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Abstract: Suppose that G is a finitely generated group andWP(G) is the formal language of words defining the
identity in G. We prove that if G is a virtually nilpotent group that is not virtually abelian, the fundamental
group of a finite volumehyperbolic three-manifold, or a right-angledArtin groupwhose graph lies in a certain
infinite class, then WP(G) is not a multiple context-free language.
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1 Introduction
The word problem for a finitely generated group G is to decide if a given word in the generators and their
formal inverses defines the identity in G or not. This problem was proposed for finitely presented groups by
M. Dehn [9] in 1911 and has been profitably studied since then. In 1971, A. V. Anisimov [2] introduced the
word problem as a formal language. The validity of this point of view was confirmed by Muller and Schupp’s
result [26] that the word problem of G is a context-free language if and only if G is virtually free.

Muller and Schupp’s result inspired many authors. See for example [7, 8, 11, 12, 19, 20, 24, 29, 30].
One intriguing aspect of their work is the connection it reveals between the logical complexity of the word
problem, considered as a formal language, and geometric properties of the Cayley diagram. Context-free lan-
guages are generated by context-free grammars and are accepted by pushdown automata. For word problems
of groups, these two conditions correspond directly to the geometric properties:
(i) cycles in the Cayley diagram are triangulable by diagonals of uniformly bounded length, and
(ii) the Cayley diagram has finitely many end isomorphism types,
respectively.

A natural question is whether there is a groupwhose word problem is not context-free, but is in the larger
class of indexed languages. In particular, is theword problemofℤ2 indexed? These questions have been open
for decades. Indexed languages form level two of the OI hierarchy of language classes, and S. Salvati [31] has
recently shown that theword problemofℤ2 is amultiple context-free (MCF) language andhence at level three
of that hierarchy. In addition, as with Muller and Schupp’s result, Salvati’s linguistic characterization of the
word problem ofℤ2 is closely related the geometry of its Cayley diagram.
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54 | R. H. Gilman et al., Groups whose word problems are not semilinear

It is of interest, then, to investigate which other groups haveMCFword problem andwhat geometric con-
ditions their Cayley diagrams might satisfy. Our results are listed below. Their proofs require only the fact
that MCF languages form a cone of semilinear languages. (MCF languages were introduced in [32]; semilin-
earity was proved in [36].) What is actually proved here is that the word problems of the groups in question
are not semilinear.

Theorem 5. Letℂ be a cone of semilinear languages. If the word problem of a finitely generated virtually nilpo-
tent group G is in ℂ, then G is virtually abelian.

Meng-Che Ho [18] has recently shown that the word problem of ℤn is MCF for all n. Lemma 3 below states,
among other things, that if the word problem of a group is in a cone, then the word problems for finite
index supergroups are in the same cone. Hence all finitely generated virtually abelian groups have MCFword
problems. We have the following corollary to Theorem 5.

Corollary 1. A finitely generated virtually nilpotent group has MCF word problem if and only if it is virtually
abelian.

Our next theorem concerns fundamental groups of three-manifolds.

Theorem 9. Suppose that M is a hyperbolic three-manifold. ThenWP(π1(M)) is not MCF.

Let G be the class of graphs containing a point and closed under the following operations.
∙ If Γ, Γ ∈ G, then Γ ⊔ Γ ∈ G.
∙ If Γ ∈ G, then Γ ∗ {v} ∈ G.
Here ⊔ denotes disjoint union, and Γ ∗ {v} is the cone of Γ. See Section 5.1 for precise definitions. It will be
clear from the context whether we are speaking of the cone of a graph or a cone of languages.

Theorem 12. Let Γ be a graph, and let A(Γ) be the associated RAAG. If A(Γ) has multiple context-free word
problem, then Γ ∈ G.

These theorems are proved in Sections 3, 4 and 5, respectively. Section 2 contains relevant background
material including definitions of cones and semilinearity. For further introduction to formal language theory,
see [14, 17, 21, 25]. An introduction aimed at group theorists is given in [13].

