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Interrogating metabolism as an electron flow system
Christian ZerfaB'*, Munehiro Asally’*° and

Orkun S. Soyer'#

Abstract

Metabolism is generally considered as a neatly organised
system of modular pathways, shaped by evolution under se-
lection for optimal cellular growth. This view falls short of
explaining and predicting a number of key observations about
the structure and dynamics of metabolism. We highlight these
limitations of a pathway-centric view on metabolism and
summarise studies suggesting how these could be overcome
by viewing metabolism as a thermodynamically and kinetically
constrained, dynamical flow system. Such a systems-level,
first-principles based view of metabolism can open up new
avenues of metabolic engineering and cures for metabolic
diseases and allow better insights to a myriad of physiological
processes that are ultimately linked to metabolism. Towards
further developing this view, we call for a closer interaction
among physical and biological disciplines and an increased
use of electrochemical and biophysical approaches to inter-
rogate cellular metabolism together with the microenvironment
in which it exists.
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Metabolism refers to the collective set of biochemical
reactions that occur within a cell. Early pioneering
studies, crowned by several Nobel prizes, has mapped

the so-called core metabolism that includes glycolytic
and pentose phosphate pathways (PPP), Calvin—Benson
cycle, gluconeogenesis and the tricarboxylic acid (TCA)
cycle [1,2]. In parallel, the chemiosmotic theory of
energy generation through the respiratory electron
transport chain has been formulated and proven correct
[3] (even though the mechanistic details are still a
matter of debate [4,5]). These productive lines of
research elucidating individual enzymatic reactions
continue to make important contributions to our un-
derstanding of metabolism [6]. In this opinion article, we
argue that it is now time to use this accumulating
knowledge to develop an explanatory theoretical frame-
work based on electron flows for interrogating cellular
metabolic structure and dynamics at systems-level.

Pathway-centric views of metabolism and
its shortcomings

Following the early pioneering studies on the
biochemistry of enzymes, a pathway-centric framework
has dominated the description of metabolism [7—9].
This textbook view organizes cellular metabolism into
modular pathways that link sugars to pyruvate (i.e. the
glycolysis  pathways of pentose-phosphate (PP),
Entner—Doudoroff (ET), and Embden—Meyerhof—
Parnas (EMP)), and those that link pyruvate to the
generation of the key reductive equivalents via the TCA
(a.k.a. Krebs) cycle and associated glyoxylate and
glutamate cycles. These pathways and their interactions
with the biosynthesis pathways of lipids and amino acids
are considered to give rise to a higher organisation of
metabolism as catabolic (energy generating) and
anabolic (energy consuming) reactions [7—9]. Such
organisational view is further enforced by graph-theory
analyses that suggest a hierarchical and modular orga-
nisation of metabolism [10,11] (although it is important
to note that identifying appropriate null models is
challenging when studying metabolism as a graph
[12,13] and different graph representations can give
different results [14]).

This pathway-centric framework, thus, draws a picture
of cellular metabolism as consisting of well-defined
flows through modularly organised pathways. The
pathways themselves are suggested to represent his-
torical contingencies in evolution, where a key set of
metabolites and metabolic conversions emerged as first

www.sciencedirect.com

Current Opinion in Systems Biology 2018, m:1-9

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
1
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121


mailto:o.soyer@warwick.ac.uk
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.coisb.2018.10.001
https://doi.org/10.1016/j.coisb.2018.10.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.sciencedirect.com/science/journal/24523100
www.sciencedirect.com/science/journal/24523100

O OO0 J O D = Wi =

Ao oo 5 B b bbb b b8 4858465 00 0 0WWLW WWLW WOWWIENNNND NN DD = = == = = = = =
DR R,D OV NPAERUNN,ODOVOLITNNPAEWNDNROOXNITNNRERLVODOR,ROOXNTIATNRERLDO~R,ODOXIANNDNLNO R~
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forms of “life” [15] and subsequently maintained and
expanded through an evolutionary process that is
commonly seen as driven by cellular growth under
diverse conditions. While this adaptive view of meta-
bolism gives us one possible way of rationalising it, it
ignores other possible driving forces and constraints in
the evolution of metabolism (e.g. osmotic or toxic ef-
fects, trade-offs, cell stability) [16,17], and falls short in
explaining and predicting many of the key structural and
dynamical features of metabolism. We list below some of
these as open questions, and argue for the development
of a new explanatory framework, which can offer starting
points towards addressing them.

