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ABSTRACT OF THESIS
"APPLICATIONS OF NUMERICAL ANALYSIS IN NAVIGATION"
by
ROY WILLIAXS
PRESENTED FOR THE DOCTOR OF PHILOSOPHY DEGREE 1N APPLIED MATHEMATICS
July 1994 '

Part one of the thesis contains an analysis of the methods of
computation in navigation. Ve start with loxodromic navigation and,
although this subject is a well documented, we make a positive attempt
to analyse the subject matter using the methods of differential
geometry. We then turn to the problem of shortest path curves and set
out an alternative method of solving the problem of navigating along the
arc of a great circle on the surface of a sphere which can be
generalised to other surfaces. In particular , a contribution made by
the thesis is an analysis of the problem of navigating along shortest
path geodesic arcs on the surface of a spheroid which introduces an
algebraic representation of the geodesic curve by solving Clairaut's
equation using a cylindrical transformation. Ve are therefore able to
compute the the coordinates of the positions of points along the path of
the geodesic and the length of arc along the path of the geodesic curve
can then be computed step by step between these points by a numerical
method - the Direct Cubic Spline method which was first introduced by
this author in the Bachelor of Philosophy thesis in 1982 and 1is
developed further in part 2 of this thesis. We apply this method also
to the special problem of computing the distance along the shortest path
between nearly antipodean points on the surface of a spheroid.

Ve analyse the problem of computing an observer's position on the
surface of the Earth using astronomical observations and show how a
position locus is distorted when it is transferred over the surface. Ve
offer a method of computing the observer's position by a series of
observations of a single astronomical body taken over a comparitively
short period of time and which does not necessarily include an
observation at the time of meridian passage of the body.

In part two of the thesis we discuss the Direct Spline approximatiom to
integrals and give some error bounds. The Direct Cubic Spline is a step
by step method of fitting a cubic spline to the integral of a function
directly which computes the value of the integral of the function step
by step between the data points which need not be evenly spaced. Ve
extend the idea to splines of higher order and give the formulaa from
which they may be obtained but we show that, except for a particular
special form of the direct quartic spline, the higher order direct
splines do not yield algorithms for computing integrals which are as
efficient as the Direct Cubic Spline.
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The Science of Navigation has entered the electronic age with a
great deal .0of enthusiasm and energy. Orbitting man made satellites
have, tc a large extent, replaced the stars in the attentions of a
modern navigator and it is the orbits of these satellites, rather
than the rotation of the heavens, which now tend to control the
pattern by which the observer's position is fixed during the day.
The science is moving forward at a fast rate. Radio position fixing
systems, which were created rapidly in the years immediately
following the second world war ( many as a result of mnmethods
developed during that period out of necessity ) and which, for the
science of navigation, seemed to have made such great strides
forward at the time, have been and gone and are now obselete,
historical even. The new age of space travel ( again largely through
the necessity ) has helped to produce compact computer controlled
positon fixing systems with built in computational procedures. These
are systems which not only keep the observer informed of his present
position but which also hold his history file and which update his

travel plans.

During this time we have not perhaps paused to think how the
classical methods of navigation, particularly the mathematics, could
be reviewed to give a modern outlook to the subject. Even today,
some educational programs, particularly in seagoing navigation, seem
to be designed purposely to avoid the use of the calculus. For this
reason methods are still in use which are only approximations. Due
to the advent of modern computing devices, which relieve the tedium
of long computations and the possibility of errors, this is no
longer necessary. Many problems, which seemed algebraically and
numerically intractable previously, can now be treated as'a routine
and, consequently, many aspects of the mathematical analysis can

also be reviewed and perhaps improved.

In this thesis, therefore, this is our theme. Ve have taken the
opportunity to introduce some new numerical methods of our own which

we find to have particularly useful applications in navigation and



we bhave used the methods of differential geometry to make what we
feel is a reasonably full analysis of the methods of navigation when
applied to the sphere and the spheroid. This has, in turn, lead us
to make what we feel are some contributions to the mathematical

theory.

Part 1 of the thesis is concerned with the application of numerical
methods in navigation, paying due attention to the wunderlying
mathematical models used. There does not €eem to be any written
exposition in navigation which adopts a rigourous mathematical
approach to the subject. It is the purpose in the early chapters of
this thesis, therefore, to correct this. Ve adopt two models for the
shape of the Earth - the spherical model and the spheroidal model -
and, using the methods of differential geometry, show how the
familiar navigational formulae are derived. The spherical model is
not such a bad approximation when applied to the problems in
navigation, iIf it used consistently, but, 1in practice, this has not
been so and the habit developed where elements computed from
different models have been used in the same formula. For example,
this mistake was actually made in two different publications of
nautical tables. A correction to apply to the Nean Latitude to give
Niddle Latitude for an observer travelling along the arc of =a
loxodrome (rhumb 1line) was computed when middle latitude was

determined using a formula which was given as

Difference of latitude
Difference of Meridional Parts

Cos(Middle Latitude) =

As is well known, difference of latitude is the number of minutes of
arc¢ on the meridian of a sphere but the difference of meridional
parts used to compile the above mentioned correction table was a
table computed from spheroid data. The middle latitude correction
table was publighed through a number of editions and this went
apparently unnoticed but it seems that the theory behind the method
of computation known as "Niddle Latitude Sailing" was never really
widely understood. If difference of latitude is replaced by the



meridian distance then the formula for middle latitude would be

correct.

In chapter 1 we define the ways in which a position on the Earth's
surface may be defined when both spherical and spheroidal models are
used. The spheroidal model is a regular spheroid by which we mean
that the spheroid is generated by revolving an ellipse about its
minor axis and that this spheroidal model is used as a global model
for the surface of the Earth. Ve set the Earth in a spherical
coordinate system denoted 1in the standard form for these
coordinates; r, 6, ¢ where 6 1is the longitude and ¢ 1is the
geocehtric latitude. Since arc length and geodetic latitude are
intrinsic properties of the surface we use the standard notation for
intrinsic coordinates and denote arc length by s and geodetic
latitude by y.

In chapter 2, using the methods of differential geometry, we analyse
the problem of navigating along a loxodrome on the surface of a
sphere. Ve are concerned here to derive with mathematical rigour the
familiar navigational formulae for the epherical model and, although
the wmethod is now only bhistorical, we try to give a rigorous
derivation of the theory behind the method known as "Niddle Latitude
Sailing®. W.N.Smart' presented a complete analysis of Niddle
Latitude Sailing for both the sphere and the spheroid. In both
cases he relies upon the computation of meridional parts but, in
fact, on the surface of the sphere the problem can be solved
approximately without meridional parts. In the case of the spheroid.‘
however, the problem cannot really be solved without recourse to
formulae provided by the method of Mercator Sailing so that the
method does not exist independently.

Chapter 3 deals with the same problem for navigating on the surface
of a spheroid. For comparatively small gains in accuracy this
problem on the surface of the spheroid needes some fairly high
powered numerical methods to aid its solution but it does stimulate

a lot of theoretical interest and the best way find a numerical



solution etill promotes discussion in the pages of the Journal of
Navigation. This author had a paper published in 19812 concerning
the computation of meridian distance and since then there have been
others written on the same theme. The latest contribution was by
Kitt C. Carlton Wippern in 19892>.

In chapter 4 we discuss the problem of navigating along the shortest
paths on the surface of a sphere. These shortest paths are, of
course, great circles and, although the methods of spherical
trigonometry are well suited to many aspects of the solution of this
problem, we show also that the problem can be also be solved very
conveniently by defining a great circle 1in the form of a
differential equation <(Clairaut's equation) and solving this
equation using numerical integration by the Direct Cubic Spline
method. The direct cubic spline method was introduced 1in the
Bachelor of Philosophy thesis by this author and is developed
further in this thesis in chapter 10. This method of numerical
integration has the convenience of being a step by step method which
computes intermediate points along the path sequentially, the
distance between them, the overall distance from the starting point
and the course at the intermediate points. The intermediate points
can be chosen by the navigator to coincide with the "way" points
that would normally be chosen. For great circles the method gives
results whose accuracy leaves nothing to be desired by the sea-going
navigator even though it is a numerical "approximation". Although
the methods of spherical trigonometry give exact formulae from which
to compute the elements of the great circle, the numerical results
from the direct cubic spline are indistinguishable and it can be
argued that there is more computation to be done in the methods
using spherical trigonometry. It is not the purpose, however, to
compete with the methods of spherical trigonometry but to provide an
alternative method of solution which can be generalised to other

surfaces.

This, then, leads into chapter 5 where we solve the same shortest

path problem on the surface of a spheroid by defining the geodesic



arc by means of Clairaut's equation as in chapter 4. There is, of
course, a great deal more numerical computation needed. For
navigatorgs the most widely promulgated methods of solving this
problem seem to be the correction methods where a correction is
applied to the great circle distance on the sphere in order to
determine the shortest distance between two ©points with
corresponding positions on the surface of the spheroid. See, for
instance, the publication by Paul D. Thomas* published by the U.S.
Naval Oceanographic Office. In the publications concerned with
Geodetics the problem of computing the shortest distance on the
surface of a spheroid is generally posed in two ways - the "direct”
problem and the "inverse" problem. The "direct” problem is posed so
that, given a starting position on the surface of the spheroid, an
initial course (azimuth) and a distance travelled, we compute the
final position when the path taken 1is the shortest path. The
"inverse" problem is posed so that, given two points on the surface
of the spheroid we compute the shortest distance between them. The
direct problem is not one that is often posed by the navigator and
the inverse problem is only a partial answer to the navigator's
quest. What the navigator needs is a system of computation which
will plot the path of the geodesic arc so that this path can be
considered for suitability and so that the intermediate points can
be plotted on a chart. In other words, given any longitude, the
navigator would like to know the corresponding latitude where the
geodesic arc crosses the meridian. One of the major expositions
written on the problem of geodesic arce on the surface of the
spheroid was produced by Fichot®. In that work Fichot says that, in
general, the geodesic arc is not expressible in algebraic form :

" ..Exception faite pour 1l'equator et les ellipses meridiennes,
aucune de ces courbes n'est algebrique.. ". Ve have found no other
author who contradicts this statement but we have opted to solve
the problem by a method different to that which appears in the
literature and to solve Clairaut's equation using transformations
which, in effect, project the geodesic arc onto the surface of a
cylinder coaxial with the spheroid. There is a lot of manipulative
algebra (details of which are shown in appendix 1) but, for the



effort, we find that, for a geodesic curve which reaches its vertex
where the geocentric latitude is ¢. and the longitude is 6., when
the geodesic curve is not the equator or a meridian then # and 6 are

connected by the relationship

tan § = tan g, coslu(g)(@. - 0)]

where u'
1 _1 § ‘/az(l—ez)2 + tan®*# _sin?uy du
pU v o Vv a®(l-e®) + tan®g sinZu
tan ¢
' = w1
u sin (tan ’v)

and a 1is the equatorial radius of the spheroid. When the surface
1

is a sphere then the same equation applies and prig)

Lambert®, paying tribute to Fichot, stated that, at that time (1942)
the work by Fichot was the fullest exposition so far written on the
subject of geodesic arcs on the surface of the spheroid and that
there was no comparable work written in English. He went on to say
that it was his intention to publish further work on the subject
himself and, in particular, to publish work on the special problem
of the shortest distance between nearly antipodean points. As far I
can see, such a full exposition in English has not appeared. Papers
appear regularly which continue to recommend improvements to the
solution of the direct and inverse problems following an analysis of
the problem similar to that of Fichot. These methods of computation
are really now very well developed. One of the more recent of these
was written by Bowring” who also deals with the special problem of

the nearly antipodean points.

In chapter 6 we define what we mean by nearly antipodean points and
show how, from our solution of Clairaut's equation, we can compute
the shortest distance between two nearly antipodean points which
both lie on the Equator. Ve find a particularly useful expression in
simple form which gives the half period, 6, (the difference of

longitude between two successive tranesits of the equator by the



geodesic), of a geodesic arc given the geocentric latitude, g., of

its vertex. This expression is

Op = 2 é du

"/ ]a2(1"e'2)2 + tanzjvsin:zu

o az(1-e?) + tan?®¢_sin®u

Ve also extend the application of the method to the ellipsoids with
varying eccentricities and compute the periods of the geodesic
curves on such surfaces . In chapter 7 we then formulate the general
problem of computing the shortest distance between nearly antipodean
points using the method of chapter 5 and the results of chapter 6
with respect to the values of the periods of geodesics with given
vertices and show how this can be utilised in voyage planning at

sea.

In chapter 8 we discuss the ways in which numerical methods can be
applied to the computation of position from astronomical
observations. There has been much interest shown in this aspect of
navigation recently due, it seems, to the development of the leisure
industry and the interest shown by people of strong technical
background in scientific fields who are part of this new
development. Although much of astronomical navigation may seem
obselete in light of modern improvements to navigation brought on by
the introduction of global position fixing systems from satellites
it is still an interesting theoretical persuit. One of this author's
contributions in this respect was contained in a paper published by
the Journal of Navigation® in which, in response to two other
authors who made an over simplification of the problem of
transferring a position circle, it was shown mathematically that the
original position circle, when transferred, is no longer a circle
but suffers a distortion. This may well account for problems which
are encountered by an observer close to a pole of the Earth when
taking astronomical observations - a large distortion of a

transferred position circle takes place close to the pole when the



observer travels at an oblique angle to the meridian and this can be

seen clearly from the plots of the transferred circles.

Ve extend this work on astronomical navigation into chapter 9 where
we are particularly concerned with observations taken of a single
body over a comparatively short period of time and from which, at a
time chosen, we can compute the altitude and its rate of change.
Given these two pieces of information we can then fix the observer's
position. The classical situvation in which this technique is applied
is at the time of culmination when the maximum altitude of the
observed body and the time that it occurs is computed from a
sequence of observations taken over a period surrounding the time of
the maximum. The technique is usually described graphically but was
set in mathematical terms by Natti Ranta®. This idea was extended by
this author'® to find the altitude and its rate of change for any
fixed time that the body was visible to the observer by observing
the body over a period of about forty minutes surrounding the fixed
time for which the observed position is required. The method
described requires the smoothing of the observed altitude data and
the fitting of a least squares function approximation which we then
differentiate to find the rate of change. Ve try out two smoothing
techniques; we experiment with a least squares trigonometric
approximation and with the least squares orthogonal polynonmial
approximatione of Forsythe''. The least squares trigonometric

approximations give the better results on the data used.

In part 2 of this thesis we describe the Direct Cubic Spline. This
is a variant of the familiar spline, used in a way that makes it
particularly convenient for numerical integration. Its derivation
will be found in chapter 10 with a more comprehensive error analysis
than has appeared hitherto. Ve show that the direct cubic spline is
a generalisation of Simpson's Rules which can be applied to compute
the integral between any two ordinates and that the ordinates need
not be evenly spaced. The method has been applied on many occasions
in part omne of the thesis, in particular, in chapter 3, to the

computation of meridian distance on the surface of the spheroid, in



chapter 4 to the step by step solution of the great circle problem
and, in chapter 5, to the step by step solution of the problem of
navigating along the path of a geodesic curve on the surface of a
spheroid. In part two there is also a discussion of some possible
extensions of this idea to the higher order splines. The approach is
described 1in detail in chapter 11. None of the algorithms for
computing integrals wusing these direct higher order spline
approximations produce very worthwhile results, however, with the
exception of the quartic spline, used with a "borrowed" form for
computing the "moments”, which is efficient and which has been used
by this author when applied to certain problems in ship stability.

For the time being, then, this is as far as we go. In particular
(perhaps because of our own familiarity) we have found the Direct
Cubic Spline Approximation to be a useful tool in our researches,
particularly when applied to the solution of numerical problems in
navigation and we can only hope that what is written here will also

be of use or of interest to others.

This work began in collaboration with Professor J.E.Phythian before
it was thought that I should enter a formal course for the Doctor of
Philosophy degree. Professor Phythian then became my supervisor but,
when he took up an academic post abroad, the direct supervision was
taken over by Professor C.V.Clenshaw. I am greatly indebted to these
two gentlemen for their meticulous reading, creative criticism and
supportive suggestions. Thus encouraged, the work has, I believe,

been undertaken and completed in a spirit of true philosophy.
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NAVIGATION



—_ 11 —

THE GEOMETRY
OF
THE FEFARTH



1.1 THE SHAPE OF THE EARTH.

In the study of Ravigation the simplest approximation adopted for
the shape of the Earth is a sphere. This 1is a reasonable
approximation, 1f it is used consistently, and introduces no serious
errors in most cases. There are, however, some surprises when
shortest path curves are required, for example when we need to find
the shortest path between two nearly antipodean points. (Antipodean
points are points which lie at the opposite extremities of a
diameter)., For reasons such as this we require a Dbetter
approximation to the shape of the Earth and the next simplest
approximation is a regular oblate spheroid. Generally, a spheroid is
simply defined as a "sphere-like" surface but the regular spheroid
is generated by revolving an ellipse, whose eccentricity is small,
around the minor axis. This axis coincides with the axis of
revolution of the EBarth. The poles of the Earth, whether it is
considered to be a sphere or a spheroid, are found at the points
where the axis of revolution cuts the surface. The poles are
designated North (N) and South (S). An observer sited above the
North pole and looking down upon the surface would view the Earth to

be rotating anticlockwise. See Figure 1.1.

FIGURE 1.1 - THE EARTH AS A SPHERE.
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In Figure 1.1 O is the centre of the Earth and the equator (WGEG')
is the circle on the surface of the Earth which is the locus of all
points which are equidistant from both poles. The semicircle ¥GS is
a meridian. A meéridian is the curve of intersection with the Earth's
surface of a plane through the axis of revolution. The equator

bisects the meridianms.

The second approximation, the spheroid, is a better approximation
to the shape of the Earth but it does make the computations in
Navigation much more complicated. I1ndeed, for manual computations,
it is often too difficult to assume anything else but that the Earth

is a sphere.

There is some argument as to which single spheroid best suits the
Earth's shape. Slightly different values are assigned to flattening,
f, of the different spheroids and the agencies responsible to
different governments for surveying sometimes each adopt a distinct
spheroid which, they feel, best suits the shape of the Earth as they
recognise it. The flattening, f is given by

where a is the length of the semi major axis of the selected

generating ellipse and b is the length of its semi minor axis .

It is a fact that, in different geographical locations, the surface
of the Earth is better approximated locally by one spheroid than
another and so, 1in effect, the Earth is best approximated by a
smpoth union of different spherolds. The ocean basins, for instance,
may each be fitted better by different spheroids although'most books
of nautical tables do stick to one spheroid which approximates the
whole surface of the Earth. Globally,’therefore, the Earth is almost
invariably approximated by a regular spheroid, it is in the science
of surveying that more local refinements are needed and practised.
Some examples of the values assigned to the eccentricity of the

meridional ellipse of the Terrestial Spheroid as determined at
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different times and places can be found in the book by G.Bomford'+
or in the publication known familiarly as "“Bowditch"'Z the full
title of which is THE AMERICAN PRACTICAL NAVIGATOR.

On the surface of a spheroid the Equator and a meridian are defined
in the same way as on the surface of a sphere. On the surface of a
spheroid, however, whilst the Equator i1is still a circle, the
meridians are ellipses. Instead of defining a spheroid by its
flattening we more often (as we will here) define the spheroid by
referring to the eccentricity of its meridional ellipses which are
all identical in shape. The flattening, f, of the spheroid is
related to the eccentricity, e, of its meridional ellipse by

f=1-/0-e*)

Ve use the term "spheroid"” because, in the case of the Earth, the
eccentricity of the meridional ellipse is small (= 0.08) and, hence,
the surface is still "Sphere-like". In the case of other planets,
such as Jupiter, where the eccentricity of the meridional ellipse is
larger (= 0.3)> then the surface is more aptly referred to as an
Ellipsoid.

1.2 DEFINING POSITION OF THE SURFACE OF THE SPHERICAL EARTH MODEL.
On the surface of a sphere a circle defined by the intersection of
the sphere with a plane through its centre is known as a GREAT
CIRCLE and the unique great circle whose plane is perpendicular to
the axis of revolution of the Earth is known as the equator. Any
other circle on the surface of a sphere which is not a great circle
is called a SMALL CIRCLE.

In the science of Navigation, where, in certain circumstances, the
sphere is still often used as an approximation to the shape of the
Earth, the poeition of a point is expressed in terms of its LATITUDE
and LONGITUDE. The latitude of all points on the equator is zero and
the latitude of any other point P, on the surface of the sphere is
defined by the angle at the centre of the sphere subtended by the

_12_



arc of the meridian through P from the point P to the point where
the meridian through P cuts the Equator. See Figure 1.2. In the
Figure, N is the North pole, NHO is the axis of revolution and E is
the point where the meridian through P cuts the Equator.

The angle § is the LATITUDE of the point P.

FIGURE 1.2

E

A particular meridian is selected for which the longitude is zero.
On the surface of the Earth this meridian is the Greenwich Meridian
- the meridian which passes through the Greenwich Observatory. The
longitude, 6, then of any other point P on the surface of the sphere
representing the Earth is the angle between the planes through the
axis of revolution of the Barth one of which contains the Greenwich
meridian and the other the meridian through the point P. See Figure
1.3,

A circle on the surface of the sphere whose plane is parallel to the
equatorial plane is known as a PARALLEL OF LATITUDE so called
because all points on this circle are in the same latitude. Except
for the equator, parallels of latitude are SMALL circles. In Figure
1.3 the arc PG'P' is a small circle.

-13_



S FIGURE 1.3

In navigation and in geography latitude and longitude are expressed
in degrees and minutes - latitude as north or south of the equator
and longitude as east or west of the Greenwich meridian. The ranges
are

90=S ¢ 4 ¢ OO°K

180°V < © ¢ 180<B

To give a mathematical treatment to the methods in Navigation we

should express the angles in radians and, preferably, in the ranges

-¥Hn ¢ g ¢ ¥n (North Positive)
and 0 (0 ¢ 2xn (East Positive) .

Distances on the surface of a sphere or a spheroid are expressed in
a natural way in units of the length of one minute of arc of the
Equator. The accepted value for this unit is 6087.2 feet or 1852
metres. This unit is known as the Geographical Mile and we will use
it throughout in our treatment of navigational methods. There is

another "mile” which is sometimes referred to as the "Nautical

_14_



Mile". This mile 1s a standard mile of 6080 feet and is the
approximate length of one minute of arc of the meridian in the
vicinity of Southern England. Some confusion has arisen in practice
at sea because distances computed from engine revolutions or rotator
logs have not been consistent. The errors have, however, been small

and negligible in most cases.

1.3 DEFINING POSITION ON THE SURFACE OF THE SPHEROIDAL EARTH MODEL.
Let the surface of the [Earth be modelled by a regular spheroid
whose meridians are a family of ellipses of the same eccentricity
and which share a common minor axis. At a point P on this surface
the angle subtended at the centre of the Earth by the arc of the
meridian through P from the equator to P is the GEOCENTRIC LATITUDE.
At the same point P the angle at which the normal to the meridian at
P cuts the equatorial plane 1is the GEODETIC LATITUDE. See
Figure 1.4.

N | In the Figure 1.4 :
+=~]F ¢ is the GEOCENTRIC latitude
/? ~Z y is the GEODETIC latitude and
//; h § and y are connected by
/5\;-;\\ tan # = (1 - e*)tan y
ol | E

Vhere e is the eccentricity of
FIGURE 1.4 the meridional ellipse.

The longitude of a point P is expressed in the same way as on the

surface of a sphere.