Multiple context-free languages are generated by multiple context-free grammars. These grammars
resemble context-free grammars, but their productions work on tuples of words instead of single words. The
tuples are concatenated at the end of a derivation to produce the derivedword. Consult [22] and [32] for more
information.

2 Background

2.1 Formal languages

Let Σ be a finite alphabet: that is, a non-empty finite set. A formal language over Σ is a subset of Σ∗, the free
monoid over Σ. Elements of Σ∗ are called words.

A choice of generators for a group G is a surjective monoid homomorphism π : Σ∗ → G. We require that Σ
be symmetric: closedunder a fixed-point-free involution ⋅ −1.We also require π(a−1) = π(a)−1 for all a ∈ Σ. The
involution extends to all words over Σ in the usual way. Note that we adhere to the usual notation for group
presentations. The choice of generators corresponding to a presentation ⟨a, t | tat−1a−2⟩ uses the alphabet
Σ = {a, a−1, t, t−1}, etc.

The word problem for G is the formal language WP(G) = π−1(1). It is evident that WP(G) depends on
the choice of generators, but this dependence is mild. As we will see below, whether or not WP(G) is in any
particular cone of formal languages is independent of the choice of generators and depends only on G.
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Figure 1: A finite automaton accepting the language bc∗b + bac∗b.

2.2 Regular languages and finite automata

A finite automaton over Σ is a finite directed graphwith edges labeled bywords in Σ∗, a designated start vertex
and a set of designated accepting vertices. A word is accepted by an automaton if it is the concatenation of
labels along a directed path from the start vertex to an accepting vertex. The accepted language is the set of all
accepted words. The regular languages over a finite alphabet Σ are the languages accepted by finite automata
over Σ.

Figure 1 shows a finite automaton with start vertex qa and one accepting vertex qc. The regular language
accepted by this automaton may be denoted symbolically via the regular expression bc∗b + bac∗b. Here
+ stands for union and ∗ for submonoid closure.

2.3 Transducers

A transducer τ (more precisely a rational transducer) is a finite automaton whose edge labels are pairs of
words (w, v) over finite alphabets Σ, ∆, respectively. Path labels are obtained by concatenating the edge labels
in each coordinate. The labels of all accepted paths form a subset of Σ∗ × ∆∗. The image under τ of a language
L ⊂ Σ∗ is τ(L) = {v | there is some w ∈ L with (w, v) ∈ τ}.

2.4 Cones

A classℂ of languages is a cone (also called a full trio [25, p. 201–202]) if it contains at least one non-empty
language and is closed under the following operations.
(i) If L ⊂ Σ∗1 is in ℂ, and σ : Σ

∗
1 → Σ∗2 is a monoid homomorphism, then σ(L) is in ℂ.

(ii) If L ⊂ Σ∗2 is in ℂ, and σ : Σ
∗
1 → Σ∗2 is a monoid homomorphism, then σ−1(L) is in ℂ.

(iii) If L ⊂ Σ∗1 is in ℂ, and R ⊂ Σ
∗
1 is regular, then L ∩ R is in ℂ.

In otherwords, cones are closedunderhomomorphism, inversehomomorphismand intersectionwith regular
languages. The condition on non-empty languages above is included to rule out the empty cone and the cone
consisting of the empty language. Multiple context-free languages form a cone [32].

Theorem 2 (Nivat’s theorem [27]). If L is in a cone and τ is a transducer, then τ(L) is in the same cone. In other
words, cones are closed under transduction.

As the following results are well known, we provide only sketches of the proofs.

Lemma 3. Let WP(G) be the word problem of G with respect to a choice of generators π : Σ∗ → G. Suppose
WP(G) is in a cone of ℂ of formal languages. Then the following statements hold.
(i) The word problem for G with respect to any choice of generators is in ℂ.
(ii) The word problem for every finitely generated subgroup of G is in ℂ.
(iii) The word problem for every finite index supergroup of G is in ℂ.

