper shows that the positive economic effects of news on the future increase in
technology differ depending on the level of uncertainty of the economy. It contributes
to the literature on shocks driven by agents’ beliefs in two ways.

First, I propose an innovative method of checking whether the effects of technol-
ogy news shocks change depending on the point in time at which it is identified. By
employing this identification strategy, I show that economic responses to a news shock
vary quantitatively across time. While the conventional Barsky and Sims [2011] identi-
fication is not robust to changes in the estimation period,?* the results from this paper
indicate that processes with time invariant covariances may not be appropriate for a
news shock identification. Moreover, the fact that the responses to news shocks vary

significantly over time helps to explain why there is still no consensus in the news shock
literature about the effects on macroeconomic variables.??

24Gee an empirical evaluation in the Introduction Section of this paper.
25See Beaudry and Portier [2014] for a review of the empirical evidence of news shocks under different
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The second contribution is new evidence supporting a dynamic relationship be-
tween technology news and uncertainty. I propose a nonlinear model that allows a
feedback effect between the level of uncertainty and the macroeconomic and financial
variables. The effects of news on consumption, GDP, investment and real personal in-
come are amplified when the news shock hits the economy in periods of high uncertainty.
The results from two counterfactuals suggest that the size of these effects depends on
the initial degree of uncertainty (initial condition effect) and on how expectations about
macroeconomic and financial conditions are updated (transmission effect).

The initial condition effect is in line with the idea of a ‘good uncertainty’ shock,
that is, high uncertainty increases the likelihood of news shocks (Cascaldi-Garcia and
Galvao, 2017). Periods of high uncertainty are related to a higher potential return on
investment, increasing the range of growth options (Segal et al., 2015). While uncertainty
reduces the utilization of production factors, it also creates an incentive to substitute
less flexible for more flexible capital (Comin, 2000, Bloom, 2009, Cascaldi-Garcia and
Galvao, 2017).

The transmission effect relates to how uncertainty is updated with the arrival
of positive technological news (Forni et al., 2017, Berger et al., 2017). The second
counterfactual shows that the positive effects of a news shock are even higher when
allowing for a feedback to (and from) uncertainty. From the perspective of the news
shock literature, this evidence implies that neglecting the uncertainty transmission effect
leads to the conclusion that the positive effects of news shocks are weaker than they really
are. From the perspective of the uncertainty literature, it raises the question of how the
arrival of news, and the realization of its economic effects, influences the way economic

agents update their expectations about macroeconomic and financial conditions.

assumptions and identification methods.
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Chapter 5

News shocks and the slope of the
term structure of interest rates:

Comment
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The economic findings of Beaudry and Portier [2006] contributed to the litera-
ture on business cycles driven by agents’ beliefs with the empirical identification of the
‘news shock’ — changes in the future total factor productivity (TFP) that are foreseen
by the economic agents. The idea behind the news shock is that future technological
improvements (free from utilization factors) take time until they have an impact on the
economy. From a rational expectations perspective, the agents can foresee this techno-
logical impact (to some extent) and react to it now.

Kurmann and Otrok [2013] provide an important result concerning the relation-
ship between a news shock and other economic shocks. They report a correlation of 0.86
between a news shock and the shock to the slope of the term structure, defined as the
spread between the yield on a long-term treasury bond and a short-term bill rate. As
emphasized by Kurmann and Otrok [2013], it is known from the finance and business
cycle literatures that the slope of the term structure (i) carries information that helps to
predict macroeconomic activity! and (ii) relates to the transmission of monetary policy.

Adopting a procedure of identification of structural shocks by maximizing the
forecast error variance of a target variable,? Kurmann and Otrok [2013] show that the
link between monetary policy transmission and economic activity is the relation between
news shocks and the slope of the term structure. A positive slope shock foresees smooth
future growth in consumption and utilization-adjusted TFP, accompanied by a drop in
inflation. Interestingly, this is also the predicted behavior of a news shock as in Beaudry
and Portier [2006]. The increase in the slope comes from a stronger response to the policy
rate than the long rate, with the Federal Funds rate falling more than inflation. Since
the economic responses after a slope shock are identical to a news shock, the authors
conclude that the uneven effect between the short and long-term rates is the endogenous
response of the monetary policy to a news shock.

As a result, both slope and news shocks are supposedly measuring the same eco-
nomic effect. The authors also confirm these similarities by showing that news shocks
explain more than half of the movements in the slope. This comment presents evidence
that this relationship between news and slope of the term structure diminishes sub-
stantially after an update in the utilization-adjusted TFP series employed by Kurmann
and Otrok [2013]. The correlation between news and slope shocks falls to 0.14 and the
impulse responses of these shocks are fundamentally different.

The identification of the news shock in Kurmann and Otrok [2013] relies on the

!See Harvey [1988], Estrella and Hardouvelis [1991], Ang and Piazzesi [2003] and Kurmann and Otrok
[2013).
2As in Faust [1998] Uhlig [2005] and Barsky and Sims [2011].
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quarterly utilization-adjusted TFP series calculated by Fernald [2014]. Beaudry and
Portier [2006] emphasize that when considering the identification of a news shock it is
very important to control for utilization factors, capturing as closely as possible the
effects of a technological change. Therefore, measures of raw TFP are not suitable to
identify news shocks because their unexpected changes may be related to variations in
the utilization of factors instead of technology changes.

Fernald [2014] applies growth-accounting methods for imputation of capital and
labor controlling for heterogeneity and adjustments for variations in factor utilization
(including non-technological factors, such as the intensity margin for the workweek of
capital and labor effort). Initially employed by Beaudry and Portier [2006], it became
a common practice in the news shock literature to use this series for identification pur-
poses.?

The utilization-adjusted TFP series is constantly updated by the author, and
went through severe revisions in 2014. The main changes include the parameter estimates
on utilization (from the Basu et al., 2006 methodology to Basu et al., 2013) and the
imputation of hours per worker. The result of this update is a substantial change in
the utilization factor and, consequently, in the utilization-adjusted TFP. A simple graph
comparison (Figure 5.1) of the new and old series shows that the non-adjusted TFP is
very similar before and after the update of the utilization parameters. However, the
utilization factor is substantially different. Here I revisit Kurmann and Otrok [2013] in
light of these changes.

The structure of this comment is as follows. In Section 5.1, I show that the
Kurmann and Otrok [2013] results are sensitive to updates in the utilization-adjusted
TFP series from Fernald [2014] by replicating these results with a new version of the
series. Section 5.2 is a robustness check, showing that an alternative model, comprising
different information set, time span and slope measure is also sensitive to the update in
the utilization-adjusted TFP series. In Section 5.3, I show that a slope shock produces
a positive impact on the utilization factor, indicating that the relation of slope and TFP
found in Kurmann and Otrok [2013] can be some remaining effect of utilization. Section

5.4 concludes the discussion.

3See, for example, Barsky and Sims, 2011, Barsky et al., 2014, Forni et al., 2014 and Beaudry and
Portier, 2014.
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Figure 5.1: Old and new Fernald [2014] TFP series decomposed by utilization factor
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Calculation from the series available at Federal Reserve Bank of San Francisco (new
utilization-adjusted TFP — Nov/2015 vintage) and from Beaudry and Portier [2014]
database (old utilization-adjusted TFP — Nov/2012 vintage).

5.1 Revisiting Kurmann and Otrok [2013] with a new TFP

series

I start evaluating the connection between news and slope shocks from Kurmann and
Otrok [2013] with the new utilization-adjusted TFP series. This first exercise consists
of estimating exactly the same model as Kurmann and Otrok [2013] for news and slope
shocks, but considering the updated utilization-adjusted TFP series from Fernald [2014].
I employ the code made available by the authors, with the same variables and time

period.
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With the original database, the correlation coefficient between the recovered news
and slope shocks is 0.86 (Kurmann and Otrok, 2013). This result is substantially dis-
tinct when I employ the new updated utilization-adjusted TFP series:* The correlation
between news and slope shocks, now, is only 0.14. This drop in the correlation is also
robust to different vintages of utilization-adjusted TFP series.® For example, employing
the vintage of May /2013, the correlation is 0.82; considering the vintage of May /2014,
the correlation falls to 0.38; finally, with the vintage of May/2015, the correlation de-
creases to 0.18.

The economic responses of slope and news shocks are also notably different, as
shown in Figures 5.2 and 5.3. Figure 5.2 provides the impulse response functions of the
slope shock, with the solid lines representing the model with the new utilization-adjusted
TFP series. The dashed lines represent the model with the old utilization-adjusted TFP
series (as in Kurmann and Otrok, 2013). With the old series, the path of the impulse
response on the utilization-adjusted TFP resembles a news shock, with zero effect on
impact and smoothly converging to a new higher level (top-right graph from Figure
5.2). However, with the updated utilization-adjusted TFP series there is a positive and
statistically significant effect on impact (¢t = 0). The slope shock is now capturing the
positive effect of technological growth, and not an anticipated slow smooth diffusion of
technology (as in a news shock).

The similarities between the impulse responses after a slope shock with a news
shock are the basis of the argument that variations in the slope are the endogenous
monetary response to future technological changes. The implications of the slope shock
on monetary policy from Kurmann and Otrok [2013] still holds under the updated
utilization-adjusted TFP series, but not as a response to a news shock. First, after
a slope shock, inflation falls less than the Federal Funds rate, reducing the real short
rate, and showing an active expansionary monetary policy. Second, variations in the
slope are a result of the drop in the short-run interest rate, since the effect on the
long-run (five-year bond yield) is essentially zero. Finally, large slopes predict future
economic growth (e.g., an expansion in consumption, as in Harvey, 1988), although the
effect on utilization-adjusted TFP is now significant on impact.

Figure 5.3 provides the impulse response functions after a news shock. Again,
the solid lines refer to the updated utilization-adjusted TFP series and the dashed lines

to the old version. In order to match Kurmann and Otrok [2013], in which a news shock

ATFP series downloaded in November/2015 from the Federal Reserve Bank of San Francisco
(http://www.frbsf.org/economic-research/economists/john-fernald/).

®John Fernald, via email correspondence in March 2016, has kindly provided utilization-adjusted TFP
vintages from 2013 to 2015.
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Figure 5.2: Comparing responses to a slope shock with the new and old versions of the
utilization-adjusted TFP under the Kurmann and Otrok [2013] model
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The solid line is the median effect with the revised utilization-adjusted TFP series, and
the dashed is with the old utilization-adjusted TFP series. The grey area corresponds to
the 16%-84% coverage bands of the model considering the new utilization-adjusted TFP

series.

raises the slope of the term structure, the short rate has to decrease faster than the long
rate. Here, however, the impact of a news shock on the short and long rate are very
similar. As a result, the effect over the slope is nearly zero and not significant. This
pattern is different from Kurmann and Otrok [2013] but resembles the DSGE results
produced by Kurmann and Otrok [2011].9

The empirical results from Kurmann and Otrok [2013] also show that news shocks
account for more than 50% of the unpredictable movements of the slope of the term
structure. When adopting the new updated utilization-adjusted TFP series this share
falls to 20%, and the lower coverage band is close to zero (Figure C.1.1 in Appendix C.1).
In summary, the updates performed in the methodology of adjusting TFP for utilization
changed the behavior of both news and slope shocks, but particularly the news shock.
The result is that news and slope shocks are no longer as strongly correlated as in
Kurmann and Otrok [2013].

5 Adopting estimated DSGE models, the authors show that after a news shock the drop in the short
and long rate are about the same.
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Figure 5.3: Comparing responses to a news shock with the new and old versions of the
utilization-adjusted TFP under the Kurmann and Otrok [2013] model
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series.

5.2 Robustness check with a different information set

In Section 5.1, I show that the strong relation between news shocks and the slope of the
term structure as presented by Kurmann and Otrok [2013] is no longer valid. Two tests
are necessary in order to certify that the update in the TFP series is the only cause of the
zero correlation between news and slope shocks. First, alternative models with the old
utilization-adjusted TFP series should be able to reproduce the high correlation between
news and slope shocks. Second, this correlation must disappear when substituting the
old utilization-adjusted TFP series for the new updated version.

I propose here an alternative VAR model” incorporating additional financial vari-
ables, with relevant forward-looking information that helps to identify the news shock.®
Since variations in the slope are supposedly responses to news shocks, these new financial

variables should also contribute to the identification of the slope shock. This alternative

"Bayesian Vector Autoregressive Model estimated with Minnesota Priors (Litterman, 1986) as sug-
gested by Bairibura et al. [2010] and Carriero et al. [2015a)].

8The presence of forward-looking economic variables, such as consumption and stock prices, is a
necessary condition for the proper identification of a news shock (Beaudry and Portier, 2006).
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model differs from Kurmann and Otrok [2013] in the variables considered,” the time
span'® and the measure of the slope of the term structure.!! The identification of the
news and slope shocks follows the maximization of the forecast error variance of the
utilization-adjusted TFP and of the slope, respectively.

Employing the old utilization-adjusted TFP series in the alternative VAR model,
the recovered news and slope shocks produce a correlation between them of 0.48, statisti-
cally significant at the 1% level. This correlation is lower than the 0.86 of Kurmann and
Otrok [2013], the reason being the different time span. In Kurmann and Otrok [2013]
the data covers 1959:1 to 2005:1 and the correlation between news and slope shocks is not
as strong as 0.86 throughout the entire series. Adopting an 80 quarter moving window,
I show in Figure 5.4 that the correlation is above 0.86 until the first quarter of 2000,
falling sharply afterwards. In fact, considering the final sub-sample between 1985:I1 and
2005:1, the correlation coefficient only accounts for 0.55. In the alternative VAR model
the time span is more up-to-date (from 1975:1 to 2007:IV), concentrating the period
where the correlation between news and slope shocks is lower.?

Furthermore, when employing the new updated utilization-adjusted TFP series,
the correlation between the recovered news and slope shocks identified under this model
is -0.33. The news shock explains only 7% (impact) to 9% (long-run) of the unpredicted
movements of the slope of the term structure. In Kurmann and Otrok [2013], the impulse
responses after a news and a slope shock are quite similar, which is not the case here
(Figure 5.5 for the news shock and Figure 5.6 for the slope shock). Notably, there is
no effect on utilization-adjusted TFP after a slope shock under this alternative VAR
model. It follows that the positive effect of a slope shock on utilization-adjusted TFP

9The model consists of a measure of the log of utilization-adjusted total factor productivity (TFP),
log of (real) personal consumption expenditures (PCE), excess bond premium (EBP) — calculated by
Gilchrist and Zakrajsek [2012] —, a measure of realized volatility (RVOL), log of industrial production,
log of private (nonfarm) payroll employment, log of the PCE price deflator, value-weighted total stock
market (log) return, effective nominal Federal Funds rate and the slope of the term structure (defined
here as the difference between the 10-year Treasury yield and the effective nominal Federal Funds rate).
All the variables are US data and, except for utilization-adjusted TFP, transformed from monthly to
quarterly as the mean of the period.