On the surface of a regular spheroid the Geodetic Latitude is also
the Astronomical (Geographical) Latitude. The Geodetic Latitude is
the term used by the surveyor. In local conditions such as
mountainous regions, where abnormal gravitational effects upon a
plumb line may be observed the normal to the surface is considered

to lie along thie plumb line. On the side of a mountain ,therefore,
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a geographer, who is using a global approximation to the surface of
the Earth, may find a slightly different value for the latitude of a
particular point than the surveyor who is considering a local
approximation to the same surface. For a complete discussion of this
one should read the books by Cotter'® and Bomford'4. However, in
Navigation we confine ourselves to computations on the surface of a
regular spheroid which is a global approximation to the surface of
the Earth.

_16_
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NAVIGATING AL ONCG
A TLOXODROMIC CURVE ON THE
SURFACE OF A SPHERE



‘
2.1 INTRODUCTIOR.

The science of navigation, although it 1s a numerical science, is
presented in the reference texts in a manner which tends to be
empirical rather than analytical. There 1s 1little evidence of
mathematical rigour and little use is made of the techniques of the
calculus. It is the purpose in this chapter, therefore, to analyse
the methods of computation used in navigation by relating them to
the results obtained by considering the differential geometry of the
sphere and thereby to prove the formulae that are in common use.
Some of these results and proofs can be found scattered through the
pages of books on differential geometry but not always in a concise

or complete form in books on navigationm.

2.2 THE LOXODROMIC CURVE,
A LOXODROME, known more familiarly to seafaring Navigators as a
RHUMB LINE, is a curve on a surface of revolution which cute all the

meridians at the same angle.

:\ FIGURE 2.1
A LOXODRONE ON THE
SURFACE OF A SPHERE.

Figure 2.1 shows a loxodrome on the surface of a sphere which cuts
the meridians at an angle a. To the seafaring Ravigator it is a line
of constant course and there are obvious reasons why it is desirable

to cross the Oceans on such a line rather than to take the shortest
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route which would be the first choice in most circumstances. Veather
conditions are one such reason why a navigator might choose not to
follow the shortest route to his destination and the flow of the
Ocean currents are another. If we consider the particular example of
the North Atlantic Ocean, for instance; from the Gulf of Mexico to
the Western Approaches of the British Isles we have the "Gulf
Stream" which is a flow of warm water between the tropics and cooler
northern climes. This current of water closely follows the great
circle path so that any traffic from the UK or HNorthern Europe
headed out from the English Channel to Rorth American or the
Caribbean Islands will oppose this current for a large part of the
Journey. It turns out that, on the direct route to the Caribbean
Islands, in order to avoid the Gulf Stream, most ships will follow
one constant course once they have cleared the English Channel even
though this path will be longer in distance. In winter this has the
added advantage that the ship will manke quicker progress to the
sduth and thus clear the stormy regions earlier. Ocean Routing is a
sub branch of the science of Kavigation which studies these matters
in detail.

The loxodrome is an endless curve of finite length which, for every
value of a : 0 < @ ¢ "/> , spirals to end linmit point at the pole.
Vhen o = "/a , for instance, the length of the loxodrome from any
initial point on the Equator to the pole is, for the spherical

model,

an v2
2

where a is the radius of the sphere. (See Lipschutz'®),

2.3 STEREOGRAPHIC PROJECTION OF A LOXODROMIC CURVE.

In general, under the Stereographic Projection, a point P on the
surface of a sphere is projected onto a tangent plane. The source of
the projection is the point which is the antipode of the point of
tangency. (Two points on the surface of a sphere are antipodes to

each other when they lie at the opposite ends of the same diameter).
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The stereographic projection is a conformal mapping and, in the
stereographic projection of the Terrestial Sphere onto a polar
plane, (a plane tangent to the pole) where the source of the
projection is the opposite pole, the image of a loxodrome is an
equiangular spiral. This is because, under the projection, angles
are preserved and this is the one single and common property by
which both curves can be defined. Figure 2.1 shows the projection
from the South Pole, under the stereographic projection, of a point
P on the surface of the Terrestial Sphere to the point P' in the
plane tangent to the Rorth Pole.

N r P!
— "'\T— - - =7

AN

FIGURE 2.2
STEREOGRAPRIC PROJECTION.

The stereographic projection is often used to map the Earth's polar
regions. The meridians on the surface of the sphere are projected
into the radial 1lines (in the polar plane) which are the
intersections of the polar plane with the planes containing the
meridians. If the initial line (6=0) of polar coordinates in the
polar plane corresponds with the Greenwich MNeridian then the
longitude on the surface of the Terrestial Sphere corresponds to the

angular coordinate in the polar plane. Simple considerations of

-10 -



geometry in Figure 2.2 show that the radius, r, in the polar plane
of the point P' from the pole, N, is given by

r = 2a tan("/. - ¢/2> ... . 2.1

where a is the radius of the Terrestial Sphere and § is the latitude
of the point P.

The stereographic projection of the surface of a sphere onto a
tangent plane 1is a conformal mapping which can be defined
analytically (Struick'®)., We now show geometrically how angles are
preserved under the stereographic projection of the surface of a
sphere onto the polar plane. Ve can use the essential geometrical
features to show that, in a similar manner, we can project the

surface of a spheroid onto the polar plane; this is also a conformal

mapping.

FIGURE 2.3

The tangent plane to the sphere at point P cuts the polar plane in a
line through the point T in the polar plane. This line (TS in Figure
2.3) is at right angles to the plane of the meridian through P on
the sphere and also at right angles to the projection of this
meridian in the polar plane. From Figure 2.2 above we can deduce
that the triangle PTP', which lies in the plane of the meridian
through P, is isosceles so that PT = P'T. This is a consequence of
the fact that the angles TPP' and TP'P are both equal to ™/. + ¢/a.

The tangent at P to the loxodrome lies in the tangent plane through

P. Let this tangent cut the polar plame in T'. Clearly, the point T*
lies on the line TS. See Figure 2.3.
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Let the angle at P in the triangle TPT' (Figure 2.3) be «. If we
consider the triangles PTT' and P'TT' then they are congruent since
both are right angled at T, the side TT' is commmon and PT = PT' as
we have seen. Hence the angle at P' in triangle P'TT' is equal to «
also. This is a general result because the tangent PT' could be the
tangent to any curve on the surface of the sphere through the point
P.

This geometric proof can, of course, be applied just as well for a

point P in the Southern Hemisphere.

Conversely, it can be deduced from the foregoing that the above
projection of the surface of the sphere is a conformal mapping if,
and only if, the triangle PTP' in Figure 2.2¢1) is isoceles. In the
projection of the surface of the spheroid onto its polar plane we
can therefore make the mapping conformal if the equivalent of the
triangle PTP' 1is also 1sosceles. This mapping is described in
Chapter 3.

Under the stereographic projection of the surface of the sphere onto
the polar plane, the equation of the image of the loxodrome in polar

coordinates is

r = ro expl-(8 - 6.) cot al e 2.2

where (r.,8.) are the coordinates of the projection of some
initial point Po on the loxodrome and a is the angle at which the

loxodrome cuts the meridians on the surface of the sphere.

To prove this let AL be an element of the image of the loxodrome in
the polar plane. Since angles are preserved under the stereographic
projection then the angle, a, at which the loxodrome cuts the
meridians must be the same angle at which the image of the loxodrome
cute the radial lines in the polar plane.

Figure 2.5 shows an element of the image of the loxodrome in the
polar plane. Since the loxodrome is directed towards the pole then

so is ite image and, hence, corresponding to the element as of the
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loxodrome, we have AL (=PR) (triangle PQR - Figure 2.5). Also
Figure 2.5 we have r.A8 (=PQ) along the arc of the circle

r = constant

and -Ar (=QR) along the radial line @ = constant.

FIGURE 2.5

AN ELENENT OF THE IMAGE OF A LOXODRONE,

From the triangle PQR (Figure 2.5) we see that

r.o0

-
tan « AT

And, in the limit as Al 3 0 we have

dr = - cot aa d6
r

in

Integrating from an initial point P. where r=ro. and 0=6. we find

Inr - 1lnre =~ cot a (8 - 05)

which gives r =ro expl-(@ - 6:)cat al as required.
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2.4 NAVIGATING ALONG THE PATH OF A LOXODRONE ON THE SURFACE OF A
SPHERE.

Let us consider that the Earth is a sphere on which the position of
a point P is determined by ite latitude, ¢, and its longitude, 86,
where ¢§ and 6 are measured in radians. If a is the radius of the
Earth then the distance along the meridian from the Equator to P is
ag and the distance along the parallel of latitude from the
Greenwich Meridian to P is a@ cos ¢§. See Figure 2.6 where N is the
North Pole, NG is an arc of the Greeanwich Meridian, GE is an arc of
the Equator and PG' is an arc of the parallel of latitude through P.
PM, the perpendicular from P to the axis of revolution is the radius
of the parallel of latitude and PX = a cos ¥.

FIGURE 2.6

Let a be the radius of the Earth. The distance between two points
P, and P> on the same meridian whose latitudes are ¢, and g2,
respectively, and vwhich is equal to a(g= - g:) (2 > ¢y) 46 known
as the DIFFERENCE OF LATITUDE. The difference of latitude is, in

fact, the angle ¢2 - #v expressed in minutes.

Similarly, the distance along the equator between the feet of the

meridians through two points P. and P2 whose longitudes are 6, and
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8z, respectively, and which is equal to a(6z - 6,) (62 > 6,) is
known as the DIFFERENCE OF LONGITUDE. The difference of longitude is

the angle 6=z - 8, expressed in minutes.

If we now consider a small element of length As of a loxodrome
through P which cuts the meridians at an angle a then A is the
spall increment in the latitude and A6 is the small increment in the
longitude which results from moving the small distance as.
Corresponding to this element As we have a triangle PQR (Figure 2.7)
in which PQ (= As) 1is along the arc of the loxodrome, QR (= a Af)
is along the meridian through Q and R and PR (= a cos ¢ 48) is along
the parallel of latitude through P. The angle at P is equal to a .

FIGURE 2.7
A SMALL ELENENT A4s OF THE LOXODRONE.

In the 1imit as 4s 4+ 0 the triangle PQR becomes a right angled
triangle in which

PQ = ds PR = a cos ¢ 46 and QR = a df .

It is from this triangle that we deduce the formulae that are

relevant to an observer travelling along the path of a loxodrome.
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2.5 THE MERCATOR PROJECTION.

The Mercator Projection is so called because it was introduced by
Gerhard Mercator early in the 17th century. According to Bowditch'<,
Mercator constructed his chart purely to satisfy the needs of the
sea-going navigator who needed a chart on which his line of constant
course (his "Rhumb Line”) would be a straight line.

On the surface of a sphere, along a parallel where the latitude is
¢, the ratio of the length of one minute of arc of the meridian to
the length of one minute of longitude along the parallel is

sec § ! 1 .
1f, then, the surface of the sphere is mapped onto another surface
s0 that this ratio is preserved and, at the same time, the images of
the meridians and parallels of latitude are also orthogonal then the

angle of the rhumb line (loxodrome) will also be preserved.

Mercator achieved this by mapping the surface of the sphere onto the
surface of an infinite cylinder, coaxial with the sphere and of the
sane radius. Under this mapping, the meridians on the surface of the
sphere are mapped into the meridians on the surface of the cylinder
(which are straight parallel linee) and the parallels of latitude on
the sphere are mapped into circles of equal radius on the surface of
the cylinder. These circles are contained in planes perpendicular to
the meridians. The length of arc of one minute of longitude is then
constant on the surface of the cylinder. Vhen the latitude is y,
therefore, the length of image on the cylinder of one minute of arc
of the meridian on the sphere in units of the length of one minute
of longitude on the cylinder must be equal to sec gy .

These image elements on the surface of the cylinder of the ninutes
of arc of the meridian on the surface of the sphere became known as
“MERIDIONAL PARTS". The first table of meridional parts was compiled
by Edward Certaine in 1599 and it was from this table of meridional

parts that Mercator constructed hie chart.
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Considering that Certaine compiled his table in the days before
Leibniz or Newton we must assume that the entries in his table were

computed in a manner similar to the following:

Vhen the latitude is #. and n is the number of minutes of arc, then,
if M(§.) is the sum of the meridional parts, we find
n
X(gn) = [ sec .
1=1
The mapping that Mercator would then have used to construct his

chart would have been defined by

fn 2 sec f1 8 4+ 6 .

1

W ™p

i

In modern terms, if we subdivide the meridian of the sphere by a
finer mesh so that ¢: - f4-» = h and let h40 then we find:
|
X(s) = § sec u du e, @.8)
o
and the Mercator projection of the surface of the sphere onto the
surface of the cylinder is given by
s
f§ § sec u du e -+ @8
o
s0 that, on the chart, (which is the cylinder “unrolled") the
meridians are mapped into parallel lines and a loxdrome is mapped
into a sraight line which cute the mappings of the meridians at the
same constant angle as the loxodrome itself cuts the meridiane on
the surface of the sphere. Figure 2.8 is an illustration of a

Mercator chart.
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SO°N

40°N

30°N

FIGURE 2.8 - A NERCATOR CHART

-27 -



The Nercator projection is sometimes referred to as a "cylindrical
projection” which can be misleading, for, although the Nercator
projection I1s the mapping of the surface of a sphere onto the
surface of the infinite coaxial cylinder of the same radius, we
capnot present this hnpplng visvally. The Cylindrical Projection is
the particular projection which is the mapping of the surface of a
sphere onto the surface of the same infinite coaxial cylinder as the

Mercator projection but defined by the mapping

§ 4+ a tan ¢ 8 + 0

2.6 METHODS OF COMPUTATION IN MERCATOR SAILING.

The navigational formula which are derived for calculating the
components of the right angled triangles defined by the intersection
of a loxodrome with the meridians and the parallels of latitude are
collectively known as the formulae for MERCATOR SAILING.

From the limiting form of triangle PQR in Figure 2.7, we find

a cos § do
a ds

= tan o

Separating the variables gives
a dé = (tan o) a sec g dy

where it will be noticed that we have not cancelled a from both
sides of the equation.

If the observer has travelled along the path of the loxodrome from
the point P. (longitude 6o, latitude #o) to the point P, (longitude
6,, latitude ¢1) we integrate to find

[ R
a@, - 8,) = ( § a sec § df ) tan a ceeee. (2.48)
s

(-]

This equation - (2.4) - is fundamental for a ship sailing along the

arc of a loxodrome.
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The expression a6, - 8.)

is the DIFFERERCE OF LONGITUDE between P, and P, and is
conventionally measured in minutes. The abbreviation for the
difference of longitude 'is D'LONG.

For a point P, where the latitude is §, we also define the function
M(g)

]
H(g) = a é gsec u du = a lnltan(g/a + "/40) |...... 2.5
o

The function, M(¢), 1s known as the KERIDIONAL PARTS of the point P
being a function of the latitude, ¢. This is the distance from the
Equator to the image of the point P in Mercator's Projection.
Meridional Parts are expressed in units of the length of one minute
of arc of the Equator. In BNautical Tables, MNeridional Parte are
tabulated for each one minute of arc of the meridian and, even until
the middle of the twentieth century, this tabulation was for the
sphere. On a Mercator chart at the parallel where the latitude is ¢
the ratio of the scale of longitude to the scale of latitude is
locally 1 : sec § . The integral

[ K
a § sec § df
fo
is the DIFFERENCE OF MERIDIONAL PARTS and, in navigational notation,
is abbreviated to D'MP, In navigational notation, therefore,equation

(2.4) 18 written

D'LONG = D'XP x TAN(Course) veree. (2.8)

To compute the distance, s, from Po to P, along the arc of the

loxodrome we use triangle PQR to find

ds = a sec a df

then we have, on integration

s = a(fy - fo) sec « veeess 2.7
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As we saw, the quantity a(g, - §o) 1is the difference of latitude
measured in minutes and, in navigational notation is abbreviated to
D'LAT so that equation (2.7) is written in the form

DISTANCE = D'LAT x SEC(Course)

Distance cannot, in general, be measured directly between two points
on a Mercator chart but, locally, a good approximation can be
obtained. This can be seen by noting that, ueing the mean value

theorem, D'MP may be written as
a sac fm (1 - #o)
where §. is some value of ¢ such that fo € Fm < My

Vhen a(gy, - fgo) = 1 the length of the image of one minute of
latitude is seen to be sec f§.. Ve find, however, that ,in the
limit, as ¢, + fo the image length of one geographical mile along
the meridian is equal to sec go . At the same time the image length
of one mile along the parallel of latitude g¢=¢. is also equal to

sec f- .

2.6 EXANPLES OF CALCULATIONS USING KERCATOR SAILING.

The navigator uses the method of Mercator Sailing in two ways -~ to
calculate the final position, P., after sailing a given distance
along the arc of a loxodrome from a point Po or to find the course
and distance made good between two observed positions, Po and P.
The method 1ie¢ reduced to the simple application "of plane
trigonometry to the right angled triangles formed by the
intersection of the loxodrome with the meridian through P. and
parallel of latitude through P, shown in Figures 2.9(1) and 2.9(i1).
Figure 2.9 (i1) is a triangle on the surface of the sphere and
Figure 2.9 (1) is a triangle on the surface of the coaxial cylinder.

An example of each of these calculations follows.
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D'LONG P, DEPARTURE P,

D' MP ‘ D' LAT ISTANCE
a a
Po Pa
FIGURE 2.9(1) FIGURE 2.9¢11)

EXANPLE 1. At noon on one day the observer's position was 31°45'N
32°35'E and on the next day at noon the position was 36°30'K
40°20'E. Find the course and distance made good in the twenty four

hour period and the average speed for the day.

From nautical tables we find the values of the meridional parts
function M(g) :

H(36=30'N) 2355. 19

N(31=45'D) 2010.72

D' MP 344.47

Final Longitude 40=20°

Initial Longitude  32<35'

D'Long 7°45"' (= 465 minutes of arc)

From equation (2.4) or (2.6) and Figure 2.7() :

D'LONG _ 405

Tan a = = 1.,3498998
D' NP 344.47
a = 53°28.1°
Final Latitude 36=30.00°
Initial Latitude 31°45. 00
D'LAT 4=45.00' (= 285 minutes of arc)
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From equation (2.7)

8 = al{fy - #o) sec ax = 478.79

COURSE = 053°28.1° DISTANCE = 478.79 SPEED = 19.95 knots.

EXANPLE 2. An observer in position 30°00'N 30°00'E travels a

distance of 500 nautical miles along a loxodrome on a course of

045~. Find the final position.

From equation (2.7) we find the D'LAT (= a(gy - §5)]

D'LAT = s cos a = 500 . cos 45° = 353.55 minutes of arc

On a course of 045> the observer increases latitude and so the
Difference of Latitude is Northward

Initial Latitude 30=00'
D'Lat + ©5<53,55'

Final Latitude 35-53.55°

From Nautical Tables we find

K(35<53.55") 2309.47
N(30=00.00') 1888.38
80 that D'MP 421.09

From equation (2.4) or (2.6) we now find

D'LONG = D'MP tan 45°

hence D'LORG = 421.09 minutes of arc.
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On a course of 045 the observer increases the longitude to the East

s0 that we add the difference of longitude

Initial Longitude 30<00.00'
D'Long 7=01.09'
Final Longitude 37-=01. 09'

FINAL POSITIOR : 35<53.55'N 37=01.00'R

There is, of course, no need to perform these computations this way
in this day and age since we have computing devices which make
redundant the need to keep tables. The integral in equation (2.3) is
a standard integral and does integrate exactly to a form which can
be computed easily. However, as another consequence of the
availability of the computer we no longer use the spherical
approximations and concentrate more on the performing the same

computations on the surface of the Spheroidal BEarth.

1t is interesting to note that the set of Norie's Nautical Tables'?
that were used to complete the above computation are a set published
in 1948 and give tables of Neridional parts for both the sphere and
the spheroid and that the table for Meridional Parts for the sphere
is given preference where one would have thought the more accurate

version for the spheroid would have had pride of place.

In the first set of BNorie's Nautical Tables'®™ that the author
acquired as an officer cadet in 1954 (and which were published in
1954) there is only one table of Meridional Parts - that for the
Terrestial Spheroid.

Inman's Nautical Tables'® of 1952 give a table of Meridional Parts
for the sphere with a footnote explaining that the Meridional Parts
for the spheroid can be obtained by entering the table with the

"reduced" latitude.
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2.6 MIDDLE LATITUDE SAILING.

On the surface of a sphere Middle Latitude Sailing is a method of
computing course and distance along the arc of a loxodrome without
involving Mercator's Projection. On a surface of a spheroid,
however, MNiddle Latitude sailing cannot be used independently
although the method is still documented.

Consider, once again, an observer travelling along a loxodrome on
course o on the surface of a sphere. Ve have, at a point P on the
loxodrome where the latitude is ¢ and the longitude is 6, the
differential triangle PQR (Figure 2.7) where a is the equatorial
radius of the Earth and s is the arc length along the loxodrome. The
angles are measured in radians and the distances in the unit of one

ninute of arc of the Bquator.

In the triangle PQR the side PQ is along the tangent to the
loxodrome at P, the side QR is along the tangent to the meridian and
the departure, PR (= d)\ say) wvhich is along the tangent to the
parallel of latitude, is given by

d) = acos § d0 .

Thus when the observer travele along the loxodrome from a point P.
(latitude §., longtiude 6.) to the point P. (latitude ¢., longitude
6..) then the departure made good, A, is given by

6~
A= a § cos § dO ceaeee 2.7
6o

Departure is the length of the side opposite to the course angle, a,
in Figure 2.9(i1).

Now § is a function of 6 and, indeed, they are related by the

equation
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tan{("/a - #/2) = tan{"/a - go/2) e =t "% L. 2.8

This equation, (2.8) can be deduced from equations (2.1) and (2.2).
It is difficult from this relationship to express s explicitly in
terms of 6 and perform the integration in equation (2.7) so we
proceed without doing so. Since cos ¢ is positive and also
decreasing in the interval (0,"/2] , we can apply the Second Mean
Value Theorem for Integrals through which we find that for eome

value y of ¢ such that - ¢ ¥ ¢ ¢4, we have

b d
1]

0n
a cos yx é dae
e

©

or A= a@B,-6)co8y ... 2.9

This is saying that

DEPARTURE = D'LONG x NMEAN OF COS LAT

whereas, in common parlance, this formula is often quoted as
DEPARTURE = D'LONG x COS OF NEAN LAT

and even applied that way.

Strictly speaking of course, cos x 18 not the mean of cos § when
fo € x € fn but, rather, some value of cos ¢ which satiefies
equation (2.9)., In the case of a sphere, however, if we use the
simple form of the mean value we find that

fn

cos x = 000 7
frn - fo

and that, over short distances, the error in eo doing is not
serious. Hence, from equation (2.9) we find

_ oy ("
a8 8e) § cos § d¢

A= __
(’n - ’o) 'o
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or A= 20 "% eingn-singd | e .10

(,n - ‘o)

and this is a fairly simple formula from which to compute departure

on the surface of a éphere.

As an example let us compute the course and distance made good
between the points Po (31°45'N 32<35'E) and P. (36=30'N 40°20'E)
making use of the above formula (4) and also by the method of

Mercator Sailing to compare the results.

From the Middle Latitude Sailing method we find

Course Made Good = 053°28.6° Distance = 478.86
and from Mercator Sailing we find
Course Made Good = 053°28.1° Distance = 478.79

The value used for the radius of the Earth in both cases was
a = 3437.7468 geographical miles.