Why are metabolic systems diverse across different
species? Pathways that offer alternative routes for
glucose consumption are present or absent in different
microbes [18]. Biosynthesis pathways for essential co-
factors, such as thiamine or vitamin B12, are lacking in
different algae and fungi species [19,20], and even the
T'CA cycle structure can be varied in different organisms
[21]. While the pathway-centric view tends to explain
such structural diversity as “adaptations to different
conditions”, we need a more predictive theory that can
directly link specific environmental factors to specific
metabolic structures (e.g. lack of a given enzyme
predicted under a certain environment). For example,
loss of metabolic pathways in some organisms is
explained as an adaptive process under the provision of
specific metabolites by other organisms [22], but it is
left unclear why and under what conditions any organ-
ism would excrete any such metabolites. Similarly,
functionally equivalent pathways are suggested to be
adaptive under different conditions due to their
different energetic costs [7,18], but it is left unclear
what those conditions might be. An ideal theoretical
framework for metabolism should provide experimen-
tally testable predictions about where and when to find
which structural variants of metabolism.

What are the design principles of common metabolic
system structures? While metabolic systems show some
diversity, there are common structures that are
conserved across many species, and that can be
presented as key metabolic pathways. It is still not clear
why these common pathways are structured in the way
that they are. Several studies have tried to answer this
question based on biophysical and energetic aspects
[18,23,24], but did so while treating individual pathways
as isolated units. These approaches should be further
developed, given the fact that no pathway (and its re-
actions and metabolites) exist in isolation in a cellular
environment, but instead operate under high intercon-
nectedness through metabolites and common electron
shuttles (Figure 1). Developing a system-level frame-
work that could naturally explain the emergence of
interconnected pathways as a whole remains to be an
open challenge.
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Why do cells excrete metabolites and enzymes to their
environment? Many metabolites are readily excreted
from cells despite still carrying energy value, and many
enzymes are known to operate outside of the cell. A
pathway-centric view focused on optimization of growth
does not provide any explanations for these observa-
tions, nor does it allow any predictions about which
metabolites or enzymes might be secreted under which
conditions. Adaptive arguments have been made about
some metabolic excretions (i.e. ethanol) providing a
mechanism to inhibit or kill competing species [25].
This particular example also highlights a broader issue
with adaptive arguments in that they can readily be
formulated for many different observations, but lack a
clear sequential evolutionary path; in this case, for
example, the Kkilling argument does not explain how
small amounts of metabolic excretions, that would not
yet function as a toxic agent, could have emerged and
stabilised. A series of recent studies indicate that
metabolic excretions, in particular those involving
organic acids, can arise from cellular trade-offs linked to
biophysical constraints on enzymatic reactions such as
space (i.e. cytosolic vs. membrane—bound reactions)
[26—28] and protein capacity [29,30]. These studies
highlight the importance of considering the biophysical
basis and limits as directing evolutionary processes when
explaining and predicting specific features of metabolic
systems.

How does metabolism exhibit non-linear dynamics as
a whole? The pathway-centric view of metabolism
does not consider the dynamics of fluxes across path-
ways. This dynamic nature is evident from the inter-
connectedness of key metabolic pathways through
common electron and energy shuttles such as NADH
and ATP (Figure 1), and the fact that many of their
constituting reactions are close to thermodynamic
equilibrium under standard conditions [31] (Figure 2).
These reactions could thus be operating reversibly
with changing cellular conditions, such as pH and
redox potential, as shown for some pathways [32—34],
and lead to non-intuitive flux dynamics. In addition,
the sharing of (or competition for) metabolites and
enzymes across many reactions can lead to complex
temporal dynamics such as oscillations and multi-
stability, as theoretically shown for even simplified
biochemical reaction systems [35—38]. Indeed, where
measured, periodic oscillations are found to be present
in central metabolism [39—42]. These oscillations are
well studied in continuous yeast cultures, in which
they have been shown for virtually all metabolites and
coincide with a separation of oxidative and reductive
phases [43]. Similarly, combined levels of NADH and
NADPH in Escherichia coli, measured fluorimetrically,
were found to oscillate in line with the cell division
cycle [41]. It has been furthermore suggested that
these oscillations are crucially linked to other biolog-
ical oscillations, such as cell cycle and circadian
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Common metabolic pathways, shown in their broader context, and highlighting their interconnected nature. Reactions are compiled from
Ref. [7] and do not represent the full list of known metabolic reactions in the cell. Metabolites are shown using their common names, while
reactions are indicated with arrows. Yellow and green arrows indicate oxidation and reduction reactions respectively, with arrow type indi-
cating the involved electron shuttle; solid, dashed, and double dashed lines for NADH, NADPH, and FADH,. Reactions releasing and
consuming ATP are shown in red and blue respectively. Where multiple reactions are involved when going from one metabolite to another, this
is indicated by multiple arrows. Involvement of co-factors and release of small molecules (such as carbon dioxide) are indicated partly (with
smaller arrows). Metabolites involving in multiple reactions, and therefore forming additional metabolic cycles, are indicated with a grey

backdrop.

