

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/110428

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/161773346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/110428
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Scheduling with Time-of-Use Costs∗

Bo Chen† Xiandong Zhang‡

October 21, 2018

Abstract

We address a class of problems of scheduling a set of independent jobs onto a single machine
that charges each job for its processing under variable time-of-use tariffs. Our scheduling
objective is to minimize the total cost of processing all the jobs subject to a minimum level
of performance in one of the regular scheduling criteria. For each of the problems in the
class, we establish its computational tractability. For those that are tractable we provide an
efficient algorithm, while for those that are intractable we provide a pseudo-polynomial-time
algorithm or a polynomial-time approximation scheme.

Keywords: scheduling; time-of-use cost; computational complexity; efficient algorithm;
polynomial-time approximation scheme

1 Introduction

Time-of-use (ToU) tariffs on retail electricity prices have been widely used to manage the balance
between supply and demand and to improve the reliability and efficiency of electrical power
grids, thanks to the growing infrastructure of advanced metering and monitoring (Braithwait et
al., 2007; Fang et al., 2016). For example, as one of the largest combined natural gas and electric
energy companies in the United States, PG&E offers ToU plans where they charge higher prices
for peak hours and considerably lower prices otherwise (PG&E, 2017). As the demand peaks,
the cost of electricity goes up dramatically, due partially to suppliers’ reliance on expensive and
non-renewable resources like coal to meet the demand (EIA, 2017). Figure 1 shows a typical
variable ToU tariff scheme. ToU pricing as a technique for matching supply and demand of
temporal resources (such as energy, computing resources on a cloud computing platform, and
charging stations for electric vehicles) can be seen widely (Chawla et al., 2017).

Wan and Qi (2010) investigate the problem of allocating a single resource of ToU costs to a
number of activities (known as jobs) to minimize the total resource cost plus a traditional regular
scheduling objective, such as total completion time and maximum lateness of jobs. Kulkarni and
Munagala (2013) study dynamic variants of such problems in which jobs are released over time and
scheduling decisions have to be made online. Fang et al. (2016) focus on minimizing the total cost
of resource usage while allowing each job to have a resource demand in addition to its processing
workload. In this paper, we are concerned with a class of single-resource scheduling problems
that are very different from those in the aforementioned studies. In our problems, minimizing the
total cost of resource usage is the primary objective, while traditional scheduling objectives are
secondary. Research on scheduling under the latter objectives has been extensive and relatively

∗To appear in European Journal of Operational Research
†Corresponding author: Warwick Business School, University of Warwick, Coventry, CV4 7AL, UK;

b.chen@warwick.ac.uk
‡School of Management, Fudan University, Shanghai, 200433, China; xiandongzhang@fudan.edu.cn

1

"(
F
;

C

;@@F?<Q 5JOLM

* + , - . / 0 1 2 *) ** *+ *, *- *. */ *0 *1 *2 +) +* ++ +, +-

")').)

")'*))

")'*.)

")'+))

")'+.)

4LDND><G #CDBC$

4LDND><G #@H@LB@I>Q$

8!&K@<F
6D?&K@<F 6D?&K@<F8I&K@<F

Figure 1: A variable TOU tariff scheme (Braithwait et al., 2007)

established (see, for example, Chen, Potts and Woeginger (1998) and Leung (2004)). However,
research on scheduling under the former objective is much more scarce, which is, therefore, our
focus in this paper. We do not allow offset to each other between the two levels of objectives.

The two-level scheduling problems have been studied in the literature when the objectives
of both levels are traditional scheduling objectives. For example, Allahverdi and Aydilek (2014)
and Huo and Zhao (2015) consider scheduling problems of minimizing total job completion time
subject to the constraint of bounded makespan. These studies can be incorporated into the
efforts to tackle more general problems of multiple traditional scheduling objectives, as reviewed
by Hoogeveen (2005). According to Hoogeveen (2005), there are four types of approaches to
bi-criteria scheduling problems.

• Lexicographical optimization: Optimize one objective subject to the constraint that the so-
lution value of another objective is optimized. For example, Gupta and Ruiz-Torres (2000)
consider the identical parallel-machine scheduling problem of minimizing makespan sub-
ject to minimum total flow-time; Wan and Yen (2009) consider single-machine scheduling
problem of minimizing the total weighted earliness subject to minimum number of tardy
jobs.

• Linear composition objective function: Optimize a linear composite function of both ob-
jectives. Wan and Qi (2010) and Fang et al. (2016) use this type of approach, while Chen
and Bulfin (1993) use weighted combinations of maximal tardiness, flow-time and number
of tardy jobs.

• General composition objective function: Minimize a composite two-objective function that
is nondecreasing in both arguments. For example, Hoogeveen and Van de Velde (1995)
apply this approach to the bi-criteria single-machine scheduling problem of minimizing
total job completion time and maximum cost simultaneously.

• Pareto Optimization: Identify all Pareto optimal solutions by solving a series of problems,
each of which optimizes one objective given an upper or low bound on another objective.
For example, Geng and Yuan (2015) present a polynomial-time algorithm for finding all
Pareto optimal solutions in scheduling a batch-machine to minimize the maximum lateness
and makespan simultaneously.

2

In this paper, we study how to schedule a given set of jobs onto a machine with ToU processing
costs, so that the total processing cost is minimized subject to that certain scheduling feasibility
condition (such as deadline) is satisfied. We refer to this problem as scheduling with ToU costs
(STOUC). Clearly, the two-level approach we take in this paper is aimed at finding a Pareto
optimal solution of the STOUC problem.

Our study on the STOUC problem has been initially motivated by its diverse applications,
such as in dynamic pricing for perishable assets (Weatherford and Bodily, 1992; Bitran and
Caldentey, 2003). In many situations, decision makers have to consider the changing costs of
resources when scheduling their operational activities. Because of the ToU tariffs on electricity
prices, manufacturers or service providers can save utility expenses by scheduling their electricity-
consuming activities carefully. Due to varying cargo rates and shipping rates (Kasilingam, 1997;
Wang et al., 2015), shipping agents of air cargos or liner containers can save logistics cost while
satisfying their customer demands. Because prices of passenger airline tickets vary over time
(McGill and Van Ryzin, 1999), and hotel room rates also change seasonally or have weekly pat-
terns (Badinelli, 2000), travel agencies consider these price fluctuations when designing vacation
tour packages, and training organizations adjust their training schedules to save accommodation
and travelling costs of their training programs. In health-care sector, physicians and nurses have
normal working hours and are costly to work overtime. Appointment scheduling systems need
to consider both patient satisfaction and welfare of physicians and nurses (Gupta and Denton,
2008). In a world of smart-metering and other digitized accounting systems, demands for tackling
varying resource cost structures are growing.