Proof. Suppose δ : ∆∗ → G is any choice of generators for G or one of its finitely generated subgroups.
Since ∆∗ is a free monoid, δ factors as π ∘ f for some monoid homomorphism f : ∆∗ → Σ∗. It follows that
δ−1(1) = f−1(WP(G)) ∈ ℂ.
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Now suppose G has finite index in a group K, and δ : ∆∗ → K is a choice of generators. Since we are
assuming that ∆ is symmetric, we can partition it into a disjoint union ∆ = ∆0 ⊔ ∆−10 . By Theorem 2, it suffices
to show that WP(K) is the image of WP(G) under a transduction τ. We define τ in three steps.

First, recall that the vertices of the Schreier diagram, Γ, of G in K are the right cosets {Gx} of G in K, and
that, for each vertex Gx and generator a ∈ ∆0, there is a directed edge labeled a from Gx to Gxa. Paths in Γ
may traverse edges in either direction, but an edge traversed against its orientation contributes the inverse
of its label to the label of the path. Fixing G as the start vertex and sole accepting vertex makes Γ into a finite
automaton that accepts the regular language of all words over ∆ that represent elements of G.

Second, pick a spanning tree Γ0 for Γ with root G and edges oriented in any direction. Each edge e in
Γ − Γ0 determines a Schreier generator uav−1 for G. Here u is the label of the path in Γ0 from G to the source
vertex of e, v is the label of the path to the target vertex, and a is the label of e.

Third, make Γ into a transducer by changing its labels into pairs of words. Existing edge labels become
the second components of new edge labels. Each edge in the spanning tree has the empty word as the first
component of its label, while each edge e not in the spanning tree has a new letter be as the first component
of its label.

Let Σ be the alphabet of all the be’s and their formal inverses. The transducer Γ defines a binary relation
τ : Σ∗ → ∆∗. Define a monoid homomorphism π : Σ∗ → G, which sends each be to the image under δ of its
corresponding Schreier generator, and likewise for b−1e . It is straightforward to check first that π(u) = δ(v) for
any (u, v) ∈ τ and second that τ(WP(G)) = WP(K).

2.5 Semilinearity

For each ai ∈ Σ = {a1, . . . , ak} and w ∈ Σ∗, define |w|i to be the number of occurrences of ai in w. The Parikh
map ψ : Σ∗ → ℕk sends w to the vector (|w|1, . . . , |w|k), whereℕ is the set of non-negative natural numbers.

A linear subset of ℕk is one of the form v0 + ⟨v1, . . . , vm⟩, i.e., a translate of a finitely generated sub-
monoid. A semilinear subset of ℕk is a finite union of linear subsets. A semilinear language L ⊂ Σ∗ is a lan-
guage whose image under the map ψ : Σ∗ → ℕk defined above is semilinear. Multiple context-free languages
are semilinear by [36].

Since semilinearity is preserved bymonoid homomorphismsℕk → ℕm, our discussion yields the follow-
ing useful result.

Lemma 4. Suppose that L ⊂ Σ∗ is semilinear, and R ⊂ Σ∗ is regular. Then the projection of ψ(W ∩ R) onto any
non-empty subset of coordinates is semilinear.

For short, we say that the projection of a regular slice of a semilinear language onto a non-empty subset of
coordinates is semilinear. We call the composition of these projections with the Parikh map Parikhmaps too.

3 Nilpotent groups
The goal of this section is to prove the following.

Theorem 5. Letℂ be a cone of semilinear languages. If the word problem of a finitely generated virtually nilpo-
tent group G is in ℂ, then G is virtually abelian.

Assume G is virtually nilpotent but not virtually abelian with word problem in a semilinear cone ℂ. By
Lemma 3, we may assume, without loss of generality, that G is nilpotent; that is, G has an ascending
central series

1 = Z0 ⊂ Z1 ⊂ ⋅ ⋅ ⋅ ⊂ Zk = G,

where Zi+1/Zi is the center of G/Zi. If k = 1, there is nothing to prove, so we assume k ≥ 2.
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Recall the notation for the commutator [g, h] = g−1h−1gh, and recall also that subgroups of a finitely
generated nilpotent group are themselves finitely generated [16, Corollary 10.2.4]. We divide the rest of the
proof into two lemmas.