Y Considering the period from 1975:1 to 2007:1V, while Kurmann and Otrok [2013] is from 1959:T to
2005:1. T use data only up to 2007:1V to avoid the effect of the zero lower bound in the identification of
the slope shock. T would like to thank Christopher Otrok and André Kurmann for raising the zero lower
bound issue.

1T measure the slope of the term structure as the spread between the 10-year Treasury yield and the
effective nominal Federal Funds rate, while Kurmann and Otrok [2013] considers the difference between
the 60-month Fama-Bliss unsmoothed zero-coupon yield from the CRSP government bonds files and the
Federal Funds rate.

12T also evaluated the correlation of the alternative VAR model with the old utilization-adjusted TFP
series considering an 80 quarter moving window. The results show that the correlation of 0.48 is quite
robust over the series, and can be seen in Figure C.1.2 in the Appendix.
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Figure 5.4: Correlations between news and slope shocks on an 80 quarter moving window
from Kurmann and Otrok [2013]
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quarter moving window under the original identification of Kurmann and Otrok [2013].
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corresponds to the final observation of the 80 quarter moving window.

produced by the Kurmann and Otrok [2013] method fades away when the information
set is widened with financial variables (Figure 5.6).

As in Section 5.1, there is no evidence from this alternative VAR model of a
relationship between news shocks and the slope of the term structure after the update

in the utilization-adjusted TFP series.

5.3 Effect of a slope shock on the utilization factor

Fernald [2014] argues that the update in the TFP series was caused by a modification
in the adjustment for changes in factor utilization from the methodology of Basu et al.
[2006] to the one adopted in Basu et al. [2013]. Hence, it is reasonable to consider that
the new utilization-adjusted TFP series is a more accurate measure of the unobserved
changes in technology. In this Section I check if the relation between news and slope
shocks using the older version of the utilization-adjusted TFP series comes from some

remaining utilization factor.
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Figure 5.5: Impulse responses to a news shock under an alternative VAR model aug-
mented by financial variables
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The grey area corresponds to the 16%-84% coverage bands of the model after 1000
replications and considering the new TFP series. The 10-year Treasury yield impulse
response is a combination of the Federal Funds rate and the spread.

Figure 5.6: Impulse responses to a slope shock under an alternative VAR model aug-
mented by financial variables
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The grey area corresponds to the 16%-84% coverage bands of the model after 1000
replications and considering the new TFP series. The 10-year Treasury yield impulse
response is a combination of the Federal Funds rate and the spread.
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A statistically significant effect of a slope shock on utilization would be a good
indicator that a share of these factors was still included in the old series. Here I conduct
a test to verify this effect by evaluating the impact of a slope shock on the utilization
factor under the same alternative VAR model of Section 5.2.13

Figure 5.7 produces the impulse responses of the slope shock in the alternative
VAR model with the utilization factor. There is a positive and significant effect on the
utilization factor and on the non-adjusted TFP in the medium-run, starting from zero
on impact (¢t = 0). The path of the non-adjusted TFP response is very similar to the
utilization factor. Since the utilization factor is part of the total TFP, this implies that
most of the effect of a slope shock observed is due to a higher utilization and not to a
positive change in the non-utilization part of the TFP (a proxy for technology change).

From a macroeconomic perspective, the slope shock is predicting future economic
activity (higher industrial production and employment), which justifies the positive effect
in the utilization. However, in the long-run the responses of a slope shock on macroe-
conomic variables converge to zero, and the utilization factor also follows this pattern.
This transitory effect in the long-run of both utilization factor and non-adjusted TFP
makes the slope shock remarkably different from a news shock.

While future research on this topic is desirable, these preliminary findings indicate
that the positive effect of a slope shock on TFP is driven by the utilization factor
and might cause the positive correlation between news and slope shocks presented in
Kurmann and Otrok [2013].

5.4 Conclusion

In this comment I provide evidence that the methodology of extracting the utilization
factor from TFP influences the correlation between news and slope shocks, and how
economic variables respond to a news shock. The identification of a news shock depends
on properly controlling for utilization factors, and the revision of the utilization-adjusted
TFP series has a substantial impact on this. Without the adjustment, the response in
TFP after a productivity shock may be due to changes in factor utilization, and not in
the technology itself. Potentially, important results from the news shock literature that
rely on the utilization-adjusted TFP series from Fernald [2014] may also be affected by
this revision.

After the update of the utilization-adjusted TFP series, the correlation between

131 replace the updated utilization adjusted TFP series for the non-adjusted TFP series and the
utilization factor.
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Figure 5.7: Impulse responses to a slope shock under an alternative VAR

mented by financial variables and the utilization factor
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The grey area corresponds to the 16%-84% coverage bands of the model after 1000
replications and considering the new TFP series. The 10-year Treasury yield impulse
response is a combination of the Federal Funds rate and the spread.

news and slope shocks diminishes and the implications of a news shock become substan-

tially different from Kurmann and Otrok [2013]. The main reason for the positive effect

of a news shock on the slope in Kurmann and Otrok [2013] is the endogenous response

of monetary policy, driven through the fall of the Federal Funds rate in a larger level

than the long-term yield. However, with the new updated utilization-adjusted TFP se-

ries the effect of a news shock on inflation is zero, and the drop in the Federal Funds

rate is not statistically significant (Figure 5.3), invalidating the ‘active monetary policy’

channel of a news shock on the slope. As a result, it is no longer possible to conclude

that systematic monetary policy is a channel of linking macroeconomic news shocks and

term structure dynamics, as initially proposed by Kurmann and Otrok [2013].
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Chapter 6

Forecast revisions as instruments

for news shocks
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6.1 Introduction

The literature on technological news shocks argues that the macroeconomy react to pos-
itive expectations about future productivity. The results so far show that positive news
generates comovement among GDP, consumption and investment, and is deflationary

in the medium-run.!

However, there remains an ongoing discussion (both theoretical
and empirical) on (i) how important is this shock on explaining business cycles, (ii) how
‘fast’ should one observe an effect on productivity, and (iii) what is the effect on other
important macroeconomic variables, such as hours worked.?

These questions arise from the fact that the literature is still debating how to
properly identify a news shock. Measuring the effect of news about future productivity
is a difficult task. First, because identifying a news shock implies separating TFP shocks
into unexpected and expected parts. Second, the effect of technological changes on
productivity is not directly observed, and its proxies may be subject to measurement
errors or substantial revisions.? And third, the news information may be ‘noisy’, which
would make a news shock identification infeasible (Blanchard et al., 2013).

In practice, there are two empirical identification strategies for news shocks avail-
able in the literature: one based on a combination of short and long-run restrictions
(Beaudry and Portier, 2006), and another based on explaining the medium-run effects on
TFP (Barsky and Sims, 2011). The Beaudry and Portier [2006] methodology is success-
ful in generating positive comovement among macroeconomic variables. The measure of
utilization-adjusted TFP only reacts to a news shock in the medium-run, as it would be
expected with an anticipation of future news. However, this identification relies on very
strong assumptions about the order of integration of the variables or its cointegrating
relationships.?

Barsky and Sims [2011] (BS, henceforth) approach is a partial identification strat-
egy and is less restrictive than Beaudry and Portier [2006], relying on the assumption
that a limited number of shocks generate movements in utilization-adjusted TFP. The
idea is to find the orthogonalization that best explains the TFP’s forecast error variance
over a finite horizon, and that has no effect on TFP on impact. The economic effects

of a news shock employing this method differ from the results presented by Beaudry

!See, for example, Beaudry and Portier [2006] and Barsky and Sims [2011].

2See Beaudry and Portier [2014] for a comprehensive survey about the challenges of identifying a
technological news shock.

3See Cascaldi-Garcia [2017] and Kurmann and Sims [2017] for a discussion about the effects of
utilization-adjusted TFP updates on news shocks.

“Barsky and Sims [2011] present a discussion about the issues of employing long-run restrictions while
identifying news shocks.
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and Portier [2006]. There is less evidence of a positive comovement on impact, and the
effect on hours is either negative or virtually zero.® In addition, utilization-adjusted
TFP reacts almost immediately after impact, which raises the argument of how much
economic variables are anticipating or, rather, tracking TFP growth.

This paper follows a third path. The idea is to identify technological news shocks
in a Structural VAR by relying on external validity (proxy SVAR). The use of exogenous
variables as instruments for the structural shock of interest is a recent burgeoning liter-
ature in business cycles.% It has been applied to identify monetary policy shocks (Stock
and Watson, 2012, Gertler and Karadi, 2015, Miranda-Agrippino and Ricco, 2018), fiscal
policy shocks (Mertens and Ravn, 2014, Caldara and Kamps, 2017), uncertainty shocks
(Carriero et al., 2015b, Piffer and Podstawski, 2017) and oil supply shocks (Montiel Olea
et al., 2016). With respect to news shocks, extraneous data have been applied to news
about future fiscal spending (Auerbach and Gorodnichenko, 2012) and for news about
future oil supply (Arezki et al., 2017).

This paper contributes to the literature by empirically identifying technological
news shocks based on information about agents’ expectations. The application I propose
here is based on only one assumption: if agents expect a higher future productivity, they
should expect a higher future economic growth as well. It follows that positive news
about productivity should be (positively) correlated with news about future economic
activity.

While news about future TFP is not directly observed, proxies for news about
future economic activity can be constructed through forecast revisions. The Survey
of Professional Forecasters (SPF) provides quarterly forecasts for a series of economic
indicators, up to one year ahead. Three of these series are particularly relevant for
technological news: GDP, investment and industrial production. Positive news about
future technology should be reflected as a higher future GDP, investment and industrial
production. I propose a methodology of measuring revisions about the long-run trend
of these variables by calculating differences between updates on forecasts and nowcasts.
This method allows the construction of a quarterly time series for forecast revisions
about future GDP, investment and industrial production.

I employ the external validity procedure introduced by Mertens and Ravn [2013]

®See, for example, Barsky and Sims [2011], Kurmann and Otrok [2013] and Barsky et al. [2014].
Cascaldi-Garcia and Galvao [2017] recover a positive comovement among GDP, consumption, investment
and hours worked by employing the BS approach in an identification strategy that imposes orthogonality
between news and uncertainty shocks.

5See Ramey [2016] and Kilian and Liitkepohl [2017] for an overview of identification based on extra-
neous data.
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and Stock and Watson [2012] to the news shock case. This approach identifies structural
shocks based on information not contained on the VAR, namely instruments, which
are noisy measures of the structural shock. The idea is to jointly use the constructed
series of forecast revisions about future GDP, investment and industrial production as
instruments that potentially provide identification of the news shock. The procedure
consists of regressing the instruments against the residuals of a reduced-form VAR, and
using this information to infer the contemporaneous impact of a news shock on the
macroeconomic variables.

While the strategy of identifying a technological news shock through instruments
based on expectations is innovative, the literature has already shown the predictive
power of expectations on driving business cycles. Miyamoto and Nguyen [2017] argue
that the precision of news shocks improves when forecast data is also considered in the
information set. Levchenko and Pandalai-Nayar [2018] show that a non-technological
expectation shock accounts for a large share of business cycle fluctuations in the short-
run. Clements and Galvao [2018] show that data uncertainty influences the impact of
expectation shocks on the economy. They find, however, that expectation shocks are
not correlated with technological news shocks.

In summary, this paper contributes to the news shock literature with new evidence
about the importance of technological news on driving business cycles. The proposed
identification procedure relies on more pragmatic assumptions by bridging agents’ expec-
tations on future technology with observed revisions on economic forecasts. As such, a
news shock constructed with instrumental variables can be more realistic in representing
its economic effects than when identified with the current statistical methods found in
the literature.

The outline of the paper is as follows. I show the relevance of forecast revisions
for measuring technological news shocks in Section 6.2. Section 6.3 presents the identifi-
cation procedure of the news shocks with instrumental variables (proxy SVAR) and the
discussion about the exogeneity of the proposed measures. Section 6.4 summarizes the
results of the identified news shock with instrumental variables. Section 6.5 concludes

this paper.

6.2 Relevance of forecast revisions for measuring news

The process of identifying the effect of news about the future outcome of economic
variables is not simple. The alternative I propose, here, is to look at professional forecast

surveys, and measure the change in its forecasts from one period to another. But how
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informative are these forecasts for the news shock driving the long-run growth of the
economy? I answer this question by presenting a simple model with three sources of
exogenous shocks, as in Levchenko and Pandalai-Nayar [2018]: surprise technological
shocks, technological news shocks and transitory non-technological shocks.

As largely explored by the business cycle literature,” productivity changes (e.g.,
technological shocks) are the predominant source of output fluctuations in the long-run.
While permanent technology changes determine the long-run trend of output, other
sources of shocks (e.g., preferences, tax rates, monetary policy) explain movements in
the short-run around this trend.

Suppose real output (in logs) follows a process with a deterministic trend, as in

log yr = Bt + €y, (6.1)

where (3 is the slope of the long-run trend and € ; captures the short-run non-technological

shocks that temporarily deviate logy; from its long-run trend, following a process
€kt = € t—1 1 Ot (6.2)
Taking the differences of log y; leads to
Alogy: = B+ Aegy. (6.3)

Figure 6.1 presents a possible generic path of real output, in which the dashed
line is the time trend estimated by regressing logy; on t.
While estimating the time trend and its slope demand a sufficiently large number

of observations, an approximate measure for the slope (3) can be obtained with just two

points. In the example of Figure 6.1, where ¢t 4+ h is the long-run, it suffices to calculate

F log ys4n — logy,

(t+h)—t (6.4)
5 logyiyn — logy
B = - .

"See Stadler [1994] for an extensive review of the real business cycle literature.
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Figure 6.1: Long-run output level and trend
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By substituting log y; and log ¥+, it leads to

= B(t+h) + ex i — (Bt + €xt)
B h

5 (ek,t—i—h - Ek,t)

B=p+

(6.5)

The approximate measure of the slope B is defined as the slope of long-run trend
plus the short-run deviations around the trend (ej ¢, —€x,¢). By keeping h fixed, equation

6.4 is proportional to

B o log Yi+n — log ys. (6.6)

It follows that the difference between the two observables (logy;ip — logy) is
proportional to a noisy measure of the slope of long-run trend of output.

