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Abstract 

Reconstructing the terrestrial palaeoenvironment during the end-Permian is made 

challenging by widespread erosion and ecosystem destruction. High-resolution 

sampling for palynofacies and palynology in sections that preserve the boundary 

interval allows for detailed examination of the drastic environmental changes that 

characterize the Permian–Triassic mass extinction. In the Bowen and Galilee basins in 

eastern Australia, this environmental perturbation is recorded within a Marker 

Mudstone that occurs above the uppermost Permian coal seams. The Marker 

Mudstone is used as a stratigraphic reference level at many localities, but has 

previously only been studied at a single locality in the Bowen Basin. In the present 

study, borehole Tambo 1-1A drilled in the Galilee Basin was selected to clarify 

whether this black, organic-rich mudstone marks a marine transgression, and to 

examine potential indicators of the end-Permian mass extinction. A total of 22 

samples were taken from the mudstone unit, and from the over- and underlying strata 

and processed for palynology, palynofacies, and carbon isotope analysis. 

Biostratigraphic data indicate that the Marker Mudstone itself covers the 

uppermost part of unit APP5, with the first index taxa of unit APP6 floras occurring in 

samples less than 80 cm above this interval. This can be correlated with several other 

localities in the Bowen and Sydney basins where this shift occurs just above the 
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uppermost Permian coal seam. Palynofacies data agree with previous interpretations 

of a southwards prograding delta that subsides as base level rises to form an extensive 

waterbody in which the Marker Mudstone was deposited. A change from translucent 

phytoclast-dominated to opaque phytoclast-dominated palynofacies within the Marker 

Mudstone suggests a shift to more oxic conditions in the water column, while base 

level begins to fluctuate, or increased terrestrial input from fluvial systems as the 

hinterland rises. Algal bodies resembling Botryococcus are found in the strata above 

the Marker Mudstone, but differ in morphology from the algal bodies found in the 

deltaic facies below. The presence of acanthomorph acritarchs in the Marker 

Mudstone and in the overlying Rewan Formation may indicate marine influence. 

Forms resembling fungal spores are present, but they do not show a “spike” as seen in 

other P–T boundary localities. 

The relative position of unit APP6 to the P–T boundary itself remains unclear. 

APP6 assemblages are dominated by simple acavate trilete and cavate trilete spores, 

which suggests stressed environment dominated by ferns and lycopods. The presence 

of degraded phytoclasts towards the top of the Marker Mudstone may also be used to 

suggest a mass-extinction interval. They may also be indicative of shifting local 

palaeoenvironmental changes, an interpretation that is supported by the low 

magnitude negative excursion of the δ13C isotope values within the Marker Mudstone. 

More datasets from the Bowen and Galilee basins will be essential to decoupling 

these signals. 

 

Keywords: Palynology; Palynofacies; Carbon isotopes; Palaeoenvironment; 

Permian–Triassic boundary; Galilee Basin 

 

1. Introduction 

Deciphering patterns and processes of environmental change across the Permian–

Triassic boundary in the terrestrial basins of Gondwana has long been a challenge 

(e.g., de Wit et al., 2002; Gastaldo et al., 2009; Smith and Botha-Brink, 2014). In 

eastern Australia, integrated palynological and geochronological studies have shown 

great utility for dating and correlating the late Permian deposits (Smith and Mantle, 

2013; Laurie et al., 2016). Potential sections in the Galilee Basin in particular have 

remained understudied when compared to those of other eastern Australian basins 

such as the Bowen, Gunnedah and Sydney basins (Figs. 1, 2). The Galilee Basin is 
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only recently beginning to receive attention for its economic resource potential 

(Hansen and Uroda, 2018; I’Anson et al., 2018), but it may also contain valuable 

climatic and environmental records of the late Palaeozoic that have yet to be 

exploited. Of special importance is that the Galilee Basin was situated relatively far 

away from the tectonic activity in the New England Orogen and that it captures a 

terrestrial-marine transition from the north to the south and across the Springsure 

Shelf, which allows for detailed study of various depositional environments. In many 

parts of the Bowen and Galilee basins, a regional disconformity to low-angle 

unconformity at the base of the Rewan Formation represents an erosional contact that 

probably removed the Permian–Triassic boundary itself within the basins (Brakel et 

al., 2009; Sliwa et al., 2017). Recent systematic correlation, however, revealed that 

where this unconformity is not observed, there remains a laterally continuous 

mudstone interval that is deposited above the last coal deposits of the Permian (Sliwa 

et al., 2017). This mudstone is recognised as a prominent gamma spike in wireline 

logs, and has been termed the “Marker Mudstone” due to its consistency and 

utilization for basin-wide correlation. Michaelsen et al. (2000) and Michaelsen (2002) 

interpreted the Marker Mudstone as a lake deposit that developed above the peat 

deposits immediately preceding the P–T boundary; however, the precise nature and 

origin of this mudstone remain unknown. The aims of this study are: 1) to place the 

Marker Mudstone within a biostratigraphic context, 2) to develop a 

palaeoenvironmental interpretation based on palynology and palynofacies, and 3) to 

determine if palynological markers (e.g., fungal spike, lycopsid spike) reported from 

other localities exposing the Permian–Triassic boundary are present. 

