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Multiphoton quantum interference underpins fundamental tests of quantum mechanics and quan-
tum technologies. Consequently, the detrimental effect of photon distinguishability in multiphoton
interference experiments can be catastrophic. Here, we employ correlation measurements in the
photonic inner modes, time or frequency, to restore quantum interference between photons differing
in their colors or injection times in arbitrary linear optical networks, without the need for additional
filtering or post selection. Interestingly, we demonstrate how harnessing the multiphoton inner-mode
quantum information enables to infer information about symmetries of multiphoton networks and
states and to observe arbitrary degrees of W-state entanglement between a small number of photons
with a fixed interferometer. These results are therefore of profound interest for future applications
of universal inner-mode resolved linear optics across fundamental science and quantum technologies
with photons with experimentally different spectral properties.

I. INTRODUCTION AND MOTIVATION

The nonclassical interference of light [1–3] is one of the
main consequences of the quantum nature of the elec-
tromagnetic field and lies at the heart of many quantum
optics experiments [1–14]. It plays a central role in a
variety of applications ranging from quantum computing
[4, 15–19] over quantum communication and quantum
cryptography [20, 21] to quantum metrology and state to-
mography [9–12, 14, 22–24]. Conventional multiphoton
experiments in linear interferometers rely on measure-
ments at the interferometer output which do not resolve
the structure of the multiphoton interference in the pho-
tonic spectral degrees of freedom, namely frequency and
time, effectively ignoring the full quantum information
encoded in the photonic spectra. This “ignorance” can
lead to the degradation of the observed multiphoton in-
terference with increasing distinguishability for photons
with nonidentical input states [5]. This is indeed the case
for single-photon emitters, such as diamond colour cen-
ters [25], single molecules [26] and quantum dots [27, 28].
Here, photons emitted by different sources or by the same
source at different times are generally different in their
spectra.

Fortunately, with the advent of detectors with unprece-
dented time- or frequency-resolution, linear optical cor-
relation experiments based on inner-mode resolving mea-
surements either in time or frequency have become fea-
sible [29–36]. As a result, full multiphoton interference
can be observed at the output of a linear network even in
the case of nonidentical input photons [5, 29]. Addition-
ally, the dependence of the correlations of three photons
at the output of a linear network has been investigated
as a function of the spectral overlap of the input photons
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[37, 38].
Furthermore, the generation of maximally entangled

W-states was also demonstrated theoretically by postse-
lecting events at equal detection times at the output of
a tritter for photons of completely different colors [5].

It was also shown that the access to the quantum infor-
mation encoded in the spectra of the interfering photons
via correlation measurements in the photonic inner de-
grees of freedom can unravel the full classical hardness
of multiphoton interference in boson sampling schemes
[18, 19]. This is even the case if no overlap between
the input photon frequency and temporal spectra occurs
[19, 39, 40]. Furthermore, it is possible to generate a
boson sampling input state in an approximately deter-
ministic way with photons of random spectral overlap
and/or with random occupation numbers at the input
[41].

Despite all these remarkable results, the full quantum
advantages of multiphoton interference based on inner-
mode resolved linear optics arising in quantum optics
experiments even beyond boson sampling are still far
from being fully explored. In particular, working towards
novel schemes for the characterization of multiphoton
networks and entanglement generation with nonidentical
photons, important questions arise:

a) How can given symmetries in the multiphoton input
state and in its evolution in a linear optical network be in-
ferred from the measurement of inner-mode correlations
at the network output? b) How do time and frequency
resolved measurements tailor the type of entanglement
correlations at the output of a linear network depending
on the photonic input spectra?

By tackling these fundamental questions, we demon-
strate in this paper how the full set of outcomes of inner-
mode resolved measurements of a small number of non-
identical input photons in a linear optical network allows
one to: a) infer information about symmetries of optical
networks and of multiphoton quantum states; b) mea-
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sure arbitrary degrees of W-state entanglement of a given
small number of photons with a fixed configuration of the
linear optical network. Remarkably, these results apply
to photons of either different colors or injection times,
dramatically increasing the number of possible sources
that can be exploited for future experiments (e.g. quan-
tum dots).

II. MULTIPHOTON CORRELATIONS IN
LINEAR NETWORKS

All of the experimental scenarios described in this pa-
per are based on the N -photon linear optical networks
depicted in Fig. 1 with M ≥ N ports s = 1, 2, ...,M .

Contrary to conventional multiphoton linear optical
networks, N input single photons

|1; ξs, ωs, ts〉s :=

∞∫
0

dω ξs(ω − ωs) e+iωts â†s(ω)|0〉s (1)

with nonidentical normalized spectra ξs(ω−ωs) eiωts , dif-
fering either in their injection times {ts} := {ts ∈ R | s ∈
S} or in their central frequencies {ωs} := {ωs ∈ R+ | s ∈
S}, are injected in a set S of N input ports, leading to
the overall input state

|ψin〉 :=
⊗
s∈S
|1; ξs, ωs, ts〉s

⊗
s/∈S
|0〉s. (2)

For simplicity, we assume that the spectra of the in-
put photons satisfy the narrow bandwidth approxima-
tion ∆ωs � ωs, with the single-photon bandwidths ∆ωs,
and a polarization-independent interferometric evolution.
Furthermore, given an overall frequency spread ∆ωtot of
the input light, we assume that all possible paths through
the network are equal on the scale of the coherence length
c/∆ωtot. In this case, the interferometric evolution is also
frequency independent (see App. A for details) and can
be described by a single unitary M ×M matrix U which
defines the linear transformation

âd(ω) =

M∑
s=1

Udsâs(ω) (3)

between the mode operators âd(ω) and âs(ω) at the out-
put and input of the network, respectively.

