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Abstract 

 

Background: In human behaviour, emergence of movement patterns is shaped by different, 

interacting constraints and consequently, individuals with motor disorders usually display 

distinctive lower limb coordination modes.  

Objectives: To review existing evidence on the effects of motor disorders and different task 

constraints on emergent coordination patterns during walking, and to examine the clinical 

significance of task constraints on gait coordination in people with motor disorders.  

Methods: The search included CINHAL Plus, MEDLINE, HSNAE, SPORTDiscus, Scopus, 

Pubmed and AMED. We included studies that compared intra-limb and inter-limb 

coordination during gait between individuals with a motor disorder and able-bodied 

individuals, and under different task constraints. Two reviewers independently examined the 

quality of studies by using the Newcastle Ottawa Scale-cohort study. 

Findings: From the search results, we identified1416 articles that studied gait patterns and 

further analysis resulted in 33 articles for systematic review and 18 articles for meta-analysis-

1, and 10 articles for meta-analysis-2. In total, the gait patterns of 539 patients and 358 able-

bodied participants were analysed in the sampled studies. Results of the meta-analysis for 

group comparisons revealed a low effect size for group differences (ES= -0.24), and a 

moderate effect size for task interventions (ES= -0.53), on limb coordination during gait.  

Interpretation: Findings demonstrated that motor disorders can be considered as an individual 

constraint, significantly altering gait patterns. These findings suggest that gait should be 

interpreted as functional adaptation to changing personal constraints, rather than as an 

abnormality. Results imply that designing gait interventions, through modifying locomotion 

tasks, can facilitate the emergent re-organisation of inter-limb coordination patterns during 

rehabilitation. 

                             

Keywords: Emergence, constraints, functional adaptations, motor disorder, gait, coordination 

patterns, meta-analysis.   

 

 

 

 

 

 

 



3 

 

1. Introduction 

The re-organisation of joint degrees of freedom (DoFs) in a neuromusculoskeletal (NMS) 

system supports functionality in performance of everyday movement tasks. The central 

nervous system (CNS) solves the DoFs problem through creating functional units, 

coordinative structures or motor synergies, at the level of both muscles (e.g. motor unit) and 

limbs (e.g. joint),  in order to organise a movement pattern and accommodate environmental 

demands (Bernstein, 1967). The multi-segment synergies that emerge in the NMS system 

increase performance adaptability for two main purposes: maintaining system stability and 

dealing with possible internal and external perturbations (Latash, Scholz, & Schoner, 2007; 

Latash, 2012). It has been revealed that kinematic coupling or synergy formation, underlying 

a movement pattern, is an informational resource during performance of rhythmic actions 

such as bimanual coordination and gait (Wilson, Collins, & Bingham, 2005). Coordination 

between two segments, as a simple version of a motor synergy, is an important feature of 

movement behaviour in synchronising spatiotemporal activity of involved muscle groups into 

coherent, functional patterns (Kelso, 1984). The main function of a coordinative pattern, like 

other synergic segments, is to ensure that the adjacent joints, as in intra-limb coordination, or 

contralateral segments, as in inter-limb coordination, work together so that limb stability is 

maintained under all conditions. For example, thigh and shank segments, as a coupled unit, 

play a significant role in maintaining postural stability before heel-contact in gait (Fowler & 

Goldberg, 2009). Any malfunction or perturbation, due to timing or range of motion, in this 

coupled unit could affect gait performance and influence risk of falling (Sutherland & 

Davids, 1993).       

Inter-limb and intra-limb coordination patterns that (re)emerge from the coupling between 

different segments during walking are shaped by individual, environment and task 

constraints. According to Dynamic Systems Theory (DST), the self-organisation of motor 
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behaviour is regulated by the dynamic interactions between these different constraints 

(Newell, 1986; Diedrich & Warren, 1995). Constraints in turn influence the emergence of an 

adaptive control system to facilitate functional movement compensation due to injury, motor 

disorders, under specific environmental conditions (e.g. walking on unstable or slippery 

surfaces, or on uphill/downhill slopes). For example, walking in different environmental 

conditions (on clear versus cluttered surfaces) requires continuous spatial perception and 

adaptations in foot trajectories to maintain balance. This interaction between task and 

environmental constraints could also be affected by relevant personal constraints, such as 

injuries or motor disorders. Motor disorders are malfunctions of the nervous system that 

cause involuntary or uncontrollable movements or actions of the body (Stone, 2015).        

A common way to quantify inter-limb coordination or intra-limb coordination is through 

measuring the amount of coupling between adjacent segments, using relative phase (RP) 

values that range from 0-180 degrees. Zero and 180 degrees are classified as stable 

coordination patterns, whereas any relative phase values between them have not been 

considered to be as stable (Haken, Kelso & Bunz, 1985). The interpretation of such 

measurement scales in functional movements, such as gait, is rather limited because there is 

no absolute cut-off point to interpret the results based on average RP values (Van Emmerik, 

Hamill, & McDermott, 2005). 

It has been suggested that coordination variability (cycle-to-cycle changes) is a better 

representation of the dynamic nature of human movement, and its association with other 

factors, such as ageing and motor disorder (Hamill, Van Emmerik, Heiderscheit, & Li, 1999). 

For instance, a lack of variability in coordination dynamics during gait has been associated 

with an inability to transit from one pattern to another in individuals with Parkinson's disease 

(Van Emmerik, Wagenaar, Winogrodzka, & Wolters, 1999). Reduced joint variability, as 

coordination variability, and larger spatiotemporal variability, as outcome variability, have 
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been observed in individuals with motor disabilities (Heiderscheit, 2000). The former is an 

index of adaptability, whereas the latter represents a risk of falling if it exceeds critical 

threshold values. Evidence suggests that the adaptability of motor system is changed by 

neurological and skeletal disorders, and that functional variability in movement patterns need 

to be re-emphasised in gait (re)training interventions (Jeng, Holt, Fetter, & Certo, 1996; 

Hamill, et al., 1999; Heiderscheit, Hamill, & van Emmerik, 2002; Papi, Rowe, & Pomeroy, 

2015; Black, Smith, Wu, & Ulrich, 2007).    