 

2. Geological setting 

The Galilee Basin is an intracratonic basin that covers an area of around 247,000 

km2 in central Queensland (Fig. 1) (Allen and Fielding, 2007). The sediment infill 

occurred during two major phases of deposition from the Pennsylvanian (late 

Carboniferous) to the Cisuralian (early Permian) and from the Lopingian (late 

Permian) to the Middle Triassic, separated by a mid-Permian depositional hiatus. This 

hiatus is attributed to reduced rates of deposition rather than to erosion, as there is 

little evidence of an erosional unconformity (Van Heeswijck, 2010; Phillips et al., 

2018). The basement comprises the Devonian–Carboniferous Drummond Basin in the 

east, the Thomson Orogen in the centre, and Precambrian cratonic rocks in the west. 
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Large areas of the basin are overlain by the Jurassic–Cretaceous deposits of the 

Eromanga Basin (Fig. 2). The Galilee and Bowen basins are separated by the Nebine 

Ridge on a structural high called the Springsure Shelf. The Galilee Basin is separated 

from the Cooper Basin by the Canaway Ridge in the south-west of the basin. 

The complex nature of the late Permian deposits has long made lithostratigraphic 

and sequence stratigraphic correlation a challenge. Allen and Fielding (2007) worked 

on a sequence stratigraphic correlation of the low-accommodation setting of the Betts 

Creek Beds relative to the high accommodation setting of the Denison Trough in the 

Bowen Basin, and identified second (10–100 Ma) and third-order (1–10 Ma) 

sequences in outcrops and well logs. The lithostratigraphic correlation has been 

reinterpreted by different authors in different regions within the basin (Fig. 3) as 

summarised by Phillips et al. (2017). Large-scale correlations across the Galilee Basin 

recently allowed the identification of the Marker Mudstone along the eastern margin 

of the basin and in the borehole GSQ Tambo 1-1A (Phillips et al., 2017). 

 

Permian–Triassic boundary 

The Permian–Triassic boundary is formally defined at the Global Boundary 

Stratotype Section and Point (GSSP) in the marine Meishan Beds in China by the first 

appearance of the conodont Hindeodus parvus. This horizon is located several 

centimetres above the mass extinction interval (Yin et al., 2001). The extinction is 

estimated to have affected between 80% and 95% of marine species, including 

trilobites, fusulinid foraminifera and various groups of echinoderms and brachiopods 

(Benton and Twitchett, 2003). In terrestrial basins, a number of proxies are useful in 

placing the boundary. One of the most widely recognised indicators of the boundary is 

a negative carbon isotopic excursion (Retallack and Krull, 2006). This excursion is 

thought to be related to an increase in global CO2 from increased volcanic activity at 

the end of the Permian (Svensen et al., 2009). In terms of palynological indicators, 

several authors (Eshet et al., 1995; Visscher et al., 1996; Steiner et al., 2003; 

Bercovici and Vajda, 2016) have recognised a spike in the abundance of fungal 

remains such as Reduviasporonites chalastus, though it has been suggested that this 

species may have an algal affinity (Foster et al., 2002) or even be a result of recent 

contamination (Hochuli, 2016). Spina et al. (2015) suggest that R. chalastus is a 

chlorophycean algae with a strong affinity for brackish to hypersaline water, and 

cannot be used as a consistent temporal marker. 
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In eastern Australia, the boundary has historically been placed at the top of the 

last Permian coal deposits (Laurie et al., 2016). In the Bowen Basin, this would 

correspond to the interface of the Bandanna Formation, Rangal and Baralaba coal 

measures with the overlying Rewan Group, Within a palynological framework, 

defining the P–T boundary in Australia has been particularly challenging due to 

several factors, including the apparently multiple floral turnovers during the transition 

from the late Permian Glossopterid flora to the Early Triassic flora, widespread 

erosional surfaces related to the rapidly aridifying climate, and a disconnect between 

the extinction event, negative carbon isotopic excursion (Retallack and Krull, 2006), 

and the GSSP-defined boundary. The boundary was initially thought to lie at or near 

the base of the Kraeuselisporites saeptatus and Lunatisporites pellucidus zones of 

western and eastern Australia, respectively  (Dolby and Balme, 1976), correlative 

with the base of the informal eastern Australian unit APT1 of Price et al. (1985; see 

Price, 1997). Recent high-resolution radiometric analyses, however, indicate that the 

boundary may be situated stratigraphically lower (Laurie et al., 2016), i.e., at or near 

the base of the Protohaploxypinus microcorpus zone (including the Playfordiaspora 

crenulata (sub)zone; see Helby et al., 1987) equivalent to unit APP6 of Price et al. 

(1985; see Price, 1997). The Marker Mudstone was selected for further scrutiny of the 

palynostratigraphic data and age assignments as it appears to represent continuous 

deposition at the interface of the Bandanna and Rewan formations, and is fine-grained 

and organic-rich, which is ideal for palynological sampling and organic carbon 

isotope analysis. 

