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Abstract

This Thesis contributes to the literature of business cycles driven by agents’ be-
liefs. In Chapter 3, we provide novel empirical evidence linking the effects of technology
news shocks to uncertainty shocks. Their correlation implies that when financial un-
certainty shocks hit the economy, utilization-adjusted total factor productivity (TFP)
increases over the medium-term. This leads to an attenuation of the effects on economic
activity from news shocks in the short-term and from uncertainty shocks in the medium-
term. Supported by these results, we propose an identification strategy to measure the
effects of ‘good uncertainty’ shocks and disentangle the importance of technological news,
good and bad uncertainties, and ambiguity shocks in explaining business cycle variation.

In Chapter 4, I investigate the empirical relationship between agents’ responses
to future technological changes and the level of uncertainty in the economy. I show that
the economic responses to news shocks change substantially over time, and that this dy-
namic couples with periods of high and low uncertainty. Periods of high uncertainty are
characterized by higher positive economic effects of news shocks on output, consumption,
investment and real personal income. These results indicate that the continuous updat-
ing of agents’ expectations about the current and future economic situation operates as
a transmission channel for news shocks, amplifying its positive outcomes.

Kurmann and Otrok [2013] show that the effects on economic activity from news
on future productivity growth are similar to the effects from unexpected changes in the
slope of the yield curve. In Chapter 5, I show that these results do not hold in the light
of a recent update in the utilization-adjusted TFP series produced by Fernald [2014].

In Chapter 6, I propose a novel method of identifying technological news shocks
through instrumental variables based on forecast revisions from the Survey of Profes-
sional Forecasters. I construct proxy measures for the slope of the long-run trend of
GDP, investment and industrial production, which are strong instruments for recovering
the underlying news shock. The procedure has the advantage of relying on information
about agents’ expectations, instead of the statistical procedures currently used for the
news shock identification. By employing a proxy SVAR, I show that news shocks produce
substantial effects on impact on GDP and investment. The effects on consumption in
the short-run, however, are milder than usually presented by the news shock literature.
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Chapter 1

Introduction

1



What are the main sources of economic fluctuations in the short and long-run?

This Thesis explores this question by evaluating the role of anticipated changes in the

technology level of the economy, or news shocks, on driving business cycles, and its

relation to uncertainty.

The idea of business cycles is that economic activity can be decomposed into two

parts: a trend, which represents the long-run growth of the economy, and the cycle, which

is the unpredictable fluctuation around the long-run trend. These fluctuations are caused

by temporary shocks, such as unexpected technological innovations, higher uncertainty,

changes in fiscal policy, oil price variations, and money supply, among others.

The Real Business Cycle theory says1 that fluctuations are the efficient response

to these random exogenous shocks. There are costs associated to fluctuations, which

arise from the deep and complex relationship among economic variables and agents.

First, heterogeneity across agents makes the effect of recessions hit people unequally.

Second, fluctuations may affect the average level of employment and output. Third, ‘big

shocks’ are different from ‘small shocks’. For example, the strong recessionary impact of

the financial crisis of 2007/08 may have reduced not only the level of the output, but also

the potential of the economy, creating permanent negative effects. Understanding the

main structural sources of these fluctuations, the economic effects, and the underlying

transmission mechanisms are fundamental for the design of stabilization policies.

In this Thesis I focus specifically on business cycles driven by agents’ beliefs,

namely news and uncertainty shocks. News shocks are formally defined as changes in the

future total factor productivity (TFP) that are foreseen by the economic agents.2 The

idea behind a news shock is that technological innovations take time to have an impact

on the economy. Part of this technological impact is foreseen by the economic agents,

who react to it in the present. If the agents are rational, positive news should generate

positive (and permanent) co-movement among GDP, consumption and investment. It

follows that the expectation of higher future productivity is capable of generating booms

and busts even before effective technological change materializes.

Bloom [2009] formally defines uncertainty shocks as an increase in the volatility

of TFP shocks that have a temporary negative effect in output growth. The idea is

that, if there is an unexpected hike in the uncertainty level of the economy, firms and

consumers will take precautionary actions in the short-run such as reducing investment,

consumption and employment. As a result, sudden increases in uncertainty produce

short-run negative fluctuations in the economy.

1See Stadler [1994] for an extensive review of the real business cycle literature.
2Beaudry and Portier [2006].
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While the economic effects of news and uncertainty have been vastly explored by

the business cycle literature, this is the first research that shows the possible intercon-

nections between them. In Chapter 3, we provide novel empirical evidence linking the

empirical effects of technological news shocks to uncertainty shocks. We identify news

and a series of uncertainty shocks separately, by maximizing the respective forecasting

error variances of productivity and observed uncertainty. Following Barsky and Sims

[2011], news shocks maximize the productivity long-run variance (over 10 years) and

uncertainty shocks maximize the uncertainty short-run variance (over two quarters, as

in Caldara et al., 2016).

After a news shock, it is possible to observe a short-lived hike in financial uncer-

tainty, which is similar to an uncertainty shock. When the financial uncertainty shock is

identified, the result on utilization-adjusted TFP is positive in the medium-run, which

is similar to the expected path of a news shock. As a result, reconstructed news and

uncertainty shocks are positively correlated. If news and financial uncertainty shocks

are, indeed, independent drivers of the business cycle, they should not present such a

correlation. We propose an identification procedure in which it is possible to separate the

news shock from its correlated part with uncertainty (‘truly news’), and the uncertainty

shock from its correlated part with news (‘truly uncertainty’).

In Chapter 4, I study the different effects of a news shock over time, amplified

by uncertainty mechanisms. While in Chapter 3 proxies of uncertainty measures are

taken as observed, in Chapter 4 uncertainty is estimated endogenously from the second

moment of the variables. I propose an empirical model and identification procedure to

investigate whether economic responses to news about future productivity change over

time, and if this behavior depends on economic uncertainty. Investigating for hetero-

geneous responses over time means that the news shock identification should allow for

nonlinear and time-varying models. Investigating for the interaction between uncertainty

and news shocks means that such a model should be flexible enough to capture systemic

changes in the economic responses to a news shock based on the level of uncertainty.

The premise of the model is that uncertainty measures the agents’ expectations

about current and future economic conditions. It is reasonable to think that these

expectations should also be updated when the agents receive news about future produc-

tivity. In other words, the level of uncertainty endogenously responds to exogenous news

shocks. To meet these requirements, I employ a stochastic volatility in mean model that

treats macroeconomic and financial uncertainties as latent variables. The baseline model

builds upon Carriero et al. [2016a], as a nonlinear stochastic volatility Bayesian vector

autoregressive (VAR) model for large datasets.
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I also propose an identification method for news shocks that extends the current

standard procedure for nonlinear and time-varying cases. The identification method is

a generalization of the Barsky and Sims [2011] procedure of maximizing the variance

decomposition of utilization-adjusted TFP over a predefined forecast period. Instead of

assuming a constant variance, the identification procedure I propose explicitly accounts

for potential changes of the total forecast error variance at each point in time. More-

over, I modify the identification strategy such that it takes into account the nonlinear

relationship between variables and their volatilities (volatility in mean) through the con-

struction of generalized impulse response functions. This setup allows the evaluation of

whether the impact of a news shock changes in periods of high or low uncertainty, and

if the theoretical assumption of positive comovement3 among macroeconomic variables

after a news shock holds.

While Chapters 3 and 4 deal with the relationship between technological news and

uncertainty, in Chapter 5, I explore the relationship between news shocks and the slope

of the term structure, defined as the spread between the yield on a long-term treasury

bond and a short-term bill rate. Kurmann and Otrok [2013] show that reconstructed

news shocks and shocks to the slope of the term structure share a correlation of 0.86.

Since the economic responses after a slope shock are identical to a news shock, the

authors conclude that the uneven effect between the short and long-term rates is the

endogenous response of the monetary policy to a news shock. I revisit these results in

light of an update in the quarterly utilization-adjusted TFP series calculated by Fernald

[2014], which is the series that supports the news shock identification in Kurmann and

Otrok [2013].

Finally, Chapter 6 is solely dedicated to technological news shocks. I propose

a novel identification procedure for news shocks, based on instrumental variables. The

idea is to explore the information about agents’ expectations to empirically identify the

news shock. The application I propose is based on only one assumption: if agents expect

a higher future productivity, they should expect a higher future economic growth as well.

It follows that positive news about productivity should be (positively) correlated with

news about future economic activity.

While news about future TFP is not directly observed, proxies for news about

future economic activity can be constructed through forecast revisions. The Survey

of Professional Forecasters (SPF) provides quarterly forecasts for a series of economic

indicators, up to one year ahead. Three of these series are particularly relevant for

technological news: GDP, investment and industrial production. Positive news about

3Beaudry and Portier [2006].

4



future technology should be reflected as a higher future GDP, investment and industrial

production. I propose a methodology of measuring revisions about the long-run trend

of these variables by calculating differences between updates on forecasts and nowcasts.

This method allows the construction of a quarterly time series for forecast revisions

about future GDP, investment and industrial production. I employ these measures

as instruments for the news shock through the external validity procedure introduced

by Mertens and Ravn [2013] and Stock and Watson [2012]. This approach identifies

structural shocks based on information not contained on the VAR, which are noisy

measures of the structural shock.
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Chapter 2

Literature review
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In this Chapter I present a brief literature review which nests this Thesis. A

more detailed review is conducted in each of the four main Chapters (3, 4, 5 and 6).

The main bulk of this Thesis relates to the literature about technological news

shock. Although much has been done to answer the question of how do economic agents

react to information about future technological improvements,1 the results are not con-

clusive. Conventional wisdom is that the expectation of technological progress produces

positive economic outcomes, but the empirical research still disagrees on the size and

direction of this effect. There remains an ongoing discussion about (i) the extent to

which the news shock explains business cycles, (ii) how quickly one would observe an

effect on productivity, and (iii) the effect on other important macroeconomic variables.

On an aggregate level, the literature on technological news shocks shows that pos-

itive news generates long-term co-movement among GDP, consumption and investment,

and it is deflationary in the medium-term. These results are demonstrated by Beaudry

and Portier [2006], Barsky and Sims [2011] and Beaudry and Portier [2014]. However,

the empirical evidence is contradictory about the effects on the labor market. While

Beaudry and Portier [2006] show that a news shock generates a positive and significant

effect on hours worked (consistent with the results from Christiano et al., 2003), Barsky

and Sims [2011] present a negative effect of news on hours (in line with the technological

shock from Gaĺı, 1999).

News shocks generate booms and busts based on agents’ beliefs, and the litera-

ture has already shown the predictive power of expectations on driving business cycles.

Miyamoto and Nguyen [2017] argue that the precision of news shocks improves when

forecast data is also considered in the information set. Levchenko and Pandalai-Nayar

[2018] show that a non-technological expectation shock accounts for a large share of

business cycle fluctuations in the short-run. Clements and Galvao [2018] show that data

uncertainty influences the impact of expectation shocks on the economy.

This Thesis also relates to the uncertainty literature. Bloom [2009] shows that

uncertainty shocks are a source of business cycle fluctuations and have a temporary

negative effect on output growth. Bachmann et al. [2013], Jurado et al. [2015], and

Baker et al. [2016] provide evidence of the short-run negative effects of uncertainty

shocks on economic activity. Ilut and Schneider [2014] describe how ambiguity shocks,

that is, changes in Knightian uncertainty, have direct effects on productivity and are an

alternative source of business cycle fluctuation. Periods of high uncertainty are related to

1See, for example, Beaudry and Portier [2006], Jaimovich and Rebelo [2009], Barsky and Sims [2011],
Kurmann and Otrok [2013], Schmitt-Grohe and Uribe [2012], Blanchard et al. [2013], Forni et al. [2014],
Beaudry and Portier [2014], Vukotić [2017], Cascaldi-Garcia and Galvao [2017] and Levchenko and
Pandalai-Nayar [2018].
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a higher potential return on investment, increasing the range of growth options (Segal

et al., 2015). While uncertainty reduces the utilization of production factors, it also

creates an incentive to substitute less flexible for more flexible capital (Comin, 2000,

Bloom, 2009, Cascaldi-Garcia and Galvao, 2017).

A recent advance in the uncertainty literature refers to the separation between

macroeconomic and financial uncertainty, the approach also followed by this Thesis.

Jurado et al. [2015] and Carriero et al. [2016a], for example, construct latent macro and

financial uncertainty measures based on common factors across the volatilities of macro

and financial variables. From a methodological perspective, the estimation of these

factors relates to an extensive literature on stochastic volatility VAR models. Mumtaz

and Zanetti [2013], for example, allow for a lagged feedback of the volatilities to the

mean. Alessandri and Mumtaz [2014], Shin and Zhong [2016] and Carriero et al. [2016c]

propose models with a contemporaneous feedback of a common volatility factor to the

mean.

This Thesis is also aligned with the literature that explores the relationship be-

tween news shocks and financial markets. Beaudry and Portier [2006] and Barsky and

Sims [2011], for example, show how the stock market reacts to news shocks. Harvey

[1988], Estrella and Hardouvelis [1991] and Ang and Piazzesi [2003] show that the slope

of the term structure carries information that helps to predict macroeconomic activity,

and is connected to the transmission of monetary policy. Kurmann and Otrok [2013],

Cascaldi-Garcia [2017] and Kurmann and Sims [2017] debate whether the macroeconomic

predictability of the slope of the term structure relates to the effect of news shocks. Görtz

et al. [2016] present the role of news shocks in light of propagation through frictions in

financial intermediation.

From the methodological perspective, this Thesis is linked to the literature that

deals with the calculation of proxies for the technology level, and its use for the identi-

fication of news shocks. Fernald [2014] calculates such a proxy as a utilization-adjusted

TFP series by employing the methodology described by Basu et al. [2006] and Basu

et al. [2013]. This series is used by both main empirical identification strategies for news

shocks available in the literature: one based on a combination of short and long-run

restrictions (Beaudry and Portier, 2006), the other based on explaining the medium-run

effects on TFP (Barsky and Sims, 2011).

Finally, this Thesis relates to the business cycle literature that employs exogenous

variables as instruments for the identification of structural shocks. Mertens and Ravn

[2013] and Stock and Watson [2012] propose an identification method by relying on

external validity in a Structural VAR (proxy SVAR). Ramey [2016] and Kilian and
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Lütkepohl [2017] present an extensive overview of identification based on extraneous

data. The method has been applied to identify monetary policy shocks (Stock and

Watson, 2012, Gertler and Karadi, 2015, Miranda-Agrippino and Ricco, 2018), fiscal

policy shocks (Mertens and Ravn, 2014, Caldara and Kamps, 2017), uncertainty shocks

(Carriero et al., 2015b, Piffer and Podstawski, 2017) and oil supply shocks (Montiel Olea

et al., 2016). With respect to news shocks, extraneous data have been applied to news

about future fiscal spending (Auerbach and Gorodnichenko, 2012) and for news about

future oil supply (Arezki et al., 2017).
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Chapter 3

News and uncertainty shocks
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3.1 Introduction

News shocks are anticipated shocks that affect the economy in the current period even

though it may take some time until they materialize. Jaimovich and Rebelo [2009] ex-

plain how news about future total factor productivity affects current output, consump-

tion and investment. Using VARs, Beaudry and Portier [2006] and Barsky and Sims

[2011] provide empirical evidence of the effects of technology news shocks on macroeco-

nomic variables. Schmitt-Grohe and Uribe [2012] show that anticipated shocks explain

a large share of business cycle fluctuations, but they argue that anticipated shocks on

productivity are not very important. Christiano et al. [2014] establish that anticipated

risk shocks explain business cycle fluctuations in a model with financial frictions.

Bloom [2009] shows that uncertainty shocks are a source of business cycle fluctu-

ations and have a temporary negative effect on output growth. Bachmann et al. [2013],

Jurado et al. [2015], and Baker et al. [2016] provide evidence of the short-run negative

effects of uncertainty shocks on economic activity. Ilut and Schneider [2014] describe

how ambiguity shocks, that is, changes in Knightian uncertainty, have direct effects on

productivity and are an alternative source of business cycle fluctuation.

In this paper, we provide novel empirical evidence linking the empirical effects

of technology news shocks to uncertainty shocks. News and uncertainty shocks are

identified by maximizing the respective forecasting error variances of productivity and

observed uncertainty. Following Barsky and Sims [2011], news shocks maximize the

productivity long-run variance (after 10 years) and uncertainty shocks maximize the

uncertainty short-run variance (after 2 quarters, as in Caldara et al., 2016). If these

shocks are structural from an economic perspective, they should be orthogonal even

when separately identified. However, we find that news and financial uncertainty shocks

are positively correlated, indicating that the interpretation of its economic responses are

inaccurate. It follows that the standard identification assumptions from the literature

are unable to properly identify the true news and uncertainty shocks. We test this

correlation for a specific group of uncertainty measures, which coincides with the financial

uncertainty measures in Ludvigson et al. [2016]. They are measures of quantifiable risk

as in Christiano et al. [2014]. In contrast, news and uncertainty shocks are not correlated

(or are negatively correlated) if we employ macroeconomic measures of uncertainty as in

Ludvigson et al. [2016]. One of these measures includes professional forecaster dispersion,

which is associated with ambiguity changes as in Ilut and Schneider [2014].

When financial uncertainty shocks hit the economy, utilization-adjusted total

factor productivity increases over the medium run. This leads to an attenuation of the
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negative impact of increasing uncertainty on economic activity. Financial uncertainty

shocks are short lived. In contrast, macroeconomic uncertainty shocks have no effect

on utilization-adjusted productivity, so the negative effects of uncertainty shocks are

deeper and more persistent. Also, the positive effects of technology news shocks on

output, consumption, investment and hours are attenuated over the short run. This is

supported by evidence that news shocks are followed by increasing financial uncertainty

over the short run.

Supported by these empirical results, we propose a new identification strategy

to obtain the impact of ‘good uncertainty’ shocks and disentangle the importance of

news, financial uncertainty and ambiguity shocks in explaining business cycle variation.

The strategy requires the identification of ‘truly news’ shocks, uncorrelated with unex-

pected changes in financial uncertainty and ambiguity, and of ‘truly uncertainty’ shocks,

uncorrelated with unexpected changes in technology and ambiguity.

Our identification strategy provides evidence of positive and significant responses

of output, consumption, investment and hours to technology news shocks, even at short

horizons. A recent survey by Beaudry and Portier [2014] indicates that by applying

the Barsky and Sims [2011] identification scheme, the response over hours is normally

positive, but it is not statistically different from zero over short horizons. By removing

the correlation between news and financial uncertainty shocks, we remove the uncertainty

attenuation bias and find a positive and significant effect in hours.

Our identification strategy also provides evidence that not all observed uncer-

tainty measures are equal. By working with the correlation between financial uncertainty

and news shocks, we are able to measure the impact of ‘good uncertainty’ shocks, that

is, shocks that increase the likelihood of technology news shocks. We show that they

explain a larger share of the variation in output over medium-run horizons (2 years),

while bad uncertainty shocks play a more important role over short horizons. We also

demonstrate that ambiguity shocks have more persistent effects than financial uncer-

tainty shocks, implying that they have a role explaining business cycle variation over

long horizons.

Ludvigson et al. [2016] and Carriero et al. [2016a] provide strategies to disentangle

the impact of different uncertainty shocks in the macroeconomy. In this paper, we

exploit a novel strategy to understand whether different uncertainty measures quantify

different types of shocks. The strategy is based on correlations between some uncertainty

shock measures and technology news shocks. Our results support a variety of theories

that consider the role of uncertainty as a business cycle driver, including ‘wait-and-see’

effects (Bachmann et al., 2013), confidence effects (Ilut and Schneider, 2014), growth
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options effects (as suggested in Bloom, 2014) and the possibility of uncertainty traps

(Fajgelbaum et al., 2017).

We survey the structural VAR literature on news and uncertainty shocks in Sec-

tion 3.2, where we also provide the details of our baseline model and analysis of the

responses to news and uncertainty shocks. Section 3.3 describes the identification strat-

egy used to disentangle all sources of business cycle variation and our measure ’good

uncertainty’. Section 3.3 also presents the empirical results obtained with this new

strategy and discusses implications for the DSGE literature on understanding the effects

of uncertainty.

3.2 News, uncertainty shocks and the macroeconomy

We start by measuring the impact of news and uncertainty shocks on measures of eco-

nomic activity. Uncertainty is proxied by a set of financial and macroeconomic uncer-

tainty measures available in the literature. In this section, we provide the details of an

identification scheme for both news and uncertainty shocks, and we show that financial

uncertainty and news shocks are positively correlated.

3.2.1 Literature review

Barsky and Sims [2011] report that news shocks explain approximately 40% of the vari-

ation in output over long horizons (10 years), while Bachmann et al. [2013] provide

evidence that 12% of the long-run variation in manufacturing product is explained by

shocks to stock market volatility – a popular measure of financial uncertainty. In con-

trast to the long-run effects of news shocks, the impact of uncertainty shocks typically

peaks after one year (Jurado et al., 2015; Baker et al., 2016). Bachmann et al. [2013]

report an exception, showing that shocks to a measure of business forecaster dispersion

have a persistent impact on manufacturing output, explaining up to 39% of the varia-

tion after 5 years. The Bachmann et al. [2013] uncertainty measure is computed using

forecaster dispersion from the Business Outlook Survey. In general, uncertainty shocks

explain 10% of the long-run variation in economic activity, as suggested by Gilchrist and

Zakraǰsek [2012], Jurado et al. [2015], Caldara et al. [2016].

Recently, Carriero et al. [2016a] results suggest that macroeconomic uncertainty

explains approximately 20% of the variation in economic activity variables, while finan-

cial uncertainty explains approximately 10%. The identification scheme in Ludvigson

et al. [2016] reverts these results in favor of financial uncertainty shocks. In the literature,
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macroeconomic uncertainty measures are typically related to the forecasting uncertainty

of macroeconomic variables, such as real GDP and the aggregate price level. Financial

uncertainty variables are measures of equity markets volatility, that is, of quantified risk.

Bloom [2014] considers professional forecasters’ dispersion as a measure of un-

certainty, but Ilut and Schneider [2014] employ forecasters’ dispersion as a measure of

ambiguity. Table 3.1 describes the measures of uncertainty considered and divides them

into two groups: financial and macroeconomic uncertainty. Policy uncertainty and busi-

ness uncertainty, listed in the bottom panel, are not typical macroeconomic uncertainty

measures, since they are not computed with respect to variables such as GDP and infla-

tion, but they are illustrative of the macroeconomy beyond financial markets.

3.2.2 Identification procedure and estimation

The news shock is identified following procedure proposed by Barsky and Sims [2011],

and is closely related to Francis et al. [2014] and Uhlig [2005]’s maximum forecast error

variance approach. The news shock identification finds the shock that best explains

future unpredictable movements of utilization-adjusted TFP, which is a proxy for tech-

nology. This is equivalent to find the orthogonalization across the innovations that

maximizes the forecasting variance of productivity over a predefined period. Moreover,

this shock is imposed to be orthogonal to TFPs own innovation, which is the unex-

pected TFP shock. This restriction guarantees that the news shock has zero effect on

utilization-adjusted TFP on impact. It follows that two potential structural shocks are

identified: news and unexpected TFP shocks. The full description of the identification

scheme is present in Appendix A.1. Following Barsky and Sims [2011] and Kurmann

and Otrok [2013], the horizon to maximize the forecasting variance of productivity is

set to 10 years (H = 40). Because of the large information set included in the VAR

model described, we are confident that fundamentalness is not an issue affecting these

empirical results, as suggested by Forni et al. [2014].

We employ the same identification procedure for the uncertainty shock, with

two caveats. First, following Caldara et al. [2016], uncertainty shocks are identified by

maximizing the forecast error variance of uncertainty over two quarters, instead of 10

years for the news shock. Second, there are no restrictions of the contemporaneous

effect of the shock on uncertainty. This approach is not very different from the short-

run restrictions implied by the Cholesky decomposition, but it has the advantage of

clearly stating that uncertainty shocks have typically short-run effects in contrast with

the long-run effects of technology news shocks.
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Table 3.1: Description of variables

Name Description Source

1 Utilization-
adjusted TFP

Utilization-adjusted TFP in log levels. Computed by Fernald
[2014].

Fernald’s website
(Nov/2015)

2 Consumption Real per capita consumption in log levels. Computed us-
ing PCE (nondurable goods + services), price deflator and
population.

Fred

3 Investment Real per capita investment in log levels. Computed using
PCE durable goods + gross private domestic investment,
price deflator and population.

Fred

4 Output Real per capita GDP in log levels. Computed using the real
GDP (business, nonfarm) and population.

Fred

5 Hours Per capita hours in log levels. Computed with Total hours
in nonfarm business sector and population values.

Fred

6 Prices Price deflator, computed with the implicit price deflator for
nonfarm business sector.

Fred

7 SP500 SP500 stock index in logs levels. Fred

8 EBP Excess bond premium as computed by Gilchrist and Za-
kraǰsek [2012].

Gilchrist’s web-
site (Mar/2015)

9 FFR Fed funds rate. Fred

10 Spread Difference between the 10-year Treasury rate and the FFR. Fred

Financial Uncertainty Measures

1 Realized Volatil-
ity

Realized volatility computed using daily returns using the
robust estimator by Rousseeuw and Croux [1993].

CRPS

2 VXO Option-implied volatility of the SP100 future index. Avail-
able from 1986Q1.

CBOE

3 LMN-fin-1 Financial forecasting uncertainty computed by Ludvigson
et al. [2016]. -1 is one-month-ahead, -3 is three-months and
-12 is one-year ahead.

Ludvigson’s
website
(Feb/2016)

4 LMN-fin-3
5 LMN-fin-12

Macroeconomic Uncertainty Measures

1 Policy
uncertainty

Economic Policy Uncertainty Index in logs computed by
Baker et al. [2016].

Bloom’s website
(Mar/2016)

2 Business
uncertainty

Business forecasters dispersion computed by Bachmann et al.
[2013] up to 2011Q4.

AER website

3 SPF
disagreement

SPF forecasters dispersion on one-quarter-ahead Q/Q real
GDP forecasts computed using the interdecile range.

Philadelphia Fed

4 LMN-macro-1 Macro forecasting uncertainty computed by Ludvigson
et al. [2016]. -1 is one-month-ahead, -3 is three-months and
-12 is one-year ahead.

Ludvigson’s
website
(Feb/2016)

5 LMN-macro-3
6 LMN-macro-12

Note: All for the 1975Q1-2012Q3 period except when noted. Monthly series converted to quarterly by
averaging over the quarter.

For both the identification of news and uncertainty shocks, the VAR model is

estimated in levels with 5 lags, with the aid of the Minnesota priors (Litterman, 1986)

to address the reasonably large number of endogenous variables, and the ‘dummy ob-

servation prior’. The option for the variables in levels is in line with Barsky and Sims

[2011], allowing for the possibility of cointegration among the variables. The estimation
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of the model and the prior hyper-parameters follow methodology proposed by Bańbura

et al. [2010] and Carriero et al. [2015a].1 with 1,000 posterior draws. Confidence bands

for the impulse response graphs are computed using all the draws from the posterior

distribution.2

Relevant forward-looking variables are included among the endogenous variables.3

Following the news shock literature (Beaudry and Portier, 2006, Barsky and Sims, 2011),

technology-induced productivity changes are measured using the utilization-adjusted

total factor productivity computed by Fernald [2014]. The model includes consumption,

output, investment and hours as measures of economic activity. Additional endogenous

variables are measures of aggregate prices, equities prices (S&P500), the policy rate, and

the slope of the yield curve (following the link between news and slope shocks in Kurmann

and Otrok, 2013). The VAR model also includes a measure of credit conditions – the

excess bond premium, as computed by Gilchrist and Zakraǰsek [2012], and a measure

of financial uncertainty based on the S&P500 realized volatility. The details of the time

series employed are available in Table 3.1. Quarterly data from 1975Q1 to 2012Q3 is

employed.

3.2.3 Responses to news shocks

Figure 3.1 shows the responses of economic activity variables (output, consumption, in-

vestment, hours), productivity (utilization-adjusted TFP) and uncertainty, as measured

by the realized volatility, to news shocks. These results follow the previous literature

surveyed in Beaudry and Portier [2014]. News shocks have a positive impact effect on

output, consumption and investment, as in Beaudry and Portier [2006] and Barsky and

Sims [2011], but the impact effects are not significantly different from zero, as indicated

by the 68% confidence bands. In the long run, technology news shocks explain 35%

of the variation of the utilization-adjusted TFP, 28% of consumption variation, 22% of

output variation and 15% of investment variation.

A novel interesting result arises from observing the effect of news shocks on finan-

cial uncertainty. News shocks drive a significant increase in uncertainty of approximately

1We obtain the overall prior tightness of 0.2 by maximizing the log-likelihood over a discrete grid, as
in Carriero et al. [2015a].

2As the VAR parameters change, the signs of the identified shocks might flip because the identification
is based on the forecast error variance. To ensure a positive news shock, we check whether the response of
total factor productivity is positive after 40 quarters. If the response is negative, all computed responses
are multiplied by (−1). In the case of uncertainty shocks, we simply check whether the shock has a
positive impact on the uncertainty measure and multiply the responses by (−1) if they are negative.

3The presence of forward-looking economic variables, such as stock prices, is a necessary condition
for the proper identification of a news shock (Beaudry and Portier, 2006).

16



Figure 3.1: Responses to news shocks in the baseline VAR model

Note: Shaded areas are 68% confidence bands computed with 1,000 posterior
draws. The baseline identification scheme for news shocks is described in sec-
tion 3.2.2, and appendix A.1. The VAR model includes all variables in the
first panel of Table 3.1 + realized volatility.

1.9 p.p., albeit a short-lived effect that is near zero after one year. Although the posi-

tive effect of news shocks on uncertainty is new in this aggregate context, these results

are not surprising, since Bloom [2009] finds a positive correlation between stock market

volatility and cross-sectional standard deviation of industry TFP growth. Matsumoto

et al. [2011] show that news shocks are positively related to equity prices and equity

volatility. An increase in stock market volatility arises from the delayed adjustment of

prices by firms following a news shock, but this effect tends to vanish over time so the

effects are short lived.