Our main contributions in this paper are threefold: (a) We answer the question of polynomial-
time solvability of the STOUC problem. We show that even the basic STOUC problem, one with
a common job deadline, is strongly NP-hard and even with very restricted ToU costs (the cost
vector has two “valleys”, whose precise definition will follow), it is NP-hard at least in the ordinary
sense and is not approximable within any constant factor. We also provide a pseudo-polynomial-
time algorithm for the basic STOUC problem with a two-valley ToU cost vector. (b) We solve
the basic STOUC problem to optimality if its ToU cost vector has no more than one valley and
provide an FPTAS for the basic problem if its ToU cost vector has at most two valleys and the
ratios of these costs are bounded above. (c) We establish that, as long as the ToU cost vector
has no more than one valley, the STOUC problem with either bounded lateness, or bounded
tardiness, or bounded flow-time is polynomially solvable, and the STOUC problem with bounded
total of job completion times is also polynomially solvable if additionally the dimension of the
cost vector is bounded.

The remaining part of this paper is organized as follows. In Section 2, we give a formal
definition of our main problem. In Section 3 we tackle the basic model. We identify precise
boundary between tractability and intractability, and provide efficient algorithms and an FPTAS
for tractable problems. In Section 5, we extend our basic model to other common scheduling
constraints. We provide our conclusions in the last section.

2 Preliminaries and problem complexity

A set J = {J1, . . . , Jn} of n independent jobs needs to be scheduled onto a single machine, which is
continuously available during the time horizon [0, T] for a given T . Job Jj ∈ J requires processing
on the single machine for an uninterrupted pj time units. The time horizon is partitioned into
m ≥ 2 periods P = {P1 = [a0, a1), . . . ,Pm = [am−1, am)} and ∆i = ai − ai−1 > 0 is the duration
of period Pi for i = 1, . . . ,m, where am = T . A unit cost ci ≥ 0, which we call ToU cost, is
incurred if certain amount of time in period Pi is used for processing a job by the single machine.

3

Denote the sequence of ToU costs by π = (c1, . . . , cm). Note that by construction, we have
ci 6= ci+1 for i = 1, . . . ,m − 1. Denote by c(t) ∈ {c1, . . . , cm} the ToU cost for processing over
time interval [t− 1, t) for any integer t ∈ [0, T].

If all jobs are not available for processing at the same time, we use rj to denote the release
time of job Jj ∈ J . Similarly, if individual due time are specified for job completions, we let dj
denote the due time of job Jj ∈ J .

For ease of presentation, we call a period Pi a valley (respectively, hill) if its ToU cost ci is
smaller (respectively, larger) than the ToU cost(s) of its neighboring period(s). For example, in
the typical ToU tariffs illustrated in Figure 1, there are two valleys and one hill. We assume all
problem data are integers. Denote

Pst =

t∑
j=s

pj , 1 ≤ s, t ≤ n. (1)

In particular, denote P = P1n and Pst = 0 if s > t.
In our basic model, we require that all jobs must be completed by a common deadline D̄,

which is part of the problem specification. In other words, any feasible schedule σ has to satisfy
Cj(σ) ≤ D̄ for all Jj ∈ J , where Cj(σ) denotes the completion time of job Jj in schedule σ.
Without loss of generality, we assume that

∑n
j=1 pj ≤ D̄ = T . Therefore, in our basic model, we

seek a feasible schedule of minimum total execution cost. We refer to the STOUC problem with
deadline as the basic STOUC problem. It turns out that our basic STOUC problem is already
computationally intractable and difficult to be approximated, as the following theorem states.

Theorem 1. The basic STOUC problem is strongly NP-hard and, furthermore, not in APX, i.e.,
there is no polynomial-time ρ-approximation algorithm for any constant ρ > 1 unless P = NP.

Proof. We reduce any instance I1 of the 3-partition problem to an instance I2 of the basic
STOUC problem. Instance I1: Given a positive integer B and a set of 3k other positive integers
{b1, . . . , b3k} such that B/4 < bj < B/2 for all j ∈ N = {1, . . . , 3k}. The question: does there
exist a partition of the index set N into k 3-element subsets N1, . . . , Nk such that

∑
j∈Ni

bj = B
for all i = 1, . . . , k?

From I1 we construct instance I2 of our problem as follows. Let the deadline D̄ = kB+k−1
and the number of periods m = 2k−1 with durations and the corresponding ToU costs as follows:

∆2i−1 = B, c2i−1 = 0, for i = 1, . . . , k;
∆2i = 1, c2i = 1, for i = 1, . . . , k − 1.

Then it is clear that the answer to the question for instance I1 is “yes” if and only if the optimal
solution value to the problem instance I2 is zero, which implies that no constant approximation
exists. �

Evidence of intractability of our basic STOUC problem is further strengthened by the follow-
ing theorem.

Theorem 2. If π has more than one valley, then the basic STOUC problem is at least ordinary
NP-hard and not in APX.

Proof. We reduce any instance I1 of the partition problem to an instance I2 of the basic STOUC
problem. Instance I1: Given a positive integer B and a set of k other positive integers {b1, . . . , bk},
such that 2B =

∑
j∈N bj , where N = {1, . . . , k}, is there a subset N1 of the index set N such

that
∑

j∈N1
bj = B?

4

From I1 we construct instance I2 of our problem as follows. Let the deadline D̄ = 2B + 1
and the number of periods m = 3 with durations and the corresponding ToU costs as follows:

∆1 = ∆3 = B, c1 = c3 = 0;
∆2 = 1, c2 = 1.

Then it is clear that the answer to the question for instance I1 is “yes” if and only if the optimal
solution value to the problem instance I2 is zero, which implies that no constant approximation
exists. �

3 Algorithms for the basic model of simpler costs

Although our basic STOUC problem is very difficult in general as discussed in Section 2, some
prominent special cases, of interest on their own, can be dealt with efficiently. In this section, we
provide an optimal polynomial-time algorithm and a pseudo-polynomial-time algorithm for the
basic STOUC problem when the cost vector has one and two valleys, respectively. We deal with
another special case in the next section.

We say a schedule (resp. partial schedule) is dense (resp. a dense block) if there is no idle time
between processing any two adjacent jobs. Clearly, any schedule consists of one or more dense
blocks.

Lemma 1. There exists an optimal schedule in which each dense block starts at ai or ends at aj
for some 0 ≤ i, j ≤ m.

We provide our proofs of all lemmas in the Appendix for the continuity of our exposition.
When a dense block is processed from time t1 to t2, we say that the dense block occupies time

interval [t1, t2). If [t1, t2) ∩ [ai−1, ai) 6= ∅ for some 1 ≤ i ≤ m, we say that the block uses period
Pi = [ai−1, ai).

Lemma 2. If the cost vector π contains exactly v ≥ 1 valley(s), then there exists an optimal
schedule that consists of no more than v dense blocks and each dense block uses at least one valley.

Using Lemmas 1 and 2, we are able to solve the basic STOUC problem efficiently when the
cost vector π contains one valley.

Theorem 3. The basic STOUC problem is solvable in polynomial time if cost vector π contains
no more than one valley.

Proof. According to Lemmas 1 and 2, there exists an optimal dense schedule that starts at ai
or ends at aj , for some 0 ≤ i, j ≤ m. To find the optimal schedule, we simply check all ai for
0 ≤ i ≤ m as candidate start and end points of the schedule. The time complexity of the search
is therefore O(m). �

With Theorems 2 and 3, we have drawn a clear boundary for the complexity of our basic
STOUC problem. Let us make the boundary even finer.

Theorem 4. The basic STOUC problem is solvable in pseudo-polynomial time if π has two
valleys.