 

3. Materials and methods 

 

3.1. Study area 

The borehole GSQ Tambo 1-1A is located on the Springsure Shelf in the south-

east of the Galilee Basin (Fig. 1) and features a lithostratigraphic succession easily 

correlative with that of the Bowen Basin and a 1 m thick expression of the Marker 

Mudstone with no discernible unconformity at the base of the Rewan Formation. 

 

3.2. Palynological processing and analysis 

Twenty-two (22) samples were taken throughout the 45 m thick sequence for 

palynological and palynofacies analysis. Intervals sampled included the siltstones 
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above the Marker Mudstone (TAMP1–TAMP6), the Marker Mudstone itself 

(TAMP7–TAMP11) and siltstones and mudstones in the underlying Bandanna 

Formation and ‘Burngrove Formation’ equivalent (TAMP12–TAMP22). A 20 m thick 

sandstone interval separates samples TAMP1–TAMP12 and TAMP13–TAMP22. 

Acid-processing of palynological samples was conducted by MGPalaeo 

laboratory in Perth. Standard acid processing techniques were used (Wood et al., 

1996). This involved digesting 15–20 g of sample in HCl to remove carbonates. 

Excess HCl was decanted and HF was added to remove silicates. After 48 hours the 

excess acid was decanted and neutralised by repeated washings in deionised H2O and 

centrifuging. The residue then underwent density separation using heavy liquid 

(density 2.0) and was mounted on a slide. Two slides per sample were prepared using 

this method, and two more were prepared after oxidation with HNO3 to remove 

palynodebris. 

Analysis and counting of palynological slides was done using a Zeiss 

Photomicroscope III equipped with a Leica MC190HD camera. For biostratigraphy, 

counts of 200 palynomorphs per slide were done as per the recommendation of 

Traverse (2007). Classification of species was based on the nomenclature of Price 

(1997), Foster (1979, 1982), Backhouse (1991), de Jersey (1979) and Rigby and 

Hekel (1977). If taxonomic names differ between the authors, the most recently 

published names are used. Biostratigraphic assessment was based on the scheme of 

Price et al. (1985) and Price (1997). For palynofacies, counts of a minimum of 300 

particles per sample were done. Particles were classified according to a palynofacies 

scheme based on that of Tyson (1995). Biostratigraphic and palynofacies data were 

plotted using the TILIA software package and statistically analysed using the 

CONISS cluster analysis to differentiate biozones and palynofacies assemblages. 

Count results were also plotted using ternary diagrams based on major palynofacies 

components (opaque phytoclasts, translucent phytoclasts, and terrestrial 

palynomorphs) to distinguish between different palynofacies assemblages. 

 

3.3. Carbon isotope processing and analysis 

Seventeen (17) samples of the total twenty-two (22) were crushed to powder for 

organic carbon isotope analysis at the University of Queensland, Australia. Isotope 

samples were compared to palynological samples taken at the equivalent depths to 

identify any co-occurring trends. The δ13C isotope values were determined with a 
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stable-isotope-ratio mass spectrometer (Isoprime), coupled in continuous flow mode 

with an elemental analyser (Elementar Cube) (EA-CF-IRMS). Calibration was 

performed by use of two standards, USGS24 (-16.1‰ δ13CPDB) and NAT76H (-

29.26‰ δ13CPDB), which were interspersed throughout analytical runs. Each sample 

was analysed in duplicate, using 50–200 μg of concentrate combusted at 1020°C in 

3.5 mm × 5 mm tin capsules. Any sample with a beam size outside the working range 

of 1 × 10–9 to 9 × 10–9 Å, or with a δ13C result variation between duplicates of > 

0.4‰, was re-analysed, in accordance with laboratory quality control practices. 

 

4. Results 

 

4.1. Palynostratigraphy 

Of the twenty-two samples processed for palynology, thirteen yielded 

assemblages suitable for palynomorph counting (Fig. 4). These samples were 

TAMP1, TAMP3, TAMP4, TAMP9, TAMP10, TAMP11, TAMP16, TAMP17, 

TAMP18, TAMP19, TAMP20, TAMP21 and TAMP22. Samples TAMP5–TAMP8 

yielded a few poorly preserved palynomorphs, though these were generally covered in 

degraded phytoclasts (Fig. 8A) and counts were not possible; the few species that 

were identifiable in these samples were noted. 

Samples TAMP16–TAMP22 all yielded assemblages typical of unit APP5 (Price 

et al., 1985) characterized by a high abundance and diversity of striate bisaccate 

pollen grains (Protohaploxypinus spp., Striatopodocarpites spp.) and non-striate 

bisaccate pollen grains (Alisporites spp., Scheuringipollenites spp., Vitreisporites 

pallidus). Spinose and ornamented trilete spores (Microbaculispora spp., 

Horriditriletes spp.) are also common, as are monosulcate pollen grains 

(Marsupipollenites spp.). Dulhuntyispora parvithola, the index taxon of unit APP5, 

was not identified within these samples, but Microreticulatisporites bitriangularis 

(Fig. 8E), the key taxon of the APP5005 subunit, is a rare component in many of the 

samples. Lycopodiumsporites ‘crassus’, the index taxon for the APP5006 subunit was 

neither detected in this study; hence, the samples were placed within the APP5005 

subunit. The Marker Mudstone samples (samples TAMP9–TAMP11) yielded 

assemblages closely resembling those of the samples stratigraphically lower in the 

section, with some notable differences. The abundances of the smooth-walled trilete 

spore Leiotriletes directus and the ornamented trilete spore Brevitriletes spp. increase, 
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whereas the abundance of the previously dominant pollen species Protohaploxypinus 

limpidus decreases. 

