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Abstract 

Fat Metabolism in the Exercising Thoroughbred Horse 

The thoroughbred horse has been selectively bred for speed and has a high capacity for 

carbohydrate metabolism. The following series of studies investigated the relative 

contribution of fat and carbohydrate to energy production during exercise of varying 
intensity. Furthermore the work assessed the capacity of the horse to increase the 
contribution of fat to energy production as the result of either an acute increase in the 
availability of plasma free fatty acids (FFA) or as the result of chronic fat supplementation. 
Finally an adaptational response to feeding a fat supplemented diet was described. 

The variation in plasma long chain FFA over a 24 hour period was described. The early 
hours of the morning represented the period of greatest variability in plasma FFA 

concentration. This period was characterised by a significant increase in total and individual 
FFA concentration, which was unrelated to feed intake. As a result of the reported circadian 

rhythm in plasma FFA all subsequent exercise studies were performed during the period of 
least variability in plasma FFA concentration. 

A model for the pre-exercise elevation of plasma FFA, using a combination of a triglyceride 

emulsion and the heparinoid type substance pentosan polysulphate, was used to investigate 

the effect of increased FFA availability on fat utilisation during prolonged low intensity 

exercise. Pentosan polysulphate was used in preference to heparin following an investigation 

of their relative lipolytic and anticoagulative properties. Pentosan polysulphate when 

administered at 3 times the dose of heparin resulted in a comparable increase in plasma total 
lipase activity. When co-administered with a triglyceride emulsion, pentosan polysulphate 
resulted in a similar increase in plasma FFA concentration relative to that produced with the 

same triglyceride emulsion and heparin. The anticoagulative effect of pentosan polysulphate, 
however, was approximately 9 times less than that of heparin, as measured by activated 

partial thromboplastin time. 

The contribution of fat and carbohydrate to energy production during exercise was influenced 
by both the intensity and duration of exercise, as indicated by measurements of respiratory 
exchange ratio (RER). The inter-horse variability in RER was greatest during low intensity 

exercise. An increase in the contribution of carbohydrate to energy production occurred at 
the onset and during the early stages of prolonged exercise and as the result of an increase in 

exercise intensity. A proportion of horses exhibited an increase in the utilisation of fat during 
low intensity prolonged exercise as a result of a pre-exercise elevation in plasma FFA 
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concentration. RER was consistently lower during exercise in 5 out of the 7 horses studied 
following a pre-exercise elevation of plasma FFA. Furthermore, plasma glucose 
concentration was elevated above that observed during the control session in 4 of these 5 
horses for at least the first 15 minutes of exercise. 

A prolonged period of fat supplementation resulted in an improved management of the fat 
load. Following 10 weeks of dietary treatment a significant increase in plasma cholesterol 
concentration and a significant decrease in plasma triglyceride concentration was reported. 
The decrease in plasma triglyceride concentration was associated with a mean 50% increase 
in post pentosan polysulphate plasma total lipase activity. It is suggested that the increase in 

the post pentosan polysulphate plasma total lipase activity may have reflected an increase in 

muscle lipoprotein lipase activity. A significant increase in the activity of muscle citrate 
synthase was observed during the period of fat supplementation. No significant change 
occurred in muscle ß-hydroxyacyl CoA dehydrogenase activity or in the concentration of 
resting muscle glycogen and triglyceride as a result of fat supplementation. RER was 
significantly lower in the latter stages of prolonged low intensity exercise, during the period 
of fat supplementation, relative to the same exercise performed before the introduction and 
following 5 weeks of withdrawal of the fat supplemented diet. The reduction in RER during 

the period of fat supplementation was associated with a greater exercise induced increase in 

plasma FFA concentration. The above differences were also apparent during moderate 
intensity exercise, although, examination of the individual horse data revealed that the effect 

was not as clear as that observed during low intensity exercise. No significant differences 

were reported in either RER or plasma FFA concentration in response to moderate/high 
intensity exercise during the period of fat supplementation. Neither were any significant 
differences observed in either RER or plasma FFA concentration in the control group at any 

exercise intensity. An increased availability of plasma FFA and an increase in the oxidative 

capacity of muscle, as well as an enhanced ability to utilise plasma triglycerides may have 

contributed to the increase in fat utilisation, observed during low and moderate intensity 

exercise, in response to fat supplementation . The effect of differences in the hormonal 

response to a fat supplemented diet as a precipitant of the observed adaptational responses in 

these studies requires further investigation. 
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Chapter l 

Introduction and Literature Review 



The modern horse, Equus Caballus, has evolved as a natural athlete. Its indigenous qualities 

of strength, power and speed, coupled with its grace and agility, lend it to excel at many 

athletic activities, including: racing on the flat and over obstacles, show jumping, 3-day 

eventing, endurance racing, polo, dressage, carriage driving and trotting and pacing. 

Originally a wild grazing animal, Man's domestication of the horse began in Neolithic times. 

The earliest use of horses for riding was by the Nomads of central Asia. Contact between the 

horse-riding Nomads and the Sumarians, the developers of the ox cart, probably resulted in 

the use of horses for driving. This was the beginning of the chariot driving era characteristic 

of the classical civilisations of Mediterranean Europe. The use of the ridden horse 

progressed much later firstly for hunting and then for its use in battle. 

Some of the earliest records of the use of horses in sporting activities were in races dating 

back as far as the second millennium BC. Chariot racing was popular with the Greeks and 

Romans and was introduced into the Greek Olympic games in 648 BC. Modern flat-racing 

originated in England during the seventeenth century. During the reign of Henry VIII, races 

were held at Chester and James I established Newmarket as a racing capital by building the 

first permanent racecourse there. Today, horses compete in a range of sporting activities that 

vary considerably in terms of both intensity and duration of exercise as well as the amount of 

skill and aptitude required. 

Equine Sporting Activities 

Flat-racing, hurdling and steeple chasing 
Flat-racing represents high intensity exercise of short duration. Races are run over distances 

in Britain ranging from 5 furlongs or 1000 m to 21 furlongs or 4200 m. The shortest races 

are run in America over 1/4 mile or 400 m by the American quarter horse. Races are run at 

maximal or near maximal speed, up to 17-20 m/s (Table 1.1). As the distance of the race 

increases, however, there is a greater reliance on tactical advantage and races are not run 

"against the clock". 
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Table 1.1 Peak heart rate, estimated oxygen uptake (V02) and estimated relative work 
intensity (% V02 max) in horses competing in a range of sporting activities. 
Estimated V02 was calculated using the equation relating heart rate to V02 

as described by Evans and Rose (1987). A theoretical VO2 max of 150 ml/ 
kg/min was used in the calculation of % V02 max. 
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Hurdling and steeplechase races are generally run over longer distances than flat-races, 

typically between 3-7 km. The speed at which the races are run is generally slower than that 

of flat-races. The introduction of fences, however, increases the demands on the equine 

athlete. Steeplechase fences tend to be much larger than those of hurdle races and the race 

distance are up to 7.5 km. Probably the most well known and most testing steeplechase, the 

Grand National, is run over the latter distance and includes fences of 1.5 m (5 ft) high often 

with large ditches on either side. 

Show jumping 

During a typical show jumping competition horses exercise for about 2 minutes, jumping 10- 

12 fences. Although the horse is not travelling at a great speed it requires agility and power 

to clear the fences which may be up to 1.6 m (5 ft 3 in) in height. The addition of fences 

therefore increases the intensity of this type of exercise substantially, (Table 1.1). 

Dressage 

Dressage is possibly the most aesthetically pleasing of all the equine events but represents a 

relatively low intensity of exercise. The horse and rider perform an exercise test lasting 

approximately 5-10 minutes, which includes performance of 3 of the 4 basic paces (walk, trot 

and canter) at different levels of collection*. The exercise intensity of a dressage test is 

comparable to that of vaulting, (Table 1.1). Although the duration of the actual dressage test 

is short and the intensity of exercise relatively low, the discipline requires a high level of 

basic fitness. Competitors may undergo several hours of warm-up exercise prior to the 

competition. 

* Collection refers to the subdivision of the basic paces (walk, trot and canter) 

with respect to speed. 
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Horse trials or 3-day eventing 
Three day eventing probably represents the greatest challenge to both horse and rider alike. 

Horses perform a multi-phase test of speed, endurance, power and versatility combining 

dressage show jumping, steeple chasing and a course of often very demanding cross-country 

fences. The dressage, and show jumping phases are held on the first and last day, 

respectively. The second day includes four phases A. B, C, and D which are undertaken 

immediately following each other. There is a 10 minute rest period between phases C and D. 

Phases A and C are classified as 'roads and track phases' and consist of 16-20 km of trotting 

or slow cantering. Phase B is a steeplechase course of 9 or 10 fences over 3-3.5 km which 

must be covered at a speed of about 11.5 m/s. Finally phase D is a cross-country jumping 

course of up to 8 km which must be completed within 13-14 minutes at an average speed of 

about 9.5 m/s. The intensity of this multiphase event varies considerably from the dressage 

to the steeple chase and cross country disciplines, (Table 1.1). 

Endurance racing 
Endurance racing is a relatively new equestrian sport that is rapidly gaining popularity. 

Typical races are held over distances of 35-170 km, at speeds of up to 5-6 m/s. The duration 

of a 170 km race is on average just over 8 hours. Although the major part of the race is 

carried out at comparatively low speeds the terrain has a great bearing on the intensity of the 

exercise, (Table 1.1). 

Polo 

Polo is a fast and explosive sport that resembles hockey on horseback. It involves constant 

changes in exercise intensity as hard galloping is interrupted by stopping and turning with 

constant changes in speed. Each match is divided into periods called chukkas of which at the 

highest level there are 6. Each chukka is 7 1/2 minutes long and is interspersed by 3 minute 

rest intervals. Each player changes pony every chukka, since the game is very physically 

demanding (Table 1.1). It is permissible for a pony to play two chukkas per match provided 

that they are not consecutive. 
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Trotting and pacing 

Trotting and pacing races are typically run over 1600-3200 m, at near maximal to maximal 

intensity (Table 1.1). These races are very popular in America and throughout Europe but 

not so popular in Britain. 

There is a large variation in the intensity and duration of equine performance events. This 

will effect fuel selection and the predominance or contribution of the different energy 

generating pathways to energy production during exercise. The following review briefly 

describes the major energy generating pathways, with particular reference to the use of fat as 

a fuel source. It also discusses the factors that influence the utilisation of fat during exercise 

and its integration with carbohydrate metabolism. Finally, the published literature 

investigating the inclusion of fat into the equine diet and its effect on exercise metabolism is 

reviewed. 

Fuel Utilisation 

Muscular contraction requires adenosine triphosphate (ATP) which is ultimately produced 

from a number of fuel sources. The main fuel sources available for energy production by the 

horse, both at rest and during exercise, are carbohydrate in the form of muscle glycogen or 

blood glucose, fat in the form of muscle or plasma triglyceride, plasma free fatty acids (FFA) 

or ketones and muscle stores of ATP and phosphocreatine (PCr). Fat is by far the largest 

energy store in the horse, as in man. A typical 500 Kg horse has about 640 000 KJ of energy 

stored in the form of triglyceride, 75 300 KJ stored in the form of glycogen, 188 KJ stored in 

the form of PCr and 38 KJ of endogenous muscle ATP (McMiken 1983). 

Phosphocreatine shuttle 
PCr provides a reservoir of high-potential phosphoryl groups. The conversion of PCr to 

creatine involves the transfer of a phosphate group from the former to adenosine diphosphate 

(ADP), with the resultant formation of ATP. Generation of ATP by the PCr pathway occurs 
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more rapidly than by any other means and hence affords the greatest power output (Sahlin 

1985). The stores of PCr, however, are small and can sustain exercise in Man for 10-20 

seconds only (Miller et al 1988). PCr serves to prevent large decreases in muscle ATP 

concentration during periods of energy stress, e. g. prior to the stimulation of glycolysis and 

the tricarboxylic acid cycle (TCA). PCr is important at the onset of exercise or during 

exercise where the demand for energy is exceeded by that which can be produced by the 

anaerobic lactic acid pathway. 

g. 

-ooc. cx 2N II C 
/NH. PO 

+ 
CU3 NH 

ADP 3" + H+ 1101- 
'OOC. CH2N C 

NH2 

+ ATP4. 
NH 

3 

Phosphocreatine Creatine 

Aerobic and anaerobic carbohydrate utilisation 
The thoroughbred horse has considerably larger muscle and liver glycogen stores in 

comparison to Man (Table 1.2) and hence has a greater potential for carbohydrate utilisation. 

Complete oxidation of carbohydrate occurs as a result of anaerobic glycolysis (Fig 1.1) and 

oxidation via the TCA cycle (Fig 1.2). The maximum rate of ATP production or power 

output by this pathway is, however, low (Table 1.3). A greater power output is achieved 

through the lactic acid pathway. During sprinting the thoroughbred horse produces and 

accumulates a large amount of lactic acid in skeletal muscle (Harris et al 1991). The greater 

capacity for proton buffering exhibited by the thoroughbred horse in contrast to man (Harris 

et al 1990) may be attributed to the high carnosine content of skeletal muscle in the former 

(Marlin et al 1989; Sewell et al 1991). 
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Table 1.2 Resting concentrations of carbohydrate and lipid fuel sources in Man and the 

horse. 
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Carbohydrate in the form of plasma glucose or muscle glycogen is initially converted to 

glucose-6-phosphate (G6P) which then enters the glycolytic pathway (Fig 1.1). Muscle 

glycogen is cleaved to produce mainly glucose- l-phosphate (GIP) molecules by the active 

form of glycogen phosphorylase (a). Phosphoglucomutase then converts G1P to G6P. A 

small number of the glucose residues in glycogen are released as glucose by amylo-1,6- 

glucosidase. Liver glycogenolysis is important for the supply of glucose to extra-hepatic 

tissue and plays a major role in the maintenance of blood glucose concentration during 

exercise. The rate of liver glycogenolysis is related to exercise intensity (Wahren et al 1971; 

Ahlborg et al 1974; Hultman 1976; Ahlborg and Felig 1982). As a result of strenuous 

exercise up to 35-40% of the liver glycogen stores are mobilised (Bjorkman and Wahren 

1988) 

Anaerobic glycolysis occurs in the cell cytosol producing pyruvate and potentially a net yield 

of 2 or 3 moles of ATP, per mole of glucose or G1P respectively (Hultman and Harris 1988). 

The fate of pyruvate is two fold and depends on the energy requirement of the cell and the 

local availability of oxygen. Pyruvate may firstly be converted to acetyl CoA by the action 

of the pyruvate dehydrogenase enzyme complex. It is then completely oxidised to carbon 

dioxide and water via the TCA cycle, (Fig 1.2). Alternatively pyruvate may undergo 

conversion to lactic acid anaerobically. 

LACTATE DEHYDROGENASE 

PYRUVATE + NADH 
11- LACTATE + NAD+ 

Complete oxidation of one mole of glucose results in the formation of 38 moles of ATP. 

Conversely the conversion to lactic acid produces only 2 moles of ATP, as reviewed by 

Hultman and Harris (1988). Therefore although an increased power output is achieved by 

conversion to lactic acid (Sahlin 1985) it occurs at the expense of ATP production. 
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Table 1.3 The available energy and its rate of production from the different energy 

generating pathways in Man (Sahlin 1985). 
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Fig 1.1 A summary of the main pathways of anaerobic glycolysis - adapted from 

Stryer (1981) 
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Fig 1.2 A summary of the main pathways of the TCA cycle - adapted from (Stryer 

1981). 
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Accelerated lactic acid production occurs in the following situations: 

a) When the rate or demand for ATP exceeds the rate of ATP production by aerobic 

metabolism causing a shift in the intracellular redox potential. 

b) At the onset of exercise or during rapid acceleration or jumping as the result of a 

sudden increase in the demand for energy. This results in an increased flux rate 

through glycolysis and hence accumulation of pyruvate. 

c) In the more anaerobic fibre types (type IIb) due to a relatively lower mitochondrial 

density, degree of muscle capillarisation and lower activities of the appropriate 

oxidative enzymes. 

Fat as a Fuel Source 

Fat is available as a fuel source in 5 different forms: plasma FFA, plasma triglycerides and 

ketone bodies (acetoacetate or ß"hydroxybutyrate) and muscle triglycerides. Plasma FFA can 

be further divided into short chain or volatile fatty acids (VFA) with a carbon chain length of 

less than 6, (C S 6); medium chain fatty acids with a carbon chain length of between 6 and 12 

(C6-C12) and long chain fatty acids with a carbon chain length of greater than 14 inclusive 

(C z14). 

Plasma triglycerides 

Plasma triglycerides are found in association with lipoprotein complexes. In Man, 

lipoprotein particles known as chylomicrons contain most of the circulating triglyceride, 

which is of mainly dietary origin. Lipoproteins with a similar ultracentrefugal buoyancy to 

chylomicrons have recently been shown in horses to represent large triglyceride-rich very 

low density lipoproteins (VLDL), (Watson et al 1992b). Conversely a triglyceride-rich 

chylomicron like fraction has been identified in the non-fasting plasma of suckling foals 

(Watson et al 1991). The absence of a chylomicron lipoprotein fraction in adult horses may 

be a reflection of their diet, which is normally low in fat and lacking in long chain fatty acids 

(Watson 1991). In adult horses the major triglyceride containing lipoprotein fraction is 
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VLDL, followed by low density lipoproteins (LDL) and high density lipoproteins (HDL), 

(Watson et al 1993b). 

Plasma triglycerides are not taken up directly by tissues but are hydrolysed first to their 

constituent FFA and glycerol by the enzyme lipoprotein lipase (LPL), (Cryer 1987). LPL is 

found in association with sulphated glycosaminoglycans. They are present on the luminal 

surface of the blood vessels of extra-hepatic tissue, predominantly adipose tissue and skeletal 

or cardiac muscle (Robinson 1987). After the administration of heparin (HEP), the activity 

of LPL assessed by its release into the plasma, is lower in ponies (3.65 µmol FFA/ml/hr) than 

in Man (7.81 tmol FFA/ml/hr), (Chan eta! 1984; Watson et al 1992a). This may reflect 

the traditionally low fat diet of the former. 

FFA entering the cell may be completely oxidised via B-oxidation (Fig 1.3) and the TCA 

pathway or may be re-assimilated into triglyceride. FFA re-esterification does not represent a 

complete reversal of lipolysis, since glycerol cannot be re-utilised within the adipocyte 

(Dixon and Webb 1979). The inability to re-utilise glycerol in extra hepatic tissue is due to 

low activities or absence of the enzyme glycerol kinase (Newsholme and Taylor 1969). The 

co-substrate for triglyceride resynthesis is glycerol-3-phosphate which is mainly derived from 

dihydroxyacetone phosphate. 

The role of plasma triglyceride as a fuel source during exercise is unresolved. Most 

estimates, however, suggest that it represents a minor fraction of the total substrate oxidised. 

Olsson et a! (1975) were unable to detect the uptake of plasma triglycerides, by the 

exercising forearm in Man, using either arterio-venous differences or radio labelled 

triglyceride techniques. Similarly, it has been demonstrated that the rate of removal of an 
infused exogenous triglyceride emulsion in the horse is not affected by low intensity exercise 
(Moser et al 1989). Conversely, an exercise induced reduction in plasma chylomicron 

concentration and a simultaneous increase in their uptake by skeletal muscle has been 

reported in dogs (Jones and Havel 1967; Mackie et al 1980). Although the contribution of 

14 



plasma triglycerides as a fuel source may be limited during exercise it has been proposed 

that they may be important for the postexercise repletion of fat depots in muscle and adipose 

cells (Mackie et al 1980). 

Adipose tissue triglycerides 

Adipose tissue triglyceride represent the largest potential source of energy in the body, in the 

form of FFA. A typical 500 kg horse may store approximately 40 000g or 1 529 MJ (372 

Mcal) in the form of adipose tissue triglycerides (Snow and Vogel 1987). Adipose tissue 

lipolysis and FFA mobilisation, occur in the horse as in Man, in situations of stress 

(Anderson and Aitken 1977) and sustained exercise or starvation (Rose 1982). Lipolysis is 

under hormonal control and is inextricably linked to carbohydrate metabolism. 

Triacylglycerol lipase or hormone sensitive lipase (HSL) is the enzyme responsible for the 

breakdown of triglycerides to diglycerides and then to monoglycerides, with the net release 

of a fatty acid., A specific monoglyceride lipase then acts on monoglycerides to produce 

further FFA and glycerol. As the name suggests, triacylglycerol lipase is under the influence 

of a number of hormones including the catecholamines, adrenaline and nor-adrenaline, 

cortisol, growth hormone (somatatrophin), the thyroid hormones and insulin (Eiales et a! 

1978). 

Muscle triglycerides 
The amount of triglyceride stored in skeletal muscle varies between species, (Table 1.2). The 

triglyceride content of human muscle is comparable to that found in dogs but higher than 

that found in rats and monkeys (Gorski 1990). Concentrations of between 24-68 mmol/kg 

dry weight (dw) have been reported in human muscle (Hurley et al 1986; Essen-Gustavsson 

and Tesch 1990; Gorski 1990). The concentration of triglyccride found in equine muscle is 

variable. Concentrations of as low as 9 and as high as 138 mmol/kg dw have been reported 

(Essen-Gustavsson et a! 1991), (Table 1.2). The triglyceride content of heart muscle is 

present in three different forms, as interstitial adipocytes or free floating cytosolic lipid 

droplets, lipid filled vacuoles and membrane bound particles. Skeletal muscle also contains 
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lipid droplets (Oscai et al 1990). The measurement of muscle triglyceride is notoriously 

variable, due to difficulties in isolation of 'true' endogenous muscle triglyceride as opposed to 

inter-fibre fat droplets. The removal of phospholipids is also essential (Frayn and Maycock 

1980). Furthermore, direct measurement of pooled individual muscle fibres and histological 

data shows that triglyceride is not evenly distributed between the different fibre types, but is 

found mainly in type I fibres followed by types IIa and lib fibres (Essen et al 1975; Essen 

1977). The muscle triglyceride concentration will therefore reflect the fibre composition of 

the biopsy specimen. 

The role of muscle triglycerides as a fuel source during exercise is not unequivocal. Early 

calculations using measurements of respiratory quotient (RQ) suggested that plasma FFA 

could not solely account for the total contribution of fat to energy expenditure during 

prolonged exercise (Havel et al 1967; Issekutz and Paul 1968). Furthermore, studies 

employing electron microscopy reported reductions in the size of fat vacuoles in muscle 

suggesting that muscle triglycerides were utilised during exercise (Oberholzer eta! 1976). 

Direct determination of muscle triglyceride has confirmed their role during exercise, although 

their relative contribution remains essentially unresolved. Human studies using mixed 

muscle biopsy samples have revealed reductions in muscle triglyceride concentration of 36, 

41 and 25% in response to relative exercise intensities of 55,64 an 67% of VOZ max. 

respectively (Carlson et a! 1971; Essen 1977; Hurley et al 1986). Gorski, (1990) proposed 

that muscle triglycerides may be more important during moderate as opposed to low intensity 

exercise. Gorski, (1990) suggests that a failure to show a reduction in muscle triglyceride 

concentration in some studies may be due to the exercise being of low intensity, or the 

muscle sampled having a high percentage of type IIb fibres. 

Another approach used in the quantitation of muscle triglyceride utilisation is to assess the 

rate of glycerol release from contracting muscle. Assuming that the utilisation of plasma 

triglyceride is small, it has been estimated using this technique that the contribution of 

muscle triglyceride to overall energy production, during prolonged exercise of 1-2 hours, is 
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only about 5 or at the most 10% (Saltin eta! 1986; Kiens et a! 1993). Muscle triglyceride 

may provide an important fuel source during exercise recovery when incoming glucose is 

channelled into glycogen resynthesis. 

Ketones 

Ketone bodies (acetoacetate and ß-hydroxybutyrate) are formed in the liver during 

degradation of FFA, whence they are released into the circulation. The concentration in 

plasma is normally low but may increase in situations of increased FFA delivery to the liver, 

e. g. during fasting. Although they probably represent an important fuel source in the fasting 

state, their use during exercise is estimated to be very small (Rennie et of 1976; Hagenfeldt 

1979). 

Short chain or volatile fatty acids 

The horse, although classified as a non-ruminant has the capacity for hind gut fermentation of 

structural carbohydrates such as cellulose and hemi-cellulose (Bergman 1990). The caccum 

and colon serve as chambers for microbial action with the production of mainly acetic, 

propionic and butyric acids, which represent a further potential energy source (Tappeiner 

1884). Gluconeogenesis from propionate may account for up to 60% of available blood- 

glucose in horses maintained on a mainly roughage diet (Simmons and Ford 1991). Acetate 

may contribute approximately 32% to hind limb oxidation at rest, in the thoroughbred horse 

maintained on a 100% roughage diet or 21% when maintained on a 52% oat and grain diet, 

respectively (Pethick et al 1993). 

Medium chain fatty acids 
Medium chain fatty acids (MCFA) are more water soluble than long chain fatty acids and as 

a result are absorbed much more quickly from the small intestine. Unlike long chain fatty 

acids they are not re-esterified in the intestinal epithelial cells. MCFA are absorbed intact 

and are transported from the intestine to the liver, via the portal circulation, in association 

with albumin (Isselbacher 1968). Oxidation of MCFA occurs with or without the 
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involvement of the carnitine dependant mitochondrial transport system. MCFA have the 

ability to traverse the mitochondrial membrane, activation occurring in the mitochondrial 

matrix. Medium chain containing triglyceride emulsions are more rapidly and completely 

oxidised in comparison to those containing long chain triglycerides (Johnson et a! 1990; 

Metges and Wolfram 1991). 

Plasma long chain free fatty acids 

Plasma long chain fatty acids (C z 14), referred to as FFA, make the largest contribution to 

energy production during exercise of any of the available lipid fuel sources. Oxidation of 

FFA may provide up to 90% of the total energy demand in the latter stages of prolonged 

exercise in man (Bulow 1988). Plasma FFA concentration reflects adipose tissue lipolysis 

and FFA release, as well as uptake by peripheral tissues. The resting concentration of plasma 

FFA reported in the horse is variable, (Table 1.2). Concentrations of as low as 47 tmol/1 

have been reported (Rose 1982), although they are generally much higher, ranging between 

120-350 µmol/l (Lucke and Hall 1978; Lucke and Hall 1980a; Lucke and Hall 1980b; Snow 

et a! 1982). These variations may reflect differences in the feeding state and anxiety level of 

the horses when sampled as well as the method of analysis. At the onset of sub-maximal 

exercise there is often a characteristic fall in plasma FFA concentration, prior to a steady 

increase as exercise continues (Ahlborg et al 1974; Hagenfeldt 1979). This is generally 

assumed to be the result of a delay in adipose tissue lipolysis coupled with an increase in 

skeletal muscle blood flow enabling increased extraction of FFA by muscle. 