The N photons are subsequently detected in a sub-
set D containing N of the output ports d = 1, . . . ,M
and at frequencies {ωd} := {ωd ∈ R+ | d ∈ D} or at
times {td} := {td ∈ R | d ∈ D}. Indeed, these measure-
ments “erase” the distinguishability of the input photons
in the respective conjugate photonic inner parameters: If
the photons are distinguishable in frequency, multipho-
ton indistinguishability at the output of the network is
ensured by a small enough detector integration in time
[5, 19]

δt� 1/∆ωtot,

while a high frequency resolution

δω � |ts − ts′ |−1 ∀s, s′ ∈ S and δω � ∆ωs ∀s ∈ S

ensures the indistinguishability of photons injected at dif-
ferent times [41].

linear optical
2M -port
network

N photons, ts 6= ts′

linear optical
2M -port
network

N photons, ωs 6= ωs′

b) time-resolved detectionsa) frequency-resolved detections

Figure 1. a) Setup for frequency-resolved correlation mea-
surements: N single photons, with generally different but
overlapping frequency distribution ξs, are injected at different
times ts 6= ts′ (s, s′ ∈ S) into a subset S of the input ports of a
passive linear network and detected using frequency-resolving
detectors. b) Setup for time-resolved correlation measure-
ments: N single photons with different central frequencies
ωs 6= ωs′ but overlapping temporal distributions F [ξs] are in-
jected into a passive linear network and detected using time-
resolving detectors.

In order to emphasize that our results apply to both
time and frequency resolved detection schemes due to
the conjugacy of time and frequency, we will from here
on use the following notation: The inner-mode parameter
measured at detector d will be denoted as βd (βd = td
or βd = ωd for time or frequency resolved detection, re-
spectively) while the conjugate inner-mode parameter in
which the photons are distinguishable at the input ports
s in Eq. (2) will be labeled as αs (αs = ωs or αs = ts for
time or frequency resolved detection, respectively).

The detection probability at the output at frequencies
or times βd = ωd, td for input photons of different cen-
tral times or frequencies αs = ts, ωs, respectively, can be
easily expressed in terms of the bosonic mode operators

âd(βd) =


âd(ωd) βd = ωd

1√
2π

∫
dω âd(ω) e−iωtd βd = td

at the output channels as [5]

P
(D,S)
{βd},{αs} =

〈
ψin
∣∣ ∏
d∈D

â†d(βd)
∏
d∈D

âd(βd)
∣∣ψin

〉
.

Using the notation ‖|ψ〉‖2 := 〈ψ |ψ〉 and Eq. (3), this
can be expressed in terms of the mode operators âs(βd)
at the input channels as

P
(D,S)
{βd},{αs} =

∥∥∥∥∥
N∑

s1,...,sN=1

∏
d∈D
Udsd âsd(βd)|ψin〉

∥∥∥∥∥
2

.
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Due to the structure of the state |ψin〉 in Eq. (2), only
those terms contribute in which each of the N annihila-
tion operators âs(β), s ∈ S, appears exactly once. Fur-
thermore,

âs(β)|1; ξs, ωs, ts〉s = fs(β − βs) eiβαs |0〉,

where we defined fs(βd−βs) = ξs(ωd−ωs) for frequency
resolved detection or fs(βd−βs) = F [ξs](td− ts) for time
resolved detection (F [ξs] is the Fourier transform of the
frequency distribution ξs). Consequently, the inner-mode
resolved correlations can be cast into the final form

P
(D,S)
{βd},{αs} =

∣∣∣∑
σ

∏
d∈D
Udσ(d)fσ(d)(βd − βσ(d)) eiβdασ(d)

∣∣∣2,
(4)

where the sum runs over all possible multiphoton paths
σ (permutations from the symmetric group of order N)
which bijectively connect the output ports D with the
input ports S.

The probabilities in Eq. (4) are the result of the inter-
ference between N ! multiphoton probability amplitudes
each corresponding to one of the possible multiphoton
quantum paths from the sources to the detectors [5, 39].
These amplitudes are not only determined by the linear
network but also depend on the state of the input photons
and on the detected frequencies or times, leading to quan-
tum beating of the coincidence probabilities if the con-
jugate initial inner-mode values {αs} are distinct. The
additional dependence of the correlations on the detected
inner-mode values is a manifestation of the increased in-
formation accessible by inner-mode resolved detections.
This information can be employed as a quantum resource
to unravel symmetry structures in multiphoton interfer-
ence patterns as well as to tailor non-local multiphoton
correlations.

III. SYMMETRIES OF INNER-MODE
RESOLVED CORRELATIONS

We show how symmetries in the interference pattern
of the correlations in the photonic inner modes described
by Eq. (4) provide a tool to reveal information about
the N -photon states, their interferometric evolution, or
both simultaneously. Indeed, each N -photon interference
amplitude in these correlations is given by the product
of an interferometric amplitude

Aσ :=
∏
d∈D
Udσ(d)

and a spectral amplitude

Bσ({βd}) = Bσ({βd}; {fs}, {αs}, {βs})

:=
∏
d∈D

fσ(d)(βd − βσ(d)) eiβdασ(d) . (5)

To investigate the symmetry properties of the N -photon
detection probability in Eq. (4), we consider its behaviour

−0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

(β1 − β0)/∆
β

(β
2 −

β
0 )/∆

β

(β
3
−
β
0
)/

∆
β

0

1
2

Figure 2. The inner-mode resolved interference pattern de-
fined by Eq. (4) at the output of a symmetric tritter for three
photons with input parameters {αs} = {0, 7.4/∆β, 11.3/∆β}
(αs = ts, ωs) and equal Gaussian distributions f(βd − β0) of
bandwidth ∆β, centered at β0 (βd = ωd, td). The behaviour of
the multiphoton interference pattern under permutations τ of
the detected inner-mode values βd reveals two distinct classes
of symmetries: a) a threefold rotational symmetry around the
axis (1, 1, 1) [ ] if τ is (1)(2)(3) [rotation by 0◦], (123) [120◦],
or (132) [240◦], arising uniquely from the symmetric tritter,
described by Eq. (13); b) three twofold rotational symme-
try axes which correspond to τ being (12)(3) [ ], (23)(1)
[ ], or (13)(2) [ ], emerging from a combination of the net-
work’s symmetry and a symmetry of the input frequency dis-
tributions around a common central frequency, described by
Eq. (14). Lastly, a symmetry plane (light blue) orthogonal to
the axis (1, 1, 1) exists due to the highly symmetric input state
of the photons (equal Gaussian inner-mode distributions), in-
dependently of the unitary transformation incurred by the
linear network.