Samples TAMP1, TAMP3 and TAMP4 feature an assemblage distinctly different 

to those of the Marker Mudstone. Samples TAMP3 and TAMP4 both contain rare 

specimens of Playfordiaspora crenulata (Fig. 8B), the index taxon for the lower P. 

microcorpus biozone of Foster (1979). Sample TAMP1 further contains several 

specimens of Triquitrites proratus and Tigrisporites playfordii, both of which are also 

indicative of unit APP6. Other significant species featured in samples TAMP3 and 

TAMP4 include small ornamented trilete spores (Thymospora ipsviciensis, 

Brevitriletes spp.) and spinose trilete spores (Horriditriletes spp.). The abundance and 

diversity of bisaccate pollen grains has decreased. Smooth-walled trilete spores 

(Leiotriletes directus, Calamospora sp., Punctatisporites spp.) are particularly 

abundant in sample TAMP1. 

 

4.2. Palynofacies 

The samples taken from below the Marker Mudstone (TAMP12–TAMP22) 

feature varied palynofacies assemblages, but distinct trends can be recognized (Fig. 

5). The proportion of opaque phytoclasts tends to increase up-section, though there is 

some variance (between 69.2% and 31.3% of the total assemblage). Equidimensional 

phytoclasts are the most abundant component of the assemblage, but structured and 

unstructured translucent phytoclasts are also common. Sporomorphs (particularly 

bisaccate pollen grains) have high relative abundance in TAMP21, TAMP20 and 

TAMP19, with palynomorphs outnumbering even the phytoclasts. The palynomorph 

abundance decreases up-section as the sandstone intervals become thicker until the 

assemblage features little to no palynomorphs preserved. Acanthomorph acritarchs 

and fungal spores are absent from this interval, but Botryococcus and Cymatiosphaera 

are present in rare abundances (Fig. 9). TAMP12, located slightly below the Marker 

Mudstone, features an assemblage dominated by opaque phytoclasts, with very few 

palynomorphs preserved but the highest proportion of amorphous organic matter 

(AOM) found in any of the studied samples. 

The samples taken from the Marker Mudstone (TAMP7–TAMP11) show a 

striking trend with regard to oxidation of the phytoclasts. Sample TAMP11 features 

an assemblage dominated by translucent phytoclasts. The abundance of translucent 

phytoclasts decreases up-section whereas the opaque phytoclasts become dominant. 
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AOM is present in low abundance in all samples within the Marker Mudstone, and 

degraded phytoclasts have a spike in sample TAMP8. The degraded phytoclasts are 

an unusual component of the assemblage as they appear to occur in the form of 

clusters of fragments of opaque and translucent phytoclast debris surrounded by a 

pseudoamorphous groundmass. Pollen and spores are rare, and indeterminate 

palynomorphs tend to be more abundant in TAMP7 and TAMP8. The Marker 

Mudstone contains rare Botryococcus, as well as acanthomorph acritarchs 

(Micrhystridium) and fungal remains (Reduviasporonites chalastus). Above the 

Marker Mudstone, samples TAMP1, TAMP2, TAMP5 and TAMP6 all have very 

high abundances of opaque phytoclasts and low abundances of translucent phytoclasts 

and palynomorphs. Samples TAMP5 and TAMP6 also feature low abundances of 

degraded phytoclasts. Samples TAMP3 and TAMP4 represent a distinct shift to an 

assemblage with even abundances of opaque and translucent phytoclasts and with 

higher abundances of palynomorphs. Botryococcus, acanthomorph acritarchs, and 

fungal remains are all present in low abundances in these samples as well (Fig. 9). 

Results of our cluster analysis reveal three distinct palynofacies assemblages 

(Fig. 10). Samples TAMP19–TAMP21 encompass Assemblage A, which is mainly 

characterised by the high abundance of terrestrial palynomorphs (> 30%) relative to 

the proportion of phytoclasts. Samples TAMP3, TAMP4, TAMP9, TAMP10, 

TAMP11, TAMP13, TAMP15, TAMP16 and TAMP17 are classified as part of 

Assemblage B, which is characterised by a lower proportion of opaque phytoclasts (< 

60%) relative to the translucent phytoclasts and lower proportions of terrestrial 

palynomorphs (< 30%). Assemblage C (samples TAMP1, TAMP2, TAMP5, TAMP6, 

TAMP7, TAMP8, TAMP12, TAMP14, TAMP18, and TAMP22) is characterised by 

very high proportions of opaque phytoclasts (> 60%) and relatively low proportions 

of terrestrial palynomorphs (< 30%). 

