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Abstract 

Objectives: Newly diagnosed focal epilepsy (NDfE) is rarely studied, particularly using 

advanced neuroimaging techniques. Many patients with NDfE experience cognitive 

impairments, particularly with respect to memory, sustained attention, mental flexibility and 

executive functioning. Cognitive impairments have been related to alterations in resting-state 

functional brain networks in patients with neurological disorders. In the present study, we 

investigated whether patients with NDfE had altered connectivity in large-scale functional 

networks using resting-state functional MRI.  

Methods: We recruited 27 adults with NDfE and 36 age and sex-match healthy controls. 

Resting-state functional MRI was analysed using the Functional Connectivity Toolbox (CONN). 

We investigate reproducibly determined large-scale functional networks, including the 

default mode, salience, fronto-parietal attention, sensorimotor and language networks using 

a seed-based approach. Networks comparisons between patients and controls were 

thresholded using a FDR cluster-level correction approach. 

Results: We found no significant differences in functional connectivity between seeds within 

the default mode, salience, sensorimotor and language networks and other regions of the 

brain between patients and controls. However, patients with NDfE had significantly reduced 

connectivity between intraparietal seeds within the fronto-parietal attention network and 

predominantly frontal and temporal cortical regions relative to controls; this finding was 

demonstrated including and excluding the patients with brain lesions. No common alteration 

in brain structure was observed in patients using voxel-based morphometry. Findings were 

not influenced by treatment outcome at one year.  
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Conclusions: Patients with focal epilepsy have brain functional connectivity alterations at 

diagnosis. Functional brain abnormalities are not necessarily a consequence of the chronicity 

of epilepsy and are present when seizures first emerge. 

 

Keywords: Brain connectivity; cognitive dysfunction; new onset seizures; treatment outcome.  
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1. INTRODUCTION 

Neuroimaging approaches have provided important insights into longstanding, typically 

treatment refractory epilepsy. Sophisticated MRI approaches in particular have provided a 

deeper understanding of the biological mechanisms underlying the development of focal and 

generalised epilepsies (Bernhardt, et al., 2013; Duncan, 2005; Koepp and Woermann, 2005), 

and have recently been used to gain insights into response to surgical intervention in patients 

with refractory focal epilepsy (Bonilha, et al., 2015; Keller, et al., 2017; Keller, et al., 2015; 

Munsell, et al., 2015). Comparatively, newly diagnosed epilepsy is rarely studied despite this 

being a key point in time to understand the underlying biology of epilepsy and to identify 

potential interventions and biomarkers for seizure and cognitive outcomes. The translation 

of what we understand in longstanding epilepsy to people with a new diagnosis of epilepsy is 

confounded by several factors, including the chronic effects of seizures and anti-epileptic 

drugs (Pohlmann-Eden, et al., 2013).  This lack of investigation is most notably due to access 

to patients; many specialist and academic centres do not see epilepsy until it is well 

established. As such, advanced imaging studies – which yield important structural and 

functional information beyond what can be obtained from conventional neuroimaging in 

context of standard clinical care – have not been published in patients with newly diagnosed 

epilepsy (Pohlmann-Eden, 2011; Pohlmann-Eden, et al., 2013).  

 

Focal onset epilepsy is more prevalent than idiopathic generalized epilepsy (IGE) (Sander and 

Shorvon, 1996), and is more commonly associated with pharmacoresistance (Kwan and 

Brodie, 2000) and memory dysfunction (van Rijckevorsel, 2006). There are only few studies 

of adults with newly diagnosed focal epilepsy (NDfE) using MRI approaches, most of which 

have used conventional applications (i.e. volumetric image analysis techniques applied to 
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clinically-acquired T1-weighted images). Studies have revealed that 65-96% adults with NDfE 

have no MRI observed lesion (Liu, et al., 2002; Van Paesschen, et al., 1997; Van Paesschen, et 

al., 1998). Most volumetric MRI studies of the hippocampus reveal no significant difference 

between in patients with NDfE and healthy controls (Liu, et al., 2001; Liu, et al., 2002; 

Salmenpera, et al., 2005). One study revealed mild hippocampal changes at diagnosis, which 

contrasted to substantial hippocampal atrophy in patients with chronic focal epilepsy 

(Saukkonen, et al., 1994). In one longitudinal study of adults with newly diagnosed focal 

temporal lobe epilepsy, 24/24 were MRI-negative at baseline whereas a single patient 

developed hippocampal sclerosis in a follow up scan approximately three years later 

(Briellmann, et al., 2002). Cerebellar volume is normal at diagnosis of focal epilepsy 

(Hagemann, et al., 2002). Generally speaking, there have been no reports of common gross 

brain structural changes in adults with NDfE when assessed using volumetric MRI approaches. 

There is a need to understand changes in brain structure and function using advanced 

neuroimaging techniques at the earliest reliable time point following a diagnosis of human 

epilepsy.  