Proof. According to Lemmas 1 and 2, there are at most two dense blocks in an optimal schedule,
and either dense block starts at some ai or ends at some aj , for some 0 ≤ i ≤ m − 1 and
1 ≤ j ≤ m. If we know the lengths of these two dense blocks, we can find the optimal schedule by

5

checking all ai as candidate start and end points for these two dense blocks. The time complexity
of the checking process is O(m2). Now we generate all possible lengths of the two dense blocks
as follows. Let F (L1, L2, j) = 0, if there exists a job set J (L1) ⊆ Jj = {J1, . . . , Jj} such that∑

k∈J (L1) pk = L1 and
∑

k∈Jj/J (L1) pk = L2, and F (L1, L2, j) = 1, otherwise. Initially, we set

F (0, 0, 0) = 0 and F (x, y, 0) = 1 for any x 6= 0 or y 6= 0. We apply the following recursion:

F (L1, L2, j) = min {F (L1 − pj , L2, j − 1), F (L1, L2 − pj , j − 1)} . (2)

There are O(nP 2) states in F (·, ·, ·). Hence, the complexity of the above dynamic programming
is O(nP 2).

Since we have O(P 2) pairs of {L1, L2} for which F (L1, L2, n) = 0, and we find the minimum
total cost for a schedule corresponding to each pair by setting the start and end points at values
of ai for 0 ≤ i ≤ m, the time complexity of the whole algorithm is O(nP 2 +m2P 2). �

Remark 1. Note that, as a special case of two-valley π, it is pyramidal, where the ToU cost
monotonically increases to some point and then monotonically decreases, as considered by Fang
et al. (2016). This special case can be solved more easily, by a pseudo-polynomial-time dynamic
programming, since optimal dense blocks in this case must start at time 0 or end at time T .

Remark 2. According to Theorems 2 and 4, the basic STOUC problem with a two-valley ToU
cost vector is neither in APX nor strongly NP-hard.

By extending the number of valleys in π or restricting the number of distinct job lengths in
the above theorem, we immediately obtain the following conclusions.

Corollary 5. The basic STOUC problem is solvable in pseudo-polynomial time if π has constant
v valleys, and the time complexity is O(nP v +mvP v). �

Corollary 6. If π has two valleys and the number of distinct job sizes is r, then there is a
polynomial time algorithm that optimally solves the basic STOUC problem and the time complexity
is O(m2n2r−1).

Proof. If the number of distinct job sizes is r, the number of distinct lengths of L1 or L2 in
recursion (2) is bounded by

(
n+r−1
r−1

)
, which is polynomial in n. There are O(n2r−1) states in

F (L1, L2, j). Using the algorithm in the proof of Theorem 4, we obtain O(m2n2r−1) as the time
complexity of the algorithm. �

4 FPTAS for the basic model of bounded cost ratio

Let us further refine our picture for the solvability of the basic STOUC problem. In this sec-
tion, we provide a fully polynomial-time approximation scheme (FPTAS) for the problem when
the cost vector π has two valleys and the ToU cost ratio maxi ci/mini ci is bounded. Such a
FPTAS basically involves partitioning of all the jobs into two blocks of suitable lengths each,
approximating optimal solutions to two Subset-Sum problems.

4.1 Approximation of optimal block lengths

Denote by F ∗(λ1, λ2), F ∗(λ) ∈ (0,+∞] the minimum costs of processing two dense blocks of
lengths λ1 and λ2, and one dense block of length λ, respectively. Such minimum costs can be
determined in O(m2) and O(m) time according to Lemma 1. Let σ∗ be any optimal schedule

6

with two dense blocks of lengths L∗1 and P − L∗1, and let OPT be the cost of schedule σ∗. Then
we have

OPT = F ∗(L∗1, P − L∗1). (3)

Now let us proximate the two optimal block lengths: L∗1 and P −L∗1. Recall that the periods
in P are indexed in the direction of time. Let their corresponding costs satisfy ci1 ≤ · · · ≤ cim for
some index permutation (i1, . . . , im) and let Ph be the hill between the two valleys of cost vector
π for some 1 ≤ h ≤ m. Denote κv =

∑v
u=1 ∆iuciu for v = 1, . . . ,m. Determine u such that

u−1∑
u=1

∆iu < P ≤
u∑
u=1

∆iu , 1 ≤ u ≤ m. (4)

We can assume without loss of generality that (a) the optimal schedule contains two dense blocks;
(b) u ≥ 2 and OPT ≤ κū with iū = h, which is the index of the hill, since violation of either
inequality implies that there is an optimal schedule of one dense block, which can be find in O(m2)
time according to Lemma 1. Since it is evident that OPT > κu−1, we focus on the following
scenario:

κ`−1 < OPT ≤ κ` for some fixed `: u ≤ ` ≤ ū. (5)

Recall that period Ph = [ah−1, ah). Let L1 and L2 be, respectively, the total length of periods
in {Pi1 , . . . ,Pi`} that fall into valley 1 (before ah−1) and valley 2 (no earlier than ah−1), namely,

L1 =
∑

u≤`: iu<h
∆iu , and L2 =

∑
u≤`: iu≥h

∆iu .

Note that: (a) the periods counting towards L1 and L2 are connected in their own valleys with
period Ph in between; (b) if ` = ū, then the length ∆h of the hill period is counted towards L2;
(c) if at least one of L1 and L2 is zero, then it is evident that one dense block in the corresponding
single valley is an optimal solution. Therefore, we assume L1, L2 > 0.

According to Lemma 2, either dense block in the optimal schedule uses a valley. Without loss
of generality due to symmetry, we assume that dense block of length L∗i uses the valley in Li,
i = 1, 2. The following two Subset-Sum problems will be useful:

L = max
n∑
j=1

pjxj , s.t.
n∑
j=1

pjxj ≤ L1 and xj ∈ {0, 1}. (6)

R = max
n∑
j=1

pjxj , s.t.
n∑
j=1

pjxj ≤ P − L1 and xj ∈ {0, 1}. (7)

Let x∗ = (x∗1, . . . , x
∗
n) and x̂∗ = (x̂∗1, . . . , x̂

∗
n) be optimal solutions to (6) and (7), respectively.

Given our definition of L1, we can determine the value L∗1 in terms of L and R with the following
lemma.

Lemma 3. Suppose there is an optimal schedule of two dense blocks with the first block of length
L∗1. Then L∗1 = L if L∗1 ≤ L1 and L∗1 = P −R otherwise.

4.2 The details of the scheme

Note that (6) and (7) are two instances of the Subset-Sum problem, for which there is an FPTAS
(see, e.g., Kellerer et al., 2003). We establish that such an FPTAS, let us call it SS-FPTAS-Any,

7

can be used here to otbain an FPTAS to our problem under the assumptions of (5) and that
cim/ci1 is bounded by a constant. Let ε > 0 be any given approximation precision required.

Subroutine SS(`)

1. Use SS-FPTAS-Any to get a (1 − ε)-approximate solution x′ = (x′j) to problem (6) and a
(1− ε)-approximate solution x̂′ = (x̂′j) to problem (7).

