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Abstract The generator speed is an important index in maintaining the stable connection between 

the hydraulic turbine and the electric power system. Historically, researches carried out are based 

on deterministic models. It is therefore a challenge to investigate the effects of random fluctuating 

speed on the dynamic evaluation of the hydraulic-mechanical-electric system as variable 

renewable generation sources link to the electric power system. Here, we proposed a probabilistic 

model and solved it by the Chebyshev polynomial approximation method. We also performed a 

careful comparison implemented by the deterministic and the probabilistic models. Finally, we 

showed how the random excitations affect the dynamic evaluation of the system output. 

Key words: vibration characteristics; hydraulic-mechanical-electrical system; 

randomly fluctuating generator speed; elastic water hammer; Chebyshev 
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1. Introduction

Over the last decades, the hydropower sector has experienced a rapid development

in China, with the constructions of power stations in every corner of the country, 

reaching an installed capacity of ten hundred million kilowatts [1-4]. The 

construction of new hydropower installations will be promoted to double the 

worldwide installed capacity within the next thirty years [5, 6] according to the 
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2014 plan agreed by most international hydropower industries. The reliability and 

safety of such installations have nourished the concerns of the public opinion as 

well as of the regulators [7-12] due to this rapid expansion. In particular, the 

hydraulic-mechanical-electrical system is a crucial component which plays an 

essential role for the safety of individual installations and can hence affect the 

stability of the whole electric power grid. Therefore, the analysis of the stability of

hydraulic-mechanical-electric systems is a high-priority topic of research. Studies 

focusing on hydraulic-mechanical-electric systems can be roughly classified in 

two groups. The first focuses on the grid water hammer theory, aiming at 

establishing deterministic models for the hydraulic-mechanical-electric system 

[13-18]. This approach is suitable to describe the dynamic evolution of the system

with short penstocks characterized by uniform geometry. The works belonging to 

the second group adopt the elastic water hammer theory [19-27]. This approach is 

used to accurately analyze the dynamic characteristics of the system with long 

penstocks and allows to take into account eventual shape changes in the geometry 

of the penstock.

As highlighted by the last Global Wind Energy Outlook, the wind power sector 

has grown rapidly over the last decades in terms of both technological and 

commercial competitiveness: this is expected to result in an installed capacity of 

nearly 2 TW by 2030, supplying between 16.7% and 18.8% of global electricity 

[34]. Obviously, this trend may potentially affect the stability of power grids, 

leading to larger random fluctuations of hydro-turbine generators speed [35-38]. 

The generator speed is an important index in maintaining the stable connection 

between the hydraulic turbine and the electric power system. Its fluctuation 

interval directly decides whether the load rejection occurs in failure the hydraulic 

turbine. As we all know, the hydraulic-mechanical-electric system has complex 

nonlinear, time-variant and non-minimum phase, which is not only the response 

affected by the external factors but also a typical nonlinear response caused by the

internal instability factors. For a long time, fluctuation of generator speed focused 

on the components of hydraulic-mechanical-electric system, ignoring the 

interaction effect of these components and the unstable behaviors caused by this 

effect. Therefore, it provides a novel insight to study the interaction effect and the 

unstable behaviors caused by this effect from nonlinear dynamics. In addition, as 

time goes by, in the subsystems of hydraulic-mechanical-electric system will 
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inevitably appear such phenomena as equipment aging, unit vibration and noise 

increasing, etc. From the perspective of nonlinear dynamics, it is considered as the

variation of the structural parameters and performance parameters in the 

subsystems, leading to the deterioration of the service performance. Obviously, 

the nonlinear dynamic evolution of the system becomes the main reason. This 

provides a novel insight to study the deterioration of the service performance from

nonlinear dynamic evolution. Furthermore, regarding the uncertainties, 

hydropower stations will run for a long time as planned in construction, which 

will gradually cause the value change of hydraulic, mechanic or electric 

parameters. Therefore, we conclude the following two fundamental problems. 