Uptake of free fatty acids by muscle 
FFA are found in the plasma in association with albumin which has a finite number of 
binding sites and facilitates their transport to their sites of oxidation or storage (Ashbrook et 

al 1975). On arrival at peripheral tissue, e. g. skeletal muscle, FFA molecules are released 
from the albumin complex and taken up by muscle cells. The mechanism for this process is 

presently unclear. A close relationship exists between the plasma FFA concentration and the 

amount oxidised. The uptake of plasma FFA by tissue cells is dependent on the FFA 
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concentration of the intracellular compared to the extracellular fluid and hence the arterial 

FFA concentration (Hagenfeldt 1979). It is the 'free' FFA concentration, i. e. that which has 

dissociated from the albumin complex which affects their cellular uptake. Hence the relative 

affinity of albumin and the plasma membrane binding sites for FFA probably also affects the 

rate of FFA uptake (Noy et al 1986). 

The FFA flux through the plasma membrane has previously been described as a passive 

concentration-dependent process, uptake being facilitated by simple diffusion or partitioning 

with the lipid bilayer of the plasma membrane (DeGrella and Light 1980; Noy et al 1986). 

Noy et al suggested that a physico-chemical partitioning of FFA between albumin and 

binding sites or binding proteins in the plasma membrane may exert a certain regulatory 

control to prevent the uptake of FFA exceeding the oxidative capability of the cell. A 

specific fatty acid binding protein (mw 40 000) has been isolated in skeletal muscle 

(FABPm), localised both in the plasma membrane and the cytosol (Said and Schultz 1985). 

Expression of FABPm is correlated to muscle oxidative capacity and is greater in red 

compared to white skeletal muscle (Carey et a! 1994; Veerkamp and Van-Moerkerk 1994). 

It has recently been demonstrated that FFA uptake by muscle follows saturation kinetics 

which suggests that a transport mechanism is involved (Turcotte et al 1991). Furthermore, it 

has been suggested that FABPm may be involved in the regulation of FFA utilisation by 

muscle. The expression of FABPm is increased in the more oxidative muscles of rats in 

response to fasting, when FFA utilisation is increased (Turcotte et al 1994). The expression 

of FABPm may therefore provide a link between FFA uptake by muscle cells and the plasma 

concentration. 

Fat Oxidation 

The use of fat as a fuel source is facilitated by the oxidation of FFA whether from adipose 

tissue, plasma or muscle triglycerides. Oxidation of FFA occurs in the mitochondrial cytosol 

and is termed B-oxidation (Fig 1.3). Once inside the cell, fatty acids are initially converted to 
fatty acyl CoA. Fatty acyl CoA then proceeds across the mitochondrial membrane, using a 
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specific carnitine dependant transport system (Fritz 1963. Fig 1.4). Carnitinc is found 

complexed to carnitine acyl transferases which have maximal affinity with either short, 

medium, or long chain fatty acids (Bulow 1988). Those located on the outer mitochondrial 

membrane are responsible for the conversion of fatty acyl CoA to fatty acyl carnitine. The 

latter traverse the mitochondrial membrane and a second carnitine acyl transferase, located 

on the inner mitochondrial membrane, facilitates the conversion of fatty aryl camitine back 

to fatty acyl CoA. Fatty acyl CoA is then oxidised via ß"oxidation and the TCA pathway. 

Oxidation of FFA occurs predominantly in the more oxidative muscle fibres, i. e. type I fibres 

followed by Ha fibres (Saltin 1982). This is due to a number of factors including: 

a) Greater mitochondrial density and hence endowment of oxidative enzymes (Hoppeler 

et a! 1983; Snow 1983) 

b) Increased oxygen and FFA delivery due to enhanced muscle fibre capillarisation 
(Henckel 1983). 

c) Increased expression of FABPm in the muscle sarcolemma (Carey et a!. 1994; 

Veerkamp and Van-Moerkerk 1994) 

d) Increased carnitine content and activities of associated enzymes (Cederblad 1976; 

Foster 1989) 

e) Increased activity of LPL (Borensztajn et al 1975; Jacobs et al 1982) 
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Fig 1.3 A summary of the main pathways of ß-oxidation - adapted from (Strycr 1981). 
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Cannitine supplementation has been used in the horse in an attempt to facilitate an increase in 

fat oxidation during exercise. However, poor absorption of carnitine from the equine gut 

together with its limited uptake into skeletal muscle, impose limitations on its use as an 

ergogenic aid in the equine athlete (Foster 1989). 

Regulation of Fat Metabolism During Exercise 

Adipose tissue lipolysis 

The main regulators of adipose tissue lipolysis are the stimulatory lipolytic hormones, the 

most important of which are adrenaline and the anti-lipolytic hormone, insulin. Their effects 

are mediated via a cyclic-AMP cascade and involve the activation or deactivation of HSL, as 

a result of its reversible phosphorylation (Fig 1.5), (Nilsson et al 1980; Belfrage 1985). 

Adipocytes possess stimulatory beta receptors and inhibitory alpha receptors (Kaiher and 

Simon 1977; Kather et a! 1980). The action of insulin ensures that fat and carbohydrate 

metabolism is closely linked and, in the situation where plasma glucose is abundant, the 

action of insulin suppresses the mobilisation of adipose tissue triglycerides (Hales et al 

1978). Stimulation of adipose tissue lipolysis during exercise is facilitated by an enhanced 

release of adrenaline and nor-adrenaline together with a depressed insulin concentration 

(Galbo 1983). A lower plasma insulin concentration is apparent in man during prolonged 

exercise, both in the fasted and the fat fed state and is associated with an increased plasma 

FFA and glycerol concentration (Galbo et al 1979). Depression of insulin concentration 

and hence FFA mobilisation during exercise is directly related to exercise intensity (Galbo 

1983). 

Lactic acid produced as a result of anaerobic glycolysis may retard the release of FFA from 

adipocytes (Boyd et a! 1974). Lactic acid may provide a carbon skeleton for glycerol-3- 

phosphate synthesis needed for FFA re-esterification (Gollnick and Saltin 1988). A 

continued rise in plasma glycerol concentration, despite lactic acid induced inhibition of FFA 

release, supports this theory (Green eta! 1979). 
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Fig 1.4 Fatty acid transport across the mitochondrial membrane via the carnitine 

dependent transport system. 

CPT I Carnitine palmitoyl transferase I 

CPT II Carnitine palmitoyl transferase II 
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Fig 1.5 Principal regulation of lipolysis in adipose tissue - adapted from (Bulow 1988) 
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Other hormones that may potentiate the stimulatory effect of the catecholamines on lipolysis 

include, growth hormone, the thyroid hormones, glucagon and corticotrophin. With the 

exception of growth hormone, no evidence exists for their lipolytic effect during exercise in 

the normal healthy man, although effects can be demonstrated in vitro (Hales et al 1978. ) 

Free fatty acid recycling 
Lipolysis is not regulated by the substrate needs of the working muscles since FFA release 

far exceeds that oxidised (Romijn et a! 1993). Romijn et al (1993) reported that lipolysis 

was stimulated maximally at low exercise intensities and was not affected by a further 

increase in exercise intensity. Conversely, FFA release decreased as exercise intensity 

increased. A negative feedback mechanism involving FFA recycling, may therefore exist. 

FFA recycling or re-esterification may occur intracellularly, (i. e. in the tissue of origin), e. g. 

adipose tissue. Alternately it may occur extracellularly, i. e. the FFA are taken up and re- 

esterified by a tissue other than that of their origin, e. g. liver. Increased FFA re-esterification 

occurs as a result of an increase in the 'free' FFA concentration in the tissue water phase, as 

indicated by an increase in the plasma FFA/albumin ratio (Madsen et al 1986). When the 

FFA / albumin ratio exceeds 3 there may be a simultaneous increase in the vascular 

resistance of adipose tissue, which opposes adipose tissue blood flow and hence the removal 

of mobilised FFA (Bulow et al 1985; Madsen et al 1986). At rest, it is estimated that 70% 

of the FFA's released as a result of lipolysis are re-esterified (Wolfe 1992). The rate of re- 

esterification is reduced during prolonged exercise and may account for up to 50% of the 

increase seen in plasma FFA. During the subsequent recovery period FFA re-estcrification 

increases drastically as a result of reduced FFA uptake and oxidation by muscle (Wolfe 

1992). The increased recycling may therefore compensate for the sluggish response of 

adipose tissue to the cessation of exercise. 

Integration of Fat and Carbohydrate Metabolism During Exercise 

A reciprocal relationship exists between the rates of glucose and FFA utilisation during 

exercise. In the situation where an increase in the rate of FFA oxidation occurs during 
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exercise there is a simultaneous or reciprocal decrease in the utilisation of carbohydrate. This 

is evident from studies in which FFA utilisation was increased as a result of an artificial 

elevation of plasma FFA concentration (Costill et a! 1977; Hickson et al 1977; Ravussin et 

a! 1986). Conversely, when the availability of plasma FFA was reduced, as a result of the 

administration of nicotinic acid or any of its analogues, there was an increase in the 

utilisation of carbohydrate (Walker et al 1991; Heath et al 1993). Randle et a! (1963) 

proposed a mechanism which partially explained the integration of fat and carbohydrate 

utilisation, the so called glucose-fatty acid cycle or Randle cycle (for review see Randle et a! 

1988). It was proposed that an increase in the level of citrate, produced as a result of an 

increased flux through the TCA cycle, causes inhibition of phosphofructokinase. The 

resultant accumulation of glucose-6-phosphate causing inhibition of hexokinase. The net 

result being an increase in the intracellular and extracellular glucose concentration. The early 

work of Randle, however, was carried out using heart muscle and a similar effect in skeletal 

muscle has not been demonstrated unequivocally. Further regulation of carbohydrate 

utilisation is mediated via the pyruvate dehydrogenase enzyme complex (PDH) which has an 

important function in generating acetyl CoA from pyruvate for further oxidation through the 

TCA cycle. In lipogenic tissues it has a further biosynthetic role, the provision of acetyl CoA 

for the synthesis of FFA or cholesterol. Regulation of PDH is achieved by its reversible 

phosphorylation. PDH kinase is the enzyme responsible for the conversion of the active 

dephosphorylated form to the inactive phosphorylated form. PDH kinase is itself activated 

by an increase in the ratio of acetyl CoA/CoA or NADH/NAD+. Thus in conditions of 

increased FFA oxidation PDH activity is inhibited providing a further link between fat and 

carbohydrate utilisation (for review see Sugden and Holness 1994). Malonyl CoA, an 

intermediary in fatty acid synthesis, is implicated in the regulation of carnitine 

pamitoyltransferase I which is involved in the transport of long chain FFA into the 

mitochondrial matrix (as reviewed by McGarry and Foster 1980). Inhibition of carnitine 

palmitoyltransferase I may contribute to the regulation of mitochondrial long chain FFA 

oxidation. 
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Factors Which Influence Fat Utilisation During Exercise 

The intensity and duration of exercise, the hormonal milieu, as well as the training and 

nutritional status of the individual are all factors involved in the selection of substrate for 

muscular activity. Fat is utilised aerobically and although more efficient energetically in 

terms of ATP production than other fuel sources, the power output achieved as the result of 

fat oxidation is low (Table 1.4, Sahlin 1985). 

In Man fat contributes approximately 50% of the total energy utilised at rest (Gollnick and 

Saltin 1988). During prolonged exercise of low to moderate intensity there is a progressive 

shift in fuel utilisation from carbohydrate to fat, as indicated by measurements of respiratory 

exchange ratio (RER), in Man (Edwards eta! 1934; Bulow 1981), horses (Pagan et al 1987; 

Rose et a! 1991) and dogs (Paul 1975). At the onset of exercise, however, there is an 

increased reliance on carbohydrate metabolism, even at low intensities. This is partly due to 

the rapid increase in energy demand and concomitant delay in FFA mobilisation (Table 1.3). 

The calculated contribution of fat to energy production, during exercise in the horse, is not 

documented. In the untrained human the absolute amount of fat oxidised during prolonged 

exercise is reported to reach a maximum at about 50% VO2 maX (Gollnick and Saltin 1988). 

In the latter stages of prolonged exercise (4-8 hours), 80% or more of the energy could be 

supplied by fat (Edwards et al 1934; Bulow 1988). During relative exercise intensities of 

greater than 50% VO2 max the contribution of fat to energy production decreases. Maximal 

intensity exercise of short duration is reliant on the use of PCr and carbohydrate stores. The 

use of fat during this type of exercise is limited due to its low power output and probably 

forms a minimal part of the energy generating pathway. 
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Table 1.4 Biochemical and physiological adaptations to training in Man, the rat and the 

horse. 
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Effect of training 
It is generally accepted that sub-maximal aerobic training increases the oxidative capacity of 

muscle in man (Mole eta! 1971; Holloszy 1973) and the horse (Snow and Guy 1979; 

Hodgson et al 1986), (Table 1.4). The effects of training in the horse are not as clear since 

the majority of training studies have been carried out under 'field' conditions using 

conventional race training. Conventional race training involves both aerobic and anaerobic 

workloads. Typical training studies in the horse have previously monitored 2 year old 

animals through 1 or 2 seasons of race-training. It is difficult therefore to differentiate 

between the 'true effects of training' and the effects of age. Nevertheless many of the 

adaptational changes described in human and rodent studies have also been reported in the 

horse (Table 1.4). 

An improved oxidative capacity increases the ability to utilise fat but also to use carbohydrate 

aerobically. A reduction in RER both in cross-sectional and longitudinal training studies in 

man (Bang 1936; Gollnick and Saltin 1988) and in longitudinal training studies in the horse 

(Thomas et al 1983) illustrates the increased ability to utilise fat during sub-maximal 

prolonged exercise. There are many biochemical and physiological adaptations that occur in 

response to training and which may contribute to the increased ability to utilise fat at sub-, 

maximal work intensities. Increased muscle capillarisation may contribute to an increased 

uptake of oxygen and FFA. Increases in the activities of oxidative enzymes ensure increased 

utilisation. Other changes such as increases in the muscle carnitine and triglyceride content 

may further enhance fat oxidation overall. 

The availability of plasma FFA to muscle cells in response to exercise may be altered as a 

result of training. Early studies suggested that plasma FFA concentration during exercise 

was lower in the trained compared to the untrained state, for a given exercise (Johnson et al 

1969; Holloszy et al 1986). However, it is now accepted that for the same relative exercise 

intensity the plasma FFA concentration is the same or only slightly lower in the trained state, 

despite a blunted catecholarnine response to exercise (Hartley et a! 1972; Winder et al 
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1979). Studies in rats have reported an increased sensitivity of adipose tissue to adrenaline 

in the trained state (Bukowiecki et al 1980) which may represent a compensatory 

mechanism. The current consensus is that there is no change in the delivery of FFA to 

muscle in the trained state but that there is increased extraction from the blood (Kiens et a! 

1993). The uptake of FFA into muscle follows saturation kinetics (Turcotte et al 1991). A 

change in the FFA transport capacity of FABPm may facilitate the increased extraction of 

plasma FFA by muscle in the trained state. This may alter the FFA concentration at which 

uptake into muscle becomes saturated (Kiens et al 1993). 

Muscle LPL activity is increased by training (Cohen et al 1989; Kiens and Lithell 1989) 

thereby increasing its ability to extract FFA from circulating lipoprotein associated 

triglycerides. Endogenous muscle triglyceride storage is also reported to increase with 

training (Holloszy et al 1986). Increased muscle triglyceride utilisation during exercise, in 

the trained state, may contribute to the generalised increase in fat utilisation (Havel et al 

1967). 

Effect of age 

Horses racing on the flat usually begin their athletic career as 2 year olds. However, horses 

competing in 3-day eventing, endurance racing, show jumping or national hunt racing tend to 

be much older (5-17 years). An increased oxidative capacity of equine muscle has been 

reported to occur with increasing age, illustrated by an increase in muscle citrate synthase 

(CS) andß-hydroxyacyl CoA dehydrogenase (ß-HAD) activity and a concomitant decrease in 

lactate dehydrogenase (LDH) activity, as reviewed by Snow and Valberg (1994). These 

findings may reflect a combination of the effects of age and cumulative training. 

Effect of diet 

The early studies of Hultman (1967) and Bergstrom eta! (1967) established that pre-exercise 

muscle glycogen concentration influenced its subsequent utilisation during exercise as well 

as the endurance time to fatigue. Endurance performance was consistently reported to be 
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compromised in subjects fed a high fat diet. Recently however, this notion has been 

challenged. An increase in the contribution of fat to energy production, with a concomitant 

reduction in carbohydrate utilisation, has been reported extensively in human and rodent 

studies as a result of feeding fat supplemented diets. Phinney et al (1983) reported that 

prolonged feeding of a low carbohydrate high fat diet (4-6 weeks) had no detrimental effect 

on exercise endurance in trained cyclists, despite significantly reduced resting muscle 

glycogen concentrations. Furthermore, Miller et al (1984) demonstrated that rats exposed to 

a high fat diet could run longer than ad-libitum fed animals. A similar finding has been 

reported in sledge dogs adapted to a 70% fat diet for a period of 20 weeks (Hammel! et a! 

1977). Muoio et al (1994) suggested that the early findings of reduced endurance 

performance associated with high fat diets may have been influenced by a number of factors. 

The authors suggest that these studies used only moderately trained or untrained subjects who 

underwent a strenuous pre-test exercise bout before being introduced to the high fat diet. The 

diets were additionally severely carbohydrate restricted and the subjects were often glycogen 

depleted before the high fat diet was introduced. 

Fat as Part of the Equine Diet 

Traditionally the equine diet has contained very little fat, about 34% by weight of the 

concentrate portion. However, small amounts of oil, e. g. cod liver oil have been added to the 

diet for improvement in health and coat condition for many years. Recently much interest 

has been shown in the use of supplemental fat in the equine diet since it represents a very 

energy dense foodstuff. The gross energy content of a given weight of fat is over twice that 

of either carbohydrate or protein (Lentner 1981). 

1 kg Fat, 9.3 Mcal 

1 kg Carbohydrate, 4.1 Mcal 

1 kg Protein, 4.1 Mcäl 

* concentrate refers to the processed portion of the diet 
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Fat supplemented diets have been suggested to offer an attractive alternative to high 

carbohydrate diets, since the latter have previously been implicated in conditions such as 

rhabdomyolysis (Harris 1989) and laminitis (Garner et a! 1978) and in developmental 

orthopaedic diseases in foals (Biesik and Glade 1985). Furthermore, it has been reported 

that the addition of fat to the diet of the equine athlete may confer benefits at intensities of 

exercise ranging from prolonged low intensity to short duration high intensity exercise 

(Hintz et al 1987; Hambleton et a! 1980; Duren eta! 1987; Oldham et a! 1990; Harkins et 

a! 1992). 

The FFA composition of equine tissues reflects that of the diet (Shoreland et al 1952) 

suggesting that the main site of digestion and absorption of fat is the small intestine, as it 

would therefore not be exposed to the actions of bacteria present in the large intestine. The 

digestion of fat is facilitated by its emulsification by bile salts present in the bile, which in the 

horse flows freely from the liver in the absence of a gall-bladder, and by the action of lipase 

enzymes. Lipase enzymes break down dietary triglycerides into FFA and glycerol. In Man 

triglycerides are re-assimilated in the epithelial cells of the small intestine and are pushed out 

into the circulation through the lymphatic system as part of chylomicrons, (for review see 

Thomsen 1978). 

Horses have been shown to readily accept the addition of increased amounts of fat to their 

diet in the form of vegetable oils or animal fat (Bowman et al 1979; Rich et al 1981; Pagan 

et al 1993). Corn, soya, coconut and peanut oils, as well as rendered animal fat or inedible 

tallow, have been used in dietary studies with no reported palatability problems. The level at 

which fat can be fed in the diet is largely dependant on the physical problems of feed 

manufacture, if it is fed as part of a cube or coarse mix. The direct addition of oil to the feed 

allows much larger quantities to be added to the diet. 
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Previous studies have reported additions of fat to the equine diet of between 5-20% of the 

concentrate portion, on a dry matter (DM) basis (Scott et al 1989; Hollands and Cudderford 

1993). In the latter studies this was approximately equal to between 5-35% of the total 

digestible energy (DE) intake. Addition of excessive quantities of oil to the diet may cause 

digestive disturbances and diarrhoea due to a reduced transit time through the gut. 

DE is the energy that is available to the animal as a consequence of digestion and is 

equivalent to the difference between the gross energy intake and the energy lost through 

undigested material in the faeces. Metabolisable energy (ME) is equivalent to the DE 

corrected for energy losses occurring in the urine. Both DE and ME have consistently been 

reported to increase as a result of the addition of fat to the equine diet (Rich et al 1981; 

McCann et a! 1987; Hollands and Cudderford 1993). However, the form in which the fat is 

fed, i. e. free in the form of oil or animal fat, or encapsulated in cereal grains may affect its 

digestibility (McCann et al 1987). Fat is digested predominantly in the small intestine, 

whereas cell wall material is digested in the hind gut. The encapsulation of oil in cereal 

grains, may effect its digestibility as some fibre may have to be digested to free the cereal fat. 

The situation is somewhat different in ruminants where free dietary oil may reduce fibre 

digestibility as a result of fibre coating during ruminal fermentation (Hollands and 

Cudderford 1993). 

Absorption of calcium and magnesium and digestion of fibre is unchanged by the addition of 

fat to the diet (Rich et al 1981; McCann et a! 1987), although an increase in the digestibility 

of phosphorus has been reported (Hollands and Cudderford 1993). In poultry and sheep, fat 

supplemented diets have been associated with reduced calcium absorption possibly due to the 

formation of calcium soaps in the small intestine (Hollands and Cudderford 1993). 

Fat supplemented diets have also been associated with a reduction in the thermal load or 

reduction in heat produced during digestion. McCann et al (1987) reported that heat 

production expressed as a percentage of total DE was lower during fat supplementation in 
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comparison to feeding a low fat control diet. Calculation of energy balance (metabolisable 

energy - heat production) by calorimetry revealed a significant increase over the control diet. 

Little information is available concerning the optimum type of fat and FFA composition for 

inclusion into equine diets. The degree of saturation, FFA chain length, age of the animal, as 

well as the amount of fat included in the diet has been shown to affect its digestibility in 

other monogastric animals (Freeman 1983). The digestibility of corn oil has been reported to 

be higher than that of animal fat or blended fat in horses (Rich et al 1981; McCann et al 

1987). 

Rationale for undertaking the current studies and its relation to previous work carried out 

in the equine species. 

The horse, a semi-ruminant herbivore, has traditionally eaten a 'low fat' diet. The 

thoroughbred horse has been bred for sprinting and has a high proportion of type II fibres in 

the middle gluteal muscle, one of the main hind limb locomotory muscles (Lindholmet a! 

1983). It has a high capacity for carbohydrate storage and a low body fat composition 

(Table 1.2). Furthermore, the horse exhibits relatively low activities of key enzymes of fat 

metabolism in relation to man (Chan et al 1984; Watson eta! 1992a; Lindholm eta! 1983). 

These findings suggest that the thoroughbred has evolved as a 'carbohydrate dependant' 

athlete. There are very few studies in the horse that have focused on fat metabolism during 

exercise, although many studies, some of which are anecdotal have investigated the effects of 

fat supplementation on exercise metabolism and performance. The following series of 

studies were carried out in order to increase the understanding of fat metabolism during 

exercise in the horse and furthermore, to elucidate the mechanisms involved in the metabolic 

response to fat supplementation. 
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The principal aims of the following series of studies were as follows: 

i) 

ii) 

To investigate the relative contribution of fat and carbohydrate metabolism to 

energy production at various exercise intensities. 

To investigate the capacity of the horse to increase the contribution of fat to 

energy production as the result of : a) Acute increase in triglyceride 

derived plasma FFA. 

b) Addition of fat to the diet. 

iii) To describe any adaptational changes occurring in plasma or muscle in response 

to feeding a fat supplemented diet. 

The studies carried out as part of this thesis were as follows: 

i) 

ii) 

in) 

iv) 

v) 

An investigation of the variation in plasma long chain FFA over 24 hours. 

A comparison of the anticoagulative and lipolytic effects of IIEP and a related 

substance pentosan polysulphate, in order to develop a model for the pre- 

exercise elevation of plasma FFA. 

An investigation of the effect of a pre-exercise elevation of plasma FFA on fat 

utilisation during prolonged low intensity exercise. 

An investigation of the effect of fat supplementation on muscle and blood 

parameters at rest. 

An investigation of the effect of fat supplementation on the metabolic response to 

low, moderate and moderate/high intensity exercise. 
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Chapter 2 

Materials and Methods 
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Sampling Techniques 

Blood samples 
Single blood samples were drawn by venepuncture of the left or right jugular vein using a 

sterile 19 g needle and syringe. Serial blood samples were drawn through an indwelling 

catheter introduced into the left or right jugular vein, under local anaesthesia. 

Catheterisation technique 

An area of skin over the right or left jugular vein was shaved and sterilised with a mixture of 

pevidine and surgical spirit. The area was anaesthetised using local anaesthetic (Xylocaine, 

2% with adrenaline, 1 ml) injected subcutaneously. A small incision was then made through 

the skin and underlying fascia through which a 13 g catheter was introduced. An extension 

tube with a 3-way tap was fitted to the catheter which was then sutured into place. The 

catheter was kept patent by flushing after each blood sample withdrawn, with heparinized 

saline (5-10 ml, 5000 IU/1). 

Anticoagulants 

Blood was dispensed into tubes containing ethylenediamine tetra acetic acid (EDTA) for the 

analysis of FFA, triglyceride, glycerol and cholesterol; fluoride oxalate for the analysis of 

lactic acid and glucose; citrate for the analysis of activated partial thromboplastin time 

(APTT) and into either tubes containing lithium heparin or no anticoagulant for the analysis 

of plasma total lipase activity (T. Lip). Gleeson (1987) reported an elevation in plasma FFA 

concentration during storage of samples that had previously been treated with lithium 

heparin. EDTA inhibits the action of bacterial lipase and prevents the auto oxidation of FFA 

(Bachorik 1982). All blood samples were centrifuged immediately (4000 rpm for 5 minutes 

at 4 °C) and the plasma was aspirated and frozen in liquid nitrogen. Plasma for the analysis 

of FFA, triglyceride, glycerol, cholesterol, lactic acid and glucose was stored at -20 C. 

Plasma for the analysis of T. Lip activity was stored at -90 °C. 
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Muscle samples 
Muscle biopsy samples were taken according to Snow and Guy (1976) using a6 mm 

Bergstrom-Stille needle (Bergstrom 1962). All biopsy samples were taken from the middle 

gluteal muscle, one of the main hind-limb locomotory muscles in the horse, 1/3 of the 

distance between the tuber coxae and the head of the tail. Standardisation of the sampling 

site and sampling depth was carried out in order to minimise the variation in fibre 

composition of the biopsy sample. The sampling site was prepared by shaving and sterilising 

a small area of skin. Local anaesthetic (Xylocaine, 2% with adrenaline, 2 ml) was injected 

subcutaneously along the line of the proposed incision. An incision was made through the 

skin and underlying fascia using a sterile surgical scalpel blade. In the instance where a 

further biopsy was to be taken, (e. g. post exercise), a second incision was also made. The 

biopsy needle was inserted to a depth of 7 cm and a muscle sample taken under suction. 