Görtz et al. [2016] show that news shocks have negative effects on the excess bond

premium (EBP). The baseline VAR specification includes EBP as endogenous variable

and confirms their results, although, in this paper, we treat EBP as a variable that

should be kept in the information set, but the main aim is to make inference on how

uncertainty responds to news shocks.
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3.2.4 Responses to uncertainty shocks

Table 3.1 describes a list of 11 uncertainty measures considered in the literature. We

apply the uncertainty shock identification scheme described in section 3.2.2 by including

one uncertainty measure at a time in a VAR model with the 10 variables described in

the top panel of Table 3.1. These exercises allow us to check whether the responses of

economic activity and technology to uncertainty shocks are robust to how uncertainty

is measured. Responses for each uncertainty measure listed in Table 3.1 are in the

Appendix A.2, Figures A.2.1 to A.2.11. The main differences are between financial

and macroeconomic uncertainty measures. As a consequence, Figure 3.2 presents the

responses for our baseline financial uncertainty variable – realized volatility – and Figure

3.3 shows the responses when uncertainty is measured by Ludvigson et al. [2016] 3-

month-ahead macroeconomic volatility.

Figure 3.2: Responses to financial uncertainty (realized volatility) shocks in the baseline
VAR model

Note: Shaded areas are 68% confidence bands computed with 1,000
posterior draws. The baseline identification scheme for uncer-
tainty shocks is described in section 3.2.2. The VAR model in-
cludes all variables in the first panel of Table 3.1 + realized volatility.

As in Bachmann et al. [2013], Jurado et al. [2015], Baker et al. [2016] and Cal-

dara et al. [2016], uncertainty shocks have significant negative effects on economic ac-
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Figure 3.3: Responses to macroeconomic uncertainty (LMN-macro-3) shocks in the base-
line VAR model

Note: See notes to Figure 3.2. The VAR model includes all variables in the first panel
of Table 3.1 + macroeconomic uncertainty (LMN-macro-3).

tivity variables. The responses to macroeconomic uncertainty shocks (Figure 3.3) are

stronger and more persistent than the responses to financial uncertainty (Figure 3.2).

Surprisingly, financial uncertainty shocks have positive effects on technology (utilization-

adjusted TFP), while macroeconomic uncertainty shocks have no significant effects on

technology changes. The effect of financial uncertainty on technology peaks at 5 quarters,

but it is persistent, dying out only over the long run.

These differences in the effects of macro and financial uncertainty on technology

hold even if the proxy for financial and macroeconomic uncertainty is changed. Figure

3.4 presents the effect of a financial uncertainty shock on utilization-adjusted TFP for all

the five measures of financial uncertainty considered here, and Figure 3.5 considers the

six measures of macroeconomic uncertainty. The negative effects of financial uncertainty

on economic activity have been attenuated by the positive effects of financial uncertainty

on productivity by comparing responses in Figures 3.2 and 3.4 with the macroeconomic

uncertainty effects in Figures 3.3 and 3.5.

The persistent positive effect of financial uncertainty shocks on technology might

be seen as counterintuitive. Bloom et al. [2014] and Bloom [2014] note that uncertainty
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Figure 3.4: Responses of utilization-adjusted TFP to different measures of financial
uncertainty shocks in the baseline model

(a) Realized volatility (b) LMN-fin-1 (c) LMN-fin-3

(d) LMN-fin-12 (e) VXO

Note: See Table 3.1 for description of uncertainty measures. Dotted lines are 68% con-
fidence bands computed with 1,000 posterior draws. These responses are computed for
one financial uncertainty variable at a time in a VAR that also includes the 10 vari-
ables in the top panel of Table 3.1. Identification scheme as described in section 3.2.2.

makes productive firms less aggressive in expanding and unproductive firms less aggres-

sive in contracting. This reallocation of production factors after an uncertainty shock

should reduce total productivity.

We shed a light on this puzzle by examining the responses of non-adjusted TFP to

uncertainty shocks. They allow us to evaluate the impact of utilization adjustment, that

is, the removal of productivity changes due to factor utilization, on these results. Figure

3.6 provides the impulse responses of TFP to financial uncertainty shocks, and Figure

3.7 shows similar results for macroeconomic uncertainty shocks. The results are now

consistent with Bloom et al. [2014] and Bloom [2014], since both types of uncertainty

shocks have short-lived negative effects on productivity. This implies that responses of

productivity to uncertainty shocks reflect a combination of two effects: a short-lived

negative effect driven by a reduction of factor utilization and a positive medium-horizon

effect generated by technology improvements.

This novel medium-run effect of financial uncertainty shocks to technology changes

might be the result of firms reaction to the new economic environment. After the initial

negative effect, firms seek to become more productive to reduce the impact of possible

similar future shocks. The notion of an adaptation period recalls Comin [2000], who
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Figure 3.5: Responses of utilization-adjusted TFP to different measures of macroeco-
nomic uncertainty shocks in the baseline model

(a) Policy uncertainty
(b) Business uncer-
tainty

(c) SPF disagreement

(d) LMN-macro-1 (e) LMN-macro-3 (f) LMN-macro-12

Note: See notes to Figure 3.4. These responses are computed for one macroeconomic
uncertainty variable at a time in a VAR that also includes the 10 variables in the top
panel of Table 3.1. Identification scheme as described in section 3.2.2.

focus on the impact of uncertainty on the productivity of specialized capital. The ini-

tial negative impact of uncertainty shocks induces firms to substitute old technologies

(inflexible and obsolete in an uncertain business environment) for more flexible ones,

generating a positive shift in TFP. Bloom et al. [2014] also provide support for these

‘good uncertainty’ medium-run effects. Uncertainty delays firms’ investment projects,

affecting expansion decisions and hiring of new employees. However, when uncertainty

recedes, firms re-evaluate their suspended investment plans in order to attend to the con-

strained demand. Bloom et al. [2014] argue that after the uncertainty period vanishes,

firms increase hiring and investment, which can lead to increasing productivity.

3.2.5 Correlation between news and uncertainty shocks

Our empirical results so far suggest that financial uncertainty shocks generate a positive

medium-run effect on technology that resembles the effects of a news shock. Financial

uncertainty and news shocks only differ in the long-run, as uncertainty shock effects die

out, whereas news shocks persist. This section investigates the correlation between news

and uncertainty shocks, which is measured by employing the set of uncertainty measures

in Table 3.1. We recover the news and uncertainty structural shocks for the 1975-2012
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Figure 3.6: Responses of non-adjusted TFP to different measures of financial uncertainty
shocks in the baseline model

(a) Realized volatility (b) LMN-fin-1 (c) LMN-fin-3

(d) LMN-fin-12 (e) VXO

Note: See notes to Figure 3.4. These responses are computed for one financial uncer-
tainty variable at a time in a VAR that also includes the 10 variables in the top panel
of Table 3.1. The difference between these results and Figure 3.4 is that here TFP is
not adjusted for utilization. Identification scheme as described in section 3.2.2.

period using the identification schemes discussed in section 3.2.2. We then calculate the

correlations between news and each measure of uncertainty shocks. These values are

presented in Table 3.2 and include the results of a test of the null hypothesis that the

correlation is equal to zero.

The main result from Table 3.2 is that there is a positive and significant cor-

relation between news and financial uncertainty shocks, which indicates that these are

not structural shocks. The correlation is stronger if financial uncertainty is proxied by

the VXO (0.59), although this might be the effect of the shorter period for which this

series is available (since 1986). The correlation decreases with the forecasting horizon

employed by Ludvigson et al. [2016] in the computation of uncertainty measures. In con-

trast, the correlations between news and macroeconomic uncertainty shocks are either

zero in the case of professional forecaster dispersion measures or negative in the case of

macroeconomic forecasting uncertainty measures.

The fact that news and financial uncertainty shocks are positively correlated in-

dicates that these identified shocks are not structural. It reinforces our previous results

that uncertainty shocks may have positive medium run effects on productivity and eco-

nomic activity measures. They also imply that the positive effects of technology news
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Figure 3.7: Responses of non-adjusted TFP to different measures of macroeconomic
uncertainty shocks in the baseline model

(a) Policy uncertainty
(b) Business uncer-
tainty

(c) SPF disagreement

(d) LMN-macro-1 (e) LMN-macro-3 (f) LMN-macro-12

Note: See notes to Figure 3.4. These responses are computed for one
macroeconomic uncertainty variable at a time in a VAR that also includes
the 10 variables in the top panel of Table 3.1. The difference between
these results and Figure 3.5 is that here TFP is not adjusted for utiliza-
tion. Identification scheme as described in section 3.2.2.

shocks may be attenuated by the fact that news shocks tend to increase financial uncer-

tainty over the short run.

We see this novel interesting result as motivation for our new identification scheme

discussed in the next section.

3.3 Disentangling uncertainty and news as sources of busi-

ness cycle fluctuation

Our previous results suggest that the positive effects of news shocks on economic activity

are attenuated by rising financial uncertainty at the time of the shock. Likewise, the

negative effects of financial uncertainty shocks on economic activity are attenuated by

increasing productivity over the medium run as a result of the improving likelihood of

technology news shocks from the increase in financial uncertainty. In this section, we

identify both news and uncertainty shocks in the same model such that we are able

to measure their relevance in explaining business cycle variation, while also considering

that macroeconomic uncertainty, as measured by professional forecaster disagreement,
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Table 3.2: Correlation between news and uncertainty shocks for different uncertainty
measures

Correlation

Financial uncertainty
Realized volatility 0.43 [0.000]
LMN-fin-1 0.49 [0.000]
LMN-fin-3 0.36 [0.000]
LMN-fin-12 0.34 [0.000]
VXO 0.59 [0.000]

Macro uncertainty
Policy uncertainty -0.22 [0.008]
Business uncertainty 0.05 [0.553]
SPF disagreement 0.02 [0.811]
LMN-macro-1 -0.37 [0.000]
LMN-macro-3 -0.28 [0.000]
LMN-macro-12 -0.21 [0.011]

Note: The p-values for the test with zero correlation under the null hypothesis are

in brackets. The statistic is calculated as t = ρ0

√
T−2
1−ρ20

. These results are based on

a VAR model with the 10 variables in the first panel of Table 3.1 + one measure of
uncertainty at time, as indicated. For details on data and availability, see Table 3.1.

is also a source of business cycle fluctuation.

3.3.1 Identification of news, financial and ambiguity shocks

In this section, we describe our two identification schemes: the ‘truly news’ and the ‘truly

uncertainty’. In both cases, we use a VAR model with the 10 variables in the top panel

of Table 3.1 plus two measures of uncertainty. We include realized volatility as the mea-

sure of financial uncertainty and SPF disagreement as the measure of macroeconomic

uncertainty. We choose SPF disagreement as the measure of macroeconomic uncertainty

because it is uncorrelated with news shocks (as discussed in section 3.2) and measures

changes in Knightian uncertainty (Ilut and Schneider, 2014).4 At the end of this sec-

tion, we check the robustness of this choice using business uncertainty, as computed by

Bachmann et al. [2013], instead of SPF disagreement as a measure of macroeconomic

uncertainty.

The main advantage of considering two identification schemes is that together

they allow us to measure the impact of ‘good uncertainty’ shocks in explaining business

4For an alternative measure of ambiguity obtained by exploiting the SPF, see Rossi et al. [2016].
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cycle variation. We call ‘good uncertainty’ shocks the unexpected changes in financial

uncertainty that are correlated with news shocks. These are ‘good uncertainty’ shocks

because they typically improve technology in the medium run.

The identification of the ‘truly news’ shock can be understood as a sequential

identification of the maximization of the variance decomposition (Section 3.2.2), con-

ditional on the orthogonality with respect to the previous identified shocks. The first

identified shock is the unexpected TFP shock, which is TFP’s own innovation. The sec-

ond shock is the financial uncertainty shock, which is the orthogonalization that brings

the maximum of the variance decomposition of the financial uncertainty measure over

two quarters ahead, conditional on being orthogonal to the unexpected TFP shock. The

third shock is the ambiguity shock, which is the orthogonalization that brings the max-

imum of the variance decomposition of the ambiguity measure over two quarters ahead,

conditional on being orthogonal to the unexpected TFP and financial uncertainty shocks.

Finally, the fourth shock is the ‘truly news’ shock, which is the orthogonalization that

brings the maximum of the variance decomposition of productivity over 40 quarters

ahead, conditional on being orthogonal to the unexpected TFP, financial uncertainty and

ambiguity shocks. It follows that all four shocks constructed under the ‘truly news’

identification are orthogonal and structural.

The ‘truly news’ identification scheme implies that both uncertainty and ambi-

guity shocks are able to affect the technology news shock and that financial uncertainty

shock have an impact on ambiguity. This is motivated by the fact that ambiguity in-

creases during periods of high volatility (Bachmann et al., 2013; Ilut and Schneider,

2014) and that the likelihood of news shocks may increase during periods of high volatil-

ity (Bloom, 2009).

The ‘truly news’ identification scheme is built sequentially by imposing orthogo-

nality between the news identification vector γnews2 and those obtained for identification

of the financial γfinunc3 and ambiguity γamb4 shocks. The ‘truly news’ identification

scheme is based on a four-step procedure. In the first step, the procedure for the identi-

fication of the unexpected TFP and news shocks, described in Appendix A, is applied to

obtain γnews2 (and γunexp1 ). Then, the financial uncertainty identification vector γfinunc3

is obtained by maximizing the variance decomposition of financial uncertainty up to

horizon 2. The third step obtains γamb4 by maximizing the variance decomposition of the

SPF disagreement up to horizon 2. The fourth and last step imposes the orthogonality

between the news shock, the financial uncertainty shock and the ambiguity shock. This

is achieved by employing a QR decomposition5 over the four γ vectors such that we ob-

5The QR decomposition is an application of the Gram-Schmidt orthonormalization procedure. In our
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tain γnews∗2 , γfinunc∗3 and γamb∗4 from the orthonormal, ‘Q part’ of the decomposition. As

γnews∗2 is ordered last in the QR decomposition, this identification scheme removes the

part of the news shock that is correlated with both financial uncertainty and ambiguity.

The ‘truly uncertainty’ identification scheme is similar to the ‘truly news’, but it

implies a different ordering in the orthonormalization. In the case of the ‘truly uncer-

tainty’ scheme, the news shock vector is ordered first in the orthogonalization structure,

so we extract the news shock effect from both the ambiguity and financial uncertainty

shocks. The ‘truly uncertainty’ identification scheme implies that news shocks are not

affected by both uncertainty shocks and that the financial uncertainty shock is affected

by news shocks. Although this identification has less support in the literature than

the previous one, it helps us to show that the ordering assumptions between news and

financial uncertainty shocks have a crucial impact on the empirical evidence based on

structural VARs.

By computing both identification schemes, we are able to measure the impact of

‘good uncertainty’ on business cycles. The impact of ‘good uncertainty’ shocks is mea-

sured by the differences between the ‘truly uncertainty’ and the ‘truly news’ identification

strategies on the variation explained by financial uncertainty shocks. The intuition is

that under the ‘truly news’ identification, we measure the impact of ‘bad uncertainty’,

which is mainly a short-run phenomenon, since raising uncertainty does not affect the

arrival of technological changes in this case. Based on the ‘truly uncertainty’ identifi-

cation, financial uncertainty shocks have an impact on the arrival of news about future

technological changes.

3.3.2 Responses to ‘truly’ news and uncertainty shocks

Figures 3.8, 3.9 and 3.10 show the responses to news, financial uncertainty and ambi-

guity shocks, respectively. We present the results for both the ‘truly news’ and ‘truly

uncertainty’ identification schemes, and 68% confidence bands are included.

Figure 3.8 clearly shows that news shocks have larger effects on economic activity

variables (consumption, investment, hours and output) if we assume that news shocks

are orthogonal to uncertainty and ambiguity shocks as in the case of the ‘truly news’

identification scheme. The difference between the red and blue lines is a measure of

the attenuation effect of increasing uncertainty with the arrival of technology news.

application, the first vector (orthonormal by construction) remains unchanged. The second is computed
by subtracting its projection over the first one. The third is obtained by subtracting its projection over
the first two. Finally, the fourth vector is computing by subtracting its projecting over the previous
three vectors.
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Figure 3.8: Responses to news shocks with the ‘truly news’ (red lines) and the ‘truly
uncertainty’ (blue lines) identification schemes

Note: Shaded areas are 68% confidence bands computed with 1,000 posterior draws.
The ‘truly news’ and ‘truly uncertainty’ identification schemes are described in sec-
tion 3.3.1. The VAR model includes all 10 variables in the first panel of Table 3.1
+ realized volatility + business uncertainty.

Interestingly, the ‘truly news’ identification scheme recovers responses that show that

hours, consumption and investment move together with output, including responses that

are significantly different from zero (based on the 68% bands) at the time of the impact

of the news shock. This comovement is suggested by Beaudry and Portier [2006], but it

is normally not observed when news shocks are identified by maximizing the forecasting

variance, as in Barsky and Sims [2011] and this paper.

Figure 3.9 indicates that financial uncertainty shocks have a relatively muted

negative effects on the economic activity variables under the ‘truly news’ identification

scheme. This is mainly explained by the medium-run positive effects on technological

changes, measured by the utilization-adjusted TFP changes. The difference between

the red (‘truly news’) and the blue (‘truly uncertainty’) responses is our measure of the

impact of ‘good uncertainty’ shocks. In the case of output, the response is -0.4% after

four quarters but only -0.3% if we allow for good uncertainty effects. This difference,

although small, persists over various time horizons.
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Figure 3.9: Responses to financial uncertainty shocks with the ‘truly news’ (red lines)
and the ‘truly uncertainty’ (blue lines) identification schemes

Note: See notes to Figure 3.8.

Our previous results suggest that ambiguity shocks, measured using SPF disagree-

ment, are not correlated with news shocks and have no impact on utilization-adjusted

TFP. As a consequence, it is no surprise that Figure 3.10 suggests very small differences

between identification schemes. It is interesting to note that economic activity vari-

ables’ responses to ambiguity shocks are typically not significantly different from zero

(using 68% bands) over short horizons but are significantly negative for horizons longer

than a year. This suggests that responses to ambiguity shocks are less immediate than

responses to financial uncertainty.

3.3.3 Explaining business cycle variation

Table 3.3 presents the variance decomposition of economic activity variables (output,

consumption, investment and hours) explained by three shocks (news, financial uncer-

tainty and ambiguity) based on three identification schemes (baseline, ‘truly news’, ‘truly

uncertainty’). In the baseline identification scheme described in section 3.2.2, the shocks

are identified separately. The values are computed at the posterior mean for horizons

after zero quarters (at impact) and eight quarters (two years), 16 quarters (four years)

28



Figure 3.10: Responses to ambiguity shocks with the ‘truly news’ (red lines) and the
‘truly uncertainty’ (blue lines) identification schemes

Note: See notes to Figure 3.8.

and 40 quarters (10 years).

There are two main results from Table 3.3. First, the identification scheme has

a limited impact on the importance of ambiguity in explaining business cycle variation.

Over long horizons, ambiguity explains 13% of output variation, 8% of consumption

variation, and 8% of investment variation.

Second, the relative importance of news and financial uncertainty shocks depends

on whether we are able to assume that technology news shocks are orthogonal to financial

uncertainty. If that is the case, then technology news shocks explain a large share of the

variance in the long run: 29% of output variation, 45% of consumption variation and

21% of investment variation. However, if we let news shocks to have a contemporaneous

impact on financial uncertainty, then the shares of the variation explained by news

shocks decrease and are similar to the baseline results. The shares of variation explained

by financial uncertainty shocks are larger based on the ‘truly uncertainty’ identification

scheme.

We explain these results using the notion of ‘good uncertainty’ shock. A ‘good

uncertainty’ shock is the one that raises the likelihood of technology news shocks. Based
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Table 3.3: Variance decomposition of output, consumption, investment and hours to
news, financial uncertainty and ambiguity shocks

(a) Output

News Shocks Financial Uncertainty Good Unc SPF Disagreement

h
Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

0 5.7 12.4 5.7 5.2 5.2 13.1 7.9 2.4 2.1 0.9
8 14.2 24.6 14.2 5.8 5.8 18.9 13.1 6.2 5.5 2.8
16 14.0 29.9 14.0 3.8 3.8 14.7 10.9 12.9 12.1 8.1
40 19.9 28.1 19.9 3.4 3.4 16.6 13.2 14.6 13.6 8.7

(b) Consumption

News Shocks Financial Uncertainty Good Unc SPF Disagreement

h
Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

0 5.1 13.8 5.1 6.8 6.8 15.5 8.7 0.2 0.1 0.1
8 13.8 27.8 13.8 9.6 9.6 25.8 16.2 4.5 3.6 1.5
16 19.3 33.9 19.3 8.6 8.6 27.4 18.8 10.1 8.7 4.5
40 26.4 45.4 26.9 8.5 8.5 31.3 22.8 9.3 7.8 3.4

(c) Investment

News Shocks Financial Uncertainty Good Unc SPF Disagreement

h
Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

0 6.8 11.0 6.8 2.3 2.3 8.4 6.1 4.5 4.2 2.1
8 10.6 21.0 10.6 7.4 7.4 19.7 12.3 4.2 3.5 1.6
16 9.3 15.7 9.3 4.4 4.4 13.2 8.8 7.8 4.1 4.6
40 14.0 21.4 14.0 3.6 3.6 14.2 10.6 9.0 8.2 5.1

(d) Hours

News Shocks Financial Uncertainty Good Unc SPF Disagreement

h
Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

0 5.4 11.7 5.4 4.6 4.6 11.9 7.3 2.7 1.6 0.6
8 7.0 19.5 7.0 13.0 12.9 26.8 13.9 4.0 2.5 1.1
16 4.6 12.0 4.6 9.1 9.1 18.5 9.4 9.8 7.7 5.7
40 2.6 6.9 2.6 6.7 6.7 12.7 6.0 11.1 9.0 7.3

Note: The baseline identification scheme is described in section
3.2.2, and the ‘truly news’ and ‘truly uncertainty’ schemes in sec-
tion 3.3.1. In all cases, the VAR model includes all 10 variables in
the first panel of Table 3.1 + realized volatility + SPF disagreement.
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on the computation in Table 3.3 using both identification schemes, a good uncertainty

shock explains a large share of variation at the two-year horizon. In the case of output

variation at the two-year horizon, 5.8% is explained by ‘bad uncertainty’ shocks, 13.1%

by ‘good uncertainty’ shocks and 5% by ambiguity shocks.

As a consequence, we provide evidence that not all uncertainty shocks are equal.

An increase in equity market volatility may improve technology and productivity after

one year if it is followed by a higher likelihood of technology news shocks. The proportion

of variation in output due to this ‘good uncertainty’ is actually larger than the negative

effects of typical uncertainty shocks, including ambiguity shocks.

3.3.4 Robustness check

The results in section 3.2.5 suggest that news shocks are not correlated with the business

uncertainty measure computed by Bachmann et al. [2013]. Although business uncer-

tainty may not be a good measure of ambiguity, it is based on a forecasters’ dispersion

measure as the SPF disagreement. We recomputed all results in Table 3.3 using busi-

ness uncertainty as a proxy for ‘ambiguity’. The results presented in Table 3.4 suggest

that the relative importance of news, good and bad uncertainty shocks are similar to

the model using SPF disagreement. However, shocks to business uncertainty explain a

larger share of business cycle variation than shocks to SPF disagreement. Over longer

horizons, business uncertainty explains 34% of output variation, 12% of consumption

variation, and 50% of investment variation. These results are consistent with Bachmann

et al. [2013], but they suggest that not all uncertainty measures are equal in the sense

of measuring the same economic concept.

3.3.5 Discussion

Employing an unexpected correlation between technology news shocks and different

measures of uncertainty shocks, we are able to provide evidence that not all uncer-

tainty shocks are equal in their impact on the macroeconomy. The consensus is that

we normally expect negative short-run effects from uncertainty shocks (Leduc and Liu,

2016), so our results are novel and unexpected. Bloom [2014] argues, however, that many

mechanisms might explain the impact of uncertainty shocks in the economy, so our novel

evidence that different uncertainty measures deliver shocks with different effects on the

economy is consistent with this view.

Typical uncertainty-driven business cycle theories (Bloom et al., 2014) are based

on the idea that uncertainty reduces investment because when uncertainty is high, the
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Table 3.4: Variance decomposition of output, consumption, investment and hours to
news, financial uncertainty and business uncertainty shocks

(a) Output

News Shocks Financial Uncertainty Good Unc Business Uncertainty

h
Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

0 7.6 17.4 7.6 5.4 5.4 14.7 9.3 2.8 2.0 2.4
8 13.5 28.3 13.5 6.2 6.3 19.4 13.1 17.5 15.6 17.2
16 13.3 25.8 13.3 3.9 3.9 14.4 10.5 28.4 26.7 28.7
40 16.1 28.9 16.1 2.8 2.8 13.3 10.5 34.0 32.5 34.8

(b) Consumption

News Shocks Financial Uncertainty Good Unc Business Uncertainty

h
Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

0 5.3 14.5 5.3 7.2 7.2 16.2 9.0 0.4 0.1 0.2
8 13.0 20.6 13.0 9.8 9.8 25.4 15.6 6.9 5.4 6.5
16 18.0 37.0 18.0 8.1 8.2 25.5 17.3 12.3 10.5 12.1
40 23.4 44.8 23.4 7.4 7.4 27.1 19.7 12.2 10.6 12.3

(c) Investment

News Shocks Financial Uncertainty Good Unc Business Uncertainty

h
Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

0 9.8 17.7 9.8 2.1 2.1 9.3 7.2 4.1 3.5 4.1
8 9.2 22.6 9.2 7.5 7.5 19.0 11.5 29.2 26.8 28.6
16 7.2 16.6 7.2 4.1 4.1 11.6 7.5 42.6 40.8 42.6
40 7.6 16.2 7.6 2.9 2.9 9.4 6.5 51.5 49.8 51.9

(d) Hours

News Shocks Financial Uncertainty Good Unc Business Uncertainty

h
Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

Base-
line

Truly
News

Truly
Unc.

0 8.2 16.8 8.2 4.1 4.0 12.5 8.5 0.1 0.0 0.1
8 6.9 22.4 6.9 14.0 14.0 28.3 14.3 11.2 9.4 10.5
16 4.6 15.8 4.6 10.1 10.0 19.9 9.9 21.7 19.9 21.0
40 2.5 9.1 2.5 7.0 6.9 12.6 5.7 30.9 29.4 30.3

Note: See notes to Table 3.3. The VAR model includes all 10 variables in the first
panel of Table 3.1 + realized volatility + business uncertainty.

price of the wait-and-see option is higher. Business cycle theories that focus on risk

as a cause of business cycles (Christiano et al., 2014) employ financial constraints to
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explain how uncertainty affects growth. In both cases, we expect short-run negative

effects from increased uncertainty, which is compatible with our results for financial

uncertainty shocks.

The evidence that uncertainty may have a positive effect on productivity is related

to the idea that uncertainty increases the size of the potential return on an investment,

that is, uncertainty increases the range of growth options. Segal et al. [2015] employ a

long-run risk consumption-based asset pricing model to disentangle the impact of good

and bad uncertainty from that of positive and negative innovations on consumption

growth. Although both measures of uncertainty have an impact on asset pricing within

their model, they do not attempt to measure the relative impact of good and bad un-

certainty on business cycle variation. Our results suggest that good uncertainty is more

important at medium-term horizons (two years) and that bad financial uncertainty is

typically a short-run phenomenon.

Our results support ambiguity (Ilut and Schneider, 2014) as a cause of business

cycles in addition to the effects of financial uncertainty. They also support the idea

that professional forecaster dispersion measures confidence rather than uncertainty. The

impacts of ambiguity shocks are more long lasting than those of typical uncertainty

shocks. Our results based on two measures of ambiguity (SPF and business survey

dispersion) differ from those of Rossi et al. [2016], who find no economic effects from

shocks to disagreement when employing a novel decomposition based on SPF forecasts.

Our results suggest that the business cycle variation explained by macroeco-

nomic uncertainty shocks (Tables 3.3 and 3.4) is normally higher than that explained

by financial uncertainty, in particularly over long horizons. As a consequence, our re-

sults support Carriero et al. [2016a] on the relative importance of macroeconomic over

financial uncertainty in explaining business cycle variation rather than Ludvigson et al.

[2016]. However, we agree with Ludvigson et al. [2016] that to measure the impact

of uncertainty on business cycles, we have to remove variation that is correlated with

macroeconomic shocks. In this paper, we show that the relevant variation is related to

news about future technological changes.

When macroeconomic uncertainty shocks are measured by the Bachmann et al.

[2013] uncertainty measure, we find long-lasting negative effects on output, consumption,

investment and hours, even though we consider many other sources of shocks, including

technology news shocks. A possible explanation is that the business uncertainty measure

is able to identify the periods in which the economy enters an uncertainty trap, as in

the theory proposed by Fajgelbaum et al. [2017].
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3.4 Conclusion

Financial uncertainty and news shocks are correlated when standard identification as-

sumptions are employed. It follows that the standard procedures fail to identify the true

structural shocks. The implication is that responses of economic activity to news and

uncertainty shocks include attenuation bias. In the case of news shocks, attenuation bias

plays a role in the short run and implies that positive effects are lower than they would

be if news shocks were assumed to be orthogonal to financial uncertainty shocks. For

financial uncertainty shocks, the attenuation bias plays a role in the medium run, and

it is characterized by an increase in utilization-adjusted total factor productivity. The

bias implies that the negative effects of uncertainty shocks are not as deep or persistent

as they could have been.

Based on our identification strategy to disentangle the effects of difference sources

of business cycle variation, we find that in the long run, technology news shocks explain

30% of output growth variation, ‘good uncertainty’ and ambiguity shocks explain 13%

each, and bad uncertainty explains 4%. In general, our novel empirical evidence support

the development of theories that focus on anticipated shocks (Jaimovich and Rebelo,

2009), confidence (Ilut and Schneider, 2014) and uncertainty (Bloom et al., 2014; Fa-

jgelbaum et al., 2017) as sources of business cycles.
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Chapter 4

Amplification effects of news

shocks through uncertainty
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4.1 Introduction

How do economic agents react to new information about future technological improve-

ments? Although much has been done by the literature on business cycles driven by

agents’ beliefs to answer this question,1 the results are not conclusive. Conventional

wisdom is that the expectation of technological progress produces positive economic

outcomes, but the empirical research still disagrees on the size and direction of this ef-

fect. In this paper, I show that a plausible reason for these differences is that agents

react differently over time to news about technology. More importantly, these changes

are intrinsically related to the degree of uncertainty about the economy.