 

Adults with epilepsy may be cognitively impaired at the time of diagnosis. Drug naïve patients 

with NDfE show significant impairments in memory, sustained attention, executive 

functioning, mental flexibility and psychomotor speed relative to healthy volunteers (Aikia, et 

al., 1995; Aikia, et al., 2001; Kalviainen, et al., 1992; Prevey, et al., 1998; Pulliainen, et al., 

2000; Taylor, et al., 2010). One 12-month follow-up study revealed that performance on some 

of these cognitive domains further deteriorated (Baker, et al., 2011); another study reported 

no subsequent significant worsening of verbal memory performance in patients impaired at 

diagnosis and that memory dysfunction was not related to hippocampal volume (Aikia, et al., 
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2001). Cognitive deficits – which along with spontaneous seizures contribute to impaired 

quality of life in epilepsy (Engelberts, et al., 2002) - are therefore not necessarily a result of 

the chronicity of the disorder, including the recurrent seizures and chronic use of anti-

epileptic drugs, and are therefore likely to be the result of epileptogenesis. There are, 

however, no existing neuroimaging insights of the underlying aetiology and mechanisms of 

cognitive dysfunction in NDfE.  

 

Functionally connected large-scale networks that have significance for particular cognitive 

domains can be delineated in the human brain using resting state functional MRI. These 

neuroimaging approaches have provided significant insights into cognitive dysfunction in 

people with neurological, neurodegenerative and neuropsychiatric disorders (Cataldi, et al., 

2013; Li, et al., 2015; Woodward and Cascio, 2015). Three of the most investigated networks 

include the default mode network (key role in internally directed or self-generated thought 

(Andrews-Hanna, et al., 2014; Greicius, et al., 2003; Raichle, et al., 2001), has dynamic roles 

in cognitive processing (Ichesco, et al., 2012) and is compromised in patients with loss of 

consciousness (Vanhaudenhuyse, et al., 2010)), the salience network (key roles in 

communication, social behaviour, self-awareness and multiple facets of cognition (Menon, 

2015)), and the fronto-parietal attention network (key roles in attention, cognitive control 

and executive functioning (Markett, et al., 2014; Schmidt, et al., 2016)).  Alterations in these 

three functional networks have been reported in patients with chronic temporal lobe epilepsy 

and idiopathic generalised epilepsy (de Campos, et al., 2016; Kay, et al., 2013; Wei, et al., 

2015), and such alterations have been inferred to underlie cognitive impairment in these 

patient groups. Given that the neuropsychological literature suggests that patients with NDfE 

have particular cognitive impairments in the attention, cognitive control and executive 
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function domains, there may be alterations in functional connectivity within the fronto-

parietal attentional network, or between nodes in this network and other brain regions. 

However, there are no published studies that have investigated functional networks in 

patients with NDfE.    

 

There were two primary objectives of the present study. We sought to determine whether 

core functional networks are altered in patients with a new diagnosis of focal epilepsy relative 

to a cohort of healthy controls using resting-state functional MRI. We hypothesised 

abnormalities of functional networks that are known to play a role in the facets of cognition 

function previously demonstrated to be impaired in patients with NDfE (particularly memory, 

attention and executive function), most notably, the fronto-parietal attention network. 

Secondly, in order to determine whether functional network alterations existed in patients in 

the absence of gross structural abnormalities, we performed voxel-based morphometry 

(VBM) comparisons of regional grey matter volume between patients and controls (Keller, et 

al., 2015; Keller and Roberts, 2008). 
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2. METHODS 

2.1 Patients 

We recruited 27 patients with NDfE (mean age, 33.1 years (SD 11.3), range 18-57; 12 (44%) 

females) attending outpatient clinics at the Walton Centre NHS Foundation Trust in Liverpool. 

Focal epilepsy was diagnosed by expert epileptologists based on the latest International 

League Against Epilepsy (ILAE) operational classifications (Fisher, et al., 2017). Diagnostic 

features consistent with focal epilepsy were based on detailed assessment of seizure 

semiology. Demographic and clinical information for patients is provided in Table 1. In order 

to increase the number of patients recruited into this study, we did not constrain recruitment 

to drug-naïve patients. We scanned patients an average of 3.7 months after diagnosis (SD 2.9, 

range 1-11 months). We did not anticipate any deleterious effects on brain function or 

cognition within this time period. Exclusion criteria included provoked seizures (e.g. drug 

induced), acute symptomatic seizures (e.g. acute brain haemorrhage or brain injury), primary 

generalised seizures, unclassified seizures and known progressive neurological disease (e.g. 

brain tumour, Alzheimer’s disease). All patients underwent EEG as part of their clinical 

investigations using the conventional 10-20 system. All patients were followed up one year 

after functional MRI to determine response to AED therapy. We also studied 36 age-matched 

neurologically and neuropsychiatrically healthy volunteers (mean age 33.7 years (SD 11.6), 

range 18-58; 22 (61%) females).  