under an arbitrary linear transformation T : {βd} →
span({βd})⊗N of its inner-mode arguments βd leading to

P
(D,S)
T ({βd}),{αs} =

∣∣∣∑
σ

AσBσ
(
T ({βd})

)∣∣∣2. (6)

A. General photon numbers

a. Spectral symmetries. As a first example, we ad-
dress the case where the multiphoton spectral ampli-
tude Bσ defined by the spectra of the input photons is
symmetric under a given transformation T apart from a
permutation-independent phase φ({βd}), i.e.

Bσ
(
T ({βd})

)
= eiφ({βd}) Bσ({βd}). (7)

In this case also the correlations in Eq. (6) manifest the
same symmetry. Therefore, symmetric properties of the
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input temporal and frequency spectra can be revealed
from the measured symmetries of the multiphoton inter-
ference pattern independently of the optical network.

For example, the correlation probability in Eq. (6) is
invariant under an inversion Tn̂ of the landscape along the
direction n̂ = (1, . . . , 1)T where β1 = β2 = · · · = βN if the
input photons all exhibit the same Gaussian distribution
centered at the frequency or time β0 = ω0, t0, respec-
tively. Indeed, in this case the product

∏
d fσ(d)(βd−β0)

in Eq. (5) only depends on the sum
∑
d(βd − β0)2 and is

consequently invariant under the unitary transformation

Tn̂ : βd − β0 7→ βd − β0 −
2

N

∑
d′∈D

(βd′ − β0). (8)

Furthermore, the total phase of the term∏
d exp(iβdασ(d)) in Eq. (5) transforms as∑
d∈D

βdασ(d)
Tn̂7→
∑
d∈D

βdασ(d) −
2

N

∑
s∈S

αs
∑
d′∈D

(βd′ − β0)

according to Eq. (8), where the second term is indepen-
dent of the quantum path σ. Together with the invari-
ance of

∏
d fσ(d)(βd−β0) this quantum path independent

phase implies the symmetry of the spectral amplitudes as
in Eq. (7) and therefore of the probabilities in Eq. (6),
i.e.

P
(D,S)
Tn̂({βd}),{αs} = P

(D,S)
{βd},{αs}. (9)

b. Parity symmetries. As a second example, we con-
sider photonic input spectral distributions fs(βd−β0) in
general different but symmetric around a common value
β0. In this case, the parity transformation

TP : βd − β0 7→ −(βd − β0) (10)

of the detected inner-mode values βd is equivalent to the
complex conjugation

Bσ
(
TP({2β0 − βd})

)
=
∏
d∈D

fσ(d)(βd − β0) ei(2β0−βd)ασ(d)

= ei2β0
∑
s αs B∗σ({βd})

(11)

of the spectral multiphoton amplitudes defined in Eq. (5),
apart from a phase term independent of the permuta-
tion σ. If additionally the unitary interferometer trans-
formation is characterized by multiphoton amplitudes
Aσ = A∗σ eiϕ with the same complex phase ϕ, the mea-
sured multiphoton interference pattern

P
(D,S)
TP({βd}),{αs} =

∣∣∣∑
σ

AσB∗σ({βd})
∣∣∣2

=
∣∣∣∑
σ

eiϕA∗σB∗σ({βd})
∣∣∣2 = P

(D,S)
{βd},{αs}

is invariant under the transformation Eq. (10). We em-
phasize that this parity symmetry occurs independently
of the linear network if the inner-mode values αs are iden-
tical.

c. Permutation symmetries. As a final example, we
consider the case of a permutation τ of the inner-mode
arguments in Eq. (6) corresponding to the transformation

Tτ : βd 7→ βτ(d).

By reordering the product defining the spectral ampli-
tude in Eq. (5), the transformed spectral amplitudes can
be recast to

Bσ(T {βτ(d)}) =
∏
d∈D

fσ(d)(βτ(d) − βσ(d)) eiβτ(d)ασ(d)

=
∏
d∈D

fσ(τ−1(d))(βd − βσ(τ−1(d))) eiβdασ(τ−1(d))

= Bσ◦τ−1({βd}),

where ◦ denotes the concatenation of permutations. Con-
sequently,

P
(D,S)
{βτ(d)},{αs} =

∣∣∣∑
σ

Aσ◦τBσ◦τ−1({βd})
∣∣∣2

=
∣∣∣∑
σ

Aσ◦τBσ({βd})
∣∣∣2, (12)

i.e. a permutation of the values βd can be mapped to a
permutation of the interferometric amplitudes Aσ. Inter-
estingly, this implies that some symmetries in the mea-
sured inner-mode resolved correlations can be intrinsi-
cally connected to symmetries in the interferometric am-
plitudes. Namely, if Aσ◦τ = Aσ eiϕ ∀σ with a phase ϕ for
a given permutation τ the interference pattern is symmet-
ric under the corresponding permutation of the detected
parameters {βd},

P
(D,S)
{βτ(d)},{αs} = P

(D,S)
{βd},{αs}. (13)

Furthermore, in the case where Aσ◦τ = A∗σ eiϕ ∀σ, we
find – using Eqs. (11) and (12) – that the correlations
are symmetric under a combination of the permutation
τ and the parity operation βd → 2β0 − βd,

P
(D,S)
{2β0−βτ(d)},{αs} = P

(D,S)
{βd},{αs}, (14)

if the spectral distributions are all symmetric around the
same central value β0.