Suppose an economy in which its output ¥, is described by a technology measure
A; and a generic production function f(K;/L;), where K;/L; is the ratio between capital

and labor, as in
yr = Acf (Ki/Ly), (6.7)

or in logs
logy; = log Ay + log f(K;/Ly), (6.8)
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and taking the differences
Alogy: = Alog A; + Alog f(K¢/Ly). (6.9)

As in Smets and Wouters [2007], I assume, here, that technology is the main driver
of the long-run growth. If non-technological shocks cause the output to deviate from
its long-run trend, technological shocks should produce permanent changes in the trend
itself. By linking with equation 6.3, this is equivalent to say that changes in technology
define the slope of the long-run trend, as in Alog A; = 3, and changes in the production
factors define the temporary deviations of the trend, as in Alog f(K;/L;) = Aej .

A positive permanent technological shock should increase output growth, which
is equivalent to making the time trend in Figure 6.1 steeper. Similarly, negative tech-
nological shocks should make the same curve more flat. It follows that the slope of a
long-run time trend of output should be informative about the technology level of this
economy, and changes in this slope should be informative about changes in technology
(technological shocks).

Following the news shock literature, technology is characterized as a stochastic
process driven by two shocks. The first (esurprise,t) is a surprise technological shock,
which changes the level of technology on impact and generates a temporary effect on the
economy. The second (€pews,t—r) is the news shock, which is observed h periods ahead
and produces no change in technology when observed, but creates a permanent long-run
effect on the economy. In such an economy, long-run changes in output are only driven
by news shocks observed one period ahead of the effective change in technology. In a
univariate context it is not feasible to separate €surprise,t and €pews,t—h-

Say, for example, that technology follows a process as
10g A = B + log A1+ Esurprise,t T €news,t—hs (610)

where the news shock that changes the level of technology in time ¢ is observed in ¢ — h.
It follows that the news shock observed today, €pews,t, Will change the level of

technology in t + h, as in

log AtJrh = B + log AtJrhfl + €surprise,t+h + €news,ts (611)
or
h h
log At—i—h = (h + 1)5 + 10g Atfl + Z €surprise,t+i + Z €news,t—i- (612)
=0 =0
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The long-run difference (log A¢4p, — log A;) is then defined by

h h—1
log At+h — log At = hﬁ + Z €surprise,t+i + Z €news,t—i- (613)
i=1 =0

Since the long-run difference (log f(Ky+n/Li+n) — log f(K:/Lt)) is

log f(Ktyn/Ltyn) —log f(K¢/Ly) = €k,t+h — €Lty (6-14)

it follows that the long-run difference (logyip — logy:) is defined as

h h—1
log Yt+h — logy; = hB3 + Z E€surprise,t+i T Z €news,t—i T (fk,t—l—h - ek,t)- (615)
=1 =0

By substituting equation 6.15 into equation 6.4, the noisy measure B will be

i=1 i=0

h h—1
~ 1
B =5+ E <Z €surprise,t+i T Z €news,t—i + (ek,tJrh - 6k,t)> . (616>

Now, suppose that there is a professional forecaster that continuously forecasts
the output logy; for the current period (nowcast) and for up to h periods ahead. If
this agent is rational, this measure should bring information about the future level of
technology and, consequently, about the news shock in ¢ (epews,t)-

Define the forecast of current period ¢ based on information up to t — 1 as
log yt|t_1.8 The forecast for the next period, ¢ + 1, is then defined as logy; ;—1- In
period t — 1, this professional forecaster only has information up to that period. The
forecast of the slope of the long-run trend of output in ¢ — 1, as defined in equation 6.16,
will be

B 1 h—1
B|t—1 =p/+ h (Z 6news,ti> . (6.17)
=1

In the next period ¢, the professional updates her forecasts for log y; and log ys1p,
with the new information that arrived between t — 1 and ¢. The forecast of the slope of

the long-run trend of output in ¢ (equation 6.16) will be

h—1
~ 1
/B\t =B+ h <Z Enews,t—i — 6k,t> . (6.18)

1=0

8T follow the definitions and similar notation as described in Clements [2015].
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Now, the only difference between the forecast of the long-run trend evaluated at
time ¢ — 1 and the one evaluated at time t is the new information about technology ac-
quired by the professional forecaster between these periods and the short-run transitory
shock €f ;. This new information can be recovered by calculating the difference between

the two forecasts for the slope of the long-run trend of output, as in
Ag= Byt — By (6.19)

Substituting equations 6.17 and 6.18, this measure becomes

1 h—1 1 h—1
AB = (5 + E (; Enews,t—i — 6k,t>> - (6 + E (; Enews,ti>> (620)

leading to
1
AIB = E(ﬁnews,t - 6k,t), (621)
which is proportional to
AB X €news,t — €k,t- (622)

It follows that a measure of the difference between forecasts of the slope of the long-run
trend of output should be a noisy measure of the news shock €;,¢5,, Observed today, but
that will change the level of technology only in t 4+ h. By employing the slope measure
as in equation 6.6, the differences between forecasts of the slope of the long-run trend of

output can be computed as

Ag o (log Yetht — log yt\t) — (log Yethlt—1 — log yt|t—1)' (6.23)

6.3 Instrumental variable procedure for identifying news
shocks

The idea, here, is to employ the methodology of calculating the forecast revisions about
the slope of the long-run trend presented in the previous section to construct instruments
to identify a technological news shock. A news shock has the capacity of generating
booms and busts based on agents’ expectations about future technological improve-
ments (Beaudry and Portier, 2006). The evidence shows that positive news about future

utilization-adjusted TFP increases consumption, GDP and investment in the medium
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and long-run.”

It follows that an increase in expected future productivity should also be trans-
lated into higher expected future GDP, investment and industrial production. In other
words, a news shock should be positively correlated with forecast revisions about future
GDP, investment and industrial production. While a news shock is not directly ob-
served and relies on different identification procedures, one could use the methodology
presented in the previous section to measure forecast revisions about these variables.
Under certain assumptions (discussed below), these measures can be used as external
validity instruments for the identification of a news shock.

The proposed instruments are slope forecast revisions about the log of the future
level of real GDP, of the log of nonresidential fixed investment and of the log of industrial
production, in the US, from the Survey of Professional Forecasters (Federal Reserve Bank
of Philadelphia). This survey provides forecasts for several economic variables from ¢
to t 4+ 5 quarters ahead, starting from 1968:Q4 for GDP and industrial production, and
from 1981:Q3 for investment. I construct the instruments (Z;) as a series of forecast

revisions of the slope of the long-run trend as in equation 6.23, following

Zy = (Xerai — Xejt) — (Xegape—1 — Xefe—1), (6.24)

where Z; is a matrix collecting the three instruments (GDP, investment and industrial
production forecast revisions).

Figure 6.2 shows the three measures constructed here. These series present similar
patterns and are highly correlated (Table 6.1); however, the forecast revision about future
investment is more volatile than the forecast revisions about future GDP and future
industrial production. The most pronounced negative revisions match the recession
periods identified by the National Bureau of Research Institute (NBER).

6.3.1 Proxy SVAR and identification procedure

To see how these instruments can be used to identify a news shock, I start with a
standard reduced-form VAR. Consider a model with y; as a (n x ¢) matrix that stacks
the n endogenous variables (in levels), in which utilization-adjusted TFP is ordered first.

Its reduced-form structure can be modeled as

Ve = A1yt_1 + ...+ Apyt_p + w, (625)

9See, for example, Beaudry and Portier [2006], Barsky and Sims [2011], Cascaldi-Garcia and Galvao
[2017], among others.
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Figure 6.2: Forecast revisions about future GDP, investment and industrial production
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Note: Forecast revisions constructed from expectations about future GDP, future in-
vestment and future industrial production, collected from the Survey of Professional
Forecasters (SPF), following the procedure described in Section 6.2. Data for GDP and
industrial production are displayed from 1976:Q1 to 2012:Q3, and for investment from
1981:Q3 to 2012:Q3. Shaded areas are the recession periods calculated by the NBER.

Table 6.1: Correlations between forecast revisions about future GDP, investment and
industrial production

Real GDP Ind. prod. Investment

revisions revisions revisions
1 GDP
Real G 1.00 0.86 0.77
revisions
Ind. :
nd. prod 0.86 1.00 0.73
revisions
Investment
.. 0.77 0.73 1.00
revisions
Note:  Correlations between forecast revisions constructed from expectations

about future GDP, future investment and future industrial production, collected
from the Survey of Professional Forecasters (SPF), following the procedure de-
scribed in  Section 6.2. Correlations calculated from 1981:Q8 to 2012:Q)3.

where A; are (n X n) matrices that collect the coefficients of the lags of y; from 1 to p.

Its moving average representation is written as
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If there is a linear mapping of the innovations (u;) and the structural shocks (s;),

this moving average representation can be rewritten as
u = Aost (627)

and
yt = C(L)sy, (6.28)

where C(L) = B(L)Ay, s; = Ay 'u;, and Ay is the (n x n) impact matrix that makes
Eluu)] = E[AgAj] = § . (6.29)

Consider, now, the case in which only one shock is economically identified, say
a news shock. If the news shock is the first shock of s; (namely spews:), it means
that obtaining the first column of Ay (namely A;) suffices to identify spewst. The
identification of this column is where the instruments Z; can be employed.

Following Mertens and Ravn [2013], Stock and Watson [2012] and Gertler and
Karadi [2015], let Z; be a (t x k) matrix of proxies correlated to the (1 x t) structural
shock Spews,t, and sa¢ a (n—1 X t) matrix that collects all (n — 1) shocks other than the
news shock. The proxies can be used as instruments to identify the news shock if they

satisfy three conditions:

(1) ElztSnewst] = 1(;51 (relevance),
X
(6.30)
(i) Elzsh]= 0 (exogeneity),
1x(n—1)

/
news,t

where z; is a (t x 1) vector constructed as z; = (Ps ), and P is the (¢ x t) projection

matrix that generates fitted values of syews¢ from £ instruments present in Z;, as in
P = 7Z,(2,Z,)"VZ;.

Condition (i) states that the instruments in Z; and the news shock spews: are
correlated. Since E[spewst = 0, ¢ represents the (unknown) covariance between z;
(combination of the instruments in Z;) and the structural news shock syeys,. There is no
a priori assumption about the relationship between the instruments and the structural
shock, and the covariance ¢ would be determined by the parameters of the instruments
as a function of the news shock. Section 6.2 presents the argument for the relevance of
the proposed instruments on recovering the news shock. Condition (i) states that the
instruments in Z; are not correlated with other structural shocks. I test this condition

in subsection 6.3.3. Conditions (i) and (i7) already ensure that the instruments in Z;
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are correlated with the innovations u;, because they are correlated with sy,euws,-

Partitioning Ag as

5\1% >(\12 :
1A A . X o 1x(n—1
(n—1)x1 (n—1)x(n—1)

it follows from conditions (i) and (i7) that

PA| = E[zu)]. (6.32)
1xn
By partitioning E[z;u}] as
E[zu}) = Elziui,] Elzeuy] ’ (6.33)
1x1 1x(n—1)

where uy; collects all (n — 1) innovations other than the first (uq,), it is possible to

rewrite equation 6.32 as

A2 _
o = (Elavui] 'E[zub,]) . (6.34)
11
In practice, E[zu} ] 7'E[z:u ] can be obtained by a two-stage least squares esti-
mator (2SLS) by first regressing u; ¢ on Z; and producing the fitted value 4; ;, and then

regressing Up s on ¢, as in

A
2i g+ &, (6.35)

Ugt = v—
’ )\1

and 44 and & are orthogonal if condition (7i) holds. By partitioning the reduced form

variance-covariance matrix as in

Y11 X2
o1 XYoo

: (6.36)

A21 and Aqp can be identified by applying the restrictions from equation 6.29 following

the closed form solution'®

AL =211 — A, (6.37)

'9As demonstrated by Mertens and Ravn [2013] and Gertler and Karadi [2015].
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where

A ro A
A2y = (221 - 2i211> Q! (221 - 21211) ;

A AAl’ X’ A " (6.38)
21 21 21 21 «/

Q=""Y1— — [ Z01— +— 3o.

1 11 i ( 21 1 + 1 21> + 299

Now, if Z; is the set of instruments constructed based on SPF forecast revisions,
the structural news shock spews: can be recovered by the method described above.
Mertens and Ravn [2013] point out that for the case of a single shock the restrictions
described in equation 6.34 are sufficient for identification up to sign convention.

The full procedure of the proxy SVAR can be summarized with the following
steps:

1. Estimate the reduced-form VAR;
2. Estimate E[zu} ;] 7'E[zu),] by the 2SLS regression of the VAR residuals on Z;

3. Find the impact effects of a news shock by imposing the restrictions in equation
6.34.

6.3.2 Information set and Bayesian VAR estimation

As a common practice in the literature,!* I identify the news shock by employing the
utilization-adjusted TFP series constructed by Fernald [2014], representing a proxy of
the technological level of the US economy. In order to properly extract the signal of the
news shock, separating it from the contemporaneous movement on TFP, the informa-
tion set should include a number of forward-looking variables, such as stock prices and
consumption.

The dataset comprises macroeconomic variables in levels, measured quarterly,
from 1975:Q1 to 2012:Q3. It contains 11 variables, namely utilization-adjusted TFP,
personal consumption per capita, GDP per capita, private investment per capita, hours
worked, GDP deflator, S&P500 stock prices index, excess bond premium (calculated
by Gilchrist and Zakrajsek, 2012), financial uncertainty (calculated by Ludvigson et al.,
2016), Federal funds rate and the spread between the 10-year yield and the Federal funds
rate. A full description of the sources and construction of the 11 variables can be found
in Table D.1 in the Appendix.

"See, for example, Beaudry and Portier [2006], Barsky and Sims [2011], Kurmann and Otrok [2013],
Cascaldi-Garcia and Galvao [2017], among others.
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I estimate the model under a Bayesian VAR (BVAR) approach, and the identifi-
cation of the shocks is carried out with a standard two-stage least squares method. While
the strategy of Bayesian estimation and classical instrumental variables identification is
also employed by Caldara and Kamps [2017], it is worth to note that fully Bayesian
proxy-SVAR approaches are available in the literature.'> The BVAR model is estimated
in levels with five lags. The option for the variables in levels is in line with Barsky and
Sims [2011], allowing for the possibility of cointegration among the variables. I employ
the Minnesota priors (Litterman, 1986) to address the reasonably large number of en-
dogenous variables, and the ‘dummy observation prior’. The estimation of the model
and the prior hyper-parameters follow methodology proposed by Gianonne et al. [2015],
with 20,000 posterior draws. I compute the confidence bands for the impulse response

graphs using 1,000 out of the 20,000 total draws from the posterior distribution.'3

6.3.3 Exogeneity of the instruments

I show in Section 6.2 that a noisy signal for the news shock can be extracted from the
measures of forecast revisions about the future output. I employ measures of forecast
revisions about future GDP, industrial production and investment, which should be the
variables from the supply side most influenced by technological changes. However, the
model presented in Section 6.2 takes the assumption that only news shocks drive the
long-run trend of the economy.