The idea behind business cycles driven by ‘news shocks’ – changes in the future

total factor productivity (TFP) that are foreseen by the economic agents (Beaudry and

Portier, 2006) – is that technological innovations take time to have an impact in the

economy. Part of this technological impact is foreseen by the economic agents, who

react to it in the present. A new oil discovery is an example of a news shock.2

On an aggregate level, the literature on technological news shocks shows that pos-

itive news generates long-term co-movement among GDP, consumption and investment,

and it is deflationary in the medium-term.3 However, there is still an ongoing discussion,

both theoretical and empirical, about (i) the extent to which this shock explains busi-

ness cycles, (ii) how quickly one would observe an effect on productivity, and (iii) the

effect on other important macroeconomic variables. For example, there is contradictory

empirical evidence about the effect of a news shock on hours worked. While Beaudry

and Portier [2006] show that a news shock generates a positive and significant effect on

hours (consistent with the results from Christiano et al., 2003), Barsky and Sims [2011]

present a negative effect of news on hours (in line with the technological shock from

Gaĺı, 1999).

In fact, both results can be empirically observed just by changing the time-span

of the estimation. Figure 4.1 presents the deciles of the impulse responses after a news

shock identified over different periods in time, with a 20-year rolling window from 1975Q1

to 2012Q3. On average, the effect of a news shock on hours worked is positive in the

1See, for example, Beaudry and Portier [2006], Jaimovich and Rebelo [2009], Barsky and Sims [2011],
Kurmann and Otrok [2013], Schmitt-Grohe and Uribe [2012], Blanchard et al. [2013], Forni et al. [2014],
Beaudry and Portier [2014], Vukotić [2017], Cascaldi-Garcia and Galvao [2017] and Levchenko and
Pandalai-Nayar [2018].

2Although it will take years to be effectively explored, the expectation of future higher oil production
induces the companies to invest now. Arezki et al. [2017] explore the news shock properties related to
oil discoveries.

3As demonstrated by Beaudry and Portier [2006], Barsky and Sims [2011] and Beaudry and Portier
[2014].
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medium-term, and negative in the long-term. However, depending on the identification

period considered, the effect on hours can be positive in the medium-term and converging

to zero, or zero in the medium-term and negative in the long-term.

Figure 4.1: Percentiles of responses to news shocks over different time periods

Note: Impulse responses of a news shock computed over a rolling window of 20
years, with quarterly data ranging from 1975Q1 to 2012Q3. The first window is
from 1975Q1 to 1994Q4, while the last one is from 1992Q4 to 2012Q3. Each
line corresponds to the deciles of the impulse responses calculated at the poste-
rior mean from the 71 rolling window estimations, while the red line is the me-
dian. The identification follows the Barsky and Sims [2011] methodology, in a
large Bayesian VAR consisting of the variables described in tables B.2 and B.3.

While the effect on hours worked changes both quantitatively and qualitatively,

there are still differences in the size of the responses of real macroeconomic variables.

Figure 4.1 shows that, on average, a news shock leads to a long-term positive effect on

consumption, GDP and investment. However, depending on the time-span considered,

this effect may be substantially stronger or converge to zero, with no long-term effects.

The economic effects of a news shock are far from robust to time changes. More

broadly, these discrepancies show that the agents react to information about future tech-

nological improvements in different ways over time, and raises the question of whether

such behavior is random or systemic. This question can be addressed by studying how

the economic agents acquire information about future productivity, for example through

the financial market.

Shen [2015] argues that agents are more responsive to information when signals

are sufficiently precise. Uncertainty plays a role in how information is assimilated by the
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agents: information can be interpreted in different ways in periods of high or low un-

certainty, indicating a potential amplifying effect of news shocks through an uncertainty

transmission channel.

The rolling window identification exercise supports this relationship between news

about future productivity and uncertainty. Figure 4.2 presents the long-term effects of

a news shock on consumption identified in a 20-year rolling window, and compares it

with a measure of macroeconomic uncertainty.4 There is a clear period of high long-

term effects until 2001, followed by a period of low long-term effects, increasing again

after 2007. This behavior is systematic, and matches with periods of high and low

macroeconomic uncertainty.

Figure 4.2: Long-term effects of a news shock on consumption and macroeconomic
uncertainty

Note: In red: Mean of a macroeconomic uncertainty measure calculated by Lud-
vigson et al. [2016]. In blue: Long-term effects of a news shock on consump-
tion. Long-term defined as 40 quarters ahead of the news shock. The news
shock is computed over a rolling window of 20 years, with quarterly data rang-
ing from 1975Q1 to 2012Q3. The first window is from 1975Q1 to 1994Q4, while
the last one is from 1992Q4 to 2012Q3. The x-axis shows the mid-point of the
window. The identification follows the Barsky and Sims [2011] methodology, in a
large Bayesian VAR consisting of the variables described in tables B.2 and B.3.

In this paper, I propose a model and identification procedure to investigate

whether agents change the way they respond to news about future productivity over

4Macroeconomic uncertainty measure calculated by Ludvigson et al. [2016].
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time, and if this behavior depends on economic uncertainty. Investigating for hetero-

geneous responses over time means that the news shock identification should allow for

nonlinear and time-varying models. Investigating for the interaction between uncertainty

and news shocks means that such a model should be flexible enough to capture systemic

changes in the economic responses to a news shock based on the level of uncertainty.

The premise of the model is that uncertainty measures the agents’ expectations

about current and future economic conditions. It is reasonable to think that these ex-

pectations should also be updated when the agents receive news about future higher

productivity. In other words, the level of uncertainty endogenously responds to exoge-

nous news shocks. To meet these requirements, I employ a stochastic volatility model

that treats macroeconomic and financial uncertainties as latent variables.

The baseline model builds upon Carriero et al. [2016a], as a nonlinear stochastic

volatility Bayesian vector autoregressive (VAR) model for large datasets. With this

structure, it is possible to identify first moment shocks, as news shocks, allowing for

unrestricted interrelationship between the first and second moments of the data. The

estimated volatilities are divided into two components: an idiosyncratic and a common

component. The common component is either a latent factor across all macroeconomic

variables included in the VAR, or across all financial variables. These common factors

are the proxies for macroeconomic and financial uncertainties. The common volatility

factors are included in the VAR, contemporaneously affecting the conditional mean of

the variables. Finally, the common volatility factors also depend on the lagged variables,

creating a complete nonlinear feedback effect between first and second moments of the

variables.

I also propose an identification method for news shocks that extends the current

standard procedure for nonlinear and time-varying cases. The identification method is

a generalization of the Barsky and Sims [2011] procedure of maximizing the variance

decomposition of utilization-adjusted TFP over a predefined forecast period. Instead

of assuming a constant variance, the identification procedure proposed here explicitly

accounts for potential changes of the total forecast error variance at each point in time.

Moreover, I modify the identification strategy such that it takes into account the non-

linear relationship between variables and their volatilities (volatility in mean) through

the construction of generalized impulse response functions.

I bring two contributions to the empirical literature on measuring the economic

effects of news shocks. First, I evaluate whether the impact of a news shock changes over

time and whether the theoretical assumption of positive co-movement5 holds in different

5Beaudry and Portier [2006].
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periods. The evidence provided here of heterogeneous responses over time indicates that

news shock identifications based on processes with time invariant covariances may not

be appropriate.

Second, I show that news shocks interact with uncertainty. The results indicate

that there is a close link between the arrival of information about future productivity

and how this information is absorbed by the agents. This information is interpreted in

different ways in periods of high or low uncertainty, influencing the impact of the news.

The positive economic effects led by technology news are systematically higher in periods

of high uncertainty, depending on the initial degree of uncertainty (level effect) and on

how agents update their expectations about macroeconomic and financial conditions

(transmission effect).

These results are consistent with Bloom [2009]’s interpretation of an overshooting

of productivity in the medium-term after a period of high uncertainty. Productivity

grows as firms address their pent-up demand for investments, and substitute less flexible

for more flexible capital (Comin, 2000). Cascaldi-Garcia and Galvao [2017] show that

high uncertainty increases the likelihood of news shocks, creating a ‘good uncertainty’

effect.

This paper is aligned with literature about the relationship between news shocks

and financial markets. Beaudry and Portier [2006] and Barsky and Sims [2011], for

example, show how the stock market reacts to news shocks. Kurmann and Otrok [2013],

Cascaldi-Garcia [2017] and Kurmann and Sims [2017] debate the effect of a news shock

on short and long-term interest rates. Görtz et al. [2016] present the role of news shocks

in light of propagation through frictions in financial intermediation. This paper also

relates to an extensive literature on stochastic volatility VAR models. Mumtaz and

Zanetti [2013], for example, allow for a lagged feedback of the volatilities to the mean.

Alessandri and Mumtaz [2014], Shin and Zhong [2016] and Carriero et al. [2016c] propose

models with a contemporaneous feedback of a common volatility factor to the mean.

The outline of the paper is as follows. I present the underlying model that allows

for stochastic volatility in mean and the estimation procedure in Section 4.2. Section

4.3 introduces an identification procedure for the news shock that takes into account

nonlinear and time-varying models, and a procedure for identifying uncertainty shocks.

Section 4.4 presents the estimated latent macro and financial uncertainty measures.

Section 4.5 summarizes the results for a news shock and its relations with uncertainty

measures, while Section 4.6 describes the results of macroeconomic and uncertainty

shocks. Section 4.7 concludes this paper.
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4.2 A stochastic volatility in mean model

The empirical model aims at allowing a full interaction between uncertainty and macroe-

conomic variables so that orthogonal shifters of first and second moments can be identi-

fied. The proposed model setup is a large heteroskedastic VAR built upon Carriero et al.

[2016a], in which the individual volatilities are a combination of a common uncertainty

factor and an idiosyncratic volatility component. I modify its baseline framework to

handle variables in levels. The choice of two common factors follows the recent litera-

ture on unobserved uncertainty components as a way of separating macroeconomic and

financial sources of uncertainty (Jurado et al., 2015 and Carriero et al., 2016a).

The non-observed macroeconomic and financial factors (proxies for macro and

financial uncertainties) are included in the conditional mean of the VAR, which allows

for a contemporaneous effect on the variables. In addition, the factors are dependent on

the lagged variables, permitting a nonlinear feedback of the variables on their volatilities.

4.2.1 Model description

The model is estimated as a structural nonlinear VAR, with yt representing a (n × 1)

vector that stacks the nm macroeconomic endogenous variables ym,t and the nf = n−nm
financial endogenous variables yf,t, in levels, as in yt = (ym,t; yf,t). gt is a (2× 1) vector

that stacks the non-observed macroeconomic and financial uncertainty factors, denoted

as gt = (lnmt; ln ft). Here renamed as ‘Main VAR’ for notation purposes, the model is

represented under the reduced form

yt = A1yt−1 + ...+ Apyt−p + B0gt + ...+ Blgt−l + vt, (4.1)

where Ai are (n×n) matrices that collect the coefficients of the lags of yt from 1 to p, Bi

are (n× 2) matrices that collect the coefficients of the lags of gt from 0 to l. This setup

is similar to a VAR-X configuration, where gt is modeled as an exogenous component.

The reduced form shocks vt are modeled as

vt = A−1
0 Λ

1/2
t εt, εt ∼ iid N(0, I), (4.2)

where A0 is a lower (n×n) triangular matrix with ones in the main diagonal, and Λt is the

time-varying (n × n) diagonal matrix that collects the variance of each variable. Each

element of Λt is composed of an idiosyncratic component and a common uncertainty

factor, which may be macroeconomic or financial depending on the chosen variable.
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The first nm variables form the macroeconomic factor measure, while the nf = n− nm
variables form the financial factor measure. The elements of Λt (in logs) are defined as

lnλj,t =

βm,j lnmt + lnhj,t if j = 1, ..., nm

βf,j ln ft + lnhj,t if j = nm + 1, ..., n
, (4.3)

where βm,j and βf,j are the individual loadings to the common macroeconomic and

financial factors, respectively. For identification purposes, I set βm,1 = 1 and βf,nm+1 =

1.

The common macroeconomic factor is part of the volatility of all macroeconomic

variables, and the financial factor is part of the volatility of the financial variables. The

idiosyncratic component lnhj,t follows an AR(1) process of the form

lnhj,t = γj,0 + γj,1 lnhj,t−1 + ej,t, j = 1, ..., n, (4.4)

where et = (e1,t, ..., en,t)
′ is jointly and independently distributed as iid N(0,Φe), and

Φe = diag(φ1, ..., φn).

I define the common macroeconomic and financial volatility factors as proxies

for macroeconomic and financial uncertainty measures, respectively. These uncertainty

measures gt = (lnmt; ln ft) also follow a VAR structure, and is referred to as ‘Uncertainty

VAR’ for notation purposes. The Uncertainty VAR is modeled as

gt = D1gt−1 + ...+ Dkgt−k + δ∆yt−1 + ut, (4.5)

where Di are (2× 2) matrices that collect the coefficients of the lags of the uncertainty

factors gt from 1 to k. δ is a (2 × n) matrix that collects the coefficients of the lagged

variables yt (in differences). The shocks to the uncertainty factors ut = (um,t;uf,t) are

independent from et and εt, with mean 0 and full covariance matrix defined as

Φu =

[
φn+1 φn+3

φn+3 φn+2

]
. (4.6)

The covariance matrix of the uncertainty measures is purposely constructed as

full, to allow for co-movement between macroeconomic and financial uncertainty mea-

sures. I adapt the model structure by using lagged yt variables in differences and not in

levels. Carriero et al. [2016a] present a rich discussion on the suitability of this structure

for identifying macroeconomic and financial uncertainties, and how this setup relates to
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the stochastic volatility literature.

The model embeds the assumption that uncertainty measures are affected by

feedback from the lagged variables, and that uncertainty measures have a contempora-

neous effect on the mean of the variables. It is not possible to have contemporaneous

feedback to and from uncertainty simultaneously, for identification reasons. The choice

of contemporaneous (and not lagged) feedback from uncertainty to the mean follows

the assumption that the economic variables rapidly react to uncertainty shocks, and

uncertainty causes short-term economic fluctuations (Bloom, 2009).

This setup imposes the limitation that shocks to the mean of the variables can

only influence the level of uncertainty with, at least, one lag. One obvious alterna-

tive would be to assume that uncertainty measures are affected contemporaneously by

the variables, and that uncertainty measures have a lagged effect on the mean of the

variables. However, under such an assumption, economic variables would only react to

uncertainty shocks after one lag. This seems implausible in a quarterly data information

set, especially with respect to financial variables such as stock prices.

The non-observed idiosyncratic volatilities hj,t are estimated by the standard

algorithm proposed by Kim et al. [1998], using a 10-state mixture of normals approx-

imation from Omori et al. [2007]. The estimation of the non-observed macroeconomic

and financial uncertainties is substantially more complex, presenting a multi-variate non-

linear state-space representation. I follow Mumtaz and Theodoridis [2015] and employ a

particle Gibbs step to estimate lnmt and ln ft. The particle Gibbs construction is based

on Andrieu et al. [2010] and the ancestor sampling improvements proposed by Lindsten

et al. [2014], with 100 particles.

I estimate the full model with p = 4 lags, l = 1 lag of the macro and financial

factors in the Main VAR (equation 4.1), and k = 1 lag of the macro and financial factors

in the Uncertainty VAR (equation 4.5). The full estimation procedure is described in

detail in the Appendices.6

4.2.2 Data

The dataset comprises both macroeconomic and financial variables in levels. The vari-

ables are measured quarterly, which allows the use of macroeconomic variables such as

6Appendix B.1 describes the triangularization procedure for drawing the coefficients in large VARs
proposed by Carriero et al. [2016b]. This procedure is statistically equivalent to a conventional Bayesian
stochastic volatility Monte Carlo Markov Chain (MCMC) estimation, but has the advantage of being
less computationally intensive. Appendix B.2 presents the steps of the MCMC algorithm. Appendix B.3
describes the particle Gibbs with ancestor sampling.
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utilization-adjusted TFP (necessary for the news shock identification) and gross domes-

tic product (GDP). For variables which are available at a higher frequency, I construct

the time-series by taking the quarterly average. The period is from 1975Q1 to 2012Q3.

The dataset contains 14 macroeconomic variables, namely utilization-adjusted

TFP, personal consumption per capita, GDP per capita, private investment per capita,

hours worked, GDP deflator, Federal funds rate, total nonfarm payroll, industrial pro-

duction index, help wanted to unemployment ratio, real personal income, real manu-

facturing and trade sales, average of hourly earnings (goods producing) and producer

price index (finished goods). These are the macroeconomic variables that are usually

considered in the news shock literature.

The 14 financial variables are the spread between the 10-year yield and the Fed-

eral funds rate, S&P500 stock prices index, S&P dividend yields, excess bond premium,

CRSP excess returns, small-minus-big risk factor, high-minus-low risk factor, momen-

tum, small stock value spread (R15-R11), and five industry sector-level returns (con-

sumer, manufacturing, high technology, health and other). The financial variables mostly

matches those used by Jurado et al. [2015] and Carriero et al. [2016a] to construct their

measures of financial uncertainty.

A full description of the sources and construction of the 28 variables can be found

in Appendix B.7.

4.3 Identification procedure for news and uncertainty shocks

In this Section I present the strategy for identifying news and uncertainty shocks. These

procedures can be considered as two separate computation methods, one time-varying

and the other is time-invariant. The first is an innovative identification procedure for

news shocks that takes into account nonlinear and time-varying models, in which the

news shock presents different economic responses in each point in time. The second

is a standard generalized impulse response procedure for macroeconomic and financial

uncertainty shocks. Since the latent macro and financial factors have time invariant

covariances, the identification procedure is also invariant over time.

4.3.1 News shocks identification for nonlinear and time-varying models

The identification for the news shock is constructed upon the procedure proposed by

Barsky and Sims [2011]. This approach is based on the assumption that a technology

news shock is the structural shock that best explains the unpredictable movements of
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utilization-adjusted TFP over a fixed long-term horizon,7 with the imposition of no effect

on impact (t = 0). It is constructed following the maximum forecast error variance

approach presented in Uhlig [2005] and Francis et al. [2014].

The identification procedure presented by Barsky and Sims [2011] is broadly

adopted in the news shock literature.8 However, this identification method is only appli-

cable to time invariant covariance cases. A more flexible identification method is needed

to investigate the idea of an underlying transmission mechanism relating the technology

news (a shock to the mean of the variables) and the variables’ volatilities.

I start from the model presented in equation 4.1. Considering a model with a

fully exogenous uncertainty measure gt, I rewrite equation 4.1 as a function of the lag

operator L, leading to a VAR-X representation of the form

yt = A(L)yt + B(L)gt + A−1
0 Λ

1/2
t εt, (4.7)

where A(L) = A1L+ A2L
2 + ...+ ApL

p and B(L) = B0 + B1L+ ...+ BlL
l. A moving

average representation of this model9 is defined as the infinite polynomial of the lag

operator L as C(L) = C0 + C1L+ ... = [In −A(L)]−1, where C0 = In, as

yt = C(L)B(L)gt + C(L)A−1
0 Λ

1/2
t εt. (4.8)

Suppose that there is a linear mapping of the innovations (εt) and the structural

shocks (st) as in

εt = Pst, (4.9)

which implies

A−1
0 Λ

1/2
t εt = A−1

0 Λ
1/2
t Pst. (4.10)

The innovations εt and the structural shocks st are i.i.d. N(0, In). To ensure

that E[A−1
0 Λ

1/2
t εtε

′
tΛ

1/2′

t A−1′

0 ] = E[A−1
0 Λ

1/2
t Psts

′
tP

′
Λ

1/2′

t A−1′

0 ] = Σt, it suffices that

PP
′

= In. P can take the form of any of the infinite alternatives that satisfy this

condition. Under this structure, the moving average representation can be rewritten as

yt = C(L)B(L)gt + C(L)A−1
0 Λ

1/2
t Pst, (4.11)

7I follow Barsky and Sims [2011] by fixing the horizon at 40 quarters ahead.
8For example, Coibion and Gorodnichenko [2012], Kurmann and Otrok [2013], Forni et al. [2014],

Ben Zeev and Khan [2015], Görtz et al. [2016] and Cascaldi-Garcia and Galvao [2017]. See Beaudry and
Portier [2014] for an extensive discussion about identification methods for news shocks.

9See Ocampo and Rodŕıguez [2012] for a comprehensive description of the moving average represen-
tation of VAR-X models.
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where st = P−1εt.

Now, the Barsky and Sims [2011] identification procedure for the news shock relies

on finding one of the infinite alternatives of P that maximizes the variance decomposition

of the utilization-adjusted TFP over a predefined forecast horizon, and has no effect

on impact (t = 0). It is derived from the assumption that technology is a stochastic

process driven by two shocks: a surprise (or unanticipated) technological shock, and an

anticipated news shock. The total unexplained variance of utilization-adjusted TFP can

be decomposed as

Γ1,1(k)surprise + Γ1,2(k)news = 1∀h, (4.12)

where Γi,j(h) is the share of the forecast error variance of variable i of the structural

shock j at horizon k, i = 1 refers to utilization-adjusted TFP (where this variable is

ordered first in the VAR), j = 1 is the unexpected TFP shock, and j = 2 is the news

shock.

While the K-step ahead forecast error in this model is given by

yt+K − E[yt+K ] =

K∑
k=0

(CkBkgt+k + CkA
−1
0 Λ

1/2
t+kPst+K−k), (4.13)

the share of the forecast error variance of the news shock is

Γ1,2(K)t,news =
q
′
1

(∑K
k=0(CkBkgt+k + CkA

−1
0 Λ

1/2
t+kPq2)(CkBkgt+k + CkA

−1
0 Λ

1/2
t+kPq2)

′
)
q1

q
′
1

(∑K
k=0 CkΣt+kC

′
k

)
q1

= ...

=

∑K
k=0(C1,kB1,kgt+k + C1,kA

−1
0 Λ

1/2
t+kτ)(C1,kB1,kgt+k + C1,kA

−1
0 Λ

1/2
t+kτ)

′∑K
k=0 C1,kΣt+kC

′
1,k

,

(4.14)

where q1 is a selection vector with 1 in the position i = 1 and zeros elsewhere, q2

is a selection vector with 1 in the position i = 2 and zeros elsewhere, and Ck is the

matrix of moving average coefficients measured at each point in time until period k.

The combination of selection vectors with the proper column of P can be written as τ ,

which is an orthonormal vector that makes A−1
0 Λ

1/2
t τ the impact of a news shock over

the variables.

One additional complication that arises is that the share of the forecast error

variance of the news shock depends on gt, Λ
1/2
t and Σt. In other words, the variance

decomposition depends on the time t in which it is measured. The news shock is identified

by picking τ that maximizes the share described in equation 4.14, but the dependence of
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this share on t can lead to a different τ in each point in time. This characteristic forms

the basis of the identification procedure for the news shock proposed here. The news

shock is identified by solving the optimization problem

τnewst = argmax
K∑
k=0

Γ1,2(k)t,news, (4.15)

subject to

A0(1, j) = 0,∀j > 1

τt(1, 1) = 0

τ
′
tτt = 1,

(4.16)

where K is an truncation period, and the restrictions imposed imply that the news shock

does not have an effect on impact (t = 0) and that the τt vector is orthonormal.

In practice, two elements introduce additional nonlinearity to the forecast error

described in equation 4.13: the contemporaneous feedback effect that the uncertainty

factors gt have on the variables yt (because of the stochastic volatility in mean), and the

dependence of the time-varying volatility Λ
1/2
t on the uncertainty factors gt. I deal with

this nonlinearity by employing a generalized impulse response structure10 in substitution

for the forecast error described by equation 4.13. Since generalized impulse response

structures do not depend on the model functional form, this substitution makes the

procedure even more broad by allowing the identification of news shocks under different

forms of nonlinear and time-varying relationships.

The generalized impulse responses are constructed by creating simulated shocked

and baseline paths. The difference between these two paths captures the effect of the

desired shock, conditional on a random simulated innovation ωj,t, where j identifies the

variable. The overall effect of the identified shock is the average of the difference between

the baseline and shocked paths across a significant number of random innovations ωrj,t.

The full identification procedure and steps for the generalized impulse responses

are described in Appendix B.6. To summarize, it is possible to show that, conditional

on the draw r of the random innovation ωrj,t, on the information set containing all

the known history up to time t defined as Zt = (yt−p, ..., yt; gt−p, ..., gt),
11 and on the

coefficient matrices Π = [Ai,Bi,Di, βj , γj , δ], the generalized impulse response at time

10Adapting the procedure proposed by Koop et al. [1996] and Pesaran and Shin [1998].
11Where gt = (lnmt; ln ft).
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k of a generic utilization-adjusted TFP shock is given by

GIrTFP,t(k, τ
r
TFP , ω

r
j,t,Zt,Π) = E[yrt+k,TFP , g

r
t+k,TFP |τ rTFP ,Λr

t+k,TFP , ω
r
j,t,Zt,Π]

− E[yrt+k,base, g
r
t+k,base|Λr

t+k,base, ω
r
j,t,Zt,Π],

(4.17)

where τ rTFP is a vector with 1 in the first position (where utilization-adjusted TFP is

ordered first in the VAR) and zeros elsewhere.

With this setup, it is possible to substitute the TFP impulse responses (C1,kB1,kgt+k+

C1,kA
−1
0 Λ

1/2
t+kτ) in equation 4.14 for GIrTFP,t(k, τ

r
TFP , ω

r
j,t,Zt, ,Π), or simply GIrTFP,t(k)

for notation purposes.

A news shock for a draw r of the random innovation ωrj,t can be identified in each

period t as

τ rt,news = arg max

∑K
k=0GI

r
TFP,t(k, τ)GIrTFP,t(k, τ)

′∑K
k=0 C1Σt+kC

′
1

, (4.18)

subject to

A−1
0 (1, j) = 0, ∀j > 1,

τ(1, 1) = 0,

τ ′τ = 1.

(4.19)

After obtaining the identification vector for the news shock τ rt,news for the draw

r of the random innovations ωrj,t, it is possible to construct the generalized impulse

responses for the news shock at each point in time. Conditional on the draw r of

the random innovation ωrj,t, on the information set Zt, and on the coefficients Π, the

generalized impulse response at time k of the technology news shock is given by

GIrt,news(k, τ
r
t,news, ω

r
j,t,Zt,Π) = E[yrt+k,news, g

r
t+k,news|τ rt,news,Λr

t+k,news, ω
r
j,t,Zt,Π]

− E[yrt+k,base, g
r
t+k,base|Λr

t+k,base, ω
r
j,t,Zt,Π].

(4.20)

Taking the averages of each path across a sufficiently large number of draws of

the random innovations ωrj,t, the overall generalized impulse response at time k of a news
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shock, conditional on the information set at time t, is given by

GIt,news(k, τt,news,Zt,Π) = [ȳt+k,news(k, τt,news,Zt,Π), ḡt+k,news(k, τt,news,Zt,Π)]

− [ȳt+k,base(k,Zt,Π), ḡt+k,base(k,Zt,Π)].

(4.21)

Note that this identification procedure is a generalization of the standard ho-

moskedastic Barsky and Sims [2011] identification. With a time invariant covariance

model and no exogenous variables, the Barsky and Sims [2011] procedure can be nested

by the structure presented here. Consider, for example, equation 4.7. If there are no

time-varying volatility or exogenous variables, this equation is reduced to

yt = A(L)yt + A−1
0 Λ1/2εt, (4.22)

and its moving average representation is simply

yt = C(L)A−1
0 Λ1/2εt. (4.23)

Now, considering the same linear mapping between the innovations (εt) and the

structural shocks (st) as in equation 4.9, the share of the forecast error variance of the

news shock defined in equation 4.14 becomes

Γ1,2(k)news =
q
′
1

(∑K
k=0(CkA

−1
0 Λ1/2Pq2)(CkA

−1
0 Λ1/2Pq2)

′
)
q1

q
′
1

(∑K
k=0 CkΣC

′
k

)
q1

= ...

=

∑K
k=0(C1,kA

−1
0 Λ1/2τ)(C1,kA

−1
0 Λ1/2τ)

′∑K
k=0 C1,kΣC

′
1,k

(4.24)

and Γ1,2(k)news does not depend on t anymore. The procedure of finding τ that maxi-

mizes the share of the forecast error variance of equation 4.24 under the same restrictions

described in equation 4.16 is equivalent to the Barsky and Sims [2011] procedure.

4.3.2 Measuring the uncertainty transmission effect

In this section I present two counterfactuals to evaluate the relation between news shocks

and the level of uncertainty. The different effects of the news shock over time may come

from three sources of nonlinear transmission channels:

(i) the time-varying volatility (Λt in equation 4.2);
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(ii) the contemporaneous reaction of the variables to the uncertainty level (coefficients

Bi in equation 4.1); or

(iii) the lagged reaction of uncertainty to the variables (coefficients δ in equation 4.5).

The first counterfactual relates to the time-varying volatility (i), and its purpose

is to check whether the initial uncertainty condition matters for the effect of the news

shock. Since the time-varying volatility is a linear (positive) function of the uncertainty

measures, higher uncertainty increases the size of the shock, creating a direct level ef-

fect. One way to measure the level effect of uncertainty on the transmission of the news

shock is to fix the uncertainty level across time. I fix the macroeconomic and finan-

cial uncertainties to their means, and compare it to the identification with time-varying

uncertainty. In this procedure I still allow for the transmission channels (ii) and (iii)

of reaction of the variables to (and from) uncertainty. The procedure consists of cal-

culating the difference between the (baseline) generalized impulse responses from the

time-varying procedure described by equation 4.21, and an artificial generalized impulse

response in which the initial condition is changed. Since the only difference between this

counterfactual and the baseline is the level of uncertainty (and, consequently, the size of

the shock), this counterfactual isolates the level effect of uncertainty to the news shock.

Formally, define the artificial information set containing all the known history up

to time t and the means of the macro and financial uncertainties as Z∗t = (yt−p, ..., yt; g),

where g = ( 1
T

∑T
t=1 lnmt;

1
T

∑T
t=1 ln ft). Following the steps described in section 4.3.1,

the artificial generalized impulse responses with fixed initial uncertainty conditions can

be constructed as

GI∗t,news(k, τ
∗
t,news,Z

∗
t ,Π) = E[yt+k, gt+k|τ∗t,news,Λ∗t+k,news,Z∗t ,Π]

− E[yt+k, gt+k|Λ∗t+k,Z∗t ,Π].
(4.25)

The final effect of the initial uncertainty condition on the news shock can be

calculated as the difference between the generalized impulse responses from equation

4.21 and from equation 4.25, as in

GIt,level = GIt,news(k, τt,news,Zt,Π)−GI∗t,news(k, τ∗t,news,Z∗t ,Π). (4.26)

The second counterfactual aims to check whether there is a nonlinear feedback

between uncertainty and the news shock. It involves shutting down the transmission

channels (ii) and (iii) of the contemporaneous feedback of uncertainty to the mean of
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the variables and the lagged feedback effect of the variables to uncertainty. The transmis-

sion effect (i) of time-varying volatility is still on, which means that higher uncertainty

increases the size of the shock both on the baseline and on this counterfactual. It follows

that the only difference between the baseline and this counterfactual is the transmission

(to and from) uncertainty, so calculating the difference between the generalized impulse

responses isolates the transmission effect.