rhythms [44,45]. While some models [46—48] and
metabolic mediators [39,49] have been proposed to
explain these oscillations, a detailed and predictive
understanding of metabolic oscillations still needs to
be developed. Besides oscillations, bistable dynamics
have been predicted and experimentally shown for
isolated enzymatic reactions and pathways [36,50—
53]. These dynamics are still challenging to analyse
at the single-cell level, but emerging fluorescence
approaches offer a promising route [54]. Finally, the
dynamics arising from (seemingly) futile enzymatic

cycles have been discussed theoretically as a mecha-
nism for achieving robustness against perturbations
[37], but have not been studied in the context of
temporal dynamics. Theoretical models of futile cycles
have shown that these can give rise to bistability and
oscillations under certain parameter regimes [50], but
these ideas have not been explored experimentally.
Overall, the dynamics of metabolism either at the
whole system level or at the level of commonly
observed dynamical modules (like futile cycles) is
understudied.
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Figure 2
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Thermodynamics of common metabolic conversions as collated
from references [31,73]. The y-axis shows the standard Gibbs free
energy at physiological conditions (AG”), while x-axis is used for
reaction index (ordering them from lowest to highest AG?). In
calculating the AG?, reactions are considered in their spontaneous
direction and the H*/H, pair is used for electron balancing (in the
case of redox reactions). Each reaction is shown as a single data
point, while lines are for the density distribution (as indicated in the
inset). Reactions that were included in Fig. 1 are shown as green
filled points and their distribution by the green line. This figure
suggests that most metabolic conversions are similarly low in terms
of their AG” (see distributions), but calls for a further mapping of
metabolites and reactions in order to allow more general conclu-
sions to be drawn (with regards to how these distributions compare
to those of all possible reactions). Note that reactions with the most
negative AG” (<-250 kJ/mol, left side in plot) are those involving the
reduction of nitrate, oxygen, and sulphite; common terminal electron
acceptors.

Metabolism as a thermodynamically driven electron
flow system

Life depends on free energy gradients [55]. Organisms,
or cells, act as “disequilibrium converters” [56] that
exploit these energy gradients and couple thermody-
namically spontaneous and nonspontaneous reactions
through a defined path, the metabolic reaction network.
"The ratio of the forward and reverse kinetic constants of
a reaction equals to the equilibrium constant Keq, which
in turn determines its standard Gibbs free energy at a
dynamical steady state (AG0 = —R+T-In(K.q), where R
is universal gas constant and T is temperature in Kelvin)
[56—58]. The actual reaction free energy (and hence
the spontaneous direction of a reaction) at a given
condition is based on AG’ (Figure 2) and the concen-
trations of substrates and products under that condition.
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Thus, changing concentrations through one reaction can
make another reaction feasible, allowing metabolism to
couple external gradients to internal ones in turnstile-
like mechanism [56]. For example, light-energy drives
photosynthetic reactions forward (i.e. water-oxidation
with carbon dioxide reduction), and once a pool of me-
tabolites is generated, the reverse reaction (e.g. glucose
oxidation with oxygen reduction) becomes spontaneous
(i.e. energy releasing), allowing excess energy for other
non-spontaneous reactions.

These dynamics of metabolic flows can be formalised
through non-equilibrium thermodynamics, which is well
developed for simplified enzymatic reaction networks
[58,59]. The use of this formalism as a general theo-
retical framework for studying the entire cellular
metabolism, however, has not been fully explored. This
is mainly due to a lack of information about thermody-
namic properties (i.e. standard Gibbs energies) and
intracellular concentrations of many metabolites. The
former issue can be approached computationally using
statistical (e.g. group contribution) or quantum chemi-
cal methods, however, these are currently limited and
can only cover a fraction of cellular metabolites [60,61].
The intracellular metabolite concentrations can be
increasingly determined wusing technological de-
velopments in high-throughput mass spectroscopy and
ion chromatography [33], hence, with knowledge of a
reaction’s AG", allowing direct assessment of the ther-
modynamic state of the reaction.

