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The inpainting of deliberately and randomly sub-sampled images offers a potential means to image

specimens at a high resolution and under extremely low-dose conditions (�1 e�/Å2) using a scanning

transmission electron microscope. We show that deliberate sub-sampling acquires images at least an

order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More

importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant

increase in the resolution and sensitivity which accompanies the increase in imaging speed. We demon-

strate the potential of this method for beam sensitive materials and in-situ observations by experimen-

tally imaging the node distribution in a metal-organic framework. Published by AIP Publishing.
https://doi.org/10.1063/1.5016192

The development of aberration correctors for scanning

transmission electron microscopes (STEMs)1 has led to a

spatial resolution limit better than 0.5 Å for images of stable

inorganic crystalline samples. Accompanying this high level

of spatial resolution is a simultaneous increase in image sen-

sitivity which is primarily caused by the increased beam

current in the sub-angstrom electron probe used to form the

image.2 While this is incredibly beneficial for achieving

an atomic resolution in analytical methods such as electron

energy loss spectroscopy (EELS)3 and energy dispersive

X-ray spectroscopy (EDS),4 the high beam current (typi-

cally resulting in a dose on the sample that is in excess of

105–106 e�/Å2) drastically reduces the number of samples

that are stable under these standard illumination conditions.

The key to expanding the applicability of high resolution

STEM to beam sensitive materials such as inorganic-

organic hybrids,5 porous materials,6 and catalysts7 or in-situ
observation of dynamic materials processes8 is the ability to

extend the established imaging functionality to much lower

electron doses.

The concept of low-dose imaging is well known in

transmission electron microscopy (TEM) for structural biol-

ogy, with dose thresholds for most samples being defined at

10 e�/Å2 over 30 years ago.9 In fact, this dose sensitivity,

coupled with a need for high contrast at low spatial frequen-

cies, is one of the major reasons why aberration corrected

TEM10 is still not a standard method in structural biology. In

contrast, the major advance in the resolution for highly beam

sensitive biological materials has come in the last five years

with the widespread use of direct detection cameras,11,12

where the higher sensitivity and increased speed of the cam-

era have allowed high resolution images to be acquired at

lower dose. The materials science branch of electron micros-

copy has used these direct detection cameras primarily for

in-situ analysis,13 but more recently observations of metal-

organic frameworks (MOFs) have shown the advantage of

such cameras for low-dose imaging of hybrid materials.14

Although direct detection has been momentous for struc-

tural biology and is beginning to have an impact on materials

science, it does not provide imaging advantages for all types

of samples (and still has challenges for structural biology at

the highest resolution limits). First and foremost, the image

being collected on the direct detector is a phase contrast

image and in the case of biological samples must be highly

defocused to image all spatial frequencies in the sample (or

be imaged with a phase plate). Phase contrast images are also

sensitive to thickness effects, and under most conditions for

inorganic samples cannot be intuitively interpreted without

simulations (this factor is less important for structural biology

but very important for beam sensitive inorganic materials and

organic-inorganic composites). This is where the physics of

Z-contrast15 and Annular Bright Field (ABF)16 STEM imag-

ing have shown important advantages. The incoherent nature

of the imaging process provides an intuitive contrast interpre-

tation across all spatial frequencies in the image and works

for sample thicknesses of up to �1 lm. Furthermore, by

calibrating the detector, the image can be quantified

directly with atomic precision17 and scan distortions can be

removed to obtain picometer sensitivity18 in structural

images. If we can obtain Z-contrast/ABF images under

extremely low-dose conditions, then the approach will syn-

ergize the benefits of the STEM contrast mechanisms with

the established speed and sensitivity of the direct detectors

(this does not mean that low-dose STEM can replace direct

detection for all applications, but for cases where Z-

contrast or ABF imaging have a benefit, novel low-dose

imaging approaches could greatly increase the number of

samples that can be observed).