Recalling the Main and Uncertainty VARs (equations 4.1 and 4.5), the contem-

poraneous feedback of uncertainty to the mean of the variables is captured by the coef-

ficients Bi in equation 4.1, and the lagged feedback effect of the variables to uncertainty

by the coefficients δ in equation 4.5. Shutting down the nonlinear feedback (to and from)

uncertainty means restricting to zero the coefficient matrices Bi and δ. Following these

restrictions, the Main and Uncertainty VARs would be respectively written as

yt = A1yt−1 + ...+ Apyt−p + vt, (4.27)

and

gt = D1gt−1 + ...+ Dkgt−k + ut. (4.28)

The procedure for the second counterfactual consists of calculating the difference

between the generalized impulse responses from the time-varying procedure described

by equation 4.21, and an artificial generalized impulse response in which the coefficients

matrices Bi and δ are restricted to zero. Formally, define a restricted set of coefficients

as Π† = [Ai,Bi = 0,Di, βj , γj , δ = 0]. Following the steps described in section 4.3.1, the

artificial generalized impulse responses with no uncertainty feedback can be constructed

as

GI†t,news(k, τ
†
t,news,Zt,Π

†) = E[yt+k, gt+k|τ †t,news,Λ
†
t+k,news,Zt,Π

†]

− E[yt+k, gt+k|Λ†t+k,Zt,Π
†].

(4.29)

The final effect of the transmission (to and from) uncertainty on the news shock

can be calculated as the difference between the generalized impulse responses from equa-

tion 4.21 and from equation 4.29, as in

GIt,feedback = GIt,news(k, τt,news,Zt,Π)−GI†t,news(k, τ
†
t,news,Zt,Π

†). (4.30)
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4.3.3 Identification procedure for macroeconomic and financial uncer-

tainty shocks

The uncertainty shocks are modeled as a shock to the common uncertainty factors that

compose the volatilities of each variable. Since these factors are also included in the

Main VAR, the uncertainty shock can affect both the mean and the variance of the

variables of interest yt.

In this model, there are two uncertainty factors (macro and financial), which

share a full variance-covariance matrix defined as

Φu =

[
φn+1 φn+3

φn+3 φn+2

]
. (4.31)

This setup demands imposing an orthogonalization structure to achieve the struc-

tural macro and financial shocks. Employing a Cholesky structure leads to two possible

orthogonalizations: macro uncertainty ordered first with financial uncertainty ordered

last, and the inverse.

As a benchmark, I define financial variables as “fast” variables, while macro vari-

ables are “slow” variables. It means that financial uncertainty can react contempora-

neously to macroeconomic uncertainty shocks, but macroeconomic uncertainty can only

react to financial uncertainty shocks with one lag. This ordering is equivalent to model-

ing macro uncertainty first and financial uncertainty last in the Cholesky identification

structure.

In contrast to the news shock, the variance-covariance matrix of the uncertainties

does not change across time. I identify both shocks at the last observation T , so the

information set here is ZT = (yT−p, ..., yT ; gT−p, ..., gT ).12

The full identification procedure is described in Appendix B.6, but the general

idea is to produce a baseline and a shocked path for yt, gt and Λt based on each of the

uncertainty shocks (macro and financial). The shocks are identified as

τ rmacro = Φ̃u ∗ qmacroi ,

τ rfin = Φ̃u ∗ qfini ,
(4.32)

where Φ̃u is the lower triangular Cholesky decomposition of Φu, r is the index of the set

of randomly drawn ωrj,t innovations, qmacroi is a 2× 1 vector with 1 in the first position

and zero in the second, and qfini is a 2× 1 vector with zero in the first position and 1 in

12Where gT = (lnmT ; ln fT ).
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the second. For T + 1, I construct a one standard deviation shock on macro uncertainty

by substituting (um,t, uf,t)
′ in equation B.33 for τ rmacro. I then construct by simulation a

macro shocked path from T+1 to T+K for yrt,macro, g
r
t,macro and Λr

t,macro using equation

B.33. I repeat the process for the financial uncertainty by using τ rfin to construct paths

for yrt,fin, grt,fin and Λr
t,fin.

By employing the generalized impulse response structure described in Appendix

B.6, the final economic effect of the uncertainty shock is measured as

GImacro(k, τmacro,ZT ,Π) = E[yT+k, gT+k|τmacro,ΛT+k,macro,ZT ,Π]

− E[yT+k, gT+k|ΛT+k,ZT ,Π],

GIfin(k, τfin,ZT ,Π) = E[yT+k, gT+k|τfin,ΛT+k,fin,ZT ,Π]

− E[yT+k, gT+k|ΛT+k,ZT ,Π].

(4.33)

4.4 Latent uncertainty measures

In this Section I present the estimated macro and financial uncertainties from the stochas-

tic volatility in mean model presented in Section 4.2. The (estimated) stochastic volatil-

ity of each variable is composed of a common factor, which can be macroeconomic or

financial depending on the underlying variable, and an idiosyncratic component. The

common factors across the volatilities are the estimations of aggregate macroeconomic

and financial uncertainties.

Figure 4.3 displays the estimated aggregate macroeconomic uncertainty, and Fig-

ure 4.4 shows the estimated financial uncertainty. The stochastic volatilities of the

macroeconomic and financial variables are presented in Appendix B.8. The economic as-

sumption that macro and financial uncertainty may be related to each other is captured

by the interaction between the two uncertainty measures included in the Uncertainty

VAR (equation 4.5) and the full variance-covariance matrix between the two factors

(equation 4.6). Figures 4.3 and 4.4 show that some periods in time share high macro

and financial uncertainties, but some are marked by either a hike mainly in macro or

financial uncertainty. Comparing these series with the recessions identified by the Na-

tional Bureau of Economic Research (NBER), it is possible to match each recession with

a macroeconomic uncertainty hike, a financial uncertainty hike, or both.

The Great Moderation period (mid-1980s) for example, characterized by a decline

in the business cycle volatility of aggregate macroeconomic variables, is captured by a

hike in the macroeconomic uncertainty. During the dot-com crisis (1999-2001), which

was mainly a speculative financial bubble in the stock market, there is a higher financial
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Figure 4.3: Aggregate macroeconomic uncertainty

Note: Macroeconomic uncertainty measured as the common factor on macroe-
conomic volatilities. The dotted lines define the 68% confidence bands com-
puted with 200 posterior draws. The VAR model includes all variables in Ta-
bles B.2 and B.3. Shaded areas are the recession periods calculated by the NBER.

uncertainty. The 2008 crisis shows high macro and financial uncertainties.

While the uncertainty measures match crisis periods, they also follow closely the

monthly macro and financial uncertainties estimated by Ludvigson et al. [2016], which

I take here as a benchmark for comparison purposes. The macroeconomic uncertainty

presented in Figure 4.3 and the 1-month ahead macroeconomic uncertainty from Lud-

vigson et al. [2016] share a correlation of 0.76 over the period 1975Q1 and 2012Q3,13

with 0.77 for both the 3-months ahead and 12-months ahead versions. The correlation

of the financial uncertainty presented in Figure 4.4 and the 1-month ahead financial

uncertainty from Ludvigson et al. [2016] is 0.68, with same coefficient when taking into

consideration the 3-months or 12-months ahead versions of the financial uncertainty.

The two series estimated here are also correlated with each other, a direct result

of the possibility of transmission of macro-to-financial uncertainty, and vice versa. The

correlation coefficient of the two series is 0.36. The uncertainty measures from Ludvigson

et al. [2016] present a higher correlation with each other. Considering the 1-month

ahead macro and financial uncertainty, the correlation coefficient is 0.53 over the period

1975Q1 and 2012Q3. The correlation coefficients of the 3-months and 12-months ahead

13I transform the uncertainty measures calculated by Ludvigson et al. [2016] from monthly to quarterly
by averaging across the quarter.
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Figure 4.4: Aggregate financial uncertainty

Note: Financial uncertainty measured as the common factor on financial
volatilities. The dotted lines define the 68% confidence bands computed with
200 posterior draws. The VAR model includes all variables in Tables B.2
and B.3. Shaded areas are the recession periods calculated by the NBER.

uncertainty versions are, respectively, 0.52 and 0.45.

It is important to notice that the estimation procedure for the measures presented

here is substantially different from the Ludvigson et al. [2016] methodology. First, Lud-

vigson et al. [2016] use of the FRED-MD database14 with stationary monthly data,

while I use quarterly data in levels. Second, Ludvigson et al. [2016] construct uncer-

tainty measures by averaging the conditional volatility of unforecastable components of

the future value of the macroeconomic or financial series. Here, I estimate the uncer-

tainty measures with a particle filter, where these uncertainties depend on the (lagged)

dependent variables, and the dependent variables can react contemporaneously to the

uncertainties (stochastic volatility in mean). Lastly, Ludvigson et al. [2016] and this

paper use different variables. While Ludvigson et al. [2016] employ 132 macro series and

147 financial series,15 I construct the uncertainty measures using only 14 macro and 14

financial series.

14McCracken and Ng [2016].
15Please refer to the On-line Appendix of Jurado et al. [2015] for a detailed description of the database

employed by the authors.
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4.5 Time-varying impulse responses to a news shock

In this Section I present the results of the news shock identification. For every point

in time the news shock economic responses are different, conditional on the estimated

time-varying volatility. This procedure makes it possible to understand the different

effects of a news shock on periods of high and low macro and financial uncertainty.

Figures 4.5 and 4.6 present the economic responses of selected variables after

a news shock, identified and calculated for each point in time as generalized impulse

responses.16 The graphs in Figure 4.5 show impulse responses in three dimensions:

period in time of identification (x-axis), size of impact (y-axis) and the effect h quarters

ahead (each line). Figure 4.6 presents these same impulse responses “sliced” at selected

forecast horizons.

Figure 4.5: Time-varying effects of news shocks

Note: The news shock is identified for each period in time under the procedure
proposed in Section 4.3.1. The generalized impulse responses for each period are
the average of 1,000 simulated random innovations, as described in Appendix B.6.

The top-left graph of Figure 4.6 shows the effect of a technology news shock over

the utilization-adjusted TFP. The identification procedure of the news shock maximizes

the variance decomposition of this variable over a fixed forecast horizon of 40 quarters

ahead, imposing a zero effect on impact (h = 0). This graph provides evidence for how

16As described in Appendix B.6. The generalized impulse responses for all the variables included in
the VAR can be found in Appendix B.10.
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Figure 4.6: Time-varying effects of news shocks over different forecast horizons

Note: The news shock is identified for each period in time under the proce-
dure proposed in Section 4.3.1. The generalized impulse responses for each pe-
riod are the average of 1,000 simulated random innovations, as described in Ap-
pendix B.6. Each line corresponds to the effect of the news shock h-quarters
ahead from the point in time, as “slices” of the graphs from Figure 4.5.

different the effects of a news shock can be over time when a time-varying volatility is

taken into account. The long-term effect of a news shock identified in the period 1980-

1983 or during the 2008 crisis is about twice the effect in more stable periods, as for

example, the early 1990s.

These differences over time are also found in the impulse responses for consump-

tion, GDP, investment and real personal income. The positive effect of a news shock

on consumption and personal income peaks after about 12 quarters. This new higher

level of consumption and real personal income is sustained in the long-term, while GDP

and investment peak at about 12 quarters and decay in the long-term. Nevertheless,

the positive effects on consumption, personal income, GDP and investment are more

intense during periods in which the effect of a news shock on utilization-adjusted TFP

is stronger.

The responses of hours worked are positive in the medium-term (h = 12), and

negative in the long-term (h = 36). These effects are substantially more intense in

periods of higher volatility (early 1980s and 2008). There is a deflationary effect in
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the medium-term after a news shock, as evidenced by the literature.17 By employing

a covariance-stationary identification procedure, Barsky et al. [2014] point out that the

peak of the negative effect on inflation is about 10 quarters after the news shock. Figure

4.6 shows that, after 12 quarters, there is indeed a deflationary effect, but this is much

more intense in periods of high volatility.

The effect on stock prices is positive, as initially indicated by Beaudry and Portier

[2006]. These effects peak on impact (h = 0) and converge to zero in the long-term. It is

worth noting, however, that the effect on stock prices is largely unrelated to the size of

the effect of the news shock on utilization-adjusted TFP. The positive news about future

technology is interpreted by the stock market in similar way across time, with positive

effects on impact.

4.5.1 News shocks and the relationship to uncertainty

As shown, the effects of a news shock are substantially different across time. In this

Section I investigate if these differences come from a potential connection between tech-

nology news shocks and uncertainty.

Bloom [2009] shows that uncertainty18 creates an ‘inaction zone’ in investment,

due to firms becoming more cautious. With firms close to the investment threshold, small

positive volatility shocks generate an investment response, while small negative shocks

generate no response. The idea is that, after the initial recessive effect of uncertainty,

firms would want to scale up their investment plans to address pent-up demand. The

result is a medium-term overshoot in productivity growth. Periods of high uncertainty

are also related to a higher potential return on investment, increasing the range of growth

options (Segal et al., 2015).

Cascaldi-Garcia and Galvao [2017] suggest that uncertainty shocks generate two

effects on total factor productivity: a short-term negative reduction on utilization fac-

tors, and a medium-term positive effect on the utilization-adjusted productivity. This

medium-term positive effect relates to the overshoot in productivity growth idea pre-

sented by Bloom [2009]. It follows that uncertainty foresees future technology improve-

ments, as a ‘good uncertainty’ effect. From this literature, one would expect a positive

relationship between high uncertainty periods and the positive economic outcomes from

a higher expected future technology growth, as in a news shock.

I first evaluate this proposition by calculating the correlation between a series of

17See, for example, Christiano et al. [2010], Barsky and Sims [2011] and Barsky et al. [2014].
18Bloom [2009] defines uncertainty as an increase in the volatility of total factor productivity shocks

that have a temporary negative effect on output growth.
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uncertainty measures and the medium (h = 12) and long-term (h = 36) effects of a news

shock on utilization-adjusted TFP, consumption and GDP. Tables 4.1 and 4.2 present

these correlations, while the description and availability of the uncertainty measures can

be found in Table B.4 in Appendix B.7.

Table 4.1: Correlations between medium-term news shock economic responses and un-
certainty measures

Medium-term
TFP Consumption GDP

Macro uncertainty measures
Macro uncertainty 0.96 [0.000] 0.92 [0.000] 0.93 [0.000]
LMN-macro-1 0.79 [0.000] 0.73 [0.000] 0.76 [0.000]
LMN-macro-3 0.80 [0.000] 0.74 [0.000] 0.77 [0.000]
LMN-macro-12 0.80 [0.000] 0.74 [0.000] 0.78 [0.000]
Policy uncertainty 0.01 [0.949] -0.02 [0.772] 0.02 [0.860]
Business uncertainty -0.01 [0.936] -0.02 [0.791] -0.08 [0.373]
SPF disagreement 0.53 [0.000] 0.50 [0.000] 0.55 [0.000]

Financial uncertainty measures
Financial uncertainty 0.52 [0.000] 0.27 [0.000] 0.39 [0.000]
LMN-fin-1 0.45 [0.000] 0.32 [0.000] 0.39 [0.000]
LMN-fin-3 0.45 [0.000] 0.31 [0.000] 0.39 [0.000]
LMN-fin-12 0.45 [0.000] 0.30 [0.000] 0.39 [0.000]
Realized volatility 0.47 [0.000] 0.39 [0.000] 0.43 [0.000]
VXO 0.65 [0.000] 0.49 [0.000] 0.64 [0.000]

Note: The Macro uncertainty and Financial uncertainty in bold are the measures cal-
culated in this paper, and presented in Figures 4.3 and 4.4. Medium-term responses
are calculated 12 quarters ahead. The p-values for the test with zero correlation under

the null hypothesis are in brackets. The statistic is calculated as t = ρ0

√
T−2
1−ρ20

. For

details on the uncertainty measures and availability, see Table B.4 in Appendix B.7.

Tables 4.1 and 4.2 show that the responses to a news shock are (positively) corre-

lated with both macro and financial uncertainties. Generally speaking, the correlation is

higher with macroeconomic uncertainty measures, and is higher in the medium-term than

in the long-term. There is a high correlation with the aggregated macroeconomic uncer-

tainty estimated here and with the macro uncertainties from Ludvigson et al. [2016].19

The correlation is also positive and significant with the disagreement measure from the

Survey of Professional Forecasters (SPF), ranging from 0.50 to 0.55 in the medium-term,

19Between 0.78 and 0.96 in the medium-term across TFP, consumption and GDP, and between 0.68
and 0.95 in the long-term.
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Table 4.2: Correlations between long-term news shock economic responses and uncer-
tainty measures

Long-term
TFP Consumption GDP

Macro uncertainty measures
Macro uncertainty 0.95 [0.000] 0.87 [0.000] 0.85 [0.000]
LMN-macro-1 0.76 [0.000] 0.67 [0.000] 0.67 [0.000]
LMN-macro-3 0.77 [0.000] 0.68 [0.000] 0.68 [0.000]
LMN-macro-12 0.76 [0.000] 0.69 [0.000] 0.68 [0.000]
Policy uncertainty 0.00 [0.973] -0.03 [0.750] 0.03 [0.757]
Business uncertainty -0.02 [0.831] -0.10 [0.231] -0.08 [0.355]
SPF disagreement 0.51 [0.000] 0.48 [0.000] 0.46 [0.000]

Financial uncertainty measures
Financial uncertainty 0.45 [0.000] 0.28 [0.000] 0.27 [0.001]
LMN-fin-1 0.41 [0.000] 0.29 [0.000] 0.28 [0.001]
LMN-fin-3 0.40 [0.000] 0.29 [0.000] 0.28 [0.001]
LMN-fin-12 0.40 [0.000] 0.29 [0.000] 0.26 [0.001]
Realized volatility 0.44 [0.000] 0.34 [0.000] 0.35 [0.000]
VXO 0.60 [0.000] 0.52 [0.000] 0.48 [0.000]

Note: The Macro uncertainty and Financial uncertainty in bold are the measures cal-
culated in this paper, and presented in Figures 4.3 and 4.4. Long-term responses are
calculated 40 quarters ahead. The p-values for the test with zero correlation under

the null hypothesis are in brackets. The statistic is calculated as t = ρ0

√
T−2
1−ρ20

. For

details on the uncertainty measures and availability, see Table B.4 in Appendix B.7.

and from 0.46 to 0.51 in the long-term. There is no correlation of the responses with the

policy uncertainty calculated by Baker et al. [2016] and with the business uncertainty

from Bachmann et al. [2013]. Although smaller, all the correlations between financial

uncertainties and the effects on utilization-adjusted TFP, consumption and GDP are

statistically significant.

It is important to note that the news shocks identified across time are normalized

to one standard deviation. Since the time-varying volatility is a linear function of the

uncertainty level, the size of the shock increases in periods of high uncertainty. The

high correlation of the medium and long-term effects presented in Tables 4.1 and 4.2

is a result of the transmission mechanism of the uncertainty measures to the mean of

the variables presented in equations 4.1 and 4.5. This transmission mechanism makes

the news shock stronger in periods of higher macroeconomic and financial uncertainty,

as suggested by the data when viewed through the stochastic volatility in mean VAR
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model.

Figure 4.7 presents a clearer image of the differences between the effects of a news

shock during high and low macroeconomic uncertainty periods. The red lines correspond

to the average of generalized impulse responses on periods of high uncertainty, while the

blue lines correspond to the average of generalized impulse responses on periods of low

uncertainty. I define high uncertainty as the periods with the highest 10% of values for

macroeconomic uncertainty, and low uncertainty with the lowest 10% of values.

Figure 4.7: Impulse responses to news shocks in periods of high and low macro uncer-
tainty

Note: The news shock is identified for each period in time under the proce-
dure proposed in Section 4.3.1. Red and blue lines correspond to the aver-
age of generalized impulse responses on periods of high and low uncertainty,
respectively. High and low uncertainty are the periods with the higher and
lower 10% values for the macroeconomic uncertainty, respectively. Each im-
pulse response is evaluated at the posterior mean. Dashed lines correspond
to 68% distribution of the impulse responses in the high and low periods.

In the high uncertainty period, the positive effects of a news shock on utilization-

adjusted TFP, consumption, investment and real personal income are substantially

higher. The path of utilization-adjusted TFP (top-left graph of Figure 4.7) is flatter

in the low uncertainty period, while it has a positive peak about 20 quarters ahead in

the high uncertainty period. Cascaldi-Garcia and Galvao [2017] show that, after an un-

certainty shock, utilization-adjusted TFP rises in the medium-term, converging to zero

in the long-term. This hump-shaped path of utilization-adjusted TFP observed in the
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high uncertainty period is in line with the view that uncertainty predicts a medium-term

positive effect on technology.

The positive effect on consumption is higher in the high macroeconomic uncer-

tainty period over the entire forecast horizon of 40 quarters, following same pattern as

real personal income. With respect to GDP, the biggest difference between the high and

low uncertainty periods is in the medium-term. This divergence is a direct result of the

economic response of investment, which peaks about two to three years after the news

shock occurred. In the long-term, the path of investment in the high uncertainty period

converges to the path of the low uncertainty period.

The deflationary effect of the news shock is more pronounced in the high macroe-

conomic uncertainty period. In the low uncertainty period the response of the GDP

deflator is flatter, and close to zero. The effect of the news shock on the hours worked is

positive in the medium-term and negative in the long-term under the high uncertainty

period, while it is closer to zero under the low uncertainty period. There is no percep-

tible difference between the responses of the stock prices in the high or low uncertainty

macroeconomic periods. It is positive on impact, converging to zero in the long-term in

both cases.

In summary, these results provide evidence that news shocks have quantitatively

different effects in periods of high and low uncertainty. In periods of high uncertainty

the positive effects of news shocks are boosted, in line with the notion of a transmission

mechanism of technology news through uncertainty.

4.5.2 The uncertainty transmission mechanism of news shocks

How important is uncertainty for the effect of news shocks on the economy? Does it

depend only on the level of uncertainty at the time of the shock, or is there an uncertainty

transmission mechanism that influences the effect of a news shock throughout time? I

investigate these questions by providing two counterfactuals: what would happen to a

news shock (i) if uncertainty would remain unchanged across time, or (ii) if there was

no feedback effect from uncertainty. Section 4.3.2 provides the full description of the

procedure for these two counterfactuals.

The first counterfactual checks if the initial uncertainty condition matters for the

effect of the news shock. Figure 4.8 presents the impulse responses of a news shock

identified with a fixed uncertainty. Differently from Figure 4.6, the effects of the news

shock do not change over time when the initial uncertainty condition is fixed. Figure 4.9

outlines the importance of the initial uncertainty condition, by showing the differences
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between the impulse responses with time-varying uncertainty and with fixed uncertainty.

This is constructed by taking the responses from Figure 4.6 and subtracting the responses

from Figure 4.8. The effects of a news shock are more substantial in periods of high

uncertainty, confirming the level effect that the initial uncertainty condition generates

in the responses to a news shock.

Figure 4.8: Time-varying effects of news shocks over different forecast horizons with
fixed uncertainty

Note: The news shock is identified for each period in time under the procedure pro-
posed in Section 4.3.2. The generalized impulse responses for each period are the aver-
age of 1,000 simulated random innovations, as described in Appendix B.6. Each line
corresponds to the effect of the news shock h-quarters ahead from the point in time.

The second counterfactual checks if there is nonlinear feedback between uncer-

tainty and the news shock. Figure 4.10 presents the generalized impulse responses of a

news shock without feedback effect from uncertainty. The pattern of these responses is

quite similar to the responses from the full model, in which there is a feedback effect

from uncertainty (Figure 4.6). However, these effects differ in magnitude. Figure 4.11

depicts the differences between the impulse responses with and without feedback from

uncertainty. This is constructed by taking the responses of Figure 4.6 and subtracting

the responses from Figure 4.10.

Overall, the presence of an uncertainty feedback creates a positive bias in the

effect of a news shock on consumption, GDP and investment. This can be easily ob-

served by averaging these time-varying impulse responses, as in Figure 4.12. This Figure
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Figure 4.9: Differences between responses to a news shock computed with time-varying
uncertainty and with fixed uncertainty

Note: The news shock is identified for each period in time under the procedure pro-
posed in Section 4.3.2. The generalized impulse responses for each period are the aver-
age of 1,000 simulated random innovations, as described in Appendix B.6. Each line
corresponds to the effect of the news shock h-quarters ahead from the point in time.

summarizes the nonlinear feedback effect of uncertainty over the news shock. On aver-

age, the feedback effect generates a positive medium-term effect on utilization-adjusted

TFP, investment and GDP. Interestingly, the positive bias on investment peaks after

about 10 quarters, a period in which there is still no positive bias on utilization-adjusted

TFP. This is evidence that investment is anticipating future expected productivity, in

line with the findings of Beaudry and Portier [2006]. In the long-term, this positive

bias on utilization-adjusted TFP, investment and GDP tends to die out. With regard

to consumption and real personal income, there is a positive bias that tends to persist

in the long-term.

In summary, the counterfactuals presented here indicate that uncertainty and

news shocks are linked through two mechanisms: an initial condition effect and a trans-

mission effect. The initial condition effect means that, if the initial level of uncertainty

in the economy is high, the effects of the news shock will also be high. This evidence is

in line with the ‘good uncertainty’ shock literature, described before.

The transmission effect is more complex. The empirical results from the second

counterfactual show that when macro and financial uncertainties are allowed to react
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Figure 4.10: Time-varying effects of news shocks over different forecast horizons with no
feedback effect from uncertainty

Note: The news shock is identified for each period in time under the procedure pro-
posed in Section 4.3.2. The generalized impulse responses for each period are the aver-
age of 1,000 simulated random innovations, as described in Appendix B.6. Each line
corresponds to the effect of the news shock h-quarters ahead from the point in time.

to news shocks, the positive effects of such news are amplified. These results are in

line with a new stream in the literature on news and uncertainty shocks, which explores

the dynamics of uncertainty updating based on the arrival of news. Forni et al. [2017]

propose a model in which uncertainty is generated by news about future developments

in economic conditions. Uncertainty arises from the fact that these conditions are not

perfectly predicted by the economic agents. Berger et al. [2017] define an uncertainty

shock as a second-moment news, or changes in the expected future volatility of aggregate

stock returns. The authors argue that news about the squared growth rates are changes

in the conditional variance, which is equivalent to an uncertainty shock.

In summary, the results from the second counterfactual suggest that the arrival

of information about future technology makes the economic agents update not only their

expectations about future productivity, as in the news shock literature, but also their

expectations about macroeconomic and financial conditions, proxies to uncertainty. This

process is continuous, with consecutive updates as the effects of this new information

materialize. More broadly, the level of uncertainty reacts to information about the state

of the economy, and the state of the economy reacts to the level of uncertainty.
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Figure 4.11: Differences between responses to a news shock computed with and without
feedback effect from uncertainty

Note: The news shock is identified for each period in time under the procedure pro-
posed in Section 4.3.2. The generalized impulse responses for each period are the aver-
age of 1,000 simulated random innovations, as described in Appendix B.6. Each line
corresponds to the effect of the news shock h-quarters ahead from the point in time.

4.6 Responses to macroeconomic and financial uncertainty

shocks

In this Section I present generalized impulse responses of macroeconomic and finan-

cial uncertainty shocks.20 These responses help to better understand the link between

uncertainty and news shocks. The uncertainty shocks are disturbances to the common

macroeconomic and uncertainty volatility factors, or a second-moment shock to the vari-

ables. The benchmark results presented here consider the macro uncertainty as the first

orthogonalization position, and the financial uncertainty as the last.21

Figure 4.13 shows the generalized impulse responses of a financial uncertainty

shock for selected variables. The full generalized impulse responses can be found in

Appendix B.10. The most interesting result here is the effect on utilization-adjusted

TFP. After the financial uncertainty shock, utilization-adjusted TFP increases in the

20Appendix B.6 presents the procedure of identification of the macro and financial uncertainty shocks
and the calculation of the generalized impulse responses.

21The alternative impulse responses considering the inverted ordering (first financial and second macro
uncertainty) are presented in Appendix B.9.
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Figure 4.12: Percentiles of the differences between responses to a news shock computed
with and without feedback effect from uncertainty

Note: The news shock is identified for each period in time under the pro-
cedure proposed in Section 4.3.2. Each line corresponds to the deciles of
the differences between the news shock impulse responses with and with-
out feedback effect from uncertainty, identified in each point in time
and calculated at the posterior mean. The red line is the median.

medium-term, starting from a zero effect on impact (t = 0), and converging to zero in

the long-term. This path resembles the expected result of a news shock on this variable.

This result is in line with Cascaldi-Garcia and Galvao [2017], who show that a financial

uncertainty shock foresees a medium-term positive hike in utilization-adjusted TFP.22

The similarity of the responses on utilization-adjusted TFP presented here and

in Cascaldi-Garcia and Galvao [2017] are noteworthy, in the sense that the identifica-

tion method for the financial shock is substantially different. While Cascaldi-Garcia

and Galvao [2017] identify the financial uncertainty shock as the orthogonalization that

maximizes the variance decomposition of an observable proxy of financial uncertainty

in the short-term, here the financial uncertainty shock is a second moment shock to a

latent estimated financial uncertainty measure from a stochastic volatility process. Nev-

ertheless, the impact of financial uncertainty on technology follows the evidence from

Cascaldi-Garcia and Galvao [2017].

22It is also robust to the alternative identification with financial uncertainty ordered first, as presented
in Figure B.9.3 in Appendix B.9.
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Figure 4.13: Impulse responses to a financial uncertainty shock

Note: The uncertainty shocks are identified through Cholesky decomposition with
macroeconomic uncertainty ordered first, and financial uncertainty ordered last, as
described in Section 4.3.3. The generalized impulse responses of the uncertainty shock
are the average of 1,000 simulated random innovations, as described in Appendix B.6.
The shaded areas define the 68% confidence bands computed with 200 posterior draws.

The effect of the financial shock on other variables is distinct from the utilization-

adjusted TFP. There is no significant effect on consumption. GDP falls after the shock,

driven by a reduction on investment. Both GDP and investment paths converge to zero

in the medium-term, confirming the short-lived characteristic of uncertainty shocks.