Over longer distances such as the passage across an ocean, equation
(2.10) is not accurate enough and we must then use some numerical
method to evaluate the integral in equation (2.7) expressing § in
terms of 6 by equation (2.8).
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NAVIGATING AILONCG
A LOXODROMIC CURVE ON THE
SURFACE OF A SFPHEROID



3.1 IRTRODUCTION.

The shape of the Earth is better approximated by a regular spheroid
rather than a sphere by which we mean, in this case, a spheroid
which is a surface of revolution generated by revolving an ellipse
about its minor axis. On such a surface the meridians are ellipses.
The eccentricity of the meridians is small (x 0.08) and there is no
general agreement as to which exact value is the "best"” value to
effect a global fit of this surface to the surface of the Earth. For
a mathematical treatment of the methods of navigating along a
loxodromic curve on the surface of a spheroid it does not really
matter which precise value we use. Ve will use the letter "e" to
denote the eccentricity and, where numerical results are required,
we will use the value e = 0.,08227 which is the value (attributed
to Clarke) computed in 1866 from survey data gathered in Forth and
Central America and Greenland. This particular value was chosen
because this author became familiar with it <through using the

"American Practical Kavigator™'Z2,

Despite the fact that the knowledge that the Earth is ellipsoidal in
shape and not spherical has long been well known it has not even yet
been fully embraced in the science of Navigation. In this chapter we

will review the work done in recent years.

3.2 COMPUTING THE LENGTH OF A NERIDIAN ON THE SURFACE OF A SPHEROID.

FIGURE 3.1
SECTION OF A SPHEROID IN THE FLANB
OF A NERIDIAN.
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Let us suppose that the Earth is a regular spheroid and that the
eccentricity of the meridional ellipse is e. Figure 3.1 shows part
of the section of the epheroid in the plane of a meridian. In Figure
3.1 the centre of the spheroid is at O and N is the North Pole. OE
(= a) is the Equatorial radius. At the point P the geocentric
latitude is ¢ and the geodetic latitude is y. y and ¢ are connected
by
(1 -ex)tany =¢tanygy ..., 3.1)

The radius, a., (= OP in Figure 3.1) of the spheroid at point P is

- 2
A = aJ/ ! D 3.2)
1 - eZcos3y

where a is the equatorial radius of the spheroid. This can be seen

glven by

from elementary consideration of the geometry of the ellipse.

Let ap (= PR in Figure 3.2) be an emall element of the meridian at
P. In the triangle PQR of Figure 3.2 PQ is the arc of a circle of
radius a. centred at the centre of the spheroid and we have
PQ = ax o . The angle QPR is (y-g¢) which is the angle between the
normal at P and the radius of the spheroid at P. In the limit as
ap 4+ 0 the triangle PQR is a right angled triangle with the right
angle at Q and we find

A Q acds
7’
R \{t,f; PR = PQ sec (y-¢)
YL V-9
P = a, sec (y-¢) d¢g
dp
as FIGURE 3.2

The length of the meridian, therefore, from the Equator to the point
P (where the latitude is §,) is given by L(§z) and the functional
notation L(§) is used to denote the Length of the meridian from the
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equator to the point on the meridian where the latitude is ¢. Ve
find then

o
L(fe) = é a, sec(y-¢) d¢  ...... 3.3
0

Since the latitude of the point P on the terrestial spheroid is
expressed formally as a geodetic latitude then the integral (3.3)

must also be expressed in terms of the geodetic latitude.

If we use equation (3.1) to find y in terms of § and differentiate
to find dy 1in terms of df then, after some manipulation, the
integral (3.3) becomes

Yo - a2
Lo = § a1 -ed gy | ... (3.4
0 v(l - eZsin?y)?

g0 that when the geodetic latitude of the point P i8 y- then the
distance along the meridian from the Equator to P is given by L{y,)
in equation (3.4).

As an analogy with Meridional Parts we have called this function
value L(y,) the LATITUDE PARTS at the point P. In the past it has
been the practice to compute the length of the meridian on the
surface of the Terestial Spheroid by computing the number of minutes
of arc in the Difference of Geodetic Latitude and declaring this to
be the length of arc in Geographical NKiles. Indeed, even now, none
of the standard text books recommend anything different but simple
numerical methods such as the Direct Cubic Spline (which we will
describe in Part 2 of this thesis) can give the value of ¢the
integral (3.4) in geographical miles correct to two decimal places
when the step length of the procedure is as much as 5°. A table of
LATITUDE PARTS was computed by the author2°, and is shown in
Appendix 2. The computation is based on the Clarke (1866) spheroid
where the eccentricity, e, of the meridional ellipse is taken as
0.08227. The paper, detailing the method of computation of Latitude
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Parts, was published by the Journal of Navigation. At that time it
was still the practice at sea to compute manually but now it is
clear that with a modern small PC the values of the integral (3.4)
can be computed directly as a subroutine in a computer programme
while solving the general problem of navigating along a loxodromic
curve. Other papers have been published along the same theme. In
1948 D.H.Sadler?' and then in 1950 J.E.D.Villiams?®2? both published
works which recommended a more accurate solution to the problem of
computing the course and distance along the arc of a loxodromic
curve between two points on the surface of a spheroid. Both of these
authors each recommended and produced a table of corrections to be
applied to the Difference of Latitude between two points on a
meridian, when the Difference of Latitude is expressed in minutes of
arc, in order to find the actual distance along the meridian between
the two points in geographical miles. Implicit in their approach was
the fact that the computations would be performed manually. After
the publication of the Table of Latitude Parts by the author=e,
Hairawa?® acknowledged the introduction of the term "Latitude Parts”
and published his own table for the Bessel spheroid for which the
eccentricity of the meridional ellipse is 0.081697 . This is the
spheroid computed by Bessel based on survey data collected in China,

Korea and Japan.

Since the total length of arc of the meridian from the equator to
the pole is ,in the Bessel spheroid, 5390.96 geographical miles
while the distance from the equator to the pole in the sphere with
the same radius (3437.7468 geographical miles) is 5400 geographical
miles, one might be tempted to assume that the error per degree of
latitude is only about 0.1 geographical miles but the form of the
meridian is, in fact, such that, from the Equator up to latitude
approximately 55<, the length of one minute of arc of the meridian
is less than one geographical mile and, above latitude approximately
55 to the Pole, the length of one minute of arc of the meridian is
greater than one geographical mile. To the sea-going navigator this
{s important since most commercial activity lies within latitudes

55°F and 45°S. The error in using the Difference of Latitude instead
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of Latitude Parts is therefore nearly always in the same sense. On
the surface of the Clarke spheroid, for 1instance, where the
eccentricity e=0.08227 approximately, the distance from the Equator
to a point P where the geodetic latitude is 1° is equal to 59.56
geographical miles correct to two decimal places. The difference of
latitude in minutes of arc would approximate this distance as 60
geographical miles - an error of 0.44 geographical miles and much

greater than the average.

3.3 THE MERCATOR PROJECTION OF THE SURFACE OF A SPHEROID.
The projection favoured by RNavigators for drawing charts is the
Mercator Projection. This projection was discussed in Chapter 2 with
reference to the sphere. In a similar manner the surface of the
spheroid is projected onto a cylinder whose radius is equal to the
equatorial radius of the spheroid and whose axis coincides with the
axis of revolution of the spheroid. For the spheroid the mapping is
defined by the equations

P .

[ é a-sec(y-¢) sec § d¢ 6+ 6

o
The Nercator Projection of the surface of the spheroid onto the
coaxial cylinder of the same radius as the spheroid is a conformal
mapping in which the length of one minute of arc of longitude is
constant and angles are preserved. The parallels of latitude on the
surface of the spheroid are transformed into circles on the surface
of the cylinder but they are all of radius equal to the Equator and
contained in parallel planes. The MNeridians of the Spheroid
transform into the meridians of the cylinder and, of course, they

cut the images of the parallels of latitude at right angles.

Let ds be the differential element along the arc of the loxodrome
on the surface of the spheroid between the pointe P and Q which

cuts the meridians at a constant angle a. See Figure 3.3.
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FIGURE 3.3

- l
A |

P apcos § d6 R

Corresponding to ds, the distance (PR) along the meridian through
P to the parallel of geocentric latitude (QR) 1is apsec(y-g) d¢
(as determined in section 3.2) and the distance (QR) along the
parallel where the geocentric latitude is § is apcos ¢ d6 . Thus,

by elementary considerations of trigonometry,

tan a = _2rC0S § d8 . ieees (3.5

apsec(y-g) dy

Ve find that the differential (a do) of the Difference of Longitude
(D' LONG) to be
a d6 = (tan a) a sec(y-¢) sec g d¢ ...... (3.6)

If we now consider that an observer has travelled along the
loxodrome from the Equator where ¢=0 and 6=6, to a point P where
= and 6=6, then we find by integrating equation (3.6)

fo

a(@. - 6.) = (tan o) § a sec(y-4) sec ¢ df

= 3.7
1f, therefore, we map the point P whose geocentric latitude is ¢
onto the surface of the cylinder so that the distance, M(¢.), along
the meridian from the Equator to the image of P is given by

fe
N(gp) = § a sec(y-¢) sec § df

hence 0

a@, - 6.) = N(fo) tan «a. ceeses (3.8
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Ve see then that, under the transformation
§ 4+ N(g) 0 4+ 0

the angle o« 1is preserved and that the mapping is conformal.

3.4 CONPUTATION OF MERIDIONAL PARTS.

The length of one minute of arc of latitude on the surface of the
cylinder varies as a function of latitude and, for a given value of
the geodetic latitude, y, on the surface of the spheroid, the
distance, along the meridian on the surface of the cylinder is
given by NK(y), the NERIDIONAL PARTS for the geodetic latitude vy
determined below. In nautical tables the meridional parts are
expressed in unite of the length of one minute of arc of the

equator.

The image of the loxodrome under the MNercator Projection is a
circular helix which cuts the meridians of the cylinder at the same
constant angle as the loxodrome cuts the meridians on the surface of

the spheroid.
Equation (3.8) is the Navigator's formula
D'LONG = D'NP x TAN(Course) for the spheroid.

In the mapping, therefore in which equation (3.8) holds, the angle,
o, is preserved, the meridians on the spheroid are mapped into the
meridians of the cylinder and the perpendicular distance batween the

meridians on the surface of the cylinder is constant.

R a(ep - ee) Q e e s e ‘='°
L} ]
L} [}
] L}
Higo) ' FIGURE 3.4
[} L}
] []
s '
L} [}
LA U #=0
P L]
L} L
0=6, 8=9p
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If the cylinder is then "unfolded” onto a plane then the loxodrome
is a straight line which cuts the meridians at the angle a and we
have a right angled triangle. The right angle is at the point of
intersection of the meridian ©6=8. with the parallel of geocentric
latitude g=¢-. a(@. - 6.) (which is the perpendicular distance
between the meridians on the flat plane) is the side opposite the
angle o and M(#o) is the side adjacent to the angle a (Triangle PQR
in Figure 3.4).

If we differentiate equation (3.1), solve for d¢ and substitute into
equation (3.7), then, along an arc of the loxodrome between two
positions Po and P~ where the geodetic latitudes are y. and y.~ and
the longitudes are 6. and 6. , respectively, and the course is a, we

find

yn
a6, - 65) = (tan a) é a(l-e*) sec(y-#) cos § sec?y dy

P

In the integral on the right hand side we express § in terms of y by

means of equation (3.1) and rearrange to find

a é';ec ydy - a §’n —acens (3.9

- 2 2 dv P
vo vo 1 - e*sin®2y

which integrates exactly to

Y - - Lte '
ve a ln [tan("/4 + y/2)] (%ae) 1n ( 1 - e sin y ]

0 € Iyl &€ /2 L. (3.100

The integral (3.9) and its solution given by (3.10) give the length
of the meridian IN NERCATOR'S PROJECTION OF THE SPHEROID between two
points where the geodetic latitudes are yo and y.. Thie distance is
known as the DIFFERENCE OF MBRIDIORAL PARTS and is measured in the
unite of the length of one minute of arc of the Equator. The
integral over the interval (0,y] for 0 ¢ y ¢ ¥x 1is tabulated into
a Table of Neridional Parts for the Terrestial Spheroid and is now
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published in books of Nautical tables to aid manual computations.
The evaluation of the expression (3.10) to give the Difference of

Meridional Parts (D'MP) presents no problems to the modern computer.

3.5 PROJECTION OF THE SURFACE OF THE SPHEROID ONTO THE POLAR PLANE.

In Chapter 2 we have shown how the surface of the sphere is
projected from the South Pole onto the plane tangent to the North
Pole under the stereographic projection. In a similar manner we can
showm how the surface of the spheroid can also be mapped onto the

plane tangent to the North Pole so that the mapping is conformal.

Ve do not project the surface from a single point but the point of
projection moves along the axis of the spheroid. See Figure 3.5i.

™/2 - ) 4

T/‘J P'//y\

/
['/4 + /2l

FIGURE 3.51

("/a - */2) FIGURE 3.5i1
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The geometrical basis of the projection is that the triangle PTP'
must always be isoceles. When this is so then the faces PTT' and
P'TT* of the wedge PTT'P' (Figure 3.511) are congruent triangles in
which the angle TPT' (the angle at which the loxodrome cuts the
meridian) and the aﬁgle TP'T' (the angle at which the image of the
loxodrome cuts the radial line in the polar plane) are equal and
therefore preserved by the projection. The 1line TT' is the
intersection of the plane through P which is tangent to the spheroid
and the polar plane (the plane which is tangent to the pole).

If y is the geodetic latitude then the angle at T in the triangle
PTP' is equal to %x-y and, hence, when triangle PTP' is isoceles,
it can be deduced that the angle at S' (the point where the line P'P
produced cuts the axis of the spheroid) is equal to '/« - Wy.
The length, therefore, of the radius vector r (=NP') in the polar
plane is given by

r = RP' = K(y) tan(Clax - Wy)
where

k(y) = b - apsin § + accos ¢ cot(V/ex - Wy)

The stereographic projection is useful in mapping the Polar Regionms.

3.6 COMPUTATION OF COURSE AND DISTANCE ALONG A LOXODROMIC CURVE ON
THE SURFACE OF A SPHEROID.

If we refer again to Figure 3.3 and to the limiting quantities that
result from the triangle PQR we see that

ds = (sec a) acsec((y-g) d¢

so that the distance, s, between two observed position where the

geocentric latitudes are ¢. and . 18 given by

[
8 = (gec a) § a.sac(y-g) dg
fo :
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If the latitudes are expressed in geodetic form (which is vusual)

then

Y" - 2
& = (sec o) § all - e® ay | ... 3.1

Yo v {1 - eZsin?y)™

The integral on the right hand side is the Difference of Latitude
Parts and is abbreviated to D'LP. Equation 3.11 is written

DISTARCE = D'LP x SEC(Course)

Ve will now rework the examples used in chapter 2 using the same
positions but noting that, on the eurface of the spheroid, the
latitudes are now geodetic latitudes.

The "Sailing" Triangles are now shown in Figures 3.6(1) and 3.6¢ii).

D' LONG DEPARTURE

D' NP D'LP DISTANCE

FIGURE 3.6(1) FIGURE 3.6(11)

Example 1. At noon on one day the observer's position was 31°45'N
32°35'E and on the next day at noon the position was 36<30'KN
40°20'E. Find the course made good in the twenty four hour period

and the average speed for the day.

From Nautical Tables: MN(36=30') 2341.27
N(31°45"') ’ 1998. 40
D' NP 342.97
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Final Longitude 40~20'
Initial Longitude 32=35'

D' LOKG 7°45' (=465 minutes)
Tana = DLONG . 465 . 3858037

D' KNP 342.97
o = 53°35.3"

From Table of Latitude Parts (Appendix 2)

L (36=30') 2177.94
L(31~45') 1893.96
D'LP 283.98

8 = D'LP sec a = 478.42

COURSE = 053°35.3° DISTANCE = 478.42 SPEED = 19.93 knots

The results are not very different from those obtained for the
spherical Earth model (053°28.1°, 478.79, 19.95) but, if we had used
Difference of Latitude instead of Difference of Latitude Parts we

would have found

8 = D'LAT sec a = a(yn - yo) sec a = 480.14

This Justifies the opening remark of Chapter 1 - that if the
spherical model is used consistently then the model is an acceptable
approximation but, in fact, the model has not been used consistently
and it has bean the practice to use D'LAT (for a sphere) in the same

formula as the course angle, a, determined from spheroid data.

- 48 -



Ve now rework the second example again where, given the initial
position and the course and distance steamed, we need to find the
final position. This not such a straightforward problem on the
surface of a spheroid. Ve will perform the computation using a PC
with the following. proceedure. Ve can compute the D'LP from the
formula

D'LP = s cos a

and let us suppose that we have found D'LP = A (say) . Then

dy

L]
>

é'“ all - e®)
Vo /(1 - eZ*sln®y)>

Ve know Yo but we need to determine y. from (3.12). This can be
done by defining F(y.) by

LA -
F(yn) = é all - e 4,
| B J(l - eZsinzy)?®
and solving the non-linear equation F(yn) = 0 using Newton's
method.
Ve have F'(yn) = f(yn) = a(l - e*

J(1 - e2sin?y.)?
and we can determine y. from the iterative scheme

F(yo)
£Cy.)

Pror = Yo -

The initial approximation y, for y. can be obtained by assuming
that 4 is equal to the Difference of Latitude in minutes of arc and
then |

’1=,o+£
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Given, then, that we have determined the final latitude, y., we can
determine the Meridional Parts, M(y,.), and the Difference of
Meridional Parts D'MP = N(yn) - N(po). Ve then find the
Difference of Longitude, D'LONG, ( = a8, - 85)]! from

a0, - 65) = D'NP cot «
and the final longitude, 6., is

1
6n = a (D'MP cot o) - B,

The details of the computed solution for Exanmple 2 with the computer

program now follow overleaf.
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3.7 THE CONPUTER PROGRAX TO SOLVE EXAMPLE 2.
EXAMPLE 2. An observer in position 30=00'F 30°00'EB travels a
distance of 500 nautical miles along a loxodrome on a course of

045~. Find the final position.

10 REM: PROGRAM TO COMPUTE FINAL POSITION
20 REM: GIVEN COURSE AND DISTANRCE MOVED

30 INPUT "1atl?",x,y: INPUT "Distance?",d: INPUT "course?",c

40 INPUT “Longl?",u,v

50 LPRINT "Initial Lat ";x;y;:LPRINT “Initial long";u;v
60 LPRINT "Distance ";d;:LPRINT "Course ";c

70 REM: Latitude in degrees (x) and Minutes (y)
80 a=3437.7468%2:e=0.0824834: pi=3.1415926542

90 REM: This value of e is used in Nories Tables
100 x=x+(y/60):x=x#pi/180:c=c#pi/180: DLP=d#COS (c)
110 REM: Latitude and course angle expressed in radians
120 g=a#(1-e°2)/ ((1-(e#SIN(x))"2)" (3/2))

130 REM: g is the integrand of L (x)

140 n=3#a%(1-e"2)%# (e "2)*SIN(2#x)

150 n=n/ (28 ((1-(es*SIN(x)>)"2)"(5/2)))

160 REM: n is the derivative of g

170 y=x+(dlp/a):FOR i= 1 TO 10:h=y-x

180 REM:y is the lst approximation to final latitude
190 f=a#(1-@"2)/((1-(e#SIN(y)) 2>~ (3/2))

200 REM: f is the integrand of L(y)

210 m=2#%(f-g)/h-n:s=h#(f+g)/2-(h"2)#(m—n)/12

220 REM: m i8 the approximate derivative of £

230 REM: s is the direct cubic spline

240 REM: approximation to L(y)

250 s=s-DLP:y=y—-(s/f):NEXT i

260 REM: we iterate to find y using

270 REM: Newton's Method

280 lat2=y:latl=x:y=y#180/pi:x=INT(y):y=(y-x)#60
290 LPRIRNT

300 y=ROUND(y,3):LPRINT "FINAL LATITUDE = “;x;y:
310 REM: We now calculate the final longitude

320 y=lat2:x=1atl: MP1=LOG(TAN((%x/2)+(pi1/4)))

330 MP1=MP1-(e/2)#L0OG((1+e#SIN(x))/ (1-e#SIN(x)))
340 MP1l=a#MP1: MP2=LOG(TAN((y/2)+(pi/4>))

350 MP2=HP2—(e/2)!LOG((1+e!SIN(y))/(1—.!81l<y)))
360 MP2=a#MP2: DLONG=(MP2-MP1)#TAN(c)

370 x=u:y=v:x=(x#60)+y

380 x=(x+DLONG)/60:y=(x-INT(x))#60: x=INT(x)

390 y=ROUND(y,2)

400 LPRINT:LPRINT "FINAL LONGITUDE ="; x;y:END
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Initial Lat 30 O Initial long 30 O
Distance 6500 Course 45

35 54.9
37 1.28

FINAL LATITUDE
FINAL LONGITUDE

In chapter 2 using the spherical approximation to the shape of the

Earth we found
FINAL POSITION : 35°53.55°N 37°01.09°V.
The difference in the latitudes is quite significant.

3.8 THE METHOD OF CARLTON VIPPERN USING ELLIPTICAL INTEGRALS.

The function L(y) gives us the length of arc of the meridian on the
surface of a spheroid from the equator to the parallel where the
geodetic latitude is y. This the length of the arc of an ellipse and
can also be evaluated using an elliptical integral. The use of the
elliptical integral to compute the length of arc of the meridian was
featured in the paper by Carlton-Vippern®4 published in the Journal
of Navigation in May 1992. It does mean that the latitude must be
transformed to suit the form in which the elliptical integral is

expressed .

Let a meridian on the surface of a spheroid whose equatorial radius
is a and polar radius b be expressed in cartesian coordinates in the
usval manner so that the origin is at the centre of the spheroid.

1ts equation is

a2 b2 =1

and the length of arc from the point P on the ellipse where the x
coordinate is xr to the extremity of the major axis is given by

the integral
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a dx >
é ] 1 + (ax) dx

X

1f we use the substitution sin yx = 2 then this integral becomes
"2
a é V(1 - e?sin®y) dy
e

which is an elliptical integral.

The angle x is the angle subtended at the point P' on the auxilliary
circle by the abcissa of the point P on the ellipse. x 1s connected
to the geocentric latitude, ¢, and then the geodetic latitude, y, by

the equations

tan ¢ (1 - e®)tan y

sin yx

j 1 - e=
cos f —_— e
1 - eZcos?f

See Figure 3.3.

FIGURE 3.3
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Carlton-Vippern did not give any numerical results to his method
probably because the basic formulae that he uses are well founded.
His method follows the pattern of the method used in section 3.6 and

in the computer program of section 3.7 here.
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— 4 —

WNAVIGATING AILLONG THE GEODESIC
PATH EBEBFTWEEN TwWO POINTS
ON THEFE SURFACE OF A SPHFERE



4.1, GEODESIC ARCS.

vhile it is often convenient, in order to avold the flow of current
or adverse prevalling weather conditions, to navigate across the
pceans between two points along a line of constant course it would
seem more logical to seek the shortest path. Over long distances
often the result is a compronise, part of the journey along a
loxodromic curve and part along the shortest path. We have discussed
the problem of navigating along the arc of a loxodromic curve in
Chapters 2 and 3 - now we will consider the problem of navigating
along the shortest path.

On any surface of suitable continuity class the shortest path
between two points on the surface is along the arc of a GEODESIC
CURVE. The definition of a geodesic curve on a surface is a curve
along whose length, at every point, the normal to the curve is also
the normal to the surface at that point. There may be arce of mnore
than one geodesic curve through the two points and the corresponding
arce of these geodesic curves nmay be of different length. There may
also be more than one geodesic arc between the two points which are

of the same length.