The traditional means of decreasing dose in the STEM

is to scan faster (lower dose from a reduced pixel dwella)Electronic mail: andrew@optimalsensing.com
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time) or reduce the gun extraction voltage (reducing the

number of electrons emitted). Both methods experience diffi-

culties in an aberration corrected microscope; to get a low

enough dose, either the scan speed exceeds the stability

of the scan coils or the reduced extraction voltage misaligns

the corrector (the beam cross-overs are changed). Compressive

sensing (and related techniques such as inpainting) offers an

alternative approach that avoids these limitations. Compressive

sensing utilizes the concept that images/data can be well repre-

sented in a much sparser form using a suitable basis set and

that this sparse form can be fully recovered from a measure-

ment that has a much lower sampling than the conventional

acquisition (hence lowering the number of pixels and dose in

an image while increasing speed). The theory of compressive

sensing19,20 is now widely applied in many fields. In electron

microscopy, compressive sensing has been applied recently for

dose reduction in tomography21 and video rate enhancement22

and has been proposed as a method for the reduction of dose in

STEM imaging.23

In this letter, a specific kind of compressive sensing—

inpainting is examined as a method for dose reduction.

Inpainting can be thought of as an image processing technique

to fill-in missing data. In the most general form, the pixels are

missing arbitrarily, but here the pixels are missing according

to a binary random process. The design of the missingness

of the pixels is an important consideration for hardware devel-

opment24 and guaranteeing recovery of the missing data.25

The first simulation in this letter examines the equivalence of

“conventional” extremely low-dose STEM imaging and

inpainting. Second, experimentally collected low-dose and

sub-sampled data are used to further justify this equivalence.

Third, a reconstruction of experimentally sub-sampled data of

a MOF is shown to illustrate the efficacy of sub-sampling on

beam sensitive materials. Finally, an adaptive sub-sampling

approach is proposed and shown to reduce dose by an order

of magnitude below low-dose and sub-sampled STEM in sim-

ulation. Several different specimens are used in this letter to

reinforce the generality of compressive sensing. Figures con-

solidating the presented results are shown in the supplemen-

tary material.

To determine the optimum approach to inpainting

for high-magnification STEM (i.e., the level of dose/sub-

sampling that produces the best images), we first compare

the results of sub-sampling with a fully sampled conven-

tional low-dose image in simulation. Figure 1 shows simula-

tions of Z-contrast images for ZnSe, which is a standard test

sample for atomic resolution STEM (similar results for

GaAs are shown in the supplementary material). ZnSe and

GaAs are important benchmarks because they have low Z-

contrast. These images were simulated using the multi-slice

frozen phonon image simulation method in QSTEM.26 A

specimen thickness of 10 nm was used for these simulations.

The primary beam energy of the microscope was set to

200 keV. The probe-forming convergence semi-angle was 22

mrad, and the annular dark field (ADF) detector collection

angle was 75–300 mrad. A probe source size of 0.6 Å was

used, and the image pixel size was 0.2� 0.2 Å. To simulate

low-dose imaging conditions, each pixel is corrupted with

Poisson noise consistent with the mean value predicted by

the simulation at the corresponding dose. We note at this

point that there is no requirement for these methods that the

sample is crystalline, and the use of sub-sampling to recon-

struct non-periodic images has been demonstrated previ-

ously.23 Here, we use a standard sample used to test the

resolution of microscopes to make the discussion of sub-

sampling more familiar.

The images shown in Fig. 1 illustrate a comparison

between the conventional low-dose acquisition strategy

(lowering the beam current and/or scanning faster) and the

sub-sampling strategy of putting the dose into a few ran-

domly selected pixels. In this example of the sub-sampling

approach, 10% of the pixels are used, and the dose is kept

consistent with the fully sampled image by increasing the

Poisson mean in each sampled pixel by the fraction of sub-

sampling (i.e., the sub-sampled dose in a pixel is 10� the

dose in a pixel of the fully sampled image, making the total

dose the same). In both acquisition images, about 1% of the

pixels achieve 1 or more electron counts due to the

extremely low dose. The reconstructed images for each sam-

pling strategy use the same algorithm. First, the Fourier

transform (FT) is computed. Next, a punctured median filter

is used to find the peak and filter-out non-peak regions in the

magnitude image. Finally, the magnitude beyond a maxi-

mum spatial frequency is set to zero, and the inverse trans-

form gives the reconstructed image.

