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Abstract. The objective of this paper is the design of a front suspension. The layout used is the
McPherson strut, widely adopted for road cars due to its simplicity and to the limited space required.
The handling, comfort and durability of the suspension are strictly related to the position of the
hardpoints, and to the elastic elements. A sensitivity analysis is carried out to investigate the roll be-
havior of a standard vehicle during cornering. A multi-body dynamics software is used to perform
ramp-steer simulations on a full-vehicle model. Results show the different peculiarities of three specif-

ic cases of analysis, each of them emphasising the effects of a specific parameter on the whole system.

Keywords: suspension, McPherson, roll centre, simulations, sensitivity analysis

1 Introduction

The research of the best performance in a vehicle has been investigated for a long
time. Regardless of the size and the power of the engine, the performance of the
vehicle is highly dependent on the ability to transmit the torque produced by the
engine to the ground via tire-road contact forces. The suspension system is a key
component of a vehicle, as it allows the vehicle to comply with uneven road
surfaces, ensuring a good tire-road contact and reducing vibrations [11]. The
design of a suspension system is unique for each type of car and differs for the
various uses the car should deal with. The recent development in electronics and
control has made it possible to control the motion of the suspension varying its
response dynamically depending on the road conditions, using active or semi-
active systems. However these kinds of solutions are still expensive and their use
is limited. An interesting recently-developed technique for the enhancement of
vehicle performance is torque vectoring, either to achieve a direct yaw moment
[14-15], or looking at the front-to-rear torque distribution [1-3,5], however that
also relies on the ability of transferring desired amounts of force between tire and
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road, which requires an appropriate suspension system. One of the most used
suspension layout for medium level vehicle is the McPherson layout because of its
simplicity of design, low cost, and easiness to be adjusted. The performance of a
suspension depends indeed on several parameters, such as roll centre height,
camber gain, toe change during bump, scrub radius, caster angle and many more
[7,10]. Because of such a complexity, the achievement of different performance
objectives is likely to be contradictory, making it necessary to find an optimal
compromise [8]. It should also be taken into account that the design of the elastic
components is somewhat limited due to comfort issues related to human
perception limits [4]. The complexity of the design requirements of a vehicle
suspension can be addressed using advanced multi-body dynamics software, such
as Adams/Car. Such software allow to simulate the motion of the suspension in
several conditions and to use optimization algorithms to find the best layout
configuration improving the performance of even a simple layout such as the
McPherson [12-13].

The objective of this paper is the design and sensitivity analysis of a front
McPherson layout. The design is based on basic vehicle data including mass,
wheelbase and track. The paper presents a methodology applied for the design of
the suspension and proposes a sensitivity analysis, investigating the influence of
different layout configurations and elastic components on the roll behavior during
cornering through a ramp steer maneuver performed with Adams/Car.

2 Kinematic design

The design of the suspension started from the main geometric parameters of a
commercial car. The roll centre analysis was the first target. In a vehicle front
view, the roll centre lies on the intersection between two lines: 1) the line between
the centre of the contact patch of the tire and the instant centre of rotation, accord-
ing to Kennedy's theorem [6]; ii) a vertical line of symmetry of the vehicle [11].
The instant centre is obtained as the intersection between the line defining the
lower control arm and line perpendicular to the strut [11]. A target roll sensitivity
of 5 deg/g was set, together with a desired front roll centre height of 120 mm.
Considering that the height and the inclination of roll axis depends on the roll cen-
tre height at the front and rear axle [4], the height of the roll axis in correspond-
ence with the vehicle centre of gravity was fixed at the 30% of the centre of gravi-
ty height. A 40% ratio between the front and rear roll centre height was chosen,
and as consequence the roll centre height for each axle was obtained. Despite this
work focuses on the front suspension, the rear suspension was set to match the roll
sensitivity target. The kinematic design was run in parallel with the design of the
elastic components that affects the dynamic of the vehicle. Olleys’criteria were
followed to define spring stiffness [4]. Anti-roll bars stiffness values were defined
by imposing the same amount of lateral load transfer for each axle.
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Fig. 1 McPherson layout (left), Solidworks model (centre), Adams model (right)