There is a deflationary effect, and the Federal funds rate goes down to counteract the

recessionary impact.

Figure 4.14 presents the generalized impulse responses of a macroeconomic uncer-

tainty shock on selected variables. The full generalized impulse responses can be found

in Appendix B.10. Although smaller, the effect on utilization-adjusted TFP is similar to

that observed in the financial uncertainty shock, with a medium-term positive effect.23

The effect on consumption, GDP and investment are virtually zero. There is a negative

impact on hours worked, and a deflationary effect in the medium-term.

23Similar results can be found in the alternative identification with financial uncertainty ordered first,
as presented in Figure B.9.4 in Appendix B.9.
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Figure 4.14: Impulse responses to a macroeconomic uncertainty shock

Note: The uncertainty shocks are identified through Cholesky decomposition with
macroeconomic uncertainty ordered first, and financial uncertainty ordered last, as
described in Section 4.3.3. The generalized impulse responses of the uncertainty shock
are the average of 1,000 simulated random innovations, as described in Appendix B.6.
The shaded areas define the 68% confidence bands computed with 200 posterior draws.

4.7 Conclusion

This paper shows that the positive economic effects of news on the future increase in

technology differ depending on the level of uncertainty of the economy. It contributes

to the literature on shocks driven by agents’ beliefs in two ways.

First, I propose an innovative method of checking whether the effects of technol-

ogy news shocks change depending on the point in time at which it is identified. By

employing this identification strategy, I show that economic responses to a news shock

vary quantitatively across time. While the conventional Barsky and Sims [2011] identi-

fication is not robust to changes in the estimation period,24 the results from this paper

indicate that processes with time invariant covariances may not be appropriate for a

news shock identification. Moreover, the fact that the responses to news shocks vary

significantly over time helps to explain why there is still no consensus in the news shock

literature about the effects on macroeconomic variables.25

24See an empirical evaluation in the Introduction Section of this paper.
25See Beaudry and Portier [2014] for a review of the empirical evidence of news shocks under different
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The second contribution is new evidence supporting a dynamic relationship be-

tween technology news and uncertainty. I propose a nonlinear model that allows a

feedback effect between the level of uncertainty and the macroeconomic and financial

variables. The effects of news on consumption, GDP, investment and real personal in-

come are amplified when the news shock hits the economy in periods of high uncertainty.

The results from two counterfactuals suggest that the size of these effects depends on

the initial degree of uncertainty (initial condition effect) and on how expectations about

macroeconomic and financial conditions are updated (transmission effect).

The initial condition effect is in line with the idea of a ‘good uncertainty’ shock,

that is, high uncertainty increases the likelihood of news shocks (Cascaldi-Garcia and

Galvao, 2017). Periods of high uncertainty are related to a higher potential return on

investment, increasing the range of growth options (Segal et al., 2015). While uncertainty

reduces the utilization of production factors, it also creates an incentive to substitute

less flexible for more flexible capital (Comin, 2000, Bloom, 2009, Cascaldi-Garcia and

Galvao, 2017).

The transmission effect relates to how uncertainty is updated with the arrival

of positive technological news (Forni et al., 2017, Berger et al., 2017). The second

counterfactual shows that the positive effects of a news shock are even higher when

allowing for a feedback to (and from) uncertainty. From the perspective of the news

shock literature, this evidence implies that neglecting the uncertainty transmission effect

leads to the conclusion that the positive effects of news shocks are weaker than they really

are. From the perspective of the uncertainty literature, it raises the question of how the

arrival of news, and the realization of its economic effects, influences the way economic

agents update their expectations about macroeconomic and financial conditions.

assumptions and identification methods.
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Chapter 5

News shocks and the slope of the

term structure of interest rates:

Comment
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The economic findings of Beaudry and Portier [2006] contributed to the litera-

ture on business cycles driven by agents’ beliefs with the empirical identification of the

‘news shock’ – changes in the future total factor productivity (TFP) that are foreseen

by the economic agents. The idea behind the news shock is that future technological

improvements (free from utilization factors) take time until they have an impact on the

economy. From a rational expectations perspective, the agents can foresee this techno-

logical impact (to some extent) and react to it now.

Kurmann and Otrok [2013] provide an important result concerning the relation-

ship between a news shock and other economic shocks. They report a correlation of 0.86

between a news shock and the shock to the slope of the term structure, defined as the

spread between the yield on a long-term treasury bond and a short-term bill rate. As

emphasized by Kurmann and Otrok [2013], it is known from the finance and business

cycle literatures that the slope of the term structure (i) carries information that helps to

predict macroeconomic activity1 and (ii) relates to the transmission of monetary policy.

Adopting a procedure of identification of structural shocks by maximizing the

forecast error variance of a target variable,2 Kurmann and Otrok [2013] show that the

link between monetary policy transmission and economic activity is the relation between

news shocks and the slope of the term structure. A positive slope shock foresees smooth

future growth in consumption and utilization-adjusted TFP, accompanied by a drop in

inflation. Interestingly, this is also the predicted behavior of a news shock as in Beaudry

and Portier [2006]. The increase in the slope comes from a stronger response to the policy

rate than the long rate, with the Federal Funds rate falling more than inflation. Since

the economic responses after a slope shock are identical to a news shock, the authors

conclude that the uneven effect between the short and long-term rates is the endogenous

response of the monetary policy to a news shock.

As a result, both slope and news shocks are supposedly measuring the same eco-

nomic effect. The authors also confirm these similarities by showing that news shocks

explain more than half of the movements in the slope. This comment presents evidence

that this relationship between news and slope of the term structure diminishes sub-

stantially after an update in the utilization-adjusted TFP series employed by Kurmann

and Otrok [2013]. The correlation between news and slope shocks falls to 0.14 and the

impulse responses of these shocks are fundamentally different.

The identification of the news shock in Kurmann and Otrok [2013] relies on the

1See Harvey [1988], Estrella and Hardouvelis [1991], Ang and Piazzesi [2003] and Kurmann and Otrok
[2013].

2As in Faust [1998] Uhlig [2005] and Barsky and Sims [2011].
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quarterly utilization-adjusted TFP series calculated by Fernald [2014]. Beaudry and

Portier [2006] emphasize that when considering the identification of a news shock it is

very important to control for utilization factors, capturing as closely as possible the

effects of a technological change. Therefore, measures of raw TFP are not suitable to

identify news shocks because their unexpected changes may be related to variations in

the utilization of factors instead of technology changes.

Fernald [2014] applies growth-accounting methods for imputation of capital and

labor controlling for heterogeneity and adjustments for variations in factor utilization

(including non-technological factors, such as the intensity margin for the workweek of

capital and labor effort). Initially employed by Beaudry and Portier [2006], it became

a common practice in the news shock literature to use this series for identification pur-

poses.3

The utilization-adjusted TFP series is constantly updated by the author, and

went through severe revisions in 2014. The main changes include the parameter estimates

on utilization (from the Basu et al., 2006 methodology to Basu et al., 2013) and the

imputation of hours per worker. The result of this update is a substantial change in

the utilization factor and, consequently, in the utilization-adjusted TFP. A simple graph

comparison (Figure 5.1) of the new and old series shows that the non-adjusted TFP is

very similar before and after the update of the utilization parameters. However, the

utilization factor is substantially different. Here I revisit Kurmann and Otrok [2013] in

light of these changes.

The structure of this comment is as follows. In Section 5.1, I show that the

Kurmann and Otrok [2013] results are sensitive to updates in the utilization-adjusted

TFP series from Fernald [2014] by replicating these results with a new version of the

series. Section 5.2 is a robustness check, showing that an alternative model, comprising

different information set, time span and slope measure is also sensitive to the update in

the utilization-adjusted TFP series. In Section 5.3, I show that a slope shock produces

a positive impact on the utilization factor, indicating that the relation of slope and TFP

found in Kurmann and Otrok [2013] can be some remaining effect of utilization. Section

5.4 concludes the discussion.

3See, for example, Barsky and Sims, 2011, Barsky et al., 2014, Forni et al., 2014 and Beaudry and
Portier, 2014.
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Figure 5.1: Old and new Fernald [2014] TFP series decomposed by utilization factor

Calculation from the series available at Federal Reserve Bank of San Francisco (new
utilization-adjusted TFP – Nov/2015 vintage) and from Beaudry and Portier [2014]

database (old utilization-adjusted TFP – Nov/2012 vintage).

5.1 Revisiting Kurmann and Otrok [2013] with a new TFP

series

I start evaluating the connection between news and slope shocks from Kurmann and

Otrok [2013] with the new utilization-adjusted TFP series. This first exercise consists

of estimating exactly the same model as Kurmann and Otrok [2013] for news and slope

shocks, but considering the updated utilization-adjusted TFP series from Fernald [2014].

I employ the code made available by the authors, with the same variables and time

period.
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With the original database, the correlation coefficient between the recovered news

and slope shocks is 0.86 (Kurmann and Otrok, 2013). This result is substantially dis-

tinct when I employ the new updated utilization-adjusted TFP series:4 The correlation

between news and slope shocks, now, is only 0.14. This drop in the correlation is also

robust to different vintages of utilization-adjusted TFP series.5 For example, employing

the vintage of May/2013, the correlation is 0.82; considering the vintage of May/2014,

the correlation falls to 0.38; finally, with the vintage of May/2015, the correlation de-

creases to 0.18.

The economic responses of slope and news shocks are also notably different, as

shown in Figures 5.2 and 5.3. Figure 5.2 provides the impulse response functions of the

slope shock, with the solid lines representing the model with the new utilization-adjusted

TFP series. The dashed lines represent the model with the old utilization-adjusted TFP

series (as in Kurmann and Otrok, 2013). With the old series, the path of the impulse

response on the utilization-adjusted TFP resembles a news shock, with zero effect on

impact and smoothly converging to a new higher level (top-right graph from Figure

5.2). However, with the updated utilization-adjusted TFP series there is a positive and

statistically significant effect on impact (t = 0). The slope shock is now capturing the

positive effect of technological growth, and not an anticipated slow smooth diffusion of

technology (as in a news shock).

The similarities between the impulse responses after a slope shock with a news

shock are the basis of the argument that variations in the slope are the endogenous

monetary response to future technological changes. The implications of the slope shock

on monetary policy from Kurmann and Otrok [2013] still holds under the updated

utilization-adjusted TFP series, but not as a response to a news shock. First, after

a slope shock, inflation falls less than the Federal Funds rate, reducing the real short

rate, and showing an active expansionary monetary policy. Second, variations in the

slope are a result of the drop in the short-run interest rate, since the effect on the

long-run (five-year bond yield) is essentially zero. Finally, large slopes predict future

economic growth (e.g., an expansion in consumption, as in Harvey, 1988), although the

effect on utilization-adjusted TFP is now significant on impact.

Figure 5.3 provides the impulse response functions after a news shock. Again,

the solid lines refer to the updated utilization-adjusted TFP series and the dashed lines

to the old version. In order to match Kurmann and Otrok [2013], in which a news shock

4TFP series downloaded in November/2015 from the Federal Reserve Bank of San Francisco
(http://www.frbsf.org/economic-research/economists/john-fernald/).

5John Fernald, via email correspondence in March 2016, has kindly provided utilization-adjusted TFP
vintages from 2013 to 2015.
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Figure 5.2: Comparing responses to a slope shock with the new and old versions of the
utilization-adjusted TFP under the Kurmann and Otrok [2013] model

The solid line is the median effect with the revised utilization-adjusted TFP series, and
the dashed is with the old utilization-adjusted TFP series. The grey area corresponds to
the 16%-84% coverage bands of the model considering the new utilization-adjusted TFP

series.

raises the slope of the term structure, the short rate has to decrease faster than the long

rate. Here, however, the impact of a news shock on the short and long rate are very

similar. As a result, the effect over the slope is nearly zero and not significant. This

pattern is different from Kurmann and Otrok [2013] but resembles the DSGE results

produced by Kurmann and Otrok [2011].6

The empirical results from Kurmann and Otrok [2013] also show that news shocks

account for more than 50% of the unpredictable movements of the slope of the term

structure. When adopting the new updated utilization-adjusted TFP series this share

falls to 20%, and the lower coverage band is close to zero (Figure C.1.1 in Appendix C.1).

In summary, the updates performed in the methodology of adjusting TFP for utilization

changed the behavior of both news and slope shocks, but particularly the news shock.

The result is that news and slope shocks are no longer as strongly correlated as in

Kurmann and Otrok [2013].

6Adopting estimated DSGE models, the authors show that after a news shock the drop in the short
and long rate are about the same.
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Figure 5.3: Comparing responses to a news shock with the new and old versions of the
utilization-adjusted TFP under the Kurmann and Otrok [2013] model

The solid line is the median effect with the revised utilization-adjusted TFP series, and
the dashed is with the old utilization-adjusted TFP series. The grey area corresponds to
the 16%-84% coverage bands of the model considering the new utilization-adjusted TFP

series.

5.2 Robustness check with a different information set

In Section 5.1, I show that the strong relation between news shocks and the slope of the

term structure as presented by Kurmann and Otrok [2013] is no longer valid. Two tests

are necessary in order to certify that the update in the TFP series is the only cause of the

zero correlation between news and slope shocks. First, alternative models with the old

utilization-adjusted TFP series should be able to reproduce the high correlation between

news and slope shocks. Second, this correlation must disappear when substituting the

old utilization-adjusted TFP series for the new updated version.

I propose here an alternative VAR model7 incorporating additional financial vari-

ables, with relevant forward-looking information that helps to identify the news shock.8

Since variations in the slope are supposedly responses to news shocks, these new financial

variables should also contribute to the identification of the slope shock. This alternative

7Bayesian Vector Autoregressive Model estimated with Minnesota Priors (Litterman, 1986) as sug-
gested by Bańbura et al. [2010] and Carriero et al. [2015a].

8The presence of forward-looking economic variables, such as consumption and stock prices, is a
necessary condition for the proper identification of a news shock (Beaudry and Portier, 2006).
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model differs from Kurmann and Otrok [2013] in the variables considered,9 the time

span10 and the measure of the slope of the term structure.11 The identification of the

news and slope shocks follows the maximization of the forecast error variance of the

utilization-adjusted TFP and of the slope, respectively.

Employing the old utilization-adjusted TFP series in the alternative VAR model,

the recovered news and slope shocks produce a correlation between them of 0.48, statisti-

cally significant at the 1% level. This correlation is lower than the 0.86 of Kurmann and

Otrok [2013], the reason being the different time span. In Kurmann and Otrok [2013]

the data covers 1959:I to 2005:I and the correlation between news and slope shocks is not

as strong as 0.86 throughout the entire series. Adopting an 80 quarter moving window,

I show in Figure 5.4 that the correlation is above 0.86 until the first quarter of 2000,

falling sharply afterwards. In fact, considering the final sub-sample between 1985:II and

2005:I, the correlation coefficient only accounts for 0.55. In the alternative VAR model

the time span is more up-to-date (from 1975:I to 2007:IV), concentrating the period

where the correlation between news and slope shocks is lower.12

Furthermore, when employing the new updated utilization-adjusted TFP series,

the correlation between the recovered news and slope shocks identified under this model

is -0.33. The news shock explains only 7% (impact) to 9% (long-run) of the unpredicted

movements of the slope of the term structure. In Kurmann and Otrok [2013], the impulse

responses after a news and a slope shock are quite similar, which is not the case here

(Figure 5.5 for the news shock and Figure 5.6 for the slope shock). Notably, there is

no effect on utilization-adjusted TFP after a slope shock under this alternative VAR

model. It follows that the positive effect of a slope shock on utilization-adjusted TFP

9The model consists of a measure of the log of utilization-adjusted total factor productivity (TFP),
log of (real) personal consumption expenditures (PCE), excess bond premium (EBP) – calculated by
Gilchrist and Zakraǰsek [2012] –, a measure of realized volatility (RVOL), log of industrial production,
log of private (nonfarm) payroll employment, log of the PCE price deflator, value-weighted total stock
market (log) return, effective nominal Federal Funds rate and the slope of the term structure (defined
here as the difference between the 10-year Treasury yield and the effective nominal Federal Funds rate).
All the variables are US data and, except for utilization-adjusted TFP, transformed from monthly to
quarterly as the mean of the period.

10Considering the period from 1975:I to 2007:IV, while Kurmann and Otrok [2013] is from 1959:I to
2005:I. I use data only up to 2007:IV to avoid the effect of the zero lower bound in the identification of
the slope shock. I would like to thank Christopher Otrok and André Kurmann for raising the zero lower
bound issue.

11I measure the slope of the term structure as the spread between the 10-year Treasury yield and the
effective nominal Federal Funds rate, while Kurmann and Otrok [2013] considers the difference between
the 60-month Fama-Bliss unsmoothed zero-coupon yield from the CRSP government bonds files and the
Federal Funds rate.

12I also evaluated the correlation of the alternative VAR model with the old utilization-adjusted TFP
series considering an 80 quarter moving window. The results show that the correlation of 0.48 is quite
robust over the series, and can be seen in Figure C.1.2 in the Appendix.
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Figure 5.4: Correlations between news and slope shocks on an 80 quarter moving window
from Kurmann and Otrok [2013]

Calculation of correlations between the recovered news and slope shocks over an 80
quarter moving window under the original identification of Kurmann and Otrok [2013].

The correlation over the full sample is 0.86. The date in the horizontal axis
corresponds to the final observation of the 80 quarter moving window.

produced by the Kurmann and Otrok [2013] method fades away when the information

set is widened with financial variables (Figure 5.6).

As in Section 5.1, there is no evidence from this alternative VAR model of a

relationship between news shocks and the slope of the term structure after the update

in the utilization-adjusted TFP series.

5.3 Effect of a slope shock on the utilization factor

Fernald [2014] argues that the update in the TFP series was caused by a modification

in the adjustment for changes in factor utilization from the methodology of Basu et al.

[2006] to the one adopted in Basu et al. [2013]. Hence, it is reasonable to consider that

the new utilization-adjusted TFP series is a more accurate measure of the unobserved

changes in technology. In this Section I check if the relation between news and slope

shocks using the older version of the utilization-adjusted TFP series comes from some

remaining utilization factor.
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Figure 5.5: Impulse responses to a news shock under an alternative VAR model aug-
mented by financial variables

The grey area corresponds to the 16%-84% coverage bands of the model after 1000
replications and considering the new TFP series. The 10-year Treasury yield impulse

response is a combination of the Federal Funds rate and the spread.

Figure 5.6: Impulse responses to a slope shock under an alternative VAR model aug-
mented by financial variables

The grey area corresponds to the 16%-84% coverage bands of the model after 1000
replications and considering the new TFP series. The 10-year Treasury yield impulse

response is a combination of the Federal Funds rate and the spread.
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A statistically significant effect of a slope shock on utilization would be a good

indicator that a share of these factors was still included in the old series. Here I conduct

a test to verify this effect by evaluating the impact of a slope shock on the utilization

factor under the same alternative VAR model of Section 5.2.13

Figure 5.7 produces the impulse responses of the slope shock in the alternative

VAR model with the utilization factor. There is a positive and significant effect on the

utilization factor and on the non-adjusted TFP in the medium-run, starting from zero

on impact (t = 0). The path of the non-adjusted TFP response is very similar to the

utilization factor. Since the utilization factor is part of the total TFP, this implies that

most of the effect of a slope shock observed is due to a higher utilization and not to a

positive change in the non-utilization part of the TFP (a proxy for technology change).

From a macroeconomic perspective, the slope shock is predicting future economic

activity (higher industrial production and employment), which justifies the positive effect

in the utilization. However, in the long-run the responses of a slope shock on macroe-

conomic variables converge to zero, and the utilization factor also follows this pattern.

This transitory effect in the long-run of both utilization factor and non-adjusted TFP

makes the slope shock remarkably different from a news shock.

While future research on this topic is desirable, these preliminary findings indicate

that the positive effect of a slope shock on TFP is driven by the utilization factor

and might cause the positive correlation between news and slope shocks presented in

Kurmann and Otrok [2013].

5.4 Conclusion

In this comment I provide evidence that the methodology of extracting the utilization

factor from TFP influences the correlation between news and slope shocks, and how

economic variables respond to a news shock. The identification of a news shock depends

on properly controlling for utilization factors, and the revision of the utilization-adjusted

TFP series has a substantial impact on this. Without the adjustment, the response in

TFP after a productivity shock may be due to changes in factor utilization, and not in

the technology itself. Potentially, important results from the news shock literature that

rely on the utilization-adjusted TFP series from Fernald [2014] may also be affected by

this revision.

After the update of the utilization-adjusted TFP series, the correlation between

13I replace the updated utilization adjusted TFP series for the non-adjusted TFP series and the
utilization factor.
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Figure 5.7: Impulse responses to a slope shock under an alternative VAR model aug-
mented by financial variables and the utilization factor

The grey area corresponds to the 16%-84% coverage bands of the model after 1000
replications and considering the new TFP series. The 10-year Treasury yield impulse

response is a combination of the Federal Funds rate and the spread.

news and slope shocks diminishes and the implications of a news shock become substan-

tially different from Kurmann and Otrok [2013]. The main reason for the positive effect

of a news shock on the slope in Kurmann and Otrok [2013] is the endogenous response

of monetary policy, driven through the fall of the Federal Funds rate in a larger level

than the long-term yield. However, with the new updated utilization-adjusted TFP se-

ries the effect of a news shock on inflation is zero, and the drop in the Federal Funds

rate is not statistically significant (Figure 5.3), invalidating the ‘active monetary policy’

channel of a news shock on the slope. As a result, it is no longer possible to conclude

that systematic monetary policy is a channel of linking macroeconomic news shocks and

term structure dynamics, as initially proposed by Kurmann and Otrok [2013].
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Chapter 6

Forecast revisions as instruments

for news shocks
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6.1 Introduction

The literature on technological news shocks argues that the macroeconomy react to pos-

itive expectations about future productivity. The results so far show that positive news

generates comovement among GDP, consumption and investment, and is deflationary

in the medium-run.1 However, there remains an ongoing discussion (both theoretical

and empirical) on (i) how important is this shock on explaining business cycles, (ii) how

‘fast’ should one observe an effect on productivity, and (iii) what is the effect on other

important macroeconomic variables, such as hours worked.2

These questions arise from the fact that the literature is still debating how to

properly identify a news shock. Measuring the effect of news about future productivity

is a difficult task. First, because identifying a news shock implies separating TFP shocks

into unexpected and expected parts. Second, the effect of technological changes on

productivity is not directly observed, and its proxies may be subject to measurement

errors or substantial revisions.3 And third, the news information may be ‘noisy’, which

would make a news shock identification infeasible (Blanchard et al., 2013).

In practice, there are two empirical identification strategies for news shocks avail-

able in the literature: one based on a combination of short and long-run restrictions

(Beaudry and Portier, 2006), and another based on explaining the medium-run effects on

TFP (Barsky and Sims, 2011). The Beaudry and Portier [2006] methodology is success-

ful in generating positive comovement among macroeconomic variables. The measure of

utilization-adjusted TFP only reacts to a news shock in the medium-run, as it would be

expected with an anticipation of future news. However, this identification relies on very

strong assumptions about the order of integration of the variables or its cointegrating

relationships.4

Barsky and Sims [2011] (BS, henceforth) approach is a partial identification strat-

egy and is less restrictive than Beaudry and Portier [2006], relying on the assumption

that a limited number of shocks generate movements in utilization-adjusted TFP. The

idea is to find the orthogonalization that best explains the TFP’s forecast error variance

over a finite horizon, and that has no effect on TFP on impact. The economic effects

of a news shock employing this method differ from the results presented by Beaudry

1See, for example, Beaudry and Portier [2006] and Barsky and Sims [2011].
2See Beaudry and Portier [2014] for a comprehensive survey about the challenges of identifying a

technological news shock.
3See Cascaldi-Garcia [2017] and Kurmann and Sims [2017] for a discussion about the effects of

utilization-adjusted TFP updates on news shocks.
4Barsky and Sims [2011] present a discussion about the issues of employing long-run restrictions while

identifying news shocks.
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and Portier [2006]. There is less evidence of a positive comovement on impact, and the

effect on hours is either negative or virtually zero.5 In addition, utilization-adjusted

TFP reacts almost immediately after impact, which raises the argument of how much

economic variables are anticipating or, rather, tracking TFP growth.

This paper follows a third path. The idea is to identify technological news shocks

in a Structural VAR by relying on external validity (proxy SVAR). The use of exogenous

variables as instruments for the structural shock of interest is a recent burgeoning liter-

ature in business cycles.6 It has been applied to identify monetary policy shocks (Stock

and Watson, 2012, Gertler and Karadi, 2015, Miranda-Agrippino and Ricco, 2018), fiscal

policy shocks (Mertens and Ravn, 2014, Caldara and Kamps, 2017), uncertainty shocks

(Carriero et al., 2015b, Piffer and Podstawski, 2017) and oil supply shocks (Montiel Olea

et al., 2016). With respect to news shocks, extraneous data have been applied to news

about future fiscal spending (Auerbach and Gorodnichenko, 2012) and for news about

future oil supply (Arezki et al., 2017).

This paper contributes to the literature by empirically identifying technological

news shocks based on information about agents’ expectations. The application I propose

here is based on only one assumption: if agents expect a higher future productivity, they

should expect a higher future economic growth as well. It follows that positive news

about productivity should be (positively) correlated with news about future economic

activity.

While news about future TFP is not directly observed, proxies for news about

future economic activity can be constructed through forecast revisions. The Survey

of Professional Forecasters (SPF) provides quarterly forecasts for a series of economic

indicators, up to one year ahead. Three of these series are particularly relevant for

technological news: GDP, investment and industrial production. Positive news about

future technology should be reflected as a higher future GDP, investment and industrial

production. I propose a methodology of measuring revisions about the long-run trend

of these variables by calculating differences between updates on forecasts and nowcasts.

This method allows the construction of a quarterly time series for forecast revisions

about future GDP, investment and industrial production.

I employ the external validity procedure introduced by Mertens and Ravn [2013]

5See, for example, Barsky and Sims [2011], Kurmann and Otrok [2013] and Barsky et al. [2014].
Cascaldi-Garcia and Galvao [2017] recover a positive comovement among GDP, consumption, investment
and hours worked by employing the BS approach in an identification strategy that imposes orthogonality
between news and uncertainty shocks.

6See Ramey [2016] and Kilian and Lütkepohl [2017] for an overview of identification based on extra-
neous data.
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and Stock and Watson [2012] to the news shock case. This approach identifies structural

shocks based on information not contained on the VAR, namely instruments, which

are noisy measures of the structural shock. The idea is to jointly use the constructed

series of forecast revisions about future GDP, investment and industrial production as

instruments that potentially provide identification of the news shock. The procedure

consists of regressing the instruments against the residuals of a reduced-form VAR, and

using this information to infer the contemporaneous impact of a news shock on the

macroeconomic variables.

While the strategy of identifying a technological news shock through instruments

based on expectations is innovative, the literature has already shown the predictive

power of expectations on driving business cycles. Miyamoto and Nguyen [2017] argue

that the precision of news shocks improves when forecast data is also considered in the

information set. Levchenko and Pandalai-Nayar [2018] show that a non-technological

expectation shock accounts for a large share of business cycle fluctuations in the short-

run. Clements and Galvao [2018] show that data uncertainty influences the impact of

expectation shocks on the economy. They find, however, that expectation shocks are

not correlated with technological news shocks.

In summary, this paper contributes to the news shock literature with new evidence

about the importance of technological news on driving business cycles. The proposed

identification procedure relies on more pragmatic assumptions by bridging agents’ expec-

tations on future technology with observed revisions on economic forecasts. As such, a

news shock constructed with instrumental variables can be more realistic in representing

its economic effects than when identified with the current statistical methods found in

the literature.

The outline of the paper is as follows. I show the relevance of forecast revisions

for measuring technological news shocks in Section 6.2. Section 6.3 presents the identifi-

cation procedure of the news shocks with instrumental variables (proxy SVAR) and the

discussion about the exogeneity of the proposed measures. Section 6.4 summarizes the

results of the identified news shock with instrumental variables. Section 6.5 concludes

this paper.

6.2 Relevance of forecast revisions for measuring news

The process of identifying the effect of news about the future outcome of economic

variables is not simple. The alternative I propose, here, is to look at professional forecast

surveys, and measure the change in its forecasts from one period to another. But how

86



informative are these forecasts for the news shock driving the long-run growth of the

economy? I answer this question by presenting a simple model with three sources of

exogenous shocks, as in Levchenko and Pandalai-Nayar [2018]: surprise technological

shocks, technological news shocks and transitory non-technological shocks.

As largely explored by the business cycle literature,7 productivity changes (e.g.,

technological shocks) are the predominant source of output fluctuations in the long-run.

While permanent technology changes determine the long-run trend of output, other

sources of shocks (e.g., preferences, tax rates, monetary policy) explain movements in

the short-run around this trend.

Suppose real output (in logs) follows a process with a deterministic trend, as in

log yt = βt+ εk,t, (6.1)

where β is the slope of the long-run trend and εk,t captures the short-run non-technological

shocks that temporarily deviate log yt from its long-run trend, following a process

εk,t = εk,t−1 + %t. (6.2)

Taking the differences of log yt leads to

∆ log yt = β + ∆εk,t. (6.3)

Figure 6.1 presents a possible generic path of real output, in which the dashed

line is the time trend estimated by regressing log yt on t.

While estimating the time trend and its slope demand a sufficiently large number

of observations, an approximate measure for the slope (β̃) can be obtained with just two

points. In the example of Figure 6.1, where t+ h is the long-run, it suffices to calculate

β̃ =
log yt+h − log yt

(t+ h)− t

β̃ =
log yt+h − log yt

h
.

(6.4)

7See Stadler [1994] for an extensive review of the real business cycle literature.
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Figure 6.1: Long-run output level and trend

By substituting log yt and log yt+h, it leads to

β̃ =
β(t+ h) + εk,t+i − (βt+ εk,t)

h

β̃ = β +
(εk,t+h − εk,t)

h
.

(6.5)

The approximate measure of the slope β̃ is defined as the slope of long-run trend

plus the short-run deviations around the trend (εk,t+h−εk,t). By keeping h fixed, equation

6.4 is proportional to

β̃ ∝ log yt+h − log yt. (6.6)

It follows that the difference between the two observables (log yt+h − log yt) is

proportional to a noisy measure of the slope of long-run trend of output.