There are two problems with this assumption. First, other economic shocks may
have a long-run impact on the economy. Non-technological shocks €, ; can cause an effect
on the cycle, which would be misunderstood as a change in the long-run trend. If this
is the case, forecast revisions about future GDP, industrial production and investment
may also be a response to these other shocks, violating condition (ii) of exogeneity. This
would be particularly true for other types of news, such as news about tax, government
spending or oil prices. Second, the measures of news can only be feasibly constructed
up to five quarters ahead due to data availability from the SPF. One may argue that
five quarters is not sufficient to properly separate long-run effects from the effects of
short-run shocks.

Following Piffer and Podstawski [2017], I test the exogeneity of the instruments by
examining the relation between the forecast revisions about GDP, industrial production

and investment and several economic shocks identified in the literature. As in Caldara

128ee, for example, Caldara and Herbst [2016] and Arias et al. [2018].
13To ensure a positive news shock, I check whether the response of stock prices is positive on impact.
If the response is negative, all computed responses are multiplied by (—1).
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and Kamps [2017], I consider, here, six different economic shocks: news about tax shocks,
news about government defense spending, oil price shocks, monetary policy shocks, tax
shocks and technological shocks.™

The measure for news about tax shocks is the proxy calculated by Leeper et al.
[2013], and is available from 1953:Q1 to 2006:Q3. News about government defense
spending is calculated as the nominal present value of Ramey [2011] defense news variable
divided by the nominal GDP of the previous quarter, as calculated by Caldara and
Kamps [2017], and available from 1950:Q1 to 2006:Q3. Oil price shocks are the net oil
increase (3 years) calculated by Caldara and Kamps [2017] based on Hamilton [2003],
available from 1950:Q1 to 2006:Q3. Monetary policy shocks are the quarterly sum
of the monthly Romer and Romer [2004] variable extended by Barakchian and Crowe
[2013], available from 1969:Q1 to 2006:Q3. Tax shocks are the Mertens and Ravn [2011]
unanticipated tax series, available from 1950:Q1 to 2006:Q3.

Finally, a technological news shock (and, consequently, its instruments) should be
orthogonal to contemporaneous technological shocks. The idea, here, is that technology
is an exogenous variable that is driven by only two shocks: the news shock and the
surprise technological shock, as in equation 6.10. While a news shock is observed h
periods ahead and does not change technology when observed, the surprise technological
shock is the only shock capable of changing technology contemporaneously. I proxy
the surprise technological shock by the contemporaneous innovation on the utilization-
adjusted TFP series of the estimated BVAR (described in detail in subsection 6.3.2).

For each of the three measures in Z; = [2J%, 2P 2] T estimate the model

2% = po + p gdje +vj, (6.39)

where 7 indicates if the instrument is forecast revisions about GDP, industrial production
or investment, and d;; represents each of the structural shocks. A statistically significant
p1,; indicates the failure of exogeneity of the instrument with respect to the structural
shock. The results for the exogeneity tests are summarized in Table 6.2.

The exogeneity tests show that the instrument measures proposed here are also
correlated with shocks other than technological news, failing to fulfill condition (7).
In other words, the SPF forecast revisions are also reacting to a variety of structural
changes in the economy. This is somewhat expected, as equation 6.21 shows that the

slope measure can be contaminated by other non-technological shocks. This is partic-

14 Apart from the technological shocks, all other economic shocks are downloaded from the Caldara
and Kamps [2017] database. Technology shocks are proxied by the mean of the utilization-adjusted TFP
residuals across 1,000 posterior draws (as described in subsection 6.3.2).
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Table 6.2: Exogeneity tests for the forecast revisions about GDP, industrial production

and investment

1. Forecast revision about GDP

Shock Source 11 P-value Obs
News about tax Leeper et al. [2013] -4.97 0.29 123
News about govt. spending Ramey [2011] -15.20 0.70 123
Oil price Hamilton [2003] -0.15 0.06 123
Monetary policy Romer and Romer [2004] 2.54 0.00 123
Tax Mertens and Ravn [2011] -1.31 0.67 123
Technology First residual from the BVAR 0.79 0.27 123
2. Forecast revision about industrial production
Shock Source 1 P-value Obs
News about tax Leeper et al. [2013] -14.8 0.11 123
News about govt. spending Ramey [2011] -68.63 0.37 123
Oil price Hamilton [2003] -0.26 0.09 123
Monetary policy Romer and Romer [2004] 6.02 0.00 123
Tax Mertens and Ravn [2011] -1.58 0.79 123
Technology First residual from the BVAR 0.23 0.87 123
3. Forecast revision about investment
Shock Source 1 P-value Obs
News about tax Leeper et al. [2013] 3.39 0.58 101
News about govt. spending Ramey [2011] 21.09 0.62 101
Oil price Hamilton [2003] 0.04 066 101
Monetary policy Romer and Romer [2004] 5.91 0.00 101
Tax Mertens and Ravn [2011] -2.45 0.47 101
Technology First residual from the BVAR 0.99 0.21 101
Note: Coefficient 1 estimated from individual regressions of the forecast revi-

sions about GDP, about industrial production or about investment against the

structural shocks.

Data for the regressions involving forecast revisions about

GDP or about industrial production range from 1976:Q1 to 2006:Q3, while re-
gressions for forecast revisions about investment range from 1981:Q4 to 2006:Q3
Technology shocks are proxied by the mean
of the wutilization-adjusted TFP residuals across 1,000 posterior draws (as de-

due to SPF data availability.

scribed in Section 6.3.2).

All shocks divided by 10° for presentation reasons.

ularly more evident for monetary policy shocks in which the regression coefficient is

statistically significant at a 1% level for all three instruments. The series of forecast

revisions about GDP is also correlated with oil prices, while forecast revisions about

industrial production relates to oil prices and news about tax. The measure forecast
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revisions about investment only correlates with monetary policy.

In light of this evidence, I employ an agnostic approach of filtering the instruments
out of the effects of all these structural shocks, collected by the matrix d;, and by the
first reduced-form residual from the BVAR (u1,), as a proxy for surprise technological
shocks. I also filter the instruments out of the effects of an economic activity factor
to ensure that the forecast revision measures proposed only carry information acquired
in time . I proxy the economic activity by the first factor of the real activity dataset
calculated by Stock and Watson [2016].1°

I construct a measure Z; as the residual from projecting Z; on d;, on u;; and on

five lags of the Stock and Watson [2016] economic activity factor Fy, as in
Z, = pd; + poul  + M(L)Ft + Zt, (640)

and use Z; as the instruments for the news shock instead. The surprise technological
shock is different for every draw from the posterior distribution due to parameter un-
certainty. I perform this filtering step for every draw, which ensures the orthogonality
of the news shock and the surprise technological shock. Figure 6.3 presents the three

instruments after the filtering process, as the mean over 1,000 posterior draws.

6.4 Results

In this section I present the results for a news shock identified using the instruments
and the procedure described in Section 6.3. I first provide the results of a medium-scale
Bayesian VAR with 11 variables, testing the strength of the instruments and presenting
the impulse responses of the identified news shock. Subsequently, I compare the results
from the Bayesian VAR with the results from the most standard identification procedure
in the news shock literature, based on the maximization of the variance decomposition
(BS). Finally, I provide a robustness check by identifying the news shock in a simple
three-variables VAR model, showing that the instruments are able to recover the news

shock even in a small-scale VAR.

6.4.1 Strength of the instruments

Following Gertler and Karadi [2015] and Piffer and Podstawski [2017], I first test how
strong the three proposed instruments are for identifying the news shock. The instru-

ments are said to be strong if they are relevant on recovering the news shock (equation

15The dataset and replication files are available at Mark Watson’s website.
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Figure 6.3: Forecast revisions about future GDP, investment and industrial production
(after filtering)
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Note: Forecast revisions constructed from expectations about future GDP, fu-
ture investment and future industrial production, collected from the Survey
of Professional Forecasters (SPF), following the procedure described in Sec-
tion 6.2.  Fach wvariable is the residual of a projection over external struc-
tural shocks and on five lags of an economic activity factor, as described in
subsection 6.3.3.  Time period from 1981:Q4 to 2006:Q3 due to data avail-
ability. Shaded areas are the recession periods calculated by the NBER.

6.30); or, how strongly correlated they are with the structural shock. The structural
shock is not directly observed, but this is a linear combination of the reduced form in-
novations u; from equation 6.25. It follows that, if the instruments are correlated with
the structural shock, they should also be correlated with uy.

The idea of the test is to take each of the reduced-form innovations wu;; from u;

and regress them against the filtered instruments Z; = [étgdp ) Z,fp , 2] as in

Uit = a—i—@izt—{—m, 1=2,..,n, (6.41)

where 0; collects the three coefficients for the instruments. The first innovation wu; is
not considered here because it is orthogonal to the filtered instruments by construction,
as w1y is the proxy for the surprise technological shock (equation 6.40). I test if the
three coefficients in 6; are (jointly) significantly different from zero. If that is the case,

the instruments sufficiently correlate with the reduced-form innovations.
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Table 6.3 presents the results for the instrument relevance tests. The instruments
are jointly significant in explaining the innovations for GDP, investment, stock prices
and the Federal funds rate. The predictive power of the instruments over these variables

is also relevant, varying between 8% and 14%.

Table 6.3: Instrument relevance tests

Innovation variable F-stat P-value R?

Consumption 0.45 0.72 0.01
GDP 3.26 0.02 0.09
Investment 2.63 0.05 0.08
Hours worked 0.69 0.56 0.02
GDP deflator 0.23 0.88 0.01
Stock prices 5.44 0.00 0.14
EBP 0.90 0.44 0.03
Financial uncertainty 0.96 0.41 0.03
Federal funds rate 2.65 0.05 0.08

Spread (10y - Fed funds) 0.06 0.98 0.00

Note: F-statistics calculated by testing if the coefficients of the (filtered) instru-
ments forecast revisions about GDP, about industrial production and about invest-
ment are (jointly) significant in explaining the residuals from the VAR correspond-
ing to each wvariable in the first column, as in equation 6.41. The residuals are
calculated as the median across 1,000 posterior draws (as described in subsection
6.3.2). Time period is from 1981:Q4 to 2006:Q3 due to data availability (101 ob-
servations). The VAR model includes all variables in Table D.1 in the Appendiz.

The strong relation of the instruments and stock prices is a positive indication
of the connection between the instruments and the news shock. Beaudry and Portier
[2006] show that permanent changes in productivity growth are preceded by stock market
booms, indicating that agents foresee information about future technological opportu-
nities. The relation with the Federal funds rate remains strong even after filtering the
instruments by the monetary policy shocks. This result is in line with the stream of
news shock literature that discusses the effectiveness of the monetary policy on reacting
to news shocks.'® Finally, the real macro variables GDP and investment should respond

to supply shocks such as technological improvements, as it is the case of a news shock.

63ee, for example, Kurmann and Otrok [2013], Cascaldi-Garcia [2017] and Gambetti et al. [2017)].
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6.4.2 Economic responses to a news shock identified with instrumental
variables

Figure 6.4 presents the impulse responses after a news shock identified with instrumental
variables for selected variables of the BVAR. The gray area defines the 68% confidence
bands computed with 1,000 posterior draws, and incorporates the parameter uncertainty

on the instruments.!” The full impulse responses can be found in Figure D.3.1 in the
Appendix.

Figure 6.4: Impulse responses to a news shock under an instrumental variable approach
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Note: Impulse responses for selected variables of a mews shock computed by em-
ploying instrumental variables, with quarterly data ranging from 1975Q1 to 20120Q)3.
The gray area defines the 68% confidence bands computed with 1,000 posterior
draws. The VAR model includes all variables in Table D.1 in the Appendiz.

The first important result from Figure 6.4 is the effect of the identified shock
on the variable utilization-adjusted TFP. This variable is a proxy for the technology
level of the economy. Considering that technology is exogenous, a shock that changes
the utilization-adjusted TFP should be a technological shock. Here, the effect of the
identified shock is zero on impact by construction, from the orthogonality between the
instruments and the surprise technological shock (equation 6.40). This imposition is

equivalent to the short-run restriction employed both by Beaudry and Portier [2006] and

'"For every posterior draw, the instruments are filtered taking into consideration the new residual u; ;
(as described by equation 6.40). The resulting filtered instruments are then used for the identification
on that specific draw. It follows that there are also 1,000 draws for the instruments.
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Barsky and Sims [2011]. After around five quarters, utilization-adjusted TFP becomes
significantly positive, reaching its highest level after around 20 quarters. In the long-run
the effect diminishes, but remains positive.

This path is in line with the expected path of a news shock from the literature
(Beaudry and Portier, 2014). A news shock is a change in the technology level that
happens in the future, but the economic agents can foresee and react to it today. Indeed,
it is possible to notice from the path of the other macroeconomic variables that there is a
positive and significant reaction on impact. GDP jumps around 0.2% on impact, driven
mainly by the strong effect on investment (about 1% on impact). The effect on stock
prices is positive of around 2.5% on impact, showing a strong reaction to the news about
the future technology. The effect converges back to zero in the medium-run, consistent
with the efficiency of the stock market.

The effect on consumption is zero on impact, showing a milder initial anticipation
from the consumers to the news shock than what it is usually found in the literature.
However, the effect grows to a new higher level faster than the effect on utilization-
adjusted TFP. While utilization-adjusted only reaches its peak after around 20 quarters,
consumption reaches its maximum effect earlier, after around 12 quarters. This difference
in timing shows that consumption is anticipating, rather than tracking, the technological
improvements over time.

The effect of the news shock is deflationary, mainly in the short-run. This path
is consistent with the current inflation being the expected present discounted value of
future marginal costs (Barsky and Sims, 2011). The drop in GDP deflator is also in line
with the idea of a ‘supply shock’, ruling out the possibility that the identified shock is
capturing pressures from the demand side. The Federal funds rate falls by about 0.2
p-p, while the effect on the slope of the term structure is essentially zero. This result is
consistent with the mild effects on the spread of the term structure after a news shock
presented by Cascaldi-Garcia [2017].

The variable hours worked falls around 0.1% on impact, but the coverage bands
do not rule out a zero effect. The response quickly becomes positive, reaching a peak
of almost 0.4% after two years. There is a debate on the literature about what is the
expected effect of a news shock on hours worked. Beaudry and Portier [2006] show that
a news shock generates a positive and significant effect on hours (consistent with the
results from Christiano et al., 2003), while Barsky and Sims [2011] present a negative
effect of news on hours (in line with the technological shock from Gali, 1999). The
positive results in the medium-run presented here support the economic intuition that

the substitution effect from the higher future productivity is higher than the income

104



effect, in line with Beaudry and Portier [2006].