We emphasize that the symmetries described here are
encoded in the inner-mode resolved interference pattern.
If no inner-mode resolved measurements are employed
these structures cannot be observed and the correspond-
ing symmetries cannot be retrieved [5, 42].

Even though the number of measurements necessary
to reconstruct the full interference pattern increases ex-
ponentially with the number of photons in the present
formulation, this technique can surely be applied for ex-
periments with low photon numbers.
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B. Example: Three-photon symmetries

In order to provide a practical example of some of the
symmetric properties described so far, we consider the
case of three photons with identical spectral distribu-
tions f(βd − β0) but different injection times or central
frequencies αs = ts, ωs measured at the output of a sym-
metric tritter at frequencies βd = ωd or times βd = td,
respectively. The corresponding correlations depicted in
Fig. 2 depicted as a function of the detected inner-mode
parameters {βd} exhibit not only three-photon quantum
beating [5] but also several evident symmetries in the
measured photonic inner parameters. We will now de-
scribe how these symmetries originate from either the
interferometer transformation U , or the input state, or a
combination of both.

a. Permutation symmetries. We first find from the
symmetric tritter single-photon amplitudes Uds :=
exp(i 2π

3 ds)/
√

3 (d, s = 1, 2, 3) that Aσ◦τ = Aσ if the
permutation τ is either (1)(2)(3), (123), or (132) [using
cycle notation of permutations] and consequently that
the probability remains unchanged under these permuta-
tions of the inner-mode variables βd, as is clear from the
result for arbitrary values of N in Eq. (13). As depicted
in Fig. 2, this results in a threefold rotational symme-
try axis (red line) emerging solely from the symmetry of
the linear optical network. We understand this by not-
ing that the permutation (123) acting onto the vector
(β1, β2, β3) corresponds to a permutation matrix

R(123) =

0 1 0
0 0 1
1 0 0

 ,

which at the same time represents a rotation of 240◦

around the axis β1 = β2 = β3. Consequently, τ = (123)
yields a rotation of the correlation pattern itself −240◦

or equivalently 120◦. Equivalently, the permutation (132)
corresponds to a rotation by 240◦ around the same axis.

A second class of symmetries correspond to the permu-
tations (12)(3), (23)(1), or (13)(2) for which Aσ◦τ = A∗σ.
According to Eq. (14), these correlations are symmetric
under a combination of these permutations with a parity
operation, given a symmetry of the inner-mode distribu-
tions of the input photons around a common value of
the central inner-mode parameter β0 = ω0, t0. These
symmetries show up as three distinct twofold rotational
symmetry axes in Fig. 2 (blue lines). For example, the
permutation (12)(3) together with the parity operation
is represented by the negative permutation matrix

−R(12)(3) =

 0 −1 0
−1 0 0
0 0 −1


which is equivalent to a rotation by 180◦ around the
axis ν1 + ν2 = 0, ν3 = 0 (solid blue line in Fig. 2).
The two remaining permutations (23)(1) and (13)(2) are
analogously connected to twofold rotational symmetries

around the axes defined by ν2 + ν3 = 0, ν1 = 0 (dashed
blue line) or by ν1 + ν3 = 0, ν2 = 0 (dotted blue line),
respectively.

b. Mirror symmetry. Finally, the choice of a highly
symmetric input state (three photons with identical
Gaussian distributions) leads to a symmetry under the
linear transformation Tn̂ in Eq. (8). Namely, in the
three-photon case considered here, Eq. (9) corresponds
to a mirror symmetry with respect to the blue plane or-
thogonal to the axis (1, 1, 1) in Fig. 2. The combination
of this mirror symmetry with the rotational symmetries
corresponding to the permutations (12)(3), (23)(1), and
(13)(2) leads to three distinct mirror symmetries, each
corresponding to a mirror plane spanned by the red axis
and one of the blue axes.

c. Parity symmetry. We also notice that no parity
invariance arises in the interference pattern in Fig. 2 since
the multiphoton amplitudes Aσ do not have the same
complex phase and therefore do not satisfy the condition
pointed out before for parity invariance.

IV. MULTIPHOTON ENTANGLEMENT
FEATURES

Remarkably, inner-mode correlation measurements
also allow us to encode a whole family of entangled N -
qubit states in the outcomes of the measurements. In
particular, we will show how entanglement in the polar-
ization modes can be tailored depending on the inner-
mode input parameters αs and the detected conjugate
parameters βd. For this purpose, we generalize the pho-
tonic input state |ψin〉 in Eq. (1) to describe N photonic
qubits with horizontal (H) or vertical (V) polarization as

|1; ξs, ωs, ts, λs〉s :=

∞∫
0

dω ξs(ω − ωs) e+iωts â†s,λs(ω)|0〉s,

with λs = H,V. Then, inner-mode correlation measure-
ments at the output of a generalised symmetric beam
splitter – described by the unitary Uds = exp(i 2π

N ds)/
√
N

and assumed to be polarization independent – can lead
to entanglement correlations spanning the full class of
N -qubit W-states [43]. This can be achieved by choos-
ing N − 1 H- and one V-polarized photons (λ1 = · · · =
λN−1 = H, λN = V) with identical frequency distribution
ξ(ω) as the input state

|ψin〉 =

N−1⊗
s=1

|1; ξ, ωs, ts,H〉s|1; ξ, ωs, ts,V〉N .