 

2.2 MRI acquisition 

All patients and controls were scanned at the Liverpool Magnetic Resonance Imaging Centre 

(LiMRIC) at the University of Liverpool, and we acquired 3D T1-weighted and resting-state 

functional MRI data using a 3 T MR system (Siemens Trio). For the T1-weighted data, we 
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acquired Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence with the 

following parameters: TE = 5.57 ms; TR = 2040 ms; TI = 1100 ms; slice thickness = 1 mm; voxel 

size = 1 mm x 1 mm; 176 slices; flip angle = 8. The resting-state functional MRI data was 

acquired using a 6-minute T2-weighted sequence and the following parameters: TE = 30 ms; 

TR = 2000 ms; slice thickness = 3.5 mm; voxel size = 3 mm x 3 mm; 180 volumes; 32 slices; flip 

angle = 90. For the resting-state functional MRI, participants were asked to remain awake 

with their eyes closed. We additionally acquired isotropic 3D T2-weighted (turbo spin echo 

with variable flip angle; TE = 355 ms; TR = 3000 ms; slice thickness = 1 mm; voxel size = 1 mm 

x 1 mm; Turbo factor = 209) and T2-Fluid Attenuated Inversion Recovery (TE = 353 ms; TR = 

6000 ms; slice thickness = 1 mm; voxel size = 1 mm x 1 mm; Turbo factor = 221) images for 

diagnostic appraisal and reporting of incidental findings in all subjects.  

 

2.3 Resting-state functional analysis 

Resting-state functional data were spatially pre-processed using SPM12 (Welcome Trust 

Centre for Neuroimaging, University College London, United Kingdom; 

http://www.fil.ion.ucl.ac.uk/spm/) running in Matlab v.9.0 (The Mathworks Inc, USA). 

Functional data were realigned, slice-time corrected, spatially normalised to the Montreal 

Neurological Institute (MNI) space using the normalised EPI template image in SPM, and 

spatially smoothed with an 8 mm full width half maximum Gaussian kernel. Motion 

parameters from realignment were evaluated and a motion artefact threshold (translation >3 

mm, rotation >1°) was employed for exclusion (Fallon, et al., 2016). No participants displayed 

gross movements to require exclusion. For subsequent analyses, each participant’s T1-

weighted MPRAGE image was automatically segmented into grey matter, white matter and 
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cerebrospinal fluid and normalised to MNI space using the Computational Anatomy Toolbox 

(CAT12; http://www.neuro.uni-jena.de/cat/) running in SPM12 (see VBM methods).  

 

Spatially pre-processed resting-state functional data were analysed using the Functional 

Connectivity Toolbox (CONN) (Whitfield-Gabrieli and Nieto-Castanon, 2012) running in 

Matlab. CONN implements a component-based noise correction method (Behzadi, et al., 

2007) to reduce physiological and extraneous noise, providing interpretative information on 

correlated and anti-correlated functional brain networks. Blood-Oxygen-Level Dependent 

(BOLD) signal from the cerebral white matter and ventricles were removed prior to seed-

based connectivity analysis using principal component analysis of the multivariate BOLD 

signal within each these masks obtained from the segmented T1-weighted MPRAGE scans 

(Fallon, et al., 2016; Woodward, et al., 2011). BOLD data was bandpass filtered (0.008– 

0.09Hz) to reduce low-frequency drift and noise effects. We generated seed-to-voxel 

connectivity maps for each individual for the following reproducibly demonstrated functional 

networks: the default mode, salience, fronto-parietal attention, language, and sensorimotor 

networks. These networks were chosen as they have been intimately associated with aspects 

of cognitive functioning disrupted in NDfE (Aikia, et al., 1995; Aikia, et al., 2001; Ichesco, et 

al., 2012; Kalviainen, et al., 1992; Markett, et al., 2014; Menon, 2015; Prevey, et al., 1998; 

Pulliainen, et al., 2000; Schmidt, et al., 2016; Taylor, et al., 2010) and / or have been 

demonstrated to be significantly altered in refractory epilepsy (de Campos, et al., 2016; Kay, 

et al., 2013; Wei, et al., 2015). Seeds were 10 mm diameter spheres; the spatial co-ordinates 

and anatomical location of network seeds are provided in Table 2 and illustrated in Figure 1. 

These seeds are provided in the CONN software, and represent core and reproducibly 

demonstrated topological nodes within each resting-state network. The reasoning for 
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identification and use of these seeds is described in greater detail by the originators of CONN 

(Whitfield-Gabrieli, et al., 2011). We investigated functional networks generated from 

individual seeds separately (i.e. not averaged over seed regions within a given network); this 

resulted in 14 analyses (two seeds each for default mode and fronto-parietal networks, three 

seeds each for sensorimotor and salience networks, and four seeds for the language network; 

Table 2).  

 

Individual correlation maps were generated in the CONN toolbox by extracting the mean 

resting-state BOLD time course from each seed ROI and calculating correlation coefficients 

with the BOLD timecourse of each voxel throughout the whole brain. The resulting 

coefficients were converted to normally distributed scores using Fisher's transformation to 

give maps of voxelwise functional connectivity for each seed ROI for each subject. The value 

of each voxel throughout the whole brain represents the relative degree of functional 

connectivity with each seed (Whitfield-Gabrieli, et al., 2011). These maps were subsequently 

used for second-level analysis of relative functional connectivity using a two-sided 

independent t-test, implemented in the CONN toolbox, to investigate differences in seed-to-

voxel connectivity between groups. 