2. Denote J ′ = {Jj ∈ J : x′j = 1} and Ĵ ′ = {Jj ∈ J : x̂′j = 0}. Let schedule σ1 (resp. σ2) be

such that all jobs in J ′ (resp. Ĵ ′) are in one dense block positioned optimally in valley 1
and the remaining jobs are in one dense block positioned optimally in valley 2.

3. Output schedule σ(`) ∈ {σ1, σ2} of the smaller cost.

Full Scheme SS-FPTAS

1. Calculate k according to (4).

2. Compute F ∗(P) and the corresponding schedule σ0. If u = 1 or iu > h, then stop and
output σ := σ0.

3. For ` = u, . . . , ū, call subroutine SS(`) to produce schedule σ(`). Output the schedules from
{σ0, σ(u), . . . , σ(ū)} that has the least execution cost.

Let us now establish that the scheme SS-FPTAS presented above is indeed an FPTAS.

Theorem 7. The scheme SS-FPTAS is a fully polynomial-time approximation scheme for the
basic STOUC problem when the cost vector has at most two valleys and the ratios of ToU costs
are bounded by a constant.

Proof. Denote by APP the total cost of executing the schedule produced by SS-FPTAS. We prove
that

APP−OPT

OPT
≤
(
cim
ci1
− 1

)
ε. (8)

From the description of our scheme, we only need to prove the above inequality when (5) is
satisfied. Recall that the optimal schedule σ∗ consists of two dense blocks of lengths L∗1 and
P − L∗1, respectively. We need to consider two cases: L∗1 ≤ L1 and L∗1 > L1.

Case 1: L∗1 ≤ L1. According to Lemma 3, L∗1 = L in (6). Let L′1 =
∑
{pj , Jj ∈ J ′}, then

it is (1 − ε)-approximate to L∗1. We have δ ≡ L∗1 − L′1 ≤ εL∗1. According to SS(`), we have
APP ≤ F ∗(L′1, P − L′1). Therefore, using (3) we obtain

APP−OPT ≤ F ∗(L′1, P − L′1)− F ∗(L∗1, P − L∗1)

≤ δ(cim − ci1) ≤ εL∗1(cim − ci1),

where the second inequality is due to the fact that (cim − ci1) is the maximum unit ToU cost
difference. The above implies (8) due to the fact that OPT ≥ Pci1 ≥ L∗1 ci1 .

Case 2: L∗1 > L1. According to Lemma 3, L∗1 = P −R in (7). Let L̂′1 =
∑
{pj , Jj ∈ Ĵ ′} and

δ̂ ≡ L̂′1 − L∗1. Since P − L̂′1 ≤ R according to the definitions of L̂′1 and R, we have δ̂ ≥ 0. Since
P − L̂′1 is (1− ε)-approximate to R, i.e., P − L̂′1 ≥ (1− ε)R, by rearranging the terms we obtain
δ̂ ≤ εR. According to SS(`), we obtain APP ≤ F ∗(L̂′1, P − L̂′1). Therefore, using (3) we have

APP−OPT ≤ F ∗(L̂′1, P − L̂′1)− F ∗(L∗1, P − L∗1)

≤ δ̂(cim − ci1) ≤ εR(cim − ci1),

which implies (8) due to the fact that OPT ≥ Pci1 ≥ Rci1 . �

8

5 Extensions of the basic model

Having studied thoroughly the basic STOUC problem, let us move on to some natural extensions
of the basic model. While our STOUC problem is still to seek a feasible schedule of minimum
total execution cost, the feasibility requirement will be more general or more complicated than
a simple deadline. In this section, we investigate the following feasibility requirements: bounded
(a) lateness (or tardiness), (b) flow-time, and (c) total of job completion times.

Since the deadline condition did not play any explicit role in the proofs of Theorems 1 and
2, the hardness of the STOUC problem with any of the above three feasibility requirements
remains, as can be seen easily by specifying the feasibility bound large enough to make the
feasibility requirement non-binding.

5.1 Bounded lateness

The lateness of job Jj is defined as `j = Cj − dj , where dj is, as introduced at the beginning of
Section 2, the due time of the job. Similar to the basic STOUC problem, we require that the
lateness of any job is bounded above by a pre-specified value, which is part of the problem input.
We start with an identification, in the following lemma, of optimal schedules of some special
structure.

Lemma 4. When the cost vector π has one valley, there is an optimal schedule in which jobs are
scheduled in order of non-decreasing due times (EDD for short of earliest-due-date) and jobs of
the same due times can be in any order.

Remark 3. Note that NP-hardness of a scheduling problem does not necessarily imply nonexis-
tence of an optimal schedule of EDD order. Consequently, it is worth noticing that the condition
of one-valley cost vector is needed in Lemma 4. Otherwise, EDD order can be suboptimal
as the following example shows: There are m = 3 periods with ∆1 = 2,∆2 = ∆3 = 1 and
c1 = c3 = 0, c2 = 1. There are two jobs J1 and J2 with their processing times and due times
p1 = d1 = 1 and p2 = d2 = 2. Feasibility requires that lateness be up bounded by 3. Then the
optimal schedule is to schedule job J2 in period P1 and J1 in period P3 with a total execution
cost of 0, while any schedule of EDD order has a cost of 1.

According to Lemma 4, we assume for the rest of this subsection that jobs are indexed in
EDD order, since there is an optimal schedule that is in this EDD order. Define

Q−kst = ak − Pst, Q+
kst = ak + Pst; 0 ≤ k ≤ m, 1 ≤ s, t ≤ n; (9)

and
Q̄−jst = (dj + L̄max)− Pst, Q̄+

jst = (dj + L̄max) + Pst; 1 ≤ j, s, t ≤ n; (10)

where the Pst values are defined in (1) and L̄max is the pre-specified upper bound on job lateness
as part of the problem input. Merge the two sets of non-negative Q values in (9) and the two sets
of non-negative Q̄ values in (10), arrange them in ascending order and then denote all these values
as λ0 = a0 < λ1 < · · · < λN = am. It is easy to see that N = O((m + n)n2). According to the
definition, time interval [λi−1, λi) is contained in a unique period of P = {P1, . . . ,Pm}. Similar
to Lemma 1, the following lemma describes some specific structure of an optimal schedule. We
provide a brief proof of the lemma in the appendix, which is based on the idea of moving jobs to
certain starting times, very similar to that in the proof of Lemma 1.

Lemma 5. When cost vector π has one valley, there is an optimal schedule (with bounded late-
ness) in which jobs are sequenced (1, . . . , n) and the completion time of any job is equal to λt for
some 1 ≤ t ≤ N .

9

Using Lemma 5, we can solve the corresponding problem efficiently by dynamic programming.

Theorem 8. The STOUC problem with bounded lateness is solvable in O(m(m + n)n3) time,
when the cost vector has one valley.