For this reason, pathological gait has been studied to reveal the underlying mechanisms that 

change walking movements, and research has been focused on measures such as 

spatiotemporal parameters (Del Olmo & Cudeiro, 2005; Crenshaw & Royer, 2006; 

Heiderscheit, et al., 2002), gait symmetry (Yogev, Plotnik, Peretz, Giladi, & Hausdorff, 

2007), muscle activity (Miller, Thaut, McInotsh, & Rice, 1996) and limb coordination 

(Giannini & Perell, 2005; Stolze et al., 2002). Quantification of gait under dynamic 

performance conditions, and in individuals with a motor disorder, is a method to understand 

how pathological conditions may constrain movement pattern re-organisation, due to muscle 

weaknesses and spasticity in involved muscle groups (Nutt, Marsden, & Thompson, 1993; 

Shumway-cook & Wollacott, 2007). However, types of gait assessment vary in clinical 

settings, but by using objective measures such as spatiotemporal outcomes and relative phase, 

quantification of gait disorders can be more rigorous, comparable and consistent in the 

assessment process. From this point of view, it is plausible to study gait for two main 

purposes: first, to compare between normal and compensatory gait patterns and second, to 

assess the effectiveness of specific interventions on the gait adaptations. These two 

perspectives are used in this study according to a constraints-led approach (Davids, Button & 

Bennett, 2008). A comparison between able-bodied and patient groups emphasises the role of 

a condition, disorder as a type of organismic (personal) constraint. On the other hand, 

http://findarticles.com/p/search/?qa=K.L.%20Perell
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different gait re-training interventions can serve as task constraints to facilitate functional gait 

adaptations required as compensations for the existence of personal constraints.   

Some previous review studies have examined variability of spatiotemporal characteristics in 

gait of older individuals with fear of falling (Ayoubi, Cyrille,  Launay,  Annweiler and 

Beauchet, 2015) and in individuals with neurological conditions (Moon, Sung, An, 

Hernandez, & Sosnoff, 2016). Barton, Levinger, Menz and Webster (2009) studied angular 

kinematics such as joint motions in different planes in individuals with patellofemoral pain 

syndrome. Other systematic reviews have studied the efficacy of gait re-training for 

improving  overall performance of gait in individuals with neurological problems (Manning 

& Pomeroy, 2003) and also coordination in post-stroke patients (Hollands, Pelton, Tyson, 

Hollands, & van Vliet, 2011). Previous systematic reviews that have investigated abnormal 

gait were different in scope from the current study in terms of populations investigated and 

their gait characteristics. First, none of the above-mentioned studies have reviewed gait 

coordination in individuals with a motor disorder and the effects of task constraints on 

observed coordination patterns. Second, the current study, unlike that of Hollands et al. 

(2011), is not limited to stroke patients and includes all studies of individuals with motor 

disorders due to long-term neurological conditions and musculoskeletal problems. This, in 

turn, could explain the effect of diverse types of disorder as personal constraints on gait 

patterns. Third, the research design of the current study included an able-bodied control 

group, instead of a placebo group. Finally, previous quantitative reviews have not separately 

analysed relative phase and limb couplings (e.g. cross-correlation) as measures of movement 

coordination, compared to velocity, acceleration and symmetry indices (Krasovsky & Levin, 

2010).  

An emphasis on improving gait outcomes in rehabilitation programmes, framed by a 

theoretical understanding of movement coordination, evidenced by changes in joint 
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kinematics and kinetics due to muscle weaknesses and spasticity (Thompson & Nutt, 2012), 

is informative for allied health practitioners who seek to understand how to improve mobility 

through gait re-training. Thus, the aims of this systematic review and meta-analysis were to 

review the existing studies that examined the effects of motor disorders and task constraints 

on coordination patterns during locomotion and to understand whether interventions 

manipulating task constraints have any clinical significant effects on gait coordination in 

individuals with motor disorders.  

                       

2. Methods 

2.1. Eligibility criteria  

Studies that met the following criteria were included in the systematic review. 1- The 

research designs sampled included cross-sectional, cohort based, pre-post designs or studies 

with randomised control trials (RCT). 2- The population included patients and able-bodied 

individuals. 3- The gait setting was either walking on a treadmill or over-ground. 4- Gait 

interventions included treadmill walking, walking under dual-task constraints, robot walking, 

walking at different paces or walking while obstacle crossing. 5- The article type was peer-

reviewed publications in English. 

Studies that were excluded when: 1-There was no control group/condition for comparison for 

a meta-analysis. 2- They were case-study and non-peer reviewed articles. 3- They lacked any 

coordination measurements.   

  

2.2. Search strategy  

The search was carried out in Cumulative Index to Nursing and Allied Health Literature 

(CINHAL), MEDLINE, Health Source: Nursing/ Academic Edition (HSNAE), 

SPORTDiscus, Scopus, Pubmed, Cochran Library and Allied and Complementary Medicine 
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Database (AMED). The search strategy involved 3 distinct steps and each time a combination 

of 3 to 4 terms were used. The selected terms were chosen because they were representative 

of the variables of study and the measurement methods in quantification of gait pattern. In the 

first step, a combination of keywords from the "coordination" AND "walking" AND 

"patients" was used together. Then, the combination of "coordination" AND "variability" 

AND "patients" AND "walking" was used together. Finally, the combination of "relative 

phase" AND "patients" AND "gait" was used together. Each time the combined terms search 

brought new studies, of which some were already included in our study and some were 

removed from the final list of studies.  

 

2.3. Study selection 

The studies that were identified through search were selected for in depth screening 

according to the selection criteria. Studies that were selected for group comparisons (aim 1) 

and task constraints (aim 2) were grouped separately for further analysis. All abstracts and 

full texts were screened by MS.  

 

2.4. Data collection process 

The data extraction procedure was performed by creating a spreadsheet to sort studies 

according to the main inclusion criteria. Studies were organised in a Microsoft Excel 

worksheet according to methodological and research outcome information. The 

methodological elements were sample size, participants groups, walking setting and gait 

training mode. Gait measures analysed were different types of coordination patterns (please 

see section 2.7 for more information about coordination index).    

   

2.5. Synthesis of results  
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A meta-analysis was performed to calculate the pooled effect size (ES) for coordination 

pattern indices between groups of patients and able-bodied individuals and between baseline 

and intervention conditions. A random-effect model was used at a confidence interval 95% 

using Cochran's Q test and I
2 

statistics as indices of heterogeneity (above 40%). A random 

effects model also accounts for differences in variability across studies by weighting each 

standardized effect on the basis of its standard error. The Q statistic is the sum of squares of 

the weighted mean standardized effect of each study within each variable (coordination 

index) divided by the overall weighted mean standardized effect for that variable.  