 

4.3. Carbon isotopes 

The values of organic δ13C within the Tambo 1-1A samples range from -26.2‰ 

to -23.2‰ (Table 1), typical for Permian-age coals (Korte and Kozur, 2010). At core 

depths shallower than 723.73 m, the δ13C values deplete significantly to an absolute 

minimum of -26.2‰ at 700.39 m. From the data it is possible to distinguish two clear 

data ranges: the upper data range occurring in TAMI1–TAMI7 with an average δ13C 

of -25.8‰ (σ = 0.3‰), and the lower data range within TAMI8–TAMI17 with an 
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average δ13C of -23.6‰ (σ = 0.3‰). These two data ranges are separated by a 

maximum ∆ 3.0‰ isotopic excursion. This relatively low magnitude excursion is 

comparable to other organic carbon isotopic values in Australia during the 

preliminary stages of CO2 release, prior to the Permian–Triassic boundary (Retallack 

and Krull, 2006). Carbon isotopic values indicate no observable trends with 

palynofacies data, indicating that δ13C is not dependent on phytoclast type or 

assemblage. 

 

5. Discussion 

 

5.1. Age determination – Unit APP6 

The onset of unit APP6 or equivalent biostratigraphic units shows some degree of 

variability across the eastern Australian basins. Michaelsen (2002) mark its 

appearance at the base of the Marker Mudstone, while Rigby and Hekel (1977) and de 

Jersey (1979) mark the stratigraphic position of the Permian–Triassic boundary just 

above the uppermost coal seam. Difficulties arise due to the distinction of the 

Playfordiaspora crenulata and Protohaploxypinus microcorpus zones (Foster, 1979). 

This is due to the appearance of forms resembling P. microcorpus below the level of 

the first appearance of P. crenulata (this work; de Jersey, 1979; McLoughlin, 1988; 

Price, 1997). Foster (1979, 1982) proposed a subzone P. microcorpus Zone as defined 

by Helby (1973) using the first appearance of P. crenulata to define a lower unit. 

Initially this was described as the Lower P. microcorpus Zone, but later it was 

amended to become the P. crenulata Oppel zone based on its biostratigraphic and 

geographic significance (Foster, 1982). Unit APP6 was initially defined by Price 

(1997), based on the first appearance of Triplexisporites playfordii. However, the 

subunits of APP601 and APP602 were equated with the P. crenulata and P. 

microcorpus associations, respectively. Many of the elements present within 

APP5005 subunit continue to appear within the lower APP6 unit though in much 

lower abundances (Protohaploxypinus, Scheuringipollenites), along with the 

appearance of several new key species (e.g., Triquitrites proratus, Triplexisporites 

playfordii). However, the samples examined in this work as well as the datasets of de 

Jersey (1979) show that the appearance of key index taxa marking the onset of unit 

APP6 do not necessarily appear in the same horizon, which suggests strong 

environmental or sedimentological controls on the base and extent of the APP6 unit. 
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5.2. Permian–Triassic boundary 

Placing the unit APP6 relative to the Permian–Triassic boundary in eastern 

Australia has challenged workers in the area for many decades. The presence of key 

P–T indicators such as macrofloral turnover and fungal spikes is inconsistent and so 

workers have turned to chronostratigraphic techniques. Metcalfe et al. (2015) used 

high precision U-Pb zircon dates to place the GSSP-defined P–T boundary in the 

Scarborough Sandstone uncoupling it from the extinction interval, which is located at 

the base of the Coalcliff Sandstone. This would place the extinction interval at the 

base of unit APP6 and the GSSP-defined P–T boundary into the lower part of unit 

APT1. Laurie et al. (2016) place the unit APP6 in the earliest Triassic on the basis of 

palynological and macrofloral data from the borehole Santos Yebna 1 (Powis, 2009). 

The base of the unit APP6 was defined at this locality just above the uppermost 

Permian coal seam by the first appearance of Triplexisporites playfordii (Murdoch, 

2012). Several metres above this interval, Powis (2009) recorded non-glossopterid 

macroflora, which may suggest a post-extinction plant assemblage. U-Pb zircon dates 

were also used to calibrate the biostratigraphic scheme, placing the P–T boundary at 

the base of unit APP6, however no ages have so far been obtained from unit APP6 

itself to support this interpretation (Laurie et al., 2016). In the Sydney Basin, 

Retallack (1995) associates the P. microcorpus Zone with the Dicroidium 

callipteroides megafloral biozone in the Early Triassic and identifies a distinct change 

from a high diversity glossopterid flora to a low diversity post-extinction flora just 

above the Bulli Coal. 

In Antarctica, the P–T boundary sections are well exposed. Collinson et al. 

