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● A novel framework for safety assessment of hydropower stations is presented. 

● The dynamic safety degree of units and sensitivity of indices are evaluated. 

● Likelihoods of accidents in each unit is predicted with respect to operational time. 

● Optimal operational schedule that deals with electricity uncertainties is identified. 
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Abstract: This paper focuses on the safety analysis of a nonlinear hydro-generating unit 20 

(HGU) running under different loads. For this purpose, a dynamic balance experiment 21 

implemented on an existing hydropower station in China is considered, to qualitatively 22 

investigate the stability of the system and to obtain the necessary indices for safety 23 

assessment. The experimental data are collected from four on-load units operating at 24 

different working heads including 431m, 434m, 437m, and 440m. A quantitative analysis 25 

on the safety performance of the four units was carried out by employing an integration of 26 

entropy weights method with grey correlation analysis. This assisted in obtaining the safety 27 

degree of each unit, providing the risk prompt to the operation of nonlinear 28 
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hydro-generating units. The results confirm that unit 4 has the highest level of safety while 29 

unit 3 operates with the lowest safety condition. This provides the optimal operational 30 

schedule of HGUs to cope with the fluctuations of electricity demand in the studied station. 31 

The proposed methodology in this paper is not only applicable to the HGUs in the studied 32 

station but could also be adopted to assess the safety degree of any hydropower facility. 33 

Keywords: hydro-generating unit; dynamic balance experiment; safety analysis; 34 

grey-entropy correlation; 35 

 36 

1. Introduction 37 

Renewable energy is unarguably one of the most critical governing factors for today's 38 

increasing global economic and social development [1]. The pressing challenge lies in the 39 

sustainable harnessing of reliable, secure and affordable energy [2]. To date, hydropower 40 

has been the main renewable source of electrical energy for many countries’ power 41 

consumption (e.g. 99% in Norway, 86% in Brazil and 76% in Switzerland) due to the 42 

environmental consequences of fossil fuels exploitation [3]. The electricity provided by 43 

hydropower contributes about 16% of the world total electricity generation and is expected 44 

to grow to 2 GW in thirty years [4]. It is therefore no exaggeration that hydropower 45 

represents more than 92% of generated green energy making it a significant contributor to 46 

the global electricity supply [5]. 47 

Hydropower stations are the major electricity generation facilities in which the 48 

hydro-generating unit (HGU) is the heart of the energy production, transmission and 49 
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conversion in each station [6]. HGU is a complex nonlinear system that integrates the 50 

characteristics of fluid, machinery, and electromagnetic induction [7]. A universal HGU is 51 

comprised of various coupled components such as hydraulic turbines, shafting systems, 52 

generators, governors, and excitation systems ([8] to [12]). 53 

Due to the nonlinear coupled characteristics, several hazardous factors are present 54 

within the operation of an HGU including shafting vibrations, electromechanical delays, 55 

stochastic instability, and inefficient operation. A large number of literatures have 56 

extensively studied such topics from the perspective of individual subcomponents, which 57 

supports the research foundation for the safety study in this paper. For instance, literatures 58 

([13], [14]) analyzed the cause of shafting vibrations in an HGU. Literature [15] studied a 59 

class of hydro-turbine with electromechanical delays. Researchers in ([16], [17]) modelled 60 

stochastic variables of an HGU to analyze its effect on the stability of subcomponents. 61 

Researchers in ([18], [19]) studied the adaptation strategy of hydropower systems to 62 

improve the operating efficiency. This range of conducted research highlights that the 63 

hydropower industry is greatly concerned about the safety of HGU operations and 64 

improvements are needed [20]. In particular, with the construction of large-capacity 65 

hydropower stations to be completed in the following decades, resolving the stability 66 

problems of operation, from the perspective of systemic properties, will be one of the major 67 

areas that attracts a great deal of attention from the industry [21]. Although a large number 68 

of advanced safety assessment methods have been developed in various research fields 69 

such as information science [22], ecological engineering [23] and marine engineering [24, 70 
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25], the operational safety of HGUs has been rarely investigated and very little evidence of 71 

achievements has been previously provided. 72 

To date, the safety analyses of HGUs have mainly focused on investigating the 73 

stability of HGU components. The developed methods determine the instability status of 74 

the HGU components in terms of narrow hydraulic, mechanical, or electrical angle. 75 

However, the integrated safety level of the entire HGU system has not been evaluated from 76 

these independent components. Hence, there is a need for a framework that can assess the 77 

safety of HGU from the system perspective. Previous researches ([26] to [30]) developed a 78 

framework, combining the method of entropy weights and grey correlation theory to 79 

investigate the quality problems in different applications such as wastewater treatment, soil 80 

detection, and machinery fault. Several studies ([31], [32], and [33]) indicate that the 81 

method of entropy weights has a great potential for the assessment of complex systems by 82 

measuring the uncertainties of structure indices. The outcome of researches ([34], [35], and 83 

[36]) reveal that the grey correlation theory can be adopted for various prediction 84 

applications of such complex systems based on incomplete information. 85 

The present paper herein investigates the operational stability of a nonlinear HGU 86 

and proposes a methodology for safety assessment of these systems. For this purpose, a 87 

dynamic balance experiment is conducted on four HGU units, each with a different 88 

working head, in an existing hydropower station in China. The experiment is based on 89 

vibration parameter, which is the main risk factor of on-load HGUs. Seventeen indices 90 

are extracted to qualitatively assess the operational stability of the units. An effective 91 
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approach integrating the entropy theory and grey correlation is then utilized to 92 

quantitatively analyze the safety performance of the studied HGU. This assisted in 93 

determining the safety degree of the analyzed four units that run with load, as well as an 94 

optimal operational schedule of HGUs coping with peaks and troughs of electricity 95 

demand in the studied hydropower station. 96 

The present paper has extensively reviewed the existing literature that are based on 97 

the individual subcomponents (e.g. hydro-turbines, shafts and generators) of HGU systems. 98 

The major contribution of the paper, however, is to consider the coupled characteristics of 99 

hydraulic, mechanical and electrical subcomponents for investigating the safety of HGU 100 

operation. Moreover, there are few researches that have successfully applied dynamic 101 

safety assessment to nonlinear HGUs. This paper presents a novel methodology that is 102 

significantly more flexible and efficient in dynamic safety assessment of HGUs with an 103 

attempt to overcome the limitations of static approaches. The safety degree of HGUs is 104 

quantified by using a probabilistic approach, which serves as a tool for monitoring and 105 

predicting the risk of accidents in hydropower stations resulting from failure in HGUs. This 106 

not only improves the safety of HGU operation, but also effectively reduces the operational 107 

and maintenance costs of energy production. The results obtained from this research 108 

benefit the operators and risk managers of the hydropower industry serving as a tool for 109 

development of risk mitigation strategies. For instance, it enables them to respond to the 110 

important question of “how to efficiently and safely arrange the operation of multiple 111 

HGUs with respect to different allowing heads”. 112 
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The remainder of the paper is structured as follows. In Section 2 a brief review of a 113 

universal nonlinear HGU is presented. In Section 3 the fundamentals of utilized methods 114 

and an overview of the global methodology for safety assessment of HGU are provided. 115 

Section 4 discusses the details of the conducted dynamic balance experiment on the 116 

studied station’s HGU. Section 5 demonstrates the process of safety assessment 117 

methodology and presents its highlighted results. Lastly, the key findings of this study are 118 

discussed in the conclusion section. 119 

 120 

2. A Brief Review of an on-load HGU 121 

HGU is the key equipment of hydropower stations used to produce, transmit and 122 

converse electrical energy, which mainly consists of hydraulic turbines, generators, 123 

control systems/governors, excitation systems and inlet and draft pipes [37]. The 124 

operation of an HGU is always integrated with a number of other hydraulic components 125 

such as surge tank, piping system, water gate and reservoir [38]. The structure of an HGU 126 

and the key elements of the hydraulic system are shown in Fig. 1. 127 
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Fig. 1 Schematic of an HGU. 129 

HGU, in fact, is a nonlinear system with multi-attribute characteristics including 130 

hydraulic, mechanical, electrical and electromagnetic. An on-load HGU is a system 131 

synchronized with the power grid, and its load generally cannot be constantly maintained 132 

due to the stochastic load. The on-load HGU may be considered as a dynamic system 133 

varying with the changes (decrease or increase) in load. An HGU mainly utilizes pressure 134 

and momentum energy to produce power. The working mechanism of an on-load HGU is 135 

described as the flow velocity influenced by the effect of blade changes as the system 136 

load fluctuates, which in turn generates a reactive force in the flow channel. This drives 137 

the hydraulic turbines which generate mechanical energy, and the generator further 138 

converts the mechanical energy to electrical energy. The details of an HGU working 139 

mechanism is presented in Fig. 2. 140 
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Fig. 2 Details of an on-load HGU working mechanism. 142 

In actual hydropower stations, the dynamic performance of HGUs is hard to detect 143 

due to the rapid changes in the operational conditions influenced by internal couplings as 144 

well as the external environment. Uncontrolled and abrupt changes in the dynamic 145 

variables influencing the operational conditions of the system could result in critical 146 

damage to the asset as well as other consequences. It is therefore essential to conduct 147 

quantitative assessment of the safety and stability of an HGU, probably based on 148 

experimental investigations. 149 

 150 

3. Methodology 151 

Previous researches in this field have focused on developing static safety assessment 152 

frameworks for operating HGUs. However, due to the nonlinearity of these systems, 153 

attending to the dynamic effects in the analysis are essential for achieving better results. To 154 

overcome this shortcoming, an effective method must be developed applicable to 155 

hydropower facilities. Through conducting an interdisciplinary research [26, 27], this 156 
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section presents the details of an enhanced grey-entropy correlation methodology for 157 

dynamic safety analysis of on-load HGUs. The proposed framework is able to improve the 158 

imprecision of subjective entropy weights as well as the static evaluation of grey 159 

correlation degrees. A major contribution of the established method is in adopting the 160 

probabilistic approaches to predict and reflect the real-time safety level of on-load HGUs, 161 

which is greatly beneficial when dealing in a timely manner with unexpected accidents and 162 

the development of improved safety and risk mitigation strategies. 163 

3.1 Entropy Weights Method 164 

The concept of entropy that is derived from thermodynamics theories represents a 165 

measure of disorder in a system. Entropy theory was proposed by Shannon, in 1948, to 166 

reflect the uncertainty in information science, it has been applied in various research 167 

fields for its precision and flexibility [39]. 168 

Two approaches can be applied for determining the weights of indices, known as 169 

subjective fixed weight and objective fixed weight methods. Entropy weight method, as 170 

an objective approach, is based on the amount of data, overcoming the subjectivity issues 171 

as it is independent of expert judgment. The main idea of entropy method is to determine 172 

the weights by index variations. In general, a smaller index weight represents a larger 173 

degree of index variation, meaning that the index may provide more assessment 174 

information and have significant influence on the stability of the system. In the entropy 175 

safety assessment of an HGU, a specific index weight is the critical indicator to measure 176 

the importance of the selected index, assessing its safety contribution to the studied 177 
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system. 178 