Samples of approximately 50-100 mg (wet weight) were obtained. A sub-sample of the 

muscle biopsy was separated and mounted on filter paper, with the fibres orientated at 90° to 

the surface of the paper, for histochemical analysis. The sample was covered in talcum 

powder to prevent the formation of ice crystals and was then frozen and stored in liquid 

nitrogen. The remainder of the muscle sample was rapidly frozen and stored in liquid 

nitrogen for metabolite and enzyme analysis. All muscle analysis was carried out on freeze-' 

dried powdered muscle that had been dissected free of any visible blood, fat or connective 

tissue. 

Plasma analysis 

Individual free fatty acids 
Individual FFA (FFAj), with a carbon chain length greater than C14 inclusive were analysed 

using high-performance liquid chromatography (HPLC), using a Constametric 1 HPLC pump 

(LDC/Milton Roy, Stone, Staffordshire, UK), with a Rheodyne 7125 injector and 50 41 

sample loop (Rheodyne, Cotati, CA, USA) and a LC-UV variable wavelength ultraviolet 

spectrophotometric detector (Phillips Analytical, Cambridge, UK). An Apex 1 

octadecylsilica (ODS) analytical column (4.6 mm id/150 mm) protected by an Apex ODS 1 
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(4.6 mm id/20 mm) guard column, with packing material of 5 gm was used (Jones 

Chromatography Ltd, Hengoed, Mid-Glamorgan, UK). 

Chloroform extracts of EDTA plasma were prepared according to Dawson et al (1986) 

Margaric acid (20 µl) was dried down under a stream of nitrogen and reconstituted with 500 

tl of plasma. The margaric acid was present in order to provide an internal standard. 

Ethanol (2.5 ml) was added to the plasma before vortexing for 2 minutes. The extract was 

boiled (80°C) for 2 minutes after which chloroform (6 ml) was added. The extract was 

boiled for a further 2 minutes at 800C and vortexed for 2 minutes. After cooling the extracts 

were centrifuged at 3000 rpm for 5 minutes. The upper chloroform layer was removed and 

dried down under a stream of oxygen free nitrogen. 

Derivatisation 

The dried extracts were derivatised at 80 oC for 30 minutes to produce p -bromophenacyl 

fatty acid esters using a modification of the method of Tracey (1986). The derivatisation 

mixture consisted of acetonitrile (560 µl), methanol (160 µl), methanolic KOH (0.16 M, 5 µl) 

and derivatisation reagent (30 µl). The derivatisation reagent consisted of p-- 

dibromoacetophenone (100 mmol/l) and 1,4,7,10,13,16, hexaoxacyclooctadecane (18" 

crown 6,10 mmol/1) in acetonitrile. Derivatised FFAi were eluted from the HPLC column 

using a mobile phase comprising methanol, acetonitrile and water (81: 9: 10) at a flow rate of 

1.5 ml/minute. Derivatised FFAi were detected by their ultra-violet absorption at 260 nm. 

The retention times of FFAi were dependant on both the FFA chain length and the degree of 

saturation (Fig 2.1,2.2). The concentration of FFAi was calculated by comparison of sample 

peak heights to those of external standards of each acid (Fig 2.1,2.2). An extraction 

correction was made using the internal standard (margaric acid). Total long chain FFA 

concentration (C Z! 14) was calculated by the addition of FFAi concentrations. 
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Fig 2.1 HPLC chromatogram of individual p-bromophenacyl fatty acid esters (standard 

mixture). 
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Fig 2.2 HPLC chromatogram of individual p-bromophenacyl fatty acid esters (plasma 

sample). 
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Free fatty acid standards 

FFA standards (1 mmol/1) of linolenic, myristic, palmitoleic, linoleic, oleic, palmitic, 

margaric and stearic acids were prepared in methanol. Mixed FFA standards in methanol, 

over the range of 25-125 tmol/l, were then prepared. The mixed FFA standards were 

derivatised as for the plasma samples, 100 µl of the mixed standard replacing the same 

volume of methanol in the derivatisation mixture. 

Automated total free fatty acid analysis 
Due to the large number of samples generated during the studies in Chapters 4,5,6 and 7a 

rapid automated FFA method was used. A commercially available FFA kit (Wako NEFA C, 

Alpha Laboratories, Eastleigh, Hampshire) was adapted for use on a Kone specific 

autoanalyser (Labmedics, Stockport, Cheshire). The enzymatic colourimetric method is 

based on the formation of a purple coloured adduct which absorbes maximally at 550 nm 

(Fig 2.3). A sample blank was run for any samples that were visibly lipaemic, since 

hyperlipaemic plasma was reported in the methodology to result in artificially elevated FFA 

concentrations. This was especially relevant to the plasma samples taken during the studies 

in Chapters 4 and 5. 

Glucose, lactic acid and cholesterol 

Glucose (Randox Laboratories, Co. Antrim, N. Ireland), cholesterol (Randox Laboratories, 

Co. Antrim, N. Ireland) and lactic acid (Sigma Chemical Co. Poole, Dorset) were analysed 

using commercially available reagents on a Kone specific autoanalyser (Fig 2.4). 

Activated partial thromboplastin time 

APTT was measured using the method of Austen and Rhymes (1975), in order to assess 

clotting function. APTT measures the time required for the coagulation of platelet free 

plasma in the presence of kaolin, thromboplastin and calcium. 
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Fig 2.3 Reaction sequence for the colourimetric analysis of plasma FFA. 
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Fig 2.4 Reaction sequence for the analysis of plasma glucose and cholesterol 

concentration. 
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Hexokinase 
Glucose + ATP momm- Glucose -6- phosphate + ADP 

Glucose -6- phosphate dehydrogenase 

Glucose -6- phosphate + NAD + Gluconate -6- phosphate + NADII + 11 + 

Choleterol esterase 
Cholesterol ester +H 20 Cholesterol + Free fatty acids 

Cholesterol oxidase 

Cholesterol +02ý... ýýi. Cholestene -3 -one + Ii 202 

OH CH I 

Peroxidase 

2H202 ++ eis 
Quinoneimine + 411 20 

C=ff40H 

4- Aminoantipyrine 
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Triglyceride and glycerol 
Plasma triglycerides were saponified using alcoholic KOH. Plasma (200 µl) was added to 

ethanol (500 µl, 95%) and KOH (20 µl, 8 M), vortexed and heated at 70°C for 20 minutes. 
After cooling MgSO4 (l000µ1,0.15 M) was added, and the samples vortexed and 

centrifuged. The aspirate was analysed for glycerol, according to the method of Bergmeyer 

(1986), to give the plasma total glyceride-glycerol concentration. Neutralised perchloric acid 

extracts of plasma were prepared and were analysed for glycerol (Bergmeyer 1986). Plasma 

triglyceride concentration was then calculated by subtraction of the plasma glycerol 

concentration from the total glyceride concentration. The glycerol assay followed the 

conversion of NADH to NAD+ by monitoring the absorbance of NADH at 340 nm. 

Phosphoenol pyruvate, ATP, NADH, pyruvate kinase and LDH were incorporated into the 

reagent mixture. The reaction was initiated by the addition of glycerol kinase. The reaction 

sequence for the determination of triglyceride and glycerol was as follows: 

Heat 700C 20 minutes 
Triglycerides + Alcoholic KOH Free fatty acids + Glycerol 

Glycerol + ATP Glycerol -1- phosphate + ADP 

ADP + Phosphoenol pyruvate Pyruvate + ATP 

Pyruvate + NADH Am- Lactate + NAD+ 
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Table 2.1 Reagent solution for the analysis of plasma total glyceride and glycerol 

concentration. 

TEA - Triethanolamine 

ATP - Adenosine triphosphate 

PEP - Phosphoenol pyruvate 

NADH - Nicotinamide dinucleotide 

PK - Pyruvate kinase 

LDH - Lactate dehydrogenase 

GK - Glycerol kinase 
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Total lipase activity 

Plasma T. Lip activity was analysed according to the method of Watson et a! (1992a). 

Activity was measured in the presence of a low concentration of NaCl (0.1 M) without pre- 

incubation with sodium dodecyl sulphate. The principle of the method involves the 

incubation of plasma with a 14 C labelled triglyceride emulsion, in the presence of gum 

arabic, bovine serum albumin and apolipoprotein C. FFA's released by lipase activity are 

captured by albumin and extracted into a suitable solvent (see later). The enzyme activity 

was calculated using the ratio of the radioactivity in the extracted fraction to the total 

radioactivity in blank incubations. Apolipoprotein C is present as a co-factor for LPL 

enzyme. 

Preparation of apolipoprotein C source 

A pooled blood sample (100 ml) was collected from a number of horses that had been fasted 

overnight. The blood sample was dispensed into tubes containing EDTA. The sample was 

centrifuged and the plasma aspirated. The pooled plasma was then incubated at 37 oC for 30 

minutes, in the presence of calcium chloride (0.1% w/v) and bovine thrombin (1 IU/ml). A 

clot was formed as the result of fibrinogen coagulation. The clot was removed and the 

resulting serum dialysed against NaCl (0.15 M) for 12-15 hours. The serum was then heated 

at 56 oC for 30 minutes, in order to destroy any residual lipase activity. The serum was then 

dialysed (12-15 hours) against phosphate buffered saline. The concentrated apolipoprotein C 

source was stored in aliquots at -20 °C. A single batch of concentrated apolipoprotein C was 

used for all T. Lip analysis in the following studies. 

Preparation of radioactive triolein 
Cold triolein (0.5 g) was dissolved in toluene (25 nil). Radiolabelled triolein, glycerol tri (1- 

14 C) oleate (50 tCi, 0.5 ml), was added to a separate volume of toluene (24.5 ml) and mixed 

before being separated into 7x3.5 ml aliquots in round bottom glass flasks. An aliquot of 

cold triolein (3.5 ml) was added to each flask. The flask contents were dried down under a 

stream of nitrogen in a hot water bath. Each flask was then washed in triplicate with heptane 
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(3 ml); between each washing stage the triolein was dried down under a stream of nitrogen. 

After the final washing stage the flasks were dried and then sealed and stored at -200C. 

Solutions of gum arabic (5%) and bovine serum albumin (10%) in a Tris-HCI buffer (0.2 M, 

pH 8.4) were prepared and filtered through cotton gauze. Both solutions were divided into 6 

ml aliquots and stored at -20°C. An extraction solution consisting of methanol, chloroform 

and heptane (1.41 : 1.25: 1.0) was freshly prepared daily. An extraction buffer consisting of 

potassium carbonate (0.14 M) and boric acid (0.14 M) at pH 10.5 was prepared. 

Preparation of substrate mixture 

The substrate mixture was freshly prepared approximately 30 minutes before use. Gum 

arabic (5.5 ml) was added to one of the pre-prepared triolein flasks. The mixture was 

vortexed and sonicated on ice using an ultrasonic disintegrator (Soniprep 150, MSE) at 18 

microns for 4.25 minutes or until there were no visible fat droplets on the surface of the 

emulsion. Bovine serum albumin (5.5 ml) was added and the emulsion mixed and kept on 

ice. 

Plasma (10 µl) was added to a 10 ml plastic (PTFE) conical tube containing NaCI (30 µl; 

0.15 M). Substrate (200 µl), "low salt buffer" (0.2 M Tris, 0.1 M NaCl pH 8.4,250 µl) and 

apolipoprotein C (50 µl) were added to the reaction tube on ice. The tubes were capped and 

vortexed before being incubated at 28 OC for 60 minutes. Two sample blanks were prepared 

which were treated in the same manner. Following the incubation period the reaction tubes 

were rapidly placed on ice and extraction solution (3.25 ml) and extraction buffer (750 µl) 

were added. The tubes were vortexed and then centrifuged at 3000 rpm for 30 minutes at 4 

OC. One ml of the upper phase was dispensed into a scintillation vial containing scintillation 

fluid (10 ml) and acetic acid (200 µl). One ml of the upper and lower phases of the sample 

blank were dispensed separately into two scintillation vials and were treated in the same 

manner. The blank samples provided a background and a total C14 count. Samples were 

counted over a5 minute period using a ß-scintillation counter. Results were expressed as the 
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concentration of FFA released per ml of plasma per hour (µmol/ml/hr). All samples were 

analysed in duplicate and serial samples were analysed in the same run. 

Muscle Analysis 

Glycogen 

Glycogen was analysed according to Essen and Henriksson (1974). Approximately 3 mg of 

freeze-dried powdered muscle was weighed into a glass screw capped vial. HCl (500 µl, 1 

M) was added and the vial vortexed. The vials were then heated at 100 OC for 60 minutes in 

order to release glycosyl residues from the glycogen polymer. After cooling, KOH (90 µl, 5 

M) was added and the tubes centrifuged at 3000 rpm for 10 minutes. The aspirate was 

analysed for glucose as described earlier. In order to destroy any 'free glucose' present in 

post exercise samples the powdered muscle was pre-incubated with KOH (250 µl, 2 M) for 

10 minutes at 50 °C. HCl (250 µl, 1 M) was then added as described previously and the 

sample treated as above. 

Citrate synthase activity 
CS activity was analysed using a method adapted from Alp et a! (1976). Approximately 

1.25 mg of freeze-dried powdered muscle was homogenised in phosphate buffer (50 mmol/l 

dipotassium hydrogenphosphate K2HP04 and potassium dihydrogen phosphate KH2PO4, 

pH 8.0) using an Ultra-Turrax homogeniser for 1 minute on ice. Semi-micro cuvettes 

containing reagent (575 µl), as described in (Table 2.2), were pre-incubated at 25°C. The 

muscle homogenate (20 µl) was added to the reagent and any initial change in absorbance 

measured at 405 nm. The reaction was initiated by the addition of oxaloacetic acid (5 µl) 

according to the reaction sequence overleaf. The absorbance change at 405 nm was recorded 

using a Vitatron spectrophotometer with a slit width of 1.0 mm, pre-incubated to 25 °C. The 

reaction was monitored over 3 minutes using a chart recorder with a X5 scale expansion. 

Muscle extracts were assayed within 3 minutes of homogenisation. Standard solutions of 

cysteine (0-0.7 mmol/1) were used to construct a standard curve from which the milimolar 
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extinction coefficient of acetyl CoA at 405 nm was determined. Enzyme activity was 

expressed in IU/kg muscle (dry weight, dw) at 25 °C. 

Citrate Synthase 
Acetyl CoA + Oxaloacetate + Water Citrate + CoASII 

CoASH +5 5' - Dithio-bis-(2nitrobenzoic acid) Thiophenolate 
ion 
(chromogenic) 

ß-Hydroxyacyl CoA dehydrogenase activity 
Approximately 1.25 mg of freeze-dried powdered muscle was homogenised in phosphate 

buffer (50 mmol/1 dipotassium hydrogenphosphate K2HPO4 and potassium dihydrogen 

phosphate KH2PO4, pH 7.5) using an Ultra-Turrax homogeniser for 1 minute on ice. Muscle 

homogenates were immediately frozen in liquid nitrogen and thawed immediately prior to 

analysis. Semi-micro cuvettes containing reagent (980 µl) as described in (Table 2.3) were 

pre-incubated at 25 °C. The muscle homogenate (20 µl) was added to the cuvette and the 

reaction sequence triggered by the addition of acetoacetyl CoA (20 Al). The absorbance 

change at 334 nm was recorded using a Vitatron spectrophotometer with a slit width of 0.5 

mm, pre-incubated to 25 °C. The reaction was monitored over a 20 minute period using a 

chart recorder set with a X8 scale expansion. 

ß-Hydroxyacyl CoA dehydrogenase 

ß-Ketoacyl CoA + NADH L-Ilydroxyacyl CoA + NAD+ 
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Table 2.2 Reagent mixture for the analysis of muscle CS activity 

DTNB 5,5' dithio-bis-2-nitrobenzoic acid 
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Table 2.3 Reagent mixture for the analysis of muscle B-HAD activity 

NADH Nicotinamide adenine dinucleotide 

TEA Triethanolaminutese 
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Triglyceride 

Lipid extracts of freeze-dried muscle (5 mg) were prepared by sonication in 3 mis of 2: 1 

chloroform : methanol on ice, using an ultrasonic disintegrator (Soniprep 150, MSE, 18 

microns, 4x 30s). NaCl (0.15M, 400 µl) was then added and the samples centrifuged at 4000 

rpm for 5 minutes. The lipid containing layer was aspirated and dried down under a stream 

of nitrogen before being reconstituted into 550 Ri of chloroform. Tri, di and monoglycerides 

were separated by solid-phase extraction using glass columns packed with aminopropyl 

bonded phase (Isolute, Jones Chromatography Ltd, Hengoed, Mid. Glamorgan), according to 

the method of Renuka-Prasad et al (1988). Glass columns were activated with 4x1 ml of 

hexane and 500 µl of the lipid extract was then loaded onto the column. The column was 

then eluted with 4x1 ml of propan-2-ol : chloroform (2: 1). The tri, di and monoglyceride 

containing eluate was dried down under nitrogen and reconstituted in ethanol (95%, 250 µl) 

and KOH (8 M, 10 µl), vortexed and heated at 70°C for 20 minutes. After cooling MgSO4 

(0.15 M, 500 µl) was added and the extracts vortexed and centrifuged at 4000 rpm for 5 

minutes. The supernatant was removed and analysed for glycerol according to the method of 

Bergmeyer (1986), as described earlier. 

Histological staining of muscle biopsy sections 

Muscle samples for histochemical analysis were mounted in OCT (Tissue Tek II, Miles Labs. 

Inc. ) and serial 15 g sections were cut using a Bright OFT motor-driven cryostat. Sections 

were stained for myofibrillar actinomyosin ATPase after pre-incubation at pH 4.5 as 

described by Brooke and Kaiser (1970), (appendix 1). Stained sections were mounted and 

photographed using a Leitz Dialux 20 stereo microscope with a Wild MPS 51S camera and 

MPS 45 automatic controller (X 10 magnification). Using the photographs all fibres within a 

given field were classified as either type I, IIA or IIb fibres. Fibres were then individually 

cut out and the total number of type I, IIA and IIb fibres weighed. Fractional fibre area 

occupied was calculated by expressing the weight of a given fibre type within a given field as 

a fraction of the total fibre weight within that same field. 
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Physiological Measurements 

Heart rate 

Heart rate was recorded during exercise using a telemetric system (HippocardTM PE200, 

Bioengineering Isler A G, Switzerland). Heart rate was recorded and displayed at 5 second 

intervals throughout exercise on an IBM compatible computer. Mean measurements of heart 

rate were then calculated over an appropriate time period. 

Respiratory measurements 

RER was measured using a respiratory system consisting of a lightweight fibreglass mask 

with two flow tubes, incorporating two pairs of ultrasonic transducers, and an on-line mass 

spectrometer, as described by Butler et al (1993) The mask fitted over the lower part of the 

head, covering the nostrils but leaving the mouth free Fig 2.5. The flow tubes incorporating 

the ultrasonic transducers, were mounted opposite each nostril, in line with the direction of 

air flow. Velocity of the airflow in the flow tubes was detected by phase shifts in beams of 

ultrasound transmitted in one and then the other direction. 

Expired respiratory gas concentrations were monitored using a mass spectrometer (Airspec 

Ltd, MGA 2100 with MKII software, Chest Scientific Instruments Ltd, Westerham). 

Samples of expired air were obtained through a capillary tube (0.38 mm internal diameter) 

positioned centrally within the left flow tube. Changes in the gas composition of expired air 

were corrected to dry gas values normalised to 100% (02, C02, N2 + Argon = 100%) and 

were displayed in real time on a CRT monitor. The mass spectrometer was calibrated using 

a certified 12% 02,5% C02, N2 balance gas mixture (BOC Special Gases, Guilfdord). 

Both respiratory airflow, 02 and C02 concentrations were recorded on a Gould 6 channel 

recorder . The output was fed simultaneously to a DT2801,16 channel, 12 bit analogue to 

digital converter (Data translation, Marlborough, Massachusetts, USA) housed in a Compaq 

DeskPro 386TM computer (Compaq Computer Corporation, Houston, Texas USA). The 

programme for data acquisition and analysis was written in ASYST (version 3.0, MacMillan 
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Fig 2.5 Horse GI wearing the lightweight fibreglass mask with incorperated flow tubes 

and expired gas sampling capillery. 
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Software Company, New York). Data was recorded over 1 minute periods subdivided into 6 

X 10 second subfiles. During exercise data was acquired every 5 minutes during walk and 

trot and continuously every minute during canter. RER was calculated independently of 

volume, over 1 minute periods using normalised expired gas concentrations (Hoffman et a! 

1993). RER calculated by the volumeless method was highly correlated to that calculated 

using measurements of respiratory flow and volume (r = 0.95, p<0.0001). Non-protein RER 

was not calculated due to difficulties in obtaining timed urine collections in horses. It was 

assumed that protein utilisation was low and that the error due to protein utilisation small (for 

review see Goodman 1988). 

Limitations to the use of respiratory exchange ratio measurements 
RER is the ratio of carbon dioxide produced to that of oxygen consumed. The measurement 

of gas exchange at the lung level enables an estimation of gas exchange over the whole body 

to be made. The absolute value of RER is characteristic of the foodstuff being catabolised 

(Christenson and Hansen 1939); the amount of carbon dioxide produced relative to the 

amount of oxygen consumed is a function of the amount of carbohydrate and fat that is 

utilised for energy production. An RER of 1.0 indicates exclusive reliance on aerobic 

carbohydrate utilisation, whereas an RER of 0.7 is indicative of total reliance on fat oxidation 

(Christenson and Hansen 1939). The interpretation of RER is, however, complicated by the 

contribution of amino acids to fuel utilisation, yielding an RER value of between 0.80-0.82 

(Kinney 1988). A further limitation of RER interpretation is that measurements of gas 

exchange across the lung represent a mean of that for all the body tissues. Therefore the use 

of RER to estimate muscle metabolism at rest may be limited. At rest, the oxygen 

consumption of skeletal muscle represents only about 20% of the total consumption whereas, 

the liver, brain and heart collectively consume about 60% (Jansson 1982). However, during 

exercise when muscle blood flow is greatly increased and muscle metabolism predominates, 

RER correlates well with measurements of respiratory quotient as measured across the 

working leg (Essen et al 1977; Jansson 1982). 
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Although RER estimates the relative contribution of total fat and carbohydrate to energy 

production it gives no insight into the specific sub-types of fuels used; i. e. FFA or 

triglyceride in the case of fat and glucose or glycogen in the case of carbohydrate. REIZ is 

also influenced by partial oxidation of substrates, e. g. formation of ketones or lactic acid, acid 

base effects and hyperventilation as discussed by Jansson (1982). Lactic acid formed during 

high intensity exercise, as the result of incomplete oxidation of carbohydrate, tends to 

increase RER. RER values above 1.0 are commonly observed during exercise with a high 

anaerobic component. The lactic acid formed during exercise dissociates to produce 

hydrogen ions and lactate. The bicarbonate system contributes to hydrogen ion buffering 

with the formation of carbonic acid; which then dissociates to carbon dioxide and water. 

Thus, the formation of lactic acid is associated with carbon dioxide production without a 

corresponding consumption of oxygen. Incomplete oxidation of FFA with the formation of 

ketones is associated with oxygen consumption without carbon dioxide production and hence 

results in a lowering of RER. Hyperventilation causes a lowering of alveolar PCO2 by 

'blowing off carbon dioxide and hence an increase in measured RER. 

Statistical Analysis 

Where appropriate, initial statistical analysis was carried out using a 1-way or 2-way analysis 

of variance (ANOVA) for repeated measures. In the instance where significance was 

detected multiple comparison tests were then employed as appropriate and are described in 

the relevant chapters. Simple linear regression (least squares method) and correlation 

(Pearson's method) were also performed. The precision and coefficients of variation for the 

plasma and muscle analysis methods are shown in Tables 2.5 and 2.6. Precision was 

calculated as the square root of the sum of the square differences between duplicate 

determinations over 2n. Coefficient of variation (CV) was calculated as below. 

S= Ede/2n CV=(SD. 100) /X 

The significance level was declared at (p < 0.05). All values in the text and figures are 

presented as mean and standard deviation (mean ± SD), except where individual horse data is 

presented. 
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Table 2.5 Precision, mean of material and coefficient of variation (CV) for the plasma 

analysis methods (n refers to the number of paired analyses). 

Table 2.6 Coefficient of variation (CV) for muscle metabolite and enzyme activity 
methods both within extract and on duplicate extracts of the same muscle 

sample. n refers to the number of times each extract was analysed (within 

extract) or the number of extracts analysed (between extracts). 
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Plasma analysis Precision mean CV(%) n 

FFA (Kone) 13.9 (µmoUl) 
Total glycerides 5.5 (µmol/1) 

Glycerol 7.7 (µmol/l) 
Glucose 0.1 (mmo1/1) 

Cholesterol 0.1(mmo1/1) 
Lactic acid 0.1 (mmol/l) 

FFA (HPLC)* (0.2 - 0.3) (µmol/1) 

Total lipase 0.2 (tmol/ml/hr) 

295.5 (µmol/1) 4.7 20 
267.0 (µmol/1) 2.1 20 

119.5 (µmol/1) 6.5 20 

5.5 (mmol/1) 1.8 20 

3.1 (mmol/1) 2.0 20 

2.2 (mmol/1) 3.1 20 

(18.9 - 52.2) (µmol/1) (0.7-2.0) 6 

7.0 (µmol/mUhr) 2.2 20 

* Range of precision, mean and CV for linolenic, myristic, palmitoleic, linoleic, 

oleic, palmitic and stearic acids. 

Muscle analysis CV between extract n CV within extract n 
(%a) (%) 

Glycogen 2.3 10 2.06 18 

Triglyceride 8.5 10 ---- --- 
Citrate synthase 4.3 10 2.46 20 

ß-HAD 6.4 10 0.29 20 



Chapter 3 

Variation in the Concentration of Long Chain Free Fatty 
Acids Over 24 Hours 
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Introduction 

In man and other species certain biochemical parameters and hormones exhibit regular 

variations throughout the day. These changes may be related to food intake, e. g. glucose 

(Frape 1986) or may be independent of feeding and regulated by some other means, e. g. 

cortisol (Hoffsis et al 1970; Larsson et al 1979) and iron (Speck 1968; Ulvik and Romslo 

1977). The day-night cycle usually imposes a diurnal rhythm on the feeding behaviour of an 

animal, sufficient fuel being stored during the active feeding period to provide for the 

metabolic demands of the period of sleep. Plasma FFA concentration is related to food 

intake in human subjects fed a mixed fat and carbohydrate diet (Hollister and Wright 1956). 

No previous investigations describing the within-day variation in the concentration of long 

chain FFA in equine plasma could be found in the literature. 

The resting concentration of plasma FFA influences the rate of FFA oxidation during 

subsequent exercise (Costill et al 1977; Hickson et a! 1977; Ravussin et al 1986). FFA 

mobilisation is influenced by many factors including the blood glucose concentration as well 

as circulating levels of insulin and catecholamines (Hales et a! 1978). Variations in plasma 

FFA concentration may occur as a result of diurnal changes in any of the above. This study 

was undertaken in order to establish whether resting plasma FFA concentration remains 

stable throughout the day or whether it is influenced by feeding status in the horse. 