Ve are particularly concerned with the problems of determining the
shortest path between two points on the surface of a SPHERE and on
the surface of an OBLATE SPHEROID both of which are used as
approximations to the shape of the Earth. The sphere and the oblate
spheroid are surfaces of revolution. An oblate spheroid is generated
by revolving an ellipse about its minor axis and a sphere is the
epecial case in which that ellipse is a circle. In this cﬁapter we
consider the shortest path on the surface of a SPHERE.

4.2 GEODESIC ARCS ON THE SURFACE OF A SPHERE.

On the surface of a sphere all geodesic curves are great circles. A
great circle on the surface of a sphere is a circle whose plane
passes through the centre of the sphere and, except for points which

are antipodean, the great circle arc which passes through two points
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is unique . The plane of this great circle is generally defined by
the two points together with the point at the centre of the sphere
so that, when the two points are antipodean, the three points are
then colinear and there aré an infinite number of planes which pass
through these points. Consider, for instance, the family of circles
whose common diameter lies along the axis of revolution of the

sphere.

Figure 4.1 shows a plane intersecting a sphere through its centre O.

The closed curve VWQER is a great circle.

FIGURE 4.1

4.3 SURFACES OF REVOLUTION - CLAIRAUT'S EQUATION.

On a surface of revolution which satisfies the required continuity
conditions a special set of plane geodesic curves are defined by the
intersection of the surface with a plane through the axis of
revolution. These geodesic curves are known as meridians. Figure 4.2
shows meridians on the surface of a sphere.In the case of a sphere
all the meridians begin and end on the axis of revolution at the
extremities of a diameter. In the figure these extremities are N and
S, known as the Poles, and, on the surface of the Earth these are

designated as the North Pole and the South Pole.
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f;Heridians

27
g

FIGURE 4.2
MERIDIANS ON THE
SURFACE OF A SPHERE

1f any other geodesic on the surface of revolution cuts the

peridians m., m»,....,m, in points P., Py, ...,P, at angles VY.,
¥v, +++e+y ¥n, respectively, then we find
risin ¥y =constant | = ...... 4.1

where rs 1s the perpendicular distance from P. to the axis of

revolution. See Figure 4.3
Equation (4.1) is known as CLAIRAUT'S EQUATION. (Lyusternik=%.)

/

>
fl —
u

—

—

FIGURE 4.3
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The proof of Clairaut's Equation which follows is taken from the
book by Bell=€. It applies to any surface of revolution which
satisfies the required continulty properties and it follows from the
basic definition of a geodesic curve on a surface as stated in
section 4.1 1i.e. a geodesic curve is a curve on a surface along
which, at every point, the normal to the curve is also the normal to
the surface at that point.
In the =xyz coordinate frame let the surface be represented by the
equation

F(x,y,2) = 0

and let the curve on this surface be defined in terms of the arc
length parameter s so that, at a point P on the curve the vector

OP (= r) is given by
= x(e 1+ yis) § + z(s) i

The normal to the surface is along the direction of the vector
(Fuy Fy ,Fa)

where F., F,, and F: are the first partial derivatives of the

function F(x,y,z) with respect to x,y,z, respectively. The normal to

the curve is along the direction of the vector

-’
d?r _ d*x ;  d%y [ . dFz |
ds® ~ ds=? 1+ ds= N k

From this we see that, if the curve is a geodesic curve,

d?x . 47y . dzz _
ds‘z - ) Fv d32 = A Fy ag'z' = ) Fz ...(4.2)

for some constant ).

Now, on a surface of revolution, the 2z coordinate can be expressed
in terms of x and y and the implicit function F(x,y,2) mﬁy thus be

written in the form
Fx,y,2) = f{/(x2 + y2)) - 2

s0 that, substituting u =v(x? + y3) we find

=§' =I'
F. u ' (n) F, u f' )
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hence from equation (4.2)

d=y _ _ d%x

¥ ds? Y dg= =0
d 9y . dxy _
or ds(x as “Yas’) =°
dy _ ,dx
so that X 3s Y is = constant ... 4.3

In polar coordinates x =ucos©® and y = u sin B

dx _ du -y g8
i " ds cos 0 u ds sin 6
dy _ du de
ds ~ ds sin 0 + u ds cos ©

Substituting these in equation (4.3) and rearranging gives

46

as = constant | ... 1.4)

u:z

and this is the general result for a surface of revolution as given

by Bell=e,

In the particular case of the sphere consider the differential
element ds of the geodesic arc between points P and R (Figure 4.4).
At P let the latitude be ¢ and the longitude 8 . Corresponding to ds
we have u sec § d¢ (= PQ) along the arc of the meridian through P
and u d8 (= QR) along the parallel of latitude through Q and R.

Q

u sec § d¢

FIGURE 4.4

- 50 -



The angle PQR (= ¥) is given by

so that equation (4.4 becomes
v sin ¥ = constant

which is Clairaut's Equation as given by equation (4.1).

7.5 NAVIGATING ALOBG THE ARC OF A GREAT CIRCLE ON THE SURFACE OF THE
SPHERICAL EARTH.

Let us consider a point P on the arc of a great circle which cuts
the meridian though P at an angle ¥. Let ds be the differential
element of the great circle at P. See Figure 4.5. 1In the triangle
PQR corresponding to ds (=PQ) we have PQ = a dy and
QR = a cos § d8 where a is the radius of the sphere.

Q

From triangle PQR we see that

]
!
t
I
|
|
L l

acos § d® R

FIGURE 4.5

and, sustituting this into Equation (4.1), we find the differential

equation

de.

2 2 -
aZcos?y¢ (ds) constant

gsince the length of the perpendicular from P to the axis of

revolution is acos § .
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At the vertex, V, of the great circle, (the point on the great
circle at which the latitude is a maximum - see figure 4.6), let the
latitude be ¢.. At this point the great circle cuts the meridian at

right angles and for this curve we then have ¥ = "/a2 and
sin ¥ = 1 eo that the constant in equation (4.1) 1is equal to
a cos f..

FIGURE 4.6

The great circle that passes through the point P and reaches its
vertex, V, in latitude ¢. is therefore defined by the differential

equation

a cos®y (32? =cosf. | ... (@.5)

and equation (4.1) can also be written in the form

cos f sinYy=cos . | = ...... 4.6
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Ve can solve equation (4.5) using the substitution y = a tan ¢

(See Figure 4.7) and by expressing ds in terms of dy and ds8.

FIGURE 4.7

EP' = y = a tan ¢

Ve find - a®
cos?f =
(y? + a®)
g = a dy
(y* + a=)

and, from Figure 4.5, vwe see that
ds? = a2dg= + aZcos?§ de=

Using these substitutions Equation (4.5) becomes
e = dy
vz - ¥®
and its solution is
y=y.,8in® ~6) ... 4.7
where y. = a tan ¢, and 6« is the longitude in which the great
circle crosses the equator. Equation (4.7) represents the

cylindrical projection (not the Mercator Projection) of the great

circle onto an infinite cylinder which is coaxial with thé sphere.
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1f the great circle passes through the points Pa , where vy = ya
and © = 6a , and Pe , where ¥y = ¥ye and 0 = 6m, then we

can find y. and 6e from equation (4.7)

tan o, = YaSI® 8e - ygsin 6, Ce. (4.8)

YacOS 8, - ygcos 6,

and Y. YacOsec(®,~- 06.) ..., 4.9)a

or y. yeCOsec(® - 6.) ..., 4.9)b
Replacing y = tan ¢ in (4.7) we find the general equation which
gives the latitude, ¢, in terms of the longitude, 6, along the arc

of a great circle :

tan § = tan ¢, sin@®@ -06.) | ..., 4.10)

To determine the distance, s, along the arc of the great circle
between Pn and Pes we separate the variables in equation (4.5) and

integrate to give

O 2
6= a § cos*aw | .. “4.11)
BA cos ’v

Although this integral does have an analytical solution it can be
just as easy to compute numerically since, for navigational
purposes, it is desirable to compute a number of intermediate points
along the path of the Great Circle. The step-by-step method of the
Direct Cubic Spline (which is described in Part 2 of this thesis)
suits this purpose well and we also find that, when f = ¢, and
§ = 0, the derivatives of the integrand in equation (4.11) are both
equal to zero and this provides us with the boundary conditions
which are a desirable (but not essential) part of the Direct Cubic

Spline computational scheme.
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Subdividing the interval [64,6s] at points where the longitudes

are
el '62 J 'en—1
and such that 6, =6,¢<8, <C.....<8_ _, <8, =86,
we can determine the corresponding 1latitudes frv v F2 o B

of intermediate points between Pa and Pe using whichever of the

equations (4.9)a or (4.9)b is relevant.

If the vertex of the great circle lies on the arc between Pn and Pe

then we can express the integral in equation (4.11) as the sum of

two parts :
eE! 9v e
é £(8) do = § £(0) do + § £(9) 4o
eh 99 eV

or § £(8) d9 = § £(8) do - § £(8) do
0, o, o,

and the boundary condition £'(6.) = 0 can be applied.

Similarly, if the great circle arc between Pn and Pe crosses the

Equator then

§ £(8) d8 = § £8) d8 - § £(9) do
0 8 9

A -4 =

and the boundary condition f'(6e) = 0 can be used.

From equation (4.6) we can determine the angle between the great
circle and the meridian at any point along the path and, .hence, for

the navigator, the course to steer.

The spherical model is the one most often used by seagoing
navigators as the model for the shape of the Earth particularly in
the manual method of computation of shortest distance. This
computation 1is wusually called "Great Circle Sailing" and its
gsolution 1s usually effected using the methods of Spherical
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Trigonometry - the Spherical Cosine Formula and Napier's Rules. The
methods described here, however, can be just as simple to apply and
do give us a lead into to solving the more complicated problem of

determining the shortest path on the surface of a spheroid.

4.5 COMPUTATION OF POSITIONS ALONG THE GREAT CIRCLE PATH AND THE
COURSE AND DISTANCE BETVEEN THENM.

As an example of the application of the Direct Cubic Spline
Approximation to the computation of intermediate points along the
path of a great circle arc on the surface of a sphere and the
courses and distances between them, let us consider the arc of the
great circle which starts at the Equator in longitude 0= and reaches
its vertex in latitude 45 at longitude 90-.

At a point P on this particular great circle arc the latitude, ¥,
and the longitude, 6, are related by

tan § = sin 6.

This is a consequence of equation (4.10).

Let us choose a set of intermediate points {(P.)} along the path of
the great circle where the longitudes {8:)} of these points are
evenly spaced at 5° intervals. The latitudes {(#.)} are given by

f1 = tan~'(sin 04)

At the point P. the integrand, fi (the value of £(6) when 6=8,), 1in
equation 4.11 is, in this case, given by

fi = a /2 cos3f,
and the course angle, Y., is, from equation (4.6), given by
Y = s8in~ ' (% /2 sec #i).

1f Sy is the approximation to the distance PoP: along the arc of the
great circle and the (M.} are the moments of the cubic spline, then
the computational scheme (Part 2 - chapter 1 : section 1.4 ) for the
latitudes of the points along the path, the course angles and the

distances is given by
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Se=0: fo=ay2: M = h = Ze 0o = 0 : fo =0
For 1 = 1 to 18:
8. = 1h
g, = tan™' (sin 6.)
Y1 = sin"' (¥ ¥2 sec §.)
fy = & ¥2 cos?f,
X, = 2(fy - £4-0)  _ Ny
h
Sy = Sa-v t g(f! + f1.4) - %;(Hi - Mi-v)

The results from the computation are

shown in Table 4.1 below.

i : fi1 COURSE DISTAKCE
1 5 4-58.9'| 045.22~ 423.20
2 10 9=51.1'| 045.86" 840.12
3 15 [14~30.6'| 046.92~ 1245, 22
4 20 |18=52.9') 048,36~ 1634.19
5 25 |22=54.6'| 050.14° 2004.20
6 30 |26=33.9'| 052.24~ 2353.90
7 35 129°50.3'| 054.60° 2683.15
8 40 |32=43.9'| 057.20° 2992.76
o | 45 |35=15.9'| 060.00| 3284.14 TABLE 4.1
10 50 {37=27.22| 062.97- 3559. 08
11 55 |39=19.4'| 066.07~ 3819.54
12 60 |40~53.6'| 069.30° 4067.54
13 65 |42~11.2'| 072.61- 4305.07
14 70 |43=13.2'| 076.00- 4534.03
15 75 |44=00.4'| 079.45~ 4756, 28
16 80 |44=33.7'| 082.95° 4973.56
17 85 |44~=53.4 086.47 5187.60
18 90 145=00.0']| 090.00 5400. 00
It is interesting to note that when 1i=18 the actual results for

the latitude and the course were correct to 7 decimal places and the

distance was correct to 4 decimal places. For the purpose of the

table the results have been rounded to two decimal places.
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The work in this section appeared as a paper published in the

Journal of Ravigation®7,

4.6 SOLUTIOR OF GREAT CIRCLE SAILING PROBLEM USING SPHERICAL
TRIGOROMETRY.

A spherical triangle is the area enclosed by the intersection of
three great circles. Figure 4.8 shows a spherical triangle PAB on
the surface of a sphere. In the triangle the angles are denoted by
P, X and Y and the sides as p, x and y. The sides are expressed as
angles where p, x and y are the angles subtended at the centre of

the sphere by the arcs XY, PY and PX respectively .

FIGURE 4.8

To solve the triangle for navigational purposes we use the SPHERICAL

COSINE FORNULA.
Given a spherical triangle PXY with angles at P,X and Y and eides

p)x,y where side p is opposite angle P, etc., we would use the

Cosine Formula in the form

cos - CDS X COS8
cos P = P os ¥

sin x sin y
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Or, to find a side (p, say) we would use the Cosine Formula in the

form

cos p = cos xcos y + sin x sin y cos P

In Navigation the point P would normally be used to denote the
position of the Pole. The initial position on the great circle would
be X and the final position at Y. We will know the angle at P which
is the difference of longitude between X and Y and we will know the
angles subtended by the arcs PX (=y) and PY (=x)

y = ¥n - fx X = ¥ - gy
where ¢§.. and ¢, are the latitudes of the points X and Y
respectively.
Using the cosine formula to find the angle X, which will be the
initial course along the path of the great circle, we would find

cos X = CSo8 X" coespcosy ... (4.12)

sin p sin y

and to determine the angle subtended by the arc which is the side p

of the triangle, we would use
cos p=cos xcos y + s8in x sin y cos P o 413

1f the point P, then, is a pole of the Spherical Earth, and the path
of the great circle is from X to Y we would first determine the
angle at X which is the initial course of the great circle using the
Equation (4.12). Ve would then determine the angle, p, subtended by
the arc XY so that the distance, s, in geographical miles along the
arc of the great circle between X and Y using Equation (4.13) is

s = ap
where a is the radius of the spherical Earth and p is expressed in

radians.
Using the information we have now found we would then compute the

position of the vertex, V, (the point at which the latitude along
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the arc of the great circle is a maximum) which may or may not lie

between X and Y. See Figure 4.9.

FIGURE 4.8

The angle at V in spherical triangles PVX and PYV are right angles
and this simplifies the application of the Cosine Formula. In
triangle PVX we know the angle subtended by the arc PX and we have
found the angle at X above. Ve therefore find the angle, v,
subtended by the arc PV from

sin v = sin y sin X
and the angle at P (Pux) in the triangle PVX from

cot Pux = cos y tan X
Ve then find the latitude, ¢., and longitude, 8., of the vertex

‘v=“’[-v ev=e)(+PVX

Given then that we wish to find the latitudes (g:)} of intermediate
points lying in longitudes (8.} we have

tan ¢ = tan ¢, cos (6, - 64)
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Ve would compute any information required in triangle PYV in a

similar manner.

The methods employing spherical trigonometry are well tried and
tested. It is not therefore necessary to show the results that would
be obtained by the methods of spherical trigonometry as a comparison
with the Direct Cubic Spline method although this is done indirectly
in Chapter 5. It is hard to imagine, in any case, that any results
better than those shown in table 4.1 could be achieved by any
method.

There is not much to choose in the amount of computation required in
either of the above methods of computing the distance along the
great circle path but the first method, utilising the Direct Cubic
Spline Approximation, we do find a step by step method of computing
the intermediate positions and the course and distance between them
along the great circle arc during the process of computing the
overall distance. This saves a lot of time. The same method also
serves to solve the similar problem of computing the shortest
distance along a geodesic arc on the surface of a spheroid which is
a better approximation to the shape of the Earth and where the
methods of spherical trigonometry do not apply.

4.6 THE GNOMIC PROJECTION OF THE GREAT CIRCLE.

If, from the centre of the sphere, we project the arc of a great
circle onto a tangent plane then the resulting image is always a
straight line. This projection, known as the Gnomic projection, has
many uses in navigation and many large scale navigational charts of
ports and harbours are constructed using this projection. There are,
however, gnomic projections of the Ocean Basins from which a
navigator can lay off his great circle track as a straight line and
then pick off points to transfer to the Mercator Chart. This is
sometimes done instead of the computations abave but there is a

consequent loss of accuracy.
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In the case where the tangent plane is the polar plane then, with
the origin at the pole, using polar coordinates (r,8) where
r=acot ¢ and 6 is the longitude, the equation of the gnomic

projection of a great circle is

r=r., 8ec® -6, ... “4.148

where r. = a cot §.. See Figure 4.9 .

©-8.6) X/

rv

) "
FIGURE 4.9

Figure 4.9 (1) shows a section through the axis of the sphere and
the point P. The point P' is the projection of P in the polar plane.
The straight line V'P' in the tangent plane (Figure 4.9 (11)) is the
projection onto the polar plane of the arc VP of the great circle.
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NAVIGATING AILONG THE GEODESIC
PATH BEITWEEN TWO FPOINTS
ON THE SURFACE OF A SPHEROID



5.1 GEODESIC PATHS ON THE SURFACE OF A SPHEROID.

On the surface of a sphere the geodesic paths are the great circles
but on the surface of an oblate spheroid the geodesic paths are not
so easlily defined except that the Equator of the spheroid is a
circle and 1its meridians are ellipses. An oblate spheroid is
generated by revolving an ellipse about its minor axis. On the
surface of a spheroid the shortest path between two points, P- and
P, is along the arc of a geodesic curve but this curve, unlike a
great circle on the surface of a sphere, is not always a plane curve
nor ies it necessarily part of a closed curve. This means that 1f we
project the arc of the geodesic curve from the centre of a spheroid
onto a plane tangent to the spheroid then the resulting locus is
not, 1in general, a straight line as it is in the case of the gnomic

projection of the great circle on a sphere.

A spheroid whose meridians are ellipses of fixed eccentricity is a
better approximation to the shape of the Earth than the sphere and
it is the approximation that we shall use here. In fact, the Earth
may be better approximated by the esmooth union of a number of
spheroids and, in the science of navigation, the distances accross
the different ocean basins may be calculated using a different value
for e, the eccentricity of the meridional ellipse. Corresponding to
the spheroid which we will adopt as the approximation to the shape
of the Earth, there is a sphere whose equator coincides with the
equator of the spheroid. We will refer to this sphere as the
CORRESPONDIRG SPHERE. Ve have chose to call this sphere the
"corresponding sphere"” because the latitude #§ on the surface of the
ephere corresponds directly to the geodetic latitude y on the

surface of the spheroid.

There is another sphere which is known as the JACOBI (AUXILLIARY)
SPHERE. This sphere 1is, physically, the same sphere as the
corresponding sphere but the relationship between the latitude ¢ on
the Jacobi sphere and the geodetic latitude y on the surface of the

spheroid is given by
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tan f§ = v(1-e®) tan y .

The latitude § 1is known as the "Reduced" latitude of the spheroid.
There is a special relationship between the geodesic arc on the
surface of the spheroid whose vertex lies in latitude y. and the
great circle on the surface of the Jacobl sphere whose vertex lies
in corresponding latitude ¢. - at points with corresponding values
of the latitude the azimuth angle of the spheroidal geodesic is the
sane as the azimuth angle of the great circle. This result is due to
Jacobi and hence the auxilliary sphere is sometimes known by his
name. At points where latitudes correspond the longitudes, however,
do not, in general, correspond. Ve do not make use of the Jacobi
sphere in this analysis; we make use exclusively of the relationship

between the spheroid and the corresponding sphere .

On the surface of a spheroid the number of geodesic arcs joining two
points P and P differs according to the relative positions of the
two points on the surface. As in the case of the sphere there are,
for instance, an infinite number of meridians which join the poles
but this is not so for any other antipodean points. We have,
however, the new problem of NEARLY antipodean points, i.e. those
points for which the difference of longitude exceeds a certain fixed
value (= 17924' on the surface of the terrestial spheroid). These
points form a special case and with which we will deal in the next
chapter. In the case of antipodean points which are not the poles
the shortest paths are easily defined on the surface of the spheroid
- there are two equal shortest paths, both of which coincide with
the path of the meridian one of which passes through the north pole
and the other through the +the south pole. These paths are

impractical for the use of seafaring navigators but are very useful

to aviators.

In this chapter we shall deal with the computation of the shortest
path along a geodesic arc between +two points which are not
antipodean or “nearly antipodean® and for which it turns out that

the geodesic arc is unique. Ve shall use the standard notation for
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spherical coordinates with the origin of the coordinate system at O,
the centre of the spheroid. The GEOCENTRIC LATITUDE is then denoted
by § and the LONGITUDE by 6. The GEODETIC (ASTRONOMICAL) LATITUDE at
a point P on the surface is the angle between the normal to the
surface at P and the plane of the Equator. This 1s an intrimsic

property of the surface and we will denote it by y. The ranges of

values of ¢, y and © are
¥ ¢ f.y ¢ Wn (North positive)
0 ¢ e ¢ 2n (East positive) .

FIGURE 5.1 - THE GEODESIC FATH FoPVPn ON THE SPHEROIDAL EARTH.
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Figure 5.1 is a representation of the Earth as a regular oblate
spheroid. O is the centre of the spheroid, N is the Rorth Pole, S is
the South Pole and the line NOS is the axis of the spheroid. The
meridian NGS is the Greenwich Neridian, VGE is the Equator. The arc
P.PVP, is the geodesic arc joining the points P. and P.. and V is the
vertex of the geodesic . V may not necessarily lie between P. and
Po~. P 1s a general point along the path of the geodesic between Po
and P and Pe 1is the point where the geodesic, when extended,
crosses the Equator, or, if P. and P. lie in opposite hemispheres,

Pe is the point between P. and P-.

Q-, Q, Q., Q- are the points on the Equator where the meridians
through P-, P, Py, Pn, respectively, cut the Equator. The angles
GOQ-, GOQ, GOQ., GOQ. are therefore the longitudes of the points P.,
P, P., P., respectively and the angles Q.0P. , QOP, Q.OP., Q.OPn.

are the geocentric latitudes.

5.2 THE EQUATION OF A GEODESIC CURVE ON THE SURFACE OF THE
SPHEROIDAL EARTH.

Let us consider that the Earth is a regular spheroid with equatorial
radius a, polar radius b and that the eccentricity of the meridional
ellipse is e. See Figure 5.2.

FIGURE 5.2

Let a position on the surface of the spheroid be determined by its
geocentric latitude, ¢, and its longitude, 6. The distances are

measured in units of one minute arc of the equator and the angles
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are in radians. Let the geodetic latitude be y. ¢ and y are
connected by the relationship

tan # = (1-e®*)tany ... @&G. D

Since a spheroid, like the sphere, is a surface of revolution
fulfilling the required continuity conditions we can, once again,

apply Clairaut's Equation.