Proof. Index the jobs according to EDD order. The feasibility of the problem can be easily
checked by scheduling all jobs in one dense block and starting it at time 0. Let f(j, t) be the
minimum total cost for processing jobs J1, . . . , Jj subject to the condition that Jj is completed
by time t. According to Lemma 5, we can focus on t ∈ {λ1, . . . , λN}. Let λ′j = a0 + P1j and

λ′′j = min{am − Pj+1,n, dj + L̄max}. Clearly, λ′j , λ
′′
j ∈ {λ1, . . . , λN} are respectively the minimum

and maximum values of t for processing jobs J1, . . . , Jj when Jj is completed by time t in any
feasible schedule. With the definitions of λ′j and λ′′j , for all λi 6∈ (λ′j , λ

′′
j] (j = 1, . . . , n) we have:

f(j, λi) =


∞, for λi < λ′j ,∑λi

t=1 c(t), for λi = λ′j ,

f(j, λ′′j), for λi > λ′′j .

(11)

Note in particular that f(j, λ′j) for all j = 1, . . . , n are determined without the need of recursive
computation. The initialization of our dynamic programming algorithm is therefore completed
for all λi ∈ (λ′1, λ

′′
1] as follows:

f(1, λi) = min
s: s≤i∧λs≥λ′1

{
p1∑
t=1

c(λs − p1 + t)

}
, for λ′1 < λi ≤ λ′′1. (12)

Recall that c(·) in the above formula is a ToU cost defined at the beginning of Section 2. Noticing
that we have (11) for all λi 6∈ (λ′j , λ

′′
j], we use the following forward recursion for any j = 2, . . . , n:

f(j, λi) = min

{ pj∑
t=1

c(λi − pj + t) + f(j − 1, λi − pj), f(j, λi−1)

}
, for λ′j < λi ≤ λ′′j . (13)

On the running time of our DP algorithm (11)–(13), there are O(nN) possible values for
f(j, λi). To evaluate each of (12) and (13), we need to calculate the value

∑t2
t=t1

c(t) for some
pair of t1 and t2 such that t1 ≤ t2 with t1, t2 ∈ [a0, am], which can be done in O(m) time by first
determining a pair of indices u ≤ v such that t1 ∈ Pu and t2 ∈ Pv. Therefore, we need a total of
O(nmN) = O(m(m+ n)n3) time for implementation of the dynamic programming. �

Remark 4. If all periods Pi have a unit length, ∆i = 1 for all i = 1, . . . ,m, then the time
complexity of the dynamic programming is O(nm2).

5.2 Bounded tardiness, delivery- or flow-time

The tardiness of job Jj is defined as the lateness `j of the job unless `j < 0, in which case it is
defined as zero. Note that any schedule minimizing maximum lateness also minimizes maximum
tardiness (but not vice versa). Consequently, the STOUC problem with bounded tardiness can
be reduced to the STOUC problem with bounded lateness (with the same bound), which we have
studied in Section 5.1. However, the converse is not true, when the bound on the lateness is a
negative number −α, which indicates the requirement that each job must be completed at least
α time units in advance of its due time.

Now suppose each job Jj needs to be delivered, which takes qj ≥ 0 time units, after it is
completed at Cj on the machine. A schedule is feasible if all jobs are delivered to the customers

10

by a common deadline D ≥ qj (j = 1, . . . , n). We show that this problem, called STOUC-D, is
equivalent to the STOUC problem with bounded tardiness, called STOUC-T. Given any instance
of STOUC-D with bound D on the delivery time Cj+qj of each job Jj , we generate an instance of
STOUC-T by simply setting the due time of job Jj as dj = D− qj ≥ 0 and setting the tardiness
bound as T = 0. Clearly, a schedule is feasible for STOUC-T if and only if this schedule is
feasible for STOUC-D. On the other hand, given any instance of STOUC-T with bound T ≥ 0
on the tardiness max{0, Cj − dj} of each job Jj , we generate an instance of STOUC-D by simply
setting the delivery time of job Jj as qj = dmax − dj ≥ 0, where dmax = maxj dj , and setting the
delivery bound D = T + dmax ≥ qj . Clearly, a schedule is feasible for STOUC-D if and only if
this schedule is feasible for STOUC-T.

The flow-time of job Jj is defined as Cj − rj , where rj is, as introduced at the beginning of
Section 2, the release time of the job. For the STOUC problem with bounded flow-time, results
parallel to Lemmas 4 and 5 and Theorem 8, which are on bounded lateness, can be established in
a straightforward way by replacing due time dj with release time rj in the corresponding analyses.

5.3 Bounded total of job completion times

Having studied the STOUC problem with three bounded-max feasibility requirements, let us
consider the problem with bounded-sum feasibility requirement: in any feasible schedule, the
total of job completion times should not exceed a pre-specified upper bound.

Given the clear picture of computational complexity already established in Sections 2 for the
problem when the ToU cost vector has more than one valley, we focus the situation of one valley.
As Lemma 4, the following lemma identifies an optimal job sequence.

Lemma 6. When the cost vector π has one valley, there is an optimal schedule in which jobs are
scheduled in order of non-decreasing processing times (SPT for short of shortest-processing-time
first).

Remark 5. As in Remark 3, we note that NP-hardness of a scheduling problem does not neces-
sarily imply nonexistence of an optimal schedule of SPT order. Consequently, it is worth noticing
that the condition of one-valley cost vector is needed in Lemma 6. Otherwise, SPT order can be
suboptimal as the following example shows: There are m = 3 periods with ∆1 = 2,∆2 = ∆3 = 1
and c1 = c3 = 0, c2 = 1. There are two jobs with p1 = 1 and p2 = 2. Let the total of job
completion times be up bounded by 6. Then the optimal schedule is to schedule job J2 in period
P1 and J1 in period P3 with a total cost of 0, while any schedule of SPT order has a cost of 1.

Using Lemma 6, we assume in this subsection that jobs are indexed in SPT order, with
which and (9) we arrange all non-negative Q values in ascending order and denote them as
a0 = b0 < b1 < · · · < bÑ = am. We will call these numbers b-values. Then it is easy to see that

Ñ = O(mn2). According to the definition, time interval [bi−1, bi) is contained in a unique period
of P = {P1, . . . ,Pm}. We say a dense block non-floating if each of its job start (completion)
times is equal to some bt and floating otherwise. It is easy to see that for any dense block, if one
of the jobs is non-floating, then all are non-floating. The following lemma describes some specific
structure of an optimal schedule.

Lemma 7. When cost vector π has one valley, there is an optimal schedule with bounded total
of job completion times in which (a) jobs are sequenced (1, . . . , n), (b) there are at most m dense
blocks, and (c) all dense blocks are non-floating except possibly one. If such a floating block exits,
then the bound on the total of job completion times is binding.

Having the nice structures of an optimal schedule described in Lemma 7, we are in a position
to solve the STOUC problem at hand with some efficiency.

11

Theorem 9. When the ToU cost vector has one valley, the STOUC problem with bounded total
of job completion times is solvable in O(mm+2n3m−1) time, which is a polynomial when m is
fixed.