Assuming that there are m assessment indices and n assessment units, the assessment 179 

data is transformed into a form of standardization that employs a normalized method of 180 

inverse index, shown in Eq. (1) [40]. 181 
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operation of an HGU. 186 
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Therefore, the index weight set iW  is  1 2 ,...,, n   . 191 

3.2 Grey-entropy Correlation Method 192 

Grey system is used to describe an uncertain system that has the characteristic of 193 

partial information loss, and grey correlation theory is a powerful tool to query the quality 194 

of a system with poor information [41]. An on-load HGU is an engineering system 195 
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incorporating a degree of uncertainty and therefore it can be assessed by the grey 196 

correlation theory. The concept of using grey theory is to find the possible motion rule 197 

from the disordered and fuzzy data. Specifically, it is the similarity of an index in 198 

different assessment units that is the key factor for measuring the variation between the 199 

indices. A greater similarity between indices means that the grey correlation of a studied 200 

unit is more optimal. There are no requirements for the size and characteristics of data in 201 

a grey correlation analysis which overcomes the shortcomings of traditional regression 202 

analyses. 203 

Based on the normalized set of inverse index  ij
m n

r


 mentioned in Eq. (1), the 204 

index column is expressed as 1 2, ,..., mx x x . It should be noted that, there are i assessment 205 

plans in the analysis, i.e., 
ix = (1), (2),..., ( )i i ix x x n , where 0x  is assumed to be the 206 

optimum plan. Therefore, the correlation coefficient, iξ (j) , between 0x  and ix  with 207 

respect to the j
th

 factor in the index set  ij
m n

r


 is expressed as [42]: 208 

min( min) max( max)
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max( max)
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i i

i i
i

  

  




iξ (j) , i=1,2,...,m and j=1,2,...,n,     (4) 209 

where  i  is equal to 0| ( ) ( ) | ix j x j ,   is the resolution coefficient that changes 210 

within the interval [0, 1], but generally it is set at 0.5. mini  and maxi  denote the 211 

minimum and maximum differences in the first level respectively, while min( min)i
i

 212 

and max( max)i
i

 are the minimum and maximum differences in the second level, 213 

respectively. The expressions for each of these terms are shown as follows:  214 
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Subsequently, based on the index weight 
iW  obtained using Eq. (3), we estimate 218 

the correlation coefficient 
iξ (j)  for the i

th
 studied unit to obtain its integrating safety 219 

degree. Therefore, the grey correlation degree, 
iα , between the optimum unit and the 220 

studied unit i is given by the grey-entropy correlation equation as follows: 221 

1

m

j

i i iα W ξ (j) , 0 iα 1.                           (7) 222 

In Eq. (7), the obtained grey correlation degree 
iα , also defined as the safety degree, 223 

assists in assessing the safety level of a multi-unit HGU from a probabilistic point of view. 224 

That is, a higher value of iα  corresponds to a safer HGU thus for instance, a system 225 

with iα =1 has the maximum level of reliability. 226 

3.3 Global Methodology 227 

This paper presents a novel framework for the dynamic safety assessment of HGUs 228 

by combining the entropy weight method with the grey correlation analysis. The major 229 

novel components of the proposed method consist of:- firstly, the method overcomes the 230 

subjectivity of traditional methods in determining the weight coefficients of assessment 231 

indices, which improves the accuracy of the results and provides a more scientific 232 
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representation. Secondly, the method completely transforms the static safety assessment 233 

into a dynamic practice by substituting the dynamic entropy weights (i.e. Eq. (3)) into the 234 

relationship for obtaining the grey correlation degree (i.e. Eq. (7)). Thirdly, few existing 235 

studies have been proven to be successful in conducting a probabilistic safety analysis of 236 

nonlinear HGUs. 237 

The steps of the developed methodology in this paper are provided in Fig. 3, and 238 

summarized as follows. 239 

(1) A dynamic balance experiment is carried out on the existing HGUs for different 240 

allowing heads, to qualitatively analyze the dynamic operational behavior of a hydropower 241 

station. The obtained data, m assessment indices for n studied HGUs, is later used to 242 

conduct a quantitative safety analysis. 243 

(2) Dynamic entropy weights (see Eq. (3)) are developed to estimate the contribution 244 

of the indices on HGSs’ stability with respect to time. For this purpose, the indices with 245 

significant influence on HGS’ operation under various allowing heads are identified. 246 

(3) The grey-entropy correlation degrees (see Eq. (7)), combined with the dynamic 247 

entropy weights (see Eq. (3)) and grey correlation coefficients (see Eq. (4)), are used to 248 

evaluate the safety degree of n studied HGUs. The safety degree is expressed by 249 

probability values. 250 

(4) Based on the quantitative analysis, the time-varying safety state of HGUs and any 251 

accidents are revealed. This enables the technicians and operators of hydropower stations 252 

to make an optimal operational schedule of HGUs for dealing with fluctuations of 253 
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electricity generation and demand. 254 

A detailed illustration of the numerical process of entropy weights and safety 255 

degrees is presented in the Appendix. 256 
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 257 

Fig. 3 Proposed framework for safety assessment of on-load HGUs. 258 

 259 

4. Dynamic Balance Experiment on HGUs 260 

In order to conduct a safety analysis on the HGU with load, a dynamic balance 261 

experiment was carried out on the HGU in an existing hydropower station in China and 262 

seventeen critical safety indices (i.e. X1-X17) were determined. These indices could 263 
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reflect the instability of the system with respect to vibrations and pressure pulsations in 264 

units. There are four Francis HGUs at the studied station, with installed and unit capacity 265 

of 1050MW and 262.5MW, respectively. In this experiment, the utilized sensors and 266 

measurement equipment for vibration analysis include: the PSTA-H vibration 267 

instrumentation of HGU, the TTS216 dynamic signal instrumentation of HGU, a CWY 268 

eddy current displacement sensor, a DP low-frequency vibration sensor, a KYB pressure 269 

transmitter and shielded signal cables. Some of the technical details of the four HGUs 270 

tested in the experiment are listed in Table 1, and the arrangements of the monitoring 271 

points on the HGUs, as well as the type of acquired data at each point, are presented in 272 

Fig. 4. 273 

Table 1 Information of the Francis hydraulic turbine of four HGUs in an existing 274 

hydropower station. 275 

Information of Francis Hydraulic Turbines 

Type HLS270-LJ-680 Nominal power 267.85MW 

Nominal head 64m Nominal flow 460.46m
3
/s 

Nominal speed 93.75rpm Runaway speed 185rpm 

Number of runner 

blades 
13 

Number of movable 

guide vanes 
24 

Information of Generators 

Type SF265-64/15000 Nominal capacity 291.7MVA 

Stator voltage 15750V Stator current 10692A 

Power factor 0.9 Exciting voltage 350V 

Exciting current 1900A Nominal frequency 50Hz 

Information of Governors 

Type PFWT-200-6.3 
Main configuration 

diameter 
200mm 

Operating oil pressure 6.3MPa Servomotor stroke 780mm 

Lower guide bearing 

clearance 
0.15~0.2mm 

Upper guide bearing 

clearance 
0.15~0.2mm 

Water guide bearing 0.2~0.25mm Cylinder diameter of 640mm 
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Fig. 4 Arrangements of monitoring points on HGU and type of recorded data at each point in 277 

dynamic balance experiment in an existing hydropower station. 278 

The initial running states of the four HGUs are different due to the internal coupled 279 

characteristics and external environment. A start-up test and a turbine-speed test are 280 

carried out for different HGUs before the dynamic balance experiments. This results in 281 

identifying the initial running state of the four HGUs, including that the rotating and fixed 282 

components for HGUs 1 and 4 operate normally and their vibration and swing values 283 

meet the design requirements. For HGUs 2 and 3, the start-up test shows that the rotating 284 

and fixed components run without abnormal friction or collision. Based on the turbine 285 

speed test at nominal speed for HGU 2, it is found that the horizontal vibration of upper 286 

bracket (290μm), vertical vibration of upper bracket (157μm), swing of upper guide 287 

bearing (335μm), swing of lower guide bearing (417μm) and swing of hydraulic guide 288 

bearing (382μm) exceed the design requirements. Similarly for HGU 3, the horizontal 289 
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vibration of upper bracket (203μm) and swing of hydraulic guide bearing (657μm) 290 

exceed the design requirements. Moreover, the actual operating conditions for four HGUs 291 

with different allowable heads (431m, 434m, 437m and 440m) in experiment are listed in 292 

Table 2. 293 

Table 2 Actual operating conditions for four HGUs with different allowable heads (431m, 294 

434m, 437m and 440m) used in the dynamic balance experiment. 295 

HGU 1 

 Actual upstream head Actual downstream head Actual head of station 

431m Head 431.71m 366.64m 65.07m 

434m Head 433.60m 366.36m 67.24m 

437m Head 436.40m 366.24m 70.16m 

440m Head 439.40m 367.98m 71.42m 

HGU 2 

 Actual upstream head Actual downstream head Actual head of station 

431m Head 431.92m 366.11m 65.81m 

434m head 433.23m 365.62m 67.61m 

437m head 437.33m 367.16m 70.17 

440m head 439.60m 368.29m 71.31m 

HGU 3 

 Actual upstream head Actual downstream head Actual head of station 

431m head 431.93m 367.19m 64.74m 

434m head 433.14m 366.27m 66.87m 

437m head 437.14m 367.48m 69.66m 

440m head 439.96m 367.87m 72.09m 

HGU 4 

 Actual upstream head Actual downstream head Actual head of station 

431m head 432.66m 367.38m 65.28m 

434m head 433.31m 365.92m 67.39m 

437m head 437.87m 367.97m 69.90m 

440m head 439.60m 367.67m 71.93m 

According to the design criteria, the operating head for the four HGUs in the studied 296 

station varies within the range of 431m to 440m. Four typical allowable heads (i.e. 431m, 297 