Standardized effects indicate the magnitude of an independent variable, regardless of sample 

size. The independent groups in this study were able-bodied/patients and dependent groups 

were baseline/intervention. Standardized effects were calculated for each variable as the 

difference between groups means (e.g. able-bodied-patients; baseline-intervention) divided 

by the group pooled standard deviation. A standardized effect size of less than 0.2 was 

considered trivial, 0.2-0.5 was considered small, of 0.5-0.8 was considered moderate and 

above 0.8 was considered large (Cohen, 1988). If in a study there was more than one outcome 

for coordination pattern, then a synthetic score was used - the average (mean) of separate 

ES’s for each dependent variable.  

There are several ways to interpret the clinical significance of changes or differences reported 

in the studies (Page, 2014). Clinical relevance changes in the outcome usually are assessed by 

methods that quantify the minimal clinically important differences (MCID) such as using 

standard deviation (SD), standard error of mean (SEM), anchored-based methods (Rai, 

Yazdany, Fortin, & Avina-Zubieta, 2015), confidence intervals and magnitude-based 

inferences (Hopkins, Marshal, Batterham, & Hanin, 2009). The method that was used in this 

study to assess MCID was using 0.2 (SD). First, the pooled SD of groups and a mean 

difference between groups (e.g. patients/able-bodied; baseline/intervention) were calculated. 
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If the value of mean difference was greater than the pooled SD, the ES was deemed to be 

clinically significant (Lemieux, Beaton, Hogg-Johnson, Bordeleau, & Goodwin, 2007).       

All statistical analyses were conducted in Review Manager 5.3.3 version (Nordic Cochrane 

Centre). The statistical significance level was set at p<0.05; two-tailed.   

 

2.6. Study quality assessment  

The quality of study was assessed by Newcastle-Ottawa Quality Assessment Scale-cohort 

study (Wells, et al., 2005). This assessment scale has two versions: one for a case study and 

one for a cohort study. The cohort version was used in the current study. The scale has 8 

items and 3 subscales including selection (4 items), comparability (1 item) and outcome (3 

items). The "selection subscale" assesses the quality of a study in terms of the 

representativeness of the selected participants, whether the group was non-exposed, the 

source of access to the sample and blindness. The "comparability subscale" mainly assesses 

the control of confounding factors. The "outcome subscale" assesses the method of data 

collection such as design, number of data collection sessions, and the survival rate in follow-

up tests. The possible total score in each study ranges between 0 and 9. MS and RC 

conducted the quality assessment independently by using all above-mentioned items and if 

there was a disagreement on scores it was resolved through discussion.   

     

2.7. Additional analyses 

Intra- and inter-limb kinematic coordination patterns were interpreted differently in this 

study. For inter-limb coordination patterns, the mean scores and SD of means, phase 

coordination index (Plotnik, Giladi, & Hausdorff, 2009), absolute relative phase (Roerdink, 

Lamoth, Kwakkel, van Wieringen, & Beek, 2007) and asymmetry index (St-Onge, Duval, 

Yahia, & Feldman, 2004) were used for further analysis. The higher values, in all indices, 
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represent less symmetry between contralateral limbs or segments. For intra-limb coordination 

patterns, established variability indices, such as SD or CV, deviation phase (Chiu, Lu, & 

Chou, 2010), decomposition index (Mian, Schneider, Schwingenschuh, Bhatia, & Day, 2011) 

and average coefficient of correspondence (Daley, Sng, Roenigk, Fredrickson, & Dohring, 

2007), were used to represent the quality of coordination in terms of consistency 

(repeatability) and variability. The higher values in variability indices and average coefficient 

of correspondence represent greater flexibility and consistency among coupled segments, 

whereas higher values in deviation phase and decomposition index represent less consistency 

and coupling among adjacent segments.        

 

3. Results 

3.1. Search results  

The search results yielded 1416 articles that reported studies of gait in patients. More 

specifically, the searches with a combination of terms like "coordination" AND "walking" 

AND "patients" brought up 992 articles. Searching with a combination of "coordination" 

AND "variability" AND "patients" AND "walking" and with a combination of "relative 

phase" AND "patients" AND "gait" resulted in 122 and 302 articles, respectively (see 

Figure1). Some articles were excluded due to duplication in the searches (n=296). The 

majority of studies that examined gait in the patient groups were focused on the kinematics 

(e.g. range of motion) or kinetics (ground reaction force) and muscle activity (e.g. EMG). 

Since these types of measurements were not appropriate to quantify the kinematic 

coordination patterns, they were excluded in this study (n=1087). After further inspections of 

the abstracts (excluded studies=957) and the main body of text (excluded studies=130), they 

were excluded because they could not provide further information about assessment of 

kinematic coordination patterns during gait. In the next stage, 33 articles, which were related 
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to kinematics coordination and only gait patterning, were selected for systematic review (see 

Table 1 for the list of studies). The final numbers of studies, without duplications were: (i) 15 

articles with a combination of "coordination" AND "walking" AND "patients"; (ii) 8 new 

articles with a combination of "coordination" AND "variability" AND "patients" AND 

"walking";  and (iii),10 new articles with a combination of "relative phase" AND "patients" 

AND "gait". From this selection, 18 articles were selected for meta-analysis-1 (see Figure 1) 

on coordination differences between able-bodied individuals and patients (Chiu, et al., 2010; 

Combs, Dugan, Ozimek, & Curtis, 2013; Daly, et al., 2007; Gianni & Perell, 2005; 

Heiderscheit et al., 2002; Hoogkamer et al., 2015; Hutin et al., 2011; Hutin et al., 2012; 

Meyns et al., 2012; Meyns, Molenaers, Desloovere, & Duysens, 2014; Mian, et al., 2011; 

Nanhoe-Mahabier et al., 2013; Peterson, Plotnik, Hausdorff, & Earhart, 2012; Plotnik, et al., 

2009; Roerdink, et al., 2007; St-Onge, et al., 2004; Shafizadeh, Watson, & Mohammadi, 

2013; Wang et al., 2009) and 10 articles were selected for meta-analysis-2 on the effects of 

task constraints on gait coordination pattern (Combs, et al., 2013; Daly, et al., 2007; Hutin et 

al., 2012; Lewek et al., 2009; Nanhoe-Mahabier et al., 2013; Peterson, et al., 2012; Plotnik, et 

al., 2009; Plotnik, Giladi, Dagan, & Hausdorff, 2011b; Roerdink, et al., 2007; Wang, et al., 

2009). 

