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Abstract—The Cardinalized Probability Hypothesis Density
(CPHD) filter has become one of the most acclaimed algorithms
for multi-target Bayesian filtering due to its ability to accurately
estimate the number of objects and the object states in tracking
scenarios affected by clutter. The CPHD filter generalizes the
Probabilistic Hypothesis Density (PHD) filter by jointly propa-
gating the first-order multi-target moment (intensity function)
along with the entire probability distribution on the number of
targets (cardinality distribution). In general, the CPHD recursion
is computationally intractable, however successful approxima-
tions have been devised with reported computational complexity
dominated by O(m?) operations per filtering iteration, where
m is the number of measurements. Room for improvement was
originally acknowledged by Mahler, who conceived the idea of
approximating the cardinality distribution by two-parameter
distributions. In this paper, we further explore this idea to
provide an efficient approximation of the CPHD filter where
the cardinality distribution is modeled as a discretized Gamma
distribution. Experiments show that the resulting filter is less
computationally complex than the standard implementation of
the CPHD filter but shows similar cardinality accuracy and
variance.

I. INTRODUCTION

Multi-target tracking is concerned with estimating the states
of several objects of interest from a sequence of observations
corrupted by noise, in the presence of missed detections and
false alarms. The classical literature on multi-target tracking
relies on the use of multivariate Bayesian statistics for es-
timating the target states while, at the same time, resorting
to a combinatorial analysis for capturing the very complex
problem of associating objects to sequences of measurements.
Celebrated methods, such as the Multi-Hypothesis Tracking
(MHT) [1] and Joint Probabilistic Data Association (JPDA)
[2] have become traditional due to three factors. First, their
ability to incorporate established filtering techniques (e.g.,
Kalman measurement update). Second, their ability to provide
multi-target state estimates that are accurate enough to be
practically useful. Third, the computational power available in
modern digital computers becoming sufficient to allow such
methods to run in real-time.

The Probability Hypothesis Density (PHD) filter [3] has
set the cornerstone for a completely new way of interpreting
multi-target Bayesian inference: a view where data associa-
tion is avoided by making a judicious choice related to the
targets’ state description while promoting a neat and elegant
mathematical formulation. In this formulation, a collection
of target states is considered as a random set-valued state
and the collection of sensor measurements is treated as a
random set-valued observation. While intimately related to
the theory of stochastic population processes [4], the multi-
target Bayesian framework proposed by Ronald Mahler has

been rather stated in terms of random finite sets (RFS) on
which operations are given in the context of finite-set statistics
(FISST) [5, 6]. In this context, the PHD recursion [3] was
developed as a first-moment approximation to the multi-target
Bayesian filtering problem, where the algorithm propagates
the posterior intensity function of the set of targets’ states in
time. Recent advances of filters based on finite-set statistics
include the filters exactly derived for labeled RFS’s [7, 8].

In their influential analysis of the PHD filter, Erdinc, Wil-
lett, and Bar-Shalom [9] pointed out that its most prominent
limitation resides in that the filter is first-order on the number
of targets (cardinality). Since the number of targets in the PHD
filter is assumed to be Poisson-distributed, the cardinality
mean equals the variance. This gives rise to very unstable
cardinality estimates when considering scenarios involving
large number of missed detections or false alarms. In order
to address this concern, Mahler derived the Cardinalized
PHD (CPHD) filter [10, 11] which propagates the first-
order multi-target moment (intensity function) along with the
entire cardinality distribution. However, in general, practical
implementations of the CPHD filter (e.g., [12]) are deemed
to demand O(m?) operations per filtering iteration, where
m is the number of measurements. Mahler acknowledged
there was room for computational improvement via additional
approximation. With this potential in mind, he conceived the
idea of approximating the cardinality distribution by two-
parameter distributions and devised a cardinalized filter, the
“binomial filter”, whose number of targets is assumed to be
distributed according to a binomial distribution [13]. Some
developments in the same ethos have been proposed in terms
of a model based on the Panjer distribution, such as that of
Franken et al. [14], and a recent new filter by Schlangen et al.
[15] that assumes the cardinality distribution to be a Panjer
distribution and establishes a recursion where both the first
moment and a second-order entity, the regional variance [16],
are propagated in the filtering procedure.

PHD filters that are second-order in target number have a
clear advantage relative to the CPHD filter: they approximate
a special case of the CPHD filter by reproducing, for a family
of discrete probability distributions, the essential strategy of
the Kalman filter, i.e., estimating sufficient statistics rather
than the complete distribution. Mahler’s binomial filter has
particular merit in this context since the binomial distribu-
tion is the most basic discrete distribution that can describe
processes where the variance is smaller than or equal to
the mean, hereafter called underdispersed processes. Their
importance of this latter aspect becomes clear when we notice
that, in most practical cases, cardinality estimates should
be underdispersed because with a fairly high probability of
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detection and a moderate number of false alarms, the set of
measurements is highly informative about the target number.
Unfortunately, the binomial filter suffers from a fundamental
drawback: the number of trials of a binomial distribution is
strongly constrained by the filtering scenario, and the filter
derived in [13] loses its validity when the predicted number
of trials is smaller than the number of measurements.

This paper proposes a new filter that is second-order in
target number, where the multi-target state is assumed to
follow an independent and identically distributed cluster pro-
cess with the cardinality distribution modeled as a discretized
Gamma distribution. Although apparently complicated, a dis-
cretized Gamma distribution allows simple calculations for
approximating the first- and second-order moments of the
posterior cardinality distribution, and efficiently addresses
tracking scenarios with underdispersed target count while
avoiding the restrictions imposed by the binomial filter. This
latter feature is important because, when provided an i.i.d.
cluster process with overdispersed cardinality model, the filter
would most probably suffer from the same instability as that
found in the PHD filter.

The paper is organized as follows. Section II establishes
some mathematical preliminaries and Section III briefly
presents the CPHD recursion. Section IV provides an analysis
of the binomial filter. Section V proposes the Discrete-Gamma
CPHD recursion. Section VI presents a comparison of the
proposed algorithm with the PHD and CPHD filters, in the
context of an illustrative simulated scenario. Section VII
concludes. Proofs associated with the derivation of the DG-
CPHD algorithm are available in the supplementary material.

II. MATHEMATICAL PRELIMINARIES

In this section we briefly present the mathematical concepts
required to understand the paper: multi-target statistics, point
processes, probability generating functionals, and the intensity
function of a state set density. We shall use the same de-
scription and notation originally proposed by Mahler [3, 11],
though we note that a description reminiscent of the seminal
work by Moyal [4] and related to a similar formulation
[17, 18] has been adopted in some recent papers [15, 16, 19],
appealing to the measure-theoretic formalism. Our choice to
adopt Mahler’s description is just a matter of convenience
when referring to expressions derived in [11], which may
prevent the reader from having to translate between two
equivalent formalisms.

A. Multi-target Statistics and Point Processes

Let x; € X C R% be a d,-dimensional vector describing
the state of a single target identified by i. We assume a
scenario with a random number n € N of targets, and the
collection of targets has no intrinsic ordering such that the
joint state of this collection is represented by the finite set
X1 = {X1,X2,...,X,} Where x1,...,X, are state vectors of
all targets. By allowing such set of targets to be random in
number of elements and state vectors, then the resulting set
is a random finite set (RFS). Let = be a random finite set and

X :={x1,...,X,} its realization, the multi-target probability
density can then be described as

p= (X) = PN (n)le:n\N ({le"'axn}ln)v (1)
where py(n) is the cardinality distribution, and

Pxy.n|N ({X1,...,Xp}|n) is the joint probability density

of the point set xj.,. In addition, the random finite set =
can be formally understood as a point process that pertains
to the composite space 2 = |J,_, X", ie, E € 2, with
probability density pz. If the point process = is an i.i.d.
cluster process, the multi-object probability density assumes
the form p= (X) = pn (n) -n! [\, p(x;), where p(x;) is the
spatial probability density of each target : € {1,...,n} and
the term n! accounts for all possible orderings of the finite
set of states xi.,. Particularly, if the point process is Poisson
with mean g, then p=(X) = e # [];; up(x;). We can verify
that p= (X) is a probability density by identifying the value
of its set integral over all possible realizations as

=t
2 i;/
:;m (n)/n [ﬁp(xi)] d(x1,...,%,) =1. (2)

In a similar way, let z; € Z C R% be a d,-dimensional
vector describing the jth measurement collected by one (or
more) sensor(s). We also assume that there is a random
number m € N of measurements, possibly originated from
targets or false alarms and without specific order, that can
be described by a random finite set ¥ with finite point set
Z1:m = {%1,...,2m} and where zq1,...,z,, are all observa-
tion vectors. For any realization of W, say Z, multi-target
likelihood functions can be defined as a generalization of
single-target likelihoods with properties analogous to those
described for the multi-target density, i.e., likelihoods of the
type py|=(Z|X) are possible.