434m, 437m and 440m) were chosen to conduct the dynamic balance experiment, where 298 
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vibration, swing and water pressure were measured. Based on the requirement of the actual 299 

operation in this station, the measurements were taken for various on-load conditions 300 

within the load range of 120MW to 265.2MW. The necessary indices in this experiment 301 

were selected to qualitatively investigate the stability of four HGUs, and the results are 302 

shown in Figs. 5 to 8. 303 

  304 
              (a)                                     (b) 305 

Fig. 5 Measurements of vibration property in dynamic balance experiment of HGU 1 at an 306 

existing hydropower station, China. 307 

  308 

              (a)                                    (b) 309 
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  310 

               (c)                                        (d) 311 

Fig. 6 Measurements of vibration property in dynamic balance experiment of HGU 2 at an 312 

existing hydropower station, China. 313 

  314 
                (a)                                        (b) 315 

Fig. 7 Measurements of vibration property in dynamic balance experiment of HGU 3 at an 316 

existing hydropower station, China. 317 

  318 

                   (a)                                    (b) 319 

Fig. 8 Measurements of vibration property in dynamic balance experiment of HGU 4 at an 320 

existing hydropower station, China. 321 
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To evaluate the stability of each HGU, the measured vibrations at different points are 322 

compared with the maximum allowable vibration adopted from the national standards [43, 323 

44]. The allowable range for all indices (X1-X17) are listed in Table 3. 324 

Table 3 Allowable ranges of HGU’s indices (X1-X17) for safety operation from the 325 

national standards [43, 44]. 326 

Index (X1-X9) 
Allowable 

range 
Index (X10-X17) 

Allowable 

range 

Inlet pressure pulsation of draft 

pipe (X1) 
0~64kPa 

Z-direction vertical vibration of 

upper bracket (X10) 
0~80μm 

X-direction swing of upper 

guide bearing (X2) 
0~300μm 

X-direction horizontal vibration 

of lower bracket (X11) 
0~110μm 

Y-direction swing of upper 

guide bearing (X3) 
0~300μm 

Y-direction horizontal vibration 

of lower bracket (X12) 
0~110μm 

X-direction swing of lower 

guide bearing (X4) 
0~300μm 

Z-direction vertical vibration of 

lower bracket (X13) 
0~80μm 

Y-direction swing of lower 

guide bearing (X5) 
0~300μm 

X-direction vibration of stator 

frame (X14) 
0~40μm 

X-direction swing of hydraulic 

guide bearing (X6) 
0~375μm 

X-direction horizontal vibration 

of head cover (X15) 
0~90μm 

Y-direction swing of hydraulic 

guide bearing (X7) 
0~375μm 

Y-direction horizontal vibration 

of head cover (X16) 
0~90μm 

X-direction horizontal 

vibration of upper bracket (X8) 
0~110μm 

Z-direction vertical vibration of 

head cover (X17) 
0~110μm 

Y-direction horizontal vibration 

of upper bracket (X9) 
0~110μm   

As illustrated in Table 3 and Figs. 5 to 8, each HGU has a level exceeding the 327 

allowable vibrations. Through a comparison of the results, it can be seen that the most 328 

stable HGU is unit 4 with the minimum vibration in the upper bracket (along Z-direction) 329 

and in its stator frame (along X-direction). It can be seen in Figs. 5 to 7, that the vibration 330 

of units 1, 2 and 3 are caused by two indices, i.e. swing of the hydraulic guide bearing 331 

along X and Y directions. However, it should be noted that the vibration magnitude of 332 



21 
 

these units is different where Y
3
 > Y

2
 > Y

1
 and X

3
 > X

2
 > X

1
 (e.g. Y

3
 and X

3
 refer to the 333 

magnitude of vibration in unit 3 along Y and X directions, respectively). The results of 334 

qualitative analysis highlight that the lowest level of safety among the studied units at the 335 

studied station is for unit 4, while unit 2 shows a more stable operation. Unit 1 has a 336 

higher safety level than unit 2, however, it does not provide an optimal condition. During 337 

the analysis of unit 3 responses, additional vibrations were observed in the upper bracket 338 

(along Z-direction) and the stator frame (along X-direction). Since it could not be 339 

determined, based on a qualitative assessment, to what extent the different indices affect 340 

the operational performance of the four HGUs, a rigorous quantitative analysis is required 341 

to investigate the safety condition of these four units. 342 

 343 

5. Analysis of HGUs 344 

In order to more effectively analyze the safety of the HGUs at the studied station, 345 

the grey correlation method is employed based on the results of dynamic balance 346 

experiments. For this purpose, maximum vibrations of the seventeen indices are firstly 347 

adopted from the experiment results, as listed in Table 4. The maximum vibration of 348 

selected index is considered as the assessment criteria in qualitative analysis, where the 349 

optimum level of safety is set as 0μm due to the characteristic of inverse indices. Results 350 

of the grey correlation analysis for the four units are presented in Figs. 9 and 10. 351 

Table 4 Measured Data: Maximum vibrations of seventeen assessment indices for HGUs 352 

(1-4) at an existing hydropower station, China. 353 

Maximum vibrations (μm) 



22 
 

 431m Head 434m Head 

Index HGU 1 HGU 2 HGU 3 HGU 4 HGU 1 HGU 2 HGU 3 HGU 4 

X1 32.69 62.94 36.55 49.24 48.73 72.58 70.05 82.23 

X2 162 205 176 229 161 205 185 233 

X3 160 249 164 168 158 258 193 244 

X4 289 245 178 230 306 233 180 237 

X5 328 241 209 196 340 234 203 280 

X6 539 608 757 258 536 640 775 324 

X7 519 643 721 234 516 682 716 288 

X8 63 68 56 67 70 60 72 74 

X9 77 66 73 60 70 56 60 64 

X10 59 65 64 56 61 63 56 64 

X11 28 17 17 11 36 14 18 25 

X12 30 11 17 14 25 13 21 29 

X13 56 62 41 88 59 56 58 163 

X14 20 20 17 39 19 22 17 33 

X15 30 37 26 27 40 31 56 41 

X16 20 16 17 19 25 24 26 27 

X17 61 27 44 75 53 56 59 76 

Maximum vibrations (μm) 

 437m Head 440m Head 

Index HGU 1 HGU 2 HGU 3 HGU 4 HGU 1 HGU 2 HGU 3 HGU 4 

X1 69.89 61.19 95.52 79.04 86.67 168.14 121 46.39 

X2 134 153 137 204 128 147 132 182 

X3 141 195 151 214 151 210 162 201 

X4 289 230 183 236 281 221 189 195 

X5 252 186 131 237 289 157 180 178 

X6 522 580 794 319 503 555 736 363 

X7 501 648 694 290 523 700 727 365 

X8 76 79 62 69 88 77 72 72 

X9 92 70 67 106 98 96 64 71 

X10 67 73 74 108 71 94 94 69 

X11 25 97 82 29 26 19 25 25 

X12 32 82 55 34 29 21 26 30 

X13 76 15 255 115 68 108 185 102 

X14 24 40 45 53 26 68 43 54 

X15 82 63 107 48 63 94 61 66 

X16 91 29 117 58 46 61 82 86 

X17 92 79 306 90 81 109 140 74 
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Fig. 9 Entropy weights of seventeen assessment indices for four on-load HGUs with different 355 

working heads. 356 
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Fig. 10 Estimated safety levels of four on-load HGUs operating with different working heads at 358 

an existing hydropower station, China. 359 
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Fig. 9 indicates the assessment weights (i.e. the calculated entropy weights in Eq. (3)) 360 

of seventeen indices for HGUs operating with working heads of 431m, 434m, 437m and 361 

440m. It should be noted that the same index assessed in different allowable heads has 362 

the same color. Considering Fig. 9, it is observed that the weight of each index differs 363 

considerably as the allowable head changes. This confirms the sensitivity of assessment 364 

indices on the HGUs’ working heads as well as the fact that the information associated 365 

with the indices for the studied units is not identical. For instance, the highest weights for 366 

431m working head are estimated as 0.093 for the horizontal vibration of upper bracket in 367 

X direction (X8 index), 0.081 for the vibration of upper bracket in Z direction (X10 index) 368 

and 0.08 for the swing of hydraulic guide bearing in Y direction (X7 index). Similarly, it 369 

is found that for the HGU with 434m working head, the main indices are X3, X6 and X15; 370 

for the 437m head unit, the main indices are X7, X5 and X8; and for the 440m head, they 371 

are X11, X10 and X9. Based on the effect of main indices and experimental results, the 372 

safety issues in the units with working heads of 431m, 434m and 437m may be caused by 373 

the integrating effect of mechanical problems and hydraulic imbalance while the 374 

mechanical component only results in a slight vibration of the units operating with the 375 

440m head. It should also be noted that all assessment indices influence the safety of each 376 

unit although their contributions may vary significantly in different working heads. 377 

Fig. 10 presents the estimated safety degree of the four HGUs under different 378 

working heads. The probabilistic results indicate that the most stable HGU is unit 4 with 379 

the average safety degree of 0.6282. Unit 1 is the second most stable unit with the 380 
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average safety degree of 0.6057. Unit 2 is the third safest unit of the four with the average 381 

safety degree of 0.5974 while unit 3 has the highest operational risk with its average 382 

safety degree of 0.5793. Based on the results, the system can safely run in the orders 383 

suggested in Fig. 10 when the allowable head fluctuates around 431m, 434m, 437m and 384 

440m. However, when the hydropower station is not able to predict the working head of 385 

HGUs in advance, it is suggested that the optimal operational schedule is as follows: unit 386 