Lemma 6. There exist g ∈ G, h ∈ Z2 with [g, h] of infinite order.

Proof. Suppose, for all choices of g, h as above, [g, h] has finite order. Then every [g, h] lies in the torsion
subgroup of Z1 whence the orders of the [g, h]’s are uniformly bounded by some integer m. It follows that
[g, hm] = [g, h]m = 1 for all g, h. But then Z2/Z1 is a finitely generated abelian torsion group and hence finite.
By [4, Lemma 0.1], a finitely generated nilpotent group with finite center is finite. Thus G/Z1 is finite, and Z1
is abelian of finite index, which contradicts our assumption that G is not virtually abelian.

Without loss of generality, Σ contains letters ag, ah, az, which project to g ∈ G, h ∈ Z2, and z = [g, h], respec-
tively. LetW = WP(G) be the word problem of G.

W ∩ a∗ga∗h(a
−1
g )
∗(a−1h )

∗a∗z = {amg anh(a
−1
g )

m(a−1h )
namnz },

where m and n range over all non-negative integers. Since W is semilinear by hypothesis, Lemma 4 implies
that S = {(m,mn) | m, n ∈ ℕ} is semilinear. Thus the following lemma completes the proof of Theorem 5.

Lemma 7. S = {(m,mn)|m, n ∈ ℕ} is not semilinear.

Proof. Observe that if distinct elements of S share the same first coordinate, then their second coordinates
differ by at least the size of that first coordinate. It follows that S does not contain a linear subset of the form

(p, q) + ⟨(r, s), (0, t)⟩

with r ̸= 0 ̸= t. Indeed, S would then contain both (p + kr, q + ks) and (p + kr, q + ks + t) for all integers k > 0
contrary to our observation above.

Thus either all the module generators for any linear subset of S have first coordinate 0 or none do (as we
may safely assume that (0, 0) is not a generator). Modules of the first type are contained in {0} ×ℕ, and the
slopes of elements (thought of as vectors based at the origin) of a module of the second type are bounded
above by the maximum of the slopes of its generators.

We see that if S were semilinear then the slopes of all elements whose first coordinates are large enough
would be uniformly bounded, which is not the case.

4 Fundamental groups of hyperbolic three-manifolds

4.1 Distortion

We begin with a simple example that illustrates the main idea of this section. Suppose that

G = BS(1, 2) = ⟨a, t | tat−1a−2⟩

is a Baumslag–Solitar group [5]. We claim that W = WP(G) is not multiple context-free (MCF). Consider the
regular language R = t∗a(t−1)∗A∗, and form the rational sliceW ∩ R. Abelianizing tells us that, in any word
w ∈ W ∩ R, the powers of t and t−1 appearingmust be equal. Thus we haveW ∩ R = {tnat−na−2n | n ∈ ℕ}. We
now apply the Parikh map ψ = (| ⋅ |t , | ⋅ |a−1 ). The image ψ(W ∩ R) is the graph of f(n) = 2n, lying inside ofℕ2.
Clearly, any linemeets the image in at most two points. Thus ψ(W ∩ R) is not semilinear, and soW is not MCF
by Lemma 4.

Suppose that G is a group, and H is a subgroup. Fix a generating set Σ for G that contains a generating
set ΣH for H. Let Γ and ΓH be the corresponding Cayley graphs. The inclusion of H into G gives a Lipschitz
map ΓH → Γ. The failure of thismap to be bi-Lipschitzmeasures the distortion ofH inside of G. In the BS(1, 2)
example, the distortion of the subgroup H = ⟨a⟩ is exponentially large.
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The general principle is as follows. If G has a distorted subgroup H, and H has a sufficiently “regular”
sequence of elements, then WP(G) is not MCF.

Question 8. Suppose that G has a subgroup H with super-linear distortion. Does this imply thatWP(G) is not
MCF?