(1) Py N ({X1s - X0} 0) d(xa, .., %0)

B. Probability Generating Functions and Functionals

Given a probability mass function py(n) = Pr{N =n}
of a discrete nonnegative random variable NN, its probability
generating function (p.g.f. or PGF) is defined as

0= pa(n)”
n=0

which converges absolutely for ¢ € C such that' || < 1.
From (3) one can recognize that py(n) = Gs\?) (0)/n! and
Gn(1) = 1. Similarly, an analogous concept can be applied
to a point-process random variable (random finite set), =, via
the probability generating functional (p.g.fl. or PGFL)

=E[¢"], 3)

Gz[h] = / hpz (X) 6X = E [h7]

~Yovim [ [_H (i

n=0 i=1

)] d(x1,...,%pn), (4)

where h : X — [0,1] is a test function analogous to ¢ for
the PGF, where hX = 1 if X = () and h* = []]_, h(x;) if
X={x1,...,Xn}

C. Functional Differentiation and the Intensity Function

The functional derivative of a probability generating func-
tional with respect to x € X’ is defined as

0G= [h] 2 Jim Gz[h + edx] — G=[h]
0x eN\0 S ’

(&)

LOther values of ¢ may lead to convergence, though |¢| < 1 is a sufficient
condition.



where d, = 0(x’ —x) is the Dirac delta function concentrated
at x and the differentiation is assumed linear and continuous
for a fixed h. It is worth noting that the definition (5) is
heuristic because the Dirac delta is not a valid test function in
view of (4). A rigorous definition of the functional derivative
can be found in [20]. When differentiating with respect to

a random set realization X = {x3,...,x,}, the following
definitions apply:
0G=.,, » 0"Gs= 0G= 1 &
=[h] = —1h =[h] = Gz[h].
5XH 6x1...(5xn”’ o0 (k] £ G=lh] ©

As detailed in [5], functional derivatives obey rules analogous
to those of elementary calculus, including the rule for a linear
functional, product rule, and chain rule. The first moment of
the random finite set = (point process) is what is generally
called the “intensity function”, or the probability hypothesis
density (PHD) [3]. The first moment can be derived from the
first derivative of the probability generating functional as

0G=
D=(x) =
=(9) = =1, Y
or equivalently from a set expectation according to
D=() = [ox(p=(OIX =Ep=(l,  ®)

where 0x(x) £ Y .. d(x — X). The intensity function
D—(X) can be interpreted as a density of objects at x, i.e.,

E[EnS|] = [¢D s x)dx gives the expected number of
objects in the region S g X.

III. THE CARDINALIZED PHD FILTER

In this section we present the CPHD filter in its original
form. The CPHD recursion was proposed by Mahler in [10,
11] to address the instability of the PHD filter when estimating
the target number. The CPHD recursion propagates the first-
order multi-target moment (intensity function) along with the
entire cardinality distribution. The CPHD recursion is derived
based on the following assumptions:

Assumption 1. Each target moves independently of one
another, with motion modeled by a single-target Markov tran-
sition density py k1 (x|x'), which we abbreviate as p;(x|x’).

Assumption 2. Existing targets may disappear between two
time steps with probability 1 —pg j,—1(x), where pg jr—1(x)
is the probability that a target with state x will survive
between time steps k — 1 and k, hereafter abbreviated as
ps(x).

Assumption 3. New ftargets can appear in the scene inde-
pendently of the existing targets, according to a Poisson point
process. New targets are realized at time step k with joint
density by, —1(X). The intensity function of the corresponding
random finite set is denoted as Dy(x), and its cardinality
distribution is denoted as py(n) whose p.g.f. is Gp(z).

Assumption 4. Measurements generated from targets are
independent of one another, with single-target likelihood func-
tion Uy, ,(x) = pe i (2|x), hereafter abbreviated as {,(x).

Assumption 5. The sensor detects a single target with state
x at the time step k with probability pq j(x), abbreviated as
pa(x) and the probability of not detecting the target is denoted
as qa(x) = 1 — pa(x).

Assumption 6. False alarms may affect the observation,
and are assumed to be characterized by a Poisson random

finite set (or point process) and independent of the actual
measurements. At the time step k, the sensor obtains a number
of false alarms whose spatial distribution is individually
given by the probability density ci(z) and whose cardinality
distribution is given by p.i(m), abbreviated as c(z) and
pe(m) respectively, and where the average number of false
alarms is denoted by \ = E,_ [m]. The p.gf. of p.(m) is
denoted as G(x).

Assumption 7. Both the prior and posterior multi-target
random finite sets are i.i.d. cluster processes.

A. CPHD Prediction Step

At a given time instant k—1 one has in possession estimates
of the intensity Dj_1(x|Z1.x—1), the expected number of
targets N1, and the cardinality distribution py_1(n|Z1.5-1),
conditioned on all measurements received to date, Zq.,_1 =
{Z1,...,Z;_1}, where Zy_; is the RFS realization contain-
ing all observations received at time instant k£ — 1. In this
section, we notationally suppress the conditioning on Zj.;—1
to express the intensity function and cardinality distribution
in the concise forms Dj,_(x) and p;_;(n), respectively.

We write ¢, (x) = Z\Afk__lle._l(x), abbreviated as ¢(x)
in this section, and recall the deﬁnition of inner product
between functions as (f,g) f [ . The prior
p-g.f. corresponding to the prior cardlnahty drstnbutlon is
given by

Grp-1(z) = Gy(2) - Gr_1({1 = ps, ) + (ps,$)x),  (9)

where Gj_1(x) is the p.g.f. of the cardinality distribution at
time step k— 1, and the equality? is valid under Assumption 7.
Expression (9) follows from the assumption that the birth
process is independent of the prior process of targets that
survived, which in turn is written for a Bernoulli survival
transition by using the Watson-Galton recursion [21]. The
CPHD prediction step obtains the prior intensity function,
prior expected number of targets, and prior cardinality dis-
tribution according to

Dyji—1(x) = Dy(x) + [ ps(x) pe(x|x") Dy (x')dx",  (10)
Nk|k—1 = Nyx + Nog, (11)
Prk—1(n) = Y7 o py(n — ) 5GY (1= pe, ) {ps, <), (12)

where Nb,k = (1, Dy) is the expected number of newborn
targets, and N, = (ps, Dx—1) is the expected number of
targets that have survived from time step k& — 1.

B. CPHD Measurement Update

In this section we assume that measurements are collected
from a single sensor at time instant k, as a realization Zj
of the observation RFS W, with a finite point set zy 1., =
{Zk1,---+2Zkm,} Of collected measurements. Based on the
prior intensity function Dyjj_1(x|Z1.x—1), prior expected
number of targets Nk|k,1, and prior cardinality distribution
Pijk—1(n|Z1.1—1) the realization Zj, is used to produce the
posterior intensity function Dy (x|Z1.x), posterior expected
number of targets N; and posterior cardinality distribution
pr(n|Zi.x).