4, unit 1, unit 2 and unit 3. This provides the safe operating strategy of HGUs to cope 387 

with peaks and troughs of electricity demand within the station. 388 

It is also observed, in Fig. 10 that the safety degree of four units for the allowable head 389 

of 437m is lower than other working heads, changing between the range of [0.4305, 390 

0.5004]. That is, the average safety of HUGs is less than 50 percent under the allowable 391 

head of 437m. It can therefore be a reasonable suggestion that the HGUs at the studied 392 

station could avoid, if possible, operating with this condition to enhance the operational 393 

safety. 394 

 395 

6. Conclusions 396 

In this paper, a new framework is presented for the safety assessment of HGUs in 397 

hydropower stations and addresses the limitations in this research field. The study is 398 

carried out based on four on-load HGUs operating at an existing hydropower station in 399 

China. A dynamic balance experiment of the units with different allowable heads is 400 

conducted to qualitatively investigate the system stability and to obtain the requirements 401 



26 
 

for further quantitative analyses. This was performed by using the grey correlation 402 

analysis and entropy weights method. It is demonstrated that there is a significant 403 

difference in the sensitivity and risk contribution of the adopted indices between the 404 

allowable heads of 431m, 434m, 437m and 440m. The measurements of the weights 405 

reveal that, the safety of units operating with a head of 431m, 434m, 437m depend on the 406 

combined contribution of mechanical issues and hydraulic imbalance, while the undesired 407 

events occurring for units with 440m of head may only be caused by mechanical issues. 408 

From the grey-entropy assessment results, it can be concluded that the units have their 409 

specific safety degree as the allowable head changes. Moreover, a safe operational 410 

schedule can follow the order of: unit 4, unit 1, unit 2 and unit 3. It is anticipated that the 411 

proposed method can be adopted for improving the safety of hydropower facilities by 412 

providing optimal operational schedules. 413 

 414 

Appendix 415 

Numerical process of the safety degree in HGUs 416 

The aim of the numerical analysis is to establish the grey-entropy correlation degree 417 

(see Eq. (7)) to conduct a dynamic safety assessment of on-load HGUs. Eq. (7) is combined 418 

with the entropy weights (see Eq. (3)) and the grey correlation coefficients (see Eq. (4)). 419 

That is, the numerical analysis consists of three steps to obtain the dynamic safety degree of 420 

HGUs: i) based on the measurement data of seventeen indices in Table 4, we calculate the 421 
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entropy weight matrix of index 
iW  with respect to different working heads, ii) estimating 422 

the correlation coefficient matrix of indices 
iξ (j)  for different working heads based on the 423 

grey correlation equations (see Eqs. (4) to (6)) and iii) substituting the entropy weight 424 

matrix 
iW  and correlation coefficient matrix 

iξ (j)  into the grey-entropy correlation 425 

degree (see Eq. (7)). Finally, the dynamic safety degree matrix of studied HGUs 
iα  under 426 

different working heads is obtained. A detailed calculation progress is performed as 427 

follows. 428 

In this study, we have seventeen assessment indices (marked as j) and four HGUs 429 

(marked as i) operating with four working heads of 431m, 434m, 437m and 440m. The 430 

optimum safety matrix is [0], and the assessment matrices of the four HGUs at different 431 

working heads, i.e. [rij]431m, [rij]434m, [rij]437m, [rij]440m, are shown in Table 4. The 432 

normalized method of inverse index expressed in Eq. (1) is used to obtain the standard 433 

form of optimum safety matrix and assessment matrices, which are 434 

[0]∩[rij]431m=435 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.4806  0.2926 0.3574 0 0 0.2880 0.2802 0.0735 0 0.0923 0 0 0.3636 0.4872 0.1892 0 0.1867

0  0.1048 0 0.1522 0.2652 0.1968 0.1082 0 0.1429 0 0.3929 0.6333 0.2955 0.4872 0 0.2000 0.6400

0.4193  0.2314 0.3414 0.3841 0.3628 0 0 0.1765 0.0519 0.0154 0.3929 0.4333 0.5341 0.5641 0.2973 0.1500 0.4133

0.2177 0  0.3253 0.2042 0.4024 0.6592 0.6755 0.0147 0.2208 0.1385 0.6071 0.5333 0 0 0.2703 0.0500 0

 
 
 
 
 
 
 
 

, 436 

[0]∩[rij]434m=437 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.4074  0.3090 0.3876 0 0 0.1625 0.2434 0.0541 0 0.0615 0 0.1379 0.6380 0.4242 0.0244 0.0741 0.3026

0.1174  0.1202 0 0.2386 0.3118 0 0 0.1892 0.2000 0.0308 0.6111 0.5517 0.6564 0.3333 0.2439 0.1111 0.2632

0  0 0.0543 0.2255 0.1765 0.4938 0.5777 0 0.0857 0.0154 0.3056 0 0 0 0 0 0

0.2346 0.1202 0.0349 0.1993 0.2912 0.0500 0.0572 0.0811 0.0571 0 0.5278 0.6207 0.6196 0.3939 0.0976 0.4074 0.6447

 
 
 
 
 
 
 
 

, 438 

[0]∩[rij]437m= 439 
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1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.2683 0.3431 0.3411 0 0 0.3426 0.2781 0.0380 0.1321 0.3796 0.7423 0.6098 0.7020 0.5472 0.2336 0.2222 0.6993

0.3594 0.2500 0.0888 0.2042 0.2619 0.2695 0.0663 0 0.3396 0.3241 0 0 0.9412 0.2453 0.4112 0.7521 0.7418

0 0.3284 0.2944 0.3668 0.4802 0 0 0.2152 0.3679 0.3148 0.1546 0.3293 0 0.1509 0 0 0

0.1725 0 0 0.1834 0.0595 0.5982 0.5821 0.1266 0 0 0.7010 0.5854 0.5490 0 0.5514 0.5043 0.7059

 
 
 
 
 
 
 
 

 440 

and  441 

[0]∩[rij]440m= 442 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.4845 0.2967 0.2810 0 0 0.3166 0.2806 0 0 0.2447 0 0.0333 0.6324 0.6176 0.3298 0.4651 0.4214

0 0.1923 0 0.2135 0.4567 0.2459 0.0371 0.1250 0.0204 0 0.2692 0.3000 0.4162 0 0 0.2907 0.2214

0.2804 0.2747 0.2286 0.3274 0.3772 0 0 0.1818 0.3469 0 0.0385 0.1333 0 0.3676 0 0.0465 0

0.7241 0 0.0429 0.3060 0.3841 0.5068 0.4979 0.1818 0.2755 0.2660 0.0385 0 0.4486 0.2059 0.3511 0 0.4714

 
 
 
 
 
 
 
 

. 443 

To clearly clarify the proposed method, an example for the assessment process of 444 

on-load HGUs at 440m working head is demonstrated as follows: 445 

(i) Entropy weight matrix 
iW : Based on Eq. (2) and (3), the entropy weight matrix of 446 

seventeen indices derived from assessment matrix [rij]440m is written as: 447 





0.0486 0.0415 0.0654 0.0415 0.0398 0.0456 0.0788 0.0412

         0.0793 0.0947 0.0959 0.0759 0.0417 0.0518 0.0396 0.0733 0.0455

iW
. 448 

(ii) Correlation coefficient matrix iξ (j) : 449 

The minimum and maximum differences in the first level in Eq. (5) are obtained as: 450 

min =[0.2759 0.7033 0.7190 0.6726 0.5433 0.4932 0.5021 0.8182

             0.6531 0.7340 0.7308 0.7000 0.3676 0.3824 0.6489 0.5349 0.5286]

max =[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

i

i






. 451 

The minimum and maximum differences in the second level in Eq. (6) are obtained 452 

as: 453 

min( min) 0.2759

max( max) 1

i
i

i
i

 


 

. 454 

We substitute the obtained values for mini , maxi , min( min)i
i

 and 455 
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max( max)i
i

 into Eq. (4), the correlation coefficient matrix, 
iξ (j) , between 0x  and 

ix  456 

with respect to the jth factor in the index set [rij]440m is estimated as: 457 

iξ (j)= 458 

0.7641 0.6448 0.6365 0.5173 0.5173 0.6556 0.6363 0.5173 0.5173 0.6181 0.5173 0.5290 0.8943 0.8794 0.6630 0.7497 0.7194

0.5173 0.5933 0.5173 0.6031 0.7437 0.6187 0.5304 0.5643 0.5244 0.5173 0.6304 0.6466 0.7159 0.5173 0.5173 0.6416 0.6068

0.6362 0.6332 0.6103 0.6617 0.6910 0.5173 0.5173 0.5886 0.6729 0.5173 0.5309 0.5677 0.5173 0.6852 0.6753 0.5338 0.5173

1.0000 0.5173 0.5325 0.6499 0.6953 0.7812 0.7743 0.5886 0.6337 0.6287 0.5309 0.5173 0.7380 0.5996 0.6454 0.5173 0.7543

 
 
 
 
 
  

. 459 

(iii) Grey-entropy correlation degree (also called safety degree) i_440mα : 460 

The grey-entropy correlation degree, 
iα , between the optimum unit and the studied 461 

unit i can be estimated using Eq. (6). Thus, the safety degree matrix of the four HGUs at 462 

the working head of 431m is  463 

0.6350

0.5833
=

0.5834

0.6399

 
 
 
 
 
 

i_440mα , i=1, 2, 3 and 4. 464 

Similarly, we can obtain the safety degree matrices of the four HGUs at the working 465 

head of 431m, 434m and 437m, respectively. The corresponding safety degree matrices 466 

of the four HGUs are listed as follows: 467 

431m working head: 468 

0.6315

0.6504
=

0.6738

0.6895

 
 
 
 
 
 

i_431mα , i=1, 2, 3 and 4. 469 

434m working head: 470 
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0.6560

0.6645
=

0.6296

0.6860

 
 
 
 
 
 

i_434mα , i=1, 2, 3 and 4. 471 

437m working head: 472 

0.5004

0.4915
=

0.4305

0.4974

 
 
 
 
 
 

i_437mα , i=1, 2, 3 and 4. 473 
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Abstract: This paper focuses on the safety analysis of a nonlinear hydro-generating unit 20 