4.2 Fundamental groups

We say that a manifold M is hyperbolic if M admits a riemannian metric, of constant sectional curvature
minus one, which is complete and has finite volume. Using deep results from low-dimensional topology, we
will prove the following.

Theorem 9. Suppose that M is a hyperbolic three-manifold. ThenWP(π1(M)) is not MCF.

Before giving the proof, we provide the topological background. Suppose that S is a hyperbolic surface. Sup-
pose that f : S → S is a homeomorphism. We form Mf , a surface bundle over the circle, by taking S × [0, 1]
and identifying S × {1}with S × {0} using themap f . The gluingmap f is called themonodromy of the bundle.
The surface S is called the fiber of the bundle; in a small abuse of notation Mf is also simply called a fibered
manifold.

Let ϕ : π1(S)→ π1(S) be the homomorphism induced by f . Note that

π1(Mf ) ≅ π1(S) ⋊ϕ ℤ = ⟨Σ, t | tat−1 = ϕ(a), a ∈ Σ⟩,

where Σ generates π1(S).
It is a result of Thurston [34, Theorem 5.6] that a fibered manifold Mf is hyperbolic if and only if the

monodromy f is pseudo-Anosov. Instead of giving the definition here, we will simply note an important con-
sequence [35, Theorem 5]: If f : S → S is pseudo-Anosov then, for any letter a ∈ Σ, the word-lengths of the
elements ϕn(a) grow exponentially.

One sign of the importance of surface bundles to the theory of three-manifolds is Thurston’s virtual fiber-
ing conjecture [34, Question 6.18]: every hyperbolic three-manifold has a finite cover that is fibered. This
remarkable conjecture is now a theorem, due to Wise [37, Corollary 1.8] in the non-compact case and due to
Agol [1, Theorem 9.2] in the compact case. (For a detailed discussion, includingmany references, please con-
sult [3].) Note that any finite cover of a hyperbolic manifold is again hyperbolic. Thus, by Thurston’s theorem,
the monodromy of the fibered finite cover is always pseudo-Anosov.

We are now ready for the proof.

Proof of Theorem 9. Suppose that M is a hyperbolic three-manifold. Appealing to Lemma 3 and to the solu-
tion of the virtual fibering conjecture, we may replace M by a fibered finite cover Mf , with fiber S. Fix Σ
a generating set for π1(S), and let t be the stable letter, representing the action of the monodromy. Thurston
tells us that f is pseudo-Anosov, and thus, for any generator a ∈ Σ, the elements ϕn(a) grow exponentially in
the word metric on π1(S).

So G = π1(Mf ) is generated by Σ ∪ {t} and has the presentation given above. Set W = WP(G), and set
R = t∗a(t−1)∗Σ∗. Homological considerations imply that

W ∩ R = {tnat−nw−1 | n ∈ ℕ, w ∈ Σ∗, w =G ϕn(a)}.

Define |w|Σ = ∑b∈Σ|w|b, and consider the Parikhmapψ = (| ⋅ |t , | ⋅ |Σ). The imageψ(W ∩ R) ⊂ ℕ2 contains, and
lies above, the graph of an exponentially growing function. Thus its intersection with any non-vertical line is
finite. We deduce from Lemma 4 thatW is not MCF.

Remark 10. Five of the remaining seven Thurston geometries are easy to dispose of. In S3 geometry, all fun-
damental groups are finite. In S2 ×ℝ and in 𝔼3 geometry, all fundamental groups are virtually abelian, and
so they are all MCF. In Nil geometry, all fundamental groups are virtually nilpotent yet not virtually abel-
ian. Thus Theorem 5 applies; none of these fundamental groups are MCF. In Sol geometry, all manifolds are
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finitely covered by a torus bundle with Anosov monodromy. Thus the discussion of this section applies, and
these groups do not have word problem in MCF.

The question is open for the geometries ℍ2 ×ℝ and PSL(2,ℝ) geometry, for both uniform and non-
uniform lattices.

We end this section with another obvious question.