We denote the intensity functions as Dy,;,_1(x) and Dy (x),
and the cardinality distributions as py|x—1(n) and pi(n). In

2In practice this is an approximation.



addition, we set gklk_l(x) = Nk_lli_lelk_l(x), abbreviated

as ¢(x) in this section. The p.g.f. of the posterior cardinality
distribution is approximately given by

S 21 G (0)G9) (2 (ga, <))oy (Zi)
S G (0)GO (g4, <))o (Zi)

where my = |Zy|, G(r) = Gyjp—1(x), and for a set Z with
m = |Z|,

. A O <pdéz17§> <pd£zm,§>
0i(Z) = o ( ) T ela) ) , (14)

where 0., (21, ..., Tn) is the elementary homogeneous sym-
metric function of degree ¢ in 1, ..., x,,. By defining

A GG (a4, ))o; (2)
S GU TGO (g0, ))oi(Zn)

the CPHD measurement-update step can be described as

Grp(z) =

, (13)

Ty (Z] ;o (15)

Dy (x) = MTIC [Zk] Digjre—1(x)

Go1)
b 20 S L 7 o Dy a0, (16)
GO(1) & () kLo FlR=135
Ny = G (1) ~ arg max py(n), (17)
Tfﬁc G(mk—j) 0 <¢1d,§>747:j G(n) 0)o.: (7
pe(n) = 220G (0) (n—yj)! (0)a;( k) (18)

S G 0)GD (g4, <))o (Zie)

IV. THE BINOMIAL FILTER

The binomial filter [13] was proposed as one further step
towards simplification of the CPHD filter. The strategy em-
ployed was to mimic, for a hypothesized discrete distribution,
the procedure of a Kalman filter for the cardinality random
variable, i.e., estimating sufficient statistics. Mahler proposed
that the cardinality should be distributed according to a
binomial distribution,

ot = ()1 =),

which models the probability of n successes out of v trials
each with probability w. For the purpose of counting objects
in a scene, the binomial distribution has two virtues: (i)
underdispersion, i.e., the variance is smaller than or equal
to the mean, and (ii) simplicity, with an analytic probability
generating function Gpin (¢) = (1 — w + w()". As touched on
before, the first virtue is very important for the vast majority
of practical applications since in scenarios of fairly high
probability of detection and moderate number of false alarms,
a set of measurements is highly informative about the target
number. Under these conditions, for a sufficiently high number
of targets, it is very unlikely that the cardinality variance
will be perceived as greater than the expected target number.
To verify the underdispersed characteristic of the binomial
distribution, one just needs to note that, for 0 < w < 1,
var (V) = vw(l — w) < ww = E[N] because 1 —w < 1.

On the other hand, the binomial filter has a fundamental
problem: for a given number of measurements m; received
at time step k, the filter requires that vy,_; > my. This is
actually an essential assumption associated with Theorem 2
in [13], which makes possible to establish the measurement-
update step. Ultimately, this assumption poses a limitation

v (19)
n

in the number of newly appearing targets that the binomial
filter can cope with. Supposing that Nk|k_1 targets have
been predicted in the scene and no false alarms or missed
detections took place, then the maximum number of new
targets that the binomial filter could account for would be?
Uklk—1 — Nk|k_1 ~ var(Ny|x—1)/@k|k—1. The problem arises
because when predicting v, —1 and wy;_1 no information on
the actual number of new targets is available, and the problem
tends to be exacerbated when a high number of false alarms
may be realized, i.e., most probably D, > my would not
hold.

V. THE DISCRETE-GAMMA CPHD FILTER

In this section we propose a new approximation to the
CPHD filter in the same ethos of the binomial filter. Such
approximation is based on a new cardinality model, obtained
by discretizing the Gamma distribution for describing count
data. This cardinality model and its properties are explained
in Sections V-A and V-B. In Section V-C we present the
prediction step of the proposed filter, and in Section V-D we
present its measurement-update step. Section V-E is dedicated
to an implementation of the Discrete-Gamma CPHD filter
based on Gaussian mixtures.

A. The Discrete Gamma Distribution

In order to derive the new filter, we assume that the
prior and posterior cardinality distributions can be accurately
approximated as a discretized form of the Gamma distribution,
called discrete Gamma (dGamma) hereafter, with probability
mass function given by

Gamma(n|a, B)
Z;.OZO Gamma(u|a7 5)
F(a)flﬁanaflefﬁn
(a)—lﬁa ZEO:O ud—le—Bu
naflef,@n
= ZZO:O uaflef,@u :

where Gamma(z|a, 5) denotes the continuous Gamma prob-
ability density at x € R, with a shape parameter, o > 0, and
a rate parameter, 5 > 0. This form of the discrete Gamma
distribution is similar to that presented in [22], except that
their description involves discretizing the shape parameter as
well, i.e. & € Ny. The utility of such probability mass function
will become evident later on when we present the filter
equations that follow from it. For now it suffices to mention
its benign characteristics, involving a simple cardinality model
that does not suffer from the shortcoming shown for the
binomial filter, and being suitable for inference of count
phenomena. Specifically, the discrete Gamma distribution
can be either underdispersed or overdispersed. The discrete
Gamma distribution has the probability generating function

dGamma(n|a, 3) & ,n €Ny, (20)

dGamma(n|a, 5) = T

2y

GdGamma(C) = Z dGamma(”‘aa 6) . Cn
n=0
S, m e PN Lisa(e %)
Yoo qutTle=Pu Li; (e ? )
where Lis(z) £ Y 72 k=%zF, for |z| < 1, is the function

known as the polylogarithm of order s € C and argument
z € C. Interesting particular cases involve Li; (z) = — log(1—

; (22)

3Typically @p|k—1 is of the same order of magnitude as var(Nyx—_1)-



z), and Li_(z) = (1 — 2)~C 120 A(L,0)200, £ € N,
where A(¢,i) is an Eulerian number*. This latter case is
used in the description of the discrete Gamma distribution
in [22], and can be computed by evaluating a finite number
of terms. However, in practice, as ¢ increases, computing
A(¥,1) becomes computationally expensive and increasingly
prone to round-off errors. Resorting to the known identity
Li_(z) = (2-8.)"[2/(1 — 2)] could be an alternative, but
the numerical evaluation of these rational expressions increas-
ingly suffers from cancellation errors as ¢ becomes large. In
those cases, truncating the polylogarithm’s definition directly
may give a better answer [23]. This constitutes an important
aspect for the implementation of the discrete Gamma filter.

Before closing this section, it is worth remarking that other
discrete distributions for count data were investigated. At a
first glance, some of them appeared as suitable candidates for
our endeavor, including the well-known generalized Poisson
distribution [24] and, more generally, the class of Lagrangian
distributions [25], the Conway-Maxwell-Poisson distribution
[26] and other forms of Gamma-count distributions [27]. In
our investigation, we have verified the feasibility of such dis-
tributions, observing different disadvantages in each one them:
the Lagrangian distributions propose complex implicit forms
of probability generating functions (based on the Lagrange-
Biirmann formula), the Conway-Maxwell-Poisson distribution
requires approximations for the moments that imply specific
conditions on the parameters (limiting the description of
overdispersion), and the Gamma-count distribution in [27]
results in a probability generating function involving many
evaluations of the incomplete Gamma function. Eventually,
we found more favorable characteristics in our approach.