Additionally the study would contribute to the design of exercise and feeding studies, 

investigating fat metabolism, in order to take account of any diurnal changes or circadian 

rhythm in the plasma FFA concentration. 

Materials and methods 

The within day variation of total long chain (C Z 14) FFA concentration (FFAt) and 

individual long chain FFA concentrations (FFAi) were measured in equine plasma over a 24 

hour period during 3 experimental sessions. Six thoroughbred horses (Sn, Bd, He, Kj, Mr 

and Lb) were sampled during the first session and 6 others during sessions 2 (Bo, Co and G1) 

and 3 (Hl, Pn and Li). The horses used consisted of 8 geldings (Sn, Bd, He, Kj, Mr, Bo, Co 
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and Li) and 4 fillies (Lb, G1, Hl and Pn), weighing between 400-500 kg and between the ages 

of 2-8 years old. All horses were fed normally with a traditional low fat diet and were not 

exercised during the study. Prior to the study, 3 of the horses (Kj, Mr and He) had been grass 

fed and had undertaken little or no work, whilst the remaining 9 horses were stabled and were 

in moderate work. During the sampling period 11 of the 12 horses were fed Spillers Stud 

cubes (approximately 2 kg) and the twelfth, Bd, Spillers racehorse cubes (approximately 2 

kg). Horses were fed at lam, 12.30pm and 4.30pm. The oil content of the stud and 

racehorse cubes was 4.25 and 4.0% by fresh weight respectively. All horses were fed 2-3 kg 

of hay with the morning and evening feeds. Water was available ad libitum at all times. 

Venous blood samples were drawn through a 13 g catheter, as previously described, at hourly 

intervals starting at 5pm. The horses were catheterised a minimum of 1 hour before the first 

sample was taken in order to discount the effects of any catecholamine release during 

catheterisation. Blood was dispensed into tubes containing EDTA as the anticoagulant and 

centrifuged immediately. The plasma was aspirated and stored at -200C until analysis of 

FFAt, FFAi and glucose. Concentrations of FFAi were measured by HPLC as previously 

described. FFAt concentrations were calculated by the addition of FFAi concentrations. 

Plasma glucose was analysed on a Kone Specific auto analyser (Labmedics, Stockport; 

Cheshire) using commercially available reagents. 

Statistical analysis 
The changes in FFAt and glucose observed were analysed using a 1-way ANOVA for 

repeated measures. A multiple comparison test, Fisher's protected least significant difference 

(PLSD), was used where significance was detected. The FFAt data was then divided into 

two periods: 5pm-lam, 10am-4pm (period 1) and 2am-9am (period 2) inclusive. This 

division was made on arbitrary grounds following analysis of the data by ANOVA and 

inspection of Figs 3.4 & 3.5. A pooled estimate of the within-horse variance Sp2 was 

calculated using data from period 1 over the xi values for each horse according to the 

following equation (Wonnacott & Wonnacott 1972) :- 
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s2= 
r n1 

(x 
,-x 

)2 / (n - 1) 
j=I 

The estimate of S2 was subsequently used to calculate confidence limits about individual 

horse means during the same period using (ni -1) degrees of freedom. 
1.1 

Results 

Blood glucose concentration fluctuated throughout the 24 hour sampling period, (Fig 3.1). 

ANOVA indicated a significant effect of time of day (p < 0.01). Plasma glucose 

concentration was significantly increased between 8am-10am and at 2pm, 4pm and at 8pm 

(p < 0.01, Fig 3.1). Glucose concentration was at its highest 1.5 hours following the first 

feed (7.30am); 3.5 hours following the second feed (12.30pm) and 3.5 hours following the 

final feed (4.30pm). Glucose homeostasis was maintained overnight since the glucose 

concentration immediately before the first feed was not significantly different from the 

concentration at 5pm (p > 0.05). 
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Fig 3.1 Variation in plasma glucose concentration (mmol/l, mean ± SD) over 24 hours 

(n=11). 

Using Fisher's PLSD test the glucose concentration at gam was > than at time 

points marked a, b, c or d (p < 0.01); at loam and 8pm was > that at time 

points marked b, c or d (p < 0.01); and at 4pm was > that at the time point 

marked d (p < 0.01). 
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The percentage contribution of FFAi to the total concentration was calculated. As shown in 

Fig 3.2, the most abundant FFAi was palmitic acid (C16: 0). At 5pm, in decreasing order, the 

next most abundant acids were linoleic (C18: 2), oleic (C18: 1), stearic (C18: 0), and linolenic 

acid (C18: 3). Together these five acids constituted 94.5 % of the total concentration and 

individually 26.1,24.9,19.2,17.0 and 7.3% respectively at 5pm. Other FFA detected 

included myristic (C14: 0) and palmitoleic acids (C16: 1), both of which individually 

constituted less than 5% of the total concentration. The predominance of the 5 main FFA 

was maintained over the 24 hours. There were however, small fluctuations in their respective 

contribution to the total concentration. Between 4am and 9am there was an increase in the 

percentage contribution of oleic acid to the total concentration, with a simultaneous decrease 

in that of stearic acid (Fig 3.2). 

FFAt concentration showed minimal variation during period 1 (Fig 3.3). ANOVA indicated 

a significant effect of time (p < 0.001) and revealed a period in which FFAt concentration 

was significantly elevated (p < 0.001). Ten out of the 11 horses exhibited an increase in 

FFAt in the early hours of the morning (Figs 3.4 & 3.5). The increase was localised around 

lam and represented a mean 4.5 fold increase (range 2.0-8.5) above individual horse means 

over period 1. Changes in FFAi concentrations showed the same trend as that of FFAt 

(Table 3.1, Fig 3.3). 

The magnitude and the duration of the elevation in FFAt varied between horses (Figs 3.4 & 

3.5), ANOVA indicated that the mean FFAt concentration at 5am, 6am and lam was 

significantly increased (p < 0.001). This statistical analysis, however, implies that all horses 

showed an increase in FFA concentration and does not illustrate the variation between horses. 

For this reason further statistical analysis was carried out as described previously. 
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Table 3.1 Individual FFA concentrations (mean ± SD, µmoI/1) over 24 hours (n=11). 

* Using Fisher's PLSD test FFA concentration was significantly different (p < 
0.05) at any given time when the numerical difference between two sample 
times exceeded 1.5,0.6,0.7,3.9,4.2,4.2 or 1.7 tmol/1 for linolenic, myristic, 

palmitoleic, linoleic, palmitic, oleic or stearic acids respectively. The bold 

type highlights the period of greatest variation in FFA concentration. 
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The estimated within subject variance for period 1 was 4.5 tmol/1. Ten out of the 11 horses 

studied showed a rise in FFAt between 2am and 9am. In all of these horses the peak 

concentration exceeded the 99% confidence limits calculated about the individual horse 
means during period 1, i. e. X. (period 1) and in 7 out of the 10 horses exceeded the 99.9% 

1 

confidence limits. In 5 out of 10 horses the FFA concentration remained outside the 99.9% 

confidence limits for 4 or more consecutive hours (Fig 3.4). The increases in FFAt observed 

were much greater than could be accounted for by random variation recorded during period 

1. 

The data from the twelfth horse (Kj) has not been included in the statistical analysis and has 

been reported separately (Fig 3.6a & 3.6b). Difficulties were experienced during 

catheterisation and the FFAt and FFAi for this horse were elevated for the first 12 hours of 

sampling. The increase in FFA concentration following catheterisation probably resulted 

from adrenaline release. Adrenaline stimulates adipose tissue lipolysis (Anderson and Aitken 

1977) and could explain the increases in plasma FFA observed in this horse 
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Fig 3.2 Variation in the mean percentage contribution of FFAi to the FFAt 

concentration over 24 hours (n=11). 
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Fig 3.3 Variation in plasma FFAt concentration (mean, µmol/l, Cz 14) over 24 hours 

(n=11). 

Using Fisher's PLSD test the FFAt concentration at lam was > than that at 
time points marked a or b (p < 0.00 1), and at 6am was > than that at time 
points marked a (p < 0.001). 
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Fig 3.4 Individual variation in plasma FFAt concentration (µmol/1, CZ 14) in horses 

(Lb, Li, Hl, Sn, Pn) over 24 hours. 
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Fig 3.5 Individual variation in plasma FFAt concentration (µmol/l, Cz 14) in horses 

(Bo, Bd, Mr, He, Co, Go) over 24 hours. 
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Fig 3.6 Variation in plasma glucose concentration (a) and plasma FFAt concentration 

(b) in horse Kj over 24 hours 
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Discussion 

During normal feeding the most abundant FFA found in this group of horses were palmitic, 

linoleic, oleic, stearic and linolenic acids in decreasing order of abundance. These results 

differ slightly from those of previous authors. Palmitic, oleic, stearic and myristic acids were 

reported by Luther et al (1981) to be the most abundant FFA in equine plasma in decreasing 

order of abundance, constituting 96.1% of the total plasma concentration. In contrast, Rose 

(1982) reported that during exercise and food deprivation the predominant FFA, in order of 

abundance were, oleic, palmitic, linoleic and linolenic acids, which together constituted 88% 

of the total. It is probable that the minor differences observed in the plasma FFA profile 

between these studies reflects differences in the respective diets of the animals used. The 

plasma FFA profile is largely influenced by that of adipose tissue, which in the non- 

ruminant, is affected by the dietary FFA composition. The FFA profile of adipose tissue in 

grass or oat fed horses reflects the FFA composition of the relative diet (Shoreland 1962; 

Shoreland et al 1952). The adipose tissue of grass fed horses contained 17% linolenic and 

4% linoleic acid as compared with 2% linolenic and 22% linoleic acid in the adipose tissue of 

horses fed oats. 

Blood glucose concentration showed a significant increase 1.5-3.5 hours post feeding. 

Plasma glucose concentration has previously been reported to peak in horses between 4-8 

hours following a meal (Frape 1986). The time at which the peak in blood glucose following 

a meal is observed will depend on the nature of the carbohydrate component of the diet, i. e. 

the relative amounts of complex carbohydrate to simple sugars, since the latter are digested 

and absorbed much more rapidly (Frape 1986). The observed peak in plasma glucose 

concentration, following all feeds in this study, may have been slightly earlier than 

previously reported due to a higher soluble carbohydrate content of the diet. 

The sharp rise in plasma FFAt concentration observed in the early hours of the morning was 

much greater than could be accounted for by random variation recorded during period 1. 

Zanzinger et a! (1994) similarly reported that during a 24 hour sampling period plasma FFA 
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concentration increased significantly, in the early hours of the morning before feeding, in 

draught zebu and simmental oxen. It is possible that the increase in FFAt concentration 

occurred as a result of a reduction in plasma glucose concentration during the night. 

Mobilisation of FFA may have occurred as a result of reduced inhibition of lipolysis by a 

lower circulating level of insulin. Insulin is a potent anti-lipolytic hormone (Hales et a! 

1978), which probably exerts its effect by influencing cellular levels of c-AMP. This in turn 

leads to dephosphorylation of HSL (Belfrage 1985; Nilsson et a! 1980). Fig 3.1, however, 

indicates that an adequate supply of forages ensured that glucose homeostasis was maintained 

overnight. Forages which are rich in fibre extend the absorptive period. Horses although 

essentially non-ruminants have the ability to digest structural carbohydrates such as cellulose 

and hemicellulose in the large intestine, mainly in the caccum. Symbiotic bacterial 

colonisation of the caecum enables the digestion of fibre with the subsequent production of 

VFA (Bergman 1990). VFA provide a substantial energy source which ensures that glucose 

homeostasis is maintained overnight (Hintz eta! 1971; Pethick et a! 1993). 

An increased plasma cortisol concentration may have influenced FFA mobilisation. Cortisol 

increases the sensitivity of the adipose tissue to the lipolytic hormones. For a given 

concentration of lipolytic hormone, the rate of lipolysis is higher in the presence of cortisol 

(Fernandez and Saggerson 1978). Cortisol has been reported to exhibit a diurnal rhythm in 

the horse; its concentration reaching a maximum in the early hours of the morning, prior to 

waking (Hoffsis et a! 1970, Larsson et a! 1979). The time at which the peak in cortisol 

concentration is reported to occur however, varies. Larsson et a! (1979) reported that the 

peak in cortisol occurred at 6am and Hoffsis et a! (1970) at Bam. In Man, cortisol has a 

latent effect on fat mobilisation with the response taking several hours to be elicited (Guyton 

1992). A similar effect on fat mobilisation in horses would suggest that it is unlikely that 

cortisol was responsible for the observed increase in plasma FFA. At 5am there was already 

a significant increase in plasma FFA in most of the horses, which if due to an earlier rise in 

cortisol would have meant an increase in cortisol at about 3am. However, cortisol cannot be 

dismissed as the cause of the increase in FFA since it was not measured. 
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It is likely that the increase in plasma FFA in the early hours of the morning occurred in 

preparation for the increased energy demands of wakefulness as a result of the energy 

mobilising actions of the lipolytic hormones. Mobilisation of adipose triglycerides resulting 

in an increased plasma FFA concentration occurs in situations of food deprivation and 

hypoglycaemia (Rose 1982), sustained exercise (Lucke and Hall 1978) and stress (Anderson 

and Aitken 1977). Adipose triglyceride lipase or HSL catalyses the flux generating step in 

the release of FFA from adipose tissue (Bulow 1988). In man, the main lipolytic hormones 

are adrenaline and nor-adrenaline, although thyroid stimulating hormone, parathyroid 

hormone, cortisol and thyroxin may also exert an effect (Hales et al 1978). 

The findings of this study suggest that a proportion of horses exhibit an early morning 

increase in plasma FFA concentration, which cannot be explained by normal variation in the 

plasma FFA concentration throughout the rest of the day. The magnitude of the increase is 

highly variable between individuals and its cause is unknown and requires further 

investigation. 
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Chapter 4 

A Comparison of the Lipolytic and Anticoagulative 
Effects of Heparin and Pentosan Polysulphate 
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Introduction 

Triglyceride emulsions or fat loaded meals have previously been used in other species in 

conjunction with heparin (HEP), to elevate plasma FFA prior to exercise (Costill et al 1977; 

Hickson et al 1977; Ravussin et al 1986). They have provided a useful tool for the 

investigation of fuel utilisation during exercise and for studying the effects of FFA chain length 

and degree of saturation upon fat utilisation (Vukovich et al 1993). The aim of the present 

study was to develop a model for the pre-exercise elevation of plasma FFA in the horse; in 

order that it could be used in investigations of fat metabolism during exercise. 

The rationale for the use of HEP in previous studies is that it has the ability to cause the release 

of LPL and hepatic lipase (HL) into the circulation (Fischer et al 1982; Barrowcliffe et al 

1986, Barrowcliffe et a! 1988). The presence of LPL and to a lesser extent HL in the plasma, 

facilitates the hydrolysis of infused exogenous triglyceride or triglyceride of dietary origin. A 

pilot study carried out in two horses suggested that HEP administration, at a dose that had 

previously been shown to result in release of LPL and HL in ponies (Watson et al 1992a), had 

an unacceptably pronounced effect on blood coagulation. HEP has previously been advocated 

for the treatment of hyperlipaemia in ponies, ostensibly to increase intravascular lipolysis 

(Schotman and Kroneman 1969; Field 1988). However, at the doses used it is reported to 

result in large alterations in blood coagulation, which may cause haemorrhage (Pearson and 

Maas 1990). 

The following study was undertaken to compare the lipolytic and anticoagulative properties of 

both HEP and a related substance, pentosan polysulphate (PP) in the thoroughbred horse. 

When compared to HEP on a weight for weight basis, PP has been reported in other species to 

be less effective at clearing lipaemic plasma but to have a markedly reduced effect upon clotting 

function, as measured by APTT (Cucurachi et al 1967 ; Scully et al 1983). The aim of the 

study was therefore to investigate whether the latter could be used in conjunction with a 

triglyceride emulsion, to achieve increases in pre-exercise plasma FFA concentration with 

reduced effects upon clotting function compared to HEP in the horse. 
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PP is a low molecular weight (4000-6000 Dalton) synthetically manufactured FIEP analogue 

and is a polymer of ß-D-xylopyranose-residues. HEP and PP are structurally and 

biochemically very similar (Brunaud et al 1967). In human and rat studies, PP has bccn 

shown to exhibit similar biological properties to HEP (Brunaud et al 1967; Maffrand et a! 

1991). Both substances exhibit anticoagulative properties and have the ability to cause the 

release of LPL and HL into the circulation (Fischer et al 1982; Barrowcliffc et a! 1986, 

Barrowcliffe et a! 1988). LPL and HL are responsible for the lipolysis of lipoprotcin 

associated triglycerides. LPL acts on triglyceride-rich lipoproteins (Robinson and French 

1953), whilst HL is involved in the intravascular remodelling of low and high density 

lipoproteins. Although the exact function of HL is unclear it is probably responsible for the 

removal of cholesterol and phospholipids from low and high density lipoproteins as they pass 

through the liver (Jansen et al 1980). LPL is located on the luminal surface of blood vessels 

of extra-hepatic tissue, predominantly adipose tissue and skeletal and cardiac muscle (Robinson 

and French 1953). It is bound in association with sulphated glycosaminoglycans. A structural 

similarity between HEP and the endogenous molecules to which LPL is bound facilitates its 

release into the plasma as a result of HEP administration (Robinson 1963). It is likely that the 

injected HEP competes with the sulphated glycosaminoglycans for the LPL enzyme (Robinson 

1963). Similarly HL is mainly found bound to endothelial cells in the liver (Jansen 1980). It 

is assumed that the ability of PP to release both LPL and HL into the circulation occurs by a 

similar mechanism to that of HEP. 

Both HEP and PP prolong the clotting time of blood. HEP in the presence of a co-factor (anti- 

thrombin III) delays the thrombin-fibrinogen reaction, but also acts as an anti-prothrombin, 

preventing the conversion of prothrombin to thrombin. HEP is also a powerful inhibitor of 

Factor Xa, (for review see Biggs 1972). The mode of action of PP is similar to that of HEP in 

that it inhibits Factor Xa and its precursors in the endogenous coagulation cascade. However, 

unlike HEP this effect is independent of antithrombin III (Fischer et o! 1982b). 
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Materials and Methods 

A comparison between HEP and PP was carried out using a group of 6 thoroughbred horses 

during four experimental sessions, separated by a minimum period of one week. Horses were 

weighed on the morning of each session and normal feed and water was supplied. No exercise 

was undertaken on the day of any of the sessions. A dose of HEP that had previously been 

shown to release LPL and HL in ponies (Watson et al 1992a) was used. Since PP on a weight 

for weight basis is reported to be less effective at clearing lipaemic plasma a dose of PP which 

was approximately 3 times that of HEP was given, in order to achieve a suitable increase in 

plasma FFA. 

The lipolytic and anticoagulative effects of HEP and PP were assessed by: 

a) Administration of HEP or PP in isolation. 

b) Co-administration of HEP or PP with an exogenous triglyceride emulsion. 

In all instances HEP and PP were administered intravenously on a dry weight basis in relation 

to body weight (bw). 

Session a 

Effect on total lipase activity and clotting function 

Horses were given a single bolus injection of either HEP (0.39 mg/kg bw; CP Pharmaceuticals 

Ltd, Wrexham) or PP (1.3 mg/kg bw; Fibrizym, Bene Arzneimittel GmbH, Germany). The 

order of treatment was randomised and was separated by a period of at least one week. The 

injections were given through an 18 g catheter inserted into the right jugular vein under local 

anaesthesia. Venous blood samples were obtained by venepuncture of the left jugular vein. 

Blood was dispensed into tubes containing either sodium citrate or lithium heparin for the 

analysis of APTT and plasma T. Lip activity, respectively. Only 5 of the 6 horses underwent 

this session since the 6th horse was receiving unrelated medication. 
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Session b 

Effect on triglyceride clearance and FFA increase 

Horses were given either a bolus injection of HEP (0.39 mg/kg bw) or PP (1.3 mg/kg bw) 

immediately followed by an infusion of a triglyceride emulsion (400 mg/kg bw) over 

approximately 6 minutes. The order of treatment was again randomised and was separated by 

a period of at least one week. The triglyceride emulsion (Iverlip 20; Clintec, France) consisted 

of soya oil (20%), egg phospholipids (1.2%), glycerol (2.5%), sodium oleate (0.03%) and 

water. The solutions were introduced through an 18 g catheter inserted into the right jugular 

vein whilst venous blood samples were withdrawn through a catheter inserted into the left 

jugular vein. Separate aliquots of the plasma were stored for the analysis of FFA, triglyceride 

and glycerol in order to prevent lipolysis of triglycerides during freeze-thawing cycles. 

FFA were analysed on a Kone Specific autoanalyser using a commercially available kit. 

Sample blanks were run for each sample to correct for interference resulting from lipaemia. 

Triglyceride, glycerol, T. Lip activity and APTT were analysed as described previously 

(Chapter 2). All samples were analysed in duplicate for all analyses. 

Statistical analysis 

A 2-factor ANOVA for repeated measures was used to identify differences in T. Lip, APTT 

and FFA concentration both within and between treatments. Multiple comparison tests using 

Fisher's PLSD test were then undertaken in instances where significance was detected. 

Significance was declared at a level of (p < 0.05). A logarithmic transformation of the APTT 

data was undertaken due to marked differences in the individual clotting response to HEP and 

thus inequality of variance between the two treatment groups. ANOVA and multiple 

comparison tests were then applied as before. The clearance of infused triglyceride from the 

plasma, between 10-30 minutes post infusion, was compared between sessions using a paired 

Student's t test. A paired Student's t test was also used to compare the peak FFA concentration 

achieved between sessions and the time taken to achieve peak concentration. 
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Results 

Effect on total lipase activity and clotting function 

Pre-injection T. Lip activity was negligible (< 0.1 µmol/ml/hr). Post-injection T. Lip activity 

was significantly increased 10 minutes following either HEP or PP administration (p < 0.001) 

and remained elevated for up to 2 hours (Figs 4.1,4.2). There was no significant difference in 

post-injection T. Lip activity between the HEP and PP sessions (p > 0.05). Mean peak T. Lip 

activities were 6.9 (range 3.6-9.3) and 7.8 (range 5.6-12.0) µmol/ml/hr for the HEP and PP 

administrations, respectively. The variation in peak T. Lip activity between horses was large, 

though relatively constant between treatments (Fig 4.2). 

APTT was significantly increased following either injection of HEP or PP (p < 0.001). The 

APTT remained significantly elevated throughout the 2 hour sampling period after the 

administration of HEP (p < 0.05). APTT was, however, no longer significantly different from 

pre-administration levels after 1 hour during the PP session. APTT was significantly higher 

following the administration of HEP compared to PP throughout the 2 hour sampling period (p 

< 0.05), (Table 4.1). HEP resulted in a mean 14.0 ± 6.5 fold increase in APTT compared to a 

mean 1.5 ± 0.1 fold increase with PP. 

Lipolytic effect in the presence of raised plasma triglycerides 

plasma triglyceride concentration increased immediately following the infusion of Iverlip 20 (p 

< 0.00 1), returning to pre-infusion levels after 90 minutes (Fig 4.3). Mean peak triglyceride 

concentrations were 1272 and 1767 µmol/1 for HEP and PP, respectively when co- 

administered with Iverlip 20. The removal of triglyceride from the plasma appeared to be linear 

between 10 and 30 minutes post-infusion. During this period there was a marked variation in 

the triglyceride removal rate between horses and a marginal difference (p < 0.05) between 

sessions (Table 4.2). 
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Fig 4.1 Mean T. Lip activity (± SD, µmol FFA released/ml/hr) following an injection of 

either HEP (0.39 mg/kg bw) or PP (1.3 mg/kg bw). 

T. Lip activity at time points marked * and t respectively, were significantly 

different (p < 0.001), (p < 0.05) from pre-infusion activities, (n=5). 
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Fig 4.2 Individual activities of plasma T. Lip activity (unol FFA released/ml/hr) 

following an injection of either HEP (0.39 mg/kg bw) or PP (1.3 mg/kg bw) in 

horses Co, Mo, G1, Ro and Pe. 
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Table 4.1 Clotting function, as measured by activated partial thromboplastin time (sec) 
following an intravenous injection of either HEP (0.39 mg/kg bw) or PP (1.3 

mg/kg bw), (n=5). 
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Horse Time post HEP or PP infusion (min) 

0 10 30 60 120 

Co HEP 34 229 171 156 75 

Co PP 50 75 69 64 53 

G1 HEP 43 712 265 136 53 

G1 PP 50 85 73 64 51 

Mo HEP 34 373 224 170 76 

Mo PP 45 69 63 56 48 

Pe HEP 33 363 314 189 78 

Pe PP 46 66 61 55 49 

Ro HEP 45 1000 844 520 141 

Ro PP 48 79 81 72 62 



Fig 4.3 Mean increase in plasma triglyceride concentration (± SD, µmol/1) following co- 

administration of Iverlip 20 and either HEP (0.39 mg/kg bw) or PP (1.3 mg/kg 

bw), (n=6) 

Pre Pre administration 

' H/PP minutes post injection of HEP or PP 

'I minutes post infusion of Iverlip 20 
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Table 4.2 Triglyceride removal rate between 10 and 30 minutes post-Iverlip infusion 
(µmol/min), (n=6). 
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HORSE HEP 

Triglyceride removed (µmol/min) 

PP 

Co 19.9 21.4 

Gi 48.3 38.7 

Mo 29.6 27.7 

Pe 35.2 24.5 

Ro 31.6 26.6 

Br 25.6 18.8 

Mean ± SD 31.7 ± 9.7 26.3±6.9 



Plasma FFA concentration increased significantly following the infusion of Iverlip in 

association with either HEP or PP (p < 0.001, Fig 4.4). However, there was no significant 

difference in the peak concentration reached between sessions. Mean peak concentrations were 

1055 and 922 p. mol/l for the HEP and PP sessions, respectively. The increase in plasma FFA 

concentration was similar between horses (Fig 4.5). Peak FFA concentration was reached 

significantly earlier after the administration of HEP and Iverlip (p < 0.05). Peak FFA 

concentrations were reached in a mean time of 13 and 23 minutes for HEP and PP, 

respectively. 

Changes in plasma glycerol concentration followed the same pattern of increase as the 

triglyceride concentration. The decline in glycerol concentration, however, was not as rapid as 

that of triglyceride (Fig 4.6). 
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Fig 4.4 Mean increase in plasma FFA concentration (± SD, µmol/i) following co- 

administration of Iverlip 20 and either HEP (0.39 mg/kg bw) or PP (1.3 mg/kg 

bw). Time points marked * and t were significantly different from pre Iverlip and 

HEP or PP administration values, (n=6). 

Pre Pre administration 

' H/PP minutes post injection of HEP or PP 

'I minutes post infusion of Iverlip 20 
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Fig 4.5 Individual increase in plasma FFA concentration (imol/1) following co- 

administration of Iverlip 20 and either HEP (0.39 mg/kg bw) or PP (1.3 mg/kg 

bw) in horses Co, Mo, G1, Br, Ro and Pe. 