First, whether the operating stability of these units will be changed in the next 

thirty or forty years? Second, can we predict the dynamic evolution of the system 

caused by the uncertainties of model parameters? As we all know, the aim of the 

sensitivity analysis is an attempt to investigate the effect of parametric uncertainty

on the system output. Hence, we can obtain major contribution parameters 

affecting the values of system output from the sensitivity analysis, which not only 

provides guidance for model validation but also helps to seek key parameters 

causing the change of dynamic evolution of the hydraulic-mechanical-electric 

system.

In light of the above analysis, our work proposes a novel approach to the stability 

analysis of the hydraulic-mechanical-electric system with respect to the existing 

literature. First, a probabilistic component u is integrated with the generator speed

 , obtaining a novel probabilistic model of the hydraulic-mechanical-electric 

system. Second, the sensitivity analysis is performed based on the probabilistic 

model. Third, the advantages and drawbacks of each method are identified 

comparing the dynamic evolutions of the deterministic and probabilistic 

approaches. Fourth, a mathematical definition of the differential gain kd is 

proposed for the PID in terms of a function of the fluctuation intensity D. Finally, 

the consistence of such definition is verified through a numerical application.

The content of this paper is organized as follows: Section 2 presents the nonlinear 

probabilistic model of the hydraulic-mechanical-electric system. Numerical 

simulations along with detailed analysis of the results obtained are presented in 

Section 3. Conclusive remarks and discussions are included in Section 4.
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2. Mathematical modeling and sensitivity method

2.1 Mathematical modeling

The hydraulic-mechanical-electric system is shown in Eq. (1) considering the 

elastic water hammer model adopted in this study:
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Details about the parameters in Eq. (1) can be found in Ref. [26].

Fig. 1 Rotation speed versus time. Red lines are the upper-lower limits of the electric power 

system regarding the rotation speed. Black line is the actual fluctuation of the rotation speed. It 

indicates that a load rejection failure would happen when the value of the rotation speed exceeds 

the upper-lower limits.

Two different types can be identified from Fig. 1. The first refers to a limited 

range, of about 495~505 r/min for values of time t lower than 120 s. This type of 

fluctuation is difficult to detect from the generator running sound due to the 

negligibility of the associated noise compared to that of the operating 

environment. The second type refers to fluctuations within the range 49.5~50.5 r/

min, as shown in Fig. 1 for time values t higher than 120 s. Both types of 

identified fluctuation have the potential to break the dynamic balance of torques 

between the hydro-turbine and the generator. In light of this, a probabilistic 

representation of the torque caused by the speed fluctuation is essential to obtain 

the state-space representation of the generator speed. Let Du  be the random 

torque, then the generator speed can be written as:
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where u is the random variable introduced in this study. Its probability density 

function, shown in Fig. 2, can be described as [39]
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Fig. 2 The probability density function p(u) versus random variable u. It indicates that the closer 

value of variable u, the greater probability.

The Chebyshev polynomial approximation is used to simplify the probabilistic 

model of the hydraulic-mechanical-electric system. Such approximation can be 

presented as:
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From Eq. (4), the following equations can be obtained as 
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Its recurrence relation is

 1 1

1
( ) ( ) ( )

2n n nnU u U u U u   , (5)

and the approximation property is
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Based on Eq. (4), the function f(u) can be expanded as:
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where N is the maximum number of Chebyshev polynomials;
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In light of this, the random state-space equations of the hydraulic-mechanical-

electric system can be rewritten as:
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where 1 =0, and 1N  =0.

Replacing Eq. (9) into Eq. (8), the probabilistic model of the system is written as:
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Multiply the above system of equations by ( )iU u . the initial probabilistic model 

can be approximated by the system in Eq. (11) considering the mathematical 

expectation with regard to the random variable u on both sides of Eq. (10), and 

setting i=0, 1, 2, 3, and 4:
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The formula of the mathematical expectation of the electromagnetic torque '
eP  is 

then written as:
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(12)

Finally, the average response can be evaluated according to the Eq. (11):
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2.2 Sensitivity method 

Sensitivity analysis is used to quantize the effect of the parametric uncertainties 

on the system output [40]. The sensitivity indices include two parts, namely the 

main effect (i.e., the effect of single uncertain parameter on the system output) 

and the total effect (i.e., the interaction effect of multi-uncertain parameters on the

system output). Its algorithm is briefly described as follows.