By rewriting the creation operators â†s,λs at the input as
the linear combination

â†s,λs(β) =
∑
d

Udsâ†d,λs(β)

of the creation operators â†d,λs at the output in analogy to
Eq. (3), the state |ψin〉 can be propagated to the output
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of the interferometer. The resulting output state

|ψout〉 =

N∏
s=1

N∑
ds=1

Udss
∫
dβs fs(βs) eiβsαs â†ds,λs(βs)|0〉

contains contributions for all possible sets of output chan-
nels where the photons are found. However, an inner-
mode resolved, N -fold coincidence measurement at the
output of the network is only sensitive to the contribu-
tion

|ψ(1...N)
out 〉 =

∫
dNβd

∑
σ∈ΣN

AσBσ({βd})|{λσ(d)}, {βd}〉

=

∫
dNβd

N∑
j=1

[ ∑
σ

σ(j)=N

AσBσ({βd})
]
|H...H︸ ︷︷ ︸
j−1

VH...H︸ ︷︷ ︸
N−j

, {βd}〉

(15)

corresponding to a single-photon being detected at each
of the output channels. The second line in Eq. (15)

reveals that the sum in this expression defines a state
from the class of N -qubit W-states for any given set
of detected inner-mode values {βd}. Consequently, the
setup described in this section can be employed to gen-
erate a whole class W-states of multiple qubits which are
parametrized by the detected inner-mode values {β}.

Since such a scheme relies on postselecting only the de-
tections events of one photon per output port, the proba-
bility of generating W-state correlations scales down ex-
ponentially with the number of photons. Nonetheless,
the scheme can be used to observe entanglement between
a low number of nonidentical photons.

A. Entanglement of three photons

We now consider the case of N = 3 as an example.
Here, coincidences of all three detectors are sensitive to
the state component

|ψ(123)
out 〉 =

∫
d3βd

3∏
d=1

f(βd)

[ ∑
σ∈{(13)(2),(132)}

Aσ eiβdασ(d) |VHH, {βd}〉

+
∑

σ∈{(23)(1),(123)}
Aσ eiβdασ(d) |HVH, {βd}〉+

∑
σ∈{(12)(3),(1)(2)(3)}

Aσ eiβdασ(d) |HHV, {βd}〉

](16)

according to Eq. (15). This explicit form nicely illustrates
that the amplitudes of the W-states inside the square
brackets are the result of the interference between the
two H-polarized photons. For example, the amplitude
of |VHH, {βd}〉 is the coherent superposition of the two
possible quantum paths for which the V -polarized photon
is detected in the first output channel.

For a given set of measured values {βd}, the polariza-
tion state of the photons in Eq. (16) corresponds to a
three-photon W-state

|W{βd},{αs}〉 := a|HHV〉+ b|HVH〉+ c|VHH〉, (17)

with amplitudes a = a{βd},{αs}, b = b{βd},{αs}, c =
c{βd},{αs} parametrized by the detected inner-mode val-
ues {βd} = {ωd}, {td} and the input values {αs} =
{ts}, {ωs}, respectively. As we demonstrate in App. B,
the absolute values are given by

|a| =
∣∣∣cos

(1

2
(β2 − β3)(α1 − α2)− 2π

3

)∣∣∣,
|b| =

∣∣∣cos
(1

2
(β1 − β3)(α1 − α2) +

2π

3

)∣∣∣,
|c| =

∣∣∣cos
(1

2

(
(β1 − β3)− (β2 − β3)

)
(α1 − α2)− 2π

3

)∣∣∣,
(18)

apart from a common normalization constant. As dis-
cussed above, the moduli of these coefficients arise from
the interference between the H-polarized photons and
the degree of entanglement is therefore independent of
the inner-mode parameter α3 of the V-polarized pho-
ton. Indeed, if the two H-polarized photons are offset
in their initial inner-mode parameters with respect to
each other (α1 − α2 6= 0), their interference manifests
in a beating behavior of the coefficients a, b, c, inde-
pendently of the photonic frequency distribution ξ(ω).
This beating behavior is depicted in Fig. 3a) in the par-
ticular case (β1 − β3)(α1 − α2) = −(β2 − β3)(α1 − α2)
for which |a| = |b|. Therefore, the inner-mode measure-
ments span the full family of three-photon W-states in
Eq. (17) through the beating behavior of the correspond-
ing weights in Eq. (18) as a function of the detected
inner-mode values {βd} and the input inner-mode val-
ues α1−α2. In this respect, the input values αs can also
be spanned experimentally via inner-mode multiplexing
with N SPDC sources, independently of the output val-
ues {βd} [41].

It is straightforward to describe how these inner-mode
correlation measurements tailor the W-state entangle-
ment by measuring the pairwise entanglement between
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Figure 3. a) Beating in the probabilities |a|2, |b|2, |c|2 defin-
ing the detected W-state in Eq. (17) generated by inner-mode
resolved correlation measurements in the values βd = ωd, td
of two H- and one V -polarized input photons of different pa-
rameters αs = ts, ωs at the output of a symmetric tritter.
The inner-mode values β and α correspond to the frequency
and time or vice versa. b) Average two-photon concurrence
E

(av)
{βd},{αs}

in Eq. (20). c) Minimum two-photon concurrence

E
(min)
{βd},{αs}

in Eq. (19). As an example, panel a) is plotted
as a function of (β1 − β3)(α1 − α2) = −(β2 − β3)(α1 − α2),
corresponding to the antidiagonal of panels b) and c). Any
degree of entanglement of the W-state class emerges from the
beating of the amplitudes a, b, c caused by a difference in
the input inner-mode parameters of the H-polarized photons
(α1 6= α2) when measurements in the conjugate parameters
βd are performed. As an example, tripartite entanglement
of the W-state type, corresponding to the maximal possi-
ble value E(av) = E(min) = 4/9 [43], is uniquely achieved
for |a| = |b| = |c| = 1/

√
3 (see cross mark as an exam-

ple). Further, the detected state is fully separable when
E(av) = E(min) = 0 since two of the amplitudes a, b, and c
vanish (e.g. square mark). Last, a biseparable state is found
when only one of the amplitudes vanishes (e.g. triangle mark).
Such a state shows a high average entanglement E(av) = 1/3
since two photons are maximally entangled, but a vanishing
minimal entanglement E(min) = 0 due to the biseparability.

the three possible photons pairs. This is possible since
the tripartite entanglement of the W-state in Eq. (17)
corresponds uniquely to the entanglement between all
photon pairs. We will in the following quantify this
pairwise entanglement in terms of the squared concur-
rences for each of the three possible reduced density ma-
trices obtained by tracing the density matrix ρ123 :=
|W{βd},{αs}〉〈W{βd},{αs}| over output channel 1, 2, or 3,
respectively [44].