 

Participant motion parameters were included as within-subject first-level covariates. To 

determine between-subject effects in resting-state functional networks, group (patients and 

controls), presence of MRI lesion, patient seizure outcome status at one year follow up, age 

and gender were included as second-level covariates. As in previous studies (Fallon, et al., 

2016; Ichesco, et al., 2012; Woodward, et al., 2011), we performed voxel-wise statistical 
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analysis over the entire brain using an uncorrected level (p<0.001) before a false discover rate 

(FDR) correction was applied at the cluster level (p<0.05). 
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2.4 Voxel-based morphometry  

VBM was performed using a similar approach as previously described (Keller, et al., 2015) but 

using CAT12 running in SPM12 (as opposed to the VBM8 toolbox running in SPM8). CAT12 

includes improvements to the image pre-processing pipeline and has been suggested to 

provide an improved method for the identification of brain structural abnormalities in 

patients with epilepsy over previous VBM applications (Farokhian, et al., 2017). Briefly, the 

T1-weighted MPRAGE images were automatically segmented into grey matter, white matter 

and cerebrospinal fluid tissue classes, and spatially normalised to MNI space using DARTEL 

(Ashburner, 2007). Default options were chosen in the CAT12 batch editor 

(http://dbm.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). Grey matter and white matter 

normalised images were smoothed with an isotropic Gaussian kernel of 8 mm. Grey matter 

and white matter comparisons were made between groups on a voxel-by-voxel basis using a 

full factorial model, including age and sex as confounding covariates. Groups included 

controls, patients with gross lesions and patients with no lesion. Only results surviving 

multiple whole brain corrections using the familywise error (FWE) rate (p<0.05) are reported, 

based on previous recommendations (Keller and Roberts, 2008). 

 
 
 



 14 

3. RESULTS 

3.1 Patient clinical data 

20 (74%) patients did not have any discernible MRI lesion. Of the seven patients with focal 

brain abnormalities, two had focal cortical dysplasia (7%), two had hippocampal asymmetry 

suggestive of hippocampal sclerosis (7%), one had multiple focal gliosis (4%), one had focal 

white matter hyperintensity corresponding to haemosiderin and suggestive of previous 

microhaemorrhages (4%), and one had focal gliosis and encephalomalacia (4%; Table 1). 

Figure 2 illustrates the lesional cases. Three patients (11%) had abnormalities on inter-ictal 

EEG; all three patients were MRI-negative, two experienced focal seizures with impaired 

awareness only, and one experienced focal to bilateral tonic-clonic seizures. 17 (63%) patients 

were seizure free after one-year follow-up. Two (66%) patients with abnormal EEG and eight 

(33%) patients with normal EEG experienced continued seizures. Three (43%) patients with 

MRI positive findings and seven (35%) patients who were MRI-negative experienced 

continued seizures.  

 

3.2 Resting-state functional MRI 

Group-wise resting-state default mode, sensorimotor, salience, fronto-parietal and language 

networks are shown separately for controls and patients in Figure 3. The anatomical topology 

of each resting state network is indicated in Table S1, including the corresponding statistics, 

peak co-ordinates and cluster size for correlated and anti-correlated voxels. Visual inspection 

indicated a relatively similar distribution of correlated (Figure 3, red regions) and anti-

correlated (Figure 3, purple regions) networks in patients and controls for the default mode, 

sensorimotor, salience and language networks. However, connectivity in the fronto-parietal 

attention network was notably different between groups, manifest as a loss of connectivity 
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within correlated and anti-correlated regions in those with epilepsy. Second level analyses of 

functional connectivity between seeds within default mode, sensorimotor, salience and 

language networks and grey matter voxels across the brain revealed no significant differences 

between patients and controls using any seed region (Figure 1, Table 2). However, significant 

differences between patients and controls were observed using the left and right intraparietal 

sulcus seeds within the fronto-parietal attention network. There was significantly reduced 

functional connectivity between the left intraparietal sulcus seed and the right lateral 

temporal cortex, left lateral temporo-parietal cortex, left medial frontal cortex, precuneus 

and posterior cingulate cortex in patients relative to controls (Figure 4A-C, Table 3). When 

analyses were performed with the seven patients with MRI-positive findings excluded, we 

observed a very similar pattern of hypoconnectivity in patients relative to controls (Figure 4D, 

Table 4); the only difference was an absence of hypoconnectivity in the precuneus and 

posterior cingulate region. There was significantly reduced functional connectivity between 

the right intraparietal sulcus seed and right lateral temporal cortex, left mesial frontal cortex, 

left occipital cortex, and left cerebellum in patients relative to controls (Figure S1A, Table 3). 

When patients with MRI-positive findings were excluded, only significantly reduced 

connectivity with left mesial frontal cortex was observed (Figure S1B, Table 4). We found no 

statistically significant differences in functional networks between patients who were seizure 

free at follow up and those continued to experience seizures.  

 

3.3 Structural MRI 

There were no significant differences in grey matter or white matter structure between 

patients and controls using VBM at the selected statistical threshold (p<0.05, FWE). There 
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were no significant structural differences between patients who were seizure free at follow 

up and those continued to experience seizures.  

 

 
4. DISCUSSION 

There were two primary objectives of the present study. Firstly, we sought to compare 

resting-state functional networks between patients and controls. We did not find connectivity 

alterations in patients between seeds within the default mode, sensorimotor, salience or 

language networks and voxels across the brain. However, we observed significantly reduced 

connectivity between intraparietal seeds within the fronto-parietal attention network and 

distal brain regions in patients; this hypoconnectivity was demonstrated when all patients 

were compared with controls and when analyses were restricted to non-lesional patients. 