(HGU) running under different loads. For this purpose, a dynamic balance experiment 21 

implemented on an existing hydropower station in China is considered, to qualitatively 22 

investigate the stability of the system and to obtain the necessary indices for safety 23 

assessment. The experimental data are collected from four on-load units operating at 24 

different working heads including 431m, 434m, 437m, and 440m. A quantitative analysis 25 

on the safety performance of the four units was carried out by employing an integration of 26 

entropy weights method with grey correlation analysis. This assisted in obtaining the safety 27 

degree of each unit, providing the risk prompt to the operation of nonlinear 28 
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hydro-generating units. The results confirm that unit 4 has the highest level of safety while 29 

unit 3 operates with the lowest safety condition. This provides the optimal operational 30 

schedule of HGUs to cope with the fluctuations of electricity demand in the studied station. 31 

The proposed methodology in this paper is not only applicable to the HGUs in the studied 32 

station but could also be adopted to assess the safety degree of any hydropower facility. 33 

Keywords: hydro-generating unit; dynamic balance experiment; safety analysis; 34 

grey-entropy correlation; 35 

 36 

1. Introduction 37 

Renewable energy is unarguably one of the most critical governing factors for today's 38 

increasing global economic and social development [1]. The pressing challenge lies in the 39 

sustainable harnessing of reliable, secure and affordable energy [2]. To date, hydropower 40 

has been the main renewable source of electrical energy for many countries’ power 41 

consumption (e.g. 99% in Norway, 86% in Brazil and 76% in Switzerland) due to the 42 

environmental consequences of fossil fuels exploitation [3]. The electricity provided by 43 

hydropower contributes about 16% of the world total electricity generation and is expected 44 

to grow to 2 GW in thirty years [4]. It is therefore no exaggeration that hydropower 45 

represents more than 92% of generated green energy making it a significant contributor to 46 

the global electricity supply [5]. 47 

Hydropower stations are the major electricity generation facilities in which the 48 

hydro-generating unit (HGU) is the heart of the energy production, transmission and 49 
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conversion in each station [6]. HGU is a complex nonlinear system that integrates the 50 

characteristics of fluid, machinery, and electromagnetic induction [7]. A universal HGU is 51 

comprised of various coupled components such as hydraulic turbines, shafting systems, 52 

generators, governors, and excitation systems ([8] to [12]). 53 

Due to the nonlinear coupled characteristics, several hazardous factors are present 54 

within the operation of an HGU including shafting vibrations, electromechanical delays, 55 

stochastic instability, and inefficient operation. A large number of literatures have 56 

extensively studied such topics from the perspective of individual subcomponents, which 57 

supports the research foundation for the safety study in this paper. For instance, literatures 58 

([13], [14]) analyzed the cause of shafting vibrations in an HGU. Literature [15] studied a 59 

class of hydro-turbine with electromechanical delays. Researchers in ([16], [17]) modelled 60 

stochastic variables of an HGU to analyze its effect on the stability of subcomponents. 61 

Researchers in ([18], [19]) studied the adaptation strategy of hydropower systems to 62 

improve the operating efficiency. This range of conducted research highlights that the 63 

hydropower industry is greatly concerned about the safety of HGU operations and 64 

improvements are needed [20]. In particular, with the construction of large-capacity 65 

hydropower stations to be completed in the following decades, resolving the stability 66 

problems of operation, from the perspective of systemic properties, will be one of the major 67 

areas that attracts a great deal of attention from the industry [21]. Although a large number 68 

of advanced safety assessment methods have been developed in various research fields 69 

such as information science [22], ecological engineering [23] and marine engineering [24, 70 
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25], the operational safety of HGUs has been rarely investigated and very little evidence of 71 

achievements has been previously provided. 72 

To date, the safety analyses of HGUs have mainly focused on investigating the 73 

stability of HGU components. The developed methods determine the instability status of 74 

the HGU components in terms of narrow hydraulic, mechanical, or electrical angle. 75 

However, the integrated safety level of the entire HGU system has not been evaluated from 76 

these independent components. Hence, there is a need for a framework that can assess the 77 

safety of HGU from the system perspective. Previous researches ([26] to [30]) developed a 78 

framework, combining the method of entropy weights and grey correlation theory to 79 

investigate the quality problems in different applications such as wastewater treatment, soil 80 

detection, and machinery fault. Several studies ([31], [32], and [33]) indicate that the 81 

method of entropy weights has a great potential for the assessment of complex systems by 82 

measuring the uncertainties of structure indices. The outcome of researches ([34], [35], and 83 

[36]) reveal that the grey correlation theory can be adopted for various prediction 84 

applications of such complex systems based on incomplete information. 85 

The present paper herein investigates the operational stability of a nonlinear HGU 86 

and proposes a methodology for safety assessment of these systems. For this purpose, a 87 

dynamic balance experiment is conducted on four HGU units, each with a different 88 

working head, in an existing hydropower station in China. The experiment is based on 89 

vibration parameter, which is the main risk factor of on-load HGUs. Seventeen indices 90 

are extracted to qualitatively assess the operational stability of the units. An effective 91 
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approach integrating the entropy theory and grey correlation is then utilized to 92 

quantitatively analyze the safety performance of the studied HGU. This assisted in 93 

determining the safety degree of the analyzed four units that run with load, as well as an 94 

optimal operational schedule of HGUs coping with peaks and troughs of electricity 95 

demand in the studied hydropower station. 96 

The present paper has extensively reviewed the existing literature that are based on 97 

the individual subcomponents (e.g. hydro-turbines, shafts and generators) of HGU systems. 98 

The major contribution of the paper, however, is to consider the coupled characteristics of 99 

hydraulic, mechanical and electrical subcomponents for investigating the safety of HGU 100 

operation. Moreover, there are few researches that have successfully applied dynamic 101 

safety assessment to nonlinear HGUs. This paper presents a novel methodology that is 102 

significantly more flexible and efficient in dynamic safety assessment of HGUs with an 103 

attempt to overcome the limitations of static approaches. The safety degree of HGUs is 104 

quantified by using a probabilistic approach, which serves as a tool for monitoring and 105 

predicting the risk of accidents in hydropower stations resulting from failure in HGUs. This 106 

not only improves the safety of HGU operation, but also effectively reduces the operational 107 

and maintenance costs of energy production. The results obtained from this research 108 

benefit the operators and risk managers of the hydropower industry serving as a tool for 109 

development of risk mitigation strategies. For instance, it enables them to respond to the 110 

important question of “how to efficiently and safely arrange the operation of multiple 111 

HGUs with respect to different allowing heads”. 112 
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The remainder of the paper is structured as follows. In Section 2 a brief review of a 113 

universal nonlinear HGU is presented. In Section 3 the fundamentals of utilized methods 114 

and an overview of the global methodology for safety assessment of HGU are provided. 115 

Section 4 discusses the details of the conducted dynamic balance experiment on the 116 

studied station’s HGU. Section 5 demonstrates the process of safety assessment 117 

methodology and presents its highlighted results. Lastly, the key findings of this study are 118 

discussed in the conclusion section. 119 

 120 

2. A Brief Review of an on-load HGU 121 

HGU is the key equipment of hydropower stations used to produce, transmit and 122 

converse electrical energy, which mainly consists of hydraulic turbines, generators, 123 

control systems/governors, excitation systems and inlet and draft pipes [37]. The 124 

operation of an HGU is always integrated with a number of other hydraulic components 125 

such as surge tank, piping system, water gate and reservoir [38]. The structure of an HGU 126 

and the key elements of the hydraulic system are shown in Fig. 1. 127 
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Fig. 1 Schematic of an HGU. 129 

HGU, in fact, is a nonlinear system with multi-attribute characteristics including 130 

hydraulic, mechanical, electrical and electromagnetic. An on-load HGU is a system 131 

synchronized with the power grid, and its load generally cannot be constantly maintained 132 

due to the stochastic load. The on-load HGU may be considered as a dynamic system 133 

varying with the changes (decrease or increase) in load. An HGU mainly utilizes pressure 134 

and momentum energy to produce power. The working mechanism of an on-load HGU is 135 

described as the flow velocity influenced by the effect of blade changes as the system 136 

load fluctuates, which in turn generates a reactive force in the flow channel. This drives 137 

the hydraulic turbines which generate mechanical energy, and the generator further 138 

converts the mechanical energy to electrical energy. The details of an HGU working 139 

mechanism is presented in Fig. 2. 140 
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Fig. 2 Details of an on-load HGU working mechanism. 142 

In actual hydropower stations, the dynamic performance of HGUs is hard to detect 143 

due to the rapid changes in the operational conditions influenced by internal couplings as 144 

well as the external environment. Uncontrolled and abrupt changes in the dynamic 145 

variables influencing the operational conditions of the system could result in critical 146 

damage to the asset as well as other consequences. It is therefore essential to conduct 147 

quantitative assessment of the safety and stability of an HGU, probably based on 148 

experimental investigations. 149 

 150 

3. Methodology 151 

Previous researches in this field have focused on developing static safety assessment 152 

frameworks for operating HGUs. However, due to the nonlinearity of these systems, 153 

attending to the dynamic effects in the analysis are essential for achieving better results. To 154 

overcome this shortcoming, an effective method must be developed applicable to 155 

hydropower facilities. Through conducting an interdisciplinary research [26, 27], this 156 
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section presents the details of an enhanced grey-entropy correlation methodology for 157 

dynamic safety analysis of on-load HGUs. The proposed framework is able to improve the 158 

imprecision of subjective entropy weights as well as the static evaluation of grey 159 

correlation degrees. A major contribution of the established method is in adopting the 160 

probabilistic approaches to predict and reflect the real-time safety level of on-load HGUs, 161 

which is greatly beneficial when dealing in a timely manner with unexpected accidents and 162 

the development of improved safety and risk mitigation strategies. 163 

3.1 Entropy Weights Method 164 

The concept of entropy that is derived from thermodynamics theories represents a 165 

measure of disorder in a system. Entropy theory was proposed by Shannon, in 1948, to 166 

reflect the uncertainty in information science, it has been applied in various research 167 

fields for its precision and flexibility [39]. 168 

Two approaches can be applied for determining the weights of indices, known as 169 

subjective fixed weight and objective fixed weight methods. Entropy weight method, as 170 

an objective approach, is based on the amount of data, overcoming the subjectivity issues 171 

as it is independent of expert judgment. The main idea of entropy method is to determine 172 

the weights by index variations. In general, a smaller index weight represents a larger 173 

degree of index variation, meaning that the index may provide more assessment 174 

information and have significant influence on the stability of the system. In the entropy 175 

safety assessment of an HGU, a specific index weight is the critical indicator to measure 176 

the importance of the selected index, assessing its safety contribution to the studied 177 
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system. 178 