Question 11. Suppose that Sg is the closed, connected, oriented surface of genus g > 1. Is the word problem for
π1(Sg)multiple context-free?

5 Right-angled Artin groups
Let G be the class of graphs containing a point and closed under the following operations.
∙ If Γ, Γ ∈ G, then Γ ⊔ Γ ∈ G.
∙ If Γ ∈ G, then Γ ∗ {v} ∈ G.
Here ⊔ denotes disjoint union, and Γ ∗ {v} is the join (defined below) of Γ and {v}.

This section will be devoted to proving the following theorem about right-angled Artin groups (RAAGs).

Theorem 12. Let Γ be a graph and A(Γ) the associated RAAG. If A(Γ) has multiple context-free word problem,
then Γ ∈ G.

Definition 13. Let Γ be a graph (more precisely, an undirected graph with no loops). The associated right-
angled Artin group A(Γ) is the group with presentation

⟨v ∈ V(Γ) | [v, w] if [v, w] ∈ E(Γ)⟩.

RAAGs have been the subject of much recent interest because of their rich subgroup structure; in particular,
every special group embeds in a RAAG. See [1, 15, 38].

Theorem 12 would have a much cleaner statement if one could prove the following conjecture:

Conjecture 14. The word problem for F2 ×ℤ is not MCF.

This would prove (and by work of [23] is equivalent to) the following:

Conjecture 15. A RAAG A(Γ) has MCF word problem if and only if Γ is a disjoint union of cliques.

5.1 Graph theory and RAAGs

Definition 16. We use the following notation:
(i) K1 denotes the graph with one vertex and no edges.
(ii) P4 denotes the graph with 4 vertices and 3 edges depicted in Figure 2.

Definition 17. A graph Γ is a join if there exist non-empty induced subgraphs J, K ⊂ Γ such that the following
hold:
∙ V(Γ) = V(J) ⊔ K(L).
∙ Every vertex of J is joined to every vertex of K.
We write Γ = J ∗ K if Γ is a join of J and K.

a b c d

Figure 2: The graph P4.
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Clearly, A(Γ) = A(J) × A(K) if Γ = J ∗ K. It follows from Servatius’ centralizer theorem [33] that A(Γ) is a non-
trivial direct product if and only if Γ is a join. For example A(P4) is not a direct product.

There is a nice characterization of joins using complement graphs.

Definition 18. Let Γ be a graph. Its complement Γ̄ is defined as follows.
∙ V(Γ̄) = V(Γ).
∙ Two vertices v, w are joined by an edge in Γ̄ if and only if they are not joined by an edge in Γ.

Remark 19. Complementation is an involution on the set of graphs (that is, ̄Γ̄ = Γ). Notice that P4 is isomor-
phic to its own complement.

Lemma 20. A graph Γ is a join if and only if Γ̄ is disconnected.

Proof. Suppose Γ = J ∗ K. Then, in Γ∗, there are no edges from any vertex of J to any vertex of K. For the
converse, use Remark 19.

Complements respect induced subgraphs as follows.

Lemma 21. Let Γ be a graph. If Λ ⊂ Γ is a full subgraph, then Λ̄ ⊂ Γ̄ is a full subgraph.

Definition 22. The class CoG of complement reducible graphs is the smallest class that contains K1 and
is closed under complement and disjoint union. For short, we speak of cographs instead of complement
reducible graphs.

Theorem 23 (see [6]). The following statements hold.
(i) A connected cograph is either a join or the graph with a single vertex.
(ii) A graph is a cograph if and only if it has no full P4 subgraphs.

5.2 Proof of Theorem 12

Theorem 24. The word problem for A(P4) is not MCF.

Proof. Recall A(P4) = ⟨a, b, c, d | [a, b], [b, c], [c, d]⟩. LetW denote theword problem in A(P4). Wewill con-
sider the Bestvina–Brady group BB(P4), which is the kernel of the following homomorphism:

A(P4)→ ℤ, a → 1, b → 1, c → 1, d → 1.