B. Moments of the Discrete Gamma Distribution

From (22), it is not clear whether closed-form solutions
exist for the discrete Gamma factorial moments. We will rely
on a procedure closely related to that shown in [28] in the con-
text of inducing the Euler-Mclaurin summation formula. First
observe that lim,, o > neyn® 1e™P" converges for 3 > 1
according to the ratio criterion. Then, we shall assume 8 > 1
from now on. The analysis requires the continuous distribution
maximum, x,, = arg max, Gamma(z|a, 3), x,, # 0, given
by

xa—le—ﬁw

d [zele B o _
P ( T (a) ) v T B e D =
=0,
Ty = (= 1)L (23)

The first two moments of dGamma(n|a, 3) are evaluated by

Li_,(e ")
=W oy ==& 24
123 dGamma( ) Lilfa(e_ﬁ)’ ( )
2
0% = Glthmma(1) = 1 + 1y (25)

In order to evaluate these moments, one must approximate
ratios of polylogarithms when computing G dGamma( ) and

Gf,?am,m( 1), whose exact values are not easily calculable. We

shall not prove that G dGamma( )~ af~!and GY) (1)~
ala +1)872 — aB~! to first order precision, but rather
provide an intuitive argument that hopefully will convince

4The Eulerian number A(f,i) is the number of permutations of the
numbers 1 to £ in which i elements are greater than the previous element.

y=f(z)

T

Figure 1. Summation vs. integral of z%~le=58% (a = 21.5, B = 1)

the reader that higher order terms may be neglected. Set

f(x) = 2" te=P* and refer to Figure 1 to observe that
I_-xm,J 1 I_xmj
n<a7m - Z f / f((E)dl’ < 07
b Y fn R R

n=|Tm |
where |z | is the greatest integer less than or equal to x. Let
us compute dy,<z,, and dp>,,, by a first order approximation
where the difference f(n) — f(z), integrated within each
interval © € Z,, = (n,n + 1), is approximated by the area
of a triangle (Figure 1), Aa ,, with base Az, =1 and height
Afp=|f(n+1)— f(n)|, to result

I.IWJ

dncen ~—3 3 (f(n) = f(n—1) = 7M,
n>, ™ % S (fn)~ fn+1) = +M7
n=|xm]

since f(0) = lim, o f(z) = 0, and where |2] is the
closest integer to z. Therefore, we can approximate the total
difference to first order as

f(lzm]) = f(lzm])

dn = dn<xm + dn>zm ~ 9

:O7

which allows us to get

Zno{ 1 —[371 :/ xa—le—ﬁmdx_i_dn

0
~ BT (a).

If one is interested in a higher-order approximation of d,,
the areas shown in Figure 1 should rather be approximated
by integrals, within each interval Z,,, of a higher-order fitting
polynomial. As a direct consequence of (26) and based on the
property D'(a+¢) = (a+£—1)T'(a+£—1), £ € N, one can
easily verify the validity of the approximations:

Lll a

(26)

_Lig(e®) _p@IP(a+1)
PN = e ?) ™ B=el(a) o @D
L.—oz— -8 7L'—o¢ -
012\[: 1_q 1&1)(6_/61) (e )_,U?V_"HN
—(a+2) _ g—(a+1)
B (a +52—)af(ﬂa) Platl) oy
~ p°T(a) [ala+1)B72 —af™!] o
= 5T(a) BN+ Hy
=af2. (28)



C. Discrete-Gamma CPHD Prediction

The same assumptions used to formulate the CPHD filter,
established in Section III, shall be applied to derive the
Discrete-Gamma CPHD recursion. In addition to Assumptions
1 to 7, the following premise is also considered:

Assumption 8. The prior and posterior multi-target random
finite sets are assumed with multi-object discrete-Gamma
probability densities of the form

p=(X) =

n'Hp (xi),

where p(x;) is the spatial probability density of each object.

dGamma,, g ( (29)

The probability generating functional of (29) can be ob-
tained as

G= [h] =Eg [QZLO log h(xi):|

_ Z dGamma, g ( / l h(x ] dx1.p
n=0 i=1

_ i e P [y h(x)s (x)dx]”
n=0 LliaJFl( ﬂ)

o Li—a+1(8_B<h> §>)

B Li_gi1(e=P) 7 (30)

for 8 € R, § > 1, and where ¢(x;) = p(x;).

Now, based on previous knowledge of Dj_q, o1 and
Br_1, i.e., the posterior intensity function and cardinality
parameters from the previous filtering iteration, the predic-
tion step shall obtain the predicted intensity, Dyx_1, and
predicted cardinality parameters, ay,—1 and By r—1, which
are functions of the prior cardinality mean, N -1 and
of the prior cardinality variance, 0]2\,7,€| 4_1- The following
proposition establishes how the predicted intensity and car-
dinality parameters are achieved. Proofs are presented in the
supplementary material.

Proposition 1. Provided the posterior intensity function at
time instant k — 1, Dy,_q, and the parameters of a posterior
discrete-Gamma cardinality distribution at time instant k — 1,
ap_1 (shape) and Bi_1 (rate), then, under Assumptions 1—
3 and 8, the predicted intensity function, Dy_1, and the
predicted cardinality parameters, oyp—1 and Byp—1, are
given by

Dyjp—1(x) = )+ [ ps () pe(x[X) Dj—1 (x')dx’,  (31)
u%kk KN K|k
ok 1 1
gt = oL g = THEEEL (3
IN,klk—1 ox, Klk—1
where
PN gie—1 = Nrjk—1 = No o + N g, (33)
O kihor = Enppes T P2, 1B (Bl — 1), (34)

given the expected number of newborn targets, ]\Afbyk =
(1, Dy), and the expected number of survived targets, Ny, =

<psa Dk71>'

It is worth noting that (32) constitute approximations be-
cause py ~ af~! and 0% ~ a2 as per the method of
approximating moments of the discrete Gamma distribution
presented in Section V-B. Also, note that (31) and (33) are
essentially the same expressions as those found in the standard

CPHD prediction. Also, similarly to the CPHD filter, the
predictions of the intensity function and of the cardinality
distribution are uncoupled. The main difference is in the way
the predicted cardinality distribution is approximated, which
for the DG-CPHD filter is modeled in terms of the discrete
Gamma cardinality parameters o1 and Syx_1-

D. Discrete-Gamma CPHD Measurement Update

For the correction procedure, by knowing the prior intensity
function, Dy x_1, and the prior cardinality parameters, v, —1
and Sy ,_1, the measurement update step incorporates the set
of all measurements taken at time instant k (realization Zjg)
to calculate the posterior intensity function, Dy, and posterior
cardinality parameters, oy and (i, which are functions of
the posterior cardinality mean, fy ,, and of the posterior
cardinality variance, 012\,’ - The following proposition declares
how the posterior intensity and cardinality parameters shall be
calculated. Proofs are presented in the supplementary material.

Proposition 2. Suppose that the prior intensity function at
time instant k, Dy1,_1, and the parameters of a prior discrete-
Gamma cardinality distribution, oy ,—1 (shape) and By,
(rate), are known. Given a set of my, collected measurements
that define a realization Zy, of the observation random finite
set Wy, then, under Assumptions 48, the posterior intensity
function, Dy, and the posterior cardinality parameters, o
and By, are given by

X
Di(x) = _alx) Ok [Zk] Dyjp—1(x)
UNk\k 1
X
k7 z}| D (35)
v R > 0 71\ )] D (),
2
I I
ar = =3, B = =, (36)
ONk ONk
where fiy 1y = O‘k|k7151;\11c71’
Py =010+ 001 - (qd,5), (37)
o = 02,0 — 01,0+ 2011 - (qa, <)
+ 00,2 (qa>$)° — Hp + o (38)
and where the following definitions apply:
2l GG+ Nei(Z
ou7 2 TG @)
2o G ((qa, )i (Zr)
Mk "“G(j'f‘v) ,))a ;5 7
byt 2j=0 o ((ga }) 5 k)’ “0)
> e OG( )({qa,))7i(Zk)
_ gz §> <pd£z §>
(Z A _ ) <pd 19 m) 41
O'/( ) Om=|Z|,i < )\C(Zl) ) ) )\C(Zm) ) (41)
¢ d
GO (z) = lian(e Pa), (42)

Jor a = a1, B = Brjk—1 and £ > 1.

The approximations in (36) arise from that uy , ~ a3, !
and 0%, ~ o.fB; 2 as per the method of approximating
moments of the discrete Gamma distribution presented in
Section V-B. Note that equations (35) and (37) are analogous
to those found in the standard CPHD correction step. In
addition, as in the CPHD filter, the measurement updates of
the intensity function and of the cardinality distribution are



coupled. For the measurement update step, the main difference
between the DG-CPHD and CPHD filters is in the way the
cardinality distribution is approximated, which for the DG-
CPHD filter is in terms of the discrete Gamma cardinality
parameters «y, and (.