Assuming that there are m assessment indices and n assessment units, the assessment 179 

data is transformed into a form of standardization that employs a normalized method of 180 

inverse index, shown in Eq. (1) [40]. 181 
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max min
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maximum and minimum values in the index column of assessment units, respectively. It 184 

should be noted that the lower value of inverse index is most important in ensuring safe 185 

operation of an HGU. 186 

Then the entropy value of index i is determined by Eq. (2). 187 
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Therefore, the index weight set iW  is  1 2 ,...,, n   . 191 

3.2 Grey-entropy Correlation Method 192 

Grey system is used to describe an uncertain system that has the characteristic of 193 

partial information loss, and grey correlation theory is a powerful tool to query the quality 194 

of a system with poor information [41]. An on-load HGU is an engineering system 195 
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incorporating a degree of uncertainty and therefore it can be assessed by the grey 196 

correlation theory. The concept of using grey theory is to find the possible motion rule 197 

from the disordered and fuzzy data. Specifically, it is the similarity of an index in 198 

different assessment units that is the key factor for measuring the variation between the 199 

indices. A greater similarity between indices means that the grey correlation of a studied 200 

unit is more optimal. There are no requirements for the size and characteristics of data in 201 

a grey correlation analysis which overcomes the shortcomings of traditional regression 202 

analyses. 203 

Based on the normalized set of inverse index  ij
m n

r


 mentioned in Eq. (1), the 204 

index column is expressed as 1 2, ,..., mx x x . It should be noted that, there are i assessment 205 

plans in the analysis, i.e., 
ix = (1), (2),..., ( )i i ix x x n , where 0x  is assumed to be the 206 

optimum plan. Therefore, the correlation coefficient, iξ (j) , between 0x  and ix  with 207 

respect to the j
th

 factor in the index set  ij
m n

r


 is expressed as [42]: 208 
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=
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i i
i i

i i
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  

  




iξ (j) , i=1,2,...,m and j=1,2,...,n,     (4) 209 

where  i  is equal to 0| ( ) ( ) | ix j x j ,   is the resolution coefficient that changes 210 

within the interval [0, 1], but generally it is set at 0.5. mini  and maxi  denote the 211 

minimum and maximum differences in the first level respectively, while min( min)i
i

 212 

and max( max)i
i

 are the minimum and maximum differences in the second level, 213 

respectively. The expressions for each of these terms are shown as follows:  214 
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Subsequently, based on the index weight 
iW  obtained using Eq. (3), we estimate 218 

the correlation coefficient 
iξ (j)  for the i

th
 studied unit to obtain its integrating safety 219 

degree. Therefore, the grey correlation degree, 
iα , between the optimum unit and the 220 

studied unit i is given by the grey-entropy correlation equation as follows: 221 

1

m

j

i i iα W ξ (j) , 0 iα 1.                           (7) 222 

In Eq. (7), the obtained grey correlation degree 
iα , also defined as the safety degree, 223 

assists in assessing the safety level of a multi-unit HGU from a probabilistic point of view. 224 

That is, a higher value of iα  corresponds to a safer HGU thus for instance, a system 225 

with iα =1 has the maximum level of reliability. 226 

3.3 Global Methodology 227 

This paper presents a novel framework for the dynamic safety assessment of HGUs 228 

by combining the entropy weight method with the grey correlation analysis. The major 229 

novel components of the proposed method consist of:- firstly, the method overcomes the 230 

subjectivity of traditional methods in determining the weight coefficients of assessment 231 

indices, which improves the accuracy of the results and provides a more scientific 232 
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representation. Secondly, the method completely transforms the static safety assessment 233 

into a dynamic practice by substituting the dynamic entropy weights (i.e. Eq. (3)) into the 234 

relationship for obtaining the grey correlation degree (i.e. Eq. (7)). Thirdly, few existing 235 

studies have been proven to be successful in conducting a probabilistic safety analysis of 236 

nonlinear HGUs. 237 

The steps of the developed methodology in this paper are provided in Fig. 3, and 238 

summarized as follows. 239 

(1) A dynamic balance experiment is carried out on the existing HGUs for different 240 

allowing heads, to qualitatively analyze the dynamic operational behavior of a hydropower 241 

station. The obtained data, m assessment indices for n studied HGUs, is later used to 242 

conduct a quantitative safety analysis. 243 

(2) Dynamic entropy weights (see Eq. (3)) are developed to estimate the contribution 244 

of the indices on HGSs’ stability with respect to time. For this purpose, the indices with 245 

significant influence on HGS’ operation under various allowing heads are identified. 246 

(3) The grey-entropy correlation degrees (see Eq. (7)), combined with the dynamic 247 

entropy weights (see Eq. (3)) and grey correlation coefficients (see Eq. (4)), are used to 248 

evaluate the safety degree of n studied HGUs. The safety degree is expressed by 249 

probability values. 250 

(4) Based on the quantitative analysis, the time-varying safety state of HGUs and any 251 

accidents are revealed. This enables the technicians and operators of hydropower stations 252 

to make an optimal operational schedule of HGUs for dealing with fluctuations of 253 
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electricity generation and demand. 254 

A detailed illustration of the numerical process of entropy weights and safety 255 

degrees is presented in the Appendix. 256 

Dynamic balance experiment in 

studied hydropower station (HGUs in 

different allowing heads)

Select m assessment indices 

and n assessment units 

Initial analysis

Entropy to measure 

index weights
Grey correlation 

analysis to determine 

safety degrees

Integrating correlation degrees 

of on-load HGUs in different 

allowing heads

Determine the safety degrees and give the 

optimal operational schedule of HGUs coping 

with peaks and troughs of electricity demand

Results of quantitative analysis

Preliminary analysis of safety 

degrees in HGUs
R

es
u

lts o
f q

u
a

lita
tiv

e
 a

n
a

ly
sis

START

END

Validity checking 

 257 

Fig. 3 Proposed framework for safety assessment of on-load HGUs. 258 

 259 

4. Dynamic Balance Experiment on HGUs 260 

In order to conduct a safety analysis on the HGU with load, a dynamic balance 261 

experiment was carried out on the HGU in an existing hydropower station in China and 262 

seventeen critical safety indices (i.e. X1-X17) were determined. These indices could 263 
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reflect the instability of the system with respect to vibrations and pressure pulsations in 264 

units. There are four Francis HGUs at the studied station, with installed and unit capacity 265 

of 1050MW and 262.5MW, respectively. In this experiment, the utilized sensors and 266 

measurement equipment for vibration analysis include: the PSTA-H vibration 267 

instrumentation of HGU, the TTS216 dynamic signal instrumentation of HGU, a CWY 268 

eddy current displacement sensor, a DP low-frequency vibration sensor, a KYB pressure 269 

transmitter and shielded signal cables. Some of the technical details of the four HGUs 270 

tested in the experiment are listed in Table 1, and the arrangements of the monitoring 271 

points on the HGUs, as well as the type of acquired data at each point, are presented in 272 

Fig. 4. 273 

Table 1 Information of the Francis hydraulic turbine of four HGUs in an existing 274 

hydropower station. 275 

Information of Francis Hydraulic Turbines 

Type HLS270-LJ-680 Nominal power 267.85MW 

Nominal head 64m Nominal flow 460.46m
3
/s 

Nominal speed 93.75rpm Runaway speed 185rpm 

Number of runner 

blades 
13 

Number of movable 

guide vanes 
24 

Information of Generators 

Type SF265-64/15000 Nominal capacity 291.7MVA 

Stator voltage 15750V Stator current 10692A 

Power factor 0.9 Exciting voltage 350V 

Exciting current 1900A Nominal frequency 50Hz 

Information of Governors 

Type PFWT-200-6.3 
Main configuration 

diameter 
200mm 

Operating oil pressure 6.3MPa Servomotor stroke 780mm 

Lower guide bearing 

clearance 
0.15~0.2mm 

Upper guide bearing 

clearance 
0.15~0.2mm 

Water guide bearing 0.2~0.25mm Cylinder diameter of 640mm 
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Fig. 4 Arrangements of monitoring points on HGU and type of recorded data at each point in 277 

dynamic balance experiment in an existing hydropower station. 278 

The initial running states of the four HGUs are different due to the internal coupled 279 

characteristics and external environment. A start-up test and a turbine-speed test are 280 

carried out for different HGUs before the dynamic balance experiments. This results in 281 

identifying the initial running state of the four HGUs, including that the rotating and fixed 282 

components for HGUs 1 and 4 operate normally and their vibration and swing values 283 

meet the design requirements. For HGUs 2 and 3, the start-up test shows that the rotating 284 

and fixed components run without abnormal friction or collision. Based on the turbine 285 

speed test at nominal speed for HGU 2, it is found that the horizontal vibration of upper 286 

bracket (290μm), vertical vibration of upper bracket (157μm), swing of upper guide 287 

bearing (335μm), swing of lower guide bearing (417μm) and swing of hydraulic guide 288 

bearing (382μm) exceed the design requirements. Similarly for HGU 3, the horizontal 289 
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vibration of upper bracket (203μm) and swing of hydraulic guide bearing (657μm) 290 

exceed the design requirements. Moreover, the actual operating conditions for four HGUs 291 

with different allowable heads (431m, 434m, 437m and 440m) in experiment are listed in 292 

Table 2. 293 

Table 2 Actual operating conditions for four HGUs with different allowable heads (431m, 294 