 

3.2. Quality assessment  

MS and RC read the full texts and independently assessed the quality of selected studies for 

qualitative review. The result of quality assessment score for each study is presented in Table 

1. The mean quality score for 33 studies that were included was 6 out of 9 and ranged 

between 4 (Hoogkamer et al., 2015) and 8 (Chiu et al., 2010). The common methodological 

issues in these studies based on quality scale were selection of a non-exposed cohort (item 2) 

and adequacy of follow-up of cohorts (item 8). Some studies also had only one group in their 
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research design (Alice, et al., 2007; Fowler, et al., 2009; Lewek, et al., 2009; Plotnik, et al., 

2011b) or had a small sample size (Barela, et al., 2000; St-Onge, et al., 2004). Studies that 

were investigated in meta-analysis 2 tended to have a higher quality score among the selected 

articles in this systematic review.  

Insert Table 1 here 

3.3. Qualitative synthesis  

In total 539 patients and 358 able-bodied participants were selected for testing the 

coordination pattern in gait analysis. The types of diseases in the patient groups were Stroke: 

9 studies; Cerebral Palsy; 3 studies, Cerebellar Ataxia: 3 studies, Parkinson disease: 9 studies, 

Multiple Sclerosis: 1 study, Huntington's Disease: 1 study, Spinal Cord Injury: 1 study, 

Osteoarthritis: 3 studies and hip and knee pain: 3 studies. The smallest sample size was 5 

(Daly et al., 2007) and highest was 34 (Plotnik et al., 2008).  

The most common methods for quantification of limb coordination were inter-limb (13 

studies) and intra-limb (22 studies) as forms of hip-knee (17 studies) and knee-ankle coupling 

(12 studies). 

Two studies (Barela et al., 2000; Lewek et al., 2009) reported average coefficients of 

correspondence (ACC) to quantify the coordination between two segments. Seven studies 

(Plotnik et al., 2009, Plotnik et al., 2011a, 2011b and Plotnik et al., 2008; Peterson et al., 

2012; Nanhoie-Mahbier et al., 2013; St-Onge et al., 2004) used Phase Coordination Index 

(PCI) method. Twenty studies (Daly et al., 2007; Shafizadeh et al., 2013; Heiderscheit et al., 

2002; Hutin et al., 2012; Hutin et al., 2011; Combs et al., 2013; Fowler et al., 2009; 

Hoogkamer et al., 2015; Wang et al., 2009; Liu et al., 2014; Chiu et al., 2010; Meyns et al., 

2014; Meyns et al., 2012; Rinaldi et al., 2013; Mian et al., 2011; Ornetti et al., 2011; Awai 

&Curt., 2014; Serrao et al., 2012; Tanahashi et al., 2013; Roerdink et al., 2007) reported 

continuous relative phase (CRP) as an index of coordination. Four studies (Reynolds, et al., 
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1999; Stolze et al., 2002; Alice et al., 2007; Gianni and Perell, 2005) used angle-angle plot to 

illustrate the coordination between joints. A treadmill was used as a walking context for 6 

studies and in 17 studies a walkway was used. The methods of gait re-training included 

walking at different speeds (4 studies), treadmill training (2 studies), gait tasks in different 

conditions (4 studies), dual-tasking during walking (3 studies) and robot training (1 study).  

Insert Figure 1 here 

Insert Table 2 here 

3.4. Meta-analysis 

3.4.1. Effect of motor disorders 

The results of the meta-analysis for comparison between synergetic characteristics of gait in 

able-bodied and patients groups showed an overall statistically significant difference between 

samples (ESmean= -0.24, Z=2.34, p<0.05). The ranges of effect size among individual studies 

were between 0.08 and -3.95 (see Figure 2). Cochran Q
2
 results showed low heterogeneity 

(Q
2
=1.32, I

2
=1%) among studies that was less than 40% and acceptable. The participants in 

the able-bodied group displayed both a greater consistency in creating a synergic unit 

between adjacent segments and also had greater symmetric coordination between 

contralateral limbs.  

In intra-limb coordination, Daly et al. (2007) highlighted less consistency in a patient group, 

relative to an able-bodied group. Shafizadeh et al. (2013) also showed a more instable phase 

lag (close to 90˚) between segments in a patient group. While Gianni and Perell (2005) 

showed more coordination variability in an able-bodied group, Hutin, et al. (2012) showed 

more variability in a patient group. The studies that examined inter-limb coordination 

(Combs, et al., 2013; Hoogkamer, et al., 2015; Peterson, et al., 2012; Plotnik, et al., 2009; 

Roerdink, et al., 2007) collectively showed that the patients displayed asymmetrical inter-
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limb coordination. The mean asymmetry index value in the able-bodied group, in all studies, 

was lower than in the patient groups.  

The results of MCID showed that the findings reported in the majority of studies were 

clinically significant outlining an abnormal coordination pattern in patient groups. As shown 

in Table 2, the mean group difference was greater than the pooled SD in the most of the 

studies, and only in 2 studies (Hutin et al, 2011; Meyns et al, 2014) the clinically abnormal 

coordination pattern was not displayed.                   

Insert Figure 2 here 

Insert Table 3 here 

3.4.2. Effect of task constraints 

The results of a meta-analysis for comparison between baseline and interventions in patients 

showed a significant main effect of task constraints on gait coordination (ESmean= -0.53, 

Z=4.58, p<0.05). The ranges of ESs were between 0.08 and -3.13 in favour of intervention 

(see Figure 3). Cochran Q
2
 results revealed low heterogeneity (Q

2
=0.33, I

2
=0.8%) among 

studies that was less than 40% and acceptable.  