The squared concurrence E12 of output channels 1 and
2 can for example be determined with the help of the

matrix

R12 :=
√√

ρ12(σy ⊗ σy)ρ∗12(σy ⊗ σy)
√
ρ12,

where σy denotes the Pauli matrix. Namely, labeling the
eigenvalues of R12 as λ1 ≥ λ2 ≥ λ3 ≥ λ4,

E12 :=
[
max(0, λ1 − λ2 − λ3 − λ4)

]2
.

From these definitions, we find for the W-state in Eq. (17)
that the squared concurrences can be expressed in terms
of the amplitudes a, b, and c as (see [43])

E12 = 4|ab|2; E23 = 4|bc|2; E13 = 4|ac|2.

By inserting the explicit form of the coefficients in
Eqs. (18), these values can be expressed as functions of
the detected inner-mode values at the output of the sym-
metric tritter.

The entanglement of the W-state is genuinely tripartite
if the minimal squared concurrence [43]

E
(min)
{βd},{αs} := min (E12, E23, E13)

= 4 min
(
|ab|2, |bc|2, |ac|2

) (19)

is non-vanishing. If E(min)
{βd},{αs} = 0, the state is either 2-

or 3-separable. These cases can be distinguished by the
average squared concurrence

E
(av)
{βd},{αs} :=

1

3
(E12 + E23 + E13)

=
4

3

(
|ab|2 + |bc|2 + |ac|2

)
.

(20)

The state is 3-separable if E(av)
{βd},{αs} = 0 and 2-separable

otherwise. Both E(min)
{βd},{αs} and E

(av)
{βd},{αs} are maximized

to the value 4/9 for a balanced W-state with |a| = |b| =
|c|, yielding the bounds [43]

E
(min)
{βd},{αs} ≤ E

(av)
{βd},{αs} ≤

4

9
.

The minimal and average squared concurrence are de-
picted in Fig. 3b) and 3c), respectively, as a functions
of the relative detected inner-mode parameters {βd} and
of the input inner-mode parameters α1 − α2. Evidently,
the states encoded into the outcomes of the inner-mode
measurements exhibit arbitrary degrees of tripartite en-
tanglement of the W-state type from complete separabil-
ity up to maximal entanglement (Fig. 3).

V. DISCUSSION

We have shown how frequency and time resolved mul-
tiphoton interference between nonidentical photons is a
promising tool to unravel the symmetries characterizing
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their quantum states and their evolution in linear op-
tical networks. Exploiting inner-mode correlation mea-
surements, the differences in the photonic inner-mode
parameters (i.e. color or injection times), instead of
being a challenge to overcome, become a powerful re-
source to generate entire families of W-states comprising
a small number of photons with a single network. In-
deed, this is possible by recording the inner-mode quan-
tum information encoded in the interfering nonidentical
photons. While the proposed schemes are not efficient in
the present form for large photon numbers, they can be
implemented for experimental realizations with low pho-
ton numbers. In particular, the experimental verification
of the emergence of some of the multiphoton symmetries
of optical networks predicted here has just recently been
reported in Ref. [45].

In conclusion, these results have the potential to in-
spire novel platforms for the analysis of multiphoton lin-
ear networks and for multiphoton entanglement genera-
tion by employing the full quantum capabilities of inner-
mode multiphoton interference in universal linear optics
with arbitrary sources of nonidentical photons.
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Appendix A: Frequency-independence of linear
network

In typical designs of linear optical networks, such as
the ones used in experimental implementations of boson
sampling, the beam splitters are located on a regular grid
[46–48]. This ensures that the path lengths ∆x

(i)
ds of all

possible paths through the interferometer are approxi-
mately equal to a given length ∆x on the scale of the
correlation length of the light, ∆x

(i)
ds = ∆x + δx

(i)
ds with

|δx(i)
ds | � 2πc/∆ωtot ∀i∀s∀d (i labels all possible paths

connecting a fixed pair s, d of input and output chan-
nels). Consequently, by using the expression ω = ω0 + Ω
(|Ω| ≤ ∆ωtot) in terms of the overall central frequency
ω0, we obtain

eiω∆x
(i)
ds /c = eiω∆x/c+iω0δx

(i)
ds /c+iΩδx

(i)
ds /c

≈ eiω∆x/c+iω0δx
(i)
ds /c,

since |Ω||δx(i)
ds | ≤ ∆ωtot|δx(i)

ds | � c. It immediately fol-
lows that the total probability amplitude connecting in-
put channel s with output channel d can be written as

Uds(ω) =
∑
i

U (i)
ds eiω∆x

(i)
ds /c

= eiω∆x/c
∑
i

U (i)
ds eiω0δx

(i)
ds = Uds eiω∆x/c,

where Uds =
∑
i U

(i)
ds eiω0δx

(i)
ds . Without losing generality,

we can set ∆x = 0 since non-zero values only correspond
to an offset of the detection times td.

Appendix B: W-state coefficients

According to Eq. (16), a three-fold coincidence event
of the photons is sensitive only to the state component

|ψ(123)
out 〉 =

∫
dβ1

∫
dβ2

∫
dβ3

3∏
d=1

f(βd) eiβ3αd
(
ã|VHH; {βd}〉+ b̃|HVH; {βd}〉+ c̃|HHV; {βd}〉

)
,

with coefficients

ã = ã{βd},{αs} =
∑

σ∈{(13)(2),(132)}
Aσ eiβdασ(d)

b̃ = b̃{βd},{αs} =
∑

σ∈{(23)(1),(123)}
Aσ eiβdασ(d)

c̃ = c̃{βd},{αs} =
∑

σ∈{(12)(3),(1)(2)(3)}
Aσ eiβdασ(d)
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Inserting the interferometer multiphoton amplitudes Aσ for the symmetric tritter Uds = exp(i2πds/3)/
√

3 the co-
efficient ã evaluates as

ã{βd},{αs} = 3−3/2
[

e−i2π/3 ei
(

(β1−β3)α3+(β2−β3)α1

)
+ e+i2π/3 ei

(
(β1−β3)α3+(β2−β3)α2

) ]
.