At this point, it is important to clarify the essential dif-
ference between the DG-CPHD filter and the Panjer filter
from [15]: the Panjer filter is derived to update the intensity
function and the regional variance (analogue of the cardinality
variance) without having to impose the posterior process as
an i.i.d. cluster process for producing the estimates®, whereas
the DG-CPHD filter imposes the posterior as an i.i.d. cluster
process in order to produce estimates of the cardinality
statistics. In the Panjer filter, this posterior i.i.d. cluster model
assumption is deferred to the next filter iteration in order
to proceed the prediction. The Panjer update accounts for
the joint effect of pairs of measurements in the second-order
factorial moment, and so has an additional update term with
computational complexity of order O(m*), where m is the
number of measurements.

It is also important to mention that computing (42)
for the DG-CPHD update is not a complex operation be-
cause, typically, Li_o41(e”?x) can be calculated to dou-
ble floating-point precision with only few hundreds terms,
and the pre-evaluated terms (n®~te=#"z™), cy that compose
Li_o11(ePx) can be iteratively updated by element-wise
vector multiplications (or sums of logarithms) in order to
evaluate the sequence (Li(_ZLH(e_ﬂa:))geN. To see this just
observe that

Li QLH( Py =27t Z n®le=Pngn . n, 43)
o ]

Li% (e P2) =272 nole P on(n — 1), (44)
n=0

Ll(fl)wl( - x) =2t Z nele g . pk, (45)
n=0

where nt = n(n —1)...(n — £+ 1) is the falling factorial

and whose terms can be iteratively computed as
Dr(n* e Prgm), = 7 DO(n* te 2™, o (n — 0),,
Di(na—le—ﬂnxn)n — x—lD;(n(x—le—ann)n ° (n _ 1)7“

(46)

where the terms within parentheses represent sequences as
(-)nen, the symbol o is the Hadamard product and DY is
Euler’s notation for differentiation.

E. DG-CPHD Filter via Gaussian Mixtures

As follows, the recursion established by Propositions I and
2 will be presented in closed form by modeling the intensity
functions as Gaussian mixtures. Without loss of generality in
terms of applicability of the proposed filter, but in favour of
illustration simplicity, we derive a solution for linear Gaussian
models. In this context, the single-target state transition kernel
and observation model are assumed linear and Gaussian as

= N(xFx',Q), (47)
= N(z;Hx ,R). (48)

pe(x|x’)
0,(x) £ pe(zfx)

SThough the Panjer filter still requires the assumption that the prior process
is an i.i.d. cluster process.

Additionally, we assume that the probabilities of survival and
detection, p, and py respectively, are independent of the state.
The state point process (RFS) at a previous time instant k—1,
and the target birth point process (RFS) at the time instant k
are characterized by the following intensity models:

Ip—1
Dy_i(x Zwkl m’ P, @9)
Tv,k )
Dy (x Zwbk (g P, (50)
m'? @y ., _ ;
where {(wlC pmy P ) i = 1,001, () is the set

of weights, means and covarlances that descrlbe the state
intensity function, and {(wb k,m?fi,Pfji) Di = L.}
is the set of weights, means and covariances that describe
the target birth intensity function. We shall not prove the
Gaussian-mixture DG-CPHD recursion formally, but rather
refer the reader to [12] and just point out that, in essence,
their proof is valid for the DG-CPHD filter, except for a few
different details.

Gaussian-Mixture DG-CPHD Prediction

The following equations form the prediction step for the
Gaussian-mixture DG-CPHD recursion.

Dyj—1(x) = Dy 1(x) + Dy pojre—1(x)
Tpjk—1
_ (%) (1) (1)
= > wp  Nesmyp Py ), 6D
[ Kk
Nklk—1 N klk—1
Qplp—1 & 27‘7 Brik—1 = 7' (52)
ON k|k—1 Nk:\k 1
Iy, k
N ko1 = Zw +psay_ Bt (53)
1 —1
O'JQV,k|k—1 = BN klk—1 +p§ak_1ﬁk_1 (ﬁk._1 - 1) , (54

where Tpp_1 = Iy p +Ix—1, and

(2)
Wy k>
() ml(f}g, , 1€ [1~~Ib,k’];
Welk—1 p®
(2) _ b,k
Mpe—1 | = ()
P( ?) pswk_fl’
HR Fm,(flp €l L1l
(2)
FP FT 4+ Q

(55)

Gaussian-Mixture DG-CPHD Measurement Update

The equations in this section establish the correction step
for the Gaussian-mixture DG-CPHD recursion.

Dk(X) = Du,k(x) + Dd,k(X)
Ir
=Y wN(xam, PY), (56)
(=1
/‘?V k KN g
Qp ~ 27/75145% 2’7 (57)
ONE ONk
fn g =010+ 00,1 (1 —pa), (58)



UJQV,k =030—010+2011-(1—paq)

+ 002 (1—pa)® — 13k + iy (59)

where D,, ;, is modeled as a Gaussian mixture describing the
intensity of a random finite set composed of missed detections
and Dy, is modeled as a Gaussian mixture describing the
intensity of a random finite set composed of detected targets.
For my collected measurements, I = Ipjp—1 + mplpp—_1,
where I,z components correspond to the missed detections
and myIy,_; components correspond to the update of each
prior component by each measurement. The missed detection
components are evaluated for 7 =1,... I x_1 as

(z) _ (1=pa)Or [Zk] )

- _ (60)

u, k|k—1°

|k 16k|k71 |

mi = mif . (61)
(l) (1)

P =Pl . (62)

For each measurement z € Zj, for all i € [1..Iy;_1], the
detected components are given by

: Ok [Zk \ {#}] pa

wyh(z) = N ,ifk SN CE)
O l— 15k|k71 C()

mh(2) = mi, + K @ Hml) ). (64)
P (2) = (Io, - KPH)PY, . (65)
00 = N(z Hmfd)k 1>S;(§|k D, (66)

@ _ p® Tq(d)
K Pk\k H Sk|k L (©67)
St = HP{) _ HT +R. (68)

Thus, the posterior components in (56) are set as
wq(j)k’ .
(17) S [1"Ik|k—1}7
(j'Iklk—l‘i’i) mu,k’ ) =0
) p® J =Y
(J Tkk— 1+1) _ (u,)k
i wy (z),
P(J Ik\k 1+) ((117§€( J> = [1~-Ik|k71}7
d,k(zj)a ;
Pd,k(zj)

(69)

The Gaussian-Mixture DG-CPHD filter is presented in
Algorithm 2. Theoretically, the filter induces a geometrically
increasing number of Gaussian components as time progresses
in a similar way as in the Gaussian-Mixture PHD filter.
Hence, practical implementations require techniques to keep
the total number of components at a maximum, such as
pruning and merging components as described in [29]. In this
procedure, components with negligible weights are pruned and
components that are close together are merged. Tracks are
extracted as per the extraction algorithm presented in [29].

FE. Algorithm complexity and implementation details

In the context of the original CPHD filter, the attempt
of propagating a nowhere vanishing cardinality distribution,
pn(n), would be intractable since this would involve esti-
mating an infinite number of terms, for n € Ny. However, as
touched on in [11], it is generally safe to assume that, in prac-
tical problems, cardinality distributions are short or moderate
tailed, which allows them to be truncated at some number
N = Nmax > V. This corresponds to say that their probability
generating functions are polynomials of degrees not exceeding

v. Therefore, when talking about complexity of the CPHD
filter, the usual argument observes that, by assuming the prior
cardinality p.g.f. to be a polynomial of degree not exceeding
v, ie., deg Gyjp—1(z) < v, then deg Gx(x) < v, and in the
next filtering step deg G 11)x(z) < v + deg Gy 41 () [11].
The conclusion of this argument is that increasing the possible
number of targets in the scene will not directly affect the
computational requirements for cardinality.