(2006) identify the P. microcorpus Zone from a sample at the base of a carbonaceous 

mudstone parting in the uppermost Permian coals in the Buckley Formation at 

Graphite Peak. Vertebraria (glossopterid roots) were recovered several centimetres 

above the top of the mudstone parting at the base of the uppermost coal seam in the 

Buckley Formation (Retallack and Krull, 1999), which suggests the extinction interval 

lies above their sampled interval. The P. microcorpus flora is regarded as transitional 

between the Glossopteris vegetation and the final extinction event, which eliminates 

the last elements of the Glossopteris flora. In a section studied in the Prince Charles 

Mountains, the P–T boundary was placed at the interface of the McKinnon Member 

and Ritchie beds, based on the cessation of coal deposition. This interval also marks 
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the first appearance of Lunatisporites pellucidus, the index taxon of unit APT1 

(Lindström and McLoughlin, 2007). In the central Transantarctic Mountains, 

Glossopteris remains have been found 37 m above detrital zircon samples indicating 

an Early Triassic age (Elliot et al., 2017), while in South Africa, Glossopteris remains 

were recovered from the Lystrosaurus Assemblage Zone, which is regarded as 

Triassic in age (Gastaldo et al., 2017). Both these occurrences raise questions about 

the accuracy of proxies such as a macrofloral turnover when defining the terrestrial 

expression of the P–T boundary. Even in the marine basins of western Australia, 

placing the P–T boundary with confidence is a challenge due to unconformities in 

different sections in each basin and a lack of ashfall tuffs that can be age dated. 

However, in all basins the carbon isotopes tend to correlate well with the microfossil 

biostratigraphy (Gorter et al., 2009). The carbon isotope excursion begins to shift 

more negative at the base of the P. microcorpus Zone and reaches its most negative 

values at the base of the L. pellucidus Zone (Morante, 1996; Gorter et al., 2009), 

which agrees with the aforementioned Antarctic studies. 

Using organic carbon isotopes, the age-proximity of the Marker Mudstone’s 

deposition to the P–T boundary may be speculated. From the relatively low 

magnitude excursion observed in these samples, it is assumed that the Marker 

Mudstone was not deposited during a time period to which the full extent of 

contemporaneous CO2 production occurred (Korte and Kozur, 2010). This 

interpretation is supported by the lack of observable unit APP6 taxa in the Marker 

Mudstone samples, which suggest the P–T boundary itself, and the apogee of the P–T 

carbon isotopic excursion occurred well after the deposition of the Marker Mudstone. 

The use of carbon isotope trends as tool for relative age dating across relatively low-

resolution sequences is problematic, given a number of palaeoenvironmental factors 

that may influence the uptake of carbon isotopes in the primordial plant material (Van 

de Wetering et al., 2013b). It is these palaeoenvironmental factors that are attributed 

to the low magnitude (σ = 0.3‰) variation in carbon isotopic values within the upper 

(TAMI1–TAMI7) and lower (TAMI8–TAMI17) range of isotopic values for the 

Marker Mudstone, though these are not causally related to palynofacies changes 

observed within the equivalent samples. Furthermore, the absolute range and timing 

of carbon isotopic variation is variable between sample location and stratigraphy, 

dependent on both depositional setting and geographical proximity to the Siberian 
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Traps and late Permian volcanic systems associated with massive CO2 expulsion 

(Svensen et al., 2009). 

 

5.3. Palaeoenvironment 

The presence of a variety of freshwater to brackish algae (Botryococcus, 

Brazilea) and prasinophytes (Cymatiosphaera) in the Bandanna Formation fits well 

with the previous interpretation of a deltaic environment (Fig. 7) (Phillips et al., 

2017). The mudstones and siltstones at around 740 m in core Tambo 1-1A are the 

distal equivalent of the B seam (Fig. 3). This interval falls into palynofacies 

Assemblage A, an assemblage dominated by palynomorphs, particularly bisaccate 

pollen grains, which are concentrated in distal areas due to the Neves Effect (Chaloner 

and Muir, 1968). The section coarsens upwards into a more sandstone-dominated 

facies as the delta prograded southwards. The palynofacies also appear consistent with 

this interpretation with a transition from Assemblage A to Assemblage B featuring an 

increased abundance of phytoclasts, suggesting increased proximity to the terrestrial 

source with a switch to a fluvial-dominated environment. The phytoclast assemblage 

is a mixture of opaque and translucent phytoclasts, which reflects varying lengths of 

transport either from vegetation occupying the delta and adjacent swamps or from 

fluvial systems carrying phytoclasts over a long distance. 

The occurrence of the black organic-rich Marker Mudstone along with the 

presence of acritarchs, albeit in low abundances, suggests that this bed may represent 

a maximum flooding surface. This coincides with a spike in acritarch abundances in 

the Sydney Basin immediately above the uppermost Permian coals (Bulli Coal), 

which Retallack (1995) attributed to a short-term marine incursion. The low 

abundances of freshwater/brackish algae and AOM could reflect either poor 

preservation or conditions in the water column unsuitable for the proliferation of 

freshwater algal colonies. The palynofacies assemblage shifts from Assemblage B to 

Assemblage C, suggesting a change in the oxidation conditions in the water column or 

a change in the transport dynamics affecting input into the lake. A similar trend can be 

seen in the transition from palynofacies CPFII to CPFIII in late Permian coal deposits 

(Van de Wetering et al., 2013a), where an assemblage featuring mixed opaque and 

translucent phytoclasts and very low AOM abundances is replaced by an assemblage 

almost completely dominated by opaque phytoclasts. This is related to a base-level 

change from high to fluctuating, with redox conditions changing from stable to oxic. 
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A high base level with anoxic bottom waters would preserve wood fragments and 

organic material in the sediments to form the organic-rich mudstone. The source of 

the degraded phytoclasts remains uncertain. They might derive from eroded peat 

further inland, or might indicate extreme conditions (i.e., high acidity) within the 

water column, both of which are phenomena typically associated with end-Permian 

environmental perturbation (Sephton et al., 2005, 2015). 