The relevance of the news shock identified with instrumental variables on driving
business cycles can be asserted from the variance decomposition of the macroeconomic
variables. Table 6.4 presents the variance decomposition after a news shock for selected

variables. Figure D.3.2 in the Appendix presents the variance decomposition graphs for
all variables included in the BVAR.

Table 6.4: Variance decomposition of a news shock identified with instrumental variables

h TFP Output Consumption Investment Stock prices

0 0.0 12.1 1.9 28.2 21.8
8 14.3 37.2 21.0 46.9 29.7
16 35.4 34.6 23.5 41.0 25.1
24 41.1 31.7 25.2 37.6 23.7
36 41.2 30.7 25.9 35.7 24.9

Note: Variance decomposition of a mews shock computed by employing instru-
mental variables, with quarterly data ranging from 1975Q1 to 2012Q3. h de-
notes the forecast horizon. The VAR model includes all variables in Table D.1.

The news shock explains about 41.2% of the unpredictable movements of utilization-
adjusted TFP in the long-run. After two years, the news shock only explains 14.3%,
reaching 35.4% after four years. This dynamic is in line with the idea of a steady increase
in the technology level, with its highest effects in the long-run.

GDP, investment and stock prices react to such news instantaneously. The news
shock explains 12.1% of the unpredictable movements of GDP on impact, 28.2% of
investment and 21.8% of stock prices. The explanation power on impact for consumption
is only 1.9%. In business cycle frequencies, however, the explanation power is substantial
for all these variables: 30.7% of GDP in the long-run, 25.9% of consumption, 35.7% of

investment and 24.9% of stock prices.

6.4.3 Instrumental variables versus maximization of variance decom-
position

In this subsection I compare the strategy of identifying news shocks with instrumental
variables based on forecast revisions to the most common approach of maximizing the
variance decomposition proposed by Barsky and Sims [2011].

The idea of the BS identification for news shocks is to find the orthogonaliza-
tion among the innovations that best explains unpredictable movements of utilization-

adjusted TFP over a predefined forecast horizon, conditional on being orthogonal to
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surprise changes on the same variable. The procedure was built upon Faust [1998], and
has been employed by several papers in the news shock literature.'® The full identifica-
tion procedure is described in Appendix D.1.

I compare the results from the identification with instrumental variables by em-
ploying the same database, period and BVAR estimation described in subsection 6.3.2,
but identifying the news shock as in BS. Figure 6.5 compares the impulse response
functions of selected variables for the identification based on maximizing the variance
decomposition (BS approach, in red) and for the instrumental variables approach (black).
The full impulse response functions for the BS approach can be found in Figure D.3.3

in the Appendix.

Figure 6.5: Impulse responses to a news shock identified with the Barsky and Sims [2011]
(red) and instrumental variables (black) approaches
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Note: Impulse responses for selected variables of a mews shock computed by em-
ploying the identification procedure of maximizing the variance decomposition (red)
described in Appendix D.1, and by employing the instrumental variables approach
(black), with quarterly data ranging from 1975Q1 to 2012Q3. The dotted red lines
define the 68% confidence bands for the BS approach, the gray area the confi-
dence bands for the instrumental variables approach, all computed with 1,000 pos-
terior draws. The VAR model includes all variables in Table D.1 in the Appendix.

First, by comparing the impulse responses it is possible to notice that both iden-

tification procedures present the same qualitative results. However, the coverage bands

18See, for example, Kurmann and Otrok [2013], Beaudry and Portier [2014], Cascaldi-Garcia and
Galvao [2017], Levchenko and Pandalai-Nayar [2018], Clements and Galvao [2018], among others.
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of the identification using the BS approach are substantially wider than when using
the instrumental variables, particularly in the short-run.'® The economic effects on
utilization-adjusted TFP and on consumption are more intense using the BS approach
through all forecast horizons. The effect on impact on GDP is basically the same when
using either of the procedures, but the coverage bands of the BS approach rule out a
zero effect. Investment rises more using the instrumental variable; also, the BS coverage
bands also do not rule out a zero effect. The effect on the GDP deflator is deflationary
on impact for both methods, but it lasts longer when the BS approach is employed.

One extra point to be highlighted is the effect on hours worked. The effect on
impact is essentially zero for both approaches. In the medium-run, the instrumental
variables approach presents a significantly positive effect, while BS coverage bands are
quite close to zero. The instrumental variables approach gives stronger support to the
view of positive comovement among GDP, consumption and hours worked, predicted by
Beaudry and Portier [2006].

Finally, I compare the reconstructed historical path of the news shock from the
instrumental variables approach and from the BS approach, presented in Figure 6.6.
The path of both shocks is very similar, with the news shock from instrumental variables
tracking the movements of the news shock from the BS approach. The series with the
instrumental variables is somewhat less volatile, with a standard deviation of 0.60 in
comparison to the 0.71 of the BS series. The two series share a correlation of 0.74
which, together with the similarity of the impulse responses, confirms the power of the

instrumental variables on recovering the news shock.

6.4.4 Robustness check in a three-variables VAR model

In this subsection I perform a robustness check by identifying the news shock with in-
strumental variables in a simple three-variables VAR. I follow the strategy employed by
Beaudry and Portier [2014] of estimating a model with utilization-adjusted TFP, stock
prices, and a third variable which can be consumer confidence (measured by the Michi-
gan Consumer Survey), investment, hours worked or consumption.?’ The models are
estimated with four lags, as vector error correction models (VECM) with two cointegra-
tion relations. Figure 6.7 presents the impulse responses for each model, with confidence,

investment, hours worked and consumption as the third variable.

191 employ the same posterior draws for each procedure, and identify the news shock both with
instrumental variables and with the BS approach for every draw.

20The Michigan Consumer Survey series is available at the Beaudry and Portier [2014] database.
The series for utilization-adjusted TFP, stock prices, investment, hours worked and consumption are
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Figure 6.6: Reconstructed news shock identified with the Barsky and Sims [2011] and
instrumental variables approaches

2r —Instr. Variables
—BS approach
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Note: News shock computed by employing the identification procedure of mai-
mizing the variance decomposition (red) described in Appendiz D.1, and by em-
ploying the instrumental variables approach (black), with quarterly data rang-
ing from 1975Q1 to 2012Q3. The series are the median across 1,000 posterior
draws. The VAR model includes all variables in Table D.1 in the Appendix.

As before, the effect of the news shock identified with instrumental variables on
utilization-adjusted TFP is zero on impact. In the long-run utilization-adjusted TFP
grows to a new higher level, regardless of which of the four models is considered. The
effect on utilization-adjusted TFP only becomes positive around 10 quarters after the
shock, in line with the idea of a future change in technology that is anticipated by the
economic agents.

The effect on stock prices is positive and significant on impact for all four models.
However, the size of the impact and the path over time is quite distinct depending on
which variable is chosen as the third in the system. The path of stock prices seems
to converge back to zero in the long-run in the models for consumption and for hours
worked, but there is no clear reversion for the other two models. These results indicate
that the identification of the news shock is considerably sensitive to model specification.

The measure of consumer confidence jumps on impact with the news shock, con-

verging back to zero in the long-run. Investment shows a positive effect on impact,

constructed as described in Table D.1 in the Appendix.
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Figure 6.7: Impulse responses for a news shock identified with instrumental variables in
a three-variables model

Stock prices Confidence

percent

5 10 15 20 25 30 35 40
quarters quarters quarters

(a) TFP, Stock prices and Confidence

TFP Stock prices Investment

percent

e 0 0
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
quarters quarters quarters

(b) TFP, Stock prices and Investment

TFP Stock prices Hours

O

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
quarters quarters quarters

(¢) TFP, Stock prices and Hours worked

TFP Stock prices Consumption

"

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
quarters quarters quarters

(d) TFP, Stock prices and Consumption

Note:  Impulse responses for a news shock computed by employing the in-
strumental wvariables approach in a model with three wvariables, with quarterly
data ranging from 1975Q1 to 2012Q3. The gray area defines the 68% con-
fidence bands computed with Bayesian simulated distribution by Monte-Carlo
integration with 10,000 draws. The models are estimated with four lags,
as wector error correction model (VECM) with two cointegration relations.
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achieving its highest effect after around six quarters, and converging to a new higher
level in the long-run. The effect on hours worked is zero on impact, with a positive
effect in the medium-run, and reverting back to zero in the long-run. The effect on
consumption is positive on impact, and continues to grow until it reaches a new higher
level in the long-run.

In summary, the results from Figure 6.7 provide qualitative evidence of the power
of the instrumental variables on recovering the theoretical economic effects of a techno-

logical news shock, even in a small-scale VAR.

6.5 Conclusion

This paper shows that forecast revisions carry valuable information about the future
path of the technology level, and can be used as instruments to identify news shocks.
It contributes to the news shock literature by highlighting new evidence concerning the
economic effects of news shocks through a novel identification method, which relies more
on information about agents’ expectations than on the implementation of assumptions
through statistical procedures (such as long-run restrictions or maximization of the vari-
ance decomposition).

If technology is the main driver of the economy in business cycle frequencies,
forecast revisions about the long-run of output should also be linked to news about tech-
nology. I propose proxy measures for the slope of the long-run trend of GDP, investment
and industrial production, based on forecast revisions from the SPF. These variables are
strong instruments for recovering the underlying technological news shock.

The news shock identified with instruments produces the theoretical comovement
between the real macroeconomic variables, as initially proposed by Beaudry and Portier
[2006], and is qualitatively similar to the Barsky and Sims [2011] identification. In-
vestment and, consequently, GDP react instantly after the news shock, anticipating the
future technological improvement. Consumption, however, shows less strong evidence of
anticipation. There is no effect on impact, growing to a new higher level in the long-
run. In business cycle frequencies, the news shock explains about 41% of unpredictable
movements of TFP, 31% of GDP, 26% of consumption and 36% of investment.

110



Chapter 7

Conclusion

111



Overall, this Thesis expands our knowledge about how the economy reacts to
changes in agents’ expectations. The contributions presented here bring new quantita-
tive evidence of the capability of technological news shocks on driving business cycles,
which can be a baseline for future empirical research. It shows that news about future
productivity is confounded with expectations about economic conditions, opening a new
venture of research by bridging technological news and economic uncertainty. It provides
novel methodological techniques to measure the economic effects of news which are yet
to be explored by the business cycle literature. In what follows, I summarize the specific
contributions of each of the four main Chapters of this Thesis.

In Chapter 3, we explore the relationship between technological news shocks and
unexpected changes in the level of uncertainty of the economy. This provides two main
contributions linking the news and uncertainty shock literatures. First, employing the
maximum forecast error variance identification as proposed by Barsky and Sims [2011],
we show that news and uncertainty shocks are positively correlated. The correlation
between news and uncertainty shocks is somewhat striking, because of the distinct nature
of these two shocks: while a news shock has a long-run pro-cyclical effect on economic
variables, the uncertainty is basically short-lived and counter-cyclical. The effects of news
and uncertainty shocks on utilization-adjusted TFP and on the uncertainty measure
are quite similar. A news shock generates a hike on impact in the realized volatility
in the short-term that disappears after around four quarters. After an uncertainty
shock, the utilization-adjusted TFP goes from zero to a positive and significant higher
level, reaching its peak at around five quarters. The second main contribution is a
novel identification method to obtain orthogonal news and uncertainty shocks — the
proposed ‘truly news’ and ‘truly uncertainty’ shocks. The ‘truly news’ shock, free from
the correlation with uncertainty, produces positive comovement among consumption,
stock prices, employment and industrial production, as the real business cycle literature
suggests. The ‘truly uncertainty’ shock, free from the positive effect of news, produces
more intense recessionary effects. While uncertainty shocks explain 5% of output growth
variation, this share rises to 15% when the ‘truly uncertainty’ shock is identified.

In Chapter 4, I study the transmission mechanism of technological news shocks
through uncertainty. This contributes to the business cycle literature in two ways. First,
I propose an innovative method of checking whether the effects of a news shock change
depending on the point in time at which it is identified. By employing this identifi-
cation strategy, I show that economic responses to a news shock vary quantitatively
across time. The second contribution is new evidence supporting a dynamic relation-

ship between technological news and uncertainty. The effects of news on consumption,
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GDP, investment and real personal income are amplified when the news shock hits the
economy in periods of high uncertainty. The results also suggest that the size of these
effects depends on the initial degree of uncertainty (initial condition effect) and on how
expectations about macroeconomic and financial conditions are updated (transmission
effect). From the perspective of the news shock literature, it implies that neglecting
the uncertainty transmission effect leads to the conclusion that the positive effects of
news shocks are weaker than they really are. From the perspective of the uncertainty
literature, it raises the question of how the arrival of news, and the realization of its
economic effects, influences the way economic agents update their expectations about
macroeconomic and financial conditions.

In Chapter 5, I explore the relationship between news shocks and the slope of the
term structure presented by Kurmann and Otrok [2013]. By revisiting the results with
an updated version of the utilization-adjusted TFP series, the correlation between news
and slope shocks diminishes and the implications of a news shock become substantially
different from Kurmann and Otrok [2013]. The main reason for the positive effect of a
news shock on the slope in Kurmann and Otrok [2013] is the endogenous response of
monetary policy, driven through the fall of the Federal Funds rate in a larger level than
the long-term yield. However, with the new updated utilization-adjusted TFP series the
effect of a news shock on inflation is zero, and the drop in the Federal Funds rate is not
statistically significant.

Finally, in Chapter 6, I propose a new identification procedure for news shocks
based on information contained in agents’ expectations. I employ the proxy SVAR
procedure to the news shock case. The proposed instruments are constructed from
forecast revisions for GDP, industrial production and investment. I show that these
forecast revisions carry valuable information about the future path of the technology
level, allowing for the identification of technological news shocks. This contributes to
the news shock literature by confirming the theoretical comovement among the real
macroeconomic variables, as initially proposed by Beaudry and Portier [2006] through
an alternative identification procedure. The results are also qualitatively similar to those
produced with the Barsky and Sims [2011] identification, which became the standard
procedure in this literature. Investment and, consequently, GDP react instantly after the
news shock, anticipating the future technological improvement. Consumption, however,
shows less strong evidence of anticipation.

While this Thesis contributes by bringing new findings to the news and uncer-
tainty literatures, many questions remain unanswered. The reaction of the monetary

policy to news shocks, for example, remains unclear. The time-varying effects of the
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news shock and its relation to the uncertainty level of the economy presented in this
Thesis suggest that the monetary authority should adjust its policies accordingly. An-
other issue of interest is to evaluate whether a news shock produces similar economic
effects in different economies, other than the US. This analysis demands the construc-
tion of comparable proxies for the technology level for each country, which is not an easy
task. Finally, bringing the news shock to an open economy setup will help to answer
questions of how the expectation of future technological improvements spillover to other

countries and the role uncertainty plays in this transmission mechanism.