First, select an appropriate search function Gi. Using this function Gi, the system 

model Y=f(x1, x2, ..., xn) is transformed into a novel function expressed as Y=f(s). 

The relationship between the search function Gi and the input parameter xi is 

   sini i ix s G s    (14)

where n is the number of the input uncertain parameters, i∈(1,n); {ω} is defined 

as the frequency of the integer. In addition, the function Gi should meet the 

following condition:

 
 0.521 1i i

i i i
i

dG x
x PG

dx
   (15)

where Pi is the probability density function of the uncertain parameter xi. Next, we

integrate xi to Eq. (15) and calculate its Fourier transform, obtained as:

     cos sin
j

j j
j

y f s A js B js


 

   (16)

where 

1 1
- ,..., 1,0,1,...,

2 2
s sN N

j
  

   
 

,    
1

cos
2jA f s js ds



 
  ,    

1
sin

2jB f s js ds


 
  , 

Ns is the sampling number. Thus, Fourier series spectrum curve is defined as:
2 2

j j jA B   (17)
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The variance of model output caused by the uncertain parameter xi is expressed 

as:

1

2i i i
i

V 




  (18)

Based on Eq. (18), the total variance of the model output is written as: 

12+ + +...+i ij ijk n
i i j i j k i

V V V V V
  

     (19)

where Vij is the variance of parameter xi affected by xj; Vijm is the variance of 

parameter xi affected by the coupling of xj and xm. V12…n is variance of parameter xi

affected by the coupling of x1, x2, x3,…, and xn. Normalize model parameters and 

the main effect Si is expressed as: 

i
i

V
S

V
 (20)

The total effect of parameter xi is

i
Ti

V V
S

V


 (21)

where V-i does not include the sum of variance regarding xi. 

3. Numerical simulations

The proposed model was applied to a case-study in order to prove the efficiency 

and consistency of this approach. The values adopted for the parameters involved 

in the computations are shown in Tab. 1.

The initial values of the deterministic model of the hydraulic-mechanical-electric 

system (1) are

[x1(0), x2(0), x3(0), (0) , (0) , y(0), x4(0)]=[0.001, 0.001, 0.001, 0.001, 0.001, 

0.001, 0.001].

The initial values of the random hydraulic-mechanical-electric system (11) are 

[x10(0), x20(0), x30(0), 0 (0) , 0 (0) , y0(0), x40(0)]=[0.001, 0.001, 0.001, 0.001, 0.001,

0.001, 0.001], and [x1i(0), x2i(0), x3i(0), (0)i , (0)i , yi(0), x4i(0)]=[0, 0, 0, 0, 0, 0, 0]

(i=0, 1, 2, 3, 4).

The polynomial approximation method is proposed by Jensen et al. Xu et al [39] 

especially developed this method in his book and pointed out that the responses 

show a good precision when N is large than or equal to 4.To verify the simulation 

precision, we performed a comparison of the response of generator speed with 

different value of N, as shown in Fig. 3. 
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(a) Responses of the generator speed with different values of N. (b) Difference of the responses of

generator speed.

Fig. 3 Responses of generator speed with different values of N and the difference between two

different responses. (a) Responses of the generator speed with different values of N. (b) Difference

of the responses of the generator speed. N is the maximum number of the Chebyshev polynomials.

Different value of N means the different simulation result of the generator speed transformed by

number N of Chebyshev polynomial. N43 denotes the difference between the speed responses with

the maxmum Chebyshev polynomial N=4 and N=3; N54 denotes the difference between the speed

responses with the maxmum Chebyshev polynomial N=5 and N=4; N65 is the difference between

the speed responses with the maxmum Chebyshev polynomial N=6 and N=5. Model parameters

are assigned to average values coming from Tab. 1.