By [10], BB(P4) is a free group of rank three generated by {x = ab−1, y = bc−1, z = cd−1}. We will study the
language L = W ∩ R, where R denotes the regular language (ad)∗(a−1d−1)∗{x, y, z}∗. By counting exponents,
we see that

L ⊂ {(ad)n(a−1d−1)n{x, y, z}∗}.
Let

un = xy2n−1z−1, vn = x−1y2n−1z.
Note that in the group A(P4) we have the equalities

un = b2n−2(ad)c−2n , vn = b2n(a−1d−1)c2−2n .

We can thus see that
(ad)nc−2n = u1y−2u2y−4 . . . y2−2nun ,

b2n(a−1b−1)n = vny2−2nvn−1 . . . y−2v1.
Combining these, we have

(ad)n(a−1d−1)n = u1y−2u2y−4 . . . uny−2nvn . . . y−2v1.

Since BB(P4) is a free group, this is aminimal representation of this element. Thus the positive-exponent sum
of y in any word representing (ad)n(a−1d−1)n is greater than or equal to 2n2. We can now consider the image
of the Parikh map:

L → ℕ2, w → (|w|a , |w|y).

Authenticated | s.schleimer@warwick.ac.uk author's copy
Download Date | 11/3/18 9:58 PM



R. H. Gilman et al., Groups whose word problems are not semilinear | 61

The image of this lies on and above the curve y = 2n2. Thus any non-vertical line intersects this set in a finite
subset. Hence L is not semilinear and neither isW.We conclude, by Lemma4, that theword problem in A(P4)
is not MCF.

Theorem 25. The word problem for F2 × F2 is not MCF.

Proof. Let F2 be free on {a, b}, and let f : F2 → Z2 be the abelianization map F2 → ℤ2. The fiber prod-
uct of f is P = {(u, v) ∈ F2 × F2 | f(u) = f(v)}. It is easy to show that P is generated by r = (a, a), s = (b, b),
t = (aba−1b−1, 1). By [28, Theorem 2], P is quadratically distorted in F2 × F2. In particular, any word in r, s
and t representing the element (anbma−nb−m , 1) has at least nm occurrences of t.

Consider the intersection of the word problemW with the regular language R:

L = W ∩ R = W ∩ a∗b∗(a−1)∗(b−1)∗{r, s, t, r−1, s−1}∗.

Look at the image of L under the Parikh map:

L → ℕ2, w → (|w|a , |w|t).

The image of this map is {(n, nm)}, and, by Lemma 7, this is not a semilinear set. Hence L is not semilinear
and therefore not MCF. It follows by Lemma 4 that the word problem in F2 × F2 is not MCF.

Proof of Theorem 12. By [23], the class of groups with MCF word problem is closed under free products. We
can therefore reduce to connected graphs Γ. The class of groups with MCF word problem is closed under
taking finitely generated subgroups.Wewill now consider connected graphs Γ and the associated RAAG A(Γ).
By Theorems 24 and 25, the graph Γ cannot contain any full subgraphs isomorphic to P4 or a square.

By Theorem 23, a connected graph that does not contain an induced subgraph P4 is the join of two
induced subgraphs J and K. As J and K are induced subgraphs, they also contain no copies of P4. Thus if
connected, they split as a join and so on.

Repeating this splitting process, we see Γ = A0 ∗ A1 ∗ ⋅ ⋅ ⋅ ∗ An. If Diam(Ai) > 1 for more than one i, then
the graph contains a square. By maximality of the splitting, we can assume that Ai = {v} for all i ̸= 0. If A0 is
connected, then, bymaximality of the splitting, it is apoint andA(Γ) = ℤn. In the case thatA0 is disconnected,
we can use the above analysis to decompose the connected components of A0. Repeating this process, we see
that Γ ∈ G.

Funding: This material is based upon work supported by the National Science Foundation grant DMS-
1440140 while the authors were in residence at the Mathematical Science Research Institute (MSRI) in
Berkeley, California, during the Fall 2016 Semester.
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