434m, 437m and 440m) used in the dynamic balance experiment. 295 

HGU 1 

 Actual upstream head Actual downstream head Actual head of station 

431m Head 431.71m 366.64m 65.07m 

434m Head 433.60m 366.36m 67.24m 

437m Head 436.40m 366.24m 70.16m 

440m Head 439.40m 367.98m 71.42m 

HGU 2 

 Actual upstream head Actual downstream head Actual head of station 

431m Head 431.92m 366.11m 65.81m 

434m head 433.23m 365.62m 67.61m 

437m head 437.33m 367.16m 70.17 

440m head 439.60m 368.29m 71.31m 

HGU 3 

 Actual upstream head Actual downstream head Actual head of station 

431m head 431.93m 367.19m 64.74m 

434m head 433.14m 366.27m 66.87m 

437m head 437.14m 367.48m 69.66m 

440m head 439.96m 367.87m 72.09m 

HGU 4 

 Actual upstream head Actual downstream head Actual head of station 

431m head 432.66m 367.38m 65.28m 

434m head 433.31m 365.92m 67.39m 

437m head 437.87m 367.97m 69.90m 

440m head 439.60m 367.67m 71.93m 

According to the design criteria, the operating head for the four HGUs in the studied 296 

station varies within the range of 431m to 440m. Four typical allowable heads (i.e. 431m, 297 

434m, 437m and 440m) were chosen to conduct the dynamic balance experiment, where 298 
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vibration, swing and water pressure were measured. Based on the requirement of the actual 299 

operation in this station, the measurements were taken for various on-load conditions 300 

within the load range of 120MW to 265.2MW. The necessary indices in this experiment 301 

were selected to qualitatively investigate the stability of four HGUs, and the results are 302 

shown in Figs. 5 to 8. 303 

  304 
              (a)                                     (b) 305 

Fig. 5 Measurements of vibration property in dynamic balance experiment of HGU 1 at an 306 

existing hydropower station, China. 307 

  308 

              (a)                                    (b) 309 
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  310 

               (c)                                        (d) 311 

Fig. 6 Measurements of vibration property in dynamic balance experiment of HGU 2 at an 312 

existing hydropower station, China. 313 

  314 
                (a)                                        (b) 315 

Fig. 7 Measurements of vibration property in dynamic balance experiment of HGU 3 at an 316 

existing hydropower station, China. 317 

  318 

                   (a)                                    (b) 319 

Fig. 8 Measurements of vibration property in dynamic balance experiment of HGU 4 at an 320 

existing hydropower station, China. 321 
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To evaluate the stability of each HGU, the measured vibrations at different points are 322 

compared with the maximum allowable vibration adopted from the national standards [43, 323 

44]. The allowable range for all indices (X1-X17) are listed in Table 3. 324 

Table 3 Allowable ranges of HGU’s indices (X1-X17) for safety operation from the 325 

national standards [43, 44]. 326 

Index (X1-X9) 
Allowable 

range 
Index (X10-X17) 

Allowable 

range 

Inlet pressure pulsation of draft 

pipe (X1) 
0~64kPa 

Z-direction vertical vibration of 

upper bracket (X10) 
0~80μm 

X-direction swing of upper 

guide bearing (X2) 
0~300μm 

X-direction horizontal vibration 

of lower bracket (X11) 
0~110μm 

Y-direction swing of upper 

guide bearing (X3) 
0~300μm 

Y-direction horizontal vibration 

of lower bracket (X12) 
0~110μm 

X-direction swing of lower 

guide bearing (X4) 
0~300μm 

Z-direction vertical vibration of 

lower bracket (X13) 
0~80μm 

Y-direction swing of lower 

guide bearing (X5) 
0~300μm 

X-direction vibration of stator 

frame (X14) 
0~40μm 

X-direction swing of hydraulic 

guide bearing (X6) 
0~375μm 

X-direction horizontal vibration 

of head cover (X15) 
0~90μm 

Y-direction swing of hydraulic 

guide bearing (X7) 
0~375μm 

Y-direction horizontal vibration 

of head cover (X16) 
0~90μm 

X-direction horizontal 

vibration of upper bracket (X8) 
0~110μm 

Z-direction vertical vibration of 

head cover (X17) 
0~110μm 

Y-direction horizontal vibration 

of upper bracket (X9) 
0~110μm   

As illustrated in Table 3 and Figs. 5 to 8, each HGU has a level exceeding the 327 

allowable vibrations. Through a comparison of the results, it can be seen that the most 328 

stable HGU is unit 4 with the minimum vibration in the upper bracket (along Z-direction) 329 

and in its stator frame (along X-direction). It can be seen in Figs. 5 to 7, that the vibration 330 

of units 1, 2 and 3 are caused by two indices, i.e. swing of the hydraulic guide bearing 331 

along X and Y directions. However, it should be noted that the vibration magnitude of 332 
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these units is different where Y
3
 > Y

2
 > Y

1
 and X

3
 > X

2
 > X

1
 (e.g. Y

3
 and X

3
 refer to the 333 

magnitude of vibration in unit 3 along Y and X directions, respectively). The results of 334 

qualitative analysis highlight that the lowest level of safety among the studied units at the 335 

studied station is for unit 4, while unit 2 shows a more stable operation. Unit 1 has a 336 

higher safety level than unit 2, however, it does not provide an optimal condition. During 337 

the analysis of unit 3 responses, additional vibrations were observed in the upper bracket 338 

(along Z-direction) and the stator frame (along X-direction). Since it could not be 339 

determined, based on a qualitative assessment, to what extent the different indices affect 340 

the operational performance of the four HGUs, a rigorous quantitative analysis is required 341 

to investigate the safety condition of these four units. 342 

 343 

5. Analysis of HGUs 344 

In order to more effectively analyze the safety of the HGUs at the studied station, 345 

the grey correlation method is employed based on the results of dynamic balance 346 

experiments. For this purpose, maximum vibrations of the seventeen indices are firstly 347 

adopted from the experiment results, as listed in Table 4. The maximum vibration of 348 

selected index is considered as the assessment criteria in qualitative analysis, where the 349 

optimum level of safety is set as 0μm due to the characteristic of inverse indices. Results 350 

of the grey correlation analysis for the four units are presented in Figs. 9 and 10. 351 

Table 4 Measured Data: Maximum vibrations of seventeen assessment indices for HGUs 352 

(1-4) at an existing hydropower station, China. 353 

Maximum vibrations (μm) 
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 431m Head 434m Head 

Index HGU 1 HGU 2 HGU 3 HGU 4 HGU 1 HGU 2 HGU 3 HGU 4 

X1 32.69 62.94 36.55 49.24 48.73 72.58 70.05 82.23 

X2 162 205 176 229 161 205 185 233 

X3 160 249 164 168 158 258 193 244 

X4 289 245 178 230 306 233 180 237 

X5 328 241 209 196 340 234 203 280 

X6 539 608 757 258 536 640 775 324 

X7 519 643 721 234 516 682 716 288 

X8 63 68 56 67 70 60 72 74 

X9 77 66 73 60 70 56 60 64 

X10 59 65 64 56 61 63 56 64 

X11 28 17 17 11 36 14 18 25 

X12 30 11 17 14 25 13 21 29 

X13 56 62 41 88 59 56 58 163 

X14 20 20 17 39 19 22 17 33 

X15 30 37 26 27 40 31 56 41 

X16 20 16 17 19 25 24 26 27 

X17 61 27 44 75 53 56 59 76 

Maximum vibrations (μm) 

 437m Head 440m Head 

Index HGU 1 HGU 2 HGU 3 HGU 4 HGU 1 HGU 2 HGU 3 HGU 4 

X1 69.89 61.19 95.52 79.04 86.67 168.14 121 46.39 

X2 134 153 137 204 128 147 132 182 

X3 141 195 151 214 151 210 162 201 

X4 289 230 183 236 281 221 189 195 

X5 252 186 131 237 289 157 180 178 

X6 522 580 794 319 503 555 736 363 

X7 501 648 694 290 523 700 727 365 

X8 76 79 62 69 88 77 72 72 

X9 92 70 67 106 98 96 64 71 

X10 67 73 74 108 71 94 94 69 

X11 25 97 82 29 26 19 25 25 

X12 32 82 55 34 29 21 26 30 

X13 76 15 255 115 68 108 185 102 

X14 24 40 45 53 26 68 43 54 

X15 82 63 107 48 63 94 61 66 

X16 91 29 117 58 46 61 82 86 

X17 92 79 306 90 81 109 140 74 
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Fig. 9 Entropy weights of seventeen assessment indices for four on-load HGUs with different 355 

working heads. 356 
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Fig. 10 Estimated safety levels of four on-load HGUs operating with different working heads at 358 

an existing hydropower station, China. 359 
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Fig. 9 indicates the assessment weights (i.e. the calculated entropy weights in Eq. (3)) 360 

of seventeen indices for HGUs operating with working heads of 431m, 434m, 437m and 361 

440m. It should be noted that the same index assessed in different allowable heads has 362 

the same color. Considering Fig. 9, it is observed that the weight of each index differs 363 

considerably as the allowable head changes. This confirms the sensitivity of assessment 364 

indices on the HGUs’ working heads as well as the fact that the information associated 365 

with the indices for the studied units is not identical. For instance, the highest weights for 366 

431m working head are estimated as 0.093 for the horizontal vibration of upper bracket in 367 

X direction (X8 index), 0.081 for the vibration of upper bracket in Z direction (X10 index) 368 

and 0.08 for the swing of hydraulic guide bearing in Y direction (X7 index). Similarly, it 369 

is found that for the HGU with 434m working head, the main indices are X3, X6 and X15; 370 

for the 437m head unit, the main indices are X7, X5 and X8; and for the 440m head, they 371 

are X11, X10 and X9. Based on the effect of main indices and experimental results, the 372 

safety issues in the units with working heads of 431m, 434m and 437m may be caused by 373 

the integrating effect of mechanical problems and hydraulic imbalance while the 374 

mechanical component only results in a slight vibration of the units operating with the 375 

440m head. It should also be noted that all assessment indices influence the safety of each 376 

unit although their contributions may vary significantly in different working heads. 377 

Fig. 10 presents the estimated safety degree of the four HGUs under different 378 

working heads. The probabilistic results indicate that the most stable HGU is unit 4 with 379 

the average safety degree of 0.6282. Unit 1 is the second most stable unit with the 380 
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average safety degree of 0.6057. Unit 2 is the third safest unit of the four with the average 381 

safety degree of 0.5974 while unit 3 has the highest operational risk with its average 382 

safety degree of 0.5793. Based on the results, the system can safely run in the orders 383 

suggested in Fig. 10 when the allowable head fluctuates around 431m, 434m, 437m and 384 