Secondly, we sought to determine whether adults with NDfE show evidence of a common 

structural brain abnormality using VBM. We found no statistically significant grey matter or 

white matter differences between patients and controls. We discuss the biological and clinical 

implications of these results before highlighting pertinent methodological issues. 

 

Biological and clinical implications 

Our clinical data is in keeping with other reports of NDfE. In our limited sized cohort we report 

that 74% patients had a normal MRI. Other studies of NDfE in adults have reported normal 

MRI in 65% (Liu, et al., 2002), 76% (Van Paesschen, et al., 1997) and 78% (Van Paesschen, et 

al., 1998) of patients. We reported focal cortical dysplasia in 7% and subtle signs of unilateral 

hippocampal sclerosis in 7% of patients. Previous reports of these abnormalities have ranged 

from 1.5% to 11% of adults with NDfE (Liu, et al., 2002; Van Paesschen, et al., 1997; Van 
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Paesschen, et al., 1998). 63% of our patients were seizure free after a one-year follow up, 

which is in keeping with large clinical studies (Annegers, et al., 1979; Kwan and Brodie, 2000; 

Marson, et al., 2007). We found no significant association between continued seizures after 

AED treatment and EEG or MRI abnormality. This is likely due to the small cohort of patients 

with NDfE studied here in comparison to larger population studies that have reported such 

associations (Mohanraj and Brodie, 2013). Given that the presence of an MRI-determined 

lesion is associated with medical intractability in large-scale studies, and presumably an 

increasing impact of epilepsy on cognition, we may have expected that the 26% patients who 

were not MRI-negative would have significantly greater alterations in network connectivity 

than the 74% who were MRI-negative. However, we did not find any evidence to support this; 

the same functional network alterations were observed in patients when the ‘lesional’ cases 

were removed from analysis. The relative contributions of gross macroscopic lesions and 

impairments in functional network connectivity to cognitive impairment in NDfE need to be 

assessed in larger prospective studies. 

 

To our knowledge, this is the first study of large-scale resting-state functional networks in 

patients with a new diagnosis of focal epilepsy. We report that patients with a new diagnosis 

of focal epilepsy have significantly reduced functional connectivity between regions within 

the fronto-parietal attention network and other areas of the brain. The fronto-parietal 

attentional network preferentially includes the dorsolateral and medial frontal lobe, posterior 

parietal cortices, and lateral temporal regions (Markett, et al., 2014). Brain regions within the 

fronto-parietal attention network are activated in task-related functional MRI studies of 

working memory and attention (Cabeza and Nyberg, 2000; Corbetta and Shulman, 2002; Fan, 

et al., 2005). Moreover, resting-state functional connectivity within the fronto-parietal 
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network is correlated with attentional and cognitive abilities in healthy people in tasks 

administered outside the scanner environment (Markett, et al., 2014). The significance of 

attentional and cognitive control processes of the fronto-parietal network has also been 

demonstrated in non-human primates (Ptak, 2012). Furthermore, hypoconnectivity within 

the fronto-parietal network has been described in other groups of patients with impaired 

cognitive control, such as major depressive disorder (Kaiser, et al., 2015) and attention-

deficit/hyperactivity disorder (Lin, et al., 2015). We therefore suggest that the loss of 

connectivity within this network and between this network and other regions of the brain are 

candidate causes of memory, executive, and attentional dysfunction that have been 

previously demonstrated in patients with NDfE (Aikia, et al., 1995; Aikia, et al., 2001; 

Kalviainen, et al., 1992; Prevey, et al., 1998; Pulliainen, et al., 2000; Taylor, et al., 2010). We 

were, however, unable to directly address a correlation between functional brain connectivity 

and cognitive impairment in our sample given that our patients were not 

neuropsychologically evaluated. Approximately one-half of all patients with NDfE are 

impaired on cognitive tasks of memory, psychomotor speed and executive function (Taylor, 

et al., 2010). It will therefore be interesting to determine whether it is those cognitively 

impaired patients who influence network hypoconnectivity, and reciprocally, whether 

imaging of functional networks represents a non-invasive prognostic marker of cognitive 

dysfunction in these patients.  

 

We report that patient hypoconnectivity existed between intraparietal seeds and lateral 

temporo-parietal, dorsomedial frontal, medial parietal and occipito-cerebellar regions. Whilst 

bilaterally distributed, hypoconnectivity was predominantly left lateralised regardless of 

whether the fronto-parietal network was seeded from the left or right intraparietal sulcus. 
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We cannot be certain that this lateralised effect was due to an increased number of patients 

with left-sided seizure onset in our sample; a confident localisation of the seizure onset zone 

is difficult in patients with NDfE, given that only 11% of our sample had interictal EEG 

abnormalities. Confident localisation of the seizure focus is more likely after detailed imaging, 

EEG and neuropsychological evaluation in patients with refractory focal epilepsy. The brain 

regions constituting the fronto-parietal functional network are richly interconnected with 

white matter fibres passing through the superior longitudinal fasciculus (Ptak, 2012). It will 

therefore be interesting to investigate this white matter tract bundle using diffusion-based 

MRI techniques in patients with NDfE.  