To determine the overall resolution and sensitivity of

the images, the resolution and contrast can be calculated

using standard STEM metrics27 (a ratio estimator is also

applied28) Because of the randomness in the sub-sampling

and application of Poisson noise, an ensemble of 200 recon-

structions were performed at each dose. The noise and

FIG. 1. Representative reconstructions for a dose of 10 e�/Å2. The acquisi-

tion images have white pixels for electron counts greater than 0. Resolution

and contrast metrics are shown in Table I. About 1% of the acquisition pix-

els detect an electron.
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random sampling is different for each reconstruction. The

average reconstructed resolution for doses in the range of

0.1–100 e�/Å2 is shown in Fig. 2. In addition, Z-contrast and

the probability of obtaining an atomic resolution image are

shown in the supplementary material along with the results

for a GaAs specimen. Resolution is defined as the distance

along the line between the peaks from the lower peak and

the first point at 81% intensity of the peak (when the trough

is greater than 81%, the peaks are not resolved). As can be

seen from Fig. 2, at doses above �50 e�/Å2, the resolution

of each method is consistent with high dose imaging. At

lower doses, deliberate random sub-sampling and conven-

tional low-dose sampling produce approximately the same

resolution and contrast. Note that just as any other image

processing technique, inpainting can introduce artifacts, such

as over-smoothing (reduced resolution).29 These artifacts are

avoided by exploiting the periodicity of the specimen (i.e.,

enforcing a sparse FT).

The exemplar reconstructions in Fig. 1 and resolution

metrics in Fig. 2 provide key intuitive insights into the nature

of low-dose imaging in the STEM. Notably, at extremely

low-doses, conventional low-dose sensing produces a de-
facto sub-sampling—99% of the pixels do not contain any

scattered electrons. Importantly, however, this unplanned

sub-sampling in conventional low-dose imaging causes an

unwanted “slow-down” in image acquisition and “wasted”

electron dose. Since the deliberate sub-sampling only illumi-

nates 10% of the pixels, the acquisition time is decreased by

an order of magnitude (and by eliminating settling time after

flyback at the end of each scan line, the reduction in acquisi-

tion time is even greater). Furthermore, because the pixels

that are illuminated contain 10� the electron dose, there is a

greater probability of there being scattering into the detector

from those locations, reducing the amount of dose that is

simply wasted by not reaching the detector. These results

indicate that inpainted reconstructions can improve all forms

of low-dose images, but the largest advantage comes with

the use of deliberately sub-sampled images.

The deliberately sub-sampled acquisition described

above can be demonstrated in practice by the reconstructions

from a NiTi oxide sample at varying levels of sub-sampling

(Fig. 3). Here, the sub-sampling uses a line-hopping approach

rather than the optimum “jittered” sampling25 shown in Fig.

1. The line-hopping approach is a mechanism to approximate

the random sub-sampling without exceeding the hysteresis

limits of the electromagnetic scan coils of the JEOL ARM

microscope used to acquire these images.24 This hysteresis

limit means that it is not possible in the current system to ran-

domly jump to any point in the image. Instead, the scan

moves uniformly in the x-direction while moving over a

defined pixel range randomly in the y-direction (for example,

to get 10% scanning, the beam can move randomly �1, 0, þ1

pixels over a 10 pixel range). As can be seen in Fig. 3, the

sub-sampling approach again produces an equivalent sam-

pling to the low-dose method. Interestingly, the image shows

a “missing wedge” of data in the Fourier transform caused by

the inability of the line hopping to sample completely ran-

domly in the y-direction. This constrained y-movement limits

the resolution in this case since the pixel size (i.e., random

movement) is the same order of magnitude as the structural

feature being imaged (it is not possible to increase the magni-

fication to decrease the pixel size or oversample the atom

locations as both would increase the dose beyond stability

conditions). These results demonstrate that the sub-sampling

method can have a significant effect on the reconstruction of

the result. Ideally, a fast electrostatic scan generator for a

microscope would permit scanning any pixel location and

quickly adapting the scan with negligible hysteresis.30,31

Fortunately, it is possible to test line-hopping using a

beam-sensitive sample with larger dimensions. MOFs32,33

are bottom-up constructed samples consisting of inorganic
FIG. 2. The plot shows the mean resolution (solid) 6 1 std. deviation (dot-

ted) and actual resolution (solid black).