As shown in Fig. 3(a), the dynamic evaluations of the generator speed are clearly 

different when N<4. While N>4, the dynamic evaluations of speed with different 

value of N are basically overlapped. From Fig. 3(b), the order of magnitude 

regarding N54 and N65, at least, is 10-4, meaning that the error of the speed 

response is less than 1% when N>4. This error indicates that the Chebyshev 

polynomial fitting method can capture the dynamic characteristics of the 

hydraulic-mechanical-electric system accurately and quickly.

3.1 Global Sensitivity analysis

Global sensitivity aims to find sensitive factors defined as parameters which have 

important effect on system outputs. In this subsection, global sensitivity to the 

generator speed is performed, and the calculation result is shown in Fig. 4. 

Parametric uncertainties in the established model are shown in Tab. 1. There are 

three main differences compared to the public design approaches with the 

provided method in this manuscript. First, most public models come from the Ref.

[15] proposed by the IEEE Group. These models are differential equations. The 

model in this manuscript is also developed based on the IEEE Group’s model by 

introducing a random excitation. It is therefore a model of stochastic differential 
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equations. Second, from the viewpoint of engineering, the excitation from the 

electric power system is essentially random. Hence, the model introducing a 

random excitation would be more reasonable than public models considering the 

excitation as a constant value. Third, the public models can be simulated by many

numerical methods, such as Runge-Kutta method and Admas-Bashforth-Moulton 

algorithm. These methods, however, cannot be used to simulate the random model

due to the random excitation. Chebyshev polynomial approximation method is 

specially adapted to approximate the random excitation. Table 2 is added to detail 

the main differences between public design approaches and the newly provided 

method.

Table 1 Definition of parametric uncertainties. The definition of uncertain parameters is 

used to investigate its effect on system outputs. All the parameters obey the normal 

distribution. Average and standard values are defined based on engineering experience.

Definition Symbol Average Standard Distribution

Partial derivative of the flow with turbine speed eqh 0.5 0.01 Normal

Partial derivative of turbine torque with guide 

vane
ey 0.03

0.01
Normal

Partial derivative of the flow with guide vane eqy 0.2 0.01 Normal

Partial derivative of torque with turbine speed eh 0.18 0.01 Normal

Damping factor of generator rotor Dt 0.5 0.01 Normal

Transient internal voltage of the armature Eq 1.35 0.1 Normal

the rated generator speed ω0 314 100 Normal

Inertia time constant of the generator unit Tab 8 0.5 Normal

Direct axis transient reactance xd 1.15 0.01 Normal

Quadrature axis reactance xq 1.474 0.01 Normal

Major relay connecter response time Ty 0.1 0.001 Normal

Bus voltage at infinity Vs 1 0.01 Normal

Length of the phase of water hammer wave Tr 1 0.01 Normal

Elastic time constant of the penstock hw 2 0.01 Normal

Proportional adjustment coefficient kp 2 0.01 Normal

Integral adjustment coefficient ki 1 0.01 Normal

Differential adjustment coefficient kd 2 0.06 Normal

Random intensity D 0.08 0.0003 Normal

Control signal r 0.01 0.003 Normal

Table 2 Main difference between public design approaches and the newly provided 

method.

Public design approaches The newly provided method
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Model Type
Deterministic  differential

equations
Stochastic differential equations

Numerical method Runge-Kutta method
Chebyshev  polynomial  approximation

+ Runge-Kutta method

0

0.1

0.2

0.3

0.4

Estimations of the sensitivity indices

 Confidence Intervals: 0.05% 0.95%

Main effect

Total effect

Fig. 4 Sensitivity indices regarding the generator speed versus system parameters. The blue box 

plots show the main effect of the parameters on the generator speed. The error bars on the boxes 

indicate the uncertainties of parameters. The confidence interval is (0.05%, 0.95%). Simulations 

were performed using the average values of all the uncertain parameters (Table 1). The calculation

method is the Extended Fourier Amplitude Sensitivity Test. It shows that the control signal r plays 

the major contribution to the value of generator speed.