  

We did not observe structural abnormalities in the group of patients relative to controls. On 

the one hand, this may suggest that alterations in functional networks, and concomitant 

effects on cognition, occur in the absence of gross focal structural abnormalities in patients 

with NDfE. On the other hand, whilst minimising false positives, the stringent – but necessary 

– statistical approach incorporated into VBM could obscure subtle common structural 

alterations (Keller and Roberts, 2008). VBM has previously revealed focal alterations in groups 

of patients with non-lesional epilepsy who share common underlying neurobiological 

mechanisms (e.g. juvenile myoclonic epilepsy (O'Muircheartaigh, et al., 2011; Woermann, et 

al., 1999) or temporal lobe epilepsy of unknown cause (Riederer, et al., 2008; Scanlon, et al., 

2013)). One issue to therefore consider is that patients with NDfE have heterogeneous 

neurobiological mechanisms and different epileptogenic foci, which would not be identified 

using a technique such as VBM that is used to detect abnormalities common to a patient 

group. However, we suggest that there remains the possibility that common structural 

network alterations may exist in patients with NDfE, and which may be beyond the resolution 
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of VBM. Particular anatomical circuits act as critical modulators of seizure generation and 

propagation, and seizure activity does not spread diffusely throughout the brain but 

propagates along specific anatomical pathways, regardless of the localisation of the brain 

insult (Loscher and Ebert, 1996; Piredda and Gale, 1985). Furthermore, a recently published 

study has shown that pathological structural connectivity causes disturbances to common 

large scale functional brain networks regardless of the localisation of the epileptogenic zone 

in patients with refractory focal epilepsy (Besson, et al., 2017). Moreover, particular deep 

brain regions - such as the thalamus and thalamocortical pathways - that play a crucial role in 

the clinical expression of seizures in the epilepsies (Dreifuss, et al., 2001), and anatomically 

support widespread distributed cortico-subcortical networks (Nieuwenhuys, et al., 1988) – 

are structurally and physiologically abnormal in both hemispheres in patients with 

longstanding focal and generalised epilepsy disorders (Bonilha, et al., 2013; He, et al., 2015; 

Kay and Szaflarski, 2014; Keller, et al., 2014; Keller, et al., 2015; Kim, et al., 2014; 

O'Muircheartaigh, et al., 2012). Finally, cognitive impairment is not related to the type of focal 

epilepsy in those with a new diagnosis (Taylor, et al., 2010). Taken together, this evidence 

suggests that there may be a common underlying anatomical system that is impaired in 

patients with NDfE. Advanced diffusion-based MRI approaches (Bonilha, et al., 2015; Glenn, 

et al., 2016; Keller, et al., 2017) may provide important insights into structural network 

alterations in NDfE.  
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Methodological issues 

We suggest that alterations of brain functional networks may relate to cognitive dysfunction 

in patients with NDfE. However, we were unable to directly relate brain functional (and 

structural) alterations to cognitive performance in our patients, as neuropsychological 

assessment was not performed. This is a shortcoming of the present study. We have used our 

imaging data to generate the hypothesis that altered functional connectivity with seeds in the 

fronto-parietal network may be related to cognitive dysfunction in NDfE by highlighting 

previous work that has reproducibly demonstrated (i) memory, sustained attention, 

executive functioning, mental flexibility and psychomotor speed impairments in NDfE (Aikia, 

et al., 1995; Aikia, et al., 2001; Kalviainen, et al., 1992; Prevey, et al., 1998; Pulliainen, et al., 

2000; Taylor, et al., 2010) and (ii) an association between the fronto-parietal attention 

network and sustained attention, cognitive control and executive functioning (Markett, et al., 

2014; Schmidt, et al., 2016). Patients with a new diagnosis of epilepsy do not receive 

neuropsychological evaluation as part of their clinical assessment; such evaluation will need 

to be performed in context of prospective research studies. Despite the difficulties associated 

with recruitment and detailed assessment of patients with NDfE – an issue that partly explains 

the lack of sophisticated imaging investigations in this patient group – future research should 

strive to simultaneously acquire neuroimaging and neuropsychological data in this 

understudied patient group and determine whether there is a direct link between brain 

functional hypoconnectivity and cognitive dysfunction.  

 

The clinical heterogeneity and unclear seizure foci of many patients with NDfE also 

contributes to the lack of investigation of this patient population in neuroimaging studies. The 

differentiation of new onset focal and generalised seizures is reliably achieved through 
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detailed assessment of seizure semiology by experienced epileptologists. However, it is 

difficult – and in many cases impossible – to identify the seizure focus at the time of diagnosis, 

which is very different from patients with longstanding (typically refractory) focal epilepsy 

and well-established foci defined using multi-modal imaging and clinical investigations. The 

majority of patients with new onset seizures do not show interictal epileptiform activity on 

clinical EEG (Aikia, et al., 1999; Kim, et al., 2006; Su, et al., 2013). This is particularly true in 

adults, where the prognostic value of routine interictal EEG has not been established 

(Mohanraj and Brodie, 2013). As such, our imaging findings are ‘collapsed’ across patients 

with likely newly diagnosed temporal and frontal lobe epilepsy, which constitutes the vast 

majority of focal epilepsies. Although recruitment of consecutive patients with NDfE naturally 

yields a clinically heterogeneous group, this represents a clinically pragmatic endeavour and 

partly accounts for the lack of sophisticated neuroimaging studies in this understudied 

population. We believe that there may be common markers of cognitive dysfunction and 

pharmacoresistance across patients with NDfE, which is supported by neuropsychological 

(Aikia, et al., 1995; Aikia, et al., 2001; Kalviainen, et al., 1992; Prevey, et al., 1998; Pulliainen, 

et al., 2000; Taylor, et al., 2010) and imaging (Kim, et al., 2017) work. The study by Kim et al. 