According to the analysis provided in [11] and [12],
most of the CPHD filter computational effort is primarily
due to m + 1 evaluations of sets of elementary symmetric
functions, each computed with effort bounded by O(m?)
operations, which would render a complexity bounded by
O(m?) operations, for m measurements. This complexity can
be reduced to O(m? log? m) for a procedure mentioned in
[12]. Nevertheless, such analysis emphasizes that evaluations
of elementary symmetric functions will dominate the com-
plexity for a high number of measurements, and so disregards
about (Npmaxm — m?/2 + Npax — m)(m + 1) calculations®
for nmax > m, involving multiple-term multiplications’ that
are necessary to compute Yi[Zx], Yi[Zk \ {z}] and pg(n),
according to equations (15) and (18) in Section III-B.

Not less important, although not usually taken into account,
is observing that as the number of targets increases, 1y, must
be set accordingly to properly describe probability masses that
become increasingly important towards higher values of n,
while maintaining accuracy of the cardinality representation.
How much n,,x should increase depends on how much in-
formation measurements provide about the number of targets,
which ultimately depends on the signal-to-noise ratio.

Proposition 3. Considering a constant probability of detec-
tion py(x) = pa, Poisson-distributed false alarms at rate ),
and setting € = Pr{0 < n < nuu} € (0,1), it follows that

9 2
nmﬂziﬂg’k 1+\/(15)5<ZN’Z)
N,

> K - uNkk—1,

(70)

for K > 1 and where 0 < ‘712\/,1@ < PN g Tomax —
assumed.

2 .
HN g S

The point we wish to make is that K - piy gjr—1 > m
is not rare (e.g., high number of targets and low number of
false alarms) and, in that case, the CPHD filter complexity
should be bounded by approximately m3 +nyam? —m? /2 ~
O(nmaxm?) operations since nyax > m. The proof of Proposi-
tion 3 is presented in the supplementary material. In general,
as A — 0 the CPHD filter complexity is rather dominated
by the cardinality parameterization and by the birth model,
and becomes increasingly complex as the number of target-
generated measurements increases. This fact corroborates
Mabhler’s perception that further approximation of the CPHD
algorithm may enable computational gain [13].

In the DG-CPHD filter context, the computational com-
plexity is alleviated by the fact that, apart from the O(m?)
operations for the elementary symmetric functions, only about
Timax (M 4 3) ~ O(fimaxm) operations are required for evalu-
ating derivatives of the prior cardinality PGF. In this context,
Nimax 1S the number of terms used to approximate each infinite

50r (Mmaxm/2 + Nmax + 1) (Nmax + 1) for nmax < m.
7Exponentiating sums of logarithms and multiplying by one elementary
symmetric function.



sum in (44), and about 6m+m(m — 1) operations are needed
for the terms that sum up to give O[Zg], Ok[Zk \ {z}]
and 6, ,, according to equations (39) and (40) in Section
V-D. The overall complexity of the DG-CPHD filter is then
bounded by approximately m? + fipexm + m?2 ~ O(m?)
operations, where 7im.x must be set to meet an adequate
accuracy for evaluating the prior cardinality PGFL, but has
loose relationship with the number of measurements. The
scheme to compute Li(_ezwl(e’ﬂx) for £ € [0..m~+2], with ap-
proximately 7imax(m+3) operations, evaluates 7, log-terms
of Li(g)x 11 (e~Px), and then applies an iterative procedure over
m + 2 steps, each calculating 7. log-increments to update
the log-terms in view of (46). This procedure is made explicit
in Algorithm 1.

Algorithm 1: Normalized Derivatives of Polylogarithms

Input : o, 3, ¢, € (machine precision), m
1l =log(, I, :=—F+1
2 Compute bounds for number of terms
3 Npin ‘= ]., ng = Nk|k—1
4 /* Find iy, that corresponds to the smallest
representable term n®~'e~#" by Newton’s method */

sfori=1,..., Ny, do
_ _ (a—1)logn;,—1—Bn;,—1—log &
R - (e
7 end
8 Nmax = N
9 (Tl)n = n)ne[ﬁm;n“’ﬁmax] = (ﬁmim Tmin + 17 e 77_Lmax)
10 (nly)y = n)y -1,
1 (logn), =log(n),

(
12 ((a—1)logn), = (a—1)- (logn),
B3 (9(n))p = ((a —1)logn), + (nl,),
14 Imax = max(d(n)),

15 Evaluate polynomials

16 L(0) = szxl exp((9(n))n — Vmax)

17 lC,l = ZC

18 (log(nt)), = (logn),

vfor{=1,... m+2do

20 | L) = Z’;‘““‘l exp((9(n))n —Vmax+(log(nt))n—l¢.e)
2 | (log(n™)),, < (log(n®))n + (logmax(n — ¢,0)),
22 l<7g+1 — lCl + ZC

23 end

Output: Approximations of higher-order derivatives
24

(L(£))ecio..m+2]

(Lif” L (€7P0))ecio.mre)
1 t€[0..m+2] max |(L(£))eef0..m+2)|

VI. NUMERICAL EXPERIMENT

In this section we present experimental results for a simple
example, very similar to the examples presented in [12], but
modulating difficulty by varying either the number of targets
that appear, average number of false alarms per frame, or
probability of detection. The intent is to show differences of
performance and computational effort of the PHD, CPHD and
DG-CPHD filters in difficult situations, where we hope to

Algorithm 2: Gaussian-Mixture DG-CPHD filter

[ I R S

R—TE- I -
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34
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38

39

40

41
42

43
44
45
46

Input : {w(”,,m{"’ 17P§21}ie[1..1k,1], k-1, Br—1,

Zry ={21,. ., %m, }

Prediction Step
/* Prediction of newborn target intensity */
for ; = 17--~7Ib,k do
@ @ ) () pl) _p@
‘ Wie—1 = Wp > Mpjpe—1 = My > Pk|k71 = Pb,k
end
/* Prediction of surviving target intensity */
Lpjp—1 = Lo + Ip—1
fori=1,;+1,. I}c\k 1 do
(4) @

O @ p

(4)
my”,, Py =FP7 FT +Q

end

/* Prediction of cardinality parameters */
5! (2) -1

BN k-1 = Dok Wy, § +p3ak—1611c—1 .

2 o - _
ONklk—1 = PN kk—1 +pso‘k—1ﬂk—1(5k—1 -1
Qglk—1 = MN,k|k71/Ué\l,k|k71
Brlk—1 "= Kn g1/ TN kjk—1
Measurement Update Step
/* Pre-computations for updated components */
fori=1,...,Ixx— do

—(1) Hm (1) S() HT+R
k(lk)l'_() ik 1,()klkli) k‘kl() (1)
2 T2 i) . i i
K, Pklk H Sk‘k L Py = 1-K H)Pk|k 1
end
{Ek z} = {N( aig\k 17S](gﬁag_l)}ie[l..lk‘k,l],ZGZk
For each j € [1. mk] compute

— HP(’)

I A ne
(palz; ;<) = ak\k 1B Pa ity 1(c|)k 1612)27

Obtain {5;(Z)}/”!; (41), for Z = Zy,, Zy \ {2} : 2 € Z
Compute (ng )ak\k 1( ~Pete- le))ZE[O..mk+2] (Alg. 1)
Evaluate 61 = Oy [Zk], 00,2, 01,0, 02,0, 01,1 (40)

/* Update of missed-detection intensity */
fori=1,. Ik|k 1 do
(@) . (@)
Wy~ = 4qd O‘k|k 1Bi—1©k (Z] Wi|k—1
@ ._ @ @) ._ p@)
my =y g, Prte= P
end

/* Update of detected target intensity */

I = (1 + mp)lgje—1

for j=1,...,m; do

Evaluate Oy [Z \ {z;}] (39)

fori=1,...,I,— do

w(j'lk\k—1+i) _ Ok[Ze\ziHpa 0, w,(jl)k 1
k' ) o X k— lﬂk\k 175(24)

ml(g].lklkAH) = ml(€L|)kfl + Kg) (zj — ng\)kﬂ)v

P(J Tk — 1+1) P(z)

)

end

end

/* Update of cardinality parameters */

Py =010+ 00,1 qa

GJ2V,k =020—01,0+2011-q3+ 002 - qﬁ - H?\gk thNn g
g = 1y o/ X B = B/ ORe

Output: {w,C ,m,C ,P( )}16[1 In]> ks Br




demonstrate benefits of the approximations introduced by the
DG-CPHD filter.