114



Appendix A

Chapter 3

115



A.1 Identification of news shocks

Taking a vector of endogenous variables y;, assuming that the utilization-adjusted TFP

is ordered first, the moving average representation (in levels) is written as
Yt = B(L)ut (Al)

If there is a linear mapping of the innovations (u;) and the structural shocks (s;),

this moving average representation can be rewritten as
us = AOSt (AQ)

and
yt = C(L)sy, (A.3)

where C(L) = B(L)Ay, s; = Ay uy, and Ag is the impact matrix that makes
AgA, = X (variance-covariance matrix of innovations). It is possible to rewrite Ag
as AoD, where A is the lower triangular Cholesky factor of the covariance matrix of
reduced form innovations (or any other orthogonalization), and D is any k x k matrix
that satisfies DD = L.

Considering that €2; ;(h) is the share of the forecast error variance of variable i

of the structural shock j at horizon h, it follows that
Ql,l(h)surprise + Ql,Z(h)news = 1Vh7 (A4)

where 7 = 1 refers to utilization-adjusted TFP, j = 1 is the unexpected TFP
shock, and j = 2 is the news shock. The share of the forecast error variance of the news

shock is defined as

! h A N AR ~ -y
0 (h) € (ZTZO BTAODeQeZD AOB'r) €1 22:0 Bl,TAO Yy AOBLT (A 5)
1,2 news — ; ; = 7 - , .
¢ (X1 BB, ) e; > Bi,SB)

where e; is a selection vector with 1 in the position ¢ = 1 and zeros elsewhere,
e is a selection vector with 1 in the position ¢ = 2 and zeros elsewhere, and B, is the
matrix of moving average coefficients measured at each period until 7. The combination
of selection vectors with the proper column of D can be written as ~y, which is an
orthonormal vector that makes Aofy the impact of a news shock over the variables.

The news shock is identified by solving the optimization problem
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H
AREWS — qrgmax Z D1 .2(R)newss (8.6)

h=0
s.t.
Ao(1,4) = 0,¥j > 1 (A7)
2(1,1) = 0 (A.8)
Vo2 = 1, (A.9)

where H is an truncation period, and the restrictions impose that the news shock does

not have an effect on impact (¢ = 0) and that the ~ vector is orthonormal.

news une:):p)

Based on the y5¢"¢ vector, the structural unexpected TFP (s,

shock (s7¢*#) are

and the news

gunexp
t
~ -1
snews | = Aal ,Yi”lexp ypews ] u;7 (A.10)
assuming that
unexp 0
" _ NE (A.11)
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A.2 Figures

Figure A.2.1: Responses to financial uncertainty (realized volatility) shocks in the base-

line VAR model

Consumption

Realized volatility

30 40

Note: Dotted lines are 68% confidence bands computed with 1,000 posterior draws.
The response of the 10-year rate is computed using the responses to the Fed funds
and the spread. The baseline identification scheme for uncertainty shocks is de-
scribed in section 3.2.2. The VAR model includes all variables in the first panel

of Table 3.1 + realized wvolatility.
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Figure A.2.2: Responses to financial uncertainty (LMN-fin-1) shocks in the baseline VAR
model

Consumption

-0.2

0.4 No

Federal funds rate
r o

0.2

10 20 30 40

Figure A.2.3: Responses to financial uncertainty (LMN-fin-3) shocks in the baseline VAR
model

TFP Consumption EBP LMN-fin-3
A -

Note: See note to Figure A.2.1. The VAR model includes all variables in the first panel
of Table 3.1 + LMN-fin-1 (Figure A.2.2) or LMN-fin-3 (Figure A.2.3).
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Figure A.2.4: Responses to financial uncertainty (LMN-fin-12) shocks in the baseline

VAR model
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Figure A.2.5: Responses to financial uncertainty (VXO) shocks

model
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Note: See note to Figure A.2.1.
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The VAR model includes all variables in the first

panel of Table 3.1 + LMN-fin-12 (Figure A.2.4) or VXO (Figure A.2.5).
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Figure A.2.6: Responses to macroeconomic uncertainty (Policy uncertainty) shocks in
the baseline VAR model

Consumption

Policy uncertainty

Figure A.2.7: Responses to macroeconomic uncertainty (Business uncertainty) shocks
in the baseline VAR model
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Note: See mnote to Figure A.2.1. The VAR model includes all
variables in  the  first panel of Table 8.1 + Policy wuncertainty
(Figure ~A.2.6) or DBusiness uncertainty (Figure A.2.7).
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Figure A.2.8: Responses to macroeconomic uncertainty (SPF disagreement) shocks

the baseline VAR model
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Figure A.2.9: Responses to macroeconomic uncertainty (LMN-macro-1) shocks in

baseline VAR model
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Figure A.2.10: Responses to macroeconomic uncertainty (LMN-macro-3) shocks in the
baseline VAR model
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Figure A.2.11: Responses to macroeconomic uncertainty (LMN-macro-12) shocks in the
baseline VAR model
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Note: See mnote to Figure A.2.1. The VAR model includes all
variables in  the first panel of Table 3.1 + LMN-macro-3 (Figure
A.2.10) or LMN-macro-12 (Figure A.2.11).
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B.1 Triangular estimation

In this Appendix I describe the triangular estimation procedure proposed by Carriero
et al. [2016b]. Consider the model presented by the equation 4.1, but rewriting the

reduced form residuals v; from equation 4.2 as

V14 1 0 ol A% 0 o 0] Jew

vae| _ |as, of | 0 A 0| |e B1)
1 of|.. .. .. 0 | '

Un,t a1 A1 1 0 .. 0 )\71/3 €nt

where a;i are the elements of the matrix Ay ! Under this structure, it is possible to

rewrite each equation of the main VAR described in 4.1 and variable j as
1/2 1/2
v — (@ e+ a0 e )

n p !
3 A et D Begtree+ A
c=0

i=1 c=1

(B.2)

)

where Ag.il represents the coefficients of the matrices A;, and B, ; represents the coef-
ficients of the matrices B;. The VAR can be estimated equation-by-equation following
this structure by taking into account that, for equation j, the left-hand side is known
a priori: it is the difference between y; ; and the residuals from the previous (j — 1)
equations. By rescaling y; ; as
1/2 1/2

Yi; = Ytj — (a}i1/\1,/t €16+ ...+ a;j—lAjél,tej—Lt) (B.3)

it is possible to estimate equation B.2 as a standard generalized least squares (GLS)

model.

B.2 Steps of the MCMC algorithm

The MCMC algorithm for this estimation follows the steps and notation proposed by
Carriero et al. [2016a], which I describe here. The conditional posterior distributions for
the draws described in this Section are detailed in Appendix B.5.

Step 1: Draw of the idiosyncratic volatilities.

Rescaling vy as 0, = Agv;, combined with the linear factor model for the log-
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volatilities described by equation 4.3, it is possible to define the observation equations

~2 . . _ . 2 . s
ln(vjvt +¢) = Bmjlnmy =1Inh;; +1In €t ifj=1,...,npyp 7 (B.4)
ln(ﬁit +¢)—BpjInfy=Inh;; +1n 6§7t ifj=nn+1,...n

where 3, ; and Bf; are the loadings drawn from the previous MCMC iteration, ¢ is a
small constant in order to avoid near-zero values, and Sy.7 is the states from the 10-state
mixture of normals draw from the previous iteration of the MCMC. Since €;; is Gaussian
with unit variance, it is possible to produce an approximate Gaussian system conditional
on Si.r .

I first produce a draw for the j states hq.p as

hi.7|©, Sv.7, ma.r, fir, (B.5)

using the Kim et al. [1998] algorithm, where © collects the coefficients from the matrices
A;, B;, 6, Dy, the coefficients in the conditional mean of the idiosyncratic components
v = (75,0,74,1), the elements of the matrix Ao, and the elements of the volatility matrices
®, and ®,, as in

®=(A;,B;,0D;, v, Ay, ®,,P,). (B.6)

Step 2: Draw of the factor loadings.

Next, I produce a draw for the factor loadings 3, ; and B3y ;, as

Brm,js Br,j1©, hir, Str, mir, frr. (B.7)

The loadings can be drawn through a generalized least squares form, conditional

on the draws of hi.p and Si.7, by transforming the observation equations as

Inmy + In €2 ifj=1,...n
In(03, +¢) — Inhj, = Py Iy » J " (B.8)
ﬁf,jlnft—i—lneit ifj=n,+1,...n
Step 3: Draw of the model coefficients and volatilities.
The posterior coefficients and volatilities collected in ® are drawn as
®|Bm.j, Btj, b1, S1, M, frT. (B.9)

Step 4: Draw of the macroeconomic and financial states.
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Next, the macroeconomic and financial states mi.7 and fi.7 are drawn as

ma.r, f1.7|©, Bm.j, Bf.j, b1, St.T, (B.10)

by employing the particle Gibbs with ancestor sampling proposed by Andrieu et al.
[2010] and Lindsten et al. [2014] described in Appendix B.3.
Step 5: Draw of the 10-state mixture approximation.

Finally, I draw the 10-state mixture or normals from Omori et al. [2007] as

S1.710, Bm.j, Br.j hir, mir, fro. (B.11)

B.3 Particle Gibbs with ancestor sampling

Consider a state space model as in
In(o? +¢) —Inhy =Inmy +1Ine?, Ine? ~ x%(0,s7) (B.12)

Inm; = Dilnmy—1 + 0mAye—1 + Umye, ue ~ IW(0,0) (B.13)

where In(9? + ¢€) is a rescaled combination of the residuals from the VAR based on the
loadings ;, Inh; is a rescaled combination of the idiosyncratic volatilities Inh;;, and
Ine? has a variance which is a rescaled combination of the 10-state mixture of states
draw Sp.7.

Step 1: Draw of ¢ from the IW distribution.

Compute the error between Inm; from the previous iteration (i — 1) and the

predicted lnmy, as in
Uy =Inm} ™" — (DyInmiZ] + 6mAy1) . (B.14)

Draw QE as following

T
¢~ IW <d¢qb + ul, i dy + T> . (B.15)
t=1

Step 2: Compute importance weights for t = 1.
Define a matrix X,,(N,T'), which collects the N particles. Define the first ob-

servation of the Nth particle as the first observation of m!™', and zero for the other
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particles, as in

Xp(N, 1) =lnmi~'(1,1),  X,(1:(N-1),1)=0. (B.16)

Compute In 63’@ for each of the j =1 : N particles, as in

Iné>Y = (In(@2 +¢) — Inhy) — Xm(j, 1). (B.17)

Compute importance weights by comparing the variance of the N particles and

the Sq.p state draw, as in

1 <ln €?’(j)> ’

w(j,l)=exp | —=————+ |, B.18
(1) =exp | =5 S () (B.18)
and normalizing
: w(j, 1)
w(j,1) = ————. (B.19)
Zé‘vzl 'UJ(], 1)
Step 3: Compute importance weights fort =2:T.

Compute N predicted m; based on the previous particles, as in

Inm(j,t) = (D1 Xm(j,t — 1) + dAyi—1) . (B.20)

Draw an index vector ind(N) that samples the particles from P(ind(j) = j) x
w(l:j,t— 1), and ranging on the interval [1, N| — these are the ancestor indexes. This
index will point out which particles will be collected in the current ¢-step for the N — 1

first particles. Store the particles as in
Xn(4,t) = Inm(ind(5), t) + /% « randn(1,1), (B.21)
and set the Nth particle as the previous iteration (i — 1) value for my
X (N, t) = Inmi™(1,1). (B.22)
€)

Compute In éf’ for each of the j =1 : N particles as before, following

&Y = (@ + &) — nhy) — Xun(j,t), (B.23)
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the importance weights as

1 (ln €?’(j)> ’

w(j,t) = exp —im ) (B.24)
and normalizing
. w(7g,t
w(jt) = WD (B.25)

Zj:l w(j,t)

The last part of this step is defining the Nth ancestor index. In a conventional
Particle Gibbs, this is done by simply assigning ind(N) = N, ensuring that m} '(1,t)
from the previous iteration is one of the particles. With the ancestor sampling, a new
value for ind(N) is sampled to artificially assign a history to this partial path, by con-

necting m; '(1,t) to one of the particles. Formally, this sample is done by computing

i—1 s )2
wina7.1) = w7, — 1) > exp (—;(mt i ) ) (B.26)
normalizing | w0
wind(]at) = (BQ?)

Z;'V:I wind(j7 t) ’
and drawing ind(N) from P(ind(N) = j) < w;nq(j,t). Finally, store the ancestor indexes
in a matrix a(N,T) as a(1: N,t) =ind(1 : N).

Step 4: Compute the final filtered ms.

Rearrange X,,(j,t) in order to generate the trajectories of the N particles based

on the ancestor indexes stored in a(N,T') following the last ordering a(j,T"). Draw an
indicator J from P(J = j) oc w(j,1:T), and set Inmi = X,,(J,1: T).

B.4 State-space representation

The model described by equations 4.1 and 4.5 can be combined and rewritten in a state-
space representation. This transformation makes it easier to check the stationarity of
the system and to compute impulse responses.

Consider a model in which the macroeconomic and financial factors only depend

on their previous values (D; lag order is k = 1) and on Ay;—;. Equation 4.5 becomes

gt = Digi—1 + 0Ay—1 + uy, (B.28)
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or simply
9t =D1gi 1+ 0ys—1 — Oyp—2 + uy. (B.29)

Consider now that the main VAR (equation 4.1) has lag order of y; of p, [ = 1

lag of the macro and financial factors g;, and vy = Ay 1Ai / 26,5. Rewrite equation 4.1 as
Y = Ayi—1 + ... + Apyi—p + Bogr + Bigi—1 + AalAtl/Qﬁt, (B.30)
substituting g; from equation B.29 in equation B.30, results in

Y = A1yi—1 4+ ... + Apyi—p + Bo(D1gi—1 + Syr—1 — dyi—2 + wg) + ...

(B.31)
4 Bigi1 + AGTA e,
which can be rearranged as
Y = (A1 + Bod)yi—1 + (A2 —Bod)yi—2 + ... + Apys—p + ...
rr (B.32)

o (Bi +BoD1)gi1 + Bou + Ay tA e

Now, this equation can be conveniently written in a state-space form as in

(] [F1 Fy . Fs Fyl [wa ] [AJ'AY? 0 . 0 Bol [e]
Y1 I, 0 . 0 0] yeo 0 00 0 0]]0
Yip 0 0 .. I, 0| |ppa 0 00 0 0]]0
| 9t | |0 =6 ... 0 Dif [ 9—1 | . O 0 0 0 Iy |u]
F
(B.33)
where

F; = (A1 + Bgd),
Fy = (A2 — BoJ),
F;=A,,

F, = (B1 + BoDy).