Pre Pre administration 

' H/PP minutes post injection of HEP or PP 

I minutes post infusion of Iverlip 20 
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Fig 4.6 Mean increase in plasma glycerol concentration (± SD, µmol/l) following co- 

administration of Iverlip 20 and either HEP (0.39 mg/kg bw) or PP (1.3 mg/kg 

bw), (n=6). 

Pre Pre administration 

' H/PP minutes post injection of HEP or PP 

II minutes post infusion of Iverlip 20 
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Discussion 

The ability of HEP and PP to cause the release of LPL and HL into the circulation is well 

documented in Man (Barrowcliffe et al 1986; Chan et a! 1984) and the rabbit (Barrowcliffe et 

al 1988). Additionally HEP administration has previously been reported to cause the release of 

LPL and HL into the circulation in horses (Watson et a! 1992a; Watson et al 1992b; Watson et 

al 1993a). T. Lip activity (. tmolFFA/ml/hr) measured in this study 10 minutes following the 

injection of HEP, was in agreement with that calculated by the addition of the activities of LPL 

and HL, which were selectively measured after the same dose of HEP in normal healthy ponies 

(Watson et al 1992a). There was considerable inter-horse variation in post HEP and PP T. 

Lip activity. However, the magnitude of the response to both HEP and PP injections was very 

similar within horses. The large individual biological variation in LPL and HL release in 

response to HEP has been previously reported in other species; as has the reproducibility of the 

magnitude of enzyme release with repeated doses of HEP (10-15%), (Nilsson-Ehle 1987). 

The lipase release was comparable after administration of HEP or PP at their respective doses. 

Although there was a trend for the lipase release to be higher following PP injection, this was 

not significant. PP would therefore be expected to show a reduced ability to release LPL and 

HL in the horse, in comparison to HEP at the same dose, as in other species. 

The infusion of both HEP and PP resulted in a significant increase (p < 0.001) in APTT for all 

horses. The increase remained significant for longer (up to 60 minutes post infusion) during 

the HEP session and was much greater. 

The triglyceride concentration was significantly increased after the infusion of Iverlip (p < 

0.001). The infused triglyceride was rapidly metabolised and removed from the circulation. A 

session in which Iverlip was administered in isolation was not undertaken in this study. 

However, a previous study by Moser et al (1989) reported that the removal of a 10% 

triglyceride emulsion (0.2 ml/kg) administered without the co-administration of either HEP or 

PP, was very slow in the horse and was not affected by exercise. Since the removal of the 

triglyceride emulsion in this study was very rapid it can be attributed to the lipase release as the 
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result of HEP or PP administration. The main removal sites for infused triglyceride emulsions 

are skeletal muscle, adipose tissue, myocardium, subcutaneous tissue and the splanchic viscera 

(excluding the liver), (Rossner 1974). It was estimated that in the supine position up to 50% 

of the triglyceride emulsion infused in Man was removed by the skeletal muscle and that this 

may be further increased during exercise (Rossner 1974). 

Plasma glycerol concentration represented the sum of the glycerol infused as part of the 

emulsion (2.5% of the total volume infused) and that produced from the breakdown of infused 

triglycerides. Immediately following the Iverlip infusion, there was a large increase in plasma 

glycerol concentration followed by a gradual decline. There was no apparent increase in 

glycerol concentration corresponding to the increase in FFA concentration. This was probably 

due to the rate of its removal from the plasma greatly exceeding that for FFA. 

A significant increase in plasma FFA concentration was achieved following the administration 

of both HEP and PP in conjunction with Iverlip. A trend for the lipase release to be slightly 

higher after the administration of PP was not reflected in the corresponding increase in plasma 

FFA concentration. The increase in plasma FFA concentration was marginally higher following 

the administration of Iverlip and HEP, however, this was not significant. Peak FFA 

concentration occurred earlier when Iverlip was given in conjunction with HEP compared to 

PP. This effect has been previously described in other species (Cucurachi et al 1967). Thus 

whilst a higher dose of PP (x3) was required to elicit a comparable lipolytic effect to HEP in 

the horse, this was associated with a greatly reduced effect upon clotting function. In view of 

these findings PP represents a suitable alternative to HEP, for use in combination with a 

triglyceride emulsion, to produce an elevation in pre-exercise plasma FFA concentration. In 

conclusion, PP (1.3 mg/kg bw) and Iverlip (400 mg/kg bw), administered approximately 25 

minutes before the onset of exercise, would produce a substantial increase in plasma FFA for 

use in the investigation of FFA utilisation during exercise in the horse. 
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Chapter 5 

Effect of Elevated Plasma Free Fatty Acids on Fat 
Utilisation During Low Intensity Exercise 
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Introduction 

Both fat and carbohydrate are utilised as fuel sources during low to moderate intensity 

prolonged exercise. Their relative contribution to energy production is dependent on a 

number of factors, including the duration of exercise. Studies in Man have indicated that 

during the early stages of prolonged exercise up to 90% of the energy used is provided by 

carbohydrate, with a minimal contribution from fat, whereas the situation is reversed during 

the latter stages (Costill 1972). The intensity of exercise, as well as the training (Costill et 

al 1979) and nutritional status (Janson 1982; Pagan et al 1987) of the individual, may also 

influence the relative contribution of the two fuel sources. The contribution of fat to energy 

production is higher the lower the intensity of exercise and the longer its duration as shown 

by a decreasing RER (Gollnick and Saltin 1988). Aerobic training increases the capacity for 

fat oxidation, at a given exercise intensity, due to increases in muscle oxidative enzyme 

activities (Lindholm et a! 1983; Essen-Gustavsson and Lindholm 1985; Hodgson and Rose 

1987), increased muscle capillarisation (Henckel 1983; Saltin and Gollnick 1983; Hodgson 

and Rose 1987) and mitochondrial density (Saltin and Gollnick 1983; Straub et al 1983). It 

has been suggested that the inclusion of fat into the equine diet increases its use during low to 

moderate intensity exercise (Duren et al 1987; Pagan et a! 1987). 

The plasma concentration of FFA at rest is low and characteristically falls at the onset of 

exercise due to increased muscle blood flow and a delay in adipose tissue lipolysis (Carlson 

and Pernow, 1959). Stimulation of adipose tissue lipolysis results in a steady increase in 

plasma FFA concentration as the exercise proceeds. Studies which have used nicotinic acid 

or its analogues to block FFA release confirm their role as an energy source during exercise 

at intensities of 60% V02 max or less (Walker et al 1991; Heath et al 1993). The rate of 

FFA oxidation is influenced by its extra-cellular concentration and is thus related to the 

arterial FFA concentration, as reviewed by Bulow (1988). Studies in other species have 

reported that a pre-exercise elevation of plasma FFA concentration stimulates the rate of fat 

oxidation during the early stages of sub-maximal exercise. Increases in fat oxidation with 

reduced utilisation of carbohydrate have been reported in both trained and untrained human 
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subjects (Costill et al 1977; Ravussin et al 1986). Furthermore, a delay in the fall of blood 

glucose concentration and the onset of exhaustion has also been reported as a result of a pre- 

exercise elevation of plasma FFA in rats (Hickson et al 1977). 

The aim of the present study was to evaluate the capacity of the horse to increase the 

contribution of fat oxidation to energy production, as a result of a pre-exercise elevation of 

triglyceride derived plasma FFA, during low intensity exercise. 

Materials and Methods 

During two randomised exercise sessions (test, T and control, C), separated by a period of 1 

week, 7 thoroughbred horses (3-7 years) were exercised on a treadmill (Sato, Sweden) for 91 

minutes, at 18°C and 60% relative humidity. A fan was placed in front of the horses 

generating a wind speed of approximately 3.2 m/s. Prior to the study the horses had been 

trained for an 8 week period and had been maintained on a commercially available pelleted 

diet "low fat" (Spillers, Dalgety Agriculture) with additional forages. The exercise protocol 

consisted of a1 minute walk (1.6 m/s) followed by 60 minutes of trot (3.2 m/s) and a further 

30 minutes walk. All exercise was carried out on a 00 incline. The trotting phase of the 

exercise protocol was calculated to represent a mean of 13 ± 3% of VO2 max (Table 5.1). 

Twenty-five minutes before the onset of exercise during session T, horses were injected with 

1.3 mg/kg bw of PP and were infused with a triglyceride emulsion (Iverlip 20,400 mg/kg 

bw) over 6 minutes in order to raise plasma FFA, as described in the previous chapter. The 

same procedure was followed during session C with the exception that no triglyceride 

emulsion or PP was administered. All exercise tests were carried out at the same time of day 

and followed a 12 hour period of food restriction. The horses were fed normally at 

approximately 4.30pm on the previous day and then any remaining pelleted feed or hay was 

removed at 10pm that evening. Exercise was started as near to 10am the following morning 

as was possible. 
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Table 5.1 Individual VO2max values and relative exercise intensity of individual horses 

during the trotting phase of the control and test exercise sessions. 
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Horse VO2max (mikg/min) % of VO2max 

Br 130 15 

Co 144 17 

G1 166 8 

Mo (see text) (see text) 

Pe 133 14 

Ro 196 14 

Ri 132 13 

Mean ±SD 150±26 13±3 



Individual maximum oxygen uptake 
Individual VO2max was determined within 5 days of the second exercise test (T or Q. A 

stepwise exercise protocol similar to that described by Rose et a! (1987) was used. The 

horses were walked at 1.6 m/s for 10 minutes on a 00 incline. They then undertook a series 

of canters each of 1 minutes duration, on a 50 incline, at speeds of 6.8,9,10,11 and 12 m/s 

or until the time of fatigue. Fatigue was defined as the point at which the horse could no 

longer keep pace with the treadmill despite humane encouragement. 

Blood samples 

Venous blood samples were taken through an 18 g catheter inserted into the left jugular vein 

under local anaesthesia, contra-lateral to the side used for the introduction of PP and Iverlip. 

Blood samples were separated into tubes containing EDTA for the analysis of FFA, 

triglyceride and glycerol; fluoride oxalate for the analysis of glucose and lactic acid and into 

tubes containing no anticoagulant for the analysis of T. Lip activity. Samples were treated as 

previously described (Chapter 2). 

Muscle samples 
Muscle biopsy samples were taken and treated, as previously described (Chapter 2), 40 

minutes before the start of exercise and immediately after the completion of 60 minutes of 

trotting. The muscle samples were analysed for glycogen, triglyceride and CS activity. 

Muscle triglyceride concentration was expressed as a ratio to the CS activity in an attempt to 

correct for differences in the fibre composition of serial biopsy samples, as previously 

described by Foster and Harris (1992). CS was correlated to muscle triglyceride 

concentration in resting muscle biopsy samples (r = 0.66, p<0.001). 

RER was analysed using an open-flow system as described in Chapter 2. Heart rate was 

recorded every 5 seconds throughout the exercise period. Mean heart rate was calculated 

over a minute period during rest and the initial walk and then every 5 minutes thereafter. 
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Statistical Analyses 

Where appropriate, a1 factor ANOVA for repeat measures was applied to identify significant 

differences within sessions. Student's t test for paired data was used to analyse differences 

between sessions with each horse serving as its own control. All horses were included in the 

statistical analysis reported. However, in the case of RER and plasma glucose concentration 

there appeared to be more than 1 response during subsequent exercise to the elevation of 

plasma FFA. No significant effect of treatment, with respect to RER and plasma glucose 

concentration, was identified using ANOVA. However, as there appeared to be more than 1 

response to the elevation of plasma FFA the results have been discussed on an individual 

horse basis. 

Results 

Mean heart rates were 94±10 and 96±14 beats/minute for the C and T sessions, respectively 

(p > 0.05). Mean V02 max was calculated to be 150 ± 26 ml/kg/min, range (130-196 

ml/kg/min), (Table 5.1). The intensity of the trotting phase of the exercise protocol was 

therefore calculated to represent a mean of 13± 3% of V02 max, (Table 5.1). Horse Mo did 

not undertake the V02 max test since he had a previous clinical history of tendon injury. A 

decision was taken not to risk jeopardising his use in the low intensity protocols by carrying 

out a V02 max test. 

Plasma triglyceride concentration remained unchanged during exercise session C (p > 0.05). 

During session T plasma triglyceride concentration was significantly higher than the pre- 

infusion concentration, up to 25 minutes into the trot (p < 0.05, Fig 5.1). Plasma T. Lip 

activity was unchanged during session C but was significantly increased immediately prior 

to the onset of exercise, i. e. 25 minutes following the co-administration of PP and Iverlip, in 

session T (p < 0.05, Fig 5.2). Plasma T. Lip activity was further increased, although non- 

significantly, following 30 minutes of exercise (i. e. 55 minutes post PP and Iverlip 

administration) in all horses except Ri during session T. Plasma T. Lip activity remained 

significantly elevated above the pre-administration level throughout exercise in session T (p 
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< 0.05, Fig 5.2). Plasma FFA and glycerol concentration was significantly higher during 

session T compared to C (p < 0.05, Fig 5.3, Table 1 and 2). Plasma FFA concentration 

initially declined at the onset of exercise during both sessions. There was a significant 

increase in both FFA and glycerol concentration compared to pre-exercise values regardless 

of exercise session (p< 0.001, Fig 3, Table 1 and 2). 

RER initially increased during the first 5-10 minutes of trot regardless of exercise session. 

RER was negatively correlated to plasma FFA concentration between 10 and 60 minutes of 

trotting, during both exercise sessions (Fig 5.4,5.5 ). The degree of correlation between 

plasma FFA concentration and RER during exercise, varied between horses. Similarly the 

magnitude of the decrease in RER for a given increase in FFA concentration was also 

different between horses. With the exception of horses Ro and Br the decrease in RER for a 

given increase in FFA concentration was similar within horses between the two exercise 

sessions. This is illustrated by the singular line of regression about the combined RER and 

FFA data for the two exercise sessions in Fig 5.4. Both horses Ro and Br exhibited a much 

more rapid decrease in RER during exercise session T compared to C (Fig 5.5). The change 

in RER for a given change in plasma FFA concentration was similar between the two 

sessions with respect to horse Ri. RER was, however, slightly higher during the test exercise 

session in this horse. There was a significant reduction in RER during both sessions (p < 

0.01), however, this was manifested earlier during session T, (Fig 5.6). There was a large 

inter-horse variation in RER during both exercise sessions, although it was consistently lower 

throughout session T compared to C in 5 out of 7 horses (Br, Ro, Mo, Pe, GI), (Fig 5.7). In 

the remaining 2 horses, RER was unchanged (Co) or higher (Ri) during session T (Fig 5.8). 
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Fig 5.1 Plasma triglyceride concentration (mean ± SD, tmol/l) during 91 minutes of 

low intensity exercise during the control and test exercise sessions. 

* Significantly different from the triglyceride concentration at time point -31 

minutes (p < 0.05) 
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Fig 5.2 Plasma T. Lip activity (mean ± SD, FFA released tmol/ml/hr) during 91 

minutes of low intensity exercise during the control and test exercise sessions. 

* Significantly different from the plasma T. Lip activity at time point -31 

minutes (p < 0.05) 
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Fig 5.3 Plasma FFA concentration (mean ± SD, µmol/l) during 91 minutes of low 

intensity exercise during the control and test exercise sessions. 

ý- Significantly different from the plasma FFA concentration at the 

corresponding sample time during the control session (p < 0.05) 

103 



1250 

1000 

750 
E 

500 

250 

Time (min) 

-0-- Control 

--o- Test 

-32 -17 -2 13 28 43 58 73 88 



Fig 5.4 Correlation between plasma FFA concentration and RER during the trotting 

phase (10 - 60 minutes) of the control and test exercise sessions (combined 

data) in horses (Gi, Mo, Co and Pe). 
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Fig 5.5 Correlation between plasma FFA concentration and RER during the trotting 

phase (10 - 60 minutes) of the control and test exercise sessions (combined 

data) in horses (Br, Ri and Ro). 
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Fig 5.6 RER (mean ± SD) during 91 minutes of low intensity exercise during 

the control and test exercise sessions. 

*t Significantly different from the RER after 5 minutes of trotting during the 

control or test exercise sessions respectively (p < 0.05). 
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Fig 5.7 RER during 91 minutes of low intensity exercise during the control and test 

exercise sessions in horses (Br, Ro, Mo, Pe and GI). 
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Fig 5.8 RER during 91 minutes of low intensity exercise during the control and test 

exercise sessions in horses (Co and Ri). 
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There was no significant difference between sessions in the plasma glucose concentration 31 

minutes prior to the onset of exercise, i. e. before the administration of Iverlip and PP during 

session T (p > 0.05). However, at the onset of exercise 25 minutes after the administration of 

Iverlip and PP, plasma glucose concentration was higher during session T (p < 0.01). There 

was no significant change in the plasma glucose concentration during the control exercise 

session, (Figs 5.9,5.10). During the test session plasma glucose concentration remained 

higher in 4 out of the 5 horses (Br, Ro, Mo, Pe) which exhibited a lower RER, for at least the 

first 15 minutes of exercise, during session T compared to C (Fig 5.9). Plasma lactate 

concentration was low during both exercise sessions, mean < 1.0 mmol/l. There was no 

significant change in plasma lactate concentration during either session (p > 0.05) and there 

was no difference in the concentration between the sessions (p > 0.05, Tables 1 and 2). 

The post exercise muscle triglyceride/CS ratio was not significantly different from pre- 

exercise values during either session C or T. However, there was a trend towards an increase 

in the triglyceride/CS ratio after exercise during exercise session T (Tables 5.2 and 5.3) . 
Muscle glycogen utilisation was low during both exercise sessions and there was no 

difference between sessions (p > 0.05). Mean muscle glycogen utilisation was 40.8 ± 44.1 

and 40.8 ± 78.9 mmol/kg dw for the C and T exercise sessions, respectively (Tables 5.1 and 

5.3). There was a large inter-horse variation in muscle glycogen utilisation. 
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Fig 5.9 Plasma glucose concentration during 91 minutes of low intensity exercise 

during the control and test exercise sessions in horses (Br, Ro, Mo and Pe). 
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Fig 5.10 Plasma glucose concentration during 91 minutes of low intensity exercise 

during the control and test exercise sessions in horses (GI, Co and Ri). 
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Table 5.2 Mean concentration (± SD) of plasma glycerol; mean muscle glycogen 

concentration and mean muscle triglyceride content (expressed as a ratio with 

CS activity) during the control and test exercise sessions in horses (Br, Ro, GI, 

Mo, Pe). 
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Table 5.3 Concentration of plasma glycerol; muscle glycogen and muscle triglyceride 

content (expressed as a ratio with CS activity) during the control and test 

exercise sessions in horses (Co and Ri). 
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Discussion 

During session C there was no significant change in plasma triglyceride concentration, which 

as in other species (Gollnick and Saltin 1988), suggests that it does not represent a significant 

energy source during this type of exercise. At the onset of exercise during session T, (i. e. 25 

minutes following the administration of Iverlip and PP), plasma triglyceride concentration 

remained significantly elevated. Triglyceride clearance from the plasma proceeded rapidly, 

the concentration returning to resting levels in all but one horse (Ri), following 30 minutes of 

trotting. During session T the plasma of horse Ri was visibly lipaemic and the triglyceride 

concentration failed to reach pre-infusion levels until 80 minutes of exercise had been 

completed. The slow clearance of plasma triglyceride in this horse may be partially 

explained by the post PP plasma T. Lip activity measured. Horse Ri exhibited a relatively 

low post PP plasma T. Lip activity (7.8 tmol/ml/hr) which increased only transiently in 

comparison to the other horses. 

Plasma T. Lip activity was unchanged as the result of exercise during session C. During 

session T, post PP plasma T. Lip activity was significantly increased immediately before the 

onset of exercise (i. e. 25 minutes following the injection of PP). The plasma enzyme activity 

continued to rise in all horses with the exception of Ri (as indicated earlier), reaching a peak 

after completion of 30 minutes of exercise (i. e. 55 minutes following the injection of PP). As 

previously reported in Chapter 4, peak plasma T. Lip activity following the same dose of PP 

administered in isolation, occurred 30 minutes after the PP injection in the resting state. The 

co-administration of Iverlip and or the exercise undertaken in this instance, may have 

potentiated the increase in plasma T. Lip activity. Exercise has previously been reported to 

increase the activity of cardiac and skeletal muscle HEP releasable LPL (Ladu et al 1991; 

Lithell et al 1979). Muscle HEP releasable LPL resides in association with muscle capillary 

endothelium and can therefore be released into the plasma following injection of HEP or any 

of its analogues. Muscle HEP releasable LPL may have been elevated during exercise 

session C. However in the absence of PP, LPL was not detectable in the plasma. 
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The plasma FFA concentration was significantly raised prior to exercise as the result of co. 

administration of Iverlip and PP (p < 0.001) and was significantly higher during exercise (p < 

0.05). There was considerable inter-horse variation in the rate of increase in plasma FFA 

concentration during session C and consequently the length of time during which the 

concentration remained below that of session T. After 60 minutes of trotting, plasma FFA 

concentration was higher during session T compared to session C in 5 out of the 7 horses 

(Mo, Pe, G1, Co, Ri). This may partially explain the individual horse response to the exercise 

in terms of RER. 

RER initially increased during the first 5-10 minutes of trot during both exercise sessions. 

This occurred, during the test exercise session despite a high plasma FFA concentration. 

This may be a reflection of the relative insensitivity of the ß-oxidative and TCA pathways to 

a rapid change in the plasma FFA concentration. Furthermore, a transient increase in the rate 

of glycolysis and change in the pH of the cell may have depressed the rate of FFA oxidation 

at the start of exercise. RER was negatively correlated to plasma FFA concentration during 

both sessions illustrating the interdependence of the two parameters. The rate of change in. 

RER, for a given increase in plasma FFA concentration, was similar during both exercise 

sessions. This suggests that FFA uptake and oxidation by skeletal muscle and Bence RER 

was linearly related to plasma FFA concentration. Turcotte et al (1991) reported that the 

uptake of palmitate by intact perfused skeletal muscle followed saturation kinetics, when 

FFA concentration was expressed in terms of the 'free' unbound form. The concentration 

range, however, to which the perfused muscle was exposed in the latter study was much 

higher than the plasma FFA concentration observed in the present study. Over the total 

palmitate concentration range of 750-1250 tmol/1, which is equivalent to an unbound 

concentration of 0-0.25 tmol/l, palmitate uptake by the isolated muscle was not saturated and 

increased rapidly with increasing palmitate concentration (Turcotte et a! 1991). The rate of 

decrease in RER during exercise session T was greater than that observed during session C in 

horses Ro and Br. Both of these horses exhibited a large initial increase in plasma FFA 

concentration at the start of exercise, as a result of Iverlip and PP administration. Equally. 
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however, both horses exhibited an extremely rapid decrease in plasma FFA concentration 

during the first 5-10 minutes of exercise. It is possible that the rapid uptake of FFA by 

muscle during this period meant that the actual FFA concentration to which muscle was 

exposed was not reflected by the plasma concentration during the remainder of the exercise 

period. 

RER was not significantly different between sessions C and T. However, RER was 

consistently lower throughout exercise session T compared to C in 5 out of the 7 horses (Br, 

Ro, Mo, Pe, Gl), indicating an increased reliance on fat metabolism during the T exercise 

session. Of these 5 horses, 4 also exhibited an elevated plasma glucose concentration during 

session T compared to session C. Increased FFA utilisation in these horses may have 

resulted in a glucose sparing effect, as has been previously reported in other species (Costill 

eta! 1977; Hickson et al 1977). Inhibition of glucose oxidation may have been mediated by 

inhibition of hexokinase or PDH. In cardiac muscle elevated levels of citrate, resulting from 

an increased flux through the TCA cycle, inhibit phosphofructokinase. This leads in turn to 

an accumulation of glucose-6-phosphate and hence, hexokinase inhibition, i. e. the so called 

Randle Cycle (Randle et al 1963). A similar effect in skeletal muscle has not as yet been 

demonstrated unequivocally during exercise. Similarly, inactivation of PDH may occur as 

the result its phosphorylation by pyruvate kinase, due to an increase in the ratios of acetyl 

CoA / CoA and NADH / NAD+- as a result of increased FFA oxidation, as reviewed by 

Randle et al (1988). 

The plasma glucose concentration immediately before the start of exercise during session T, 

25 minutes following the administration of Iverlip and PP, was significantly higher than at 

the corresponding time during the control session. This occurred despite no difference in 

plasma glucose concentration between the two sessions, before the administration of Iverlip 

and PP. It suggests that inhibition of glucose utilisation at rest may have occurred as a result 

of increased FFA utilisation. An increase in skeletal muscle citrate concentration at rest has 
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been demonstrated in conditions of elevated plasma FFA concentration, which may facilitate 

this glucose sparing effect (Spriet 1994). 

There was no apparent muscle glycogen sparing effect as the result of the pre-exercise 

elevation in plasma FFA concentration, although the total amount utilised was low. 

Differences in fibre composition of pre and post muscle biopsies make whole biopsy muscle 

glycogen data notoriously difficult to interpret. This is due to patterns of fibre recruitment 

and therefore inter-fibre differences in glycogen utilisation during exercise. 

There was no significant difference between pre and post exercise muscle triglyceride 

content, (expressed as a ratio with CS), during either exercise session. However, there was a 

trend towards an increase in muscle triglyceride content during session T, in some horses. 

This may be the result of extra-cellular triglyceride cycling. Extra-cellular triglyceride 

cycling is the result of re-esterification of plasma FFA which have been transported to a 

tissue other than adipose tissue, mainly the liver (Wolfe 1992). The rate of appearance of 

FFA in the plasma and the total rate of fat oxidation influences the fraction of FFA that are 

recycled (Wolfe 1992). During session T, an increase in the availability of FFA for re- 

esterification due to an increase in muscle blood flow and plasma FFA concentration, may 

have resulted in a net accumulation of muscle triglyceride, in the situation where a further 

increase in muscle FFA oxidation was not possible. It has been reported that during the 

recovery phase of an exercise bout when availability of FFA is high but energy requirement 

and hence FFA oxidation is reduced, there is an increase in the proportion of the FFA flux 

that is re-esterified (Wolfe 1992). 

Horses Ri and Co showed no reduction in RER in response to the pre-exercise elevation in 

plasma FFA. Horse Ri exhibited a very slow clearance of infused triglyceride and a 

correspondingly low increase in pre-exercise plasma FFA and glycerol. This may be related 

to the relatively low post PP plasma T. Lip activity which was unaffected by exercise. RER 

was comparatively high in this horse at around 1.0 during both exercise sessions and showed 
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little decrease with the duration of exercise. Post-exercise muscle triglyceride content was 

also increased during session T in this horse. Horse Ri may have an inherent high 

dependence on carbohydrate utilisation and an inability to utilise fat to a great extent during 

exercise, even in the presence of elevated plasma FFA. This may be a reflection of the fibre 

composition of the muscle mass in this horse. Horse Co exhibited a relatively low RER 

during both exercise sessions in comparison to the other horses and may have a naturally 

high dependence on fat utilisation during low intensity exercise. This may again be a 

reflection of the fibre composition of the muscle mass in this horse. 