440m. However, when the hydropower station is not able to predict the working head of 385 

HGUs in advance, it is suggested that the optimal operational schedule is as follows: unit 386 

4, unit 1, unit 2 and unit 3. This provides the safe operating strategy of HGUs to cope 387 

with peaks and troughs of electricity demand within the station. 388 

It is also observed, in Fig. 10 that the safety degree of four units for the allowable head 389 

of 437m is lower than other working heads, changing between the range of [0.4305, 390 

0.5004]. That is, the average safety of HUGs is less than 50 percent under the allowable 391 

head of 437m. It can therefore be a reasonable suggestion that the HGUs at the studied 392 

station could avoid, if possible, operating with this condition to enhance the operational 393 

safety. 394 

 395 

6. Conclusions 396 

In this paper, a new framework is presented for the safety assessment of HGUs in 397 

hydropower stations and addresses the limitations in this research field. The study is 398 

carried out based on four on-load HGUs operating at an existing hydropower station in 399 

China. A dynamic balance experiment of the units with different allowable heads is 400 

conducted to qualitatively investigate the system stability and to obtain the requirements 401 
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for further quantitative analyses. This was performed by using the grey correlation 402 

analysis and entropy weights method. It is demonstrated that there is a significant 403 

difference in the sensitivity and risk contribution of the adopted indices between the 404 

allowable heads of 431m, 434m, 437m and 440m. The measurements of the weights 405 

reveal that, the safety of units operating with a head of 431m, 434m, 437m depend on the 406 

combined contribution of mechanical issues and hydraulic imbalance, while the undesired 407 

events occurring for units with 440m of head may only be caused by mechanical issues. 408 

From the grey-entropy assessment results, it can be concluded that the units have their 409 

specific safety degree as the allowable head changes. Moreover, a safe operational 410 

schedule can follow the order of: unit 4, unit 1, unit 2 and unit 3. It is anticipated that the 411 

proposed method can be adopted for improving the safety of hydropower facilities by 412 

providing optimal operational schedules. 413 

 414 

Appendix 415 

Numerical process of the safety degree in HGUs 416 

The aim of the numerical analysis is to establish the grey-entropy correlation degree 417 

(see Eq. (7)) to conduct a dynamic safety assessment of on-load HGUs. Eq. (7) is combined 418 

with the entropy weights (see Eq. (3)) and the grey correlation coefficients (see Eq. (4)). 419 

That is, the numerical analysis consists of three steps to obtain the dynamic safety degree of 420 

HGUs: i) based on the measurement data of seventeen indices in Table 4, we calculate the 421 



27 
 

entropy weight matrix of index 
iW  with respect to different working heads, ii) estimating 422 

the correlation coefficient matrix of indices 
iξ (j)  for different working heads based on the 423 

grey correlation equations (see Eqs. (4) to (6)) and iii) substituting the entropy weight 424 

matrix 
iW  and correlation coefficient matrix 

iξ (j)  into the grey-entropy correlation 425 

degree (see Eq. (7)). Finally, the dynamic safety degree matrix of studied HGUs 
iα  under 426 

different working heads is obtained. A detailed calculation progress is performed as 427 

follows. 428 

In this study, we have seventeen assessment indices (marked as j) and four HGUs 429 

(marked as i) operating with four working heads of 431m, 434m, 437m and 440m. The 430 

optimum safety matrix is [0], and the assessment matrices of the four HGUs at different 431 

working heads, i.e. [rij]431m, [rij]434m, [rij]437m, [rij]440m, are shown in Table 4. The 432 

normalized method of inverse index expressed in Eq. (1) is used to obtain the standard 433 

form of optimum safety matrix and assessment matrices, which are 434 

[0]∩[rij]431m=435 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.4806  0.2926 0.3574 0 0 0.2880 0.2802 0.0735 0 0.0923 0 0 0.3636 0.4872 0.1892 0 0.1867

0  0.1048 0 0.1522 0.2652 0.1968 0.1082 0 0.1429 0 0.3929 0.6333 0.2955 0.4872 0 0.2000 0.6400

0.4193  0.2314 0.3414 0.3841 0.3628 0 0 0.1765 0.0519 0.0154 0.3929 0.4333 0.5341 0.5641 0.2973 0.1500 0.4133

0.2177 0  0.3253 0.2042 0.4024 0.6592 0.6755 0.0147 0.2208 0.1385 0.6071 0.5333 0 0 0.2703 0.0500 0

 
 
 
 
 
 
 
 

, 436 

[0]∩[rij]434m=437 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.4074  0.3090 0.3876 0 0 0.1625 0.2434 0.0541 0 0.0615 0 0.1379 0.6380 0.4242 0.0244 0.0741 0.3026

0.1174  0.1202 0 0.2386 0.3118 0 0 0.1892 0.2000 0.0308 0.6111 0.5517 0.6564 0.3333 0.2439 0.1111 0.2632

0  0 0.0543 0.2255 0.1765 0.4938 0.5777 0 0.0857 0.0154 0.3056 0 0 0 0 0 0

0.2346 0.1202 0.0349 0.1993 0.2912 0.0500 0.0572 0.0811 0.0571 0 0.5278 0.6207 0.6196 0.3939 0.0976 0.4074 0.6447

 
 
 
 
 
 
 
 

, 438 

[0]∩[rij]437m= 439 
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1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.2683 0.3431 0.3411 0 0 0.3426 0.2781 0.0380 0.1321 0.3796 0.7423 0.6098 0.7020 0.5472 0.2336 0.2222 0.6993

0.3594 0.2500 0.0888 0.2042 0.2619 0.2695 0.0663 0 0.3396 0.3241 0 0 0.9412 0.2453 0.4112 0.7521 0.7418

0 0.3284 0.2944 0.3668 0.4802 0 0 0.2152 0.3679 0.3148 0.1546 0.3293 0 0.1509 0 0 0

0.1725 0 0 0.1834 0.0595 0.5982 0.5821 0.1266 0 0 0.7010 0.5854 0.5490 0 0.5514 0.5043 0.7059

 
 
 
 
 
 
 
 

 440 

and  441 

[0]∩[rij]440m= 442 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.4845 0.2967 0.2810 0 0 0.3166 0.2806 0 0 0.2447 0 0.0333 0.6324 0.6176 0.3298 0.4651 0.4214

0 0.1923 0 0.2135 0.4567 0.2459 0.0371 0.1250 0.0204 0 0.2692 0.3000 0.4162 0 0 0.2907 0.2214

0.2804 0.2747 0.2286 0.3274 0.3772 0 0 0.1818 0.3469 0 0.0385 0.1333 0 0.3676 0 0.0465 0

0.7241 0 0.0429 0.3060 0.3841 0.5068 0.4979 0.1818 0.2755 0.2660 0.0385 0 0.4486 0.2059 0.3511 0 0.4714

 
 
 
 
 
 
 
 

. 443 

To clearly clarify the proposed method, an example for the assessment process of 444 

on-load HGUs at 440m working head is demonstrated as follows: 445 

(i) Entropy weight matrix 
iW : Based on Eq. (2) and (3), the entropy weight matrix of 446 

seventeen indices derived from assessment matrix [rij]440m is written as: 447 





0.0486 0.0415 0.0654 0.0415 0.0398 0.0456 0.0788 0.0412

         0.0793 0.0947 0.0959 0.0759 0.0417 0.0518 0.0396 0.0733 0.0455

iW
. 448 

(ii) Correlation coefficient matrix iξ (j) : 449 

The minimum and maximum differences in the first level in Eq. (5) are obtained as: 450 

min =[0.2759 0.7033 0.7190 0.6726 0.5433 0.4932 0.5021 0.8182

             0.6531 0.7340 0.7308 0.7000 0.3676 0.3824 0.6489 0.5349 0.5286]

max =[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

i

i






. 451 

The minimum and maximum differences in the second level in Eq. (6) are obtained 452 

as: 453 

min( min) 0.2759

max( max) 1

i
i

i
i

 


 

. 454 

We substitute the obtained values for mini , maxi , min( min)i
i

 and 455 
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max( max)i
i

 into Eq. (4), the correlation coefficient matrix, 
iξ (j) , between 0x  and 

ix  456 

with respect to the jth factor in the index set [rij]440m is estimated as: 457 

iξ (j)= 458 

0.7641 0.6448 0.6365 0.5173 0.5173 0.6556 0.6363 0.5173 0.5173 0.6181 0.5173 0.5290 0.8943 0.8794 0.6630 0.7497 0.7194

0.5173 0.5933 0.5173 0.6031 0.7437 0.6187 0.5304 0.5643 0.5244 0.5173 0.6304 0.6466 0.7159 0.5173 0.5173 0.6416 0.6068

0.6362 0.6332 0.6103 0.6617 0.6910 0.5173 0.5173 0.5886 0.6729 0.5173 0.5309 0.5677 0.5173 0.6852 0.6753 0.5338 0.5173

1.0000 0.5173 0.5325 0.6499 0.6953 0.7812 0.7743 0.5886 0.6337 0.6287 0.5309 0.5173 0.7380 0.5996 0.6454 0.5173 0.7543

 
 
 
 
 
  

. 459 

(iii) Grey-entropy correlation degree (also called safety degree) i_440mα : 460 

The grey-entropy correlation degree, 
iα , between the optimum unit and the studied 461 

unit i can be estimated using Eq. (6). Thus, the safety degree matrix of the four HGUs at 462 

the working head of 431m is  463 

0.6350

0.5833
=

0.5834

0.6399

 
 
 
 
 
 

i_440mα , i=1, 2, 3 and 4. 464 

Similarly, we can obtain the safety degree matrices of the four HGUs at the working 465 

head of 431m, 434m and 437m, respectively. The corresponding safety degree matrices 466 

of the four HGUs are listed as follows: 467 

431m working head: 468 

0.6315

0.6504
=

0.6738

0.6895

 
 
 
 
 
 

i_431mα , i=1, 2, 3 and 4. 469 

434m working head: 470 
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0.6560

0.6645
=

0.6296

0.6860

 
 
 
 
 
 

i_434mα , i=1, 2, 3 and 4. 471 

437m working head: 472 

0.5004

0.4915
=

0.4305

0.4974

 
 
 
 
 
 

i_437mα , i=1, 2, 3 and 4. 473 
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