From Fig. 4, the sensitive indice of the control signal r is obviously larger than 

that of other parameters for the generator speed. In actual operating, the control 

signal r provides a standard for the generator speed, and the aim of the system is 

to regulate the guide vane opening to guarantee the generator speed changing in 

the required interval. Hence, it is very reasonable that the control signal r plays the

most sensitive parameter. The impact degree of parameters on the generator speed

are ranged, namely r > Vs > Tab >Dt > eh > D > ki > Tr > kp > xd > eqy > Eq > Ty > eqh 

> hw > kd > xq > w0 > ey.

3.2 Dynamic evolution with different levels of random intensity D

In this subsection, the differences between the dynamic evolution process of the 

generator speed   computed with the deterministic (1) and a probabilistic 

approach (11) are investigated. Let the differential gain of the PID controller kd 

vary between 0 and 6. The dynamic evolution process of the generator speed   is 

obtained adopting the deterministic approach of Eq. (1): the results of such 

analysis are shown in Fig. 5(a). Similarly, Fig. 5(b) shows the results adopting the 

probabilistic approach of Eq. (11) with regard to the generator speed. The 

dynamic evolution process of the generator speed   along with increasing 

differential gain values kd, assuming a random intensity D equal to 0.01.
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(a) Responses of the deterministic system (1) (b) D=0.01

Fig. 5 The dynamic evolution of the generator speed   for the traditional model of Eq. (1) and the

probabilistic model of Eq. (11), with D=0.01 and differential gain kd increasing from 0 to 6. Blue 

dot in the plots is the output value of the generator speed regarding different value of kd, and only a

value of kd regarding a definite value of the generator speed means the stable operation. 

Simulations were performed using the average values of all the uncertain parameters (Table 1). 

This figure mainly shows that the random excitation u narrows the adjustable range of kd 

associated with the random vibration state, indicating that the random excitation in modeling the 

system should be considered.

As Fig. 5(a), for kd varying between 0 and 6, the results of the deterministic 

approach highlight five operating states associated with the dynamic evolution 

process of the generator speed  : a random vibration state for the generator speed

  within the range [-0.1, 0.1], a regular vibration state from  =0.0188 to 

=0.02015, a stable operation state when   is equal to zero, a quasi-periodic 

vibration state for values of   lying in the interval [-0.037, 0.042], and a non-

tunable state for values of   far higher than zero. In comparison with Fig. 5(a), 

Fig. 5(b) shows a different dynamic evolution process of the generator speed   

when kd changes from 0 to 6. Specifically, the difference between the two 

approaches can be summarized by five observations:

First, for the deterministic approach of Eq. (1), the key point (named point 1) at 

which the generator speed   evolves from the non-tunable state to the random 

vibration state is located at kd=-5.583. Differently, point 1 is located at kd=0.5 for 

the probabilistic approach of Eq. (11).

Second, the critical point (named point 2) at which   passes from the random 

vibration state to the stable operating state, moves from kd=-1.25 to kd=1.875 

according to the adoption of the deterministic or the probabilistic approach 

respectively. The distance between point 1 and point 2 reveals that the adjustable 

range of kd associated with the random vibration state is significantly tighter for 

the probabilistic case. In other words, minor changes of the value of kd may result 

in the transition of the probabilistic model from the random vibration state to the 
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non-tunable state. This transition could result in major accidents and then could 

have disastrous effects on the facility and its surroundings. Third, the 

deterministic model presents a stable state, and the corresponding adjustable range

of kd is [0.1667, 3.75]. Differently, the probabilistic model presents no stable state.

Fourth, considering the deterministic model operating in the regular vibration 

state, the change rate of the generator speed is very large, while the change rate 

becomes quite low when the random system operates in the regular vibration 

state.

Fifth, with regard to the quasi periodic vibration state, the range of kd results 

[4.167, 4.5] for the deterministic model and [2.563, 4.663] for the probabilistic 

approach.

To sum up, the results obtained with the probabilistic model do not show any 

stable operating state of the hydraulic-mechanical-electric system affected by the 

random fluctuation of the generator speed. Moreover, in comparison with the 

deterministic analysis, the adjustable range of kd associated with the random 

vibration state is narrower, while it appears significantly wider in the right region 

of the domain, associated with the quasi periodic vibration state.