Proof. Index the jobs in any SPT order. According to Lemma 7, there is an optimal schedule
of job sequence (1, . . . , n) that has exactly m dense blocks with some of the neighboring pairs
possibly merged together. Clearly, there are

(
n−1
m−1

)
ways to partition the n jobs into m dense

blocks while keeping the SPT order. Given any such partition, there is at most one floating dense
block in an optimal schedule according to Lemma 7. Let Bi be the length of the i-th dense block
in this partition, i = 1, . . . ,m, and assume that the k-th dense block is potentially floating for
some 1 ≤ k ≤ m. For the other m − 1 non-floating dense blocks, we assign m − 1 start times

{ti : 1 ≤ i ≤ m, i 6= k} ⊆ {b0, . . . , bÑ−1}. There are
(
Ñ
m−1

)
ways to do the assignment since these

start times must be ordered increasingly. If we denote tm+1 = T , then the feasibility conditions
for the start time assignment is as follows:

tj+1 − tj ≥ Bj , for j ∈ {1, . . . ,m} \ {k − 1, k};
tk+1 − tk−1 ≥ Bk−1 +Bk;
t̄k ≡ µ̄−

∑
j 6=k(tj +Bj) ≥ tk−1 +Bk−1 +Bk;

where µ̄ is the pre-specified upper bound on the total of job completion times. Then, the start
time of the k-th block can be assigned to one of the b-values of the interval [tk−1+Bk−1, tk+1−Bk]
or to t̄k if t̄k ≤ tk+1 − Bk, in which case the upper bound of µ̄ is binding. The total number of

start time assignments of all possible m dense blocks is then bounded by
(
n−1
m−1

)
×m×

(
Ñ
m−1

)
× Ñ ,

which is O(mm+1n3m−1).
Once the start times of all three dense blocks are assigned and the feasibility conditions

displayed above are checked, we can calculate in O(m) time the execution cost of the sched-
ule corresponding to the assignment. Therefore, the total time to find an optimal schedule is
O(mm+2n3m−1). �

Remark 6. It is not difficult to see that the assumption of one valley in the ToU costs in Lemma 7
and hence in Theorem 9 can be relaxed to any constant number of valleys, for bounding by a
constant the number of floating dense blocks in an optimal schedule. The one-valley assumption
is necessary, however, for the existence of an optimal schedule in which jobs are sequenced in
SPT order, as we have demonstrated in Remark 5. Also the bound m on the number of dense
blocks is tight in the above theorem.

6 Concluding remarks

As demonstrated in Section 2, our STOUC problem is computationally intractable even for very
restricted ToU costs, which form only two valleys. We have also shown in other parts of the
paper various ways of restricting the structure of the ToU costs to make the STOUC problem
tractable.

We can further identify some special cases of the STOUC problem for which efficient algo-
rithms exist or can be found. For example, if the ToU costs are non-decreasing, then the STOUC
problem with bounded number of late jobs is solvable in O(n log n) time by the Moore-Hodgson
algorithm (Moore, 1968), where a job Jj is late if its lateness `j = Cj − dj is positive.

Nonetheless, with this paper we have achieved our primary objective of drawing a fine bound-
ary of solvability of the STOUC problem. We hope our study will stimulate further research on
scheduling problems with ToU costs.

12

Acknowledgments

This work is supported to the first author in part by a Visiting Professorship of the School of
Management, Fudan University; and to the second author in part by the National Natural Science
Foundation of China (Grant No. 11371103, No. 71531005 and No. 71222104) and a Shuang-Yi-Liu
Grant to Fudan University.

References

Allahverdi A., and H. Aydilek (2014). Total completion time with makespan constraint in no-wait
flowshops with setup times. European Journal of Operational Research 238(3): 724–734.

Badinelli R.D. (2000). An optimal, dynamic policy for hotel yield management European Journal
of Operational Research 121(3): 476–503.

Bitran G. and R. Caldentey (2003). An overview of pricing models for revenue management.
Manufacturing & Service Operations Management 5(3): 203–229.

Braithwait S., D. Hansen, and M. O’Sheasy (2007). Retail electricity pricing and rate design in
evolving markets. Technical Report, Edison Electric Institue.

Chawla S., N.R. Devanur, A.E. Holroyd, A.R. Karlin, J. Martin, and B. Sivan (2017). Stability
of service under time-of-use pricing. Poster at: The Eighteenth ACM Conference on Economics
and Computation, Cambridge, MA, USA; June 26–30. [online] (https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/12/cloud.pdf, accessed on November 3, 2018).

Chen B., C.N. Potts and G.J. Woeginger (1998). A Review of Machine Scheduling: Complexity,
Algorithms and Approximability. In: Handbook of Combinatorial Optimization (Volume 3)
(D.-Z. Du and P. Pardalos, Eds.), Kluwer Academic Publishers. 21–169.

Chen C.L. and R. L. Bulfin (1993). Complexity of single machine, multi-criteria scheduling prob-
lems. European Journal of Operational Research 70(1): 115–125.

EIA (2017). State energy data system. [online] https://www.eia.gov/, accessed on November 3,
2018

Fang K., N.A. Uhan, F. Zhao, and J.W. Sutherland (2016). Scheduling on a single machine under
time-of-use electricity tariffs. Annals of Operations Research 238: 199–227.

Geng Z. and J.J. Yuan (2015). Pareto optimization scheduling of family jobs on a p-batch machine
to minimize makespan and maximum lateness. Theoretical Computer Science 570: 22–29.

Gupta D. and B. Denton (2008). Appointment scheduling in health care: Challenges and oppor-
tunities. IIE Transactions 40: 800–819.

Gupta J.N.D. and A.J. Ruiz-Torres (2000). Minimizing makespan subject to minimum total
flow-time on identical parallel machines. European Journal of Operational Research 125(2):
370–380.

Hoogeveen H. and S.L. Van de Velde (1995). Minimizing total completion time and maximum
cost simultaneously is solvable in polynomial time. Operations Research Letters 17(5): 205–208.

13

Hoogeveen H. (2005). Multicriteria scheduling. European Journal of Operational Research 167(3):
592–623.

Huo Y. and H. Zhao (2015). Total completion time minimization on multiple machines subject
to machine availability and makespan constraints. European Journal of Operational Research
243(2): 547–554.

Kasilingam R.G. (1997). Air cargo revenue management: characteristics and complexities. Euro-
pean Journal of Operational Research 96(1): 36–44.

Kellerer H., R. Mansini, U. Pferschy, and M.G. Speranza (2003). An efficient fully polynomial
approximation scheme for the Subset-Sum Problem. Journal of Computer and System Sciences
66(2): 349–370.

Kulkarni J. and K. Munagala (2013). Algorithms for cost-aware scheduling. Lecture Notes in
Computer Science 7846: 201–214.

Leung J.Y-T. (editor). (2004) Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. Chapman & Hall/CRC, New York, USA.

McGill J.I. and G.J. van Ryzin (1999). Revenue management: Research overview and prospects.
Transportation Science 33(2): 233–256.

Moore J.M. (1968). An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science 15: 102–109.

PG&E (2017). Electric rates. [online] https://www.pge.com/tariffs/electric.shtml, accessed on
November 3, 2018.

Wan G. and X. Qi (2010). Scheduling with variable time slot costs. Naval Research Logistics 57:
159–171.

Wan G. and B.P.-C. Yen (2009). Single machine scheduling to minimize total weighted earliness
subject to minimal number of tardy jobs. European Journal of Operational Research 195(1):
89–97.

Wang Y., Q. Meng, and Y. Du (2015). Liner container seasonal shipping revenue management.
Transportation Research Part B: Methodological 82: 141–161.