Detrital-zircon data from Phillips et al. (2018) indicate that the Anakie Inlier was 

submerged at the time the Marker Mudstone was deposited, and that the waterbody 

was a large-scale feature that spread across both basins (Fig. 7). Accommodation for 

this waterbody would have been created by subsidence related to foreland loading on 

the eastern margin of the Bowen Basin. Thin sandstone beds sourced from the east 

occur within coarsening-upwards sequences above the Marker Mudstone and its 

regional equivalents (Grech and Dyson, 1997). These sandstones make up the basal 

unit of the Sagittarius Sandstone and may represent a proximal deltaic facies, which 

progrades westwards (Grech, 2001; Sliwa et al., 2017). The full extent of the Marker 

Mudstone is still not well constrained and it is yet to be determined if it represents a 

single extensive lake or smaller separate bodies of water which infilled the 

topography during the transgression. This might explain the apparent diachroneity in 

the palynogical correlation between basins (Sliwa et al., 2017). 

The palynofacies above the Marker Mudstone is generally opaque phytoclast 

dominated and has a very low abundance of palynomorphs (Assemblage C), which 

may reflect long-distance transport in fluvial channels associated with the regressive 

Rewan Formation. An alternative interpretation is that this assemblage could 

potentially also represent a P–T extinction interval as fungal remains 

(Reduviasporinites chalastus) are present above and below, though in rare 

abundances. However, the switch back to Assemblage B only a few centimetres above 

this interval in samples TAMP3 and TAMP4, which contain a diverse APP6 flora, 

raises questions about the extent and position of the extinction event and about the P–

T boundary placement in eastern Australia. 

 

6. Conclusions and outlook 

Palynological and palynofacies data from GSQ Tambo 1-1A provide new insight 

into the late Permian palaeoenvironment in the Galilee Basin. The data generally 

agree with previous interpretations of a prograding deltaic system, which then 
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subsided and was flooded with a large waterbody (lake) that occupied the potentially 

combined centre of the Bowen and Galilee basins due to a submerged Anakie Inlier 

(Phillips et al., 2017, 2018). The change in algal components with rare occurrences of 

acanthomorph acritarchs suggests an increased salinity level, potentially related to a 

short-term marine transgression. 

Based on palynological data alone, we cannot place the P–T boundary in GSQ 

Tambo 1-1A with any certainty. Whereas the transition from unit APP5 to unit APP6 

correlates well with some coeval sections in the Bowen Basin (Smith and Mantle, 

2013) and Sydney Basin (Retallack, 1995), it differs from that of the Marker 

Mudstone section at the Newlands Coal Mine (Michaelsen et al., 2000), where the 

transition to unit APP6 lies at the base of the Marker Mudstone package. This 

suggests some degree of diachroneity, with regard to either the base of unit APP6 or 

the onset of the Marker Mudstone deposition. Another potential interpretation is that 

the “Marker Mudstone” featured in the Galilee Basin is not a true correlative of the 

Marker Mudstone mapped in the Bowen Basin. Carbon isotopic evidence from the 

Marker Mudstone concurs with palynological results, indicating the onset of 

contemporaneous CO2 release at the onset of the P–T carbon isotopic excursion, but 

not coincident with the apogee of this event. 

More detailed studies of the Marker Mudstone in both the Bowen and Galilee 

basins are needed to fully understand its relationship to the P–T boundary. Mapping 

of the Marker Mudstone in the Galilee Basin is needed to understand its nature and 

spatial distribution, for comparison with the Bowen Basin. Future studies should also 

focus not just on palynological data, but on high-resolution carbon isotope and trace 

element trends to allow more detailed interpretations of the palaeoenvironmental and 

palaeoclimatic changes occurring in Australia at the end of the Permian. 
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Figure and table captions 

 

Figure 1. Map of the Galilee and Bowen basins with location of stratigraphically 

significant wells. GSQ Tambo 1-1A (marked with a star) occupies a position at the 

edge of the Springsure Shelf, which connects the two basins. 

 

Figure 2. W-E cross section of the Permo-Triassic sediments infilling the Cooper, 

Galilee and Bowen basins overlain by the younger sediments of the Eromanga Basin 

(after Hobday, 1987). 

 

Figure 3. Lithostratigraphic scheme of the Galilee Basin and Denison Trough 

(modified from Phillips et al., 2017). The relative positions of the major coal seams 

(A-F) are also displayed. Though there is evidence of a regional unconformity in 

many locations, the interface of the Bandanna and Rewan formations features the 

Marker Mudstone, and no unconformity is apparent. The interval being investigated 

in this study is marked between the two stars. 
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Figure 4. Palynostratigraphic data showing selected species from Tambo 1-1A based 

on counts of 200 palynomophs. Samples in which this count could not be reached are 

not included. The data indicates unit APP5 (?APP5006 subunit) continues into the 

Marker Mudstone. The transition to unit APP6 occurs above the mudstone (marked 

by the first sparse occurrence of Protohaploxypinus microcorpus). Cluster analysis 

suggests the assemblages in each unit are relatively distinct from one another even 

though some elements of unit APP5 are still present above the Marker Mudstone. 