Development of a dynamical thermodynamic framework
for cellular metabolism can benefit from a special focus
on redox reactions. These reactions hold a key inter-
connecting role among different pathways and offer
electrochemical interrogation of their dynamics [62,63].
Redox reactions interlink for example glucose oxidation
via PP, ET, and EMP pathways, pyruvate oxidation
through the TCA cycle, and biosynthesis of many of the
amino acids (Figure 1), through the shared use of
conserved moieties acting as electron shuttles, such as
NAD"/NADH, NADP'/NADPH, FAD/FADH,, ferre-
doxins, and quinones. This, crucially, makes the ratio of
the concentration of the oxidised and reduced forms of
these molecules a key factor in determining the ther-
modynamics of (and flows through) different metabolic
paths.

Considering this interconnected set of redox reactions
can crucially allow us to consider electronic circuits as an
analogy to metabolic systems [64] on one hand, and to
attempt its manipulation by electrochemical means on
the other [65—67]. Indeed, it has been shown that
influencing the ratio of key electron shuttles (e.g.
NADT/NADH) through enzymatic and electrochemical
means can directly influence metabolic pathway fluxes
and the dynamics of metabolic excretions [63,68—70].
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Potential explanatory powers of viewing metabolism
as electron flows

We argued so far that considering metabolism as a
thermodynamically driven flow system, rather than
isolated pathways, can provide an overarching theoret-
ical framework and that focusing this framework to
redox reactions can further allow the formulation of new
explanatory and predictive theories. We list below some
of the key areas where this electrical view of metabolism
can make immediate impact in our understanding of
metabolism.

Energetic barriers in electron flow driving metabolic
pathway diversity and utilization. When strong electron
acceptors are not available in the environment, cells
have to use weaker electron acceptors such as organic
acids or inorganic molecules (such as H™) as electron
sinks (i.e. to maintain electron flow). The result is a
smaller free energy available from the overall redox re-
action that the cell implements, and an increased risk of
the system reaching equilibrium by product accumula-
tion (i.e. thermodynamic inhibition). Recently, it has
been shown theoretically that this type of thermody-
namic inhibition due to product accumulation can lead
to diversity of microbial growth-supporting metabolic
reactions and possibly internal metabolic pathways [71].
This theory aligns well with the observation that or-
ganisms, such as methanogens and sulfate reducers,
adapted to weak or fluctuating electron acceptors show
diverse respiratory and fermentative pathways and en-
zymes [55,72,73]. It would be interesting to see if
theories relating to thermodynamic inhibition could be
developed further to link the diversity of broader orga-
nization of metabolic systems (in particular redox
shuttle and respiratory enzyme usage) to environmental
conditions, and in particular availability and ecological
dynamics of common electron acceptors.

Metabolic excretions to maintain electron flows. Ther-
modynamic inhibition could also be a driving force
beyond observed metabolic excretions. For example,
oxidation of certain metabolites can become thermo-
dynamically inhibited if the reduced forms of their
paired electron shuttle have reached a low concentra-
tion. Such an inhibition would be lifted if another
metabolite could be reduced using the oxidized form of
the same shuttle molecule. This coupling can be further
facilitated if one (or some) of the metabolites can be
made to act as a sink, e.g. by excreting them from the
cell. The increased rate of formation and excretion of
organic and amino acids through reductive reactions can
be understood within this view, as a mechanism to
combat shifts in the NADT/NADH ratio. Indeed,
experimental manipulation of the NADT/NADH ratio in
E. coli and yeast were found to directly influence the
dynamics of metabolic excretions through fermentative
pathways (i.e. acetate and ethanol excretion) [69,70].
Thus, furthering a theoretical framework based on
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thermodynamically driven redox paths might allow us to
predict metabolic excretions under different conditions.

Enzymatic excretions combatting toxic effects arising
from redox reactions involving electron sinks (i.e.
respiration). Redox reactions with compounds that act
as final electron acceptors (i.e. electron sinks), should
ideally involve strong electron acceptors so to provide a
significant energy gradient (see Figure 2). This, how-
ever, creates an additional constraint on metabolic
system structure and dynamics in that strong terminal
redox reactions can also result in the generation of
even stronger redox active compounds [74]. The
respiration (i.e. reduction) of O, for example, is found
to lead to a generation of reactive oxygen species
(ROS) at a rate up to 20% |[75], while sulfate and ni-
trate respiration results in ‘toxic’ sulfide and nitrite,
respectively. To avoid additional, uncontrolled redox
reactions by these strong oxidizing agents, cells must
have evolved ways to generate enzymes and redox
metabolites that can act as effective neutralizers
against strong redox agents. While catalases and per-
oxidases are known enzymes that can combat ROS
toxicity [76], the generation of ROS from respiration
could have been a strong driver also for the overall
metabolic structure and dynamics. Indeed, connections
between resistance to ROS and metabolic flux changes
have been shown [77—81], and ROS mitigation is
suggested as an explanation for excretions of metal
oxidizing enzymes in bacteria [82,83].