3.3 Definition of kd in function of random intensity D

This section is dedicated to the study of the effects of the intensity D on the 

adjustable range of the differential gain kd. Furthermore, the relation between this 

latter and increasing value of D is established mathematically. Fig. 6 shows the 

dynamic evolution of the generator speed computed with the probabilistic model 

of Eq.(11) for different levels of the intensity D and values of kd within the range 

[0, 6].
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(a) D=0.06 (b) D=0.18
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Fig. 6 Dynamic evolution of the generator speed   for the probabilistic model of Eq. (11) with 

different levels of intensity D and kd varying from 0 to 6. (a) D=0.06; (b) D=0.18; (c) D=0.54; (d) 

D=0.88; Blue dot in the plots is the output value of generator speed regarding different value of kd, 

and a value of kd regarding uncertain values of generator speed may cause load rejection failure. 

Simulations were performed using the average values of all the uncertain parameters (Table 1). 

This figure mainly investigates how the adjustable range of variable kd changes with the increasing

level of intensity D.

The results show that, with increasing level of the intensity D, the range of kd 

which corresponds to the random vibration state on the left of point 2, does not 

change, as well as the operating state of the hydro-turbine generator system on the

right of point 2. Conversely, the region of the kd domain corresponding to the 

random vibration state and the non-tunable state shifts progressively to the right 

along with the increase of the intensity D. This implies that the range of kd 

corresponding to the regular vibration state decreases gradually with the growth of

D. When the value of D increases to 0.40, the point 2 coincides with the key point 

for which the system evolves from the regular vibration state to the quasi periodic 

vibration state. Note that, under these conditions, the range of the quasi periodic 

vibration state expands suddenly and the system evolves progressively from the 

non-tunable state to the random vibration state and hence to the quasi periodic 

vibration state along the kd  domain. Under these circumstances, the severity of the

system vibrations cannot be significantly decreased, regardless the entity of the 

adjustment applied to the value of kd. Further, increasing the intensity D, the 

system shows only two possible states: the random vibrations state and the non-

tunable state. Tab. 3 presents the state of the system for different values of the 

intensity D and different ranges of kd.

Table 3 Change laws of point 2 and operating ranges with increasing level of the random intensity 

D. This table reveals how the adjustable range of kd decreases with the increasing level of the 

intensity D.

D dk
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State Range State Range State range

0.01
Random 

vibration

(0.4236, 

0.8056)

Regular 

vibration

(1,875, 

2.563)

Quasi 

periodic 

vibration

(2.563, 

4.663)

0.06
Random 

vibration

(0.4999, 

0.8819)

Regular 

vibration

(1.951, 

2.563)

Quasi 

periodic 

vibration

(2.563, 

4.663)

0.12
Random 

vibration

(0.5763, 

0.9583)

Regular 

vibration

(2.028, 

2.563)

Quasi 

periodic 

vibration

(2.563, 

4.663)

0.18
Random 

vibration

(0.691, 

1.073)

Regular 

vibration

(2.181, 

2.563)

Quasi 

periodic 

vibration

(2.563, 

4.663)

0.24
Random 

vibration

(0.806, 

1.188)

Regular 

vibration

(2.257, 

2.563)

Quasi 

periodic 

vibration

(2.563, 

4.663)

0.30
Random 

vibration

(0.958, 

1.340)

Regular 

vibration

(2.333,2.563

)

Quasi 

periodic 

vibration

(2.563, 

4.663)

0.36
Random 

vibration

(1.111, 

1.493)

Regular 

vibration

(2.466, 

2.563)

Quasi 

periodic 

vibration

(2.563, 

4.663)

0.42
Random 

vibration

(1.264, 

1.646)

Regular 

vibration
——

Quasi 

periodic 

vibration

(1.646, 

4.663)

0.48
Random 

vibration

(1.455, 

1.837)

Regular 

vibration
——

Quasi 

periodic 

vibration

(1.837, 

4.663)