In order to choose the position of the main hardpoints, a SolidWorks model was
developed, composed of different planes used to draw the 3-D model of the sus-
pension, Fig. 1. A parametric approach was chosen, so as to be able to change
main suspension parameters, e.g. kingpin angle, caster angle, lower arm inclina-
tion angle, with the model automatically recalculating the position of the instant
centre and roll centre accordingly. The majority of sensitivity analysis carried out
implies to vary the position of the hardpoints whilst maintaining the desired value
of roll centre height. Indeed, parameters such as the inclination of the strut and the
position of the lower ball joint (knuckle side) have influence on the position of the
instant centre and on the scrub radius. For instance, large kingpin angles lead to
large values of scrub radius which is generally not beneficial for riding and com-
fort, but they can positively affect the vehicle braking performance [9,11].

For the sensitivity analysis presented in this paper, 3 main cases were investigated.
Each of them involved to change some key parameters, keeping other parameters
constant. The performance of 5 different configuration sets for each of the 3 cases
was compared simulating ramp steer maneuver on Adams\Car. The 3 different
cases are detailed in Table 1. In the first case study, the strut inclination and the
lower arm inclination angle are changed, keeping the same roll centre height - the
kingping angle and the instant centre position change as a consequence. The se-
cond case concerns the variation of the anti-roll bar stiffness only. The third case
looks at the variation of the vertical position of the lower arm outer ball joint,
maintaining the same strut inclination and anti-roll bar stiffness.

3 Implementation and simulation on ADAMS

Based on the design parameters, a vehicle model was implemented on Adams/Car
(Fig. 2). For each of 3 case studies, a ramp steer maneuver was run at 70 km/h and
with a 10 deg/s steering wheel angle rate.
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Table 1. Details of the three cases analysed

Parameter Case 1 Case 2 Case 3
Strut inclination Variable Constant Constant
Kingpin angle Variable Constant Variable
Instant centre position Variable Constant Variable
Lower arm inclination angle Variable Constant Variable
Roll centre height Constant Constant Variable
Anti-roll bar stiffness Constant Variable Constant

Fig. 2 The Adams/Car model developed

3.1 Case 1

In this case study, 5 different configurations of strut inclination and lower arm
inclination angle were obtained exploiting the developed Solidworks model, keep-
ing the same roll centre height (Table 2). Different lower arm inclination angles
lead to different instant centre positions. The position of the instant centre can be
seen as the length of an equivalent swing arm suspension scheme. Such length in-
fluences the camber gain, as a shorter length implies a larger camber gain that
counteracts the camber change due to body roll. Also, the inclination of the strut
affects the magnitude of the vertical component of the force exerted by the
springs. Increasing the inclination of the strut, the vertical component reduces, and
the suspension roll rate decreases as a consequence, increasing the body roll.

Fig. 3 depicts camber angle and body roll angle for each configuration, as a
function of lateral acceleration. The static camber was set to -1 deg. The first con-
figuration presents the smallest camber variation, due to the shortest swing arm
length causing a larger camber gain. Conversely, the body roll for such configura-
tion is the greatest. Among the five configurations, the difference in camber angle
is more significant than the difference in body roll, that is because the anti-roll bar
stiffness is significantly higher than the roll stiffness due to the springs. As a re-
sult, a larger lateral force can be produced in the first configuration [4], with a
smaller radius of curvature, Fig. 4.
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Table 2. Case 1 parameters

Conf. Kingpin | Lower arm Swing arm Strut inclina- | Scrub | Anti-roll bar
no. angle angle length (mm) tion (deg) radius | stiffness (kN
(deg) (deg) (mm) mm/deg)