(B.34)
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The matrix A; takes the form

Mg O .. 0
Ac=10 Ay .. 0], (B.35)
0 0 o Ay

)

where each of its coefficients are a combination of an idiosyncratic shock h;; and either

a macroeconomic factor m; or a financial factor f;, as in

Bum.j o
my " h; ifj=1,..,n
No=4 e " (B.36)
[ hy if j=n,+1,...,n
where the log of the idiosyncratic shocks Inh;; follow an AR(1) process as in
In hjﬂg =750 + 75,1 In hj,t—l + €jt, j=1..n. (B37)

B.5 Priors and conditional posteriors

Here I present the prior and conditional posterior distributions for the parameters and
coefficients for the MCMC steps explained in Appendix B.2. I follow the proposed priors

and notation from Carriero et al. [2016a], with priors defined as

vec(Ay;B;) ~ N(vee(p ), 24), i=1,...,p, (B.38)
a; ~ N(Ha,fga,j)’ Jj=2,...,n, (B.39)

Bj NN(Hﬁ’Qﬂ)7 J =2, Ny M2, -, M, (B.40)
v~ N, ), G=1,.m, (B.41)

6 ~ N(ps, s), (B.42)

¢j ~1G(dgo,dg), j=1,..,n, (B.43)

®, ~ IW(do,®,,ds,). (B.44)

Under these priors, the posterior conditional distributions follow

’U@C(Ai;Bi)‘AO,5,m1;T,f1;T,h1;T,y1;T ~ N(U@C(ﬂA),QA), 1= 17"‘7p7 (B45)

aj|Aq, By, B, myr, frr, hir, yir ~ N(faj, Qay) J=2,..,n, (B.46)
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16]|A’Lv A07Bi777 ¢7 ﬁ?ml:T7 fl:T7 Sl:T7yl:T ~ N(Hﬂaﬂﬁ)a j - 27 ey My My 4-2,5 +++5 1,

(B.47)

vilAi, Ao, By, ®, 8, mi7, fr.r, hir, yrr ~ N(p, @), j=1,..n, (B.48)
6|A, Ao, By, ®,, B, mur, frr, hur, yrr ~ N (g, R5), (B.49)
®jlAi, Ao, By, v, B, mir, fir, hir, yr.r ~ IG(dq@, dy), j=1,..,n, (B.50)
®,|Ai, Ao, By, v, 8,9, mir, fr.r, hir, yir ~ IW (de, @, da,, ). (B.51)

The posterior 4 is drawn equation-by-equation through the triangularization
method described in Section B.1. The posteriors fiq j, fis and i, follow the results from
the standard linear regression model. The factor loadings 8 are drawn following a GLS-
based form depending on the mixture states drawn for the volatilities, as in Carriero
et al. [2016a).

With regard to the priors, I adopt a Minnesota-type structure for the VAR coef-
ficients in A;. This model contains stationary and non-stationary variables, so the prior
coefficients of the stationary variables are set to 0, while the prior coefficients of the
non-stationary variables are set to 1. The variance-covariance matrix €2, is diagonal,

with standard Minnesota shrinkage form, as in

2
(%) ifi=j,

y 2
Q, =varl4]] = (%%) , ifi=j, (B.52)
(Bp0;)?, if intercept or g.

where [ is the lag. The overall prior tightness 6 is set here as 0.05, the cross-shrinkage
parameter - is set to 0.5 and the intercept shrinkage parameter 6y is set to 1,000. I
follow Carriero et al. [2016a] by also setting a prior variance for the uncertainty factors
Inm; and In f; equal to the intercept. The variance parameters o; come from the residual
variances of an AR(p) process for each variable.

The prior means and variances for the remainder of the coefficients are presented
in Table B.1.

There is discussion in the literature on the impact of the prior on the compo-
nents a; of matrix Ag. The model may be dependent on the ordering of the variables,
along with the priors imposed on a;. This is an issue primarily in using this model for
forecasting purposes. I address these questions by following Carriero et al. [2016a] and
Cogley and Sargent [2005] and imposing a prior fairly uninformative for a;, with mean

of 0 and variances of 10. In addition, the identification procedure of maximizing the
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Table B.1: Mean and variance priors

Mean Variance Degree of freedom
a; 0 10 -
(7i,0,7i,1) (Ino7,0) (2,0.4%) -
Bj, for j =2,...,np, 1 0.42 i

and j = nyp42,...0
0.8, for first own lag,

2
D; 0 otherwise 0.2 )
) 0 0.12 -
oj 0.03 - 10
P, 0.017, 10
Inmg and In fj 0 - -
Inh;o In 0'7;2 2 -

variance decomposition over a predefined forecast period is order-invariant, avoiding the
problem of choosing the wrong order of variables.

Finally, the dependence of the uncertainty factors on lagged values of y; creates
an (indirect) extra dependency of current values of y; to lagged values not captured by
the main VAR. This dependency is clearly noticed when the main VAR is rewritten in a
state-space model, as in equation B.33, where the coefficients § are also part of F1 and
F,. I follow strategy similar to Mumtaz and Theodoridis [2015] by imposing additional
shrinkage to the variance of §, which I set to (?—;)

B.6 Generalized impulse responses procedure

In this Appendix I present the procedure of estimating the generalized impulse responses
for the news shock and the uncertainty shocks.

Due to the non-linearity that the time-varying volatilities bring to the model,
the feedback effect that the variables cause to the volatility through the uncertainty
factors, and the feedback of the uncertainty factors on the mean of the variables, it is
not possible to employ a conventional impulse response setting in this case. The strategy
here is to use an adaptation of the procedure proposed by Koop et al. [1996] and Pesaran
and Shin [1998], taking into account that the shocks v; = Ay lAi / 26t are orthogonal by
construction.

The idea is to create two distinct forecast paths for the variables g, a baseline
and a shocked containing the shock of interest (namely, 7;). The generalized impulse

responses are the difference between these two paths. To accomplish this, it is necessary
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to construct a set of random shocks w;; over the forecast period that mimic the behavior
of €;. The generalized impulse response (GI) of a r set of randomly drawn wj, is given
by
GI"(k, 7j,wjy, Ze, I1) = Bly g |75, w5y, Ze, ] — Elypy g |wiie, Ze, TT, (B.53)
where k is the forecast point in time, Z; is the information set containing all the known
history up to time ¢ defined as Z; = (Yt—p, -, Yt; Gt—p, --, gt),> II collects the coefficient
matrices as IT = [A;, B;, Dy, 55,75, 9], E[y[Jrk]Tj,w;,t, Z,] is the shocked path of y; and
Ely;, lw] 1, Z¢] is the baseline path of the baseline path of y;.
Repeat the procedure of equation B.53 R times, and take the averages over R of
these paths. Koop et al. [1996] show that as R — oo, by the Law of Large Numbers these
averages will converge the conditional expectations E[y;i |7, Z¢, IT] and E[y4x|Z;, IT],

and the generalized impulse response can be constructed as
GI(k‘, Tj, Zt, H) = E[yt+k‘7—j7 Zt, H] — E[ytJrk‘Zt, H] (B54)

B.6.1 Generalized impulse responses for a news shock

For the news shock case, I start with the state-space procedure presented in equations
B.33 and B.36 (Appendix B.4). The news shock is identified as the orthogonalization
of the shocks on the mean of the variables that maximize the variance decomposition of
one objective variable over a predefined forecast period. It follows that the identification
relies on an orthogonalization of the innovations ¢;. By construction, ¢; is independent
from the idiosyncratic innovations e;j; and the uncertainty innovations wu,,; and uf ;.
Since I am only interested in ¢; for the news shock identification, I set e;; = 0, Uy, s = 0
and uyf; = 0 in this procedure.

With this simplification, it is possible to rewrite equations B.33 and B.36, respec-

tively, as
(] [FL Fo .. Fs Fu[wa] [AS'AY? 0 .. 0 Byl [«
Yt—1 I, 0 .. O 0 Yt—2 0 0 0 0 O 0
= + R
Yiep 0 0 . L 0| |ypa 0 00 0 0]]o0
L 9t | |6 —6 .. 0 Dy [ g1 | . 0 0 0 0 Iy] |O]

"Where g; = (Inmy;1n fp).
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and
In hj,t = Y5,0 + Y41 In hj’tfl, ] = 1, cy N (B56)

Now that the model has only a single set of innovations €, the generalized im-
pulse responses for the news shock can be constructed with the following steps. The
identification of the news shock is dependent on the total variance, and the variance
changes over time, so the following procedure is executed at each point in time. This
allows the construction of a time-varying identification, with different impulse responses
at every point in the time span considered.

Step 1: Construct a baseline path.

Considering one draw r of the random innovations w?, and K being the forecast

period, construct by simulation a baseline path from ¢+ 1 to ¢ + K for the idiosyncratic

T

; d T : d r r 2
innovations In A7, using equation B.56, and for Yt base> It pase and At,base

B.55.

using equation

Step 2: Construct a shocked path for a utilization-adjusted TFP shock.

Take the same draw r from Step 1, and the idiosyncratic innovations In h;t. For
t + 1, construct a one standard deviation shock on utilization-adjusted TFP by adding
to wj .,y the shock 775 p, which is a vector with 1 in the first position (where utilization-
adjusted TFP ordered first in the VAR) and zeros elsewhere. Construct by simulation
a TFP shocked path from ¢t + 1 to t + K for Yrrpe gl:pFP’f and ACT’FFPJ using equation
B.55.

Step 3: Construct the impulse responses for a TFP shock.

Following equation B.53, construct the impulse responses for a utilization-adjusted
TFP shock as the differences between the shocked and the baseline paths for the draw

T as

T 'S ‘s _ T T 's ' T
GITFP,t(kv TTFPs Wyt Z,10) = E[?/t+k,TFPa gt-i—k,TFP‘TTFPv At-‘,—k,TFPv Wi ts Z:,10]

- E[y:—l—k,base’ g:—l—k,base’A;—i—k,base? w;,lﬁ Zt7 H]
(B.57)

Step 4: Identify the news shock.
Identify the news shock for the draw r as the orthogonalization on ¢; that maxi-
mizes the variance decomposition of utilization-adjusted TFP over a predefined K fore-

cast period.* The idea of identifying the news shock for every r draw is in line with the

2Where Jt,base = (ln Mt base; In ft,base)~
*Where g 7rp = (Inmerrp;In foorp).
“For this paper, I follow Barsky and Sims [2011] and set K = 40 quarters ahead.

135



discussion about the difference between structural and model identification from Fry and
Pagan [2011]. Every r draw is a realization of a different model among infinite alterna-
tive models, leading to unique identification of the news shock. The best approximation
of the structural identification will be the average across all r impulse responses after
the news shock is properly identified for each different model.

Following the identification procedure proposed in Section 4.3.1, the news shock

T news can be identified as
K ’
7 argmax S im0 Glrppy (b Thpps wy, Zoy L TG o o (K, Ty 4, 2y, TL, T)
t,news — N RUSTE 17 / 7
2k=o BIATA L rpp (A7 Ay rp) By
(B.58)
subject to
A_l(laj) =0, Vj>1,
L1 =0, (B.59)
/

where B is the line correspondent to the utilization-adjusted TFP coefficients in the
state-space representation described in equation B.33 (Appendix B.4).

Step 5: Construct a shocked path for the news shock.

Take the same draw r from Step 1, and the idiosyncratic innovations In hg’t. For
¢t + 1, construct a TFP news shock by adding the shock 7,0, to w7, ;. Construct by
simulation a news shocked path from ¢ +1 to ¢ + K for yj ,c.,s; g{f’newf and Aj,,.,s using
equation B.55.

Step 6: Construct the impulse responses for the news shock.

Following equation B.53, construct the impulse responses for the news shock as
the differences between the shocked news path and the baseline path from Step 1 for the

draw r as

T r r r T r r r
GIt,news(k7 Tt news» Wit Zy, H) = E[yt—l—k,news’ gt+k,news|7—t,newsv t+k,news> Wit Z, H]
r r r
- E[yt—l—k,base’ gt+k,base|At+k,base? Wit Z, H]
(B.60)

Step 7: Construct the average impulse responses for the news shock.

Repeat Steps 1 to 6 for R number of times and form the averages of the shocked

5
Where gt news = (h’l Mt newss In ft,news)~
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news and baseline paths across all R draws of w; as

R
1
— T ‘s T s
yt+k‘,news(k'a Tt,news, Zta H) = E E yt—i—k,news (Tt,new37 At—i—k,newsv wj,m Zt7 H),
r=1
1 R
= r r r r
Gttknews (K, Tenews, Zt, IT) = R E gt-i—k,news(Tt,newsv t+kmews> Wit Lt I),
r=1

(B.61)
| B
Ytk pase (K, Zg, IT) = = Zyg—kk,base(A;—i-k,base?w;,tv Z,11),

r=1

R
_ 1
gt-‘rk‘,base(k’ Z, H) = E Zg;ﬁ-k’,base (A:—&-k,basev w;,ta Zy, H)

r=1

Lastly, construct the final generalized impulse responses for the news shock as

the differences between these averages, as in

GIt,news(k7 Tt news; Zt7 H) = [gtJrk,news (ka Tt,news Ztv H), gtJrk,news (ka Tt news Zta H)]

- [gtJrk,base(k; Zt; H>7 gt+k,base(k7 Zt7 H)}
(B.62)

After testing different R sizes, I set R = 1,000 for this paper. Since changing
from R = 1,000 to R = 5,000 did not present any noticeable difference, R = 1,000 is
sufficiently large to achieve the difference between conditional expectations expressed in

equation B.54.

B.6.2 Generalized impulse responses for uncertainty shocks

Here I describe the procedure for constructing the generalized impulse responses to macro
and financial uncertainty shocks.

Step 1: Construct a baseline path.

Considering one draw r of the random innovations wj, and K being the forecast

period, construct by simulation a baseline path from T'+1 to T+ K for the idiosyncratic

r

. . o . ” .
innovations In A}, using equation B.56, and for Yt bases It base and Atbase

B.55.

using equation
Step 2: Construct a shocked path for each of the uncertainty shocks.

Take the same draw r from Step 1, and the idiosyncratic innovations In h7,. Con-

struct the macro and financial shocks through a lower triangular Cholesky decomposition
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as

T — 4 9 macro
T acro = Chol(®y, ‘lower’) * ¢; ,
fin

i o (B.63)
Thin = chol(®,, ‘lower’) x g; ",

where ¢"*“"? is a 2 x 1 vector with 1 in the first position and zero in the second, and ¢; in
is a 2 x 1 vector with zero in the first position and 1 in the second. For T + 1, construct
a one standard deviation shock on macro uncertainty by substituting (m:,us:) in

equation B.33 for 77, Construct by simulation a macro shocked path from 7'+ 1 to

acro-
T

T+ K O Yi pmacros 9t.macro a0d Af 1 q0ro using equation B.33. Repeat the process for the
financial uncertainty by using Tt tO construct paths for Yt fin> 9t fin and A; Fin:

Step 3: Construct the impulse responses for the uncertainty shocks.