Suppose an economy in which its output yt is described by a technology measure

At and a generic production function f(Kt/Lt), where Kt/Lt is the ratio between capital

and labor, as in

yt = Atf(Kt/Lt), (6.7)

or in logs

log yt = logAt + log f(Kt/Lt), (6.8)
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and taking the differences

∆ log yt = ∆ logAt + ∆ log f(Kt/Lt). (6.9)

As in Smets and Wouters [2007], I assume, here, that technology is the main driver

of the long-run growth. If non-technological shocks cause the output to deviate from

its long-run trend, technological shocks should produce permanent changes in the trend

itself. By linking with equation 6.3, this is equivalent to say that changes in technology

define the slope of the long-run trend, as in ∆ logAt = β, and changes in the production

factors define the temporary deviations of the trend, as in ∆ log f(Kt/Lt) = ∆εk,t.

A positive permanent technological shock should increase output growth, which

is equivalent to making the time trend in Figure 6.1 steeper. Similarly, negative tech-

nological shocks should make the same curve more flat. It follows that the slope of a

long-run time trend of output should be informative about the technology level of this

economy, and changes in this slope should be informative about changes in technology

(technological shocks).

Following the news shock literature, technology is characterized as a stochastic

process driven by two shocks. The first (εsurprise,t) is a surprise technological shock,

which changes the level of technology on impact and generates a temporary effect on the

economy. The second (εnews,t−h) is the news shock, which is observed h periods ahead

and produces no change in technology when observed, but creates a permanent long-run

effect on the economy. In such an economy, long-run changes in output are only driven

by news shocks observed one period ahead of the effective change in technology. In a

univariate context it is not feasible to separate εsurprise,t and εnews,t−h.

Say, for example, that technology follows a process as

logAt = β + logAt−1 + εsurprise,t + εnews,t−h, (6.10)

where the news shock that changes the level of technology in time t is observed in t−h.

It follows that the news shock observed today, εnews,t, will change the level of

technology in t+ h, as in

logAt+h = β + logAt+h−1 + εsurprise,t+h + εnews,t, (6.11)

or

logAt+h = (h+ 1)β + logAt−1 +

h∑
i=0

εsurprise,t+i +

h∑
i=0

εnews,t−i. (6.12)
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The long-run difference (logAt+h − logAt) is then defined by

logAt+h − logAt = hβ +

h∑
i=1

εsurprise,t+i +

h−1∑
i=0

εnews,t−i. (6.13)

Since the long-run difference (log f(Kt+h/Lt+h)− log f(Kt/Lt)) is

log f(Kt+h/Lt+h)− log f(Kt/Lt) = εk,t+h − εk,t, (6.14)

it follows that the long-run difference (log yt+h − log yt) is defined as

log yt+h − log yt = hβ +
h∑
i=1

εsurprise,t+i +
h−1∑
i=0

εnews,t−i + (εk,t+h − εk,t). (6.15)

By substituting equation 6.15 into equation 6.4, the noisy measure β̃ will be

β̃ =β +
1

h

(
h∑
i=1

εsurprise,t+i +
h−1∑
i=0

εnews,t−i + (εk,t+h − εk,t)

)
. (6.16)

Now, suppose that there is a professional forecaster that continuously forecasts

the output log yt for the current period (nowcast) and for up to h periods ahead. If

this agent is rational, this measure should bring information about the future level of

technology and, consequently, about the news shock in t (εnews,t).

Define the forecast of current period t based on information up to t − 1 as

log yt|t−1.8 The forecast for the next period, t + 1, is then defined as log yt+1|t−1. In

period t − 1, this professional forecaster only has information up to that period. The

forecast of the slope of the long-run trend of output in t− 1, as defined in equation 6.16,

will be

β̃|t−1 = β +
1

h

(
h−1∑
i=1

εnews,t−i

)
. (6.17)

In the next period t, the professional updates her forecasts for log yt and log yt+h

with the new information that arrived between t− 1 and t. The forecast of the slope of

the long-run trend of output in t (equation 6.16) will be

β̃|t = β +
1

h

(
h−1∑
i=0

εnews,t−i − εk,t

)
. (6.18)

8I follow the definitions and similar notation as described in Clements [2015].
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Now, the only difference between the forecast of the long-run trend evaluated at

time t− 1 and the one evaluated at time t is the new information about technology ac-

quired by the professional forecaster between these periods and the short-run transitory

shock εk,t. This new information can be recovered by calculating the difference between

the two forecasts for the slope of the long-run trend of output, as in

∆β̃ = β̃|t − β̃|t−1. (6.19)

Substituting equations 6.17 and 6.18, this measure becomes

∆β̃ =

(
β +

1

h

(
h−1∑
i=0

εnews,t−i − εk,t

))
−

(
β +

1

h

(
h−1∑
i=1

εnews,t−i

))
(6.20)

leading to

∆β̃ =
1

h
(εnews,t − εk,t), (6.21)

which is proportional to

∆β̃ ∝ εnews,t − εk,t. (6.22)

It follows that a measure of the difference between forecasts of the slope of the long-run

trend of output should be a noisy measure of the news shock εnews,t, observed today, but

that will change the level of technology only in t + h. By employing the slope measure

as in equation 6.6, the differences between forecasts of the slope of the long-run trend of

output can be computed as

∆β̃ ∝ (log yt+h|t − log yt|t)− (log yt+h|t−1 − log yt|t−1). (6.23)

6.3 Instrumental variable procedure for identifying news

shocks

The idea, here, is to employ the methodology of calculating the forecast revisions about

the slope of the long-run trend presented in the previous section to construct instruments

to identify a technological news shock. A news shock has the capacity of generating

booms and busts based on agents’ expectations about future technological improve-

ments (Beaudry and Portier, 2006). The evidence shows that positive news about future

utilization-adjusted TFP increases consumption, GDP and investment in the medium
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and long-run.9

It follows that an increase in expected future productivity should also be trans-

lated into higher expected future GDP, investment and industrial production. In other

words, a news shock should be positively correlated with forecast revisions about future

GDP, investment and industrial production. While a news shock is not directly ob-

served and relies on different identification procedures, one could use the methodology

presented in the previous section to measure forecast revisions about these variables.

Under certain assumptions (discussed below), these measures can be used as external

validity instruments for the identification of a news shock.

The proposed instruments are slope forecast revisions about the log of the future

level of real GDP, of the log of nonresidential fixed investment and of the log of industrial

production, in the US, from the Survey of Professional Forecasters (Federal Reserve Bank

of Philadelphia). This survey provides forecasts for several economic variables from t

to t+ 5 quarters ahead, starting from 1968:Q4 for GDP and industrial production, and

from 1981:Q3 for investment. I construct the instruments (Zt) as a series of forecast

revisions of the slope of the long-run trend as in equation 6.23, following

Zt = (xt+4|t − xt|t)− (xt+4|t−1 − xt|t−1), (6.24)

where Zt is a matrix collecting the three instruments (GDP, investment and industrial

production forecast revisions).

Figure 6.2 shows the three measures constructed here. These series present similar

patterns and are highly correlated (Table 6.1); however, the forecast revision about future

investment is more volatile than the forecast revisions about future GDP and future

industrial production. The most pronounced negative revisions match the recession

periods identified by the National Bureau of Research Institute (NBER).

6.3.1 Proxy SVAR and identification procedure

To see how these instruments can be used to identify a news shock, I start with a

standard reduced-form VAR. Consider a model with yt as a (n × t) matrix that stacks

the n endogenous variables (in levels), in which utilization-adjusted TFP is ordered first.

Its reduced-form structure can be modeled as

yt = A1yt−1 + ...+ Apyt−p + ut, (6.25)

9See, for example, Beaudry and Portier [2006], Barsky and Sims [2011], Cascaldi-Garcia and Galvao
[2017], among others.
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Figure 6.2: Forecast revisions about future GDP, investment and industrial production

Note: Forecast revisions constructed from expectations about future GDP, future in-
vestment and future industrial production, collected from the Survey of Professional
Forecasters (SPF), following the procedure described in Section 6.2. Data for GDP and
industrial production are displayed from 1976:Q1 to 2012:Q3, and for investment from
1981:Q3 to 2012:Q3. Shaded areas are the recession periods calculated by the NBER.

Table 6.1: Correlations between forecast revisions about future GDP, investment and
industrial production

Real GDP
revisions

Ind. prod.
revisions

Investment
revisions

Real GDP
revisions

1.00 0.86 0.77

Ind. prod.
revisions

0.86 1.00 0.73

Investment
revisions

0.77 0.73 1.00

Note: Correlations between forecast revisions constructed from expectations
about future GDP, future investment and future industrial production, collected
from the Survey of Professional Forecasters (SPF), following the procedure de-
scribed in Section 6.2. Correlations calculated from 1981:Q3 to 2012:Q3.

where Ai are (n× n) matrices that collect the coefficients of the lags of yt from 1 to p.

Its moving average representation is written as

yt = B(L)ut. (6.26)
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If there is a linear mapping of the innovations (ut) and the structural shocks (st),

this moving average representation can be rewritten as

ut = A0st (6.27)

and

yt = C(L)st, (6.28)

where C(L) = B(L)A0, st = A−1
0 ut, and A0 is the (n× n) impact matrix that makes

E[utu
′
t] = E[A0A

′
0] = Σ

n×n
. (6.29)

Consider, now, the case in which only one shock is economically identified, say

a news shock. If the news shock is the first shock of st (namely snews,t), it means

that obtaining the first column of A0 (namely Λ1) suffices to identify snews,t. The

identification of this column is where the instruments Zt can be employed.

Following Mertens and Ravn [2013], Stock and Watson [2012] and Gertler and

Karadi [2015], let Zt be a (t × k) matrix of proxies correlated to the (1 × t) structural

shock snews,t, and s2,t a (n− 1× t) matrix that collects all (n− 1) shocks other than the

news shock. The proxies can be used as instruments to identify the news shock if they

satisfy three conditions:

(i) E[zts
′
news,t] = φ

1×1
(relevance),

(ii) E[zts
′
2,t] = 0

1×(n−1)
(exogeneity),

(6.30)

where zt is a (t×1) vector constructed as zt = (Ps′news,t)
′, and P is the (t× t) projection

matrix that generates fitted values of snews,t from k instruments present in Zt, as in

P = Zt(Z
′
tZt)

(−1)Z′t.

Condition (i) states that the instruments in Zt and the news shock snews,t are

correlated. Since E[snews,t] = 0, φ represents the (unknown) covariance between zt

(combination of the instruments in Zt) and the structural news shock snews,t. There is no

a priori assumption about the relationship between the instruments and the structural

shock, and the covariance φ would be determined by the parameters of the instruments

as a function of the news shock. Section 6.2 presents the argument for the relevance of

the proposed instruments on recovering the news shock. Condition (ii) states that the

instruments in Zt are not correlated with other structural shocks. I test this condition

in subsection 6.3.3. Conditions (i) and (ii) already ensure that the instruments in Zt
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are correlated with the innovations ut, because they are correlated with snews,t.

Partitioning A0 as

A0 =

[
Λ1
n×1

Λ2
n×(n−1)

]
, Λ1 =

 λ11
1×1

λ
′
21

(n−1)×1

 , Λ2 =

 λ12
1×(n−1)

λ22
(n−1)×(n−1)

 , (6.31)

it follows from conditions (i) and (ii) that

φΛ
′
1 = E[ztu

′
t]

1×n
. (6.32)

By partitioning E[ztu
′
t] as

E[ztu
′
t] =

[
E[ztu

′
1,t]

1×1

E[ztu
′
2,t]

1×(n−1)

]
, (6.33)

where u2,t collects all (n − 1) innovations other than the first (u1,t), it is possible to

rewrite equation 6.32 as
λ21

λ11
=
(
E[ztu

′
1,t]
−1E[ztu

′
2,t]
)′
. (6.34)

In practice, E[ztu
′
1,t]
−1E[ztu

′
2,t] can be obtained by a two-stage least squares esti-

mator (2SLS) by first regressing u1,t on Zt and producing the fitted value û1,t, and then

regressing u2,t on û1,t, as in

u2,t =
λ21

λ11
û1,t + ξt, (6.35)

and û1,t and ξt are orthogonal if condition (ii) holds. By partitioning the reduced form

variance-covariance matrix as in

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, (6.36)

λ21 and λ11 can be identified by applying the restrictions from equation 6.29 following

the closed form solution10

λ2
11 = Σ11 − λ12λ

′
12, (6.37)

10As demonstrated by Mertens and Ravn [2013] and Gertler and Karadi [2015].
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where

λ12λ
′
12 =

(
Σ21 −

λ21

λ11
Σ11

)′
Q−1

(
Σ21 −

λ21

λ11
Σ11

)
,

Q =
λ21

λ11
Σ11

λ21

λ11

′
−
(

Σ21
λ21

λ11

′
+

λ21

λ11
Σ′21

)
+ Σ22.

(6.38)

Now, if Zt is the set of instruments constructed based on SPF forecast revisions,

the structural news shock snews,t can be recovered by the method described above.

Mertens and Ravn [2013] point out that for the case of a single shock the restrictions

described in equation 6.34 are sufficient for identification up to sign convention.

The full procedure of the proxy SVAR can be summarized with the following

steps:

1. Estimate the reduced-form VAR;

2. Estimate E[ztu
′
1,t]
−1E[ztu

′
2,t] by the 2SLS regression of the VAR residuals on Zt;

3. Find the impact effects of a news shock by imposing the restrictions in equation

6.34.

6.3.2 Information set and Bayesian VAR estimation

As a common practice in the literature,11 I identify the news shock by employing the

utilization-adjusted TFP series constructed by Fernald [2014], representing a proxy of

the technological level of the US economy. In order to properly extract the signal of the

news shock, separating it from the contemporaneous movement on TFP, the informa-

tion set should include a number of forward-looking variables, such as stock prices and

consumption.

The dataset comprises macroeconomic variables in levels, measured quarterly,

from 1975:Q1 to 2012:Q3. It contains 11 variables, namely utilization-adjusted TFP,

personal consumption per capita, GDP per capita, private investment per capita, hours

worked, GDP deflator, S&P500 stock prices index, excess bond premium (calculated

by Gilchrist and Zakraǰsek, 2012), financial uncertainty (calculated by Ludvigson et al.,

2016), Federal funds rate and the spread between the 10-year yield and the Federal funds

rate. A full description of the sources and construction of the 11 variables can be found

in Table D.1 in the Appendix.

11See, for example, Beaudry and Portier [2006], Barsky and Sims [2011], Kurmann and Otrok [2013],
Cascaldi-Garcia and Galvao [2017], among others.
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I estimate the model under a Bayesian VAR (BVAR) approach, and the identifi-

cation of the shocks is carried out with a standard two-stage least squares method. While

the strategy of Bayesian estimation and classical instrumental variables identification is

also employed by Caldara and Kamps [2017], it is worth to note that fully Bayesian

proxy-SVAR approaches are available in the literature.12 The BVAR model is estimated

in levels with five lags. The option for the variables in levels is in line with Barsky and

Sims [2011], allowing for the possibility of cointegration among the variables. I employ

the Minnesota priors (Litterman, 1986) to address the reasonably large number of en-

dogenous variables, and the ‘dummy observation prior’. The estimation of the model

and the prior hyper-parameters follow methodology proposed by Gianonne et al. [2015],

with 20,000 posterior draws. I compute the confidence bands for the impulse response

graphs using 1,000 out of the 20,000 total draws from the posterior distribution.13

6.3.3 Exogeneity of the instruments

I show in Section 6.2 that a noisy signal for the news shock can be extracted from the

measures of forecast revisions about the future output. I employ measures of forecast

revisions about future GDP, industrial production and investment, which should be the

variables from the supply side most influenced by technological changes. However, the

model presented in Section 6.2 takes the assumption that only news shocks drive the

long-run trend of the economy.

There are two problems with this assumption. First, other economic shocks may

have a long-run impact on the economy. Non-technological shocks εk,t can cause an effect

on the cycle, which would be misunderstood as a change in the long-run trend. If this

is the case, forecast revisions about future GDP, industrial production and investment

may also be a response to these other shocks, violating condition (ii) of exogeneity. This

would be particularly true for other types of news, such as news about tax, government

spending or oil prices. Second, the measures of news can only be feasibly constructed

up to five quarters ahead due to data availability from the SPF. One may argue that

five quarters is not sufficient to properly separate long-run effects from the effects of

short-run shocks.

Following Piffer and Podstawski [2017], I test the exogeneity of the instruments by

examining the relation between the forecast revisions about GDP, industrial production

and investment and several economic shocks identified in the literature. As in Caldara

12See, for example, Caldara and Herbst [2016] and Arias et al. [2018].
13To ensure a positive news shock, I check whether the response of stock prices is positive on impact.

If the response is negative, all computed responses are multiplied by (−1).
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and Kamps [2017], I consider, here, six different economic shocks: news about tax shocks,

news about government defense spending, oil price shocks, monetary policy shocks, tax

shocks and technological shocks.14

The measure for news about tax shocks is the proxy calculated by Leeper et al.

[2013], and is available from 1953:Q1 to 2006:Q3. News about government defense

spending is calculated as the nominal present value of Ramey [2011] defense news variable

divided by the nominal GDP of the previous quarter, as calculated by Caldara and

Kamps [2017], and available from 1950:Q1 to 2006:Q3. Oil price shocks are the net oil

increase (3 years) calculated by Caldara and Kamps [2017] based on Hamilton [2003],

available from 1950:Q1 to 2006:Q3. Monetary policy shocks are the quarterly sum

of the monthly Romer and Romer [2004] variable extended by Barakchian and Crowe

[2013], available from 1969:Q1 to 2006:Q3. Tax shocks are the Mertens and Ravn [2011]

unanticipated tax series, available from 1950:Q1 to 2006:Q3.

Finally, a technological news shock (and, consequently, its instruments) should be

orthogonal to contemporaneous technological shocks. The idea, here, is that technology

is an exogenous variable that is driven by only two shocks: the news shock and the

surprise technological shock, as in equation 6.10. While a news shock is observed h

periods ahead and does not change technology when observed, the surprise technological

shock is the only shock capable of changing technology contemporaneously. I proxy

the surprise technological shock by the contemporaneous innovation on the utilization-

adjusted TFP series of the estimated BVAR (described in detail in subsection 6.3.2).

For each of the three measures in Zt = [zgdpt , zipt , z
inv
t ], I estimate the model

zit = µ0 + µ1,jdj,t + υj,t, (6.39)

where i indicates if the instrument is forecast revisions about GDP, industrial production

or investment, and dj,t represents each of the structural shocks. A statistically significant

µ1,j indicates the failure of exogeneity of the instrument with respect to the structural

shock. The results for the exogeneity tests are summarized in Table 6.2.

The exogeneity tests show that the instrument measures proposed here are also

correlated with shocks other than technological news, failing to fulfill condition (ii).

In other words, the SPF forecast revisions are also reacting to a variety of structural

changes in the economy. This is somewhat expected, as equation 6.21 shows that the

slope measure can be contaminated by other non-technological shocks. This is partic-

14Apart from the technological shocks, all other economic shocks are downloaded from the Caldara
and Kamps [2017] database. Technology shocks are proxied by the mean of the utilization-adjusted TFP
residuals across 1,000 posterior draws (as described in subsection 6.3.2).
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Table 6.2: Exogeneity tests for the forecast revisions about GDP, industrial production
and investment

1. Forecast revision about GDP
Shock Source µ1 P-value Obs

News about tax Leeper et al. [2013] -4.97 0.29 123
News about govt. spending Ramey [2011] -15.20 0.70 123
Oil price Hamilton [2003] -0.15 0.06 123
Monetary policy Romer and Romer [2004] 2.54 0.00 123
Tax Mertens and Ravn [2011] -1.31 0.67 123
Technology First residual from the BVAR 0.79 0.27 123

2. Forecast revision about industrial production
Shock Source µ1 P-value Obs

News about tax Leeper et al. [2013] -14.8 0.11 123
News about govt. spending Ramey [2011] -68.63 0.37 123
Oil price Hamilton [2003] -0.26 0.09 123
Monetary policy Romer and Romer [2004] 6.02 0.00 123
Tax Mertens and Ravn [2011] -1.58 0.79 123
Technology First residual from the BVAR 0.23 0.87 123

3. Forecast revision about investment
Shock Source µ1 P-value Obs

News about tax Leeper et al. [2013] 3.39 0.58 101
News about govt. spending Ramey [2011] 21.09 0.62 101
Oil price Hamilton [2003] -0.04 0.66 101
Monetary policy Romer and Romer [2004] 5.91 0.00 101
Tax Mertens and Ravn [2011] -2.45 0.47 101
Technology First residual from the BVAR 0.99 0.21 101

Note: Coefficient µ1 estimated from individual regressions of the forecast revi-
sions about GDP, about industrial production or about investment against the
structural shocks. Data for the regressions involving forecast revisions about
GDP or about industrial production range from 1976:Q1 to 2006:Q3, while re-
gressions for forecast revisions about investment range from 1981:Q4 to 2006:Q3
due to SPF data availability. Technology shocks are proxied by the mean
of the utilization-adjusted TFP residuals across 1,000 posterior draws (as de-
scribed in Section 6.3.2). All shocks divided by 103 for presentation reasons.

ularly more evident for monetary policy shocks in which the regression coefficient is

statistically significant at a 1% level for all three instruments. The series of forecast

revisions about GDP is also correlated with oil prices, while forecast revisions about

industrial production relates to oil prices and news about tax. The measure forecast
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revisions about investment only correlates with monetary policy.

In light of this evidence, I employ an agnostic approach of filtering the instruments

out of the effects of all these structural shocks, collected by the matrix dt, and by the

first reduced-form residual from the BVAR (u1,t), as a proxy for surprise technological

shocks. I also filter the instruments out of the effects of an economic activity factor

to ensure that the forecast revision measures proposed only carry information acquired

in time t. I proxy the economic activity by the first factor of the real activity dataset

calculated by Stock and Watson [2016].15

I construct a measure Z̃t as the residual from projecting Zt on dt, on u1,t and on

five lags of the Stock and Watson [2016] economic activity factor Ft, as in

Zt = µ1dt + µ2u1,t + M(L)Ft + Z̃t, (6.40)

and use Z̃t as the instruments for the news shock instead. The surprise technological

shock is different for every draw from the posterior distribution due to parameter un-

certainty. I perform this filtering step for every draw, which ensures the orthogonality

of the news shock and the surprise technological shock. Figure 6.3 presents the three

instruments after the filtering process, as the mean over 1,000 posterior draws.

6.4 Results

In this section I present the results for a news shock identified using the instruments

and the procedure described in Section 6.3. I first provide the results of a medium-scale

Bayesian VAR with 11 variables, testing the strength of the instruments and presenting

the impulse responses of the identified news shock. Subsequently, I compare the results

from the Bayesian VAR with the results from the most standard identification procedure

in the news shock literature, based on the maximization of the variance decomposition

(BS). Finally, I provide a robustness check by identifying the news shock in a simple

three-variables VAR model, showing that the instruments are able to recover the news

shock even in a small-scale VAR.

6.4.1 Strength of the instruments

Following Gertler and Karadi [2015] and Piffer and Podstawski [2017], I first test how

strong the three proposed instruments are for identifying the news shock. The instru-

ments are said to be strong if they are relevant on recovering the news shock (equation

15The dataset and replication files are available at Mark Watson’s website.
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Figure 6.3: Forecast revisions about future GDP, investment and industrial production
(after filtering)

Note: Forecast revisions constructed from expectations about future GDP, fu-
ture investment and future industrial production, collected from the Survey
of Professional Forecasters (SPF), following the procedure described in Sec-
tion 6.2. Each variable is the residual of a projection over external struc-
tural shocks and on five lags of an economic activity factor, as described in
subsection 6.3.3. Time period from 1981:Q4 to 2006:Q3 due to data avail-
ability. Shaded areas are the recession periods calculated by the NBER.

6.30); or, how strongly correlated they are with the structural shock. The structural

shock is not directly observed, but this is a linear combination of the reduced form in-

novations ut from equation 6.25. It follows that, if the instruments are correlated with

the structural shock, they should also be correlated with ut.

The idea of the test is to take each of the reduced-form innovations ui,t from ut

and regress them against the filtered instruments Z̃t = [z̃gdpt , z̃ipt , z̃
inv
t ], as in

ui,t = α+ θiZ̃t + ηi, i = 2, ..., n, (6.41)

where θi collects the three coefficients for the instruments. The first innovation u1,t is

not considered here because it is orthogonal to the filtered instruments by construction,

as u1,t is the proxy for the surprise technological shock (equation 6.40). I test if the

three coefficients in θi are (jointly) significantly different from zero. If that is the case,

the instruments sufficiently correlate with the reduced-form innovations.
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Table 6.3 presents the results for the instrument relevance tests. The instruments

are jointly significant in explaining the innovations for GDP, investment, stock prices

and the Federal funds rate. The predictive power of the instruments over these variables

is also relevant, varying between 8% and 14%.

Table 6.3: Instrument relevance tests

Innovation variable F -stat P-value R2

Consumption 0.45 0.72 0.01
GDP 3.26 0.02 0.09
Investment 2.63 0.05 0.08
Hours worked 0.69 0.56 0.02
GDP deflator 0.23 0.88 0.01
Stock prices 5.44 0.00 0.14
EBP 0.90 0.44 0.03
Financial uncertainty 0.96 0.41 0.03
Federal funds rate 2.65 0.05 0.08
Spread (10y - Fed funds) 0.06 0.98 0.00

Note: F -statistics calculated by testing if the coefficients of the (filtered) instru-
ments forecast revisions about GDP, about industrial production and about invest-
ment are (jointly) significant in explaining the residuals from the VAR correspond-
ing to each variable in the first column, as in equation 6.41. The residuals are
calculated as the median across 1,000 posterior draws (as described in subsection
6.3.2). Time period is from 1981:Q4 to 2006:Q3 due to data availability (101 ob-
servations). The VAR model includes all variables in Table D.1 in the Appendix.

The strong relation of the instruments and stock prices is a positive indication

of the connection between the instruments and the news shock. Beaudry and Portier

[2006] show that permanent changes in productivity growth are preceded by stock market

booms, indicating that agents foresee information about future technological opportu-

nities. The relation with the Federal funds rate remains strong even after filtering the

instruments by the monetary policy shocks. This result is in line with the stream of

news shock literature that discusses the effectiveness of the monetary policy on reacting

to news shocks.16 Finally, the real macro variables GDP and investment should respond

to supply shocks such as technological improvements, as it is the case of a news shock.

16See, for example, Kurmann and Otrok [2013], Cascaldi-Garcia [2017] and Gambetti et al. [2017].
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6.4.2 Economic responses to a news shock identified with instrumental

variables

Figure 6.4 presents the impulse responses after a news shock identified with instrumental

variables for selected variables of the BVAR. The gray area defines the 68% confidence

bands computed with 1,000 posterior draws, and incorporates the parameter uncertainty

on the instruments.17 The full impulse responses can be found in Figure D.3.1 in the

Appendix.

Figure 6.4: Impulse responses to a news shock under an instrumental variable approach

Note: Impulse responses for selected variables of a news shock computed by em-
ploying instrumental variables, with quarterly data ranging from 1975Q1 to 2012Q3.
The gray area defines the 68% confidence bands computed with 1,000 posterior
draws. The VAR model includes all variables in Table D.1 in the Appendix.

The first important result from Figure 6.4 is the effect of the identified shock

on the variable utilization-adjusted TFP. This variable is a proxy for the technology

level of the economy. Considering that technology is exogenous, a shock that changes

the utilization-adjusted TFP should be a technological shock. Here, the effect of the

identified shock is zero on impact by construction, from the orthogonality between the

instruments and the surprise technological shock (equation 6.40). This imposition is

equivalent to the short-run restriction employed both by Beaudry and Portier [2006] and

17For every posterior draw, the instruments are filtered taking into consideration the new residual u1,t

(as described by equation 6.40). The resulting filtered instruments are then used for the identification
on that specific draw. It follows that there are also 1,000 draws for the instruments.
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Barsky and Sims [2011]. After around five quarters, utilization-adjusted TFP becomes

significantly positive, reaching its highest level after around 20 quarters. In the long-run

the effect diminishes, but remains positive.

This path is in line with the expected path of a news shock from the literature

(Beaudry and Portier, 2014). A news shock is a change in the technology level that

happens in the future, but the economic agents can foresee and react to it today. Indeed,

it is possible to notice from the path of the other macroeconomic variables that there is a

positive and significant reaction on impact. GDP jumps around 0.2% on impact, driven

mainly by the strong effect on investment (about 1% on impact). The effect on stock

prices is positive of around 2.5% on impact, showing a strong reaction to the news about

the future technology. The effect converges back to zero in the medium-run, consistent

with the efficiency of the stock market.

The effect on consumption is zero on impact, showing a milder initial anticipation

from the consumers to the news shock than what it is usually found in the literature.

However, the effect grows to a new higher level faster than the effect on utilization-

adjusted TFP. While utilization-adjusted only reaches its peak after around 20 quarters,

consumption reaches its maximum effect earlier, after around 12 quarters. This difference

in timing shows that consumption is anticipating, rather than tracking, the technological

improvements over time.

The effect of the news shock is deflationary, mainly in the short-run. This path

is consistent with the current inflation being the expected present discounted value of

future marginal costs (Barsky and Sims, 2011). The drop in GDP deflator is also in line

with the idea of a ‘supply shock’, ruling out the possibility that the identified shock is

capturing pressures from the demand side. The Federal funds rate falls by about 0.2

p.p, while the effect on the slope of the term structure is essentially zero. This result is

consistent with the mild effects on the spread of the term structure after a news shock

presented by Cascaldi-Garcia [2017].

The variable hours worked falls around 0.1% on impact, but the coverage bands

do not rule out a zero effect. The response quickly becomes positive, reaching a peak

of almost 0.4% after two years. There is a debate on the literature about what is the

expected effect of a news shock on hours worked. Beaudry and Portier [2006] show that

a news shock generates a positive and significant effect on hours (consistent with the

results from Christiano et al., 2003), while Barsky and Sims [2011] present a negative

effect of news on hours (in line with the technological shock from Gaĺı, 1999). The

positive results in the medium-run presented here support the economic intuition that

the substitution effect from the higher future productivity is higher than the income
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effect, in line with Beaudry and Portier [2006].

The relevance of the news shock identified with instrumental variables on driving

business cycles can be asserted from the variance decomposition of the macroeconomic

variables. Table 6.4 presents the variance decomposition after a news shock for selected

variables. Figure D.3.2 in the Appendix presents the variance decomposition graphs for

all variables included in the BVAR.