Consequently, we arrive at

ã = ã{βd},{αs} =
2

33/2
ei(β1−β3)α3 ei 12 (β2−β3)(α1+α2) cos

(1

2
(β2 − β3)(α1 − α2)− 2π

3

)
(B1)

and the remaining coefficients analogously are

b̃ = b̃{βd},{αs} =
2

33/2
ei 12 (β1−β3)(α1+α2) ei(β2−β3)α3 cos

(
1

2
(β1 − β3)(α1 − α2) +

2π

3

)
c̃ = c̃{βd},{αs} =

2

33/2
ei 12 ((β1−β3)+(β2−β3))(α1+α2) cos

(
1

2
((β1 − β3)− (β2 − β3))(α1 − α2)− 2π

3

)
.

Since the coefficients only depend on the differences in
the inner-mode values βd we made the arbitrary choice
to write them as functions of the pair of differences β1−β3

and β2 − β3. Equivalently, we could have chosen β1 − β2

and β3 − β2 or β2 − β1 and β3 − β1.

The coefficients a, b, c of the W-state in Eq. (17) can be
determined from Eq. (B1) by normalizing the coefficients
ã, b̃, c̃ with the factor (|ã|2 + |b̃|2 + |c̃|2)−1/2.

[1] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett.
59, 2044 (1987).

[2] C. O. Alley and Y. H. Shih, in Proceedings of the Sec-
ond International Symposium on Foundations of Quan-
tum Mechanics in the Light of New Technology (Physical
Soc. of Japan, Tokyo, 1986) pp. 47–52.

[3] Y. H. Shih and C. O. Alley, Phys. Rev. Lett. 61, 2921
(1988).

[4] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter,
A. Zeilinger, and M. Żukowski, Rev. Mod. Phys. 84,
777 (2012).

[5] V. Tamma and S. Laibacher, Phys. Rev. Lett. 114,
243601 (2015).

[6] B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys,
M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri,
W. S. Kolthammer, J. C. Gates, and others, Nature
Commun. 4, 1356 (2013).

[7] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López,
N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Mat-
suda, M. Oguma, M. Itoh, Graham D. Marshall, Mark
G. Thompson, Jonathan C. F. Matthews, Toshikazu
Hashimoto, Jeremy L. O’Brien, and Anthony Laing, Sci-
ence 349, 711 (2015).

[8] F. Flamini, L. Magrini, A. S. Rab, N. Spagnolo,
V. D’Ambrosio, P. Mataloni, F. Sciarrino, T. Zandrini,
A. Crespi, R. Ramponi, and R. Osellame, Light Sci.
Appl. 4, e354 (2015).

[9] R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046
(1956).

[10] V. Tamma and S. Laibacher, Phys. Rev. A 90, 063836
(2014).

[11] V. Tamma and J. Seiler, New J. Phys. 18, 032002 (2016).
[12] M. Cassano, M. D’angelo, A. Garuccio, T. Peng, Y. Shih,

and V. Tamma, Opt. Express 25, 6589 (2017).
[13] T. Peng, V. Tamma, and Y. Shih, Sci. Rep. 6 (2016),

10.1038/srep30152.
[14] M. D’Angelo, A. Mazzilli, F. V. Pepe, A. Garuccio,

and V. Tamma, Sci. Rep. 7 (2017), 10.1038/s41598-017-
02236-8.

[15] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010).

[16] J. D. Franson, Science 339, 767 (2013).
[17] E. Knill, R. Laflamme, and G. J. Milburn, Nature 409,

46 (2001), test.
[18] S. Aaronson and A. Arkhipov, in Proceedings of the

Forty-Third Annual ACM Symposium on Theory of Com-
puting (ACM, New York, 2011) pp. 333–342.

[19] S. Laibacher and V. Tamma, Phys. Rev. Lett. 115,
243605 (2015).

[20] H.-K. Lo, M. Curty, and K. Tamaki, Nature Photon. 8,
595 (2014).

[21] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger,
Phys. Rev. Lett. 76, 4656 (1996).

[22] J. P. Dowling, Contemp. Phys. 49, 125 (2008).
[23] G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lap-

kiewicz, and A. Zeilinger, Nature 512, 409 (2014).
[24] W. Wasilewski, P. Kolenderski, and R. Frankowski,

Phys. Rev. Lett. 99, 123601 (2007).
[25] T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang,

J. R. Maze, P. R. Hemmer, and M. Lončar, Nat. Nan-
otechnol. 5, 195 (2010).

[26] B. Lounis and W. E. Moerner, Nature 407, 3 (2000).

http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1016/0920-5632(89)90440-4
http://dx.doi.org/10.1016/0920-5632(89)90440-4
http://dx.doi.org/10.1016/0920-5632(89)90440-4
http://dx.doi.org/10.1103/PhysRevLett.61.2921
http://dx.doi.org/10.1103/PhysRevLett.61.2921
http://dx.doi.org/ 10.1103/RevModPhys.84.777
http://dx.doi.org/ 10.1103/RevModPhys.84.777
http://dx.doi.org/10.1103/PhysRevLett.114.243601
http://dx.doi.org/10.1103/PhysRevLett.114.243601
http://dx.doi.org/10.1038/ncomms2349
http://dx.doi.org/10.1038/ncomms2349
http://dx.doi.org/10.1126/science.aab3642
http://dx.doi.org/10.1126/science.aab3642
http://dx.doi.org/10.1038/lsa.2015.127
http://dx.doi.org/10.1038/lsa.2015.127
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1103/PhysRevA.90.063836
http://dx.doi.org/10.1103/PhysRevA.90.063836
http://dx.doi.org/10.1088/1367-2630/18/3/032002
http://dx.doi.org/ 10.1364/OE.25.006589
http://dx.doi.org/ 10.1038/srep30152
http://dx.doi.org/ 10.1038/srep30152
http://dx.doi.org/ 10.1038/s41598-017-02236-8
http://dx.doi.org/ 10.1038/s41598-017-02236-8
http://dx.doi.org/ 10.1038/nature08812
http://dx.doi.org/10.1126/science.1234061
http://dx.doi.org/10.1103/PhysRevLett.115.243605
http://dx.doi.org/10.1103/PhysRevLett.115.243605
http://dx.doi.org/10.1038/nphoton.2014.149
http://dx.doi.org/10.1038/nphoton.2014.149
http://dx.doi.org/10.1080/00107510802091298
http://dx.doi.org/ 10.1038/nature13586
http://dx.doi.org/10.1103/PhysRevLett.99.123601
http://dx.doi.org/ 10.1038/nnano.2010.6
http://dx.doi.org/ 10.1038/nnano.2010.6
http://dx.doi.org/10.1038/35035032