Following equation B.53, construct the impulse responses for the macro and fi-
nancial shocks as the differences between the shocked and the baseline paths for the

draw r as

T r r _ r r r r r
Glmacro(k’ Tmacro wj,t? ZT’ H) - E[yTJrk’,macro? gT+k,macro|Tmacroﬁ AT+k,macro’ wj,t? ZT’ H]

r r r r
- E[yT-i—k,base? gT+k,base|AT+k:,base? Wit Zr, H]?
T r r _ r r r r r
Glfin(k7 Tfins Wit Zp,II) = E[yT-i—k,fim gT-i—k,fm‘Tfinv AT—&-k,fim Wi ts Zr,11]
r r T r
- E[yT-i—k,base? gT+k,base|AT+k,ba567 Wity ZT? H]

(B.64)

Step 4: Construct the average impulse responses for the uncertainty shocks.

Repeat Steps 1 to 3 for R number of times and form the averages of the shocked
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and baseline paths across all R draws of w; - as

R
1
o _ E : r r r r
yt+k,ma07’0(k7 Tt,macros Zy, H) - E yt—o—k,macro(Tt,macmv t+k,macro> Yjts Zy, H)?
r=1

R
_ 1
Utrk, fin (ks ¢, pin, Ze, II) = = Zy{+k,fin(7'£fin7Ag—f—kz,finvw;,tv Z,11),

r=1

R
_ 1
gt+k,ma07“0(k7 Tt,macro» Zta H) = E Zgg—l—k,macro(ﬂ;macrm :—&-k’,macrm w;,t’ Ztv H)?
7"21 (B.65)
_ 1
Gk, fin (K, T, fin, e, II) = = ng+k,fin(77s7:fina Af Lk fins Wi Ze, IT),

r=1

R
_ 1
yt+k,base(k7 Zta H) = E Zy;+k,base(A;+k,basev w;,tv Zta H)a
r=1

R
_ 1
gtJrk,baSe(k? Zy, H) = E Zgngk,base(A;Jrk,base? w;,tv Z, H)
r=1

Lastly, construct the final generalized impulse responses for the macro and finan-

cial shocks as the differences between these averages, as in

GIt,macro(ka Tt,macros Zy, H) - [gt—l—k,macro(ka Tt,macros Zy, H)7 gt—i—k,macra(ka Tt,macros Zy, H)]
- [gt—i-k,base(k) Zt7 H)u §t+k,base(k7 Zt) H)]u
Gy pin(k, Tt fin, Ze, XX) = [Gegk, fin (B, Tt fins Lo, XX), Gegke, pin (K Tt fin, Zg, IT)]

- [gt—l—k,base(k; Zt7 H)7 gt+k,b(zse(k7 Zt7 H)] .
(B.66)

As it is the case for the news shock, I set R = 1,000 for the uncertainty shocks,
which is enough to achieve the difference between conditional expectations expressed in

equation B.54.
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B.7 Data description

Table B.2: Description of macroeconomic variables

Name Description Source
1 Utilization- Utilization-adjusted TFP in log levels. Computed by Fernald Fernald’s  website
adjusted TFP [2014]. (Nov/2015)

2 Consumption Real per capita consumption in log levels. Computed us- Fred
ing PCE (nondurable goods + services), price deflator and
population.

3  Output Real per capita GDP in log levels. Computed using the real Fred
GDP (business, nonfarm) and population.

4 Investment Real per capita investment in log levels. Computed using Fred
PCE durable goods + gross private domestic investment,
price deflator and population.

5 Hours Per capita hours in log levels. Computed with Total hours Fred
in nonfarm business sector and population values.

6 Prices Price deflator, computed with the implicit price deflator for Fred
nonfarm business sector.

7 FFR Fed funds rate. Fred

8 Payroll Total nonfarm payroll: All employees in log levels. Fred

9 IP Industrial production index in log levels. Fred

10 Help to unemp.  Help wanted to unemployment ratio. Fred

11 Pers. income Real personal income in log levels. Fred

12 M&T sales Real manufacturing and trad sales in log levels. Fred

13 Earnings Average of hourly earnings (goods producing) in log levels.  Fred

14 PPI Producer price index (finished goods) in log levels. Fred

Note: All for the 1975Q1-2012Q3 period. Monthly series converted to quarterly by averaging over the
quarter.

140



Table B.3: Description of financial variables

Name Description Source
1 Spread Difference between the 10-year Treasury rate and the FFR.  Fred
S&P500 S&P500 stock index in logs levels. Fred
3 S&P  dividend S&P dividend yield, in log and annualized. Fred
yield
4 EBP Excess bond premium as computed by Gilchrist and Za- Gilchrist’s website
krajsek [2012]. (Mar/2015)
5 Excess returns CRSP excess returns, in log and annualized. French’s website
(Jul/2016)
6 SMB Small minus big risk factor, in log and annualized. French’s website
(Jul/2016)
7 HML High minus low risk factor, in log and annualized. French’s website
(Jul/2016)
8 Momentum Momentum, in log and annualized. French’s website
(Jul/2016)
9 RI15-R11 Small stock value spread, in log and annualized. French’s website
(Jul/2016)
10 Ind. 1 Consumer industry sector-level return, in log and annualized. French’s website
(Jul/2016)
11 Ind. 2 Manufacturing industry sector-level return, in log and annu-  French’s website
alized. (Jul/2016)
12 Ind. 3 High technology industry sector-level return, in log and an- French’s website
nualized. (Jul/2016)
13 Ind. 4 Health industry sector-level return, in log and annualized. French’s website
(Jul/2016)
14 Ind. 5 Other industries sector-level return, in log and annualized. French’s website
(Jul/2016)

Note: All for the 1975Q1-2012Q)3. Monthly series converted to quarterly by averaging over the quarter.
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Table B.4: Macroeconomic and financial uncertainties

Name Description Source
Financial Uncertainty Measures

1 Realized Volatil- Realized volatility computed using daily returns using the CRPS
ity robust estimator by Rousseeuw and Croux [1993].

2 VXO Option-implied volatility of the SP100 future index. Avail- CBOE

able from 1986Q1.

3 LMN-fin-1 Financial forecasting uncertainty computed by Ludvigson Ludvigson’s

4 LMN-fin-3 et al. [2016]. -1 is one-month-ahead, -3 is three-months and  website

5 LMN-fin-12 -12 is one-year ahead. (Feb/2016)
Macroeconomic Uncertainty Measures

1 Policy Economic Policy Uncertainty Index in logs computed by Bloom’s website
uncertainty Baker et al. [2016]. (Mar/2016)

2 Business Business forecasters dispersion computed by Bachmann et al. AER website
uncertainty [2013] up to 2011Q4.

3 SPF SPF forecasters dispersion on one-quarter-ahead Q/Q real Philadelphia Fed
disagreement GDP forecasts computed using the interdecile range.

4 LMN-macro-1 Macro forecasting uncertainty computed by Ludvigson Ludvigson’s

5
6

LMN-macro-3
LMN-macro-12

et al. [2016]. -1 is one-month-ahead, -3 is three-months and
-12 is one-year ahead.

website
(Feb/2016)

Note: All for the 1975Q1-2012Q)3 period except when noted. Monthly series converted to quarterly by
averaging over the quarter.
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B.8 Volatilities

Figure B.8.1: Volatilities of macroeconomic variables
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Note: The estimated volatilities of macroeconomic variables are composed of an id-
tosyncratic component and the common macroeconomic volatility factor weighted by
a loading By, j. The dotted lines define the 68% confidence bands computed with
200 posterior draws. The macroeconomic variables are described in Table B.2.

Figure B.8.2: Volatilities of financial variables
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Note: The estimated wvolatilities of financial variables are composed of an id-
tosyncratic component and the common financial wvolatility factor weighted by
a loading Byj.  The dotted lines define the 68% confidence bands computed
with 200 posterior draws. The financial variables are described in Table B.S.
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B.9 Alternative ordering of uncertainty shocks

Figure B.9.3: Impulse responses to a financial uncertainty shock with financial uncer-
tainty ordered first

w » s o » = ooz owom oW
quarters. quarters. quarters

The wuncertainty shocks with alternative ordering are identified through Cholesky
decomposition with financial uncertainty ordered first, and macroeconomic un-

certainty ordered last, as described in Section 4.3.3. The generalized im-
pulse responses of the wuncertainty shock are the average of 1,000 simu-
lated random innovations, as described in Appendiz B.6. The shaded ar-

eas define the 68% confidence bands computed with 200 posterior draws.

Figure B.9.4: Impulse responses to a macroeconomic uncertainty shock with financial
uncertainty ordered first

Note: The wuncertainty shocks with alternative ordering are identified through
Cholesky decomposition with financial uncertainty ordered first, and macroeco-

nomic uncertainty ordered last, as described in Section 4.5.3. The gener-
alized impulse responses of the wuncertainty shock are the average of 1,000
simulated random innovations, as described in Appendix B.6. The shaded

areas define the 68% confidence bands computed with 200 posterior draws.
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C.1 Figures

Figure C.1.1: Fraction of forecast error variance explained by a news shock with the new
version of the utilization-adjusted TFP under the Kurmann and Otrok [2013] model

Spread (5-year - Fedfunds) Total factor productivity
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; s & s 5
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The grey area corresponds to the 16%-84% coverage bands of the model considering the
new TFP series.
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Figure C.1.2: Correlations between news and slope shocks on an 80 quarter moving
window from an alternative VAR model augmented by financial variables and considering
the old utilization-adjusted TFP series

09r
08
07T
06| I _—
05— _ _-_’_ R _ _.- ________
04r

03r

D2f

o1y — 80 guarter moving window correlations
— — Full sample correlation

1996 1998 2000 2002 2004 2006

Calculation of correlations between the recovered news and slope shocks over an 80
quarter moving window under the original identification of Kurmann and Otrok [2013].
Correlation over the full sample (from 1975:1 to 2007:1V) is 0.48. The date in the

horizontal azxis corresponds to the final observation of the 80 quarter moving window.
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D.1 Barsky and Sims [2011] identification

Taking a vector of endogenous variables y;, assuming that the utilization-adjusted TFP

is ordered first, the moving average representation (in levels) is written as
Yt = B(L)ut (Dl)

If there is a linear mapping of the innovations (u;) and the structural shocks (s;),

this moving average representation can be rewritten as
us = AOSt (D2)

and
yt = C(L)sy, (D.3)

where C(L) = B(L)Ayg, s; = Ay uy, and Ag is the impact matrix that makes
AgA, = X (variance-covariance matrix of innovations). It is possible to rewrite Ag
as AoD, where A is the lower triangular Cholesky factor of the covariance matrix of
reduced form innovations (or any other orthogonalization), and D is any k x k matrix
that satisfies DD = L.

Considering that €2; ;(h) is the share of the forecast error variance of variable i

of the structural shock j at horizon h, it follows that
Ql,l(h)surprise + Ql,Z(h)news = 1Vh7 (D4)

where ¢ = 1 refers to utilization-adjusted TFP, j = 1 is the surprise technological
shock, and j = 2 is the news shock. The share of the forecast error variance of the news

shock is defined as

’ h ~ ’ ;o o~ - ; o~ ,
e (ZT:O B:ADeje,D AOBT> e folzo B1.Ag 77 AgB],

Ql,Q(h)news = — :
e (Z}rl:o BTZB/T> e St B XB; ,

, (D.5)

where e is a selection vector with 1 in the position ¢ = 1 and zero elsewhere,
e, is a selection vector with 1 in the position ¢ = 2 and zero elsewhere, and B is the
matrix of moving average coefficients measured at each period until 7. The combination
of selection vectors with the proper column of D can be written as ~y, which is an
orthonormal vector that makes Aofy the impact of a news shock over the variables.

The news shock is identified by solving the optimization problem
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H
VRS — qrgmaz Z D1 .2(R)newss (D-6)

h=0
s.t.
Ag(1,7) =0,Vj > 1 (D.7)
12(1,1) =0 (D.8)
Vo2 = 1, (D.9)

where H is an truncation period, and the restrictions impose that the news shock does

not have an effect on impact (¢ = 0) and that the ~ vector is orthonormal.

Based on the 45€%S vector, the structural surprise technological shock (s5“"?5)

and the news shock (s}¢"%) are

surprise
Sy P

~ . -1
spes | = Agh e g L], (D.10)

assuming that
1

’yfurpm'se _ 8 . (Dll)

To ensure a positive news shock, I check whether the response of stock prices is positive

on impact. If the response is negative, all computed responses are multiplied by (—1).
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D.2 Data description

Table D.1: Description of variables

Name

Description

Source

1 Utilization-

Utilization-adjusted TFP in log levels. Computed by Fernald

Fernald’s website

adjusted TFP [2014]. (Nov/2015)
2 Consumption Real per capita consumption in log levels. Computed us- Fred
ing PCE (nondurable goods + services), price deflator and
population.
3  Investment Real per capita investment in log levels. Computed using Fred
PCE durable goods + gross private domestic investment,
price deflator and population.
4 Output Real per capita GDP in log levels. Computed using the real Fred
GDP (business, nonfarm) and population.
5 Hours Per capita hours in log levels. Computed with Total hours Fred
in nonfarm business sector and population values.
6 Prices Price deflator, computed with the implicit price deflator for Fred
nonfarm business sector.
7 SP500 SP500 stock index in logs levels. Fred
8 EBP Excess bond premium as computed by Gilchrist and Za- Gilchrist’s web-
krajsek [2012]. site (Mar/2015)
9 LMN-fin-3 Financial forecasting uncertainty three-months computed by Ludvigson’s web-
Ludvigson et al. [2016]. site (Feb/2016)
10 FFR Fed funds rate. Fred
11 Spread Difference between the 10-year Treasury rate and the FFR.  Fred

Note: All for the 1975Q1-2012Q3 period except when noted. Monthly series converted to quarterly by

averaging over the quarter.
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D.3 Additional figures

Figure D.3.1: Impulse responses to a news shock under an instrumental variable approach
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Figure D.3.2: Variance decomposition of news shock under an instrumental variable

approach
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Figure D.3.3: Impulse responses to a news shock identified with the Barsky and Sims
[2011] approach

Consumption GDP Investment
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Note: Impulse responses of a mnews shock computed by employing the
identification procedure of maximizing the wvariance decomposition described
in Appendiz D.1, with quarterly data ranging from 1975Q1 to 2012Q3.
The dashed lines define the 68% confidence bands computed with 1,000
posterior draws. The VAR model includes all wvariables in Table D.1.
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