Whilst the number of horses used in this study was limiting, 5 out of the 7 horses exhibited a 

lower RER in response to the pre-exercise elevation in plasma FFA; and 4 of these 5 also 

presented a glucose sparing effect during the test session. These results present evidence to 

suggest that the thoroughbred horse has the capacity to increase the utilisation of fat during 

prolonged low intensity exercise. Increased fat utilisation was apparent only in a proportion 

of the horses studied. However, this was probably influenced by the individual biological 

and metabolic variation in the response to exercise, including the individual's inherent ability 

to utilise fat. 
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Chapter 6 

Changes in Resting Muscle and Blood Parameters 
Associated with a Fat supplemented Diet 
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Introduction 

Previous research has suggested that the inclusion of fat into the equine diet may have 

beneficial effects on exercise performance, either through direct substrate effects or through 

some other indirect mechanism. Shifts in substrate utilisation from carbohydrate to fat, 

during both low intensity prolonged (Hambleton et a! 1980; Hintz et al 1987) and moderate 

(Oldham et al 1990) or high intensity exercise (Duren et al 1987; Harkins et al 1992) have 

been suggested. However, the mechanism involved in the suggested increase in fat 

utilisation during exercise, as a result of fat supplementation in the horse, is unresolved. 

An alteration in exercise performance during prolonged exercise, attributed to an increase in 

the relative contribution of fat as a fuel source, has been reported in other species. Endurance 

exercise performance was preserved, despite dietary carbohydrate restriction and subsequent 

reduction in resting muscle glycogen concentration, in Man and rats fed a high fat diet 

(Phinney et at 1983; Conlee et at 1990). Increased endurance capacity has also been 

described in trained cyclists (Lambert et at 1994), sledge dogs (Hammell et at 1977) and 

rats (Miller et at 1984) fed diets containing 38,70 and 78% fat respectively, when compared 

to a control group fed an isocaloric high carbohydrate diet. It has been proposed that under 

conditions of carbohydrate restriction, a shift occurs in the carbon source for the TCA cycle 

from carbohydrate to FFA. This results in a rise in the oxidative capacity and enhancement 

of the B-oxidising capacity (Simi et at 1991). An increase in the activity in muscle of both 

CS and B-HAD has been reported in response to diets containing 78% of the caloric content 

in the form of fat (Miller et at 1984; Simi et at 1991). The supply of FFA to exercising 

muscle may also be increased as a result of feeding a high fat diet. Kiens et at (1987) and 

Conlee et at (1990) reported an increase in the concentration of muscle triglyceride in 

response to feeding a high fat diet. Furthermore, an increase in the activity of muscle LPL in 

response to fat supplementation suggests an increase in the capacity of muscle to utilise FFA 

derived from lipoprotein associated triglyceride (Delorme and Harris 1975; Jacobs et at 

1982; Kiens et at 1987). 
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In previous equine studies the amount of fat contained in the fat supplemented diets, when 

expressed as a percentage of the total energy intake, is much lower when compared to that 

used in other species (Delorme and Harris 1975; Jacobs et a! 1982; Kiens et al 1987). 

Previously used fat supplemented diets have typically contained between 5-35% of the total 

energy content of the diet (DE) in the form of fat (Hambleton et al 1980; Pagan et al 1993; 

Pagan et al 1987; Hintz et al 1987; Harkins et al 1992; Hollands and Cudderford 1993). 

The expression of the fat content of the diet in previous equine studies has not been 

standardised, which makes comparisons between studies more difficult. The fat content of 

the diet has been expressed as either a percentage of the weight or energy content (DE) of the 

concentrate portion or of the whole diet. 

There are few reports which describe the effect of fat supplementation on the resting 

concentration of plasma and muscle metabolites. An increase in resting muscle glycogen 

concentration has been associated with fat supplementation in the horse (Meyers et al 1989; 

Oldham et al 1990; Harkins et a! 1992; Scott et al 1992). Equally several authors have 

failed to show a similar increase in resting muscle glycogen concentration (Pagan et al 1987; 

Greiwe eta! 1989; Hodgson et al 1994). 

The aims of the following study were as follows: 

a) To further investigate the effect of fat supplementation on resting muscle glycogen 

concentration, in horses at a stable level of fitness and energy intake. 

b) To describe any changes in muscle triglyceride concentration in response to feeding a 

fat supplemented diet. 

c) To assess the capacity for uptake of FFA derived from plasma lipoprotein associated 

triglyceride, by muscle and other tissues, in response to a fat supplemented diet using 

measurements of post pentosan polysulphate total lipase activity (post PP T. Lip). 

d) To describe any changes in resting plasma metabolite concentrations in response to 

feeding a fat supplemented diet compared to a high carbohydrate control diet. 

e) To Investigate the effect of fat supplementation on key oxidative enzymes in muscle. 
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Concurrently the effect of fat supplementation on exercise metabolism was also investigated. 

The methodology and the results of which are discussed in Chapter 7. 

Materials and Methods 

Seven thoroughbred horses weighing between 405-543 kg (3 fillies and 4 geldings) aged 

between 3-8 years were trained for a period of 10 weeks. A regimen of walking and trotting 

was employed for the first 6 weeks of training, for approximately 1 hour per day, except on 

Sundays. On the 7th week of training, and throughout the remainder of the feeding study, all 

horses additionally underwent a 10 furlong (1200 meters) canter (10-12 m/s) 3 times a week. 

During the last 7 weeks of the training period, designated the baseline period, all horses were 

fed a low fat pelleted control diet (C, Table 6.1). Following the baseline period the horses 

were randomly divided into a control group (C: horses Co, Ho & Je; 2 fillies and 1 gelding) 

and a fat supplemented group (F), (horses Bo, Li, Mo & Pe; 1 filly and 3 geldings). Horses 

in group C were fed diet C throughout the study. Horses in group F were fed a pelleted fat 

supplemented diet (F, Table 6.1) for a period of 10 weeks, designated the feeding period. 

Diets C and F were calculated to be isocaloric and isonitrogenous with an ME of 9.8 MJ/kg 

which relates to an approximate DE of 12.4 MJ/kg (as calculated using a computer 

programme, Format International, UK). Both diets were fed at 1.37% of body weight 

together with hay at 1% of body weight. Diets C and F supplied 0.22 and 1.0 g of fat/kg 

body weight, respectively. The total amount of energy (DE) supplied by the fat content of 

diets C and F, including hay, were calculated to be 3 and 20 % respectively. The pelleted 

diets were analysed for oil (petroleum ether extract), protein, crude fibre, calcium, 

phosphorus and starch and the hay for oil (petroleum ether extract), protein, dry matter and 

calcium and phosphorus by Spillers, Dalgety Agriculture who manufactured the diets (Table 

6.2). Following the 10 week period of fat supplementation the horses in group F were 

reverted to the control diet for a further 5 weeks, designated the washout period. 
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Table 6.1 Percentage of ingredients used in the manufacture of the control (low fat) and 

the fat supplemented diets, on a dry matter basis. 
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% Dry Matter 

Ingredient Control Fat Supplemented 

Barley 30.00 ---- 
Wheat 3.00 ---- 
Wheatfeed 29.30 33.40 
Straw 1.00 14.20 

Grass 15.0 10.30 
Sugar beet pulp 7.50 ---- 
Soya Oil ---- 8.0 
Lysine 0.07 0.05 
Molasses 8.80 --- 
Limestone 1.30 2.40 

Dicalcium phosphate 2.46 1.05 

Salt 0.71 0.88 
Minerals & Vitamins 0.80 0.90 

Mould Inhibitor 0.08 0.08 



Table 6.2 Percentages of oil, protein, fibre, calcium, phosphorus, salt, sodium, 

methionine, lysine, sugar, starch and vitamins A, D3 and E in the control and 

fat supplemented diets (calculated and actual)*. 

*Calculated values were estimated from the raw ingredients using a computer 

programme (Format International, UK) and actual values were obtained by 

direct analysis of the feed. 
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% Dry Matter Basis 

Constituent Control Fat Supplemented 

Calculated (Actual) Calculated (Actual) 

Oil 2.0 (2.8) 10.0 (9.5) 
Protein 12.0 (11.4) 12.0 (12.9) 

Fibre 9.2 (8.9) 18.0 (15.4) 

Calcium 1.7 (1.6) 1.7 (1.7) 
Phosphorus 0.90 (0.82) 0.65 (0.68) 
Salt 1.2 1.2 
Sodium 0.4 0.4 
Total Lysine 0.44 0.44 

Methionine 0.15 0.16 

Starch 22.3 8.0 
Sugar 11.6 5.0 

Vitamin A 8000 8000 
Vitamin D3 1000 1000 

Vitamin E 237 237 



Feed intake 

The pelleted feed and hay ration were divided into two meals that were weighed separately. 

Hay and pelleted feed were initially fed together, after exercise in the morning, at 

approximately 9.30am and in the afternoon at 4.30pm. Any residual feed that remained after 

the morning meal was carried over and added to the evening meal. Any feed that had then 

not been eaten by the following morning was removed and weighed. The actual feed intake 

and energy intake were calculated on a daily basis. No palatability problems or significant 

feed refusals were encountered with either diet. The forage component of the diet was fed 

approximately 2 hours before the pelleted portion after the 6th week of the baseline period, in 

order to encourage the horses to eat all of their hay. Forage intake was increased in all horses 

as a result of this adjustment. 

Blood samples 

At the end of the 7th week of the baseline period (Sunday) and at the end of every week 

thereafter, blood samples were obtained from all horses by venepuncture. Blood samples 

were analysed for plasma glucose, FFA, triglyceride and cholesterol. All blood samples were 

taken in the morning before feeding the concentrate portion of the diet. 

Body weight 

At the end of the 1st week of the baseline period (Sunday) and each week thereafter all 

horses were weighed in the morning before feeding. 

Muscle samples 
Muscle biopsy samples were obtained from the middle gluteal muscle, as described 

previously, at the end of the baseline period, after 3,6 and 10 weeks of the feeding period 

and at the end of the washout period. The biopsy samples were taken alternately from the 

right and left middle gluteal muscle. A sub-sample of the biopsy was retained for 

histochemical fibre analysis and the remainder was used for the analysis of triglyceride and 

glycogen concentration and CS and B-HAD activities. All muscle samples were obtained at 
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least 24 hours following exercise on the previous day. In order to account for differences in 

the fibre composition of serial muscle biopsy samples triglyceride concentration and CS and 

B-HAD activities were expressed as a ratio to the combined fractional area occupied by type I 

and Ila fibres. 

Post pentosan polysulphate total lipase activity 

Plasma samples were obtained for the analysis of T. Lip activity, both before and 10 minutes 

after the intravenous injection of PP (1.3 mg/kg bw). Samples were taken at the end of the 

baseline period, after 3,6 and 10 weeks of the feeding period and at the end of the washout 

period. 

Digestion trial 

Between weeks 7 and 8 of the feeding period a digestion trial was conducted. All faeces 

were collected throughout 7 consecutive 24 hour periods. Individual faeces were collected 

into separate bags mixed and a sub-sample of constant size taken. Total weight of faeces 

produced each day was recorded. Sub-samples of each 24 hour collection were combined to 

produce a single mixed sample per horse. The samples were freeze-dried and were analysed 

for percentage dry matter, protein, fibre, ether extract and acid insoluble ash by Dalgety 

Agriculture Ltd. Using the hay, pelleted feed and faecal analysis the digestibility of the total 

diet was determined. A predicted value for the fibre content of the hay and the dry matter of 

the pelleted feed was used. 

Statistical analysis 
A 2-factor ANOVA for repeated measures was used to identify significant effects of diet or 

time. Dietary treatment was designated as factor 1 with 2 levels: control and fat 

supplemented. The second factor, the repeat measure, was time in weeks. Significance was 

declared at (p < 0.05). In the instance where significance was established a multiple 

comparison test (Fisher's PLSD test) was applied, and again significance reported at (p < 

0.05). An unpaired Student's t test was used to identify differences between diets. 
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Results 

The intake of hay was increased in horses Bo, Li and Mo once it was fed before the 

concentrate portion of the diet. This was reflected in the calculated total energy intake during 

the baseline, feeding and washout periods (Table 6.3). Feed intake was sufficient for 

maintenance of body weight at the level of work undertaken and was therefore maintained at 

initially designated levels in all horses, except horse Li. Mean digestibility of ether extract, 

protein and fibre was 67 ± 7,85 ± 14 and 79 ± 10% respectively for the control diet. The 

corresponding digestibilities for the test diet were 85 ± 3,81 ±4 and 122 ± 13% 

respectively. The digestibility of ether extract and fibre was significantly higher in the fat 

supplemented horses (p < 0.01) whilst there was no significant difference in protein 

digestibility between dietary groups. 

A slow decline in body weight was observed in horse Li, a2 year old gelding, after 5 weeks 

of the feeding period. As a result, the pelleted portion of the feed of this horse was increased 

by 1.2 kg and the hay by 0.8 kg. Horse Li had previously been described as a horse that was 

difficult to maintain weight when in full training. Body weight was restored once the ration 

of this horse was increased and at the end of the study his weight was no different to that 

prior to the study. In all other horses body weight fluctuated randomly with no apparent 

effect of diet (Fig 6.1). There was no significant interaction between diet and time with 

regard to body weight during the feeding period. There was no significant change in body 

weight throughout the feeding study in horses in group F. Horses in group C, however, 

showed a small but significant increase in body weight by the 4th week of the washout period 

with respect to week 1 (p < 0.05). 

Plasma glucose and FFA 

The plasma concentration of both FFA and glucose fluctuated significantly with time (p < 

0.001) but there was no significant effect of diet (Table 6.4) 
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Table 6.3 Mean total energy intake (MJ) and energy intake per kg body weight in 

individual horses during the baseline, feeding and washout periods in horses 

maintained on either a control low fat or fat supplemented diet. 
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Fig 6.1 Variation in body weight (kg) during the baseline, feeding and washout 

periods of the feeding study in individual horses. 
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Table 6.4 Resting plasma FFA and glucose concentration (mean ± SD) at the end of the 

baseline period and during the feeding and washout periods. 

Week 1 end of baseline period 

Weeks 12-16 washout period 

Weeks 2-11 feeding period 
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FFA (µ. mol/1) Glucose (mmol/l) 

Week Control Fat Supplemented Control Fat Supplemented 

1 594±220 604 ± 16 5.6±0.3 5.9±0.2 

2 240±44 336± 122 5.6±0.7 5.4±0.2 
3 397±81 495 ± 168 5.7±0.2 5.5 ± 0.2 
4 464±201 390± 132 5.5±0.1 5.4±0.3 
5 434± 103 583±163 5.2±0.2 5.2±0.1 
6 235±57 372 ± 227 5.6±0.4 5.4 ± 0.1 
7 201±60 282±79 5.2±0.2 5.2 ±0.1 
8 241±30 321±107 5.1±0.3 5.4±0.4 

9 481 ±55 435±116 5.3 ±0.4 5.6±0.5 
10 251±25 267 ± 139 5.5±0.4 4.8 ± 0.2 
11 342± 158 322± 169 5.6±0.3 5.1 ±0.2 

12 120±5 109±24 5.3±0.2 5.3±0.5 
13 201±79 266±88 4.7 ±0.4 5.2±0.3 
14 120±30 169±110 5.3±0.5 5.5±0.2 
15 177±84 235 ± 139 5.4±0.5 5.4 ± 0.2 
16 182±112 126±79 5.2±0.2 5.3±0.1 



Plasma cholesterol 
Plasma cholesterol concentration was unchanged throughout the sampling period in the 

horses in group C (p < 0.05). A significant interaction between sampling week and diet (p < 

0.001) was identified within group F. Plasma cholesterol concentration increased 

significantly in horses in group F during the period of fat supplementation (p < 0.05. Fig 6.2), 

The cholesterol concentration was significantly greater than the baseline concentration after I 

week of fat supplementation but was no longer significantly different 3 weeks after 

withdrawal of the fat supplemented diet (Fig 6.2). Although the plasma cholesterol 

concentration was increased during fat supplementation, the concentration remained within 

the normal range at all times (1.9-3.9 mmol/l) and there was no significant difference 

between the two dietary groups (p > 0.05). 

Plasma triglyceride 
Plasma triglyceride concentration was unchanged throughout the sampling period in horses in 

group C (p > 0.05). A significant interaction between sampling week and diet (p < 0.002) 

was identified within dietary group F. Triglyceride concentration decreased significantly 
during the period of fat supplementation of the horses in group F and was significantly lower 

than the baseline concentration after 5 weeks of fat supplementation. The plasma triglyceride 

concentration of the horses in group F was also significantly lower than those of group C 

during this period (p < 0.05, Fig 6.3) 
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Fig 6.2 Resting plasma cholesterol concentration (mean ± SD) at the end of the 

baseline period and during the feeding and washout periods. 

Week 1 end of baseline period Weeks 2-11 feeding period 

Weeks 12-16 washout period. 

* Significant difference from week 1 within group F (p < 0.05). 
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Fig 6.3 Resting plasma triglyceride concentration (mean ± SD) at the end of the 

* 

t 

baseline period and during the feeding and washout periods. 

Week 1 end of baseline period 

Weeks 12-16 washout period 

Weeks 2-11 feeding period 

Significant difference from week 1 within group F (p < 0.05). 

Significant difference from corresponding week between groups (p < 0.05). 

133 



450- 

" 350- 

250- 

T la 

150 T *1 
1 

50 r- ** -i- 

' *lt tl* t *t * "50 Week 
0123456789 10 11 12 13 14 15 16 17 

-ý- Group C -o- Group F 



Plasma post pentosan polysulphate total lipase activity 

Plasma T. Lip activity measured before the injection of PP was negligible and was 

unchanged in either dietary group during the sampling period. Horses in group F, however, 

exhibited a significant increase in post PP T. Lip activity during fat supplementation (p < 

0.05, Fig 6.4). Post PP T. Lip activity was significantly elevated above the baseline activity 

after 3 weeks of fat supplementation. Peak enzyme activity was reached after either 6 or 10 

weeks of fat supplementation in individual horses (Fig 6.5). Mean post PP T. Lip activity 

was no longer significantly different from the baseline activity 5 weeks after the withdrawal 

of the fat supplemented diet. 

Muscle metabolites and enzyme activities 

There was no significant interaction between sampling week and dietary group with respect 

to muscle glycogen concentration (p > 0.05, Table 6.5). Similarly, there was no significant 

difference in muscle triglyceride concentration prior to and after the period of fat 

supplementation, either within or between dietary groups (p > 0.05, Table 6.6). Prior to the 

adjustment of muscle enzyme activity for the fibre composition of biopsy samples there was 

no significant change in either muscle CS or ß-HAD activity, as a result of fat 

supplementation. However, there was a significant increase in the adjusted muscle CS 

activity after 10 weeks of fat supplementation in dietary group F (p < 0.05, Table 6.6). There 

was no corresponding change in adjusted CS activity in dietary group C. There was a trend 

towards an increase in adjusted muscle ß-HAD activity after 10 weeks of fat supplementation 

in dietary group F, however, this was increase was not significant (p > 0.05, Table 6.6) 
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Fig 6.4 Post PP plasma T. Lip activity (mean ± SD) at the end of the baseline period 

* 

t 

and during the feeding and washout periods. 

Week 1 end of baseline period 

Weeks 12-16 washout period 

Weeks 2-11 feeding period 

Significant difference from week 1 within group F (p < 0.05). 

Significant difference from corresponding week between groups (p < 0.05). 

135 



12.0 

10.0 

8.0 

6.0 

4.0 

2.0 

T. t 
T* 

1; 

Week 
01234S6789 10 11 12 13 14 15 16 

-+- Group C --o- Group F 



Fig 6.5 Post PP plasma T. Lip activity in individual horses (group C) during the 

baseline period, feeding and washout periods. 

Week 0 baseline period Weeks 2- 11 feeding period 

Weeks 12-16 washout period 
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Fig 6.6 Post PP plasma T. Lip activity in individual horses (group F) during the 

baseline period, feeding and washout periods. 

Week 0 baseline period 

Weeks 12-16 washout period 

Weeks 2-11 feeding period 
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Table 6.5 Muscle glycogen concentration (mean ± SD) during the baseline, feeding and 

washout periods in horses in dietary groups C and F. 

Pre Prior to fat supplementation 

3 Weeks Following 3 weeks of fat supplementation of horses in dietary group F 

6 Weeks Following 6 weeks of fat supplementation of horses in dietary group F 

10 Weeks Following 10 weeks of fat supplementation of horses in dietary group F 

Washout Following 5 weeks of withdrawal of the fat supplemented diet of horses in 

group F 
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Muscle Glycogen (mmol/kg dw) 

Dietary Group 

Control Fat Supplemented 

727 ± 80 596 ± 26 

3 Weeks 600± 66 575 ± 46 

6 Weeks 679 ± 29 610 ± 53 

10 Weeks 672± 49 620 ±25 

Washout 653 ± 26 647 ±29 



Table 6.6 Muscle triglyceride concentration (mmol/kg dw), CS and B-HAD activity 

(IU/kg dw) and fibre composition of muscle biopsy samples (fractional area 

occupied) from individual horses (groups C and F) prior to and following 10 

weeks of fat supplementation of horses in dietary group F. 

CS, B-HAD and triglyceride ratio - ratio of CS, B-HAD or triglyceride to the 

combined fractional area occupied by type I and Ha fibres in the biopsy 

sample. 

* Significantly different from the corresponding Pre concentration or 

activity (p < 0.05) 
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Discussion 

Alterations in muscle metabolism, following a period of exposure to a fat supplemented diet 

have been widely reported during exercise in the horse. The mechanism involved in the 

reported shift in metabolism during exercise has not as yet been elucidated. A direct 

substrate effect due to a change in the diet, or an adaptational response that affects the ability 

to utilise fat during exercise may explain the observed response. Alternately, an alteration in 

exercise metabolism may occur as a consequence of a change in the hormonal milieu, as a 

result of the variation of the ratio of fat : carbohydrate in the diet. 

The digestibility of ether extract was increased with fat supplementation, as has been 

previously described (McCann et of 1987; Rich et of 1981). The increased digestibility of 

ether extract probably reflects the increased oil content of the fat supplemented diet. 

Furthermore the fat present in the control diet was integral fat, i. e. contained in cereal grains 

and this may have reduced its digestibility. The increased fibre digestibility is probably a 

reflection of the increased fibre content of the fat supplemented diet. 

Plasma FFA concentration at rest was variable throughout the feeding study in both groups of 

horses. There was no significant interaction between dietary group and sampling time. An" 

increase in the pre-exercise plasma FFA concentration was suggested to increase the 

utilisation of fat during subsequent low intensity exercise as described in Chapter 5. 

However, a dietary induced elevation in resting FFA concentration was not demonstrated in 

this study and therefore probably would not contribute to the increase in fat utilisation 

previously reported by other authors. Plasma glucose concentration was also not 

significantly influenced by dietary treatment. No significant differences were identified in 

muscle glycogen concentration, either within or between dietary groups. The concentration 

of muscle glycogen was similar to that previously reported (Essen-Gustavsson et al 1984; 

Snow et al 1985; Snow and Harris 1991). Random variation in muscle glycogen 

concentration probably reflects differences in biopsy site, which may be partly attributed to 

variation in the fibre composition of biopsy samples. Type I fibres may quantitatively 
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contain less muscle glycogen than type II fibres (White and Snow 1987). Further variation 

may have been introduced due to serial biopsies being taken alternately from the right and 

left middle gluteal muscle. Snow and Harris (1991) estimated that the variance between 

sampling sites, within horses undertaking race type training, was 57 mmol glycosyl units/kg 

dm. As was discussed earlier, previous studies have reported an increase in resting muscle 

glycogen concentration in response to a period of fat supplementation. However, the 

concentration of muscle glycogen in these former studies was much lower in comparison to 

those of this study and to that previously reported (Essen-Gustavsson et al 1984; Snow et al 

1985; Snow and Harris 1991). The observed increases in resting muscle glycogen 

concentration may have occurred as the result of differences in the gross or net energy 

content of the control and fat supplemented diets. Furthermore the training and nutritional 

status of the horses prior to the studies cannot be overlooked as a precipitant of the increase 

in muscle glycogen concentration. In agreement with the studies in rats of Miller et a! 

(1984) and Simi et al (1991) fat supplementation was associated with an increase in muscle 

CS and B-HAD activity. Statistical significance was, however, only achieved with respect to 

the increase in muscle CS activity. Nevertheless the results suggests that an increase in the 

capacity of muscle to oxidise FFA may have occured as the result of fat supplementation. 

However, although an attempt was made to correct for differences in the fibre composition of 

biopsy samples, confirmation of the increase in oxidative capacity could only be achieved 

using measurements of CS and ß-HAD in single muscle fibres. Unlike the study of Conlee et 

al (1990) no significant change in muscle triglyceride concentration was observed as a result 

of fat supplementation. 

Plasma cholesterol concentration was significantly increased during the fat supplementation 

period in horses in group F. The increase in cholesterol concentration was, however, small 

and remained within the normal concentration range. Furthermore, the concentration was not 

significantly different from that of group C. An increase in the plasma cholesterol 

concentration evoked by a high fat or fat supplemented diet has been previously reported in 

both horses and rats (Hill et a! 1960; Hambleton et al 1980; Rudney and Sexton 1986). The 
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increase in cholesterol concentration may have arisen as a consequence of either increased 

dietary intake or as a result of increased cholesterol-genesis. The cholesterol content of both 

diets C and F is likely to be minimal. The main ingredients of both diets; cereal grains, 

forages, grain by-products and soya oil have an extremely low cholesterol content (Lentner 

1981). It is therefore likely that the increase in cholesterol concentration was due to 

endogenous synthesis, possibly as the result of increased production of acetyl CoA due to an 

increased flux through B-oxidation. It has previously been suggested that cholesterol-genesis 

may represent an alternative pathway for acetyl CoA when lipogenesis is suppressed (Hill et 

al 1960). Alternatively, an increase in the triglyceride : protein ratio of VLDL, intermediate 

density lipoproteins and LDL may have led to a stimulation of endogenous cholesterol 

synthesis. As triglycerides are removed from circulating lipoproteins they are replaced by 

cholesterol ester in order to maintain lipoprotein stability which may in turn stimulate 

endogenous cholesterol synthesis. 