Inspection of studies revealed a statistically significant ES which suggests the effect of task 

constraints was statistically significant only on inter-limb coordination patterns (Nanhoie-

Mahbier et al., 2013; Peterson, et al., 2012; Plotnik, et al., 2009; Plotnik, et al., 2011). In 

other words, the interventions, such as using a split-belt treadmill, forward/ backward 

walking and dual-tasking, resulted in a greater inter-limb asymmetry relative to the baseline 

condition. The results of MCID (see Table 3) also confirmed that the same studies, along 

with Roerdink et al. (2007), revealed clinically significant effects, and they showed how these 

walking task constraints perturbed the coordination patterns.      

 

Insert Figure 3 here 



16 

 

4. Discussion 

The aims of this study were to review the existing studies that have examined the effects of 

motor disorders and task constraints on coordination patterns and to understand whether 

interventions involving task constraints have any clinically significant effects on gait 

coordination in individuals with motor disorders. Studies that have used inter-limb and intra-

limb coordination patterns were selected for systematic review, and if they have reported 

coordination index values, were selected for meta-analysis. Since the majority of studies 

found in initial searching (n=1087) did not meet the selection criteria of including data on 

coordination patterns, walking patterns and kinematics, they were excluded from this study. 

In total, 33 studies met the selection criteria for systematic review, 18 studies were selected 

for meta-analysis with the aim of comparison between able-bodied individuals and patients, 

and 10 studies were selected for meta-analysis with the aim of pre-post intervention 

comparisons. The remaining studies (n=5) did not meet the criteria for meta-analysis, through 

a lack of a control group or an intervention, and were only used for the systematic review. 

The majority of studies (n=20) used relative phase as a coordination index. The studies that 

were selected mainly used one group for gait assessment and had no follow-up assessments, 

which are important elements of experimental studies. The studies that were used for meta-

analysis 2 displayed a higher quality in terms of research design.    

 

4.1. Coordination patterns deteriorate with motor disorder 

One of the main findings of this study was the effect of motor disorder on coordination 

patterns during walking. The results of a meta-analysis revealed an overall effect of group 

difference that was statistically significant with an average ES of -0.24. This effect is small 

according to Cohen’s classification (Cohen, 1988). Furthermore, the results of MCID showed 

that the findings of studies that had small to very large ESs (>0.1) were clinically significant. 
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In fact, the motor disorder has a harmful role on the emergent gait coordination patterns. 

Only findings in 2 studies (Hutin et al, 2011; Meyns et al., 2014) that had a very trivial ES 

(0.08) were not clinically significant. These results are important as they were not dependent 

on any statistically significant ES value.    

The interpretation of group differences depends on the nature of coordination patterns. For 

example, for studies that examined inter-limb coordination patterns, the common way to 

quantify the gait pattern was through PCI and absolute relative phase that measure the 

coordination pattern relative to a symmetric pattern. From this point of view, the highest 

difference represents less symmetric inter-limb coordination. The studies that examined inter-

limb patterns supported this finding that inter-limb coordination in individuals with motor 

disorders was different from able-bodied people and has asymmetric phase coupling (Plotnic 

et al., 2009; Roerdink et al., 2007, Peterson et al., 2012).  

The effects of disorder on limb movements, especially in functional movements that require 

rhythm and repetitive cyclic motion such as gait due to spasticity, insufficient passive range 

of motion and weak voluntary muscle contractions, are destructive (Hutin et al., 2012). Some 

suggested mechanisms that specifically constrained inter-limb coordination variability in end-

effectors (Roerdink et al., 2007). In a study of individuals with stroke, Roerdink et al. (2007) 

reported an asymmetric coordination between paretic and non-paretic legs in heel-strike 

variability. In fact, variability was greater in the paretic leg. The same results were reported in 

individuals with Parkinson’s disease who displayed a freezing of gait. For example, Peterson 

et al. (2012) showed that deviation from a symmetric inter-limb coordination was greater 

during walking tasks that included more cognitive and motor challenges, such as backward 

walking and turning whilst walking. These findings supported the idea that the interaction of 

task and individual constraints due to changes in body systems hindered walking 

performance.  
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The results of the current study showed that the able-bodied group displayed greater 

consistency in creating a synergic unit between adjacent segments. More specifically, intra-

limb coordination was less consistent (Daly, et al., 2007), displaying more unstable phase 

lags between segments (Shafizadeh et al., 2013; Gianni & Perell, 2005) in the patient group.  

While inter-limb coordination represents the amount of symmetry in contralateral limbs, 

intralimb coordination is representative of kinematic synergies between adjacent segments. 

The coupled unit underlying a gait pattern acts as an informational resource (Wilson et al., 

2005) and provides information about the stability and consistency of the synergic units. The 

use of multi-segment synergies increases the adaptability of a movement system to maintain 

system stability in dealing with possible internal and external perturbations (Latash, et al., 

2007; Latash, 2012). Synergy between adjacent limbs facilitates body transport and postural 

stability in an effective and energy efficient manner (Water et al., 1988). Changing this 

functional synergy as a form of compensation, following musculoskeletal or neurological 

diseases, could increase the risk of falling (Dean & Kautz, 2015). In addition, a lack of 

variability in coordination dynamics during gait was associated with a poor phase transition 

between different walking patterns in people with Parkinson's disease (Van Emmerik, et al., 

1999).   

The multi-segment synergy among adjacent joints plays an important role in different phases 

of gait. The shank-foot coordination pattern in late stance and pre-swing is important for 

energy transfer (Giannini & Perell, 2005), and thigh-shank coordination is required for 

forward progression of the opposite leg in the stance phase (Daly, et al., 2007; Waters, 

Barnes, Husserl, Silver, & Liss, 1988) and for maintaining postural stability before the heel-

contact (Fowler & Goldberg, 2009).  

Losing these functional synergic units could affect gait performance. For example, Combs et 

al. (2013) demonstrated that paretic leg in stroke survivors, during the swing phase, had a 
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slight lag in timing, revealed by CRP analysis to be in anti-phase. Similar results were 

reported by Barela et al. (2000), Giannini and Perell (2005) and Chin, Rosie, Irving, and 

Smith (1982) in the paretic leg in the pre-swing phase. Recently, Chow and Stokic (2015) 

showed that a delayed peak and inability to sustain peak hip flexion during the transition 

from swing to stance phases was associated with altered intersegmental coordination in the 

paretic limb after stroke. Uncoordinated movement among adjacent segments, during 

walking, might lead to postural instability and poor adaptations to internal and external 

perturbations (Latash, et al., 2007; Sutherland & Davids, 1993).  