Weatherford L.R. and S.E. Bodily (1992). A taxonomy and research overview of perishable-
asset revenue management: Yield management, overbooking, and pricing. Operations Research
40(5): 831–844.

14

Appendix

A.1 Proof of Lemma 1

Assume first that there is only one dense block in the optimal schedule, which starts at t0 and
ends at t1, where ai−1 < t0 < ai and aj−1 < t1 < aj for some 1 ≤ i, j ≤ m.

Case 1: ci ≤ cj . If t0 − ai−1 ≤ t1 − aj−1, we reschedule the dense block to start at ai−1.
Otherwise, we reschedule the dense block to end at aj−1. In either situation, the total execution
cost is not increased.

Case 2: ci > cj . If ai − t0 ≤ aj − t1, we reschedule the dense block to start at ai. otherwise,
we reschedule the dense block to end at aj . In either situation, the total execution cost is not
increased.

If the optimal schedule consists of more than one dense block, the above argument still applies
with only some minor adjustment to take account occupation of neighboring dense block(s).

A.2 Proof of Lemma 2

Let us prove the lemma by induction. Consider v = 1. Let period Pk = [ak−1, ak) be the valley.
Given any optimal schedule, if it is not dense, let us consider the first two (adjacent) dense blocks,
which occupy time intervals [t1, t2) and [t3, t4), respectively, with t2 < t3.

If t3 < ak, we reschedule the first dense block to [t3 − (t2 − t1), t3). This will not increase the
total execution cost, because the ToU cost is non-increasing before ak. As a result, we have an
optimal schedule with one dense block less. Symmetrically, we can do this if t2 ≥ ak−1, in which
case we reschedule the second dense block to [t2, t2 + (t4− t3)). Finally, if t3 ≥ ak and t2 < ak−1,
we can reduce the number of dense blocks in the optimal schedule by rescheduling its first dense
block to [ak−1− (t2− t1), ak−1) and its second dense block to [ak, ak + (t4− t3)). Therefore, after
at most n − 1 repetitions of the above merger process, we obtain an optimal schedule that is
dense.

Let the (resulting) dense block occupy interval [ta, tb). If it does not use Pk, we have ta > ak
or tb < ak−1. In the former case, we reschedule the dense block to [ak−1, ak−1 + (tb− ta)). In the
latter case, we reschedule the dense block to [ak − (tb − ta), ak). Apparently, such a rescheduling
will not increase the total execution cost.

Now let us consider v ≥ 2. If an optimal schedule σ consists of more than v dense blocks,
we construct an optimal schedule of at most v dense blocks in the following way. Let Ph =
[ah−1, ah) be the hill between the first two valleys. Consider the time intervals T1 = [0, ah−1)
and T2 = [ah−1, T). Within time intervals T1 and T2, there are exactly one valley and v − 1
valleys, respectively. According to our induction hypothesis, jobs (if any) scheduled under σ to
be processed, respectively, within T1 and T2 can be rescheduled (without increasing the total
execution costs) to form at most one and at most v−1 dense blocks, respectively, and each block
uses at least one valley. If there is a job Jj scheduled (under σ) to occupy time interval [t1, t2)
with ah−1 ∈ (t1, t2), let t1 ∈ Pa and t2 ∈ Pb for some a, b ∈ {1, . . . ,m}. Then we reschedule job
Jj to the end of the first block when ca ≤ cb and to the beginning of the second block otherwise.
Consequently, we obtain an optimal schedule with at most k dense blocks and each dense block
uses at least one valley.

A.3 Proof of Lemma 3

Let c̄ be the highest ToU cost among those corresponding to the periods in the first valley whose
lengths sum to L1. Then c̄ < c` according to our construction of L1 and L2.

15

If L∗1 ≤ L1, then we must have δ ≡ L−L∗1 = 0. Otherwise, δ > 0, we could obtain a schedule
of smaller total execution cost than σ∗ as follows: schedule all jobs in {Jj : x∗j = 1} as a dense
block optimally in the first valley and schedule the remaining jobs as a dense block optimally in
the second valley. The total execution cost of the resulting schedule differs from the value in (3)
by at most δc̄− δc` < 0.

On the other hand, suppose L∗1 > L1. Denote L̂ = P −R. Then δ̂ ≡ L∗1− L̂ ≥ 0 by definition.
If δ̂ > 0, then we can obtain another optimal schedule σ′ whose first dense block has a length
equal to L̂: schedule all jobs in {Jj : x̂∗j = 1} as a dense block optimally in the first valley and
schedule the remaining jobs as a dense block in the second valley. We see that, comparing with
σ∗, the new schedule σ′ decreases (resp. increases) the length of the first (resp. second) dense
block by δ̂. Note that if the first dense block of schedule σ∗ uses a period Pi that contributes to
the length of L2, then the block does so by first using the hill Ph and the ToU cost ci is at least
the ToU cost of any period used by the dense block P − L∗1. Therefore, changing from σ∗ to σ′,
the decreased cost due to the decreased length of the first dense block is at least as large as the
increased cost due to the increase of the second dense block.

A.4 Proof of Lemma 4

The proof of the lemma is based on a simple exchange argument. Given any optimal schedule
σ, it is evident that we can assume without loss of generality that there is no idle time from
the start time τ of the valley period. For any neighboring pair of jobs (in schedule σ) not in
EDD order or of the same due time, let us change σ to another optimal schedule σ′ by simply
changing the order of these two jobs while keeping all the other jobs intact. More specifically,
let (Jj , Jk) be any pair of neighboring jobs in this order with dj ≥ dk. If there is no idle time
between the two jobs, then we are done—the larger one of the two job latenesses decreases in
the resulting schedule. So assume there is some idle time between the two jobs, which implies
that job Jk starts no later than time τ . Let the two jobs have completion times of Cj(σ) and
Ck(σ), respectively, in schedule σ. While keeping all other jobs intact, we create a new schedule
σ′ by changing the order of the two jobs so that Jj finishes at Ck(σ) (i.e., Cj(σ

′) = Ck(σ)) and
Jk finishes at Ck(σ

′) = Ck(σ)− pj . It is easy to see that the total execution cost of the resulting
schedule σ′ does not increase and hence must also be optimal.

A.5 Proof of Lemma 5

Given any schedule, if the completion time of a job is equal to λt for some 1 ≤ t ≤ N , we say
that the job is non-floating, otherwise it is floating. It is easy to see from the definition that for
any dense block of a feasible schedule, if one of the jobs is non-floating, then all are non-floating.
Therefore, we can say whether a whole block is floating or not. Let σ be an optimal schedule that
has the minimum number of floating jobs. We show that σ has no floating jobs at all. Suppose
to the contrary that σ has at least one floating job and let job Jj have the smallest index among
all floating jobs in σ. Let t0 = Cj−1(σ) be the completion time of the preceding job Jj−1 (if
any) and t1 = Sj(σ) be the start time of job Jj . Then t0 < t1 since job Jj is floating. Let jobs
Jj , . . . , Jk be the dense block of schedule σ for some k ≥ j, which we call block B, and denote
t2 = Ck(σ) and t3 = Sk+1(σ) (which is equal to T if k = n), where t2 < t3.