0.54
Random 

vibration

(1.646, 

2.028)

Regular 

vibration
——

Quasi 

periodic 

vibration

(2.028,4.663

)

0.60
Random 

vibration

(1.799, 

2.181)

Regular 

vibration
——

Quasi 

periodic 

vibration

(2.181, 

4.663)

0.72
Random 

vibration

(2.142, 

2.524)

Regular 

vibration
——

Quasi 

periodic 

vibration

(2.524, 

4.633)

0.88
Random 

vibration

(2.792, 

3.174)

Regular 

vibration
——

Quasi 

periodic 

vibration

(3.174, 

4.633)
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The results of the analysis carried out show that the intensity D affects only 

the value of point 2. Moreover, this latter shifts to the right with increasing level 

of the intensity D, and for this reason the intensity D seems to have an impact on 

the stability of the system.

3.4 Comparison of the grid water hammer and the elastic water 

hammer models

Technically, the penstock wall of hydropower stations is elastic. As far as the 

length of the penstock is less than 600 m, its shape change almost has no effect on

water hammer. Thus, grid water hammer models are widely used in modeling the 

dynamic characteristics of small and medium hydropower stations. In this section,

a comparison of the operating range between the grid water hammer and the 

elastic water hammer models is proposed. 

Substituting the grid water hammer model with the elastic water hammer model in

Eq. (1), then the hydraulic-mechanical-electric system can be rewritten as:
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(22)

The trend associated with a point named 3, namely the value of kd for which the 

generator speed   passes from the non-tunable to the vibration state, is shown in 

Tab. 4.
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ω
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(a) D=0.06 (b) D=0.16
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Fig. 7 Dynamic evolution of the generator speed   for the probabilistic model in Eq. (15) with 

different values of the random intensity D and kd varying from -8 to 8. (a) D=0.06; (b) D=0.16; (c) 

D=0.36; (d) D=0.52; Blue dot in the plots is the output value of the generator speed regarding 

different value of kd, and a value of kd regarding uncertain values of the generator speed may cause

load rejection failure. Simulations were performed using the average values of all the uncertain 

parameters (Table 1). This figure mainly shows how the adjustable range of the variable kd 

changes with the increasing level of intensity D.

Table 4 Location of point 3 according to increasing values of the random intensity D. This table 

illustrates that the trend registered for the probabilistic model in Eq. (15) matches perfectly the 

results obtained from the previous probabilistic model of Eq. (11).

D 0.04 0.06 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

Point3 -5.854 -

5.646

-

5.542

-

5.021

-

4.604

-

3.979

-3.25 -

2.521

-

1.479

-

0.2292

0.083

As shown in Tab. 4, increasing levels of the intensity D cause the region of the 

domain associated with the non-tunable state shifting to the right, while the 

operating state on the right of point 3 remains unchanged. As expected, the trend 

registered for the probabilistic model in Eq. (15), considering the rigid water 

hammer model, matches perfectly the results obtained for the previous 

probabilistic model of Eq. (11).

4. Conclusions

In this study, a random variable u is integrated with the generator speed of the 

deterministic model of a hydraulic-mechanical-electric system to establish the 

corresponding probabilistic model. Using this latter, the dynamic evolution of the 

system is analyzed, and three main conclusions are achieved. First, although the 

dynamic evolution of the random system is broadly similar to that of the 

deterministic approach, the two sets of results show significant differences, 

carefully investigated in the paper. Second, the point 3, which highlights the 

transition from the not-tunable state to the random vibration state, shifts to the 

right with increasing values of the random intensity D, which leads to the 
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decreasing adjustable range of kd. Third, the consistence of the trends highlighted 

by the probabilistic model implemented in this paper is compared and verified 

through the use of another model. Moreover, when the shape of the penstock is 

assumed not uniform, the adjustable range of kd is narrowed from left to right and 

the operating state of the system becomes less stable. In light of the obtained 

results and of the rapid development of wind power, it is recommendable to select

values of the differential gain kd of the PID governor as large as possible.
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