Plasma triglyceride concentration and plasma post PP T. Lip activity were unchanged in the 

control group of horses. The corresponding enzyme activity was increased in the horses in 

group F by on average about 50% as a result of fat supplementation. Furthermore, the 

increase in enzyme activity was associated with a significant reduction in plasma triglyceride 

concentration. Similarly, the fasting activity of post heparin plasma LPL is higher in 

suckling foals compared to adult ponies (Watson et al 1993a). This may reflect the 

relatively higher fat content of the diet of the former. An increase in muscle heparin 

releasable LPL activity has been reported to occur as the result of feeding diets containing 

between 65-78% of the energy as fat, in Man and in rats (Delorme and Harris 1975; Jacobs et 

a! 1982). Delorme and Harris (1975) also reported a simultaneous decrease in the activity of 

adipose tissue LPL. Plasma post PP T. Lip activity represents the sum of heparin releasable 

LPL and HL. The functional location of heparin releasable LPL is the endothelial cell 

surface of extra-hepatic tissue capillaries, mainly adipose tissue and skeletal muscle 

(Robinson 1987). Hence, the observed increase in plasma post PP T. Lip activity may have 

resulted from an increase in either or both adipose or muscle tissue LPL, or an increase in the 

142 



(Robinson 1987). Hence, the observed increase in plasma post PP T. Lip activity may have 

resulted from an increase in either or both adipose or muscle tissue LPL, or an increase in the 

activity of HL. An increase in the activity of heparin releasable muscle LPL, as a result of 

dietary manipulation (Delorme and Harris 1975), fasting (Delorme and Harris 1975; Lithell 

et a! 1978) or exercise (Borensztajn et al 1975; Taskinen et al 1980) is associated with a 

reciprocal decrease in the activity in adipose tissue. In other words as the capacity for uptake 

of FFA by skeletal muscle, from lipoprotein associated triglycerides is increased, there is a 

reciprocal decrease in their uptake by adipose tissue. HL is responsible for remodelling 

circulating lipoprotein and is involved in the removal of cholesterol and phospholipids from 

high and low density lipoproteins (Jansen et al 1980; Watson et al 1993b). Summerfield et 

al (1984) reported that HL activity was lower in rats fed a high fat diet in comparison to 

those fed a high carbohydrate diet. The reduced HL activity, however, was associated with a 

lower plasma cholesterol concentration (Summerfield et al 1984). HL acts on lipoprotein 

particles with a much lower triglyceride content than LPL and hence the reduction in plasma 

triglyceride observed is probably the result of an increase in LPL activity. The decrease in 

plasma triglyceride concentration, associated with the fat supplemented diet, indicates a 

better management of the fat load and has been previously reported in the horse (Duren et al 

1987). Harris and Felts (1973) reported an increase in the rate of removal of labelled 

triglyceride from the plasma in rats fed a high fat diet. The increase in the activity of post PP 

T. Lip was probably the result of an increase in muscle LPL that was larger than a reciprocal 

decrease in adipose tissue LPL activity. 

The stimulus for the increase in post PP T. Lip activity is unknown. The changes in LPL 

activity may be have been induced by hormonal changes that occurred as the result of the 

change in diet. Insulin has previously been implicated in the regulation of adipose tissue and 

muscle LPL (Jacobs et al 1982; Kiens et al 1989). The effect of insulin on LPL activity, 

however, appears to be tissue dependant, and may be the result of an insulin mediated change 

in tissue glucose metabolism (Kiens et al 1989). Pagan et al (1994) reported that plasma 
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insulin concentration was lower both at rest and during subsequent exercise, after a period of 

adaptation to a fat supplemented diet in comparison to a high carbohydrate control diet. 

In summary, fat supplementation was associated with a better management of the fat load as 

was illustrated by the decrease in resting plasma triglyceride concentration . 
The reduction in 

plasma triglyceride concentration may have occurred as the result of an increased ability of 

muscle to utilise lipoprotein associated plasma triglyceride, as a result of an increase in the 

activity of muscle LPL. Although the fat supplemented diet was associated with an increase 

in total cholesterol concentration this remained within the normal range at all times. 

Additionally fat supplementation may have resulted in an increase in muscle oxidative 

capacity as indicated by the increase in muscle ß-HAD and CS activity in the horses in 

dietary group F. 
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Chapter 7 

Metabolic Response to Low, Moderate and 
Moderate/High Intensity Exercise in Horses Fed a Low 

Fat or Fat Supplemented Diet. 
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Introduction 

Many studies have previously been carried out to investigate the effect of fat supplementation 

on the metabolic response to exercise in the equine. The results of these studies have often 

been contradictory and the effect of fat supplementation on exercise metabolism remains 

unresolved. It has been widely suggested that an increase in the level of dietary fat, fed 

chronically, may alter substrate utilisation during subsequent exercise (Hambleton et al 

1980; Duren et al 1987; Paganeta! 1987; Hintz eta! 1987; Moser et a! 1991; Harkins eta! 

1992; Scott et al 1992; Hodgson eta! 1994). This may in turn lead to alterations in exercise 

performance (Webb et al 1987; Harkins et a! 1992). Many of the suggested shifts in 

substrate metabolism have been based on indirect measurements of fuel utilisation, such as 

changes in plasma glucose, lactate, FFA, and muscle glycogen concentration. 

At the end of both prolonged low intensity exercise (Hambleton et at 1980; Hintz et at 

1987) and moderate to high intensity exercise of short duration (Duren et at 1987; Harkins et 

at 1992; Pagan et a! 1994), plasma glucose concentration has consistently been reported to 

be higher, in association with a fat supplemented diet in the horse. It is suggested that this 

may be the result of a glucose sparing effect. Plasma lactate concentration in response to 

exercise, following a period of adaptation to a fat supplemented diet, has been reported to be, 

lower (Pagan et at 1993), higher (Webb et at 1987) or no different (Duren et at 1987; 

Meyers et at 1989; Harkins et at 1992) relative to that measured in horses fed a high 

carbohydrate control diet. Glycogen utilisation is reported to increase during moderate to 

high intensity exercise, in response to feeding a fat supplemented diet in the horse (Oldham 

et at 1990; Jones et at 1991; Scott et at 1992). These findings, however, may reflect an 

observed increase in resting muscle glycogen concentration seen in the latter studies. Muscle 

glycogen utilisation during exercise was unchanged when resting muscle glycogen 

concentration was unaffected by fat supplementation (Pagan et at 1987; Hintz et at 1987; 

Hodgson et at 1994) 
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Measurement of RER represents a more direct method of assessing substrate utilisation 

during exercise. However, its use in equine studies has been limited (Pagan et al 1987; 

Meyers et al 1989). Pagan et al (1987) reported a lower RER during low and moderate 

intensity exercise following fat supplementation when compared to a control group of horses 

receiving a low fat high carbohydrate diet. However, RER was similarly lower in a group 

receiving a high protein diet in the same study. This may suggest that the differences in RER 

measured were due to differences in the carbohydrate content of the 3 diets. Meyers et al 

(1989) failed to report any significant effect of diet on RER at a similar low intensity 

exercise, although, the trend towards a lower RER with the fat supplemented diet was 

apparent. 

Previous studies investigating the effect of fat supplementation on exercise metabolism in 

the horse have varied in terms of :- 

a) The intensity and duration of the exercise. 
b) The nature and amount of fat included in the diet. 

c) The breed, age and training status of the horses . 
d) The experimental design of the feeding regimens, i. e. crossover designs or discrete 

subject groups. 

e) The feeding status of the horses prior to commencement of exercise. 

Some of these differences may explain the inconclusive and often inconsistent results that 

have been previously reported. The aim of the present study was to assess the metabolic 

response to exercise, of 3 grades of intensity, in response to feeding a fat supplemented diet. 

The horses used were at a stable level of fitness and energy balance prior to the start of the 

period of supplementation. The study design used incorporated two discrete subject groups. 

This was done in order that both within horse and between horse comparisons could be made. 

A short crossover design, such as a4X4 Latin square, was considered inappropriate since 

shifts in substrate utilisation may occur as the result of an adaptational response to the diet, of 

unknown period of induction and washout. 
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Materials and Methods 

As part of the feeding study described in the previous chapter a series of exercise tests were 

additionally performed during the different feeding phases of the study. Horses in both 

dietary groups (F and C) underwent exercise tests of low (T), moderate (SC) and 

moderate/high intensities (FC), on 4 separate occasions. The low intensity test was a trotting 

exercise test (T), the moderate intensity test incorperated a period of slow canter (SC) and the 

moderate/high intensity test incorperated a period of fast canter (FC). The exercise tests were 

undertaken at the end of the baseline period, between weeks 4-5 (F5) and weeks 9-10 (F10) 

of the feeding period and at the end of the washout period. Dietary treatment during these 

periods was as described in Chapter 6. It was difficult to standardise the time of day at which 

exercise tests were performed due to the large number of tests carried out within 1 week. The 

time at which each of the 3 grades of exercise test was undertaken was therefore standardised 

within horses but randomised between horses. Each horse undertook a single exercise test in 

any 1 day and this was followed by at least 1 day, in which light exercise (walking and 

trotting) was undertaken, before the next exercise test was performed. The horses performed 

the 3 different exercise tests in the same order on each occasion; i. e. the SC exercise test was 

followed by the T exercise test and then FC exercise test, respectively. All horses were well 

accustomed to the treadmill and all associated equipment and had completed each exercise' 

test with ease on several occasions before the baseline exercise tests were performed. All 

exercise tests were carried out at a room temperature of 200C and at 60% relative humidity. 

The Exercise test protocols were as follows : 

T Exercise Test 

1' Walk 1.6 m/s 00 incline 

40' Trot 3.2 m/s 00 incline 

10' Wallt 1.6 m/s 00 incline 
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SC Exercise Test 

10' Wallt 1.6 m/s 00 incline 

5' Trot 3.2 m/s 00 incline 

5' Walk 1.6 m/s 00 incline 

10' Canter 7.0 ni/s 00 incline 

10' Walk 1.6 n /s 00 incline 

FC Exercise Test 

10' Walk 1.6 m/s 00 incline 

5' Trot 3.2 m/s 00 incline 

5' Walk 1.6 m/s 00 incline 

10' Canter 10.0 m/s 00 incline 

10' Walk 1.6 m/s 00 incline 

Horses were catheterised as previously described in Chapter 2 and blood samples taken 

throughout exercise as shown over-leaf. Blood samples were immediately centrifuged and 

treated, as described previously, for the analysis of plasma FFA, lactate and glucose 

concentration. Respiratory measurements for calculation of RER were made as overleaf; 

using an open flow respiratory mask system as described in Chapter 2. Heart rate was 

measured throughout exercise as previously described, Chapter 2. 

149 



*iiiiýiiii 

iiiiiýiýii 
REST 

1'W 57 10'T 15'T 20'T 25' T 30'T 35'T 40'T 10'W 

REST 
1,2,3,4,5,6,7, S, 9'C 

S' W 10, W 57 S, W 10'C 101W 

Respiratory Data Aquisition w walk (1.6 m/s) 

T trot (3.2 m/s) 
Blood Sample 

C canter (7 or 10 m/s) 



Statistical analysis 
A 2-factor ANOVA for repeated measures was used to identify any significant effect of 

dietary treatment or time. Within dietary group C week of test was designated as the first 

factor, which had 4 levels: baseline period, 5 weeks of fat supplementation (F5), 10 weeks of 

fat supplementation (F10) and washout period. The second factor, the repeat measure, was 

sampling time. Analysis of dietary group F similarly used a 2-factor ANOVA where the first 

factor was diet, which had two levels: control and fat supplemented. The second factor, the 

repeat measure, was sampling time. In the instance where a significant interaction between 

week of test and time or dietary treatment and time was identified, further analysis was 

carried out. A paired Student's t test was applied to identify differences within dietary group 

and an unpaired Student's t test to identify differences between dietary groups. 

Results 

Mean heart rates during the baseline exercise tests were 94 ± 12,128 ± 16 and 157 ± 16 beats 

per minute during the low intensity test and during the canter phase of the moderate and 

moderatelhigh intensity exercise tests, respectively. The intensity of exercise test T and the 

intensity of exercise during the canter phase of tests SC and FC was estimated using the 

relationship between percentage heart rate max and percentage of maximum oxygen uptake, ' 

as described by Evans and Rose (1987). With an assumed mean heart rate max of 210 beats 

per minute the mean relative exercise intensities were estimated to be to be 7.5,34 and 56% 

of VO2 Max for exercise tests T, SC and FC respectively. There was no significant difference 

in heart rate either within or between dietary groups with respect to all exercise intensities (p 

> 0.05). 

Baseline exercise tests - respiratory exchange ratio 
There was a large inter-horse variation in RER measured during exercise test T (p < 0.000 1), 

as illustrated by the large standard deviation in Fig 7.1. RER initially increased during the 

first 5 minutes of trotting and then declined slowly. Following 25 minutes of trotting and 
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thereafter, RER was significantly lower than that measured after the first five minutes of 

trotting (p < 0.0001). 

RER steadily increased during the first 3-5 minutes of the canter phase, of both the SC and 

FC exercise tests, before reaching a plateau or steady-state (Fig 7.1). Following 4 minutes of 

canter RER was no longer significantly different from that measured during the previous 

minute during exercise test SC. During exercise test FC the RER measured after 3 minutes 

of canter was not significantly different from that measured after 2 minutes. The inter-horse 

variation in RER during the canter phase of both exercise tests SC and FC was markedly less 

than that during exercise test T (Fig 7.1). 

Low Intensity exercise tests (T) 

There was no significant difference in the RER measured between weeks during exercise test 

T, in the control group of horses (Figs 7.2). ANOVA revealed a significant interaction 

between week of test and measurement time, in the horses in group F. Further statistical 

analysis of the horses in group F indicated a significant difference in RER, measured between 

the serial exercise tests, that was related to the period of fat supplementation. RER was 

significantly lower, in the latter stages of the exercise tests performed after 5 and 10 weeks of 

fat supplementation, relative to the baseline exercise tests (Fig 7.2). RER was also 

significantly increased, relative to exercise test (F10), once the horses in group F were 

reverted to the control diet. There was no significant difference in RER at any time between 

the two dietary groups (p > 0.05). There was a trend, however, for the RER of horses in 

group F to be lower than that of group C during exercise tests F5 and FlO (Fig 7.3). The 

degree of change in RER measured during the serial exercise tests was different between 

horses. Horses Bo, Mo and Pe exhibited a clear drop in RER during exercise tests F5 and 

F10 relative to the baseline test, whereas horse Li showed minimal variation in RER between 

exercise tests (Fig 7.4). 
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Fig 7.1 RER (mean ± SD) during the low intensity exercise test (T) and during the 

canter phases of the moderate (SC) and moderate/fast (FC) intensity exercise 

tests in horses in both dietary groups C and F during the baseline period. 

* RER significantly different (p < 0.05) from that measured after 5 minutes of 

exercise. 
t RER significantly different (p < 0.05) from that measured after 1 minute of 

canter exercise during exercise test SC 
ýf RER significantly different (p < 0.05) from that measured after 1 minute of 

canter exercise during exercise test FC 
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Fig 7.2 Mean RER during exercise test T during the baseline period the feeding period 
(F5 and F10) and the washout period in horses in dietary groups F and C 

respectively. 

*/* RER significantly different (p < 0.05) from that measured at the corresponding 
time during the baseline exercise test. 
RER significantly different (p < 0.05) from that measured at the corresponding 
time during the washout exercise test. 
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Fig 7.3 A comparison of RER (mean ± SD) during exercise test T in horses in dietary 

groups C and F for the exercise tests performed during the baseline, feeding 

(F5 and F10) and washout periods respectively. 
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Fig 7.4 RER measured in individual horses (Bo, Li, Mo, Pe) in dietary group F in 

response to exercise test T during the baseline, feeding (F5 and F10) and 

washout periods. 
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Moderate exercise tests (SC) 

There was no significant difference in the RER measured. during the canter phase of exercise 

test SC between weeks in the control group of horses (Fig 7.5). ANOVA revealed a 

significant interaction between week of test and measurement time during the canter phase in 

the horses in group F (p < 0.001). RER during the canter phase of exercise test F5 was not 

significantly different from that measured during the baseline exercise tests. However, RER 

measured during the canter phase of exercise test F10 was significantly lower than that 

measured during the baseline tests after 1,2 and 9 minutes of canter (Fig 7.5). Examination 

of the individual horse data revealed that RER was consistently lower during the canter phase 

of exercise F10 compared to the baseline exercise test in 3 of the 4 horses (Fig 7.6). Once 

again it was horse Li which did not conform to the trend of the other horses (Fig 7.6). 

Moderatelfast exercise tests (FC) 

There was no significant difference in the RER measured during the canter phase of exercise 

tests FC in either dietary groups and there was no significant difference in RER measured 

between dietary groups (p > 0.05, Fig 7.7). 

Plasma free fatty acid concentration 

The plasma FFA concentration increased significantly in both dietary groups during all the 

low intensity exercise tests (p < 0.0001). There was no significant difference in the plasma 

FFA concentration between the serial exercise tests, either at the onset or during the exercise 

period, in the control group of horses (p > 0.05, Figs 7.8). ANOVA revealed a significant 

interaction between week of test and sampling time in the fat supplemented horses (p < 

0.0001). There was a strong trend amongst the horses in group F towards a higher plasma 

FFA concentration during the latter stages of exercise during the F5 and F10 exercise tests 

(Figs 7.8,7.9). The plasma FFA concentration of horse Li did not conform to the trend 

exhibited by the other 3 horses in group F (Fig 7.9). Statistical significance was reached 

during exercise test F5 only (Fig 7.8). Additionally the plasma FFA concentration reached 

157 



during the washout test was significantly lower in the latter stages of exercise, relative to 

exercise test F5 (p < 0.05, Fig 7.8). 

Plasma FFA concentration increased slowly during the canter phase of exercise tests SC and 

FC and continued to rise rapidly during the walking recovery phase (Figs 7.10 and 7.11). 

There was no significant difference in plasma FFA concentration between any of the serial 

SC or FC exercise tests, either within or between dietary group. During exercise test FC the 

walking recovery period was associated with a sharp increase in FFA concentration in both 

dietary groups (Fig 7.11). 

Plasma lactate concentration 

Plasma lactate concentration declined in the early stages of exercise test T before increasing 

during the latter stages, although the concentration remained below 2 mmol/l throughout 

exercise. Plasma lactate concentration increased during the first two minutes of the canter 

phase of exercise test SC and then either declined or remained at a constant level (< 4.5 

mmol/l) for the remainder of the period of canter. During the canter phase of exercise test FC 

the lactate concentration was typically lower than 9 mmol/l. However, the plasma lactate 

concentration of horse Mo reached 18 mmol/l during the exercise test performed after 10 

weeks of fat supplementation. There was no significant effect of either week of test or 

dietary group on plasma lactate concentration during either the slow, moderate or 

moderate/fast exercise tests (p > 0.05, Table 7.1). 

Plasma glucose concentration 

There was no significant interaction between week of test and diet with respect to plasma 

glucose concentration either within or between dietary groups for any of the exercise tests 

(Table 7.2). 
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Fig 7.5 Mean RER during the canter phase of exercise test SC completed during the 
baseline period, the feeding period (F5 and F10) and the washout period in 

horses in dietary groups F and C respectively. 

RER significantly different (p < 0.05) from that measured at the corresponding 
time during the baseline exercise test. 
RER significantly different (p < 0.05) from that measured at the corresponding 
time during the washout exercise test. 
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Fig 7.6 RER measured in individual horses (Bo, Li, Mo, Pe) in dietary group F, in 

response to the canter phase of exercise test SC during the baseline, feeding 
(F5 and F10) and washout periods. 
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Fig 7.7 RER (mean ± SD) during the canter phase of exercise test FC completed 
during the baseline period, the feeding period (F5 and F10) and the washout 
period in horses in dietary groups F and C respectively. 
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Fig 7.8 Mean plasma FFA concentration during exercise test T, performed during the 

baseline, feeding (F5 and Flo) and washout periods by the horses in dietary 

groups F and C respectively 

RER significantly different (p < 0.05) from that measured at the corresponding 

time during the baseline exercise test. 
RER significantly different (p < 0.05) from that measured at the corresponding 

time during the washout exercise test. 
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Fig 7.9 Plasma FFA concentration in individual horses (Bo, Li, Mo, Pe) in dietary 

group F during exercise test T, performed during the baseline, feeding (F5 

and F10) and washout periods. 
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Fig 7.10 Plasma FFA concentration (mean ± SD) during the canter and recovery phases 
of exercise test SC in horses in dietary groups F and C respectively during the 
baseline, feeding (F5 and F10) and washout periods. 
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Fig 7.11 Plasma FFA concentration (mean ± SD) during the canter and recovery 
phases of exercise test FC in horses in dietary groups F and C respectively 
during the baseline, feeding (F5 and F10) and washout periods. 
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Table 7.1 Plasma glucose concentration (mmol/l, mean ± SD) during exercise tests T, 

SC and FC during the baseline, feeding and washout periods in horses in 

dietary groups C and F. 

Pre E Pre Exercise 

T Trot 

C Canter 

R Walking Recovery 
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Table 7.2 Plasma lactate concentration (mmol/l, mean ± SD) during exercise tests T, SC 

and FC during the baseline, feeding and washout periods in horses in dietary 

groups C and F. 

Pre E Pre Exercise 

T Trot 

C Canter 

R. Walking Recovery 
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Discussion 

Examination of the RER data, measured during the baseline exercise tests, revealed a large 

inter-horse variation in the response to low intensity exercise. This suggests that there is a 

large difference in the use of fat and carbohydrate as fuel sources between horses during this 

type of exercise. This may reflect differences in the individual horse's inherent capacity to 

utilise fat and carbohydrate. The relative contribution of fat and carbohydrate as fuel sources 
during low intensity exercise may be largely influenced by genetic factors, as a function of 

differences in the fibre composition of the skeletal muscle mass and thus associated variation 

in mitochondrial density, enzymes of fat and carbohydrate catabolism and associated 

differences in the storage of endogenous muscle fuel stores. The relative contribution of fat 

and carbohydrate to energy production is also affected by a number of factors including: diet, 

state of training and nutritional status. Their relative contribution during exercise therefore in 

an individual depends on the interaction between exercise intensity and the above factors. 

The time period between consumption of the pelleted feed and the commencement of 

exercise tests was not standardised between horse. This may have contributed to the 

variation in RER observed during exercise test T. However, the horses had almost constant 

access to forages which, as reported in Chapter 3, serves to prevent decreases in plasma 

glucose concentration, characteristic of the post-absorptive period in Man (Hoffer 1988). In 

addition, horses were not exercised for at least 2 hours following the consumption of pelleted 

feeds. Furthermore, the time at which an individual horse undertook any of the 3 exercise 

tests on the four separate occasions was standardised to eliminate this as a cause of variation 

between serial exercise tests. 

The inter-horse variation in RER became lower as the intensity of exercise increased and was 

associated with a corresponding increase in mean RER. The increase in carbohydrate 

utilisation and associated rise in RER with increase in exercise intensity is well documented 

in other species. These results suggest that the increased utilisation of carbohydrate is 
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uniform or obligatory and is less affected by the factors discussed with respect to low 

intensity exercise. 

There was a strong trend towards a lower RER throughout the 50 minutes of exercise test T, 

during the period of fat supplementation of horses in group F, with respect to the baseline 

exercise test. The trend was apparent in only 3 of the 4 horses, although the difference was 

significant in the latter stages of exercise. The results suggest an increase in the utilisation of 

fat during the exercise tests following fat supplementation. RER was also significantly 

higher during the washout test, i. e. once the horses in group F had been reverted to the 

control diet. The increase in fat oxidation may have been due to either an increase in plasma 

FFA or triglyceride utilisation or an increase in the oxidation of endogenous muscle 

triglyceride. In agreement with previous studies in rats, using much higher levels of fat 

supplementation (Miller et at 1984; Simi et at 1991), a significant increase in muscle CS 

activity and a trend towards an increase in muscle B-HAD activity was observed in response 

to fat supplementation in Chapter 6. The suggested increase in oxidative capacity may have 

contributed to the observed increase in fat utilisation during exercise. A significant increase 

in muscle triglyceride concentration following fat supplementation has been reported, again 

in rats (Abumrad eta! 1978; Conlee eta! 1990). A similar increase in the concentration of 

muscle triglyceride was not apparent in this study, as was discussed in the previous chapter. 

However, a significant increase in the plasma post PP T. Lip activity measured at rest, which 

may have resulted from an increase in muscle heparin releasable LPL, was reported during 

the period of fat supplementation (Chapter 6). An increase in the activity of the latter would 

enhance the capacity for uptake of plasma triglyceride derived FFA by muscle. An increase 

in plasma triglyceride utilisation may therefore have contributed to the observed decrease in 

RER. 

Examination of the individual horse data revealed that after completion of 20 minutes of 

exercise the horses in group F exhibited a trend towards an increased plasma FFA 

concentration during tests F5 and F10, which reached significance after 40 minutes of 

exercise during exercise test F5. The increased plasma FFA concentration may have 
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reflected either increased FFA mobilisation or reduced extraction by exercising muscle; since 

plasma FFA concentration represents the net difference between FFA mobilisation and 

oxidation or re-esterification. An increase in the exercise induced elevation of FFA 

concentration has been previously described in human subjects fed a high fat, low 

carbohydrate diet (Galbo et al 1979; Jansson et al 1982; Jansson and Kaijser 1982; Lambert 

et al 1994) and in horses fed a fat supplemented diet (Essen-Gustavsson et a! 1991). Janson 

et a! (1982) suggested that an increased rate of lipolysis during exercise, as a result of 

feeding a carbohydrate poor or fat rich diet, may occur due to an accentuation of the 

sympatho-adrenal response to exercise, as indicated by a greater exercise induced increase in 

nor-adrenaline. A similar enhancement in the exercise induced increase in adrenaline has 

also been reported in response to a high fat diet (Galbo et a! 1979; Jansson et al 1982). 

The concentration of insulin, a potent anti-lipolytic hormone, decreases during exercise 

(Galbo et al 1977). Following feeding of a fat supplemented diet insulin has been reported to 

be lower during exercise both in man (Galbo et al 1979; Jansson et al 1982) and in the horse 

(Pagan et al 1994) when compared to a high carbohydrate fed control group. Increased FFA 

mobilisation may not necessarily reflect an increase in the rate of lipolysis but may occur 

simply as an increase in FFA release as a result of either a reduction in FFA recycling or a- 

reduction in the retention of FFA within adipocytes. 

RER was consistently lower during the canter phase of exercise test SC in 2 of the 4 horses, 

following 5 weeks of fat supplementation. Following 10 weeks of fat supplementation RER 

was consistently lower, during the canter phase of exercise, in 3 of the 4 horses. In all these 

instances the lower RER was associated with an enhanced exercise induced increased in 

plasma FFA concentration. Horse Li failed to show a similar trend in RER and similarly the 

increase in FFA concentration during exercise tests F5 and F10 was lower than that during 

the baseline test. There were no significant differences in RER measured either within or 

between dietary groups with respect to the moderate/fast exercise tests. The recovery period 

was associated with a sharp rise in plasma FFA during exercise tests FC in both dietary 
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groups. This may be the result of a continued high rate of lipolysis or may simply reflect 

release of FFA's retained within adipocytes during the canter phase of the exercise. Romijn 

et al (1993) reported that the rate of lipolysis immediately following high intensity exercise 

was rapidly decreased in man, but similarly was associated with an increased rate of FFA 

release into plasma. As was discussed by these authors, the decreased appearance of FFA in 

plasma during high intensity exercise may have resulted from the entrapment of FFA within 

adipocytes. The FFA then being released during the low intensity recovery period. The 

entrapment of FFA may be the result of a reduction in adipose tissue blood flow and hence 

albumin available for FFA transport, mediated through alpha-adrenergic activity or a high 

FFA-albumin ratio in adipose tissue (Bulow eta! 1985; Romijn et al 1993) 

Horse Li failed to show the changes in plasma FFA concentration and associated difference 

in RER as exhibited by the other horses in group F as a result of fat supplementation. During 

the baseline tests horse Li exhibited the lowest RER of all horses in group F, over all exercise 

intensities. This horse may have an inherent high capacity for fat oxidation relative to the 

other horses in group F and was therefore unaffected by the introduction of fat into the diet. 