 

Figure 5. Line chart depicting palynofacies data from Tambo 1-1A. Lines measuring 

relative abundance (%) also mark sample locations on the lithology. Presence of key 

palaeoenvironmental indicators (algae/prasinophytes, acritarchs, fungal spores) are 

also marked. Cluster analysis of the samples suggests three main palynofacies 

patterns. Ternary diagrams plotting the data based on the major palynofacies 

components show three distinct palynofacies assemblages (A-C). The major 

palynofacies components are opaque phytoclasts (OP), translucent phytoclasts (TP) 

and terrestrial palynomorphs (PAL). 

 

Figure 6. Carbon isotope trends with depth in Tambo 1-1A showing a low magnitude 

excursion within the Marker Mudstone, plotted alongside the pollen/spore ratio, 

bioevents, biostratigraphy and palynofacies cluster analysis. The current placement of 

the P–T boundary in Australia (Laurie et al., 2016) is marked, though evidence from 

this study is not sufficient to define it conclusively in this locality. 

 

Figure 7. Reconstruction of the potential palaeoenvironmental conditions of the 

Bandanna Formation (A) and the Marker Mudstone (B). Data from Tambo 1-1A 

supports the interpretation of a southwards-prograding delta which subsides as base 

level rises leading to the formation of a large waterbody (lake) across the Bowen and 

Galilee basins (Phillips et al., 2017, 2018). Blue arrows suggest areas where a 

potential marine transgression could have come in. The presence of both 

acanthomorph acritarchs and Botryococcus suggests increased salinity but not fully 

open marine conditions, leading to the interpretation of a marine influenced lacustrine 

environment. 
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Figure 8. Phytoclasts, palynomorphs and fungal hyphae, borehole Tambo 1-1A 

(Galilee Basin). Taxon name is followed by sample number, slide number (brackets) 

and stage coordinates for a ZEISS Photomicroscope III. (A) Degraded phytoclasts, 

TAMP8 (b), 97.1/8.2. (B) Playfordiaspora crenulata, TAMP4 (a), 91.8/0.2. (C) 

Protohaploxypinus microcorpus, TAMP6 (a), 114.3/17.8. (D) Fungal hyphae?, 

TAMP10 (b), 97.2/2.4. (E) Microreticulatisporites bitriangularis, TAMP18 (a), 

100.3/12.2. 

 

Figure 9. Palynomorphs of borehole Tambo 1-1A (Galilee Basin). Taxon name is 

followed by sample number, slide number (brackets) and stage coordinates for a 

ZEISS Photomicroscope III. (A) Micrhystridium sp., TAMP10 (b), 99.7/1.2. (B) 

Cymatiosphaera gondwanensis, TAMP17 (a), 87.2/3.3. (C) Botryococcus sp., 

TAMP22 (a), 80.8/13.9. (D) Botryococcus?, TAMP3 (a), 104.2/16.7. (E) 

Reduviasporonites chalastus, TAMP3 (a), 109.3/17.2. 

 

Figure 10. Palynofacies of borehole Tambo 1-1A (Galilee Basin). (A) Palynofacies 

Assemblage A featuring a high proportion of palynomorphs, particularly bisaccate 

pollen. (B) Palynofacies Assemblage B featuring a moderate to high proportion of 

translucent phytoclasts (structured and unstructured) as well as a moderate proportion 

of opaque phytoclasts and some well-preserved palynomorphs. (C) Palynofacies 

Assemblage C featuring a high proportion of opaque phytoclasts and a low proportion 

of translucent phytoclasts; palynomorphs are rarely well preserved. 
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Table: 

 

Table 1. Organic carbon isotope samples from GSQ Tambo 1-1A and their equivalent 

palynological samples. 

 

 

Sample name Depth (m) δ13C (VPDB ‰) Equivalent palynological sample 

TAMI1 699.13 -25.4 TAMP5 

TAMI2 699.33 -25.5 TAMP6 

TAMI3 700.14 -26.0 TAMP7 

TAMI4 700.24 -26.1 TAMP8 

TAMI5 700.39 -26.2 TAMP9 

TAMI6 700.49 -25.9 TAMP10 

TAMI7 700.64 -25.4 TAMP11 

TAMI8 723.73 -23.2 TAMP13 

TAMI9 729.01 -23.2 TAMP14 

TAMI10 729.21 -24.1 TAMP15 

TAMI11 733.91 -23.8 TAMP16 

TAMI12 735.04 -23.4 TAMP17 

TAMI13 735.4 -23.6 TAMP18 

TAMI14 738.33 -23.5 TAMP19 

TAMI15 738.81 -23.3 TAMP20 

TAMI16 740.54 -23.7 TAMP21 

TAMI17 741.66 -23.7 TAMP22 
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