<::jk

FIGURE 5.3

Let there be a geodesic arc joining two points Po and P, which
passes through intermediate points P+, P2, ... , Pn-y . See Figure
5.3 . Let the geodesic arc cut the meridians through these points at

angles Yr, ¥z, ... , ¥n-1 respectively, then Clairaut's equation

glves

risin Yy« = constant ..., 5.2)

where ri; is the perpendicular distance from P: to the axis of

revolution.

Let P be a point on the geodesic arc joining points P~ and P on the
surface of a spheroid. The radius of the spheroid at point P is

given by

- 2
a = a a e 5.3
(1 - e=cos?¢)
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Let the geodesic arc through P cut the meridian at an angle y. Let
ds be the differential element of the geodesic at P. If we consider
the differential triangle PQR (Figure 5.4) - PQ 1is along the
tangent to the meridian and PR is along the tangent to the geodesic

- we have

Q apcos ¢ d9 R PQ = apsec(y-¢) df
PR = ds
a.sec(y-¢) dy
QR = ancos ¢ d6

FIGURE 5. 4

Since, on the surface of a spheroid, the perpendicular distance, r,
of the point P from the axis of revolution 1is given by

r = a. cos § then, from triangle PQR, we see that

a_cos f de
ds

sin ¥ =

de.

and so r sin ¥ = agcoszl (ds

) = constant = c, say, e (B804

This equation (5.4) is the fundamental equation which we will use
for the geodesic on the surface of the spheroid and, 1in the
following sections, we will transform this equation to find a
solution which will give us the relationship between the-geocentric
latitude, ¢, and the longitude, 8, at any point along the path of
the geodesic.
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5.3 THE EQUATION OF THE CYLINDRICAL PROJECTION OF A GEODESIC ON
THE SURFACE OF A SPHEROID.

FIGURE 5.5

From the centre, O, of the spheroid, let us project the surface of
the spheroid onto the surface of a coaxial cylinder of the same
radius using the simple cylindrical projection (not the MNercator
projection) so that the point P on the surface of the spheroid
corresponds to the point P' on the cylinder. See Figure 5.5,

The points O, P and P' 1lie on a a straight line and y is the
perpendicular distance EP' from the Equator to the point P'.

Hence y = a tan ¢ and as = dy
az + y=

while 6 remains unchanged.

Using these substitutions in Equation (5.4) we show, in Appendix 1,
that this leads to the form

2(1~e2) + y2
dy= = 1271e% F VT gz -y a2 | ..., (5.5)
(a=z(l-e2)=2+ y2]
2(1-e?) (a2~ c?)
where yz = 2 am e (5.6)

c=2

and ¢ is the constant in Equation (5.4). The details of the algebra
involved in the transformation of Equation <(5.4) into (5.5) are

quite lengthy.
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Clearly ar ¢ a and |g§| <1 =so that a% > c= and hence

2>0 and y_ is real.

Note also that when y = y.  then gg =0 and that the point
(8.,y~) on the cylindrical projection of the geodesic arc is a
turning point and so this corresponds to a vertex of the geodesic

itself.

1f we let V denote the point on the geodesic where y = y. at
8 =6, and # = ¢. then V is the vertex of the geodesic - the point
at which the geodesic approaches nearest to the pole. From Bquation

(5.4) we see that, since , at the vertex, ¥ = 902 , then
¢c=r,=a, ¢cos f. i 5.7
where a. 1s the radius of the spheroid at the vertex.

Taking positive square roots and separating the variables in

equation(5.5) and then integrating, we find

V' faz(1-e2)2+ y=] d
8' - 8 = § ] = y y .. (5.8)a
0 Jlaz(1-e® + y21  J(yz - 3o

where y' 1lies in tke interval (0.y.] , 8' is the corresonding
value of the longitude and 6= 1s the value of the longitude when
y = 0 (at the point Pe on the geodesic - the point where the

geodesic crosses the Equator).

1f figy = [PATeTT ¥y
(az(1-e3) + y=)

then, in the interval 1[0,y.] , f(y) is continuous and non-negative
g0 that we can apply the Second Nean Value Theorem for Integrals
through which , for any interval {0.y'} contained in [(0,y.],
there exists x, @ 0 ¢ x ¢ y' such that
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y-'
' -0 = fix,) § Yy (5.9)
0 V(yZ - y2)

From equations (5.8) & (5.9) we find

(az(1-e=) + t=] v(yZ - t3) oY {yz - t*)

§y l[a2<1—e2>2 + t2) dt £y éy dt
\ 4

o

Substitute t = y. sin u on the left hand side and simplifying the
right hand side gives

u
 fayosin w du = fox dstn <
0 v

from which we find
1 u
fix,? = a éof(yvsin u) du

1

X(iy) and y =a tan ¢

If we write fix,) =

then the solution of the differential equation (5.4) may be written

tan § = tan §. sin [x(xy).(e - 8e)] .. (B.10)a
1 = 1 éuf( sin u) du
where X<x,> u yv
o
and u = sin“(g)

Alternatively, as a solution of equation (5.5) we find

o - 8° = éyi/[az(l—e2)2+ y2) dy 5.85b
y'vla®(1-e2) + y=] viyz - y®)
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where we now find that 6. 1is the value of 6 at the vertex of the

geodesic.

Applying the second mean value theorem to equation (5.8)b there

exists a value x' in the interval (y',y.] such that

yv
8. - 8' = fx) § dy
y'VYag - y®
making the substitution y = y.cos v and writing y = a tan ¢
then we find that the splution of equation (5.4) may be written in

the alternative form

tan ¢4 = tan #. coslp(x)). (B - 8] ... (5.10)0b
where to2 1 éuf(y cos u) du
pix,)> uly
and u = sin-'(g)

5.4 THE PERIOD OF THE GEODESIC ARC.

Through either of equations (5.10) we have thus defined the position
of a point on the path of the geodesic curve and the general nature
of this equation shows that the projected path of the geodesic
follows a sinusoidal curve whose period is less than 360° (since X
is always just a little greater than unity) and whose amplitude is
yv. Ve can determine the period of the geodesic from equation (5.8).
Let the value of the longitude at the vertex of the geodesic be 6..
Ve know then that 6. - 8 1s one quarter of the sinusoidal period.
I1f we use the substitution y = y. sin u on the right hand side of

equation (5.8) we then find that the period of the geodesic which
reaches its vertex in latitude ¢. is

"/2 2z 2y2
-a? + y=2 2
A é az(1-e®) y2 sin®u du
o Ja®(1l-e?) + y2 sinZ2u

v
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In Figure 5.6 we show the path of the cylindrical projection of the
geodesic arc over two cycles. This shows that the geodesic arc on
the surface of a spheroid which is not a meridian or the Equator
winds around the spheroid and does not meet itself again unless the

value of 1/(1-)X.) 1is an integer.

Ve will find it convenient to use the value of the half period of
the geodesic which we will denote by 6,. 8. is therefore given by

*/2 - P
= —a® + = 2
0. = 1 =2§ /" (A-e™= + ylsin®u 4 |.. &.1D
o a=(l1-e*) + yZsin®u

where . 1s the value of a(x ) when y=y. .
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FIGURE 5.6 - PROJBECTION OF A GEODESIC CURVE ON THE SURFACE OF A
SPREROID ONTO A COAXIAL CYLINDER OF EQUAL DIAMETER.
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5.5 THE DISTANCE ALONG THE GEODESIC ARC.

Let s be the distance along the geodesic arc from the point P
(0o,fs) to the point P. (8..,6.) where the difference of longitude
between the two points is less than 180 and such that the two
points cannot be considered to be "Nearly Antipodean" . Since with
equation (5.7) we have determined the value of the constant in
equation (5.4) we can rewrite equation (5.4) as

de

aZcos=g (
P 4 ds

) = acos §,

Separating the variables and integrating then gives

er'l 2 =
aZcos®f as . (5.12)

8- a_cos g,

Since we have y = a tan g we can use equation (5,10) to express

§ as a function of 6 by

tan ¢ = tan . sin (X B -6&2) L., (5.13)
1 1 ¢
where - = = § f(y.sin u) du
A u
0
and u = sin™?! 1
Yo

In navigation the popular existing methods of computing the shortest
distance on the surface of a spheroid which seem to be most widely
referred to are due to Andoyer?® and Lambert2®, Both of these
authors use a method which involves applying a correction to the
great circle distance on the corresponding sphere and both methods
can be handled by manual computation. T. Hairawa®2® also applied the
same method in a recent publication. Here, however, we use a Direct
Method applying the equations that we have derived above and use
iterative procedures where, when we are given the longitude, 6, we

compute ¢, y and then s. This 1s described in detail in section
5.7.
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5.6 THE COURSE ALONG THE PATH OF THE GEODESIC.
It has already been shown as a direct consequence of Clairaut's
equation that, if the geodesic cuts the meridian where the latitude

is § at an angle Y, then we have

a. cos § sin Y = a. cos #.

The angle Y is the AZIMUTH and the course in the 360° notation is
derived from it.

5.7 COMPUTATIONAL PROCEDURES.

To begin the computation of the distance, s, along the path of the
geodesic arc between the two points P> (§.,8.) and P. (Fn,6.) we
first need to know the position Pe (0,8s) , where the geodesic arc
between the points (or its extension) crosses the Equator, and
P. (§.,8.) , the position of the vertex. Ve will also need
approximations for the values of ). and M. These are the values of
A when ¢ = §o and ¢ = #. , respectively. An approximation for X,
when ¢ = §1 can be determined from the application of numerical

methods to the scheme :

y+ = & tan ¢, (yv» = a tan ¢.)
vs = sin I
U4
% = % é f(ycsin u) du
i 1 o

From equation (5.9) we find, at Po and Pn, respectively,

"
(=]

YV Sin[ XQ(OQ - eE‘)] - y-:\

]
(=]
~
8]
[y
)]
~
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We can solve these equations (5.15) and (5.16) simultaneously for y.

and B¢ using the two dimensional form of Newton's method.

If we compute the values of 6 and y. which would be found from
equations (4.7) and (4.8) of Chapter 4 by considering, as a first
approximation, that the EBarth is a sphere, then we can use the
values of y. and Be so found as the first approximation to the
solution of equations (5.15) and (5.16) by Newton's Method. During
the iterative procedure we must also compute values of )- and i~

corresponding to y..

Having found satisfactory valvues of 6 and y. we can then find
fv !

= -1 Yv
[ tan (a )

It may be more convenient to find the value of 8. rather than 6 in

which case we find the simultaneous solutions of the equations

i
~
[8)]
—
-~
~

yV Coslpo(ev - e(:)] - y-: 0 S e e e

yV CDS[FH(GV - er\)] - Yn

To start the actual computation of the distance, s, along the
geodesic arc we must first subdivide the longitude interval [6.,6.)
in some manner; we introduce convenient intermediate points 6,,

02, .o , 8ia-v and find the corresponding latitudes ¢., §-=,
' -

To do this we set up an iterative scheme with first approximations

found from the great circle on the corresponding sphere.

Given 98, yv. and 6 we can find the (y.}o values (the initial

approximation to yi:) from equation 4.6 :

{y1}e = y» sin B4 - Bx) for i=1,2,...,n-1
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The iteration steps then involve repeatedly computing

{ys}s using
el yor = sin™?!
1 _ 1
)y {uid g
and {yid)s =
for j=1,2,.

5{y1}4 - (y1)3~||

{yalg

y-

{ugd s
é f(y.sin u) du
o

Yv sin (A1), (B:1-0g)

<e€

for each 1 and for some preassigned tolerance ¢

N1}y and

until convergence is deemed to have occurred when

>0 .

Once the 1iteration has converged to give values for A: and yi: then

f§+ can be calculated from

g1 = tan“(x’)
a

Given now the values of the geocentric latitudes {g:} (i=0,1,.

corresponding to the longitudes (6.},

values for the

integrand

in equation

convenience, rewrite the equation in the form

e\'\
s= §
0=
if B, ¢ 6 ¢ e,
or in the form 0
[ =4
s=
0

1f 6_ ¢ B, ¢ 0,

) 0.
2, 2
aZcos ) e _ é
a.cos §. B
05
2 4
aZcos [ e ' é
a.cos . Be

S D)

we can compute the ordinate
(5.12).

Ve can, for

=2 =2
aZcos s 46

= a.cos §.

P b 4
aZcos?f 46

a.cos f.

This enables us to take advantage of the fact that the derivative of

the integrand is zero when

0 = 6¢ which

is helpful in the

application of the step by step method of the Direct Cubic Spline.
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In most problems in sea-going navigation where ships are usually
confined to what are termed the "Navigable Latitudes” and to the
main ocean basins the method of determining the distance as
described above 1s generally applicable. There are, however,
circumstances, 1in theory, when the method will become 111-
conditioned. Consider, for instance, the case when the the vertex of
the geodesic is in high latitude and when, as a consequence, in low
latitude, the initial azimuth of the geodesic path is very small
i.e. when the angle, Y, between the meridian and the geodesic arc is
small. There is then a large change in latitude for a small change
in longitude and it becomes necessary to transform equation (5.12)

to allow for this.

1f we differentiate with respect to d9 in equation (5.12) :
Ef = agcoszl
de a.cos f.

and, from equation (5.8) we find

4 2
8 - 8 = é f(a tan u) sec®u du

o v (tan®g. - tan®u)

de _ f(a tan §) sec?yg
whence =

E; v (tan®g. - tan®?y)

Taking these together we find

ds _ ds d8 _

f(a tang) ag

E; de dyg a.cos #. v (tan®¢ - tan?y)

The distance, s', along the arc of the geodesic in an interval

[fo,9') contained in the interval [§.,f.) is then

g f(a tan ¢) ag

a_ cos §_ v (tan?¢ - tan?y)

dy o (5,18
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The reason for the restriction is that there is a singularity in the
integrand in equation (5.18) when F =g at the point where the

geodesic arc reaches its vertex.

It is only necessary to use equation (5.18) when the azimuth angle,
Yy, is small and there is a large change in the latitude over a
comparatively small interval in the longitude. As the azimuth angle
increases along the path of the geodesic then, clearly, we can
revert to using equation (5.12) for computing the distance over the
part of the geodesic curve which includes the vertex before the
geodesic arc reaches its vertex where Yy = 90 . In practice the
point at which we revert to using equation (5.12) can be decided on
the value of Y. It might be logical, for example, to choose Y = 45-
but, in most circumstances, this proceedure 1s not necessary and
will only be required in those cases where the vertex of the
geodesic is in high latitude. In the next chapters where we discuss
the computation of the shortest distance between Nearly Antipodean
points , where the geodesic paths do reach high latitude, then we
will need to use equation (5.18) to compute the distance along the

relevant arc .

_88_



5.6 THE CORRECTIOF METHOD OF LAMBERT.

Let us consider two points X and Y on the surface of the spheroidal
BEarth Model whose geodetic (astronomical) latitudes are y. and y.,
respectively. Let PXY be the spherical triangle on the corresponding
sphere (Figure 5.7)

FIGURE 5.7

In Figure 6.7 P is the pole and p, x, y are the sides of the
triangle PIY expressed as the angles subtended at the centre of the
sphere by the arcs XY, PY and PX, respectively. Having computed s,
the great circle distance in geographical miles from X to Y then the
correction, 4s, to apply to this great circle distance to give ue
the distance along the geodesic arc joining the points X and Y on

the surface of the spheroid is, according to Lambert==,

2 2
s = ¥af(3 sin p - p) SINTY cosTAY

cos2 %p

- %af(3 sin p + py SOy sinay

sin? %p

where f[=1-y(Q-e®*) 1 1is the flattening of the spheroid and

where y = ¥(yo + yn) and ay = %y - Yn)
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5.7 EXPERIMENTAL RESULTS.

As an example we will compute the path of the geodesic arc from a
position 51°46°N 55°22°'V , off Belle Island in Newfoundland, to a
position 55°32°K 7°14°V , off Inistrahull in Ireland. Treating the
Earth as a shpere and using‘tbe great circle method the distance is
found to be 1691.61 geographical miles but, along the shortest path,
treating the Earth as regular spheroid, we find that the distance is
1695.24 geographical miles . Table 5.1 below gives the details of
the spheroidal computation. The way points are chosen to include the
vertex of the geondesic (which is oulined in the table by the dotted
lines) and then points along the path so that the 1longitude
interval from the initial position to the vertex is subdivided by
evenly spaced points and then the longitude interval from the

vertex to the final position subdivided by evenly spaced points

also.

WAY |LORGITUDE LATITUDE DISTANCE |AZIMUTH
POINT GEOCENTRIC ¢ | GEODETIC y (COURSE)
0 |55°22.00°| 51°34.80° 51°46.00° - 063. 14
1 |49°53.96°| 53° 6.98° 53°18.02° 220.052 | 067.49
2 |44°25.93°| 54-18.87° 54°29.76° 426.426 | 071.901
3 |38'57.80°| 55°12.67° 55°23.44° 622.813 | 076.38
4 |33°20.86°| 55°50.01" 56° 0.69° 811.719 | 080.90

5 _|28° 1.82"| 56°11.98° | 56°22.61° _|__995.336 | 085.44_
6 |22733.77-|_ 56°19.23° | _ $6:29.85 ° __|_1177.787 | _090,00_
TT7TT|17727.18°| 56°12.90° 56°23.53" 1347.730 | 094.26

8 |12°20.41°| ©55°53.73" 56° 4.41° 1519.554 | 008.51

9 7°14.00°| 55°21.25° 55°32. 00" 1695.240 | 102.73

TABLE 1 - PATH OF GEUDESIC FRON BELLE ISLAND TO INISTRAHULL.

1t was considered of interest to perform the same experiments as
were done by T.Hairawa?® since some of this work written here was
presented in a paper to the Journal of Favigation by the author with
J.E.Phythian®> as a response to the paper by Hairawa in the same
Journal . In his paper Hairawa drew comparisons between the methods
of computing distance on the surfaces of the sphere and the spheroid
along the arcs of loxodromic curves and geodesics. In the case of

the geodesics he used the correction method of Lambert. Our
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computations are based on the same spheroid data used also by
Hairawa (Bessel's Spheroid : e = 0.081697 , a = 3437.7468 ). The
method presented by us is referred to as the "Direct Method" and the
method used by Hairawa as the "Correction Method"” . The experiment
consisted of computing the shortest distance between pairs of points
which are 100= of longitude apart and lying on the same parallel of
latitude and letting the latitude vary from 10~ to 80~. The results

are shown in Table 5.2 below.

TABLE 5,2
GEOGRAPHICAL
LATITUDE D, D> D> Da Ds
10= 5876. 82 5876.83 5877.3 5877.33 5877.33
20~ 55625. 02 5525, 02 5526.9 5526. 96 5526.96
30° 4087. 29 40987.29 40901.2 4991.21 4990. 21
40~ 4311.84 4311.84 4317.6 4317.61 4317.61
50= 3539. 84 3539, 86 3546.7 3546.71 3546.70
60- 2702.52 2702.55 2709.3 2709.29 2709, 26
70= 1822.67 1822.71 1828.1 1828. 08 1828. 04
80~= 017.31 017.34 020.3 0920.32 920.28
In Table 5.2 :

Da is the Great Circle Distance on the surface of the

corresponding sphere as computed using the Cosine Formula.

D= is the Great Circle Distance on the surface of the corresponding
sphere as computed by the Direct Method with e=0 and intermediate
points taken along the Great Circle at b5< 1intervals in the

longitude.

D» is the shortest distance on the surface of the spheroid as found

by Hairawa® with the Correction Method.
D« is the shortest distance on the surface of the spheroid as found

by the Direct Method with points intermediate along the geodesic

arc taken at intervals of 5= in the longitude.
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Ds is the shortest distance on the surface of the spheroid as found
by the Direct method with intermediate points along the geodesic

arc taken at intervals of 1° in the longitude.

The distances computed by Hairawa were probably taken between points
on the same parallel of latitude because, in the Correction Method,
the formula takes a particularly simple form in this instance. The
latitudes of the two end points of the geodesic arc appear in the
formula symmetrically and we also find that the best results are
obtained from the correction method when these latitudes have the

same absolute value,

In the example of the distance from the position off Belle Island
in Newfoundland, to a position off Inistrahull using the Direct
Method the shortest distance, found taking intermediate points along
the path at intervals of approximately equal to 5° in the longitude,
ig found to be 1695.24 geographical miles - a differemce of 3.63
geographical miles from the great circle method . Lambert's method

in this case gives a distance of 1695,25 geographical miles.

In response to the paper presented to the Journal of Navigation by
villiams & Phythian®® a paper was published by Roger Bourbon?'
describing an improvement to the Correction MNethod of Lambert and
involving further iterations. He used the example of the shortest
distance between the points of Belle Island and Inistrahull and gave
this distance as 1695.27 geographical miles.

5.8 REMARKS ON THE EXPERIMENTAL RESULTS.

The Mathematical problem of describing the geodesic paths on the
surface of a spheroid by analytical equations is a classical one,
first solved by Clairaut and givemn in the book by Todhunter®?2
However, it has never been easy to give a numerical solution to
Clairaut's Equation (5.4) for all cases. Most solutions use
jterative methods and this has required the use of computers. In the

past, therefore, alternative solutions, such as the Correction
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Method, have had to suffice. By modern standards the Great Circle
solution is not really good enough and, since electronic computing
devices are now widely used, it is possible now to obtain accurate
numerical solutions. There has also been the danger, as pointed out
by Hairawa®® that, in seagoing navigation, it is a practice to use
formulae which are not correct theoretically. There is really no
need to continue this practice now that algorithms are available
which can compute distances to very acceptable accuracy. Indeed, as
was mentioned in the introduction to the thesis, much has been
published on the single problem of computing the distance along the
geodesic arcs of a spheroid and claims that it can be domne correct
to a millimetre for a reular spheroid are Jjustified. For
navigational purposes, however, this level of accuracy 1is not
strictly necessary and we have concentrated more on the computation
of the positions along the arc of the geodesic which requires a
method such as the direct method as described in this chapter.

For the positions chosen by Hairawa the results obtained from the
Direct Method and the Correction Method of Lambert compare
favourably. They both differ from the Great Circle Distance and,
where they differ from each other, that difference is small compared

to the difference each has with the Great Circle Distance.

No error analysis has been done here on the Correction Method . As
to the Direct Method, we would expect that the main source of error
would be due to round off, particularly in the approximation to the
value of ). The error due to round off which affects Da in Table 5.1
can be estimated by the difference between D: and D> which at its
maximum is 0.04 geographical miles. We are confident. that, by
jteration, the error in the final result due to the value of ) is
reduced to a negligible amount. It is our belief, then. that the
distance Da in Table 5.2 is as good an estimate to the shortest
distance between the specified points on the surface of the sheroid

used as the approximation to the shape of the Earth tbat we need to

make .
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vhen second approximations are taken the correction methods of
computing the length of arc along a geodesic curve on the surface of
the terrestial spherold are quite adequate for the purpose but,
from this method, we do not gain any information about the path that
the geodesic takes. This is important to the navigator and this is
the reason that we have chosen to use this direct method - so that
by applying a step by step method of solution of Clairaut’s equation
we can determine intermediate points along the path, the distance
between them and the angle at which the geodesic curve cuts the
meridans at the intermediate points. The path of the geodesic curve
can then be plotted on a Mercator chart in the traditional manner.
Automatic systems for voyage planning also use intermediate points
along the projected path which are called "Vay Points". The
positions of these "way points" have to be determined and it is
always better for the navigator to achieve the "way points" along

the path as near as possible.