26.3 2 2103 23.10 -52 40

19.19 3020 12.75 -21 40

4
15.76 5 3876 7.78 -11 40
12.385 6 5431 291 7.6 40

L T [ S RO | NS
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Fig. 3 Case 1: (left) camber angle and (right) body roll, for 5 different configurations
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Fig. 5 Case 2: (left) camber angle and (right) body roll, for 5 different configurations
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3.2 Case 2

The second case study involves the variation of the anti-roll bar stiffness maintain-
ing all the other parameters, chosen as follows: kingpin angle 15.8 deg, caster an-
gle 5 deg, lower arm angle 0 deg, swing arm length 3876 mm, strut inclination 7.8
deg, scrub radius -11 mm. The 5 values of anti-roll bar stiffness are: (4, 4.5, 5, 5.5,
6) x 10° N mm/deg, corresponding respectively to configurations 1, 2, 3, 4, 5. Fig.
5 shows that increasing the stiffness, the roll angle is reduced and the camber an-
gle is reduced as well. Increasing the torsional stiffness at the front axle, the roll
stiffness ratio between front and rear axle increases. This increases the lateral load
transfer at the front axle, hence the front right wheel withstands an increased verti-
cal load. The total lateral force at the front axle is then reduced due to the nonline-
ar tire characteristic [4]. This means that during the maneuver, the vehicle with the
highest anti-roll bar stiffness negotiates a wider trajectory, Fig. 6.
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Fig. 6 Case 2: trajectory for 5 different configurations

3.3 Case 3

In the third case study, the outer ball joint of the lower control arm is moved verti-
cally, making the lower arm inclination change. Changing the lower arm inclina-
tion, the instant centre position and the roll centre height change. Table 3 shows
the parameters adopted for each configuration. As the roll centre height increases,
the vehicle experiences a reduced roll angle, as shown in Fig. 7 (right). At the
same time, as the instant centre distance from wheel centre decreases, the camber
gain improves as shown in Fig. 7 (left). Therefore, moving from configuration 1 to
5, the attainable lateral force increases and the trajectory of the car gets narrower

(Fig. 8).
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Table 3. Case 3 parameters

Conf. Outer ball joint | Roll centre Swing arm length Kingpin angle
no. height from height (mm) (deg)
ground (mm) (mm)
1 295.55 -48 29226 14.95
2 270.55 27 8360 14.5
3 245.55 98 5017 14
4 220.55 164 3651 13.68
5 170.55 284 2442 12.9
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b
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Fig. 7 Case 3: (left) camber angle and (right) body roll, for 5 different configurations
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Fig. 8 Case 3: trajectory for 5 different configurations

4 Conclusion

The design process of a McPherson front suspension was presented. Starting from
initial vehicle data, a geometrical approach was investigated on Solidworks, which
was then validated via the multibody dynamics software Adams\Car. A full vehi-
cle model was then implemented on Adams\Car. A sensitivity analysis was con-
ducted on a standardised ramp steer maneuver, changing some key hardpoints of
the suspension and some elastic parameters. The effects of individual parameters
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on body roll, camber gain and trajectory was investigated, providing critical in-
sights concerning the design of a passenger car suspension. Case study 1 showed
that a more compact geometry, desirable for layout issues especially in small cars,
having the strut almost vertical (configuration 5), could bring to a reduction of the
vehicle performance in terms of lateral acceleration, without considerably affect-
ing the vehicle roll, which is in turn a layout but also a comfort parameter. How-
ever, Case study 2 and 3 showed that if the vehicle roll is changed, both with lay-
out-independent parameter, i.e. the roll bar stiffness, or with suspension geometry
parameters, the vehicle performance could be rebalanced. In conclusion, consider-
ing the case studies, it is clear how the suspension geometry allows layout, per-
formance and comfort tuning and, in a real vehicle, the trade-off between these re-
quirements could be found based on the design specifications.
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