The example consists of a two-dimensional scenario in the
region [—1000, +1000] x [—1000, +1000] (m x m), where a
number of targets, unknown a priori, may appear and are
observed under the possibility of false alarms. Each target
is described by its state vector x = (py, py, vz, vy) T, where
p = (pz,py)? is a pair that specifies a position in Cartesian
coordinates and v = (v,,v,)7 is the pair specifying velocity
in the same coordinates. At each time instant k, the state
is written as x; = x(¢j). Each target is assumed to move
with nearly-constant velocity, with transition matrix and state
process covariance matrix given respectively by

B ( I, T,At > B ( LAt /3 TyAt2)2 ) 5

F= ’ Q - 2 Og>s

02 HQ HgAt /2 HgAt 4
where Iy and Oy are the identity and zero matrices with
dimensions 2 x 2, respectively, At = 1s is the sampling
period, and the stangiard deviation of velocity increments is
given by o, = 5m/s2. Each target remains in the scene up to
the next time step with probability ps; = 0.98. Note that the
generation of targets’ trajectories is performed without noise,
that is, the targets (i.e., ground truth) move according to a

constant velocity model.

A single sensor collects position measurements in the
Cartesian space, corrupted by a Gaussian-distributed noise,
characterized by the output matrix and measurement noise
covariance matrix, respectively, H = ( I 0z ) and R =
]1203, where 0, = 5m is the standard deviation of the
measured positions. False alarms can be generated according
to a Poisson point-process with intensity D.(z) = A - ¢(z),
where ) is the average number of false alarms per scan, and
¢(z) is the spatial distribution of clutter, assumed uniform in
the surveillance region with “volume” (area) V = 20002 m2.

Each instance of the example is simulated for 7" = 100s.
Denote N; as the total number of targets that appear and will
remain till the end of a simulated instance, at ¢t = 100s. In all
cases, targets appear in batches at positions uniformly sampled
in the area [—800, +800] x [—800, +800] (m x m), and with
random velocities uniformly sampled in the ranges [—5, +5] X
[—5,45] (m/s x m/s). The batches of target appearance are
set as follows:

o 0.25N; targets are already in the scene at ¢ = 0 and will
remain up to ¢ = 100s with exception of 5 targets that
are set to disappear at t = 80s,

e 0.25V; targets along with 2 other targets appear at ¢t =
20s and are set to remain to the end,

e 0.25V; of targets along with another target appear at
t = 40s and are set to remain,

e 0.25N; of targets along with 2 other targets appear at
t = 60s and are set to remain,

o from N, + 5 targets in the scene, 5 targets disappear at
t = 80s and the remaining NV, stay up to ¢ = 100s.

The birth random finite set is assumed as a Pois-
son point-process with approximate intensity Dy(x) =
S wél)/\f(x; ml(f), Pl(f)), where

mg") = (=500, -500,0,0)", m{* = (=500, +500,0,0)"
mf” = (+500,-500,0,0), m{") = (+500, +500,0,0)7,
my” = (0,0,0,0)7,

and
() Ny

wy’ = m (target/frame),

P(Z) _ 2002H2 02
b (1) 42,

),i:l,...,5.

For each filter, at each time step, pruning is performed
based on a weight threshold of 7, = 107° and merging
with threshold of 7,y = 4m, and the number of maintained
Gaussian components is limited at J,x = 300 (see [29] for
details on the pruning and merging procedure). Measurements
are gated with gate-size probability of pgye = 0.999. For the
CPHD filter, the estimated (posterior) number of targets is
obtained in the maximum-a-posteriori sense. The cardinality
distribution for the CPHD filter is estimated to a maximum of
Nmax = 2 X Ny terms. This maximum number of cardinality
terms has been chosen to keep the CPHD filter computational
effort competitive in relation to the other filters for difficult
scenarios.

We examine the DG-CPHD filter in comparison with the
PHD and CPHD filters for three different cases as follows.

Case 1: Fixed probability of detection, p; = 0.98, and
fixed number of false alarms per scan, A = 50,
all filters are tested for different numbers of
targets that appear and remain in the scene,
N; € {10, 25,50, 75,100}.

For fixed number of targets that appear and re-
main in the scene, N; = 50, and fixed number
of false alarms per scan, A = 50, all filters
are tested for different probabilities of detection,
pa € {0.98,0.90,0.80,0.70,0.60}.

For fixed number of targets that appear and re-
main in the scene, N; = 50, and fixed probability
of detection, p; = 0.80, all filters are tested
for different numbers of false alarms per frame,
A € {10, 30, 50, 100, 200}.

For each case, 500 Monte Carlo (MC) runs are performed,
for a sampled set of trajectories (ground truth), indepen-
dently generated clutter, and independently generated (target-
originated) measurements for each trial. For all filters, perfor-
mance is evaluated in terms of:

Case 2:

Case 3:

o mean Optimal Subpattern Assignment (OSPA) metric

[30] with a cut-off cospa = 100 and a norm order
posea = 1,

o root-mean-square error (RMSE) of the estimated target
number,

« integrated time-weighted absolute error (ITAE) with nor-
malized weights for the estimated target number, and
o computation time (per time step).

Consolidated cardinality RMSE and mean OSPA indexes are
obtained by averaging the cardinality RMSE and MOSPA
over the time steps where all filters are in steady state
(disregarding the errors during the settling time). Considering
a filter that estimates the target number as a “black box” for
an estimated number of objects and a reference ground truth
(cf. a set point) in target number, these indexes are defined
invoking a common notion of steady-state error for control
systems, given a step input (birth events). This implies an
evaluation where any response before a settling time is not
considered, and this is generally adequate for measuring non-
transient precision. These steady-state time steps comprise
t € [15,20) U [30,40) U [50,60) U [70,80) U [90, 100] (s) in
the experiment. Since the targets (ground truth) are moving
with constant velocity, these indexes at steady state measure
performance under the least dynamic, least stressful parts of
the scenarios with respect to the target number. However, the



fact that targets are moving along straight lines facilitates the
filtering task as a whole, i.e., both when the number of targets
is changing or steady.

The consolidated runtimes are obtained by taking the aver-
age of the computation times per time step. We obtain two sets
of computation times: the total runtimes per filtering cycle and
the runtimes without accounting for the time spent to manage
the Gaussian mixtures (pruning and merging). Along with
the consolidated cardinality RMSE we also provide the ITAE
index, which is a performance index that favors the steady-
state performance but does not disregard the transient phase.
The ITAE is a weighted average of the absolute errors over
time, where the weights are proportional to the elapsed time
with respect to the latest birth/death event onset. The ITAE
weights are normalized to sum to one. These consolidated
indexes are computed for each value of the varying parameters
Ny, pa, and A.

In our comparisons, we use implementations of the PHD
and CPHD filters in Matlab language retrieved from Ba-Tuong
Vo’s webpage® but incorporating improvements in favor of
numerical robustness and computational efficiency, allowing
for higher numbers of false alarms per frame and reducing
the computational cost by calculating the combinatorial coef-
ficients only once. The DG-CPHD filter code was also written
in Matlab with a similar structure’.

A. Results

Case 1 : Figure 2 shows the tracks generated by the DG-
CPHD filter for an exemplary run of the first case, in the
subcase where pg; = 0.98, A = 50 and N; = 100. For the
same subcase, Figures 3 and 4 present, respectively, the mean
OSPA and cardinality estimates over time for the PHD, CPHD
and DG-CPHD filters, where we can perceive the advantage
of estimating the cardinality distribution.