- 04 -



—_— —

THE SHORTEST DISTANCE RETWEEN
NEARILY A NTIPODFEFAN POINTS
ON THE EFEQUATOR



6.1. INTRODUCTIOR.

There is a special problem in finding the shortest path geodesic arc
that joins two Nearly Antipodean points on the surface of the
spheroidal Earth. FKearly Antipodean Points are points which are
almost 180° apart in longitude but which have the same latitude in
opposite hemispheres. The specific longitude at which this problem
occurs 1s defined below. It turns out that, in this case, the
shortest path can deviate quite considerably from the path predicted
by the method described in Chapter 5 and from the great circle path
on the corresponding sphere. When points are exactly 180° apart in
longitude then the shortest path between them is along the meridian.
Lambert®®, 1in his paper entitled “THE DISTANCE BETVEEN TVO VIDELY
SEPARATED POIRTS ON THE SURFACE OF THE EARTH", published in 1942,
having given a solution which was applicable in most cases, stated
that there was a particular difficulty in using the Correction
Metbod to determine the shortest distance between two nearly
antipodean points on the surface of the spheroidal Earth but this
was not fully analysed in that paper. The problem has been solved by
several authors since and one of the more recent is Bowring”.The
method described in Chapter § in this thesis computes the shortest
distance between two points on the spheroidal Earth model but this
distance is along a geodesic arc between the points which closely
follows the great circle arc on the corresponding sphere. Indeed the
method here in Chapter 5 uses the great circle values as initial
approximations in subsequent iterative procedures and, for similar
reasons, whilst the method gives the shortest distance for most
cases, 1t does not give the shortest distance for the case when two
points are nearly antipodean. Ve will now adapt our procedure to

correct this.

The theory of this subject has been discussed before by Helmert®=
and Fichot®¢ (among others) but it seems that there has been no such
full exposition in English. Lambert, in his paper, stated that it
was his intention to publish further work on this problem, in

English, but, to our knowledge, this has not appeared and, as far
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as we can see, no work similar to that of Fichot by another author
has appeared either. We will recapitulate the statement of the

problem posed by Lambert and present our solution .

6.2 NEARLY ANTIPODEAN POINTS ON THE EQUATOR.

Consider first, as Lambert did, two points which both lie on the
BEquator. Although the Equator 1is a geodesic curve the shortest
distance between two points on the Equator is not, as one might
imagine, always along the Equator. Vhen the difference of longitude
between them is greater than a certain fixed value (which according
to Lambert, is approximately 179°24') then the shortest path between
them is along another geodesic arc which takes a northerly (or
southerly) route in order to take advantage of the flattening of the
spheroid.

At each point on the surface of a spheroid a family of geodesic
curves 18 defined and these geodesic curves emanate in all
directions from the point. From the poles these families are the
meridians but from all other points the family is defined by
Clairaut's Equation (Lyusternik2®) written in the form

a-cos f sinYy=a. cos . |  ...... (6.1)

where, at a point P along a geodesic arc, a. is the radius of the
spheroid, s is the geocentric latitude and ¥ is the angle between
the geodesic and the meridian through P. This equation (6.1) was
derived in Chapter 5. A particular member of the family is specified
by #. (the geocentric latitude of the vertex, V, of the geodesic
curve) and each member of the family has a slightly different
sinusoidal period. The sinusoidal period of a geodesic is related to
the geocentric latitude of its vertex so that the higher the
latitude of the vertex the greater is the sinusoidal period. The
half period of a geodesic is the difference of longitude between two

successive passes of the geodesic through the Equator. The half
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period, 8-, of a geodesic which reaches its vertex in latitude ¢. is

given by equation (5.11).

Let us consider the family of geodesic arcs which start at the point
with latitude 0° and longitude 0® , which have their end points on
the Equator also and which have their vertices in the Northern
Hemisphere. See Figure 6.1. The family of geodesics in the Northern
Hemisphere are shown by the continuous arcs in the figure. To each
member of the family, starting at the same point, there corresponds
a symmetrical geodesic of equal length in the Southern Hemisphere
and terminating at the same point also. The members of thies family
of geodesics in the Southern Hemisphere are marked by the broken

lines in Figure 6.1.

The longitudes of the end points of the geodesics all fall in the
interval . ¢ B8 ¢ 180° s where B is Lambert's value
(x 179°24' which 1is given as 2n v(1-e®*) in chapter 5) but the
longitudes of these end points are different for each member of the
family. The extreme members of the family are that part of the
Equator itself between longitudes 0° and 6. (vertex 0°, half
period 8.) and the meridian with end points in longitudes 0° and
180° (vertex 90°, half period 180°). Note then, that when the
difference of longltude, 0., falls in the interval 6. < 64 ¢ 180°,
there are three geodesic arcs joining the two points - the Rortherly
geodesic, the Southerly geodesic and the Equator - but only two of
them - the Northerly geodesic and the Southerly geodesic - give us
the equal shortest distance. The Equator will give us the shortest
path when 0o ¢ 8. , for then all three paths will coincide. This
means that if the difference of longitude, 6., between two points on
the Equator is lees than or equal to this figure then the shortest
path between them is along the Equator. If, however,
17923.898° ¢ 84 ¢ 180°
then the shortest path is along a northerly or southerly route -

either are possible and both give the same shortest distance.
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FIGURE 6.1. CYLIRDRICAL PROJECTION OF GEODESIC PATHS BETWEEN TVO

NEARLY ANTIPODEAN POINTS ON THE EQUATOR.
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It was shown Chapter 5§ that, along the arc of a geodesic which
crosses the Equator in longitude ©e and reaches its vertex in
latitude ¢., longitude 6., at any point along the geodesic arc where
the latitude 1s ¢ and the Longitude is 6, then § and 6 are related
by the equations

y = a tan ¢ (y. = a tan g, )
y 2(¢(1-a=2)2 2
o e_é/a(le)+t dt
- 8 =
0 az(l-e®) + t* vi(yZz - t=)

whose solution may be expressed in the form

tan § = tan ¢, sinfA@® - 68&)3 | ..., 6.2)
where 1 1 u
- = = é f(yesin u) du
) u
0
and U = sin™! Y
yv

This is found from the differential equation

de

aicoszﬂ (ds

) =acos f, ..., 6.3

which was also derived in Chapter 5 and defines the path of a
geodesic on the surface of a spheroid by means of Clairauvt's

equation expressed as a differential equation.

it was shown in chapter 5 that the half period, 6., of the geodesic
is given exactly by equation (5.11) which is

*/2 2 2y2 :

- + y=2 2

o = § /a (17e%)% + yosin®u 4y el (6.8)
o a®(1-e*) + y2sin3u

vwhere x/(l-e?) (B €1
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A typical geodesic whose vertex is at latitude ¢. and whose half
period is 6. is marked by the dotted line in Figure 6.1.

Table 6.1, in column 2, shows the value of the half period, 6., of
the geodesic with its vertex in the latitude given in column 1. This
value 1is the value of the longitude where the geodesic, which
started out in latitude 0°, longitude 0°, crosses the Equator again.
8. 1is computed from equation (6.4) with y. = a tan g, ,
a = 3437.7468 geographical miles and e = 0.081697 .

LATITUDE OF| HALF PERIOD |DISTANCE P.P..|DISTANCE P-P..| INITIAL
VERTEX ($.) 1% ALONG EQUATOR|ALONG GEODESIC| AZIMUTH
g.m) g.m) $ P/
10° 179=24.451"° 10764.45 10764. 44 079.97<
20~ 179=26.091° 10766. 09 10765.99 069.94~
30 179=28.769° 10768.77 10768. 38 059.92°
40- 179=32.391° 10772.39 10771.32 049.91~
50° 179=36.850° 10776.85 10774. 42 039.91°
60° 179=42. 007" 10782.01 10777. 43 029.92-
70~ 179=47.704° 10787.70 10779.717 019.94~
80~ 179~63.871° 10793. 87 10781. 40 009.97°

TABLE 6.1, SHORTEST DISTANCES FOR REARLY ANTIPODEAR POINTS
OR THE EQUATOR

Table 6.1 also shows, in column 3, the distance along the Equator
between two points Po and P» when the difference of longitude
between them 1s equal to 6,. This value is simply the angle 6.
expressed in minutes of arc and gives the result in geographical
miles.Column 4 of Table 6.1 gives the shortest distance between P.
and P.. It was shown in Chapter 5 that the distance, s, along the
geodesic arc between two points P. and P. whose longitudes are 8.

and 6., respectively, is

Lal

p 2
ngcos ] 48

0. a_cos ¢

where § 1s expressed in terms of 0 by equation (6.2).
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Since, in this case, both points lie on the Equator and we have

en - 9-::
2(9\/ - 9-:)

O

1]

or ) (=]

then the distance, s, in Equation (6.6) is, in practice, more

conveniently computed from

V o az 2
aZcos [ a8

6. a_cos g

Given ¢. from column 1 of Table 6.1, if this g. 3 60° then we have
used a combination of Equations (5.18) and (6.7) to compute the
distance , s. We find a value ¢', and a corresponding value 0

somevwhere near to the point on the geodesic where Y = 45° so that

g'

2
s = é <) a3 dg
0 a. cos f. v (tan®g. - tan3g¢)
e, 2z 2
+ 2ec0™ @8 | ... 6.8)

8' a. cos §.

The procedure for evaluating the integrals in equation (6.8) were

described in chapter 5.

The entry in column 5 gives the initial azimuth, Y, of the path of
the geodesic from the point on the Equator. This depends also upon
the geocentric latitude of the vertex, ¢., and is given by :

sin ¥ = sv cos #  } L. (6.5)

where a. is the radius of the spheroid at the vertex.
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6.3 GEODESIC CURVES ON THE SURFACES OF OTHER PLANETS.

The Earth 1s usually considered to be "spheroidal®" where the term
spheroidal is used in the sense that the Earth is “sphere-like"
because the flattening 1s small. The inner planets (Mercury, Mars
and Venus), like the Earth,‘are also spheroids since the flattening
of these planets is small too but, in the case of some of the outer
planets, such as Jupiter, the information so far gathered would
suggest that the flattening is much more distinct. Measurements
would indicate that the eccentricity of the meridional ellipse of
Jupiter 1is approximately equal to 0.3. The planet Jupiter Iis
therefore more aptly referred to as an ellipsold of revolution.
There 1s no geometrical difference between a spheroid and an
ellipsoid of revolution and here we will use the terms freely to

mean the same thing.

In the case of the Earth and the planets the axis of rotation of the
planet is also the axis of revolution about which the ellipsoidal
shape of the planet is generated. Indeed, there are good reasons why
this should be so - the spheroidal or ellipsoidal shape 1is the
condition of hydrostatic equilibrium of the planet due to its
circular motion about its axis. The conditions of bhydrostatic
equilibrium depend upon its physical constitution and its angular

velocity. See, for instance, the book by Samuel Glasstone®s.

Although the mathematical analysis of geodesic arcs on the surface
of a spheroid as described in Chapter 5 and in the foregoing
sections of this chapter have been written with the Earth in mind,
where the flattening of the surface is small and the eccentricity of
the meridional ellipse is aproximately equal to 0.08, it is not
difficult to see that it will work equally well for a surface such
as Jupiter where the eccentricity of the meridional ellipse is
approximately equal to 0.3.

Ve can set up a coordinate system on the surface of a planet with

latitudes and longitude defined in a similar manner to that on the
Earth. The Poles of a planet will be those points on the surface
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where the axis of rotation cuts the surface and the North Pole will
be the pole above which an observer, looking down upon the pole,
will observe the planet to be rotating anticlockwise. The equator of
a planet will be a circle which is the locus of points which are
equidistant from both poles. At a point P on the surface of the
planet the geocentric latitude, ¢, will be the angle subtended at
the centre of the ellipsoidal planet from the Equator to P and the
geodetic latitude will be the angle between the normal to the
surface at P and the Equatorial plane. See Figure 6.3.

FIGURE 6.3

The longitude , ©, will be the angle between the plane through a
selected meridian where 6=0 and the plane through the meridian at P
measured Eastwards. The relationship between <the coordinates of a

point on a geodesic curve on the surface of an ellipsoid is

therefore
tan ¢ = tan g sin (2O - 8)]
1
where >‘(Xy) = E-(;-;

Y

as defined in chapter 5, §. is the latitude of the vertex and 6= is
the longitude where the geodesic crosses the Equator. The half
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period of a geodesic curve on the surface of an ellipsoid is given

exactly by equation (6.4)

Table 6.2 shows the values of the half period of a geodesic for
given eccentricity of the meridional ellipse of an ellipsoid and at
intervals of 20° in the latitude of the vertex. On the surface of a
planet in which the eccentricity of the meridional ellipse is 0.25,
for instance, the geodesic curve which reaches its vertex at a point
where the geocentric latitude is 40° will have a half period of
175°41.7°'

TABLE 6.2 - HALF PERIODS OF GEODESIC CURVES ON THE SURFACES OF
ELLIPSOIDS OF REVOLUTION.

LATITUDE OF VERTEX OF GEOQODESIC
e 0= 20~ 40~ 60~ 80=

. 05 179=46.5' 179<47.3" 179=49.7' 179<53. 3" 179<57.7*
.10 179= 5,9' 179= 9.2 179<18.6' 179=33.1" 179=50.8'
.15 177=-57.8' 178= 5.4* 178<27.0' 178<59,6° 179=39.5"
.20 176-21. 8' 176=35.6' 177=14.6' 178<=13.0°" 179<23.8*
.25 174=17.1' 174=39. 3" 175=41.7" 177=13.7* 179= 3.9
.30 171=42.2' 172=15.9* 173=48. 4" 176= 2.2 178=40.2'
.35 168<36.9' 169-24. 7" 171=34.9' 174=39.1° 178<13. 0"
.40 164<58. 4' 166= 4.6°' 169= 1.7 173= 5.4" 177=42.7*

O O O O O o o o

Although they are very close to it, none of the planets are really
regular ellipsoids, and, indeed, information about the details of
the shapes of the planets (and of the Earth even) is comnstantly
being updated. For Navigational purposes, however, it 15 probably
accurate enough to assume that the Earth is an oblate spheroid whose
meridians are ellipses whose eccentricity is approximately equal to
0.082. The eccentricities of the meridians of Mercury, Mars and
Venus are considered to be 1less than this value and the

accentricities of the meridians of Jupiter and Saturn somewhat

greater.
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THE SHORTEST DISTANCE BETWEEN
NEARLY ANTOPODEAN POINTS
OFF THE EQUATOR



7.1. NEARLY ANTIPODEAR POINTS OFF THE EQUATOCR.

We have analysed the case when two nearly antipodean points both lie
on the Equator and a similar situation occurs when two nearly
antipodean points have the same latitude in opposite hemispheres.
Let the two points be P. and Pn. If the latitude of one of them is
§-, say, then the latitude of the other point will therefore be -¢..
As was stated in section 6.2 of Chapter 6, from P, a family of

geodesic curves emanates in all directions and are defined by the

equation

ap cos # 8in Y = a. cos §.

but, in this case, fv 3 fa .

Let us consider the geodesic whose vertex latitude, #., 1s equal to
§-. The half period of the geodesic whose vertex is in latitude §.
(=§-) will be 6., as determined from columm 2 of Table 6.1
corresponding to the vertex latitude ¢. (=f.) in column 1. If, then,
the difference of longitude between Po and P is less than or equal
to 9, (see Figure 6.3) the shortest distance between them will be
along the geodesic arc as computed by the method described in

Chapter 5.

Latitude (g)

6, Longitude ()

’v= ""c- ——————————————————————————————————————————————

FIGURE 7.1. CYLINDRICAL PROJECTION OF GEODESIC ARC
(HALF PERIOD = 6.)
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1f, however, 8 < Ba ¢ m then the shortest path will be along a
different route which takes advantage of the flattening of the
spheroid and this path will be along a geodesic arc whose half
period will be equal to the difference of longitude between the two
points P. and Pn. See Figure 7.2. Once again 1t turns out that, when
0. < 8a ¢ m , there are three geodesic arcs joining two nearly
antipodean points off the Equator just as there are three geodesic
arcs joining two nearly antipodean points on the Equator but only
two of them in each case give the equal shortest paths. Between two
nearly antipodean points off the Equator there are, therefore, two
equal shortest paths along the arcs of geodesics whose half period
is equal to 6., one of which takes a northerly route through its
vertex in the northern hemisphere and the other takes a southerly
route through its vertex in the southern hemisphere. There is also a
third geodesic, which we will call the INTERNEDIATE GEODESIC, whose
bhalf period is equal to 6., which closely follows what would be the
great circle path on the corresponding sphere and which plays a role
which would be the equivalent to the Equator in the case of two

nearly antipodean points on the Equator.

Latitude (g)

PV
‘v ———————————————— :
Po ;
N :
NG '
N :
: \ '
' \ ' Longitude (9
8, AN 0 ' 9 . en
\\\\ ' =
L}
N '
\ [ ]
—’O ey e [ OU
N ; _ 7w
~ \l - —
-’v —————— -v-g ——————————————————

FIGURE 7.2. CYLINDRICAL PROJECTION OF THE GEODESIC PATH BETVEEN
TVO NEARLY ANTIPODEAN POINTS OFF THE EQUATOR.
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Figure 7.2 shows the cylindrical projection of the three geodesic
arcs between two typical nearly antipodean points off the Equator.
The continuous line shows the shortest path geodesic which passes
through its vertex in the northern hemisphere and the broken line
shows the shortest path geodesic which passes through its vertex in
the southern hemisphere. The dotted 1line shows the path of the
intermediate geodesic whose half period is equal to 6, and which has
its vertices at geocentric latitudes #¢..The three geodesics in
Figure 7.2 all start at the point P., latitude ¢., longitude 6., and
end at P., latitude -g., longitude 6,.. The northerly geodesic
reaches its vertex at P., latitude #., longitude 6., and crosses the
Equator at Pe where the longitude is 8e. From the point P. there is,
in fact, a family of geodesics to points near P. similar to the set
described in Section 6.2 and illustrated in Figure 6.1. This family
has one of its end points at P-. and the other at a point in latitude
-§o. Once again, the latitude of the vertex of the geodesic is
related to its half period and, although all the geodesics leave P.
in latitude ¢., longitude 6., when they arrive in latitude -¢. they
are not all in the same longitude . This longitude will depend upon
the half period of the geodesic. See Figure 7.3. The continuous arcs
are the shortest path geodesics which pass through their vertices in
the northern hemisphere and the broken arce are the shortest path
geodesics which pass through their vertices in the southern
hemisphere. The dotted line shows the Intermediate Geodesic for this
family. The limiting members of the family are the Intermediate
Geodesic (vertex in latitude ¢, bhalf period 8 ) and the meridian
through P-. (vertex at latitude 90-, half period 180°).

Vhen 0. ¢ 6a ¢ m , then the absolute value of the geocentric
latitude, ¢., of the vertices of the two equal shortest path
geodesics between two nearly antipodean points off the Equator can
be found by inverse interpolation of Table 6.1, taking 64 as equal
to the half period 1in columm 2 . Table 6.1 is, in fact, held on
file on our computer at intervals of 1° of the geocentric latitude

of the vertex, f..
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Latitude (g

10V

FIGURE 7.3. CYLINDRICAL PROJECTIOR OF GEODESIC ARCS THROUGH Po.
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1t was shown in Chapter 5 , and in Section 6.2 that,

alaong a
geodesic whose vertex lies in latitude . which crosses the Equator
in longitude 8¢ ; the latitude, ¢, and the longitude, 6, of a point

on the geodesic are related by

tan § = tan . sinlA(@® - 6=)]
1 _1¢"
where N = a f(yesinuw dve L., 7.1
o
u = sin' I
and y = a tan ¢
Given then, that we have two points : P-, in latitude ¢, longitude

0-; and P, in latitude -4, longitude 6., and that, from Table 6.1,
the latitude of the vertex of the geodesic whose
half period is equal to the difference of longitude, 84 (= 6,-8c)

we determined ¢.,

then we find

------

- _l P
6 = 8- 5 st !

v

The shortest path, therefore, between P.
arc which reaches its vertex in latitude
geodesic whose half period 1s equal to
Equator in longitude 6e.

Ve have determined four points along the

are
P, (§.,0.)
P, (4,,8.)
P, (0, 8.
P, (-$_,8)

See Figure 7.2.
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f. (which corresponds to a

B84) and which crosses the

path of the geodesic which



Ve can compute the distance P.P.. piecewise along the three separate

arcs P.P., P.Pe, PeP,.. The distance along the arc P.P. is then

»

0. 2 2 = 2 2 =
aZcos®f o, agcos®f .o azcos™f 4o | .. 7.3

6 a_cos §, 8. a_cos § 6 a_cos ¢

Each integral in (7.3) will be evaluated numerically by the same
method that was used in Section 5.6 for the integral in equation
(5.12), subdividing the intervals of integration by points where the
longitudes are 6:(i=1,2,....,n-1) and determining the corresponding

latitudes {#1} using the same iterative procedure.

7.2 AN EXAMPLE OF SHORTEST DISTANCE BETVEEN NEARLY ANTIPODEAN
POINTS.

As an example, let us consider the shortest distance from positions
pff Fremantle 1in Vestern Australia (latitude 32<S, longitude
115°30°'E approximately) to a fixed position (latitude 32°K,
longitude 64~V) off the island of Bermuda in the Atlamtic. It is
customary practice for seagoing navigators to choose departure and
arrival positions for sea passages and we would not be stretching
the credulity of this practice in this case if we decide that both
positions should be on parallels where the absolute value of the
geocentric latitude is 32=. By the same principle, let us fix the
longitude of the arrival position off Bermuda at 64<00° and adjust

the departure position off Fremantle to suit our purposes.

Table 7.1 shows, for two points 1in opposite hemisphéres with
geocentric latitude #32°, the equivalent data as shown in Table 6.1
for two points on the Equator. Given #., the latitude of the vertex,
we find 6. from equation (6.6). The distance along the intermediate
geodesic is computed by the method of Williams & Phythian®® and is
the distance along the path which closely follows what would be the

great circle path on the corresponding sphere. The distance along
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the shortest path is given by Table 7.1 since the shortest distance
along a geodesic path with given vertex is the same for any two
points between which the difference of longitude is equal to the
balf period of the geodesic for any geodesic on the spheroldal
Earth.

VERTEX OF| HALF PERIOD |DISTANCE ALONG|DISTANCE ALONG| INITIAL
GEODESIC OF GEODESIC INTERMEDIATE | SHORTEST PATH AZIMNUTH
g.) (8.) GEODESIC (s) Yo

32~ 179=229.420° 10768.9 10768.9 090. 00~
35~ 179-30.468" 10769.7 10769.7 074.97~
40- 179=32.391° 10771.5 10771.3 064,54~
BT 0P N N N P =
50- 179=36.850" 10775.1 10774.4 049, 22°
60~ 179-42.007° 10779.6 10777.4 036. 06~

TABLE 7.1 SHORTEST DISTANCES FOR NEARLY ANTIPODEAN POINTS
IN LATITUDE #32-,

Let us focus our attention on the geodesic path whase vertex lies in
latitude 452. Since the difference of longitude between the
departure and arrival positions must be chosen to be equal to the
half period of this geodesic and we have fixed the longitude of the
arrival position at 64<VW, then the longitude of the departure
position must be chosen as 115°34.526°. Thus the coordinates of P.

are
fo = —32°00° 8- = 115=34.526°

=322 we find tan 4o -0.624869352

Corresponding to f#o

and, since f. = 45= then tan g0 = 1
so that Zi - a tan fo = tan fe
y. a tan [}

From equation (7.1) we also find de = 1.003186
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Hence, using these values of tan ¢- and )\ in equation (7.2), we
find a value for Be, the longitude of the point where the geodesic

crosses the Equator :

8 = 9. . sin-' (12 )
) U yv
- - . _ 8in7'(-0,62469352)
Oe 115~34.526 1.003186
or fe = 115°34.526° + 38<32,215°
i.e. 8 = 154~6.741" (B>

This geodesic also crosses the Equator at longitude 6. where

where g is given by equation (5.11)

v

Hence 6. = 154=6.741° + 179~34.526°
8, = 333-41.267°
which is 26=18.733° (W)

The longitude of the vertex, 6., is given by

= - I
0, = 6, 2%
8, = 154-6.741° - 89°47.263°

@D
]

64=19.478" (E)

Computing the distance along the intermediate geodesic path by the
method of Villiams & Phythian®° gives 10773.3 pgeographical miles.
The intermediate path is the dotted line in Figure 7.3 - it crosses
the Equator, halfway between the departure and arrival points,
comewhere on the African Continent and has its vertices at latitude
+32° very nearly. It is symmetric about the Equator and closely
follows what would be the great circle path on the corresponding
sphere. Ve find, bhowever, that the distance along the southerly
geodesic, which 1is one of the two shortest paths, 1is 10773.0
geographical miles. This distance is only marginally smaller than

the distance along the intermediate geodesic but what is surprising
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and important is that the path taken is along an entirely different
route and navigable entirely by sea. The route heads southwards
initially to its vertex in the South Indian Ocean at 45<S and
64219°'E (approximately). It passes close to the west of Capetown,
crossing the parallel of 35S in longitude 17°56°'E (approximately),
proceeds northward through the South Atlantic Ocean and crosses the
Equator in longitude 26°23°'W (approximately). In Figure 7.3 the
continuous line shows this route. There is, of course, another route
(along the northerly geodesic) of equal length which passes through
its vertex in latitude 45°N. This route is marked by the broken line
in Figure 7.3.