 

4.2. Task modifications constrain the gait coordination pattern  

Another main finding of the current study was the significant main effect of task constraints 

on coordination pattern. The meta-analysis on comparisons between baseline and intervention 

conditions resulted in an ES value of -0.53, classified as a medium effect (Cohen, 1988).  The 

results of MCID also showed that the clinical effectiveness of such interventions, to some 

extent, was associated with the magnitude of the ES; ES values greater than (0.50) led to a 

clinically significant change. The only study that reported a clinically significant change with 

a small ES value (-0.26) was that of Roerdink et al. (2007), which could be related to its 

small sample size.  

The modes of gait re-training in the selected studies were different and mainly consisted of 

treadmill training (Nahoe-mahbier, et al., 2013; Roerdink, et al., 2007; Combs, et al., 2013), 

walking at varied speeds (Hutin, et al., 2012), dual-tasking (Plotnik, et al., 2009; Plotnik et 

al., 2011b), performance of different walking activities (Peterson, et al., 2012; Wang, et al., 

2009; Daly, et al., 2007) and walking with robotic aids (Lewek, et al., 2009). Inspection of 

the studies that reported clinical significant changes following the walking tasks showed that 

they used smaller training volume (repetition/ frequency/length) than other studies (see Table 
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4). This finding might explain how changes in coordination patterns observed following these 

types of interventions, may have temporarily destabilised gait patterns, instead of inducing 

long-term adaptations. In fact, forcing patients to walk in unusual or novel (Peterson, et al., 

2012) conditions makes coordination patterns less stable because a high level of physical or 

cognitive constraint on limb movement is induced as individuals need to adapt to new 

challenges. However, it is not straightforward to determine an optimal period for coordination 

adaptation in new and challenging walking tasks due to intra and inter-individual variability. 

It seems that one of the key task constraints that should be emphasised is walking practice in 

challenging situations in order to facilitate the stabilisation and re-stabilisation of 

coordination patterns to cope with the varied demands of walking.   

The main role of gait re-training on motor synergy and coordination patterns is to facilitate 

inter-limb coordination in terms of spatial and temporal organisation. In fact, adjustments of 

foot contacts in a contralateral fashion (alternate left and right heel contacts) are constrained 

primarily by environments such as treadmill belt’s motion. These adjustments are coordinated 

with positional and velocity control (as components of CRP) that is the main parameters of 

movement control in the NMS system (Stergion, 2001). For example, the study by Combs et 

al. (2013) on body-weight supported treadmill training and inter-limb coordination showed 

that the paretic and non-paretic side coordination in stroke patients was shifted towards an in-

phase pattern and was maintained for 6 months post- intervention. The major changes in gait 

occurred in the swing phase. Visintin and Barbeau (1994) reported the positive benefits of 

body-weight supported treadmill training on the stance phase of gait in stroke survivors. 

These benefits included more symmetrical weight shifts, more symmetrical activation of the 

tibialis anterior and quadriceps during limb loading, greater stance phase hip extension and a 

more symmetrical single and double stance ratio. Facilitating adaptations in a motor system 

to create variant movement patterns, which may be changed due to NMS problems, is 
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paramount in gait re-training interventions (Jeng, et al., 1996; Hamill, et al., 1999; 

Heiderscheit, et al., 2002).     

The studies that have used external cues (Roerdink, et al., 2007) as task constraints showed 

that acoustically paced treadmill walking, in which patients could hear a sound during heel 

contact, improved  inter-limb coordination in individuals with stroke because it provided a 

form of auditory-motor coupling during walking. Wagenaar and Beek (1992) and Wagenaar 

and van Emmerik (1994) suggested that alterations in perception-action coupling by using 

external rhythmic information could enhance the organisation of pathological movement 

coordination. 

Intra-limb coordination, on other hand, was not as flexible to different task constraints as 

inter-limb coordination (Combs et al., 2013). Mainly, coordination between joints of adjacent 

segments is determined by their role in body transfer from stance to swing phases and any 

lack of coordination, as a form of timing (lag) and position in planes of motion, is largely a 

task-dependent mechanism (Daly, et al., 2007; Giannini & Perell, 2005; Hutin et al., 2012; 

Shafizadeh et al., 2013). Another reason for a lack of intra-limb coordination changes 

following task modifications could be the method of analysis. For example, simplification of 

multi-segment synergy into a coupled unit (only two segments) in the above-mentioned 

studies could overlook the complexity and dimensionality of the NMS system (Glazier, 

Wheat, Pease, & Bartlett, 2006). In addition, there are other methods (e.g. uncontrolled 

manifold and principal component analysis) for quantification of the multi-segment synergies 

that provide a better overall picture about the nature of variability and the effect of task 

experience on development of motor synergies (Latash, 2010; Scholz & Schöner, 1999).    

 

5. Conclusion 
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This review only considered gait re-training interventions that were related to locomotion 

tasks. Future review studies could include other relevant, related interventions that could 

improve walking performance (e.g. resistance training and aquatic exercises).  

The results of this review and meta-analysis showed that motor disorder, as a 

neuromusculoskeletal condition, could change coordination patterns that emerged, either 

bilaterally or ipsilaterally, in order to adapt to changing task constraints of walking in 

dynamic environments. In addition, gait re-training interventions that have been used in 

individuals with motor disorder could provide an opportunity for a motor system to explore 

variant, functional solutions for better adaptations required in light of physical, perceptual 

and cognitive constraints on individuals. 
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No Study Motor Disorder Patient 
Abled-

Body 

Coordination 

Pattern 

Gait 

Setting 

Quality 

Score  
Gait re-training 

28 
Alice et al 
(2007) 

Parkinson's 
Disease 

10 0 Hip-knee Walkway 5  None 

31 
Awai &Curt 

(2014) 
Spinal Cord Injury 19 19 Hip-Knee Walkway 6 Pace (preferred/slow speed 

16 
Barela et al 
(2000) 

Stroke 6 6 Hip-knee Walkway 6  None 

18 
Chiu et al 

(2010) 
Hip arthroplasty 20 10 

Hip-knee/ 

knee-ankle 
Walkway 8  None 

10 
Combs et al 
(2013) 

Stroke 19 22 Inter-limb  Walkway 7 
Treadmill training (8-week, 24 

sessions, 20-min) 