Compartmentalization of electron flows in space or
time. Spatial compartmentalization of metabolism can
be seen in form of specialized organelles within an
individual cell [84,85] (e.g. mitochondria and chloro-
plasts) and in form of subpopulations within an
isogenic cell population [54,86]. Such compartmen-
talisation could be understood in the context of ther-
modynamic inhibition due to product accumulation
and the associated issue of maintaining electron flows:
local microenvironments that can maintain a disequi-
librium through separation or flow of products from
their reactions can allow overcoming thermodynamic
inhibition. A similar effect could also be achieved by
separation of processes over time, i.e. by implementing
oscillatory dynamics that can balance the impact of
opposing processes (e.g. on the NADT/NADH ratio).
Indeed, theoretical analyses suggest that oscillations,
as observed for example in the NAD'/NADH ratio in
yeast and eukaryotic cells [39,44,49], may enhance the
thermodynamic efficiency of glycolysis [87] or, more
broadly, coupled chemical reaction systems [88]. This
is in line with experimental observations of periodic
NADH/NADPH concentration oscillations correlating
with cell cycle phases [41,43], which could be an
adaptation to alternately maximize thermodynamic
driving force through pathways of interest with tem-
poral separation.
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Testing and establishing the electrical view
of metabolism - the road ahead

It has been long-recognized that metabolism is a prime
example of a system obeying non-equilibrium thermo-
dynamics [89]. Bringing this view to practical study and
engineering of metabolism, however, remains a challenge.
We believe that the presented framework highlighting a
view of metabolism that is based on maintenance of
electron flows, under constraints arising from thermody-
namics, kinetics, and interconnectedness of pathways
through common electron and energy shuttles, can
initiate further studies towards overcoming this chal-
lenge. This framework calls for more interaction between
experimental and modelling disciplines and the devel-
opment of new theoretical and experimental tools.

On the theoretical side, we note that efforts have been
made to expand the stoichiometric, constraint-based
optimization models of metabolism (i.e. flux balance
analysis, FBA) with thermodynamics [90—93] and also
with overall constraints that can mimic some of the bio-
physical constraints arising from resource and space limi-
tations [27,94—96]. It would be important to continue
these developments, and also consider coupling FBA with
the modelling of cell environment dynamics [95,97] to-
wards incorporating possible thermodynamics inhibitions
and electron acceptor availabilities in these environments.
Inevitably, however, capturing the full dynamics of
metabolism as electron flows will require kinetic and even
spatial models that account for physiological parameters
such as pH and membrane potential. To achieve this,
current kinetic models, which usually assume fixed ratios
for common electron and energy shuttles, and tend to
consider pathways in isolation, need to be further devel-
oped. Dynamics of electron shuttles and the possibility of
reaction reversibility will need to be incorporated to ac-
count for thermodynamics. Statistical thermodynamics
simulations, as used recently to simulate TCA cycle dy-
namics [98], can be useful in this context but would need
to be expanded and further developed to account for the
larger parts and interconnected nature of metabolism.
Similarly, emerging thermodynamic models for modelling
overall metabolic conversions embedded through meta-
bolism (i.e. thermodynamic microbial growth models)
[99] can be possibly adapted to model cellular meta-
bolism. As kinetic models incorporate more biochemical
realism through reaction reversibility, electron and energy
shuttle dynamics, and pathway interconnectedness, the
major challenge will be to maintain models as tractable
and ‘simple enough’ so that they can still generate
experimentally testable insights and predictions.

On the experimental side, approaches integrating phys-
iological, metabolomic, and electrochemical techniques
will need to be developed to better understand electron
flows in metabolism and constraints on these flows. In
particular, we note that combined application of
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fluorescent reporters (as being increasingly used to
interrogate cellular redox states and physiology (e.g.
Refs. [41,100—104])) and emerging nano-scale electro-
chemical probing methods [105] can provide powerful
insights into the electron flow dynamics at cellular and
population levels. These methods can be particularly
suited to link metabolic dynamics to higher—level com-
plex physiological processes such as cellular differentia-
tions. Intriguingly, cellular differentiation is often
associated with specialization of metabolism (e.g. bac-
terial spores [106,107], Tcells [108], cancer cells [109]).
We envision that development of the electron-flow based
view to metabolism may provide a novel insight to these
cellular differentiation processes as arising from ther-
modynamic limits and imbalances in metabolism. This,
in turn, can open up novel means of controlling these
processes using electrochemistry, and opening up new
medical intervention methods.
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