280° 300° J20° 340° 0° 200 40* 60° 80° 100° 120° 140°

p) = Q

&
R

\\

S
TN
//

\1 | l’uﬁﬁh

|
A

|

FIGURE 7.3. GEODESIC PATHS FRON FREMANTLE TO BERNUDA.
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Surprising again is the fact that a small change in the difference
of longitude between the departure and arrival positions will result
in another path which will differ considerably from the above path.
This does mean that, in facf. the computation of position along the
geodesic path 1is relatively unstable although the distance

calculation itself is not.

7.3. CONRCLUSION.

Theoretically speaking, nearly antipodean points, in the sense used
here, are those points which have exactly the same latitude in
opposite hemispheres and whose longitudes fall within the specified
range which is applicable to that latitude. Raturally, points whose
latitudes differ in absolute value by only small amounts which might
fall inside the error bounds for the computation could also, in

practice, be considered nearly antipodean for all practical

purposes.

The work in chapters 6 and 7 is an expansion of the paper by
Villiams & Phythian®€ published in the Journal of Navigation.

As has been shown, the saving in distance by using a shortest path
geodesic between two nearly antipodean points instead of the path
along the intermediate geodesic is only small, and, for most
practical purposes, negligible. The routes taken by the shortest
path geodesics are, however, geographically significant in many

cases and could provide advantageous alternatives to the navigator.
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8.1 THE GEOGRAPHICAL POSITION OF A HEAVENLY BODY.

At any instant in time each heavenly body (the Sun, Moon, Planets
and Stars) 1is directly aBove some point on the surface of the Earth,
that is, it lies on the line which is normal to the surface of the
Earth at that point. This point on the surface of the Earth is known
as the GEOGRAPHICAL POSITIOFN of the heavenly body and the heavenly
body is also at the ZENITH of an observer placed in that position.
The point X in Figure 8.1 is the Geographical Position of the
astronomical body #. The Zenith for an observer at a point Z on the
surface of the Earth is the point in space at the extremity of the
normal to the surface at Z. The body #, for instance lies at the
zenith of the point X.

L

™

>4

FIGURE 8.1

s'/

The CELESTIAL SPHERE is an imaginary sphere of no fixed radius but
centred at the centre of the Earth and onto whose surface the
positions of all the heavenly bodies are mapped. The Celestial
Equator is the intersection of the Celestial Sphere by the plane
through the Earth's Equator. Positions on the surface of the
Celestial Sphere are described by angular coordinates. Declination
(which 1s the exact equivalent of 1latitude) is the angular
coordinate of the heavenly body North or South of the Celestial
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Equator. The declination of a heavenly body immediately gives the
latitude of the geographical position of the heavenly body. The
angular coordinate on the surface of the Celestial Sphere from which
we obtain the longitude of the Geographical Position of the
heavenly body on the surface of the Earth is the HOUR ANGLE. Hour
Angle 1is expressed in degrees from 0= to 360 and 1is measured
westwards because the bodies in the bheavens themselves move
westwards relative to an observer on the surface of the Earth. The
GREENVICH HOUR ANGLE (GHA) of a beavenly body is the angle between
the image of the Greenwich meridian on the Celestial Sphere and the
meridian through the body. The longitude of +the Geographical
Position of the body is obtained from the GHA :

LONGITUDE = 2r - GHA
Nautical Almanacs provide us with the information from which to
compute the Geographical Position. The Nautical Almanacs are
published yearly and the Declination and GHA of the Sun, Moon, and
major Planets are given for hourly intervals throughout the year.
Interpolation Tables to interpolate the GHA and Declination of these
bodies for minutes and seconds are also given where it assumed that
the hourly changes are more or less constant.
The GHA is also tabulated hourly for a reference point on the
Celestial Sphere which is known as the FIRST POINT OF ARIES. This
point is a reference point established by astronomers. It is the
point on the celestial equator at which the sun crosses at Vernal
(Spring) Equinox. The position of the First Point of Aries varies
very slightly and is so named because, at the time that this point
was first established, it lay in the constellation of Aries. In the
case of stars, Hour Angle is then measured from the FIRST POINT OF
ARIES. The angle between the meridian on the Celestial Sphere which
passes through the First Point of Aries and the meridian through a
particular star is known as the SIDEREAL HOUR ANGLE (SHA). For a
gtar the values of the Declination and the SHA vary little and are
tabulated once every few days. Ve obtain the GHA of star (#) from

GHA(#) = [GHA(Aries) + SHA(®)) mod(2x)
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8.2 ASTRONOMICAL OBSERVATIONS

In HNavigational terms an astronomical observation means an
observation of any heavenly body - stars, sun, moon or planets. These
observations are the altitudes of the heavenly bodies above the
horizon taken using a sextant. For a seafaring Navigator this
horizon is usually the sea horizon (VISIBLE HORIZON) and for an
aviator the horizon 1s usually an artificial horizon (SERSIBLE
HORIZOK) in a bubble sextant.

Figure 8.2 shows the Visible Horizon, VV', and Sensible Horizon SS',
for an observer at the point Z whose height above the surface of the

Earth is h. The angle SZV is known as the DIP of the Sea Horizon.

S Z S’

FIGURE 8.2 - OBSERVER'S VISIBLE AND SENSIBLE HORIZONS.

The plane through the centre of the Earth which is parallel to the
Sensible Horizon is the RATIONAL HORIZON. (RR' in Figure 8.2),

After the altitude has been read from the sextant it is corrected to
give the altitude of the centre of the body from the centre of the
Rarth above the RATIONAL HORIZON.

The altitude of the body (%) is RO¢ in Figure 8.2. The point X is
the Geographical Position of # .

Having found the altitude of a heavenly body, #, we subtract this
fron 90° to give us the ZENITH DISTANCE of # which is the angle ZO#
in Figure 8.2. Vhen the Zenith Distance ie expressed in minutes of
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arc it gives us the distance in geographical miles along the Great
Circle arc between the observer and the Geographical Position of the
heavenly body.

This 2zenith distance then gives a POSITION CIRCLE on which the
observer must lie. The circle has its centre at the geographical

position of the heavenly body and its radius is zenith distance.

) §
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FIGURE 8.3 - POSITION CIRCLE ON THE SURFACE OF THE SPHERICAL
EARTH.

1f we take two simultaneous observations of two different heavenly
bodies then this defines two position circles, and, at one of the
points of intersection of these position circles, we will find the
observer's position. The observer will usually have a good estimate
of his position beforehand and this should determine, with very
little possibility of ambiguity, which of the two points of
intersection of the position circles is the observer's position. If
it happens that there might be ambiguity, then this can be resolved
by taking three observations of three distinct heavenly bodies.
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8.3 DEFINING THE EQUATION OF A POSITION CIRCLE USING THE METHODS OF
SPHERICAL TRIGONOMETRY.

A spherical triangle on the surface of a sphere is the area enclosed
by the intersections of three great circles. Figure 8.4 shows the
spherical triangle PZX. In the triangle the angles are at P, Z and X
and the sides are p,z, and x. The sides are expressed as angles
where p, z and x are the angles subtended at the centre of the
ephere by the arcs ZX, PZ and PX on the surface of the sphere,
respectively.

To determine a side of the triangle, p say, we would use the
SPHERICAL COSINE FORMULA form which we would find

cos p=cos z cos x +sinzsinxcos P |  ...... 8.1

The details of how this formula is derived may be found in the book
by Gow?7.

z FIGURE 8.4 - A SPHERICAL TRIANGLE.

Ve can give a particular physical significance to triangle PZX and
show that equation (8.1) is the equation of the position circle on
the surface of the spherical Earth.

See Figure 8.5. In the figure the point P is at the Pole and the arc
PG is the Greenwich meridian. Let the point X be the geographical
position of the heavenly body and let the point Z be the variable
position of the observer who lies on a circle around the point X the
radius of which is the arc ZX (= ap where a is the equatorial radius

of the Earth in nautical miles).
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1f the geographical position of the point X is (x,)) where y is the
latitude of the geographical position of the observed body (its
declination) and ) is the longitude (2n - GHA) and (¢, 6) are the
coordinates of the variable point X then the angles subtended by the

arcs PX (=z) and PZ (=x) are
Z=”ﬁ_x x:%n—’

The angle at P is -8 and equation (8.1) becomes

cos p = sin # sin y + cos # cos x cos (A-8) .. 8.2

p is the angle obtained from the observation and equation (8.2) will
give us the locus of the variable point (¢, 6).The angles are all
expressed in radians with latitude , ¢, and longitude, 6 bounded by

-¥n ¢ ¢ ¢ ¥ (North positive)
0 ¢8 ¢ 2x (East positive).

FIGURE 8.5 - POSITION CIRCLE
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1f we now obtain a second observation of a heavenly body whose
geographical position is (x',)\') and the resulting zenith distance
angle is p' then we find

cos p' = s8in # sin x' + cos § cos x' cos (A'-6) . (8.3

The observer's position is therefore the selected solution for ¢ and
0 of the pair of simultaneous non-linear equations (8.2) and (8.3).
To solve these equations analytically by elimination is a lengthy
procedure and 1its final solution requires a 1lot of function
evaluations. One of the ways of computing the coordinates of the
points of 1intersection of the position circles directly was
presented in a paper by Arturo and Raphaele Chiesa™® in the Journal
of Navigation. The derivation of the equations is lengthy but, in
the end, the longitude, 8, and then the latitude , ¢, of the points
of intersection of the position circles are given explicitly. The
method involves determining the chord which is the arc of a great
circle and which is common to both position circles. This was also
done by Bernard Spencer®®. The solution to the problem can, however,
be effected more economically wusing Newton's Method for two
dimensions with the Dead Reckoning Position of the observer used as

a first approximation.

8.4. COMPUTATION OF AN ASTRONONICAL RUNNING FIX.

In a KRUNNING FIX the second observation, probably of the same
beavenly body as the first, 1s taken after the observer has
travelled an appreciable distance along the arc of a loxodrome. This
is a common practice and, indeed, it was customary, on almost every
British Ship on Ocean passage, to compute the "noon position® (a
serious ritual) from the intersection of a position line obtained
from the sun approximately three hours before noon with a latitude
obtained directly from the meridian passage of the sun at noon. In
their paper Chiesa & Chiesa®™ state that it is simply a case of
transferring the geographical position of the heavenly body at the
first observation along the arc of the loxodrome that the observer

has experienced, drawing the position circle around it and then
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computing the intersection of this transferred position circle with
the position circle obtained from the second observation. The
mathematics does, however, show that the problem of transferring a
position circle is more complicated than that. This was initially
pointed out to this author by a colleague in a private
communication. There are certain theoretical implications 1in the
problem of transferring a position circle which were not mentioned
by Chiesa & Chiesa®®. In fact, the transferred locus is no longer a
circle but suffers a distortion and, in response to the the paper by
Chiesa and Chiesa, this author4® wrote a paper which was also

published by the Journal of Navigation.

L= —-
[ ]

]

|
[
!

FIGURE 8.6 DISTORTION OF A TRANSFERRED POSITION CIRCLE.
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1t is, after all, the position of the observer which has changed and
s0, 1f the observer lies in a certain position on a position locus
then it is thkat point on the locus which must be transferred. Since
we are uncertain as to which exact point on the locus the observer
lay at the time of the first observation then we must transfer each
point of the locus the same distance on the same course along a
loxodrome from that point. KNow each point will transfer in a
slightly different manner as can be seen by actual plotting so that
the original position circle does not retain its shape. See Figure
8.6. which 1llustrates the extreme distortion of a transferred

position circle in the vicinity of the pole.

I1f we move every point of the position circle (8.2) through a
distance s (in nautical miles) along a loxodrome on course a, then
the general point (g,8) on the position circle (8.2) transfers to
the point (s',8'). These coordinates are related by

f§ =9 - E cos o I s . 8.4

g .
e'-tana§secudu .. (8.5)
[]

e
i

where §' 1s the latitude and 8' is the longitude of a point on the

transferred locus .

Using the substitutions (8.4) and (8.5) in equation (8.?) we find

the equation of the transferred position locus:

5
- » _ B
cosO-k-8') = oS P sin(y 3 °os o) sin y

cos(g' - E cos a) cos y

cieve. (8.6)
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where g
k = tan o § sec u du
¢

k 1is the difference of longitude experienced by the observer

travelling along the loxodrome and is expressed in radians.

Figure 8.7 shows the actual distortion that takes place when each
point of the arc AA' of a position circle is transferred 300
nautical miles on a course of 045> along the arc of a loxodrome. The
arc BB' 1is the image. The diagram 1s drawn to scale 1in the
stereographic projection where a circle on the surface of the sphere

is projected into a circle in the stereographic plane.

FIGURE 8.7 ARC OF POSTION CIRCLE ARD TRANSFERRED POSITION CIRCLE.
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Now we have shown 1in Chapter 2 that a loxodromic curve on the
surface of a sphere 1s a curve of finite length which spirals
towards an end limit point at each pole, therefore +the loxodrome,
which passes through a point P on a position circle defined by
equation 8.1, where the coordinates of P are (¢.,,0.), on course «,
ig of finite length to the pole so that, if the distance, d, steamed
by the observer, is greater than the distance along the loxodrome on
course o from P to the pole, then the point P has no image point on
the transferred locus defined by equation 8.6. A point (g,8) on the

position circle will therefore have an image on the transferred

locus only if

g + g cos al ¢ ¥n

8.5 COMPUTIEG OBSERVED POSITION FROM A RUNNING FIX.

The observed position at the time of the second observation is the
selected solution of the pair of simultaneous non-linear equations
8.3 and 8.6. Since a direct method of doing this in this case would
seem to be out of the question, we use a numerical method such as
Newton's method. We know that there are two solutions satisfying the
pair of equations; Newton's method will find one of them. The
observer will ave knowledge of his Dead Reckoning position and if
this 1is used as the first approximation then the 1{terative

proceedure will give the observer's true position.

In the standard method of determining the observer’'s position in the
days before the advent of the computer the position was found after
an elaborate method of plotting position lines which -were, in
effect, those small arcs of the position circle which lay close to
the dead reckoning position. Early computer methods systemised this
plotting proceedure. Our chosen method of finding the observer's
position will require a computer. Indeed, in a system designed to
find the observer's position from astronomical observations using a
computer the method of finding the position directly from the
intersection of the position locl is probably the most efficient.
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Simultaneous and running fixes can be solved equally well in one

computer programme designed for both cases.

In most cases, and in sea-going Navigation particularly, where
activity is restricted to what are termed the "Navigable Latitudes”,
a representation of the whole of the transferred position locus is
not necessary to find its intersection with a position circle.
Moreover, that portion of the position circle expressed by equation
8.1, which is relevant to the observer and on which he might be
expected to lie, will almost certainly have a complete image on the

locus represented by equation 8.6.

The latitude obtained by astromical observation is known as the
ASTROROMICAL LATITUDE, and is, in fact, the geodetic latitude and
npot the geocentric latitude even though it is measured from the
centre of the Earth. This 1s because the Earth itself 1is only
considered to be a point at the centre of the Celestial Sphere.

It must be admitted that there is often little practical value in
allowing for the distortion of a position circle when the observer
travels along a loxodrome, since the error in estimating the course
and distance made good between the observations may well exceed any
correction made by allowing for the distortion. Nevertheless we
believe that 1t 1is advisable to use accurate formulae whenever

possible.
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e = B

COMPUTING POSITION
FROM OBSERVATION
OF A SINGLE RODY



9.1 COMPUTIRG THE POSITION BY OBSERVATION AT MERIDIAN PASSAGE.

We have considered the computation of the observer's position by
taking a “Running Fix", by which method the position is fixed by
taking two observations of the same heavenly body some hours apart,
but now we will consider the possibility of fixing the observer's
position by taking observations of a single heavenly body over a

much shorter interval of time.

Vhen the geographical positions of the observer and a heavenly body
have the same longitude then, provided that the observer 1is
stationary and that the rate of change in the declination of the
body is negligible, the body will be at its maximum or minimum
altitude. Ve refer to this as the MERIDIAN PASSAGE of the heavenly
body through the observer's meridian. In this circumstance the
latitude of the observer can be computed directly from the altitude.
See Figure 9.1 which shows a section through the Celestial Sphere in

the plane of the observer's meridian at the time of meridian

passage.

Rl

FIGURE 9.1
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The Earth, and hence the observer, 1s just a point and lies at O
which is at the centre of the sphere. The heavenly body is at X and
Z is the zenith. The line EE' is the plane of the Equator and the
angle E'OX is the declination which, at the same time, is the
latitude, x, of the geographical position of the body. The line NS
is the axis of rotation of the Earth. The line ROR' is the plane of
the Rational Horizon (defined in chapter 8) and the angle XOR' is
the altitude of the heavenly body.

In equation (8.2) -0 = 0 and the equation reduces to the

simple form
cos p=cos (§-x> ... 9.1

whence we find that either
P=/9-X
or p=- -
1f a is the true altitude of the heavenly body then p = ¥n - a so

it

that

-
]

- + L (9.2)a

X - Gm-0 9.2)b

1f, at the time of meridian passage, the exact Greenwich Mean Time
can be determined then we also bave a method of finding the
longitude and hence the observer's position. Each one minute of time
difference between the meridian passage of the heavenly body at
Greenwich and the passage of the same body through the observer's
meridian will be equal to fifteen minutes of arc in the difference
in the longitude. This is due to the angular velocity of rotation
of the Earth. The difficulty arises in the estimation of the exact
moment at which the body reaches its maximum altitude. From
experience, even when a heavenly body is at high altitude and where
it is changing 1its altitude fairly rapidly, it is difficult to
estimate the time of the maximum to the nearest minute. For a

yachtsman, on an ocean passage and far from land where sea
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conditions make astronomical observation difficult anyway, this
might be an acceptable approximation - one minute would give the
longitude to within fifteen minutes of arc - but for the navigator
engaged in commercial busingss the process would have to be refined

and this can be done.

1f the observer is stationary, one way is to take an altitude of the
heavenly body some minutes before meridian passage and while it it
still changing altitude rapidly enough that this change is easily
observable. After noting the exact time of this observation, we then
wait until the body has crossed the meridian and then note the exact
time that the body is again at the same altitude after meridian
passage. The mid point of this time interval will then be the time
of meridian passage and the longitude can then be determined. See
Figure 9.2 in which # represents the body. The figure is a graph of
altitude, o, against time, t.

cececcacccnccn ey

t-.n ceoeecssecsaeaaaaw

1 tm

[aa
N

FIGURE 9.2

9.2 COMPUTING THE OBSERVED POSITION AT THE TIME OF CULNINATIOR.

The accuracy of the above method of determining the maximum
altitide of the astronomical body will depend also upon the fact
that the body is not changing the latitude of its geographical
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position at too great a rate. In the case of the sun, which is the
body that is most often used in the observation of meridian passage,
the maximum hourly rate of change in the declination of the sun that
takes place is approximately 1 minute of arc and this occurs at the
time of the equinox. At the time of the solstices this rate of
change 1n declination of the sun 1s zero. At certain times,
therefore, allowance should be made for this rate of change. The
moon moves much more rapidly and the hourly rate of change in its
declination can be as much as nearly 17 minutes of arc. Even when
the moon is close to the maximum absolute value of its declination
there is still an appreciable hourly rate of change. Vhen there is
an appreciable hourly rate of change in the declination of the
observed body then the maximum altitude will not occur exactly at
the time of meridian passage, and, when this is the case, equations
(9.2)a and (9.2)b no longer hold so that we must go back to equation
(8.2). Ve refer to the occurrence of the maximum or minimum altitude
as CULMINATIOR.

In most cases the problem is a dual one - not only do we have to
determine the difference between the time that the heavenly body
crosses the observer's meridian and the time of occurence of maximum
altitude dve to the change in geographical position but we have the
additional problem that the observer may be moving at an appreciable
speed and the time of the maximum altitude might no longer coincide
with the time of meridian passage due to this effect also.

Solutions to this problem have been published recently by
J.XN.Vilson4' and Matti Ranta+<*. Both authors use more or less the
same mathematical analysis but, whereas Wilson offers- a mainly
graphical solution, Ranta uses numerical analysis. Let us first
analyse the method of solution of the problem as presented by

Ranta<=.

Ve need to know the value of o at culmination. This is estimated by

Ranta4? by taking a series of observations of the altitude, «, of
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the body during a time interval which includes +the time of
culmination, fitting a polynomial

n
alt) = I cnt”
r=o

and computing the value of a when a'(t) = 0 .

If a least squares quadratic is fitted then clearly the time of

culmination, t., is given at

and the altitude, a., at this time is

c2
= - 1
a.= C

4c

=

Let us consider an observer in a position (Z) on the surface of the
Earth where the latitude is ¢ and the longitude is 6. The observer
finds the altitude, o, of a heavenly body (X) whose declination is yx
and whose Greenwich Hour Angle is 2x-). The spherical triangle,

PZX, which results from this observation is shown in Figure 9.3.

x (=¥m-g) z (=Hm-y)

FIGURE 9.3

p (=¥m-o0 X
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In Figure 9.3 P is at the North Pole and, as a result, equation
(8.2) glves us

cos p = sin § sin x + cos ¢ cos x cos (A-6)
Since p = ¥n - o this can be written
sin o = sin § sin ¥ + cos ¢ cos y cos (X -06)  .,.... 9.3)

Fow o, #, X, 8 and ) are all functions of the time, t, so that,
differentiating equation (9.3) with respect to t gives

da d¢ dy
cos « 37 = €08 § sin y it + sin ¢# cos y it
_ _gy 9
sin § cos y cos (\-6) it
- cos § sin cos (\-90) dx
X dt
dx de
cos # cos y sin (A-6) (at - EE)

Re-arranging gives

da _ - - dg
cos a o (cos # sin y sin #§ cos y cos (A-8)) at
dy
4+ [sin # cos ¥ -~ cos # sin ¥ cos (A\-8)] it
d) de
cos § cos x sin (A-0) (dt dt) ...... 9.4)

From the spherical cosine formula we see that

cos (r-g) = Sin @ ~ sin ¢ sin ¥ ceien. (9.5)a

cos § cos Y
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and from the spherical sine formula

ein (\-g) = COS & sin Z

cos ¥

where Z is the azimuth ( the angle at the position of the observer).