12 
Daly et al 

(2007) 
Stroke 15 5 Hip-knee Walkway 6 

Treadmill training (12-week, 48 

sessions, 30-min) 

11 
Fowler et al 
(2009) 

Cerebral Palsy 15 0 Hip-knee Walkway 5  None 

1 
Gianni and 

Perell (2005)  
Stroke 11 10 

Hip-knee/ 

knee-ankle 
Walkway 5  None 

5 
Heiderscheit et 

al (2002) 

Pattelofemoral 

Pain 
8 8 

Hip-
knee/Knee-

ankle 

Treadmill 6  None 

13 
Hoogkamer et 

al (2015) 
Cerebellar Ataxia 18 14 Hip-Hip Walkway 4  None 

7 
Hutin et al 

(2011) 
Stroke 14 15 Thigh-shank Walkway 6  None 

6 
Hutin et al 
(2012) 

Stroke 27 20 
Shank-foot/ 
thigh-shank 

Walkway 5 Pace (preferred/maximum speed) 

29 
Lewek et al 

(2009) 
Stroke 15 0 Hip-knee Walkway 5 Robot 

17 Liu et al (2014) Osteoarthrtis 30 15 
Inter-

limb/Intra-

limb  

Walkway 6  None 

21 
Meyns et al 

(2012) 
Cerebral Palsy 26 24 Inter-limb Walkway 6  None 

20 
Meyns et al 

(2014) 
Cerebral Palsy 15 23 Inter-limb Walkway 6  None 

23 
Mian et al 

(2011) 

Parkinson's 

Disease 
12 13 Knee-ankle Walkway 6 Gait tasks 

19 

Nanhoie-

Mahbier et al 

(2013) 

Parkinson's 
Disease 

14 10 Inter-limb Treadmill 7 Gait task (split-belt walking) 

27 
Ornetti et al 
(2011) 

Osteoarthrtis 11 9 Knee-ankle Walkway 6  None 

14 
Peterson et al 

(2012) 

Parkinson's 

Disease 
12 10 Inter-limb  Walkway 6 

Gait tasks (forward/backward 

walking) 

26 
Plotnik et al 
(2008) 

Parkinson's 
Disease 

34 0 Inter-limb  Walkway 6 None  

3 
Plotnik et al 

(2009) 

Parkinson's 

Disease 
21 13 Inter-limb  Walkway 5 Dual-tasking (number subtraction) 

24 
Plotnik et al 
(2011a) 

Parkinson's 
Disease 

30 0 Inter-limb  Walkway 7 Dual-tasking 

25 
Plotnik et al 

(2011b) 

Parkinson's 

Disease 
30 0 Inter-limb  Walkway 5 Dual-tasking(number subtraction) 

2 
Reynolds, et al 

(1999) 

Huntington's' 

Disease 
6 30 

Hip-knee/ 

knee-ankle 
Walkway 6  None 

22 
Rinaldi et al 

(2013) 
Stroke 10 10 

Hip-knee/ 

knee-ankle 
Treadmill 7 Pace (low and high speed walking) 

8 
Roerdink et al 

(2007) 
Stroke 10 9 Inter-limb  Treadmill 6 Pace (preferred/fast/slow) 

32 
Serrao et al 

(2012) 
Cerebellar Ataxia 16 15 

Hip-

knee/Knee-
ankle 

Walkway 7  None 

4 
Shafizadeh et al 

(2013) 
Multiple Sclerosis 12 12 Knee-ankle Treadmill 7  None 

9 
Stolze et al 
(2002) 

Cerebellar Ataxia 12 12 
Hip-knee/ 
knee-ankle 

Treadmill 6  None 

30 
St-Onge et al 

(2004) 
ACL 6 9 

Hip-Knee-

Ankle 
Walkway 6  None 

33 
Tanahashi et al 
(2013) 

Parkinson's 
Disease 

20 0 Inter-limb Walkway 6  None 

15 
Wang et al 

(2009) 
Osteoarthrtis 15 15 

Hip-knee/ 

knee-ankle 
Walkway 6 

Gait tasks (different heights of 

obstacle 10%, 30%) 

Table 1. Basic characteristics of studies included in systematic review 



34 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study Measure (unit)
Abled-body 

(Mean)

Abeld-body 

(SD)
N

Patient 

(Mean)
Patient (SD) N Effect Size [CI]

Normalised 

SD

Mean 

Difference
MCID

Chiu et al (2010) Deviation phase 30.6 7.2 10 41.1 17.9 20 -0.67 [-1.45, 0.11] 2.91 10.50 7.59

Combs et al (2013) Relative phase (deg) -0.6 6.03 18 -11.45 15.91 15 0.91 [0.19, 1.64] 2.55 -10.85 -13.40

Daly et al (2007) Coefficient of correpondence (%) 0.97 0.003 5 0.75 0.13 15 1.84 [0.64, 3.03] 0.02 -0.22 -0.24

Gianni and Perell (2005) plot area (mm) 158 64.8 10 48 46.1 11 1.89 [0.83, 2.96] 14.51 -110.00 -124.51

Heiderscheit et al (2002) Relative phase (deg) 3.8 0.8 8 4.5 1 8 -0.73 [-1.75, 0.29] 0.21 0.70 0.49

Hoogkamer et al (2015) Maximum Lyapunov exponent 1.58 0.14 14 1.72 0.16 18 -0.90 [-1.64, -0.16] 0.04 0.14 0.10

Hutin et al (2011) Relative phase (deg) 62.4 6.9 15 61 22.3 14 0.08 [-0.64, 0.81] 3.44 -1.40 -4.84

Hutin et al (2012) Relative phase (deg) 6.5 1.1 20 18.3 6.3 27 -2.40 [-3.16, -1.63] 0.92 11.80 10.88

Meyns et al (2012) Relative phase (deg) 178.9 10.25 24 175.3 14.2 26 0.28 [-0.27, 0.84] 2.87 -3.60 -6.47

Meyns et al (2014) Relative phase (deg) 141.6 4.4 23 142.2 10.6 15 -0.08 [-0.73, 0.57] 1.74 0.60 -1.14

Mian et al (2011) Phase coordination index (%) 8.9 2.3 13 10.8 3.3 12 -0.65 [-1.46, 0.16] 0.66 1.90 1.24