Table 6.4: Variance decomposition of a news shock identified with instrumental variables

h TFP Output Consumption Investment Stock prices
0 0.0 12.1 1.9 28.2 21.8
8 14.3 37.2 21.0 46.9 29.7
16 35.4 34.6 23.5 41.0 25.1
24 41.1 31.7 25.2 37.6 23.7
36 41.2 30.7 25.9 35.7 24.9

Note: Variance decomposition of a news shock computed by employing instru-
mental variables, with quarterly data ranging from 1975Q1 to 2012Q3. h de-
notes the forecast horizon. The VAR model includes all variables in Table D.1.

The news shock explains about 41.2% of the unpredictable movements of utilization-

adjusted TFP in the long-run. After two years, the news shock only explains 14.3%,

reaching 35.4% after four years. This dynamic is in line with the idea of a steady increase

in the technology level, with its highest effects in the long-run.

GDP, investment and stock prices react to such news instantaneously. The news

shock explains 12.1% of the unpredictable movements of GDP on impact, 28.2% of

investment and 21.8% of stock prices. The explanation power on impact for consumption

is only 1.9%. In business cycle frequencies, however, the explanation power is substantial

for all these variables: 30.7% of GDP in the long-run, 25.9% of consumption, 35.7% of

investment and 24.9% of stock prices.

6.4.3 Instrumental variables versus maximization of variance decom-

position

In this subsection I compare the strategy of identifying news shocks with instrumental

variables based on forecast revisions to the most common approach of maximizing the

variance decomposition proposed by Barsky and Sims [2011].

The idea of the BS identification for news shocks is to find the orthogonaliza-

tion among the innovations that best explains unpredictable movements of utilization-

adjusted TFP over a predefined forecast horizon, conditional on being orthogonal to
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surprise changes on the same variable. The procedure was built upon Faust [1998], and

has been employed by several papers in the news shock literature.18 The full identifica-

tion procedure is described in Appendix D.1.

I compare the results from the identification with instrumental variables by em-

ploying the same database, period and BVAR estimation described in subsection 6.3.2,

but identifying the news shock as in BS. Figure 6.5 compares the impulse response

functions of selected variables for the identification based on maximizing the variance

decomposition (BS approach, in red) and for the instrumental variables approach (black).

The full impulse response functions for the BS approach can be found in Figure D.3.3

in the Appendix.

Figure 6.5: Impulse responses to a news shock identified with the Barsky and Sims [2011]
(red) and instrumental variables (black) approaches

Note: Impulse responses for selected variables of a news shock computed by em-
ploying the identification procedure of maximizing the variance decomposition (red)
described in Appendix D.1, and by employing the instrumental variables approach
(black), with quarterly data ranging from 1975Q1 to 2012Q3. The dotted red lines
define the 68% confidence bands for the BS approach, the gray area the confi-
dence bands for the instrumental variables approach, all computed with 1,000 pos-
terior draws. The VAR model includes all variables in Table D.1 in the Appendix.

First, by comparing the impulse responses it is possible to notice that both iden-

tification procedures present the same qualitative results. However, the coverage bands

18See, for example, Kurmann and Otrok [2013], Beaudry and Portier [2014], Cascaldi-Garcia and
Galvao [2017], Levchenko and Pandalai-Nayar [2018], Clements and Galvao [2018], among others.
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of the identification using the BS approach are substantially wider than when using

the instrumental variables, particularly in the short-run.19 The economic effects on

utilization-adjusted TFP and on consumption are more intense using the BS approach

through all forecast horizons. The effect on impact on GDP is basically the same when

using either of the procedures, but the coverage bands of the BS approach rule out a

zero effect. Investment rises more using the instrumental variable; also, the BS coverage

bands also do not rule out a zero effect. The effect on the GDP deflator is deflationary

on impact for both methods, but it lasts longer when the BS approach is employed.

One extra point to be highlighted is the effect on hours worked. The effect on

impact is essentially zero for both approaches. In the medium-run, the instrumental

variables approach presents a significantly positive effect, while BS coverage bands are

quite close to zero. The instrumental variables approach gives stronger support to the

view of positive comovement among GDP, consumption and hours worked, predicted by

Beaudry and Portier [2006].

Finally, I compare the reconstructed historical path of the news shock from the

instrumental variables approach and from the BS approach, presented in Figure 6.6.

The path of both shocks is very similar, with the news shock from instrumental variables

tracking the movements of the news shock from the BS approach. The series with the

instrumental variables is somewhat less volatile, with a standard deviation of 0.60 in

comparison to the 0.71 of the BS series. The two series share a correlation of 0.74

which, together with the similarity of the impulse responses, confirms the power of the

instrumental variables on recovering the news shock.

6.4.4 Robustness check in a three-variables VAR model

In this subsection I perform a robustness check by identifying the news shock with in-

strumental variables in a simple three-variables VAR. I follow the strategy employed by

Beaudry and Portier [2014] of estimating a model with utilization-adjusted TFP, stock

prices, and a third variable which can be consumer confidence (measured by the Michi-

gan Consumer Survey), investment, hours worked or consumption.20 The models are

estimated with four lags, as vector error correction models (VECM) with two cointegra-

tion relations. Figure 6.7 presents the impulse responses for each model, with confidence,

investment, hours worked and consumption as the third variable.

19I employ the same posterior draws for each procedure, and identify the news shock both with
instrumental variables and with the BS approach for every draw.

20The Michigan Consumer Survey series is available at the Beaudry and Portier [2014] database.
The series for utilization-adjusted TFP, stock prices, investment, hours worked and consumption are
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Figure 6.6: Reconstructed news shock identified with the Barsky and Sims [2011] and
instrumental variables approaches

Note: News shock computed by employing the identification procedure of maxi-
mizing the variance decomposition (red) described in Appendix D.1, and by em-
ploying the instrumental variables approach (black), with quarterly data rang-
ing from 1975Q1 to 2012Q3. The series are the median across 1,000 posterior
draws. The VAR model includes all variables in Table D.1 in the Appendix.

As before, the effect of the news shock identified with instrumental variables on

utilization-adjusted TFP is zero on impact. In the long-run utilization-adjusted TFP

grows to a new higher level, regardless of which of the four models is considered. The

effect on utilization-adjusted TFP only becomes positive around 10 quarters after the

shock, in line with the idea of a future change in technology that is anticipated by the

economic agents.

The effect on stock prices is positive and significant on impact for all four models.

However, the size of the impact and the path over time is quite distinct depending on

which variable is chosen as the third in the system. The path of stock prices seems

to converge back to zero in the long-run in the models for consumption and for hours

worked, but there is no clear reversion for the other two models. These results indicate

that the identification of the news shock is considerably sensitive to model specification.

The measure of consumer confidence jumps on impact with the news shock, con-

verging back to zero in the long-run. Investment shows a positive effect on impact,

constructed as described in Table D.1 in the Appendix.
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Figure 6.7: Impulse responses for a news shock identified with instrumental variables in
a three-variables model

(a) TFP, Stock prices and Confidence

(b) TFP, Stock prices and Investment

(c) TFP, Stock prices and Hours worked

(d) TFP, Stock prices and Consumption

Note: Impulse responses for a news shock computed by employing the in-
strumental variables approach in a model with three variables, with quarterly
data ranging from 1975Q1 to 2012Q3. The gray area defines the 68% con-
fidence bands computed with Bayesian simulated distribution by Monte-Carlo
integration with 10,000 draws. The models are estimated with four lags,
as vector error correction model (VECM) with two cointegration relations.
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achieving its highest effect after around six quarters, and converging to a new higher

level in the long-run. The effect on hours worked is zero on impact, with a positive

effect in the medium-run, and reverting back to zero in the long-run. The effect on

consumption is positive on impact, and continues to grow until it reaches a new higher

level in the long-run.

In summary, the results from Figure 6.7 provide qualitative evidence of the power

of the instrumental variables on recovering the theoretical economic effects of a techno-

logical news shock, even in a small-scale VAR.

6.5 Conclusion

This paper shows that forecast revisions carry valuable information about the future

path of the technology level, and can be used as instruments to identify news shocks.

It contributes to the news shock literature by highlighting new evidence concerning the

economic effects of news shocks through a novel identification method, which relies more

on information about agents’ expectations than on the implementation of assumptions

through statistical procedures (such as long-run restrictions or maximization of the vari-

ance decomposition).

If technology is the main driver of the economy in business cycle frequencies,

forecast revisions about the long-run of output should also be linked to news about tech-

nology. I propose proxy measures for the slope of the long-run trend of GDP, investment

and industrial production, based on forecast revisions from the SPF. These variables are

strong instruments for recovering the underlying technological news shock.

The news shock identified with instruments produces the theoretical comovement

between the real macroeconomic variables, as initially proposed by Beaudry and Portier

[2006], and is qualitatively similar to the Barsky and Sims [2011] identification. In-

vestment and, consequently, GDP react instantly after the news shock, anticipating the

future technological improvement. Consumption, however, shows less strong evidence of

anticipation. There is no effect on impact, growing to a new higher level in the long-

run. In business cycle frequencies, the news shock explains about 41% of unpredictable

movements of TFP, 31% of GDP, 26% of consumption and 36% of investment.
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Overall, this Thesis expands our knowledge about how the economy reacts to

changes in agents’ expectations. The contributions presented here bring new quantita-

tive evidence of the capability of technological news shocks on driving business cycles,

which can be a baseline for future empirical research. It shows that news about future

productivity is confounded with expectations about economic conditions, opening a new

venture of research by bridging technological news and economic uncertainty. It provides

novel methodological techniques to measure the economic effects of news which are yet

to be explored by the business cycle literature. In what follows, I summarize the specific

contributions of each of the four main Chapters of this Thesis.

In Chapter 3, we explore the relationship between technological news shocks and

unexpected changes in the level of uncertainty of the economy. This provides two main

contributions linking the news and uncertainty shock literatures. First, employing the

maximum forecast error variance identification as proposed by Barsky and Sims [2011],

we show that news and uncertainty shocks are positively correlated. The correlation

between news and uncertainty shocks is somewhat striking, because of the distinct nature

of these two shocks: while a news shock has a long-run pro-cyclical effect on economic

variables, the uncertainty is basically short-lived and counter-cyclical. The effects of news

and uncertainty shocks on utilization-adjusted TFP and on the uncertainty measure

are quite similar. A news shock generates a hike on impact in the realized volatility

in the short-term that disappears after around four quarters. After an uncertainty

shock, the utilization-adjusted TFP goes from zero to a positive and significant higher

level, reaching its peak at around five quarters. The second main contribution is a

novel identification method to obtain orthogonal news and uncertainty shocks – the

proposed ‘truly news’ and ‘truly uncertainty’ shocks. The ‘truly news’ shock, free from

the correlation with uncertainty, produces positive comovement among consumption,

stock prices, employment and industrial production, as the real business cycle literature

suggests. The ‘truly uncertainty’ shock, free from the positive effect of news, produces

more intense recessionary effects. While uncertainty shocks explain 5% of output growth

variation, this share rises to 15% when the ‘truly uncertainty’ shock is identified.

In Chapter 4, I study the transmission mechanism of technological news shocks

through uncertainty. This contributes to the business cycle literature in two ways. First,

I propose an innovative method of checking whether the effects of a news shock change

depending on the point in time at which it is identified. By employing this identifi-

cation strategy, I show that economic responses to a news shock vary quantitatively

across time. The second contribution is new evidence supporting a dynamic relation-

ship between technological news and uncertainty. The effects of news on consumption,
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GDP, investment and real personal income are amplified when the news shock hits the

economy in periods of high uncertainty. The results also suggest that the size of these

effects depends on the initial degree of uncertainty (initial condition effect) and on how

expectations about macroeconomic and financial conditions are updated (transmission

effect). From the perspective of the news shock literature, it implies that neglecting

the uncertainty transmission effect leads to the conclusion that the positive effects of

news shocks are weaker than they really are. From the perspective of the uncertainty

literature, it raises the question of how the arrival of news, and the realization of its

economic effects, influences the way economic agents update their expectations about

macroeconomic and financial conditions.

In Chapter 5, I explore the relationship between news shocks and the slope of the

term structure presented by Kurmann and Otrok [2013]. By revisiting the results with

an updated version of the utilization-adjusted TFP series, the correlation between news

and slope shocks diminishes and the implications of a news shock become substantially

different from Kurmann and Otrok [2013]. The main reason for the positive effect of a

news shock on the slope in Kurmann and Otrok [2013] is the endogenous response of

monetary policy, driven through the fall of the Federal Funds rate in a larger level than

the long-term yield. However, with the new updated utilization-adjusted TFP series the

effect of a news shock on inflation is zero, and the drop in the Federal Funds rate is not

statistically significant.

Finally, in Chapter 6, I propose a new identification procedure for news shocks

based on information contained in agents’ expectations. I employ the proxy SVAR

procedure to the news shock case. The proposed instruments are constructed from

forecast revisions for GDP, industrial production and investment. I show that these

forecast revisions carry valuable information about the future path of the technology

level, allowing for the identification of technological news shocks. This contributes to

the news shock literature by confirming the theoretical comovement among the real

macroeconomic variables, as initially proposed by Beaudry and Portier [2006] through

an alternative identification procedure. The results are also qualitatively similar to those

produced with the Barsky and Sims [2011] identification, which became the standard

procedure in this literature. Investment and, consequently, GDP react instantly after the

news shock, anticipating the future technological improvement. Consumption, however,

shows less strong evidence of anticipation.

While this Thesis contributes by bringing new findings to the news and uncer-

tainty literatures, many questions remain unanswered. The reaction of the monetary

policy to news shocks, for example, remains unclear. The time-varying effects of the
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news shock and its relation to the uncertainty level of the economy presented in this

Thesis suggest that the monetary authority should adjust its policies accordingly. An-

other issue of interest is to evaluate whether a news shock produces similar economic

effects in different economies, other than the US. This analysis demands the construc-

tion of comparable proxies for the technology level for each country, which is not an easy

task. Finally, bringing the news shock to an open economy setup will help to answer

questions of how the expectation of future technological improvements spillover to other

countries and the role uncertainty plays in this transmission mechanism.
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A.1 Identification of news shocks

Taking a vector of endogenous variables yt, assuming that the utilization-adjusted TFP

is ordered first, the moving average representation (in levels) is written as

yt = B(L)ut. (A.1)

If there is a linear mapping of the innovations (ut) and the structural shocks (st),

this moving average representation can be rewritten as

ut = A0st (A.2)

and

yt = C(L)st, (A.3)

where C(L) = B(L)A0, st = A−1
0 ut, and A0 is the impact matrix that makes

A0A
′
0 = Σ (variance-covariance matrix of innovations). It is possible to rewrite A0

as Ã0D, where Ã0 is the lower triangular Cholesky factor of the covariance matrix of

reduced form innovations (or any other orthogonalization), and D is any k × k matrix

that satisfies DD
′

= I.

Considering that Ωi,j(h) is the share of the forecast error variance of variable i

of the structural shock j at horizon h, it follows that

Ω1,1(h)surprise + Ω1,2(h)news = 1∀h, (A.4)

where i = 1 refers to utilization-adjusted TFP, j = 1 is the unexpected TFP

shock, and j = 2 is the news shock. The share of the forecast error variance of the news

shock is defined as

Ω1,2(h)news =
e
′
1

(∑h
τ=0 BτÃ0De2e

′
2D

′
Ã

′

0B
′
τ

)
e1

e
′
1

(∑h
τ=0 BτΣB′

τ

)
e1

=

∑h
τ=0 B1,τÃ0 γγ

′
Ã

′
0B

′
1,τ∑h

τ=0 B1,τΣB
′
1,τ

, (A.5)

where e1 is a selection vector with 1 in the position i = 1 and zeros elsewhere,

e2 is a selection vector with 1 in the position i = 2 and zeros elsewhere, and Bτ is the

matrix of moving average coefficients measured at each period until τ . The combination

of selection vectors with the proper column of D can be written as γ, which is an

orthonormal vector that makes Ã0γ the impact of a news shock over the variables.

The news shock is identified by solving the optimization problem
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γnews2 = argmax

H∑
h=0

Ω1,2(h)news, (A.6)

s.t.

Ã0(1, j) = 0, ∀j > 1 (A.7)

γ2(1, 1) = 0 (A.8)

γ′2γ2 = 1, (A.9)

where H is an truncation period, and the restrictions impose that the news shock does

not have an effect on impact (t = 0) and that the γ vector is orthonormal.

Based on the γnews2 vector, the structural unexpected TFP (sunexpt ) and the news

shock (snewst ) are s
unexp
t

snewst

...

 = Ã−1
0

[
γunexp1 γnews2 ...

]−1
u′t, (A.10)

assuming that

γunexp1 =


1

0

0

...

 . (A.11)
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A.2 Figures

Figure A.2.1: Responses to financial uncertainty (realized volatility) shocks in the base-
line VAR model

Note: Dotted lines are 68% confidence bands computed with 1,000 posterior draws.
The response of the 10-year rate is computed using the responses to the Fed funds
and the spread. The baseline identification scheme for uncertainty shocks is de-
scribed in section 3.2.2. The VAR model includes all variables in the first panel
of Table 3.1 + realized volatility.
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Figure A.2.2: Responses to financial uncertainty (LMN-fin-1) shocks in the baseline VAR
model

Figure A.2.3: Responses to financial uncertainty (LMN-fin-3) shocks in the baseline VAR
model

Note: See note to Figure A.2.1. The VAR model includes all variables in the first panel
of Table 3.1 + LMN-fin-1 (Figure A.2.2) or LMN-fin-3 (Figure A.2.3).
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Figure A.2.4: Responses to financial uncertainty (LMN-fin-12) shocks in the baseline
VAR model

Figure A.2.5: Responses to financial uncertainty (VXO) shocks in the baseline VAR
model

Note: See note to Figure A.2.1. The VAR model includes all variables in the first
panel of Table 3.1 + LMN-fin-12 (Figure A.2.4) or VXO (Figure A.2.5).
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Figure A.2.6: Responses to macroeconomic uncertainty (Policy uncertainty) shocks in
the baseline VAR model

Figure A.2.7: Responses to macroeconomic uncertainty (Business uncertainty) shocks
in the baseline VAR model

Note: See note to Figure A.2.1. The VAR model includes all
variables in the first panel of Table 3.1 + Policy uncertainty
(Figure A.2.6) or Business uncertainty (Figure A.2.7).
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Figure A.2.8: Responses to macroeconomic uncertainty (SPF disagreement) shocks in
the baseline VAR model

Figure A.2.9: Responses to macroeconomic uncertainty (LMN-macro-1) shocks in the
baseline VAR model

Note: See note to Figure A.2.1. The VAR model includes all vari-
ables in the first panel of Table 3.1 + SPF disagreement (Fig-
ure A.2.8) or LMN-macro-1 (Figure A.2.9).

122



Figure A.2.10: Responses to macroeconomic uncertainty (LMN-macro-3) shocks in the
baseline VAR model

Figure A.2.11: Responses to macroeconomic uncertainty (LMN-macro-12) shocks in the
baseline VAR model

Note: See note to Figure A.2.1. The VAR model includes all
variables in the first panel of Table 3.1 + LMN-macro-3 (Figure
A.2.10) or LMN-macro-12 (Figure A.2.11).
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B.1 Triangular estimation

In this Appendix I describe the triangular estimation procedure proposed by Carriero

et al. [2016b]. Consider the model presented by the equation 4.1, but rewriting the

reduced form residuals υt from equation 4.2 as
υ1,t

υ2,t

...

υn,t

 =


1 0 ... 0

a∗2,1 1 ... 0

... ... 1 0

a∗n,1 ... a∗n,n−1 1



λ

1/2
1,t 0 ... 0

0 λ
1/2
2,t ... 0

... ... ... 0

0 ... 0 λ
1/2
n,t



ε1,t

ε2,t

...

εn,t

 , (B.1)

where a∗j,i are the elements of the matrix A−1
0 . Under this structure, it is possible to

rewrite each equation of the main VAR described in 4.1 and variable j as

yt,j − (a∗j,1λ
1/2
1,t ε1,t + ...+ a∗j,j−1λ

1/2
j−1,tεj−1,t)

=
n∑
i=1

p∑
c=1

A
(i)
j,cyi,t−c +

l∑
c=0

Bc,jgt−c + λj,tεj,t,
(B.2)

where A
(i)
j,l represents the coefficients of the matrices Ai, and Bc,j represents the coef-

ficients of the matrices Bi. The VAR can be estimated equation-by-equation following

this structure by taking into account that, for equation j, the left-hand side is known

a priori : it is the difference between yt,j and the residuals from the previous (j − 1)

equations. By rescaling yt,j as

y∗t,j = yt,j − (a∗j,1λ
1/2
1,t ε1,t + ...+ a∗j,j−1λ

1/2
j−1,tεj−1,t) (B.3)

it is possible to estimate equation B.2 as a standard generalized least squares (GLS)

model.

B.2 Steps of the MCMC algorithm

The MCMC algorithm for this estimation follows the steps and notation proposed by

Carriero et al. [2016a], which I describe here. The conditional posterior distributions for

the draws described in this Section are detailed in Appendix B.5.

Step 1: Draw of the idiosyncratic volatilities.

Rescaling υt as υ̃t = A0υt, combined with the linear factor model for the log-
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volatilities described by equation 4.3, it is possible to define the observation equationsln(υ̃2
j,t + c̄)− βm,j lnmt = lnhj,t + ln ε2j,t if j = 1, ..., nm

ln(υ̃2
j,t + c̄)− βf,j ln ft = lnhj,t + ln ε2j,t if j = nm + 1, ..., n

, (B.4)

where βm,j and βf,j are the loadings drawn from the previous MCMC iteration, c̄ is a

small constant in order to avoid near-zero values, and S1:T is the states from the 10-state

mixture of normals draw from the previous iteration of the MCMC. Since εj,t is Gaussian

with unit variance, it is possible to produce an approximate Gaussian system conditional

on S1:T .

I first produce a draw for the j states h1:T as

h1:T |Θ, S1:T ,m1:T , f1:T , (B.5)

using the Kim et al. [1998] algorithm, where Θ collects the coefficients from the matrices

Ai, Bi, δ, Di, the coefficients in the conditional mean of the idiosyncratic components

γ = (γj,0, γj,1), the elements of the matrix A0, and the elements of the volatility matrices

Φυ and Φu, as in

Θ = (Ai,Bi, δ,Di, γ,A0,Φυ,Φu). (B.6)

Step 2: Draw of the factor loadings.

Next, I produce a draw for the factor loadings βm,j and βf,j , as

βm,j , βf,j |Θ, h1:T , S1:T ,m1:T , f1:T . (B.7)

The loadings can be drawn through a generalized least squares form, conditional

on the draws of h1:T and S1:T , by transforming the observation equations as

ln(υ̃2
j,t + c̄)− lnhj,t =

βm,j lnmt + ln ε2j,t if j = 1, ..., nm

βf,j ln ft + ln ε2j,t if j = nm + 1, ..., n
. (B.8)

Step 3: Draw of the model coefficients and volatilities.

The posterior coefficients and volatilities collected in Θ are drawn as

Θ|βm,j , βf,j , h1:T , S1:T ,m1:T , f1:T . (B.9)

Step 4: Draw of the macroeconomic and financial states.
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Next, the macroeconomic and financial states m1:T and f1:T are drawn as

m1:T , f1:T |Θ, βm,j , βf,j , h1:T , S1:T , (B.10)

by employing the particle Gibbs with ancestor sampling proposed by Andrieu et al.

[2010] and Lindsten et al. [2014] described in Appendix B.3.

Step 5: Draw of the 10-state mixture approximation.

Finally, I draw the 10-state mixture or normals from Omori et al. [2007] as

S1:T |Θ, βm,j , βf,j , h1:T ,m1:T , f1:T . (B.11)

B.3 Particle Gibbs with ancestor sampling

Consider a state space model as in

ln(ṽ2
t + c̄)− lnht = lnmt + ln ε2t , ln ε2 ∼ χ2(0, sT ) (B.12)

lnmt = D1 lnmt−1 + δm∆yt−1 + um,t, ut ∼ IW (0, φ) (B.13)

where ln(ṽ2
t + c̄) is a rescaled combination of the residuals from the VAR based on the

loadings βj , lnht is a rescaled combination of the idiosyncratic volatilities lnhj,t, and

ln ε2t has a variance which is a rescaled combination of the 10-state mixture of states

draw S1:T .

Step 1: Draw of φ from the IW distribution.

Compute the error between lnmt from the previous iteration (i − 1) and the

predicted lnmt, as in

um,t = lnmi−1
t −

(
D1 lnmi−1

t−1 + δm∆yt−1

)
. (B.14)

Draw φ̃ as following

φ ∼ IW

(
dφφ+

T∑
t=1

u2
m,t, dφ + T

)
. (B.15)

Step 2: Compute importance weights for t = 1.

Define a matrix Xm(N,T ), which collects the N particles. Define the first ob-

servation of the Nth particle as the first observation of mi−1
t , and zero for the other
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particles, as in

Xm(N, 1) = lnmi−1
t (1, 1), Xm(1 : (N − 1), 1) = 0. (B.16)

Compute ln ε̃
2,(j)
1 for each of the j = 1 : N particles, as in

ln ε̃
2,(j)
1 = (ln(ṽ2

1 + c̄)− lnh1)−Xm(j, 1). (B.17)

Compute importance weights by comparing the variance of the N particles and

the S1:T state draw, as in

w(j, 1) = exp

−1

2

(
ln ε̃

2,(j)
1

)2

S1:T (1)

 , (B.18)

and normalizing

w(j, 1) =
w(j, 1)∑N
j=1w(j, 1)

. (B.19)

Step 3: Compute importance weights for t = 2 : T .

Compute N predicted mt based on the previous particles, as in

ln m̃(j, t) = (D1Xm(j, t− 1) + δ∆yt−1) . (B.20)

Draw an index vector ind(N) that samples the particles from P (ind(j) = j) ∝
w(1 : j, t− 1), and ranging on the interval [1, N ] – these are the ancestor indexes. This

index will point out which particles will be collected in the current t-step for the N − 1

first particles. Store the particles as in

Xn(j, t) = ln m̃(ind(j), t) + φ̃1/2 ∗ randn(1, 1), (B.21)

and set the Nth particle as the previous iteration (i− 1) value for mt

Xm(N, t) = lnmi−1
t (1, t). (B.22)

Compute ln ε̃
2,(j)
1 for each of the j = 1 : N particles as before, following

ln ε̃
2,(j)
t = (ln(ṽ2

t + c̄)− lnht)−Xm(j, t), (B.23)
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the importance weights as

w(j, t) = exp

−1

2

(
ln ε̃

2,(j)
t

)2

S1:T (t)

 , (B.24)

and normalizing

w(j, t) =
w(j, t)∑N
j=1w(j, t)

. (B.25)

The last part of this step is defining the Nth ancestor index. In a conventional

Particle Gibbs, this is done by simply assigning ind(N) = N , ensuring that mi−1
t (1, t)

from the previous iteration is one of the particles. With the ancestor sampling, a new

value for ind(N) is sampled to artificially assign a history to this partial path, by con-

necting mi−1
t (1, t) to one of the particles. Formally, this sample is done by computing

wind(j, t) = w(j, t− 1) ∗ exp

(
−1

2

(
mi−1
t (1, t)− m̃(j, t)

)2
φ̃

)
, (B.26)

normalizing

wind(j, t) =
wind(j, t)∑N
j=1wind(j, t)

, (B.27)

and drawing ind(N) from P (ind(N) = j) ∝ wind(j, t). Finally, store the ancestor indexes

in a matrix a(N,T ) as a(1 : N, t) = ind(1 : N).

Step 4: Compute the final filtered mi
t.

Rearrange Xm(j, t) in order to generate the trajectories of the N particles based

on the ancestor indexes stored in a(N,T ) following the last ordering a(j, T ). Draw an

indicator J from P (J = j) ∝ w(j, 1 : T ), and set lnmi
t = Xm(J, 1 : T ).

B.4 State-space representation

The model described by equations 4.1 and 4.5 can be combined and rewritten in a state-

space representation. This transformation makes it easier to check the stationarity of

the system and to compute impulse responses.

Consider a model in which the macroeconomic and financial factors only depend

on their previous values (Di lag order is k = 1) and on ∆yt−1. Equation 4.5 becomes

gt = D1gt−1 + δ∆yt−1 + ut, (B.28)
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or simply

gt = D1gt−1 + δyt−1 − δyt−2 + ut. (B.29)

Consider now that the main VAR (equation 4.1) has lag order of yt of p, l = 1

lag of the macro and financial factors gt, and vt = A−1
0 Λ

1/2
t εt. Rewrite equation 4.1 as

yt = A1yt−1 + ...+ Apyt−p + B0gt + B1gt−1 + A−1
0 Λ

1/2
t εt, (B.30)

substituting gt from equation B.29 in equation B.30, results in

yt = A1yt−1 + ...+ Apyt−p + B0(D1gt−1 + δyt−1 − δyt−2 + ut) + ...

...+ B1gt−1 + A−1
0 Λ

1/2
t εt,

(B.31)

which can be rearranged as

yt = (A1 + B0δ)yt−1 + (A2 −B0δ)yt−2 + ...+ Apyt−p + ...

...+ (B1 + B0D1)gt−1 + B0ut + A−1
0 Λ

1/2
t εt.

(B.32)

Now, this equation can be conveniently written in a state-space form as in
yt

yt−1

...

yt−p

gt

 =


F1 F2 ... F3 F4

In 0 ... 0 0

... ... ... ... ...

0 0 ... In 0

δ −δ ... 0 D1


︸ ︷︷ ︸

F


yt−1

yt−2

...

yt−p−1

gt−1

+


A−1

0 Λ
1/2
t 0 ... 0 B0

0 0 0 0 0

... ... ... ... ...

0 0 0 0 0

0 0 0 0 I2




εt

0

...

0

ut

 ,

(B.33)

where

F1 = (A1 + B0δ),

F2 = (A2 −B0δ),

F3 = Ap,

F4 = (B1 + B0D1).