The consolidated performance indexes for Case 1, com-
prising the average steady-state errors, ITAE and the average
runtimes per time step for each NV, € {10,25,50, 75,100},
can be found in Figures 5-7. In these figures, it becomes
clear that the performance of the DG-CPHD filter is similar
to that of the CPHD filter but at a smaller computational cost.
In terms of steady-state cardinality RMSE, ITAE, and mean
OSPA, the CPHD filter is the best filter.

For all filters, the steady-state mean OSPA metric seems
to converge to an asymptotic value as the target number
increases. Also, the steady-state cardinality RMSE and ITAE
of all filters seem to increase sub-exponentially (at a small
rate) with the possible number of targets in the scene. In
this case, the false alarm rate is not extremely high, thus
the complexity of the DG-CPHD filter is dominated by the
algorithm steps bounded by O(m?) operations whereas the
complexity of the CPHD filter is dominated by the algorithm
steps bounded by O(n,,,m?) operations with Ny > m.
This can be observed from the consolidated runtime trends in
Figure 7 as E[m] o N;.

Case 2 The consolidated performance indexes for
Case 2, comprising the average steady-state errors, ITAE,
and the average runtimes per time step for each p; €
{0.98,0.90,0.80,0.70,0.60}, can be found in Figures 8-10.
In this case, the performance of the DG-CPHD filter is very

8http://ba-tuong.vo-au.com/codes.html.
9Code available at https:/github.com/femelo/dg-cphd-filter.
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similar to that of the CPHD filter in terms of steady-state
mean OSPA, cardinality RMSE, and ITAE, with only marginal
differences. As expected, for all filters, the steady-state error
indexes decrease as the probability of detection increases.

As can be observed in Figure 10, the computational cost of
the DG-CPHD filter is smaller than that of the CPHD filter,
and greater than that of the PHD filter. It is worth noting
that almost no difference of computational cost is observed
over distinct detection probabilities: the slight decrease in
runtimes for higher detection probabilities is associated with
lower times for updating'® Gaussian components with lesser
spread.

We note that, especifically for this case, the slightly better
performance of the DG-CPHD filter in comparison to the
CPHD filter is surprising, but this is not central to our argu-
ment that the DG-CPHD offers performance commensurate
to that of the CPHD filter at a lower computational cost. It
appears that these differences are rather related to the different
sensitivity of the algorithms to the filtering parameters for

10K alman data update.
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scenarios where the probability of detection is decreased, and
most probably are not statistically significant as they are small
but seem exacerbated by the logarithm scale.

Case 3 : Although the scenario is difficult for any filter,
it is evident that the CPHD and DG-CPHD filters perform
better than the PHD filter, being able to identify and track
a greater number of targets on average. The DG-CPHD filter
has virtually the same performance as that of the CPHD filter.

Figures 11-13 present the consolidated performance in-
dexes for Case 3, for each A\ € {10, 30, 50,100, 200}. From
the figures, the overall performance of the DG-CPHD filter is
presented as almost indistinguishable from that of the CPHD
filter. The cardinality RMSE and ITAE of the DG-CPHD
filter are commensurate to those of the CPHD filter. From
Figure 13, one can observe that as A increases the complexity
of both the CPHD and DG-CPHD filters are dominated
by the total number of measurements, i.e., the runtimes
increase sub-exponentially with the number of false alarms,
bounded by O(m?) operations. Furthermore, the steady-state
cardinality RMSE and ITAE of all filters seem to increase
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sub-exponentially with the average number of false alarms,
suggesting a dependency of the signal-to-noise ratio that is
polynomial in the number of measurements.

Also for this case, we remark that the slightly better per-
formance of the DG-CPHD filter in comparison to the CPHD
filter is surprising, but this is not central to our argument that
the DG-CPHD offers performance commensurate to that of
the CPHD filter at a lower computational cost. As for the
previous case, the differences are likely to be related to the
different sensitivity of the filters with respect to the parameters
for scenarios where the average number of false alarms is
increased, and most probably are not statistically significant
as they are rather small but exacerbated by the logarithm scale.

It is important to observe that, in theory, when the number
of targets abruptly changes at time steps k& = 20, 40, 60, 80,
occasionally the cardinality distribution might become briefly
bimodal. In these occasions, the cardinality distribution would
not be accurately approximated by a discrete Gamma distri-
bution, which would make the variance for the DG-CPHD

filter significantly larger than that for the CPHD filter. How-
ever, a thorough investigation of this issue reveals that this
expected behavior is not confirmed in many practical cases.
Actually, what one sees for the CPHD filter at the steps
k = 20, 40, 60, 80, is a unimodal cardinality distribution with
a mode peaking between the previous target number estimate
and the actual (i.e., ground truth) new target number. The
mode of the distribution appears to shift progressively after
the birth event until it reaches the correct target number in
later steps. This happens to such an extent that the usual
procedure to obtain estimates, Ny = argmax,py(n|Zi.;)
(as recommended in [11], equation (88)), immediately after
steps with birth events, always finds an estimate between the
predicted target number and the ground truth. This means that
the CPHD filter does not produce a MAP estimate either at 20
or 40 (for step k = 20), at 40 or 60 (for step k = 40), or at 60
or 80 (for step £ = 60). The same behavior of the CPHD filter
producing these intermediate cardinality MAP estimates from
a single mode can be clearly seen in [12, 14]. This practical
lack of bimodality in the cardinality distribution explains the
similarity in the performance of the DG-CPHD filter and the
CPHD filter.

VII. CONCLUSIONS

This paper proposes a new filter that is second-order
in target number, where the multi-target state is assumed
to follow an independent and identically distributed cluster
process with the cardinality distribution modeled as a dis-
cretized Gamma distribution. Our work capitalizes on Ronald
Mahler’s perception that one more step towards simplification
of the CPHD filter implementation might be interesting. The
strategy employed was to mimic, based on a discrete-Gamma
distribution, the procedure of a Kalman filter for the cardi-
nality random variable, i.e., estimating sufficient statistics. As
demonstrated by the numerical examples, the discrete Gamma
distribution allows simple calculations for approximating the
first- and second-order moments of the posterior cardinality
distribution, and efficiently addresses tracking scenarios with
underdispersed target counts, without the restrictions required
by the binomial filter.

The results also demonstrate that the DG-CPHD filter is
more computationally efficient than the CPHD filter imple-
mentation proposed in [12], especially for scenarios where a
high number of CPHD cardinality terms nn,x iS necessary, i.e.,
in situations where the number of target-generated measure-
ments is significantly increased as many targets appear in a
scene. The experimental results support our argument that the
computational complexity of the CPHD filter is dominated
by O(nmam?) in this case, where nma > m, when the
CPHD filter is more computationally complex than the DG-
CPHD filter. In contrast, the DG-CPHD filter must rely on
a finite number of terms, 7.y, to approximate derivatives of
the prior cardinality p.g.f., é,(ﬂ_l(@d, <)), and as the results
show, nm.x is much less sensitive to the number of target-
generated measurements. To conclude, both our complexity
analysis and the experimental results suggest that the DG-
CPHD filter exhibits computational performance somewhere
between that of the PHD filter and that of the CPHD filter,
but cardinality accuracy and variance similar to that of the
CPHD filter [12].

We conjecture that, while the true cardinality distribution
might be multimodal at time steps where the target number
abruptly changes, the fact that all the filters are assuming



that all targets are drawn from a common spatial distribution
may add a smoothing in the process such that it induces
an approximating multi-target density that has a unimodal
cardinality distribution. This may explain the similarities
between the CPHD and the DG-CPHD filters. While this
observation is interesting, fully investigating this conjecture
requires further work. We also conjecture that the procedure
proposed in this paper could be extended to other cardinality
distributions of interest and might be the basis for other filters.
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