FIG. 3. Reconstruction of real acquisitions of NiTiO3. This agrees with the

conventional vs. jittered simulation—all reconstructions are of atomic reso-

lution. The acquisition and FT are shown on the right of the reconstructions.

Left: line-hop sub-sampled at 50%, 25%, 12.5%, and 6.25%, at a dwell time

of 60 ls. Right: conventional, dwell times of 30, 15, 7.5, and 3.75 ls. The

same algorithm parameters were used for every reconstruction; by tuning

the parameters, better quality can be achieved.
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nodes separated by organic linkers. The nodes themselves

are constructed from oxides containing �10 atoms and are

�1 nm in size. The organic linkers are several nanometers

long and can be used to order the nodes in a lattice. Figure 4

shows a sub-sampled acquisition and reconstruction of an

NU-1000 MOF34 with Zirconia nodes which is imaged with

33% line-hopping. The bottom of Fig. 4 illustrates why the

MOF structure can be imaged using line-hopping (each node

is crossed by several line-hopped scans).

These results have shown that sub-sampling can

increase the speed of imaging and if the hysteresis in the

scan can be overcome by an electrostatic deflector, tailoring

the feature size, or rotating the electron scan between frames,

huge gains in speed are also possible. However, we can also

potentially increase the resolution and sensitivity of the

images that are obtained by “adapting” the sub-sampling to

the structure that we are trying to image. Figure 5 shows the

result of an adaptive sampling strategy, which begins with an

initial Cartesian jittered random sub-sampling, and then, new

scans are adapted to sample the regional maxima identified

in the previous scan. Each scan collects pixels that have not

been previously collected (further details are given in the

supplementary material). Such an adaptive approach has

the effect of putting the dose in the expected atom column

locations. As can be seen from the detailed comparison of

the results from the conventional low-dose image, the delib-

erately sub-sampled (jittered image) and the adaptively

sub-sampled image shown in Table I, adaptive sampling

maintains the advantages of sub-sampling but could also

improve resolution (see supplementary material for compari-

son figures). Figure 6 shows further that at 1 e�/Å2, we

would expect to recover an atomic resolution image of ZnSe

about 50% of the time using adaptive sensing, but conven-

tional and jittered sampling should not be expected to obtain

atomic resolution images. The reason for this is that the sub-

sampled dose can be used initially to recover a lower resolu-

tion image, and then, this image can be used to sample pixels

in a second sub-sampled scan to provide more of the missing

information (i.e., by estimating the atomic column loca-

tions). By adapting to the structure being imaged, the dose

can be lowered significantly for the same resolution, or the

resolution can be extended for the same dose. The recon-

structed images show the same traits in terms of resolution.

As dose decreases, it is harder to resolve the atomic dumb-

bells and to obtain the correct contrast. In addition, the ZnSe

and GaAs simulations show that as the Z-ratio increases it is

easier to determine the crystal composition. In the adaptive

case, the basic approach adopted (i.e., sampling more in the

areas of the highest reconstructed intensity) causes some var-

iation in the Z-contrast which could be overcome in the

future by combining crystallographic information35 in the

reconstruction process.

In summary, we have demonstrated that sub-sampling

can maintain image quality and greatly increase the speed

while simultaneously reducing the data storage/transfer chal-

lenge for high resolution STEM images. When using an

adaptive approach to the sub-sampling, these benefits are

also accompanied by improved resolution/contrast per unit

dose that can be achieved. The practical application of sub-

sampling can present challenges and can reduce the efficacy

of the approach. However, solutions already exist and can be

retrofitted to existing instruments. These results mean that

atomic resolution images can be acquired at doses well

below 1 e�/Å2, opening up the benefits of incoherent STEM

imaging to a wide range of beam sensitive materials.

See supplementary material for further discussion,

experimental/simulation details, consolidated ZnSe figures,

and simulation results for GaAs.
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GaAs 10 e�/Å2 ZnSe 10 e�/Å2
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