RER increased with increasing exercise intensity and the variation in RER both between 

dietary groups and between exercise sessions was low during the moderate/high intensity 

exercise tests. This suggests that the increase in carbohydrate utilisation in response to the 

increase in exercise intensity, as indicated by a higher RER, was uniform or obligatory 

between horses. The failure to observe any change in RER as a result of fat supplementation 

may reflect the high dependence on carbohydrate metabolism at this intensity of exercise. 

In Summary, fat supplementation was associated with a reduction in RER during low and 

moderate intensity exercise which was accompanied by an increase in the exercise induced 

elevation of plasma FFA. An increased delivery of plasma FFA to the working muscle may 

have resulted in an increased rate of FFA oxidation, and hence a reduction in RER. It was 

suggested in Chapter 5 that the thoroughbred horse has the capacity to increase the 
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contribution of fat to energy production, during prolonged low intensity exercise, in the 

presence of an elevation in plasma FFA concentration. Furthermore it was suggested that the 

oxidative capacity of muscle may be increased as a result of fat supplementation (Chapter 6). 

Additionally an increased activity of muscle LPL, reflected by an increase in the plasma post 

PP T. Lip activity may have increased the capacity to utilise plasma triglycerides. The failure 

to observe any significant change in RER during the moderate/high intensity exercise tests 

suggests that carbohydrate was the predominant fuel source and that further utilisation of fat 

was inhibited. 
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Chapter 8 

General Discussion 
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The thoroughbred horse has been selectively bred for speed of running and has the capacity 

for a high rate of carbohydrate utilisation. This can be inferred from the reported proportion 

of type II fibres in biopsy samples of the middle gluteal muscle, in comparison to other 

breeds as reviewed by Snow (1983). The thoroughbred horse also exhibits increased muscle 

glycogen storage (Snow et a! 1985) and higher activities of phosphofructokinase (Cutmore 

et a! 1985), phosphorylase, CS (Sewell et al 1994) and LDH (Roneus and Lindholm 1991), 

in comparison to Man (Simoneay et a! 1983; Harris et a! 1974; Essen et al 1975). 

Conversely, the thoroughbred horse has lower activities of heparin releasable LPL , as 

described in Chapters 4 and 6, and B-HAD (Lindholm et al 1983; Simoneay et al 1983; 

Chan 1984) which are key enzymes of fat metabolism. These differences may simply reflect 

the higher proportion of type II fibres in mixed muscle biopsy samples but suggest that the 

thoroughbred has developed as a carbohydrate dependant athlete. 

Horses maintained on a commercial low fat diet exhibited a low concentration of plasma long 

chain FFA, as measured by HPLC, during the major part of a single 24 hour period. 

Furthermore, the plasma FFA concentration was unaffected by feed intake. The early hours 

of the morning (2-9am) prior to feeding were characterised as the period of greatest 

variability in plasma FFA concentration. A proportion of the horses studied showed a large- 

increase in plasma FFA concentration localised at around lam, as described in Chapter 3. 

Plasma FFA have been reported to exhibit a diurnal rhythm, which was related to food intake 

in human subjects (Hollister and Wright 1956). The diurnal rhythm in FFA concentration in 

Man, however, is likely to have resulted from changes in circulating glucose and insulin 

concentration, the plasma FFA concentration decreasing sharply after food intake and rising 

during the post-absorptive period. The horse, a semi-ruminant herbivore, does not undergo a 

true post-absorptive period as it has the ability to ferment structural carbohydrates producing 

VFA which are metabolised (Bergman 1990). As a result of the ability to metabolise VFA 

the consumption of forages, which are rich in fibre, ensures that glucose homeostasis is not 

compromised in between feeding periods. In order to account for the reported circadian 
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rhythm in plasma FFA described in Chapter 3 all subsequent exercise studies were carried 

out during the period of least variability in plasma long chain FFA concentration. 

A comparison of the lipolytic and anticoagulative effects of HEP and PP indicated that a 

higher dose (x3) of PP was required to elicit a comparable lipolytic effect to HEP in the 

horse, as in other species (Cururachi et a! 1967; Scully et a! 1983). Injection of both HEP 

and PP in isolation resulted in a significant increase in plasma T. Lip activity. Whilst co- 

administration of HEP or PP with a triglyceride emulsion produced a substantial increase in 

plasma FFA. The effect of PP injection on clotting function as measured by APTT was 

approximately 9 times less than that of HEP, in agreement with Cururachi et a! (1967) and 

Scully et a! (1983). Due to the risks of prolongation of clotting time associated with HEP 

administration (Smith 1990) PP was used in conjunction with a triglyceride emulsion to 

produce the pre-exercise elevation in plasma FFA described in Chapter 5. 

Measurements of RER during low, moderate and moderate/high intensity exercise indicated 

that the use of fat as a fuel source was dependant on both the intensity and duration of 

exercise, as described in Chapters 5 and 7. The contribution of carbohydrate to energy 

production increased with increasing exercise intensity as indicated by an increase in RER. 

An increase in the contribution of fat to energy production occurred with duration of low 

intensity exercise, as indicated by a decrease in RER. During low intensity exercise RER, 

however, increased during the first 5-10 minutes of exercise, indicating an increased reliance 

on carbohydrate metabolism during this period. As reported in Chapter 5, this initial increase 

in RER occurred even in the presence of a pre-exercise elevation of plasma FFA. This 

suggests that during the early period of exercise plasma FFA concentration is not limiting to 

its oxidation. An initial rise in RER was also apparent following acceleration to canter 

during the moderate and moderate/high intensity exercise tests in Chapter 7. A plateau or 

steady state in RER was achieved only after 4 or 3 minutes of canter during the moderate or 

moderate/high intensity exercise tests respectively. As was discussed in Chapter 5, FFA 

utilisation may be inhibited at the onset of exercise as a result of an increase in the rate of 
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glycolysis and associated decrease in the pH of the cell or through direct inhibition by 

glycolytic intermediates. 

An increase in the ratio of acetyl carnitine : free carnitine may reduce the availability of the 

latter for transport of long chain FFA across the mitochondrial membrane. An increase in the 

concentration of acetyl carnitine in skeletal muscle in the rat has been reported to occur in 

response to high intensity exercise of short duration (Carter et a! 1981). Furthermore a 

simultaneous and stoichiometric decrease in the concentration of free carnitine has been 

reported in equine muscle (Foster and Harris 1987a; Foster and Harris 1987b). Foster (1989) 

demonstrated that the major accumulation of acetyl carnitine can occur after only 2 minutes 

of moderate intensity exercise, in the absence of a significant accumulation of lactate in 

plasma. Following the pre-exercise elevation of plasma FFA concentration (Chapter 5), the 

increase in RER observed during the first 5-10 minutes of exercise was accompanied by a 

sharp decrease in the plasma FFA concentration. An increase in the extraction of plasma 

FFA by skeletal muscle as a result of an increase in muscle blood flow at the onset of 

exercise, together with a delay in adipose tissue lipolysis may explain the rapid fall in plasma 

FFA concentration. The corresponding increase in RER, however, suggests that the uptake 

of FFA into muscle occurred without a corresponding increase in FFA utilisation. This 

suggests that FFA may have been retained in some form in the cell cytoplasm, possible in the 

form of fatty acyl carnitine. 

In the presence of a pre-exercise elevation of plasma FFA concentration the thoroughbred 

horse appeared to have the capacity to increase the contribution of fat to energy production 

during prolonged low intensity exercise, as was discussed in Chapter 5. The increase in fat 

utilisation, however, was not uniform and varied between horses; it was suggested that this 

may be related to the inherent ability of an individual horse to utilise fat. The variability in 

the utilisation of fat at low exercise intensities may be due to individual variability in: the rate 

of lipolysis and release of FFA, the transport capacity into muscle and then into the 

mitochondrion and finally the FFA oxidising capacity of the muscle cells; all of which may 
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be influenced by genetic factors and state of training. The variability in RER measured 

between horses for a standard exercise was high at low exercise intensity decreasing as the 

intensity of exercise increased. Individual horses were exercised at the same absolute 

intensity in the studies of Chapters 5 and 7. Differences in individual VO2max would 

therefore influence the relative work intensity of exercise performed, which may effect 

substrate utilisation and account for some of the variability in RER observed between horses . 

Brooks and Mercier (1994) described the cross-over concept as a method of explaining the 

pattern of substrate utilisation in an individual at any point in time during exercise. These 

authors suggest that substrate utilisation at a particular time is function of exercise intensity 

responses (which increase carbohydrate utilisation) and endurance-training responses (which 

promote fat oxidation). Furthermore, they propose that a theoretical point "the crossover 

point" exists during exercise which represents the exercise intensity at which carbohydrate 

utilisation predominates over fat utilisation. At exercise intensities above the cross-over 

point a further increment in carbohydrate oxidation and decrement in fat oxidation occurs. 

The intensity of exercise at which the crossover point occurs may vary between individuals. 

An increase in RER above that observed during prolonged low intensity exercise was' 

measured during moderate and moderate/high intensity exercise in the thoroughbred horse. 

Additionally, the increase in exercise intensity was characterised by a lower inter-horse 

variability in RER and thus substrate utilisation. This suggests that the increase in 

carbohydrate utilisation with increasing exercise intensity, as indicated by RER, is more 

uniform or obligatory and is less influenced by the factors discussed with respect to low 

intensity exercise. The moderate and moderate/high intensity exercise were approximately 

equivalent to 34 and 56% VO2max respectively. In Man the literature suggests that at 

exercise intensities of 5 50% VO2max fat oxidation predominates (Edwards 1934; Gollnick 

and Saltin 1988; Bulow 1988). However, during high intensity exercise z 70% VO2max 

carbohydrate is the predominant fuel source, with the crossover point occurring somewhere 

between the two exercise intensities. During moderate intensity exercise without fat 
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supplementation RER was reported to be generally around 0.95, suggesting a large 

contribution of carbohydrate to energy production. It was estimated that the moderate 

intensity exercise performed in Chapter 7 was equivalent to a relative exercise intensity of 

only 34% VO2max. It is possible therefore that the crossover point, at which carbohydrate 

metabolism predominates during exercise, may occur at a lower relative exercise intensity in 

the thoroughbred horse in comparison to Man. Although, the effect of a prolonged period of 

exercise at the same relative intensity on substrate selection would require further 

investigation. 

In recent years the use of supplemental fat in equine diets has attracted much interest. This is 

highlighted by the emergence of a number of commercially produced 'high fat' diets. The 

impetus for the production of these diets has been two-fold. Firstly fat represents a very 

energy dense foodstuff containing over twice the amount of energy of either carbohydrate or 

protein. The increasing popularity of equine events such as endurance racing and 3-day 

eventing, which require a high level of fitness and training, have made horse owners and 

trainers more aware of the need for high energy diets. Traditional performance horse feed 

has been high in carbohydrate with a minimal content of fat. Previous association of 

carbohydrate based diets with musculo-skeletal problems such as rhabdomyolysis; 

osteochondrosis and developmental orthopaedic disease in horses, however, have encouraged 

the use of fat in equine diets. Additionally, feed refusals and associated weight loss often 

pose a problem in horses undergoing hard training. The inclusion of fat in the diet enables 

the energy content of the horses feed to be increased whilst the feed bulk may be reduced. 

This often ensures an adequate energy intake and thus maintenance of weight. 

Secondly, there have been many reports of shifts in substrate utilisation during exercise of 

varying intensities as the result of fat supplementation in the rat, the horse and in Man (see 

Chapters 6 and 7). Furthermore increases in exercise performance have also been described. 

Little information, however, is available as to the proposed mechanism for the shift in 

substrate utilisation as a result of fat supplementation in the horse. The aim of the study 
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described in Chapter 6 and 7 was to report any changes in resting blood and muscle 

parameters, occurring in response to feeding a fat supplemented diet, which may partially 

explain corresponding changes in exercise metabolism. 

In agreement with the studies in rats of Miller et al (1984) and Simi et al (1991) fat 

supplementation was associated with an increase in muscle CS and B-HAD activity. 

Statistical significance was, however, only achieved with respect to the increase in muscle 

CS activity. Nevertheless , the results suggests that an increase in the oxidative capacity of 

muscle may have occured as the result of fat supplementation. Although an attempt was 

made to correct for differences in the fibre composition of serial biopsy samples confirmation 

of the increase in oxidative capacity could only be achieved using measurements of CS and 

ß-HAD in single muscle fibres. Unlike the studies of Abumrad et a! (1978) and Conlee et al 

(1990) no significant increase in muscle triglyceride concentration was observed as the result 

of fat supplementation. The level of fat fed in the former studies, expressed as a percentage 

of the total energy content of the diet, was however much greater (78%) than that present in 

the diets used in Chapter 6 and 7. Generally in previous equine studies the amount of fat 

contained in fat supplemented diets is lower than that used in studies in other species. This is 

partially due to the physical problems of feed manufacture but also because of the need to 

maintain a minimum roughage content of the diet for normal gut function in the equine. 

Fat supplementation was not associated with any significant change in resting muscle 

glycogen concentration in agreement with Pagan et al (1987); Greiw et al (1989) and 

Hodgson et al (1994) and in contrast to the studies of Meyers et a! (1989) Olham et a! 

(1990); Harkins et a! (1992) and Scott et al (1992). The elevation in muscle glycogen 

concentration, observed in the latter studies, may have been influenced by the relatively low 

concentration of muscle glycogen reported both before and after the period of fat 

supplementation. Furthermore, differences in the gross energy content of the control and fat 

supplemented diets together with the training and nutritional status of the horses prior to fat 
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supplementation cannot be overlooked as a precipitant of the observed increase in resting 

muscle glycogen concentration. 

The consumption of a fat supplemented diet over a period of 10 weeks resulted in a mean 

50% increase in post PP T. Lip activity, which was associated with a significant reduction in 

plasma triglyceride concentration. This suggests that the plasma triglyceride clearing 

capacity of the horse was increased in response to fat supplementation. Similarly Harris and 

Felts (1973) reported an increase in the rate of removal of labelled triglyceride from the 

plasma of rats fed a high fat diet. The post HEP plasma LPL activity is also elevated in 

suckling foals consuming mares milk which would be expected to have an elevated fat 

content (Watson et al 1993a). As was discussed in Chapter 6 the increase in plasma post PP 

T. Lip activity may reflect an increase in muscle LPL activity. Muscle HEP releasable LPL 

has been reported to increase in Man and in the rats in response to a high fat diet (DeLorme 

and Harris 1975; Jacobs et al 1982). The reduction in plasma triglyceride concentration, 

which probably reflects an increase in the triglyceride clearing capacity of this plasma, has 

been previously reported in the horse in response to fat supplementation (Duren et al 1987). 

The period of fat supplementation was also characterised by an increase in plasma cholesterol 

concentration possibly due to increased production of acetyl CoA as a result of an increased 

flux through ß-oxidation (Hill et al 1960). The total cholesterol concentration , however, 

remained within the normal range at all times. 

The control diet, as described in Chapter 6, provided a typical 500 kg horse with 

approximately 110g of fat, whereas, the fat supplemented diet provided 500 g of fat to a 

horse of similar weight. Energetically the fat content of the fat supplemented diet was 

approximately equivalent to about 20% of the total energy content (DE) of the diet. The 

absolute content of the fat supplemented diet was relatively low in comparison to that used in 

comparable studies in Man. However, fat supplementation in this study represented a5 fold 

increase in the relative fat content of the diet. In comparison, studies in Man which have 

used diets containing about 78% of the total energy content as fat, may have only represented 
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a2 fold increase in the fat content. A typical human athlete may consume approximately 

38% of the energy intake as fat under normal conditions (Wilmore and Costill 1994). The 

relative increase in the fat content of the diet may therefore be an important factor in the 

adaptational response to fat supplementation in the horse. 

An increase in the utilisation of fat during prolonged low intensity exercise was apparent as 

the result of fat supplementation. RER was significantly lower during the latter stages of 

exercise, following 5 and 10 weeks of fat supplementation, when compared to both the 

baseline and washout periods respectively. On examination of the individual horse data RER 

was consistently lower than both the baseline and washout tests in 3 of the 4 horses studied. 

The lower RER in these 3 horses was associated with an increased exercise induced elevation 

in plasma FFA concentration, as has been previously reported in Man (Galbo et a! 1979; 

Jansson et al 1982; Lambert et a! 1994). As was discussed in Chapter 7 the elevated plasma 

FFA concentration may have arisen due to increased FFA mobilisation, either as the result of 

enhanced lipolysis or possibly as a result of increased FFA release. 

A similar increase in fat utilisation was suggested to occur, as a result of fat supplementation, 

during moderate intensity exercise. This was also associated with an increased plasma FFA' 

concentration during the latter stages of exercise. Examination of the individual horse data, 

however, indicated that the effect was not as clear as that observed during low intensity 

exercise. The difference in RER during the 4 phases of the feeding study were small. In 

contrast to that observed during low intensity exercise, the RER was not consistently lower 

during the period of fat supplementation. The effect of a more prolonged exercise period of 

similar intensity is unknown and may increase the utilisation of fat further, which would be 

particularly relevant to horses competing in endurance type events. No significant difference 

was observed in RER between weeks during the moderate/high intensity exercise tests and 

carbohydrate represented the major energy source. 
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The proposed increase in fat utilisation during low and moderate intensity exercise may have 

occurred as the result of an increased ability to utilise plasma triglyceride, as the result of an 

increase in the activity of muscle LPL, together with an increase in the availability of plasma 

FFA. The results in Chapter 5 suggest that the horse has the capacity to increase the 

contribution of fat to energy production, during prolonged low intensity exercise, in the 

situation where the availability of plasma FFA is increased. Additionally the trend towards 

an increase in muscle ß-HAD activity and significant increase in CS activity, as a result of fat 

supplementation, suggests an increase in the muscle oxidative capacity which may have 

contributed to the observed increase in utilisation of fat during exercise in Chapter 7. Many 

of the adaptations described in the response to fat supplementation could be mediated 

through differences in the hormonal response to feeding. The circulating level of insulin, a 

potent anti-lipolytic hormone, has been reported to be lower both at rest and during exercise 

following a prolonged period of fat supplementation in the horse (Pagan et al 1994). 

Similarly a reduced concentration of circulating plasma insulin has been reported in response 

to a high fat diet in Man (Galbo et al 1979; Jansson et al 1982). Insulin is implicated in the 

regulation of adipose tissue lipolysis and FFA mobilisation both at rest and during exercise 

(Hales et al 1978; Galbo et a11979 & 1983). Furthermore, insulin may also be involved in 

the reciprocal regulation of muscle and adipose tissue LPL activity (Jacobs et a! 1982; Kiens' 

et al 1989). The lower circulating level of insulin observed following fat supplementation 

may merely reflect a decrease in the soluble carbohydrate content of the diet rather than the 

fat content per se. In support of this notion Pagan et al (1987) reported a lower RER during 

moderate intensity exercise in response to isocaloric diets containing elevated levels of either 

fat or protein, compared to a high carbohydrate diet. 

The time course of changes which occurred in response to the fat supplemented diet were as 

follows: A significant increase in plasma cholesterol concentration occurred after only 1 

week of fat supplementation. The increase in post PP T. Lip activity was apparent after 3 

weeks of fat supplementation and was associated with a significant reduction in plasma 

triglyceride concentration after 4 weeks of fat supplementation. All the above changes were 
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reversed following 5 weeks withdrawal of the fat supplemented diet. Increased fat utilisation 

during low intensity prolonged exercise may have beneficial effects on endurance capacity, 

although this question was not addressed in the present series of studies. It was observed that 

not all horses responded in the same manner to either an acute increase in the availability of 

plasma FFA or to chronic fat supplementation. However, to the owners and trainers of 

horses it is of little importance whether the equine population as a whole respond positively 

to fat supplementation. An adaptational response in a significant proportion of horses, which 

may increase endurance capacity, is more relevant. 

Problems encountered and future strategies 
The large volume of samples produced during the studies in Chapters 4,5,6 and 7 

necessitated the use of a rapid automated method for the analysis of plasma FFA. The 

plasma concentration of FFAt calculated by the addition of FFAi concentration, as measured 

by HPLC, was relatively lower than resting concentrations reported using the automated 

colourimetric method. They were, however, in agreement with those measured by Rose 

(1982) using gas chromatography. The FFAt concentration measured by HPLC showed little 

variation during the most part of the day and night cycle. The difference observed in resting 

plasma FFA concentration may simply reflect methodological differences. Alternately the 

higher FFA concentration observed in Chapters 4,5,6 and 7 may be the result of FFA release 

as part of the stress response. The horses used in the study in Chapter 3 were catheterised an 

hour before the 1st sample was withdrawn and remained in their stables throughout the 24 

hour sampling period. Blood sampling during the preceding chapters was either carried out 

by venepuncture or followed catheterisation in the treadmill room. This may have been 

associated with stress as an anticipatory response to the forthcoming procedures, exercise etc. 

Furthermore, the HPLC method described in Chapter 2 quantified FFA with a carbon chain 

length greater than and including C: 14. The higher FFA concentrations measured using the 

colourimetric kit may have been as a result of simultaneous measurement of FFA with a 

carbon chain length < C: 14. This is especially relevant to the horse which produces short 

chain VFA mainly acetic, butyric and propionic acids as a result of microbial fermentation in 
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the hind gut (Bergman 1990). At rest acetate represents a significant energy source in the 

horse (Pethick et al 1993). The role of acetate and other VFA as a fuel source during 

exercise is, however, unknown and requires further investigation. 

In order to ensure that the fat supplemented diet used in Chapters 6 and 7 was isocaloric to 

the control diet it was necessary to reduce the bulk of ingredients with a high carbohydrate 

content and to increase those with a high fibre content. The fibre content of the fat 

supplemented diet was therefore higher than that of the control diet. The effect of this 

difference in fibre composition of the two diets is unknown and requires further investigation. 

Furthermore, the effect of the difference in the carbohydrate content on the hormonal 

response to feeding and subsequent exercise is an area to be investigated. Lower plasma 

insulin concentration observed as a result of fat supplementation (Pagan et al 1994) may 

have arisen as the result of a reduction in the soluble carbohydrate content of the diet. 

Ideally all of the exercise tests carried out in Chapter 7 would have been performed at the 

same time of day or after a standardised period of time following feeding. It was, however, 

impractical to carry out the exercise tests in this manner due to the large number of horses 

used in this study and the volume of exercise tests performed within a single week. In order 

to minimise the influence of feeding status, the horses were not exercised for at least 2 hour 

following the consumption of the pelleted portion of the diet and had almost constant access 

to forages. Furthermore, the time at which the exercise tests were carried out was 

standardised within horses but was also randomised between dietary groups, as described in 

Chapter 7. 

In summary the areas of interest for future investigation include: the role of VFA during 

exercise and the effect of fibre content of the diet. Further investigation of the hormonal 

response to high carbohydrate versus fat supplemented diets and the effect on subsequent 

exercise metabolism. Confirmation of the observed increase in muscle LPL activity in 

response to fat supplementation through direct measurements of muscle samples. 
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Appendix 1 

Muscle Section Staining Technique 

Reagents 

0.2 M sodium acetate (27.22 g sodium acetate trihydrate in 1000 ml distilled de- 
ionised water). 

2 50% acetic acid (50 ml glacial acetic acid in 50 ml distilled de-ionised water). 

3 Glycine / calcium chloride (3.00 g glycine + 2.94 g calcium chloride dihydrate in 

1000 ml distilled de-ionised water). 

4 0.1 M potassium hydroxide (5.60 g in 1000 ml distilled de-ionised water). 

5 2% calcium chloride (10.00 g calcium chloride dihydrate in 500 ml distilled de- 

ionised water). 

6 1% cobalt chloride (5.00 g cobalt chloride in 500 ml distilled de-ionised water). 

7 1% ammonium polysulphide (1 ml 10% ammonium polysulphide in 10 ml distilled 

de-ionised water). 

Preparation NB. Prepare the reagents in this order 
8 Calibrate pH meter between 7 and 10 using a two point calibration. 

9 Add approximately 45 ml of glycine /calcium chloride solution to each of two coplin 
jars. Incubate @ 200C. One jar adjust to pH 9.8 and the other to pH 9.6 using 0.1m 

potassium hydroxide. 

10 Add 75 mg of ATP disodium salt (1.5 mg / ml, 3 mmol). to the coplin jar containing 
about 45 ml glycine / calcium chloride buffer at pH 9.8 (the ATP will bring the pH 
back down to around 9.6) then correct the pH to 9.6 again. 

11 Calibrate pH meter between 4 and 7 using a two point calibration. 

12 Incubate, in a coplin jar, approximately 45 ml sodium acetate at 20 OC. Once it is at 
the right temperature slowly add the acetic acid until pH 4.500 (Great accuracy is 
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needed). As this reagent is by far the most important, the pH must be achieved as 
close to the time of staining as possible to decrease the chance of inaccuracies. 

13 Incubate 2 other coplin jars, one containing 2% calcium chloride the other 1% cobalt 
chloride at 20 0C. Leave until solutions are at the correct temperature. 

Method 
14 Incubate a slide, which has four muscle sections mounted on it, in the sodium 

acetate/acetic acid buffer for 5 mins. (The timing is critical). 

15 Rinse the slide at least four times in separate water containers with distilled water. 
Change the water after each rinse. (A couple of seconds for each rinse) 

16 Rinse the slide in the glycine / calcium chloride solution (pH 9.6) for 30 seconds. NB. 
Do not rinse between the glycine buffers. 

17 Incubate the slide in the ATP / glycine / calcium chloride solution (pH 9.6) for 30 

minutes. 

18 Rinse the slide four times. 

19 Incubate the slide in 2% calcium chloride solution for 90 seconds. 

20 Rinse the slide four times. 

21 Incubate the slide in 1% cobalt chloride for 3 minutes. 

22 Rinse the slide four times. 

23 Flood the slide with ammonium polysulphide for 2 minutes. (Carry out in fume 

cupboard). 

24 Rinse the slide with distilled water. 

25 Mount a coverslip on the slide using UV free aqueous mountant and seal the edges of 
coverslip using clear nail varnish. 
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Results 
27 If the stain has worked correctly type I fibres will be black, type IIA fibres white / 

very light brown and type 1113 fibres will be dark brown. 

Chemicals 
ATP disodium salt: From equine muscle. Order Sigma: A 5394 
Calcium chloride 2-hydrate Ana1R Order BDH: Prod 10070 
Sodium Acetate Trihydrate Order Sigma: S 8625 
Glycine Order Sigma G 7126 
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