Using the argument (very similar to what in the proof of Lemma 2 with k = 1) of moving
two neighboring dense blocks towards each other without increasing the total execution cost and
noticing that forward moving of a dense block keeps feasibility and backward moving can make
the block non-floating before merging with the succeeding block, we conclude that either (a)
block B merges with the preceding one if any, or (b) at least one of the jobs, and hence all jobs

16

of block B, become non-floating, or (c) block B merges with the succeeding one (if any) that is
also floating. However, either (a) or (b) implies that all jobs in block B become non-floating in
a new optimal schedule and hence it has less number of floating jobs, which is impossible due
to the choice of schedule σ. This merger process continues until we get an optimal schedule in
which jobs Jj , . . . , Jn form a dense block and all these jobs are floating. One more application of
the argument of moving forward or backward leads to a final contradiction.

A.6 Proof of Lemma 6

As in the proof of Lemma 4, we use a simple exchange argument for the proof. Given any optimal
schedule σ, we can assume without loss of generality that there is no idle time since the start
time τ of the valley period. For any neighboring pair of jobs (in schedule σ) not in SPT order, let
us change σ to another optimal schedule σ′ by simply changing the order of these two jobs while
keeping all the other jobs intact. More specifically, let jobs Jj and Jk be any pair of neighboring
jobs with j < k and pj > pk. If there is no idle time between the two jobs, then we are done—the
total of the two job completion times decreased (by pj − pk). So assume there is some idle time
between the two jobs, which in turn implies that job Jk starts no later than time τ . Let the two
jobs have completion times of Cj(σ) and Ck(σ), respectively, in schedule σ. While keeping all
other jobs intact, we create a new schedule σ′ by changing the order of the two jobs so that Jj
finishes at Ck(σ) (i.e., Cj(σ

′) = Ck(σ)) and Jk finishes at Ck(σ
′) = min{Ck(σ)− pj , Cj(σ)}. It is

easy to see that the total execution cost of the resulting schedule σ′ does not increase and hence
must also be optimal.

A.7 Proof of Lemma 7

As in the proof of Lemma 5, the proof here is mainly based on the simple idea of moving jobs to
start at some special values, Conclusion (a) follows from Lemma 6. Let σ be an optimal schedule
with job sequence (1, . . . , n) such that it first has the minimum number `B of dense blocks and
then has the minimum number `F of floating dense blocks. It is easy to see that `B ≤ m since in
each period Pi ∈ P, there can be at most one idle interval (between two dense blocks), otherwise
any block between two such idle intervals can be moved forward to merge with the preceding
dense block without changing the total execution cost, leading to a schedule of `B − 1 dense
blocks, which contradicts the choice of schedule σ.

Now let us focus on proving `F ≤ 1. Suppose to the contrary that σ has at least two floating
dense blocks. Let blocks B,B′ ⊆ J be the first (in terms of time) two floating blocks. Let bs, bt
(resp. bs′ , bt′) be the first and last b-values in block B (resp. B′). (NB: these b-values must exist
according to their definition and s′ ≥ t+1.) Denote u (resp. v) and u′ (resp. v′) as the start (resp.
end) times of the two blocks. Then v < u′ and none of {u, v, u′, v′} is a b-value. It is evident
that the start time τ of the valley is at least bs′ (τ ≥ bs′ , otherwise, block B′ could move forward
(i.e., to the left), either to become non-floating or to merge with the preceding block, resulting
one less floating block). As illustrated in Figure 2, we have

bs−1 < u < bs ≤ bt < v < u′ < bs′ ≤ bt′ < v′ < b̃,

and v < bt+1 ≤ bs′−1 < u′ if s′ ≥ t+ 2, where b̃ = bt′+1 or b̃ < bt′+1 and it is the start time of the
third floating dense block.

Now let us move the two floating blocks to create a new optimal schedule in which either the
number of dense blocks or the number of floating blocks is strictly decreased, contradicting our
choice of schedule σ. Let

ε = c(bs)− c(bt+1) and ε′ = c(bs′)− c(bt′+1).

17

T

L2

L1

Ph

B’

⬚⬚

B

⬚⬚� �′� �′

���� ������ ������� �� ��� ���

�� ��
��� ��

�

Case 1

Case 2
� �′

�

Figure 2: Illustration of two floating blocks in schedule σ and their adjusting moves

Then ε ≥ 0 (due to the position of the valley) and ε′ ≥ 0 (otherwise, block B′ could move forward
either to become non-floating or to merge with the preceding block, resulting one less floating
block). Let where k = |B| and k′ = |B′| be the numbers of jobs in blocks B and B′, respectively.
Denote θ = k′/(k + k′), η = θr and η′ = (1− θ)r, where

r =


min

{
min{δ1, δ2}

θ
,
min{δ′2, δ′1}

1− θ

}
, if s′ ≥ t+ 2;

min

{
min{δ1, u

′ − v}
θ

,
min{u′ − v, δ′1}

1− θ

}
, if s′ = t+ 1;

and δ1 = bs − u, δ′1 = v′ − bt′ ; while δ2 = bt+1 − v, δ′2 = u′ − bs′−1 if s′ ≥ t + 2. Let us separate
our consideration into two cases: either ηε ≥ η′ε′ or otherwise.

Case 1: ηε ≥ η′ε′.

There is at least one dense block between [v, u′) or η + η′ ≤ u′ − v. In the case of s′ ≥
t + 2, if min{δ1, δ2}/θ ≤ min{δ′2, δ′1}/(1− θ), we have η = min{δ1, δ2} and η′ = min{δ1, δ2}(1 −
θ)/θ ≤ min{δ′2, δ′1}. If min{δ1, δ2}/θ > min{δ′2, δ′1}/(1 − θ), we have η′ = min{δ′2, δ′1} and η =
min{δ′2, δ′1}θ/(1− θ) < min{δ1, δ2}. In the case of s′ = t+ 1, similar results can be found.

Therefore, on the one hand, we move block B backward (to the right) by η, which reduces the
execution cost of the block by ηε and also increases the total of job completion times by kη. On
the other hand, we move block B′ forward (to the left) by η′, which increases the execution cost
of the block by η′ε′ and also decreases the total of job completion times by k′η′. Consequently,
the net change of execution cost of the resulting schedule is η′ε′ − ηε ≤ 0, while the net change
of the total of job completion times is kη − k′η′ = 0, which implies that the resulting schedule
is also optimal. However, the new optimal schedule has at least one less floating block, which
contradicts the choice of the original schedule σ.

The machine is idle between [v, u′) and η+ η′ > u′− v. Let ξ = (u′ − v)/(η + η′). Then,
move block B backward by ξη and move block B′ forward by ξη′. Using similar argument above,
we get a new optimal schedule that has one less floating block.

Case 2: ηε < η′ε′.

In this case, we move the two floating blocks in the directions opposite, respectively, to the ones in
Case 1 (as indicated in Figure 2), although the values of η and η′ are adjusted with the following

18

new definitions of the δ-values:

δ1 = u− bs−1, δ2 = v − bt, δ′2 = bs′ − u′, δ′1 = b̃− v′.

Then with symmetric calculation, we obtain a new optimal schedule that has at least one less
floating block, with which we have proved (c) in the lemma.

19