(2017) reported that patients with NDfE who continued to experience seizures despite AED 

therapy had reduced volumes of the corpus callosum relative to healthy controls and patients 

who were rendered seizure free. The identification of a common biomarker for cognitive and 

treatment outcome in patients with NDfE represents an important future research 

endeavour.    
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Conclusion 

We have demonstrated that patients with NDfE have significantly reduced connectivity 

between seeds within the fronto-parietal attention functional network and other cortical 

regions. This loss of connectivity is not influenced by the presence of a gross macroscopic 

epileptogenic lesion. This work indicates that functional brain abnormalities are not 

necessarily a consequence of the chronicity of epilepsy and are present when seizures first 

emerge. 
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Figure 1 
Location of seeds for each resting-state network. See Table 2 for anatomical locations and co-
ordinates.  
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Figure 2 
Lesions identified in the present study (see Table 1 for corresponding information). Patient 1 
(P1): mesial temporal focal cortical dysplasia and atrophy of ipsilateral hippocampal head on 
T1-weighted (left) and T2-FLAIR (right) images; P3: orbitofrontal gliosis on T1-weighted (left) 
and T2-FLAIR (right) images; P4: focal cortical dysplasia of middle frontal gyrus on T2-FLAIR 
(left) and T2-weighted (right) images; P9: unilateral hippocampal atrophy on T1-weighted 
(left) and T2-weighted (right) images; P12: temporal lobe white matter alteration on T2-
weighted (left) and T2-FLAIR (right) images; P24: Frontal lobe gliosis and encephalomalacia, 
corpus callosum atrophy and contrecoup posterior gliosis on T2-FLAIR (left) and T1-weighted 
(right images). Patient 21 (slight unilateral hippocampal alteration) not illustrated. Images are 
neurological convention (right = right).  
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Figure 3 
Resting-state functional networks shown separately for controls (C) and patients (P). Regions 
correlated (orange) and anti-correlated (purple) with seeds are indicated. Specific seeds used 
to generate networks indicated here include medial prefrontal cortex (default mode), primary 
motor area (sensorimotor), anterior cingulate gyrus (salience), left intraparietal sulcus 
(fronto-parietal) and left inferior frontal gyrus (language). Networks were reproducibly 
reconstructed using the alternative seeds shown in Figure 1. Note the visual difference 
between controls and patients in the fronto-parietal attentional network.  
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Figure 4 
Significantly reduced functional connectivity within the fronto-parietal attentional network in 
patients relative to controls (left intraparietal sulcus seed). Hypoconnectivity in all patients 
relative to controls are projected onto a 3D rendering (A) and axial sections (B) to illustrate 
anatomical locations. The spatial distribution of hypoconnectivity in all patients (C) and 
patients with normal MRI scans (D) are compared using glass brain projections. The 
corresponding information for each cluster is provided in Tables 3 and 4.  
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 Age Sex EEG MRI Report Medication Dx > 
fMRI 

Seizures between 
Dx & MRI 

 

Neurological 
History 

Treatment 
outcome 

1 18 M N FCD & Hipp R<L LMT 400mgs 6 Multiple FSIA No neurological history PS 

2 37 F N Normal LMT 1000mgs 2 FTBTC 
Syncope followed by concussive seizure 

 
SF 

3 39 M N Frontal focal gliosis LMT 100mgs 7 No Seizures 2 FTBTC & brain injury age of 15 SF 
4 57 M N FCD LEV1000mgs 8 FSIA FTBTC & pituitary cyst SF 

5 43 F N Normal LEV 1000 mgs 1 FSIA 
Headaches & previous seizures 

 
SF 

6 30 M N Normal LAM 150mgs 7 Single FSIA No neurological history SF 
7 28 F N Normal LEV 1000mgs 5 No Seizures FSIA & FTBTC PS 

8 37 M A Normal ZNS 200mgs 8 
2 FSIA 

 
FSIA & FTBTC PS 

9 30 M N Hippo L<R LMT 500 mgs 8 FSIA 
Von Willebrand disease 

 
PS 

10 22 M N Normal ZNS 150mgs 1 No Seizures FTBTC SF 
11 37 M N Normal LMT 150mgs 2 No Seizures History of FC SF 

12 38 F N 
Multiple WM hypointensity; 

haemosiderin and suggestive of 

previous microhaemorrhages 
ZNS 250mgs 5 FSIA & FTBTC 

Previous hypoxic brain injury 
 

SF 

13 37 F N Normal ZNS 500mgs 1 
No Seizures 

 
FSA SF 

14 18 F N Normal LMT 150mgs 11 4 FSIA & FTBTC 
No neurological history 

 
PS 

15 54 F N Normal LMT 100mgs 1 6 FSIA FTBTC and history of FC SF 
16 41 F A Normal LEV 500mgs 5 FSIA & FTBTC FTBTC SF 
17 25 F N Normal LMT 200mgs 3 FSIA No neurological history SF 
18 18 M A Normal LMT 50mgs 2 FSIA FTBTC PS 