10

[27] A. J. Shields, Nature Photon. 1, 215 (2007).
[28] P. Michler, Science 290, 2282 (2000).
[29] T. Legero, T. Wilk, M. Hennrich, G. Rempe, and

A. Kuhn, Phys. Rev. Lett. 93, 070503 (2004).
[30] M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silber-

horn, Opt. Lett. 34, 2873 (2009).
[31] A. O. C. Davis, P. M. Saulnier, M. Karpiński, and B. J.

Smith, Opt. Express 25, 12804 (2017).
[32] C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta,

and M. Bellini, Phys. Rev. Lett. 109, 053602 (2012).
[33] T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm,

M. Shaw, R. P. Mirin, and S. W. Nam, Phys. Rev. A
91, 013830 (2015).

[34] R.-B. Jin, T. Gerrits, M. Fujiwara, R. Wakabayashi,
T. Yamashita, S. Miki, H. Terai, R. Shimizu, M. Takeoka,
and M. Sasaki, Opt. Express 23, 28836 (2015).

[35] V. Shcheslavskiy, P. Morozov, A. Divochiy,
Y. Vakhtomin, K. Smirnov, and W. Becker, Rev.
Sci. Instrum. 87, 053117 (2016).

[36] M. Grimau Puigibert, G. Aguilar, Q. Zhou, F. Marsili,
M. Shaw, V. Verma, S. Nam, D. Oblak, and W. Tittel,
Phys. Rev. Lett. 119, 083601 (2017).

[37] S.-H. Tan, Y. Y. Gao, H. de Guise, and B. C. Sanders,

Phys. Rev. Lett. 110, 113603 (2013).
[38] H. de Guise, S.-H. Tan, I. P. Poulin, and B. C. Sanders,

Phys. Rev. A 89, 063819 (2014).
[39] V. Tamma and S. Laibacher, Quantum Inf. Process. 15,

1241 (2015).
[40] V. Tamma, Int. J. Quantum Inf. 12, 1560017 (2014).
[41] S. Laibacher and V. Tamma, arXiv preprint

arXiv:1801.03832 (2018), arXiv:1801.03832.
[42] V. Tamma and S. Laibacher, J. Mod. Opt. 63, 41 (2015).
[43] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62,

062314 (2000).
[44] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev.

A 61, 052306 (2000).
[45] X.-J. Wang, B. Jing, P.-F. Sun, C.-W. Yang, Y. Yu,

V. Tamma, X.-H. Bao, and J.-W. Pan, Phys. Rev. Lett.
121, 080501 (2018).

[46] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Sza-
meit, and P. Walther, Nature Photon. 7, 540 (2013).

[47] T. Ralph, Nature Photon. 7, 514 (2013).
[48] A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F.

Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mat-
aloni, and F. Sciarrino, Nature Photon. 7, 545 (2013).

http://dx.doi.org/10.1038/nphoton.2007.46
http://dx.doi.org/10.1126/science.290.5500.2282
http://dx.doi.org/ 10.1103/physrevlett.93.070503
http://dx.doi.org/10.1364/OE.25.012804
http://dx.doi.org/10.1103/physrevlett.109.053602
http://dx.doi.org/10.1103/PhysRevA.91.013830
http://dx.doi.org/10.1103/PhysRevA.91.013830
http://dx.doi.org/10.1364/OE.23.028836
http://dx.doi.org/ 10.1063/1.4948920
http://dx.doi.org/ 10.1063/1.4948920
http://dx.doi.org/ 10.1103/PhysRevLett.119.083601
http://dx.doi.org/10.1103/PhysRevLett.110.113603
http://dx.doi.org/10.1103/PhysRevA.89.063819
http://dx.doi.org/10.1007/s11128-015-1177-8
http://dx.doi.org/10.1007/s11128-015-1177-8
http://dx.doi.org/10.1142/s0219749915600175
http://arxiv.org/abs/1801.03832
http://dx.doi.org/10.1080/09500340.2015.1088096
http://dx.doi.org/10.1103/physreva.62.062314
http://dx.doi.org/10.1103/physreva.62.062314
http://dx.doi.org/10.1103/PhysRevA.61.052306
http://dx.doi.org/10.1103/PhysRevA.61.052306
http://dx.doi.org/10.1103/PhysRevLett.121.080501
http://dx.doi.org/10.1103/PhysRevLett.121.080501
http://dx.doi.org/ 10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.175
http://dx.doi.org/10.1038/nphoton.2013.112

	Symmetries and entanglement features of inner-mode resolved correlations of interfering nonidentical photons
	Abstract
	Introduction and motivation
	Multiphoton correlations in linear networks
	Symmetries of inner-mode resolved correlations
	General photon numbers
	Example: Three-photon symmetries

	Multiphoton entanglement features
	Entanglement of three photons

	Discussion
	Acknowledgments
	Frequency-independence of linear network
	W-state coefficients
	References