(B.34)
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The matrix Λt takes the form

Λt =

λ1,t 0 ... 0

0 λ2,t ... 0

0 0 ... λn,t

 , (B.35)

where each of its coefficients are a combination of an idiosyncratic shock hj,t and either

a macroeconomic factor mt or a financial factor ft, as in

λj,t =

m
βm,j

t hj,t if j = 1, ..., nm

f
βf,j
t hj,t if j = nm + 1, ..., n

, (B.36)

where the log of the idiosyncratic shocks lnhj,t follow an AR(1) process as in

lnhj,t = γj,0 + γj,1 lnhj,t−1 + ej,t, j = 1, ..., n. (B.37)

B.5 Priors and conditional posteriors

Here I present the prior and conditional posterior distributions for the parameters and

coefficients for the MCMC steps explained in Appendix B.2. I follow the proposed priors

and notation from Carriero et al. [2016a], with priors defined as

vec(Ai; Bi) ∼ N(vec(µ
A

),ΩA), i = 1, ..., p, (B.38)

aj ∼ N(µ
a,j
,Ωa,j), j = 2, ..., n, (B.39)

βj ∼ N(µ
β
,Ωβ), j = 2, ..., nm, nm+2, ..., n, (B.40)

γj ∼ N(µ
γ
,Ωγ), j = 1, ..., n, (B.41)

δ ∼ N(µ
δ
,Ωδ), (B.42)

φj ∼ IG(dφφ, dφ), j = 1, ..., n, (B.43)

Φu ∼ IW (dΦuΦu, dΦu). (B.44)

Under these priors, the posterior conditional distributions follow

vec(Ai; Bi)|A0, β,m1:T , f1:T , h1:T , y1:T ∼ N(vec(µ̄A), Ω̄A), i = 1, ..., p, (B.45)

aj |Ai,Bi, β,m1:T , f1:T , h1:T , y1:T ∼ N(µ̄a,j , Ω̄a,j), j = 2, ..., n, (B.46)
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1βj |Ai,A0,Bi, γ,Φ, β,m1:T , f1:T , S1:T , y1:T ∼ N(µ
β
,Ωβ), j = 2, ..., nm, nm+2, ..., n,

(B.47)

γj |Ai,A0,Bi,Φ, β,m1:T , f1:T , h1:T , y1:T ∼ N(µ
γ
,Ωγ), j = 1, ..., n, (B.48)

δ|Ai,A0,Bi,Φ, γ, β,m1:T , f1:T , h1:T , y1:T ∼ N(µ
δ
,Ωδ), (B.49)

φj |Ai,A0,Bi, γ, β,m1:T , f1:T , h1:T , y1:T ∼ IG(dφφ, dφ), j = 1, ..., n, (B.50)

Φu|Ai,A0,Bi, γ, β, δ,m1:T , f1:T , h1:T , y1:T ∼ IW (dΦuΦu, dΦu). (B.51)

The posterior µ̄A is drawn equation-by-equation through the triangularization

method described in Section B.1. The posteriors µ̄a,j , µ̄δ and µ̄γ follow the results from

the standard linear regression model. The factor loadings β are drawn following a GLS-

based form depending on the mixture states drawn for the volatilities, as in Carriero

et al. [2016a].

With regard to the priors, I adopt a Minnesota-type structure for the VAR coef-

ficients in Ai. This model contains stationary and non-stationary variables, so the prior

coefficients of the stationary variables are set to 0, while the prior coefficients of the

non-stationary variables are set to 1. The variance-covariance matrix ΩA is diagonal,

with standard Minnesota shrinkage form, as in

ΩA = var[Aijk ] =


(
θ21
l2

)
if i = j,(

θ1θ2
l

σi
σj

)2
, if i = j,

(θ0σi)
2, if intercept or gt.

(B.52)

where l is the lag. The overall prior tightness θ1 is set here as 0.05, the cross-shrinkage

parameter θ2 is set to 0.5 and the intercept shrinkage parameter θ0 is set to 1,000. I

follow Carriero et al. [2016a] by also setting a prior variance for the uncertainty factors

lnmt and ln ft equal to the intercept. The variance parameters σi come from the residual

variances of an AR(p) process for each variable.

The prior means and variances for the remainder of the coefficients are presented

in Table B.1.

There is discussion in the literature on the impact of the prior on the compo-

nents aj of matrix A0. The model may be dependent on the ordering of the variables,

along with the priors imposed on aj . This is an issue primarily in using this model for

forecasting purposes. I address these questions by following Carriero et al. [2016a] and

Cogley and Sargent [2005] and imposing a prior fairly uninformative for aj , with mean

of 0 and variances of 10. In addition, the identification procedure of maximizing the
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Table B.1: Mean and variance priors

Mean Variance Degree of freedom

aj 0 10 -
(γi,0, γi,1) (lnσ2

i , 0) (2, 0.42) -
βj , for j = 2, ..., nm,
and j = nm+2, ...n

1 0.42 -

Di
0.8, for first own lag,

0 otherwise
0.22 -

δ 0 0.12 -
φj 0.03 - 10
Φu 0.01In 10
lnm0 and ln f0 0 - -
lnhi,0 lnσ2

i 2 -

variance decomposition over a predefined forecast period is order-invariant, avoiding the

problem of choosing the wrong order of variables.

Finally, the dependence of the uncertainty factors on lagged values of yt creates

an (indirect) extra dependency of current values of yt to lagged values not captured by

the main VAR. This dependency is clearly noticed when the main VAR is rewritten in a

state-space model, as in equation B.33, where the coefficients δ are also part of F1 and

F2. I follow strategy similar to Mumtaz and Theodoridis [2015] by imposing additional

shrinkage to the variance of δ, which I set to
(
θ21
l2

)
.

B.6 Generalized impulse responses procedure

In this Appendix I present the procedure of estimating the generalized impulse responses

for the news shock and the uncertainty shocks.

Due to the non-linearity that the time-varying volatilities bring to the model,

the feedback effect that the variables cause to the volatility through the uncertainty

factors, and the feedback of the uncertainty factors on the mean of the variables, it is

not possible to employ a conventional impulse response setting in this case. The strategy

here is to use an adaptation of the procedure proposed by Koop et al. [1996] and Pesaran

and Shin [1998], taking into account that the shocks vt = A−1
0 Λ

1/2
t εt are orthogonal by

construction.

The idea is to create two distinct forecast paths for the variables yt, a baseline

and a shocked containing the shock of interest (namely, τj). The generalized impulse

responses are the difference between these two paths. To accomplish this, it is necessary
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to construct a set of random shocks ωj,t over the forecast period that mimic the behavior

of εt. The generalized impulse response (GI) of a r set of randomly drawn ωrj,t is given

by

GIr(k, τj , ω
r
j,t,Zt,Π) = E[yrt+k|τj , ωrj,t,Zt,Π]− E[yrt+k|ωj,t,Zt,Π], (B.53)

where k is the forecast point in time, Zt is the information set containing all the known

history up to time t defined as Zt = (yt−p, ..., yt; gt−p, .., gt),
1 Π collects the coefficient

matrices as Π = [Ai,Bi,Di, βj , γj , δ], E[yrt+k|τj , ωrj,t,Zt] is the shocked path of yt and

E[yrt+k|ωrj,t,Zt] is the baseline path of the baseline path of yt.

Repeat the procedure of equation B.53 R times, and take the averages over R of

these paths. Koop et al. [1996] show that as R→∞, by the Law of Large Numbers these

averages will converge the conditional expectations E[yt+k|τj ,Zt,Π] and E[yt+k|Zt,Π],

and the generalized impulse response can be constructed as

GI(k, τj ,Zt,Π) = E[yt+k|τj ,Zt,Π]− E[yt+k|Zt,Π]. (B.54)

B.6.1 Generalized impulse responses for a news shock

For the news shock case, I start with the state-space procedure presented in equations

B.33 and B.36 (Appendix B.4). The news shock is identified as the orthogonalization

of the shocks on the mean of the variables that maximize the variance decomposition of

one objective variable over a predefined forecast period. It follows that the identification

relies on an orthogonalization of the innovations εt. By construction, εt is independent

from the idiosyncratic innovations ej,t and the uncertainty innovations um,t and uf,t.

Since I am only interested in εt for the news shock identification, I set ej,t = 0, um,t = 0

and uf,t = 0 in this procedure.

With this simplification, it is possible to rewrite equations B.33 and B.36, respec-

tively, as
yt

yt−1

...

yt−p

gt

 =


F1 F2 ... F3 F4

In 0 ... 0 0

... ... ... ... ...

0 0 ... In 0

δ −δ ... 0 D1


︸ ︷︷ ︸

F


yt−1

yt−2

...

yt−p−1

gt−1

+


A−1

0 Λ
1/2
t 0 ... 0 B0

0 0 0 0 0

... ... ... ... ...

0 0 0 0 0

0 0 0 0 I2




εt

0

...

0

0

 ,

(B.55)

1Where gt = (lnmt; ln ft).
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and

lnhj,t = γj,0 + γj,1 lnhj,t−1, j = 1, ..., n. (B.56)

Now that the model has only a single set of innovations εt, the generalized im-

pulse responses for the news shock can be constructed with the following steps. The

identification of the news shock is dependent on the total variance, and the variance

changes over time, so the following procedure is executed at each point in time. This

allows the construction of a time-varying identification, with different impulse responses

at every point in the time span considered.

Step 1: Construct a baseline path.

Considering one draw r of the random innovations ωrj,t and K being the forecast

period, construct by simulation a baseline path from t+ 1 to t+K for the idiosyncratic

innovations lnhrj,t using equation B.56, and for yrt,base, g
r
t,base

2 and Λr
t,base using equation

B.55.

Step 2: Construct a shocked path for a utilization-adjusted TFP shock.

Take the same draw r from Step 1, and the idiosyncratic innovations lnhrj,t. For

t + 1, construct a one standard deviation shock on utilization-adjusted TFP by adding

to ωrj,t+1 the shock τ rTFP , which is a vector with 1 in the first position (where utilization-

adjusted TFP ordered first in the VAR) and zeros elsewhere. Construct by simulation

a TFP shocked path from t+ 1 to t+K for yrTFP,t, g
r
TFP,t

3 and Λr
TFP,t using equation

B.55.

Step 3: Construct the impulse responses for a TFP shock.

Following equation B.53, construct the impulse responses for a utilization-adjusted

TFP shock as the differences between the shocked and the baseline paths for the draw

r as

GIrTFP,t(k, τ
r
TFP , ω

r
j,t,Zt,Π) = E[yrt+k,TFP , g

r
t+k,TFP |τ rTFP ,Λr

t+k,TFP , ω
r
j,t,Zt,Π]

− E[yrt+k,base, g
r
t+k,base|Λr

t+k,base, ω
r
j,t,Zt,Π].

(B.57)

Step 4: Identify the news shock.

Identify the news shock for the draw r as the orthogonalization on εt that maxi-

mizes the variance decomposition of utilization-adjusted TFP over a predefined K fore-

cast period.4 The idea of identifying the news shock for every r draw is in line with the

2Where gt,base = (lnmt,base; ln ft,base).
3Where gt,TFP = (lnmt,TFP ; ln ft,TFP ).
4For this paper, I follow Barsky and Sims [2011] and set K = 40 quarters ahead.
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discussion about the difference between structural and model identification from Fry and

Pagan [2011]. Every r draw is a realization of a different model among infinite alterna-

tive models, leading to unique identification of the news shock. The best approximation

of the structural identification will be the average across all r impulse responses after

the news shock is properly identified for each different model.

Following the identification procedure proposed in Section 4.3.1, the news shock

τ rt,news can be identified as

τ rt,news = arg max

∑K
k=0GI

r
TFP,t(k, τ

r
TFP , ω

r
j,t,Zt, ,Π, τ)GIrTFP,t(k, τ

r
TFP , ω

r
j,t,Zt, ,Π, τ)

′∑K
k=0 B1A−1Λ

1/2
t+k,TFP (A−1Λ

1/2
t+k,TFP )′B

′
1

,

(B.58)

subject to

A−1(1, j) = 0, ∀j > 1,

τ(1, 1) = 0,

τ ′τ = 1,

(B.59)

where B1 is the line correspondent to the utilization-adjusted TFP coefficients in the

state-space representation described in equation B.33 (Appendix B.4).

Step 5: Construct a shocked path for the news shock.

Take the same draw r from Step 1, and the idiosyncratic innovations lnhrj,t. For

t + 1, construct a TFP news shock by adding the shock τ rt,news to ωrj,t+1. Construct by

simulation a news shocked path from t+1 to t+K for yrt,news, g
r
t,news

5 and Λr
t,news using

equation B.55.

Step 6: Construct the impulse responses for the news shock.

Following equation B.53, construct the impulse responses for the news shock as

the differences between the shocked news path and the baseline path from Step 1 for the

draw r as

GIrt,news(k, τ
r
t,news, ω

r
j,t,Zt,Π) = E[yrt+k,news, g

r
t+k,news|τ rt,news,Λr

t+k,news, ω
r
j,t,Zt,Π]

− E[yrt+k,base, g
r
t+k,base|Λr

t+k,base, ωj,t,Zt,Π].

(B.60)

Step 7: Construct the average impulse responses for the news shock.

Repeat Steps 1 to 6 for R number of times and form the averages of the shocked

5Where gt,news = (lnmt,news; ln ft,news).
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news and baseline paths across all R draws of ωj,tr as

ȳt+k,news(k, τt,news,Zt,Π) =
1

R

R∑
r=1

yrt+k,news(τ
r
t,news,Λ

r
t+k,news, ω

r
j,t,Zt,Π),

ḡt+k,news(k, τt,news,Zt,Π) =
1

R

R∑
r=1

grt+k,news(τ
r
t,news,Λ

r
t+k,news, ω

r
j,t,Zt,Π),

ȳt+k,base(k,Zt,Π) =
1

R

R∑
r=1

yrt+k,base(Λ
r
t+k,base, ω

r
j,t,Zt,Π),

ḡt+k,base(k,Zt,Π) =
1

R

R∑
r=1

grt+k,base(Λ
r
t+k,base, ω

r
j,t,Zt,Π).

(B.61)

Lastly, construct the final generalized impulse responses for the news shock as

the differences between these averages, as in

GIt,news(k, τt,news,Zt,Π) = [ȳt+k,news(k, τt,news,Zt,Π), ḡt+k,news(k, τt,news,Zt,Π)]

− [ȳt+k,base(k,Zt,Π), ḡt+k,base(k,Zt,Π)].

(B.62)

After testing different R sizes, I set R = 1, 000 for this paper. Since changing

from R = 1, 000 to R = 5, 000 did not present any noticeable difference, R = 1, 000 is

sufficiently large to achieve the difference between conditional expectations expressed in

equation B.54.

B.6.2 Generalized impulse responses for uncertainty shocks

Here I describe the procedure for constructing the generalized impulse responses to macro

and financial uncertainty shocks.

Step 1: Construct a baseline path.

Considering one draw r of the random innovations ωrj,t and K being the forecast

period, construct by simulation a baseline path from T +1 to T +K for the idiosyncratic

innovations lnhrj,t using equation B.56, and for yrt,base, g
r
t,base and Λr

t,base using equation

B.55.

Step 2: Construct a shocked path for each of the uncertainty shocks.

Take the same draw r from Step 1, and the idiosyncratic innovations lnhrj,t. Con-

struct the macro and financial shocks through a lower triangular Cholesky decomposition
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as

τ rmacro = chol(Φu, ‘lower’) ∗ qmacroi ,

τ rfin = chol(Φu, ‘lower’) ∗ qfini ,
(B.63)

where qmacroi is a 2×1 vector with 1 in the first position and zero in the second, and qfini
is a 2× 1 vector with zero in the first position and 1 in the second. For T + 1, construct

a one standard deviation shock on macro uncertainty by substituting (um,t, uf,t)
′ in

equation B.33 for τ rmacro. Construct by simulation a macro shocked path from T + 1 to

T +K for yrt,macro, g
r
t,macro and Λr

t,macro using equation B.33. Repeat the process for the

financial uncertainty by using τ rfin to construct paths for yrt,fin, grt,fin and Λr
t,fin.

Step 3: Construct the impulse responses for the uncertainty shocks.

Following equation B.53, construct the impulse responses for the macro and fi-

nancial shocks as the differences between the shocked and the baseline paths for the

draw r as

GIrmacro(k, τ
r
macro, ω

r
j,t,ZT ,Π) = E[yrT+k,macro, g

r
T+k,macro|τ rmacro,Λr

T+k,macro, ω
r
j,t,ZT ,Π]

− E[yrT+k,base, g
r
T+k,base|Λr

T+k,base, ω
r
j,t,ZT ,Π],

GIrfin(k, τ rfin, ω
r
j,t,ZT ,Π) = E[yrT+k,fin, g

r
T+k,fin|τ rfin,Λr

T+k,fin, ω
r
j,t,ZT ,Π]

− E[yrT+k,base, g
r
T+k,base|Λr

T+k,base, ω
r
j,t,ZT ,Π].

(B.64)

Step 4: Construct the average impulse responses for the uncertainty shocks.

Repeat Steps 1 to 3 for R number of times and form the averages of the shocked
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and baseline paths across all R draws of ωj,tr as

ȳt+k,macro(k, τt,macro,Zt,Π) =
1

R

R∑
r=1

yrt+k,macro(τ
r
t,macro,Λ

r
t+k,macro, ω

r
j,t,Zt,Π),

ȳt+k,fin(k, τt,fin,Zt,Π) =
1

R

R∑
r=1

yrt+k,fin(τ rt,fin,Λ
r
t+k,fin, ω

r
j,t,Zt,Π),

ḡt+k,macro(k, τt,macro,Zt,Π) =
1

R

R∑
r=1

grt+k,macro(τ
r
t,macro,Λ

r
t+k,macro, ω

r
j,t,Zt,Π),

ḡt+k,fin(k, τt,fin,Zt,Π) =
1

R

R∑
r=1

grt+k,fin(τ rt,fin,Λ
r
t+k,fin, ω

r
j,t,Zt,Π),

ȳt+k,base(k,Zt,Π) =
1

R

R∑
r=1

yrt+k,base(Λ
r
t+k,base, ω

r
j,t,Zt,Π),

ḡt+k,base(k,Zt,Π) =
1

R

R∑
r=1

grt+k,base(Λ
r
t+k,base, ω

r
j,t,Zt,Π).

(B.65)

Lastly, construct the final generalized impulse responses for the macro and finan-

cial shocks as the differences between these averages, as in

GIt,macro(k, τt,macro,Zt,Π) = [ȳt+k,macro(k, τt,macro,Zt,Π), ḡt+k,macro(k, τt,macro,Zt,Π)]

− [ȳt+k,base(k,Zt,Π), ḡt+k,base(k,Zt,Π)],

GIt,fin(k, τt,fin,Zt,Π) = [ȳt+k,fin(k, τt,fin,Zt,Π), ḡt+k,fin(k, τt,fin,Zt,Π)]

− [ȳt+k,base(k,Zt,Π), ḡt+k,base(k,Zt,Π)].

(B.66)

As it is the case for the news shock, I set R = 1, 000 for the uncertainty shocks,

which is enough to achieve the difference between conditional expectations expressed in

equation B.54.
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B.7 Data description

Table B.2: Description of macroeconomic variables

Name Description Source

1 Utilization-
adjusted TFP

Utilization-adjusted TFP in log levels. Computed by Fernald
[2014].

Fernald’s website
(Nov/2015)

2 Consumption Real per capita consumption in log levels. Computed us-
ing PCE (nondurable goods + services), price deflator and
population.

Fred

3 Output Real per capita GDP in log levels. Computed using the real
GDP (business, nonfarm) and population.

Fred

4 Investment Real per capita investment in log levels. Computed using
PCE durable goods + gross private domestic investment,
price deflator and population.

Fred

5 Hours Per capita hours in log levels. Computed with Total hours
in nonfarm business sector and population values.

Fred

6 Prices Price deflator, computed with the implicit price deflator for
nonfarm business sector.

Fred

7 FFR Fed funds rate. Fred

8 Payroll Total nonfarm payroll: All employees in log levels. Fred

9 IP Industrial production index in log levels. Fred

10 Help to unemp. Help wanted to unemployment ratio. Fred

11 Pers. income Real personal income in log levels. Fred

12 M&T sales Real manufacturing and trad sales in log levels. Fred

13 Earnings Average of hourly earnings (goods producing) in log levels. Fred

14 PPI Producer price index (finished goods) in log levels. Fred

Note: All for the 1975Q1-2012Q3 period. Monthly series converted to quarterly by averaging over the
quarter.
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Table B.3: Description of financial variables

Name Description Source

1 Spread Difference between the 10-year Treasury rate and the FFR. Fred

2 S&P500 S&P500 stock index in logs levels. Fred

3 S&P dividend
yield

S&P dividend yield, in log and annualized. Fred

4 EBP Excess bond premium as computed by Gilchrist and Za-
kraǰsek [2012].

Gilchrist’s website
(Mar/2015)

5 Excess returns CRSP excess returns, in log and annualized. French’s website
(Jul/2016)

6 SMB Small minus big risk factor, in log and annualized. French’s website
(Jul/2016)

7 HML High minus low risk factor, in log and annualized. French’s website
(Jul/2016)

8 Momentum Momentum, in log and annualized. French’s website
(Jul/2016)

9 R15-R11 Small stock value spread, in log and annualized. French’s website
(Jul/2016)

10 Ind. 1 Consumer industry sector-level return, in log and annualized. French’s website
(Jul/2016)

11 Ind. 2 Manufacturing industry sector-level return, in log and annu-
alized.

French’s website
(Jul/2016)

12 Ind. 3 High technology industry sector-level return, in log and an-
nualized.

French’s website
(Jul/2016)

13 Ind. 4 Health industry sector-level return, in log and annualized. French’s website
(Jul/2016)

14 Ind. 5 Other industries sector-level return, in log and annualized. French’s website
(Jul/2016)

Note: All for the 1975Q1-2012Q3. Monthly series converted to quarterly by averaging over the quarter.
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Table B.4: Macroeconomic and financial uncertainties

Name Description Source

Financial Uncertainty Measures

1 Realized Volatil-
ity

Realized volatility computed using daily returns using the
robust estimator by Rousseeuw and Croux [1993].

CRPS

2 VXO Option-implied volatility of the SP100 future index. Avail-
able from 1986Q1.

CBOE

3 LMN-fin-1 Financial forecasting uncertainty computed by Ludvigson
et al. [2016]. -1 is one-month-ahead, -3 is three-months and
-12 is one-year ahead.

Ludvigson’s
website
(Feb/2016)

4 LMN-fin-3
5 LMN-fin-12

Macroeconomic Uncertainty Measures

1 Policy
uncertainty

Economic Policy Uncertainty Index in logs computed by
Baker et al. [2016].

Bloom’s website
(Mar/2016)

2 Business
uncertainty

Business forecasters dispersion computed by Bachmann et al.
[2013] up to 2011Q4.

AER website

3 SPF
disagreement

SPF forecasters dispersion on one-quarter-ahead Q/Q real
GDP forecasts computed using the interdecile range.

Philadelphia Fed

4 LMN-macro-1 Macro forecasting uncertainty computed by Ludvigson
et al. [2016]. -1 is one-month-ahead, -3 is three-months and
-12 is one-year ahead.

Ludvigson’s
website
(Feb/2016)

5 LMN-macro-3
6 LMN-macro-12

Note: All for the 1975Q1-2012Q3 period except when noted. Monthly series converted to quarterly by
averaging over the quarter.
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B.8 Volatilities

Figure B.8.1: Volatilities of macroeconomic variables

Note: The estimated volatilities of macroeconomic variables are composed of an id-
iosyncratic component and the common macroeconomic volatility factor weighted by
a loading βm,j. The dotted lines define the 68% confidence bands computed with
200 posterior draws. The macroeconomic variables are described in Table B.2.

Figure B.8.2: Volatilities of financial variables

Note: The estimated volatilities of financial variables are composed of an id-
iosyncratic component and the common financial volatility factor weighted by
a loading βf,j. The dotted lines define the 68% confidence bands computed
with 200 posterior draws. The financial variables are described in Table B.3.
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B.9 Alternative ordering of uncertainty shocks

Figure B.9.3: Impulse responses to a financial uncertainty shock with financial uncer-
tainty ordered first

The uncertainty shocks with alternative ordering are identified through Cholesky
decomposition with financial uncertainty ordered first, and macroeconomic un-
certainty ordered last, as described in Section 4.3.3. The generalized im-
pulse responses of the uncertainty shock are the average of 1,000 simu-
lated random innovations, as described in Appendix B.6. The shaded ar-
eas define the 68% confidence bands computed with 200 posterior draws.

Figure B.9.4: Impulse responses to a macroeconomic uncertainty shock with financial
uncertainty ordered first

Note: The uncertainty shocks with alternative ordering are identified through
Cholesky decomposition with financial uncertainty ordered first, and macroeco-
nomic uncertainty ordered last, as described in Section 4.3.3. The gener-
alized impulse responses of the uncertainty shock are the average of 1,000
simulated random innovations, as described in Appendix B.6. The shaded
areas define the 68% confidence bands computed with 200 posterior draws.
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Appendix C

Chapter 5
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C.1 Figures

Figure C.1.1: Fraction of forecast error variance explained by a news shock with the new
version of the utilization-adjusted TFP under the Kurmann and Otrok [2013] model

The grey area corresponds to the 16%-84% coverage bands of the model considering the
new TFP series.
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Figure C.1.2: Correlations between news and slope shocks on an 80 quarter moving
window from an alternative VAR model augmented by financial variables and considering
the old utilization-adjusted TFP series

Calculation of correlations between the recovered news and slope shocks over an 80
quarter moving window under the original identification of Kurmann and Otrok [2013].

Correlation over the full sample (from 1975:I to 2007:IV) is 0.48. The date in the
horizontal axis corresponds to the final observation of the 80 quarter moving window.
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Appendix D

Chapter 6
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D.1 Barsky and Sims [2011] identification

Taking a vector of endogenous variables yt, assuming that the utilization-adjusted TFP

is ordered first, the moving average representation (in levels) is written as

yt = B(L)ut. (D.1)

If there is a linear mapping of the innovations (ut) and the structural shocks (st),

this moving average representation can be rewritten as

ut = A0st (D.2)

and

yt = C(L)st, (D.3)

where C(L) = B(L)A0, st = A−1
0 ut, and A0 is the impact matrix that makes

A0A
′
0 = Σ (variance-covariance matrix of innovations). It is possible to rewrite A0

as Ã0D, where Ã0 is the lower triangular Cholesky factor of the covariance matrix of

reduced form innovations (or any other orthogonalization), and D is any k × k matrix

that satisfies DD
′

= I.

Considering that Ωi,j(h) is the share of the forecast error variance of variable i

of the structural shock j at horizon h, it follows that

Ω1,1(h)surprise + Ω1,2(h)news = 1∀h, (D.4)

where i = 1 refers to utilization-adjusted TFP, j = 1 is the surprise technological

shock, and j = 2 is the news shock. The share of the forecast error variance of the news

shock is defined as

Ω1,2(h)news =
e
′
1

(∑h
τ=0 BτÃ0De2e

′
2D

′
Ã

′

0B
′
τ

)
e1

e
′
1

(∑h
τ=0 BτΣB′

τ

)
e1

=

∑h
τ=0 B1,τÃ0 γγ

′
Ã

′
0B

′
1,τ∑h

τ=0 B1,τΣB
′
1,τ

, (D.5)

where e1 is a selection vector with 1 in the position i = 1 and zero elsewhere,

e2 is a selection vector with 1 in the position i = 2 and zero elsewhere, and Bτ is the

matrix of moving average coefficients measured at each period until τ . The combination

of selection vectors with the proper column of D can be written as γ, which is an

orthonormal vector that makes Ã0γ the impact of a news shock over the variables.

The news shock is identified by solving the optimization problem
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γnews2 = argmax

H∑
h=0

Ω1,2(h)news, (D.6)

s.t.

Ã0(1, j) = 0, ∀j > 1 (D.7)

γ2(1, 1) = 0 (D.8)

γ′2γ2 = 1, (D.9)

where H is an truncation period, and the restrictions impose that the news shock does

not have an effect on impact (t = 0) and that the γ vector is orthonormal.

Based on the γnews2 vector, the structural surprise technological shock (ssurpriset )

and the news shock (snewst ) ares
surprise
t

snewst

...

 = Ã−1
0

[
γsurprise1 γnews2 ...

]−1
u′t, (D.10)

assuming that

γsurprise1 =


1

0

0

...

 . (D.11)

To ensure a positive news shock, I check whether the response of stock prices is positive

on impact. If the response is negative, all computed responses are multiplied by (−1).
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D.2 Data description

Table D.1: Description of variables

Name Description Source

1 Utilization-
adjusted TFP

Utilization-adjusted TFP in log levels. Computed by Fernald
[2014].

Fernald’s website
(Nov/2015)

2 Consumption Real per capita consumption in log levels. Computed us-
ing PCE (nondurable goods + services), price deflator and
population.

Fred

3 Investment Real per capita investment in log levels. Computed using
PCE durable goods + gross private domestic investment,
price deflator and population.

Fred

4 Output Real per capita GDP in log levels. Computed using the real
GDP (business, nonfarm) and population.

Fred

5 Hours Per capita hours in log levels. Computed with Total hours
in nonfarm business sector and population values.

Fred

6 Prices Price deflator, computed with the implicit price deflator for
nonfarm business sector.

Fred

7 SP500 SP500 stock index in logs levels. Fred

8 EBP Excess bond premium as computed by Gilchrist and Za-
kraǰsek [2012].

Gilchrist’s web-
site (Mar/2015)

9 LMN-fin-3 Financial forecasting uncertainty three-months computed by
Ludvigson et al. [2016].

Ludvigson’s web-
site (Feb/2016)

10 FFR Fed funds rate. Fred

11 Spread Difference between the 10-year Treasury rate and the FFR. Fred

Note: All for the 1975Q1-2012Q3 period except when noted. Monthly series converted to quarterly by
averaging over the quarter.
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D.3 Additional figures

Figure D.3.1: Impulse responses to a news shock under an instrumental variable approach

Note: Impulse responses of a news shock computed by employing instru-
mental variables, with quarterly data ranging from 1975Q1 to 2012Q3.
The dashed lines define the 68% confidence bands computed with 1,000
posterior draws. The VAR model includes all variables in Table D.1.

Figure D.3.2: Variance decomposition of news shock under an instrumental variable
approach

Note: Variance decomposition of a news shock computed by employing in-
strumental variables, with quarterly data ranging from 1975Q1 to 2012Q3.
The dashed lines define the 68% confidence bands computed with 1,000
posterior draws. The VAR model includes all variables in Table D.1.
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Figure D.3.3: Impulse responses to a news shock identified with the Barsky and Sims
[2011] approach

Note: Impulse responses of a news shock computed by employing the
identification procedure of maximizing the variance decomposition described
in Appendix D.1, with quarterly data ranging from 1975Q1 to 2012Q3.
The dashed lines define the 68% confidence bands computed with 1,000
posterior draws. The VAR model includes all variables in Table D.1.
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Simon Gilchrist and Egon Zakraǰsek. Credit spreads and business cycle fluctuations.

American Economic Review, 102(4):1692–1720, 2012.
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