19 56 M N Normal LMT 150mgs 1 No Seizures 
FSA & FTBTC 

 
PS 

20 41 F N Normal LMT 300mgs 2 No Seizures FSIA & FTBTC SF 

21 22 M N R hippo change* LMT 50mgs 3 
No Seizures 

 
FTBTC SF 
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22 23 M N Normal LMT I50mgs 3 No Seizures FTBTC SF 
23 20 F N Normal LMT 100mgs 1 No Seizures No neurological history PS 

24 32 M N Right FL gliosis, encephalomalacia 

& CC atrophy; left posterior gliosis 
LEV 1000mgs 1 No Seizures FTBS & previous brain injury PS 

25 38 F N Normal LEV 1000mgs 2 No Seizures FTBTC PS 
26 28 M N Normal LMT 150 mgs 1 No Seizures 2 FTBTC SF 
27 24 M N Normal Unknown 2 No Seizures No neurological history SF 

 
Table 1. Patient clinical data. Age is years. Time between diagnosis and resting-state functional MRI (Dx > fMRI) is months. A, 

abnormal; CPS, complex partial seizure; F, female; FC, febrile convulsions; FCD, focal cortical dysplasia; FSA, focal seizure, aware 

(formerly simple partial seizure (Fisher, et al., 2017)); FSAI, focal seizure awareness impaired (formerly complex partial seizure (Fisher, 

et al., 2017)); FTBTC, focal to bilateral tonic-clonic (formerly generalised tonic-clonic seizure (Fisher, et al., 2017)); Hippo, hippocampal 

volume; L, left; LEV, Levetiracetam; LMT, Lamotrigine; M, male; N, normal; PS, persistent seizures; R, right; SF, seizure free; WM, white 

matter; ZNS, Zonisamide. *Right hippocampal change was observed on Fluid-Attenuated Inversion Recovery (FLAIR) MRI only.  
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Network Anatomical region BA x y x 
Default mode Medial prefrontal cortex 10 1 55 -3 

 Posterior parietal cortex 7 1 -61 38 
Sensorimotor Primary motor area 4 0 -31 67 

 Precentral gyrus, left 6 -55 -12 29 
 Precentral gyrus, right 6 56 -10 29 

Salience Anterior cingulate gyrus 32 0  22 35 
 Anterior insula, left 13 -44 13 1 
 Anterior insula, right 13 47 14 0 

Fronto-parietal Intraparietal sulcus, left 39 -46  -58 49 
 Intraparietal sulcus, right 39 52 -52 45 

Language  Posterior superior temporal 
gyrus, left 

22 -57 -47 15 

 Posterior superior temporal 
gyrus, right 

22 59 -42 13 

 Inferior frontal gyrus (pars 
triangularis), left 

45 -51 26 2 

 Inferior frontal gyrus (pars 
triangularis), right 

45 54 28 1 

 
Table 2. Seed regions used to generate resting-state networks. See Figure 1 for 
visualisation of anatomical location of seeds.   
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Seed 
Anatomical regions Peak 

x,y,z 
Cluster Cluster 

p FWE 
Peak p 

unc 

Left 
Right middle temporal 
gyrus, temporal pole, 
inferior temporal gyrus 

62 -12 -28 867 0.004 0.00004 

 Left lateral occipital 
cortex, angular gyrus, 
middle temporal gyrus, 
supramarginal gyrus 
 

-44 -56 22 865 0.006 0.00001 

 Left superior frontal 
gyrus, frontal pole 

-10 24 52 672 0.007 <0.00001 

 Left middle temporal 
gyrus, superior temporal 
gyrus, inferior temporal 
gyrus, temporal pole 

-60 -44 -
02 

650 0.007 0.0002 

 Precuneus, posterior 
cingulate gyrus 

-02 -52 20 484 0.002 0.0004 

Right 
Right lateral temporal 
cortex 

54 -30 -16 600 0.04 0.0008 

 Left mesial frontal cortex -20 40 18 643 0.03 0.00008 

 Left occipital cortex, 
cerebellum 

-38 -86 -
36 

1101 0.004 0.0008 

 
Table 3. Second level results: significantly reduced functional connectivity within 

fronto-parietal attention network in all patients relative to controls. Regions are 
illustrated in Figure 2. 
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Seed 
Anatomical regions Peak 

x,y,z 
Cluster Cluster 

p FWE 
Peak p 

unc 

Left 
Right middle temporal 
gyrus, temporal pole, 
inferior temporal gyrus 

62 -12 -28 583 0.007 0.00007 

 Left lateral occipital 
cortex, angular gyrus 
 

-44 -56 22 570 0.009 0.00002 

 Left superior frontal 
gyrus, frontal pole 

-10 24 52 509 0.01 <0.00001 

 Left middle temporal 
gyrus, superior temporal 
gyrus 

-60 -44 -
02 

326 0.03 0.0001 

Right 
Left mesial frontal cortex -20 40 18 451 0.05 0.0001 

 
Table 4. Second level results: significantly reduced functional connectivity within 
fronto-parietal attention network in non-lesional patients only relative to controls.  
  
 
 