Nanhoie-Mahbier et al (2013) Phase coordination index (%) 4.09 0.43 10 3.96 0.43 14 0.29 [-0.52, 1.11] 0.11 -0.13 -0.24

Peterson et al (2012) Phase coordination index (%) 4.3 1.3 10 7.3 2.5 12 -1.41 [-2.37, -0.45] 0.44 3.00 2.56

Plotnik et al (2009) Phase coordination index (%) 3.24 0.18 13 5.24 0.61 21 -3.95 [-5.16, -2.73] 0.09 2.00 1.91

Roerdink et al (2007) Relative phase difference (deg) 2.1 4.1 9 27.5 7.5 10 -3.95 [-5.63, -2.28] 1.34 25.40 24.06

Shafizadeh et al (2013) Relative phase (deg) -15.17 2.5 12 -86.6 37.1 12 2.62 [1.48, 3.76] 5.27 -71.43 -76.70

St-Onge et al (2004) Asymmetry index (%) 6.8 1.82 9 8.2 2.74 6 -0.59 [-1.66, 0.47] 0.53 1.40 0.87

Wang et al (2009) Deviation phase 7.92 4.3 15 10.17 6.31 15 -0.41 [-1.13, 0.32] 1.24 2.25 1.01

* Higher score represents a worse coordination pattern

** Clinical significant in favour of abnormal pattern

**

**

**

**

**

**

**

**

**

**

**

**

**

*

*

*

*

*

*

*

*

*

*

*

**

**

**

Table 2. Mean (SD) of groups, ES’s and MCID results.  

Note: MCID is calculated by subtracting the mean difference from pooled SD. If the MCID value was positive, there was a clinical 

significant difference between groups as showed by ** in ES column.    
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Study Measure (unit)
Baseline 

(Mean)
Baseline (SD) N

Intervention 

(Mean)
Intervention (SD) N Effect Size [CI]

Normalised 

SD

Mean 

Difference
MCID

Combs et al (2013) Relative phase (deg) -11.45 15.91 15 -9.37 19.49 15 -0.11 [-0.83, 0.60] 4.21 2.08 -2.13

Daly et al (2007) Coefficient of correpondence (%) 0.75 0.13 15 0.77 0.14 15 -0.14 [-0.86, 0.57] 0.03 0.02 -0.01

Hutin et al (2012) Relative phase (deg) 18.3 6.3 27 16.1 6.3 27 0.34 [-0.19, 0.88] 1.54 -2.20 -3.74

Lewek et al (2009) Coefficient of correpondence (%) 0.79 0.1 15 0.81 0.1 15 -0.19 [-0.91, 0.52] 0.02 0.02 0.00

Nanhoie-Mahbier et al (2013) Phase coordination index (%) 3.96 0.43 14 4.96 0.41 14 -2.31 [-3.30, -1.32] 0.10 1.00 0.90

Peterson et al (2012) Phase coordination index (%) 7.3 2.5 12 13.9 3.9 12 -1.95 [-2.95, -0.94] 0.74 6.60 5.86

Plotnik et al (2009) Phase coordination index (%) 5.24 0.61 21 7.71 0.91 21 -3.13 [-4.06, -2.20] 0.18 2.47 2.29

Plotnik et al (2011b) Phase coordination index (%) 5.22 3.23 30 7.63 3.82 30 -0.67 [-1.19, -0.15] 0.84 2.41 1.57

Roerdink et al (2007) Relative phase difference (deg) 23.7 7.3 10 25.9 9.1 10 -0.26 [-1.14, 0.63] 1.95 2.20 0.25

Wang et al (2009) Deviation phase 10.17 6.31 15 9.58 8.08 15 0.08 [-0.64, 0.80] 1.70 -0.59 -2.29

* Increased score is worsen the coordination pattern

** Clinical significant against intervention

*

*

*

*

*

*

*

**

**

**

**

**

Table 3. Mean (SD) of conditions, ES’s and MCID results.  

Note: MCID is calculated by subtracting the mean difference from pooled SD. If the MCID value was positive, there was a clinical 

significant difference between conditions as showed by ** in ES column.    
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Study Effect Size [CI] Walking Task Training Volume

Combs et al (2013) -0.11 [-0.83, 0.60] Body-weight support treadmill 24 sessions, 20 min per session

Daly et al (2007) -0.14 [-0.86, 0.57] Mixed walking (treadmill,overground) 48 sessions, 1.5hrs per session

Hutin et al (2012) 0.34 [-0.19, 0.88] Walking with normal and fast pace 3 trials, 6m walking 

Lewek et al (2009) -0.19 [-0.91, 0.52] Robotic locomotor 12 sessions, 30 min per session

Wang et al (2009) 0.08 [-0.64, 0.80] Obstacle crossing with different heights 6 trials, obstacle crossing steps

Nanhoie-Mahbier et al (2013) -2.31 [-3.30, -1.32] Split-belt treadmill 1 trial, 2 min

Peterson et al (2012) -1.95 [-2.95, -0.94] Forward-backward walking 5-8 trials, 10m walking distance

Plotnik et al (2009) -3.13 [-4.06, -2.20] Cognitive dual-task during walking 1 trial, 2 min self-selected pace

Plotnik et al (2011) -0.67 [-1.19, -0.15] Cognitive dual-task during walking 1 trial, 80m walking distance

Roerdink et al (2007) -0.26 [-1.14, 0.63] Walking with normal and fast pace 1 trial per condition, 90 sec

* Clinical significant change

*

*

*

*

*

Table 4. The characteristics of walking interventions in different studies. 
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Figure 1. Flow diagram of selection of studies focusing on limb coordination during walking 

Articles identified through database 

searching   

(n=1416) 

Articles after duplicate removed  

(n=1120) 

Articles excluded after 

title/abstract screening 

(n=957) 

Full text articles retrieved  

(n=163) 

Articles excluded after full 

text reviewed 

(n=130) 

Articles included in qualitative synthesis 

(n=33) 

Articles included in meta-analysis-1 

(n=18) 

Articles included in meta-analysis-2 

(n=10) 
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Figure 2. Forest plot comparing the limb coordination during walking between patients and 

abled-body groups. 
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Figure 3. Forest plot comparing the limb coordination during walking between baseline and 

intervention conditions. 

 

 

 

 

 