1f we substitute equation (9.5)a in the coefficients of g% and d%X

and substitute equation (9.5)b in the coefficient of (gl - 48

it ~dt I»

equation (9.4) and divide the equation through by cos a the result
is

da cos Z dg + cos X dx sin Z cos ¢ (Qﬁ -9

where we have subgstituted

sin § - sin «a sin ¥

cos X

cOS a cos ¥
and

sin ¥ - sin o sin §

cos Z

cCOoS a cos §

Now cos X can also be expressed in the form

cos X - cos (A\-8) cos Z + sin (A-8) sin Z sin §
and, if the observer is moving at a speed V with northerly component

Vs and easterly component Ve, then

de

dg _ ds .
it = Ve ) it Ve seC §

so that, 1if we substitute all this into equation (9.6) and re-

arrange we find
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da _ - _gydx
it - [V, cos (\ e)dt] cos Z

- dx _ dx
+ [ Vo + sin () Q) sin ¢ dt cos ¢ at ] sin Z

At the time of culmination when g%

to give us the value of the angle Z :

]
o

we can solve equation

- -gy 93X
7 = tan—? Ve cos (\ Bégt o
Vo + sin(2\-0) sin ¢ gt =~ cos [ it
...... (9.8)
where - ¥ < Z < ¥n 1if the geographical position of the body is
to the north of the observer and ¥nr < Z < 3an if +the

geographical position of the body is to the south of the observer.
Ve can find then that the angle at P (= ()-8)] in the spherical

triangle PZX is found from the sine formula and

% - 8 = sin-? sin Z cos a

cos x | .o 9.9

The Greenwich Hour Angle, GHA, of the body can be found from the
Nautical Almanac for the time of culmination whence X = 2rxr - GHA

and, hence, from equation (9.9), we can determine the longitude, ©,

at this time.

Ve can now solve equation (9.3) to give us the latitude, ¢, at the
time of culmination. Ranta“*? does this by writing

sina = Rcos (4§ - k)
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which gilves

R =v(1 - sin?Z cas“a)
and k = tan™? tan x
cos(\—-8)
Hence ¢ = cos™! sin o + tan™? _EEE X
v (1 - sin?*Zcos2a) cos(\-8)

To summarise, then, the procedure for finding the observer's
position at the time of culmination of a heavenly body is to take a
series of altitudes of the body surrounding the time of culmination,
to fit an interpolating polynomial to the data thus found giving the
altitude as a function of time and, from this interpolating
polynomial, to find the maximum altitude and the time at which it
occurrs. Ve then find, by iteration, the latitude, ¢, and the
longitude, 6, of the observer at the time of culmination by using
equations (9.8), (9.9) and (9.10). The first approximations for ¢
and 8 will be the Dead Reckoning position of the observer at the

estimated time of culmination.
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9.3 COMPUTATIONAL EXPERIMENT.

James N.Wilson*' provided useful data from which to experiment with
the computational formula of the previous section. His data was
obtained on voyages in a yacht off the coast of California near
Catalina Island. He observed the altitude of the sun for
approximately one hour during which time it reached its highest
altitude. He himself only used those observations taken in a ten
minute period which included culmination from which he estimated,
graphically, the maximum altitude. We will use the same observations
over the same period but we will fit a least squares quadratic to
this data and, from this quadratic approximation, we will compute
both the time of culmination and the corresponding altitude. The
data 1s shown in Table 9.1 below.

TIME ALTITUDE

4] 11 50 39 | 32°65.1' |+
11 51 41 32°56.1' |+
4] 11 52 21 32°56.2°
11 53 31 | 32°58.5' |+
4] 11 54 30 | 32°66.9'
11 55 04 | 32°57.5' |+

+| 11 56 16 | 32°57.5°' TABLFE 9.1
11 56 52 | 32°57.6' |+

4| 11 57 42 | 32°57.6'
11 68 42 | 32°59.9' {(+
4| 11 59 20 | 32°57.5'
4| 12 00 58 | 32°565.1° |+

In the first experiment the least squares quadratic polynomial was

fitted to all the data points of Table 9.1 and, from this we found

that
1) t. = 11 56 23 o = 32°68.1°'

In the second experiment the same type of curve was fitted to the
geven points marked in Table 9.1 by arrows on the left. In this case

we found
) te = 11 56 14 oa. = 32°'657.6°'
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In the third experiment we fitted the least squares quadratic to the
data points in Table 9.1 marked by an arrow on the right. we found
&) t. = 11 66 11 o = 32°68.6'

Using the first of these résults - (1) - we then find the latitude,

¢, and the longitude, 6, of the observer using the iterative scheme

tan Z. = ~Veesy 9.11a

Q cos fn-1 + V sin y

sin(@-a), = SiP Zn cos « .. (9.1DDb

cos x

cos g = sin a - sin f#n-.1 sin yx

cos x cos(6-\), vieees 9010c

y is the course angle on which the observer is moving at speed V
knots. Since the observations of the sun were taken near to the time
of the winter solstice then the rate of change in declination is
zero. Wilson*' states that he was steering a course of 210° at a
speed of 6 knots. The altitude, o, as given in Table 9.1 is the
altitude as read from the sextant and is the altitude of the sun
above the visible horizon. To this altitude we must add a correction
of 13.9' to give the altitude of the sun above the rational horizon.
This gives a. = 33°12'.

In the iterative scheme (9.11) we use the initial values

33°40.0°'
23° 8.9'

fo
X

The results that we obtained for ¢ and (\-0) were

f§ = 33°39.1' x-8 = 0°21.8'

At the time of culmination, from the Nautical Almanac, we find that
the Greenwich Hour Angle of the sun was 118°26.8' so that
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360° - GHA = 241°33.2'
241°33.2' + 0°21.8"' = 241°55.0'

b4
]

and 0
Vest of Greenwich this gives
Longitude = 118°5.0*' V¥ .

This longitude does not agree very well with the position found by
Vilson®®. He finds that the longitude of the observed position is

118°15.3° V . The difference occurs because we disagree about the
time of culmination. His time of culmination, found graphically
using in a way which will be described below, is 11 57 09. The
time of culmination that we determined here in the first experiment

using all the observations was 11 56 23 .

Vilson4' did not estimate the time of culmination from the data in
Table 9.1 but took two further sets of altitudes of the sun - one
set before culmination and one set after culmination. These two sets

of altitudes are shown in Tables 9.2 and 9.3 :

TINE ALTITUDE TINE ALTITUDE
11 28 21 32°34.0° 12 19 54 32°42.6°
11 28 59 | 32°35.5° 12 21 10 | 32°41.2°
11 30 00 | 32°34.0° 12 22 51 32°37.6°
11 30 44 | 32°36.9° 12 23 47 32°36.6°
11 31 24 | 32°38.5° 12 24 50 | 32°35.90°
11 32 06 | 32°37.5° 12 26 01 32°33.9°
11 32 42 | 32°40.3"

11 33 12 | 32°40.3°
TABLE 9.2 TABLE 9.3

From these tables, 9.2 and 9.3, Vilson*' faired straight 1lines,
graphically, and from their point of intersection, estimated the
time of highest altitude - the time of culmination. He estimated
the time of culmination at 11 57 09 . However, fitting least
squares straight lines to the data of tables 9.2 and 9.3 we find,
algebraically. that the point of intersection of the straight lines
estimated the time of culmination at 11 58 51 .
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In concluysion, 1t must be said that the data is not really of the
best kind to demonstrate the method of computing the ship's position
at the time of culmination although Vilson<' obtains good results
from it in that he puts his observed position very close to his dead
reckoning position. The data was obtained by taking observations of
the sun aboard a small ketch in the open sea off Catalina Island,
California. The observations were also taken in December when the
sun was almost at i1ts maximum southerly declination. Vilson?' does
not say what criteria he has used to fair his straight lines through
the points on his graph which he reproduces in his paper but it
would appear that another 1individual might just as well find a
different result since the angle between the straight lines is
small. This author, having faith in the general approach adopted by

Ranta%2?, will endeavour to obtain data for hinself at sea.
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9.4 GENERALISATION OF THE NETHOD OF RANTA4=,

it would seem that at any time other than the time of culmination we
can just as well take a series of observations of the altitude, «,
of a heavenly body and, after fitting a least squares function
approximation, oa(t), through the data points, we would
differentiate to find o' (t.) at a time, t., which we would choose
for making an observed position. Substituting this value of o' (ts)
in equation (9.7) we could use this equation to find our first and
subsequent approximations to Z,. combined then with equations (9.11)b
and (9.11)c to form an iterative scheme for computing (x-8) and ¢
at time t..

Let us consider first that the observer is stationary - that V=0

in equation (9.7). The equation then becomes

da

3t = [sin0-8) sin g glé - cos # 92 sin z - tcosOr-8) ) cos 2z

dt dt

vevees (9.12)
If we express equation (9.12) in the form
) = 3¢ = -l da
R sin(Z-k it then A k + sin [R dt]
where
-g) %X
tan k = cos (\—-8) it
- dx _ dx
sin(\-6) sin ¢ it cos § it
2 = - dx _ dr . - X 5.
R2 = [ein()-9) sin ¢ it cos it 12 + [cos()\-8) it )=

the procedure would then be to take a series of observations oy, o=,
e O at times ty, t=, ...., tn , respectively, such that
ty ( te ¢ tn , to fit a function approximation a(t), and
differentiate this to find o' (£).

-140-



Using the values of a(ts) and o' (ts) so found we can compute the

angle Z as above and then the LHA (= X\-8) from

sin(a-gy = Sip Zcos alt) (9.13)

cos X

To a stationary observer on the surface of the Earth the altitude,

o, of a heavenly body is given by equation (9.3)

sin o = sin ¢ sin x + cos § cos y cos()-6)

If we write y = sin « we may, therefore, be able to approximate

efficiently with a sinusoidal function of the form

y=Asinx + Bcos x +C

where X = x-6 . The period of the trigonometric functions is the
length of the apparent day <(the period elapsing between two
succesive transits of the observer's meridian by the heavenly body
>. If the body is observed at times (t.} with corresponding
altitudes (a1} then we fit y +to this data in the least squares

sense €0 that

S=L {y. - (Acos x4« +Bsinx, + O} ...... 9.14)
is a minimum.
1f we find the partial derivatives of S with respect to A,B and C

then these are the "normal" equations and furnish a set of linear
equations (9.15) from which to determine the A,B,C :
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L cos®*x, L cos %x: sin xu I cos xi A I yicos %

I cos x: sin x« I sin®x, £ sin x. B I yisin x,

L cos xi £ sin x¢ L1 c Iy

There are certain circumstances where the matrix defining the system
(9.15) is singular or nearly so. This occurs, for instance, when the
hour angle -6 (= x) and the altitude a (= sin~'y) are are both
close to 45°. In such a case we will perhaps overcome this by using
the least squares orthogonal polynomial approximations. (See
Forsythe+®). This approach is very similar to that of Ranta<4Z, but

it does not restrict the polynomial approximation to quadratics.

9.5 EXPERIMENTAL RESULTS.

In the absence of observed data we can test the computational
procedure by using the values of the altitude of the sun given in
Davis's Tables““. These tables are intended to give the values of
the true altitude of the sun (correct to the nearest one minute of
arc) at intervals of eight minutes but the tables are very old and
some of the entries are not, in fact, correct to the nearest minute.
¥e have, in fact, corrected any entry from Davis that we have found
to be wrong., Ve have then applied the trigonometric least squares

approximation to this data.

On the bridge of an ocean-going cargo ship in good observing
conditions one would normally expect the readings from the sextant
to give altitudes at better accuracy than one minute. The common
form of the sextant used by seagoing navigators is usually read to
0.1 of a minute and, although one might not expect the altitudes
always to accurate to that level, it might not be unreasonable to

expect accuracy to 0.2 of a minute. Using the spherical cosine
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formula we have therefore compiled a second table of altitudes
correct to 0.25 of a minute in order to test the application of the
Forsythe polynomials to our least squares approximation. The
Forsythe polynomials did not give such good results when the data
was expressed to the level of accuracy of one minute but gave

acceptable results at the level of accuracy of 0.25 minutes.

For the purposes of testing the proceedure of computing the position
pf an observer we have sited the observer on the Greenwich meridian
(longitude 0°) and at latitudes ranging from 30° to 55° HNorth. The
three examples have been chosen to demonstrate the method in the
extreme cases that are likely to occur. The first is chosen when the
sun 1s at high altitude, the second is chosen when the sun is at low
altitude and the third is chosen when the sun is changing its

declination at the maximum rate.

EXAMPLE 1. June 10 1990 - 1100 GMT . Declination 23.0117°N. Rate of
change of declination 0.001597°/hour, Hour Angle 345°9.9°
Rate of change of Hour Angle -14.998 °/hour. Longitude 0°.

HOUR ANGLE (V)
349° 347° 345° 343" 341° 339°
30° 77°56° 76°27° 74°53° 73°17° 71°39° 69°59°
35° 74°*39° 73°31° 172°16° 70°57° 69°34° 68°09°
40° 70°38° 69°46° 68°48° 67°45° 66°38° 65°26°
45° 66°15° 66°35° 64°50° 64°00° 63°06° 62°08°
50° 61°40° 61°09° 60°34° 59°55° 69°11° 58°24°
55° 56°59° 56°35° ©66°07° 55°36° 55°01° 54°24°

LAT

TABLE 9.5

The picture presented by the data of Table 9.5 is the "static"
picture - the declination of the sun is kept fixed. Allowance for
the effect upon the rate of change of altitude by the rate of
change of declination is made by the added term
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sin ¢ cos y — cos #§ sin y cos(A-8) ) (QX)

( dt

cos o

The results from the computation using the above data from Table 9.5

are shown below in Table 9.6.

TRUE COMPUTED TRUE CALC HOUR
LAT ALTITUDE |ALTITUDE RATE RATE ANGLE LONGITUDE
30° 75.0167 75.0180 |11.8401 |11.8377 14°49.
35° 72.3749 | 72.3724 .5632 | 9.5662 14°50.
40° 68,8854 68.8858 .5174 7.5194 14°50.
45° 64,8996 | 64.8971 .8930 | 5.8064 14°50,
50° 60.6192 | 60.6192 .6322 | 4.6256 14°48.
55° 56,1562 | 56.1577 .6416 | 3.6575 14°54,

NN WAoo

Wb 3O =
OB
€€ <m

TABLE 9.6

Table 9.7 below corrects the altitudes of the sun given in Table 9.5
to 0.25 of a minute

HOUR ARGLE OO
349° 347" 345° 343° 341° 339°
30° 77°56%° 76°26%° 74°534° 73°17° 71°39° 69°H9W’
35° 74°39U° 73°30%° 72°164° 70°57° 69°344° 68°08%’
40° 70°38° 69°46° 68°484° 67°45%° 66°37%° 65°26%’
45° 66°15° 65°35%° 64°50° 64°004° 63°06° 62°08°
50° 61°404° 61°094° 60°34° 59°654%° 59°114° 58°24%’
55° 56°58%° 56°34%° 56°07° 655°35%° 55°01%° 54°24-

LAT

TABLE 9.7

Table 9.8 shows the results from using the Forsythe polynomials on

the data in Table 9.7
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TRUE | COMPUTED | TRUE | cOMP HOUR
LAT | TITUDE |ALTITUDE | RATE | RATE aNgLg | LONGITUDE
30° | 75.0167 | 75.0165 |11.8401 |11.8280 | 14°49.2° | 0°0.9E
35° | 72.3749 | 72.3750 | 9.5632 | 9.5605 | 14°49.8° | 0°0.3°E
40- | 68.8054 | 68.8860 | 7.5174 | 7.5042 | 14-48.4° | 0°1.7°E
45° | 64.8006 | 64.8997 | 5.8030 | 5.9012 | 14°51.4- | 0°1.3°W
50° | 60.6192 | 60.6188 | 4.6322 | 4.6147 | 14°46.6° | 0°3.5°E
55° | 56.1562 | 56.1556 | 3.6416 | 3.6370 | 14°49.0° | 0°1.1°E
TABLE 9. 8

EXANPLE 2. December 11 1990 - 1100 GMT - Declination 23°S - Rate of
change of declination -0.003611 °/hour. Hour Angle 13°17.3° - Rate
of change of HA -14.9605 °/hr.

HOUR ANGLE )
LAT 9° 11° 13°* 16° 17° 19°
30° 36°18° 35°57° 35°33° 35°05° 34°32° 33°57
35° 31°22° 31°04° 30°42° 30°17° 29°48° 29°16°
40° 26°27° 26°10° 25°51° 25°28° 25°02° 24°33°
45° 21°30° 21°16° 20°58° 20°38° 20°15° 19°49°
50° 16°34° 16°21° 16°06° 15°48° 15°27° 15°05°
55° 11°37° 11°26° 11°13° 10°57° 10°39° 10°19-

TABLE 9.9

The results found using the data from Table 9.9 are shown in Table

9.10 below :
TRUE | COMPUTED | TRUE  |COMPUTED | CONPUTED
LAT | sLTITUDE |ALTITUDE | RATE RATE  |HR ANGLE |LONGITUDE
30° | 35.4837 | 35.4855 | 3.3630 | 3.3690 | 13°18.7°| 0°1.4°¥
35° | 30.6450 | 30.6450 | 3.0103 | 3.0173 | 13°17.2°| 0°0.1'E
40° | 25.7023 | 20.7906 | 2.6805 | 2.6883 | 13°16.9°| 0°0.4°E
a5° | 20.0271 | 20.9273 | 2.3027 | 2.4082 | 13°21.7| 0°3.4°¥
50° | 16.0532 | 16.0546 | 2.1136 | 2.1202 | 13°19.7°| 0°2.4°V
55 | 11.1732 | 11.1742 | 1.8471 | 1.8478 | 13°17.6 | 0°0.9'¥

TABLE 9. 10
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EXAMPLE 3.

Sept 21st 1990 - 1000 GMT. Declination x=0.728333°N.
Longitude 6=0"

Hour Angle x=331°42.3°. dx/dt = -15.003 °*/hour
dy/dt = -0.01618 °/hour

LAT

HOUR ANGLE ()
327° 329° 331° 333° 335" 337° |

30°
35°
40°
45°
50°
55°

47°06° A48°28° 49°48° 51°04° 52°18° 53°28°
43°58° 45°11° 46°22° 47°29° 48°36° 49°35°
40°35° 41°40° 42°42° 43°41° 44°37° 45°30°
37°01° 37°57° 38°52° 39°43° 40°32° 41°17°
33°17° 34°06° 34°53° 35°37° 36'19° 36°58°
29°26° 30°08° 30°48° 31°26° 32°01° 32°34°

TABLE 9. 11

The results obtained using the data from Table 9.11 are shown in

Table 9.12 below :

TRUE | COMPUTED | TRUE CALC
LAT | oL TITUDE |ALTITUDE | RATE RATE LHA LOKG
30° | 50.2503 | 50.2507 | 0.6180 | 9.6333 | 28°20.4'| 0°2.7°¥
35 | 46.7617 | 46.7645 | 8.4003 | 8.5017 20.1°| 2.4°w
20° | 43.0a97 | 43.0521 | 7.4407 | 7.43890 17.3°|  0.4°E
45° | 39.1652 | 39.1631 | 6.4710 | 6.4608 17.4°|  0.3°E
50° | 35.1472 | 35.1450 | 5.5753 | 5.5731 17.0°1  0.7°B
55° | 31.0253 | 31.0273 | 4.7445 | 4.7414 16.4°| 1.3°E
TABLE 9. 12
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9.6 CONCLUSION.

In good observing conditions at sea, the kind of conditions which
would be necessary in any case for taking astromical observations,
the results above would be achievable. Indeed, a good observer would
expect altitudes to be of greater accuracy than one minute of arc.
Most micrometer sextants are read to 0.1° of arc and all
computations assume this accuracy. As they stand, most of the
results for the longitude found above would be very acceptable to an

observer on an ocean passage.
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10.1 INTRODUCTION.

The theme of the the Bachelor of Philosophy thesis by this author+®
was the development of algorithms from which to compute the integral
of a function by fitting cublc splines .The thesis was conceived
originally to describe the methods by which the cubic spline and the
bicubic spline approximations could be applied to the problem of
numerical 1integration in one and two dimensions. During the
experiments it became apparent that it was possible to approximate
to the 1integral of a function directly, that is, to fit a cubic
spline to the indefinite integral of a function with given initial
conditions. The result is an algorithm which 1s suitable for both
manual or automatic computation. Further, the method can be applied
to problems in both one or two dimensions and it can be shown that
its error bounds are of the same order as those for the integrated
cubic splines. Ve use the term Direct Cubic Spline Approximation
for this algorithm and the analysis used in the thesis to prove the
results which lead to the steps in the computational procedure was
lengthy. It is clear now, however, that the Direct Cubic Spline
Approximation could be developed by simply fitting a quadratic
polynomial to the integrand and then integrating. In either aproach,
in addition to the function values of the integrand, an extra
initial condition is required to start the computation: we will,
therefore assume that the derivative of the integrand at the
gtarting point is known. It will emerge, however, that such
knowledge is not always critical in practice. In section 10.6, for
instance, we show that if the subintervals are equal in length and
their number is even, then this is, in theory, irrelevant. The
method of the Direct Cubic Spline Approximation results in a 'step
by step’' method of numerical integration through which the integral
between any two ordinates can be found and applicable where the

ordinates are randomly spaced.
10.2 NUMERICAL INTEGRATION USING CUBIC SPLIRES.

The usual method of computing the integral of a function f(x) over

an interval [a,b)] using spline functions is achieved by fitting a
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spline function s(x) to the integrand f(x) over the interval ([a,b]
at the points of subdivision when (a,bl has been subdivided by
points x: ({i=1,....,n-1) such that

and integrating s(x) in place of f(x)
The cubic spline 1is the popular spline function used for this
purpose and, by applying the above procedure using the cubic spline,

Davis & Rabinowitz4® derive the formula

b p & noo na
$f00 ax = §smdx = E M, +f)-E im_+m)
a o i=1 2 i=1 24
(10.1
where f,= f(x,), h,= x,- x, , and the m, are the "Moments"™ of the
spline - m,= s"(x,) .

The details of the computation of the moments of the cubic spline
can be found in the books by Ahlberg, Nilson & Walsh4” and
P.N. Prenter4®., In this dissertation, however, we are concerned with
DIRECT Spline Approximation to the integral function F(x) 1in the

interval [(a,b] where

X
FGo = § f(x) dx
a

and f(x) belongs to a suitable continuity class.
Ve begin with the Direct Cubic Spline Approximation and develop a
computational scheme which is both efficient and easy to apply.
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10.3 DEFINITION OF THE DIRECT CUBIC SPLINE APPROXIMATIOR.
In the B.Phil thesis by Williams*® a method of computing the
integral

b
é fxo)dx L. 10.2>
a

where f(x) 1is a continuous function which is assumed to have a
continuous derivative, is found by fitting a cubic spline
approximation S(x) directly to the function F(x) over the interval
[a,b) subdivided by points (xi)} (d=1,...n-1) where

a=X- Cx < ..., { X1 € X = b

and where

X
F(x) = § £(x) dx (xelabl ) .. (10.3
a

S(x) is referred to as the DIRECT CUBIC SPLINE Approximation to the
function F(x),

In the paper by Phythian & Villiams+®, to determine S(x), we
defined, at each mesh point, x:, a "Moment", M., where Mi= S" (x,)
and then expressed S"(x) as a piecewise continuous linear function

so that, in each sub-interval [(x(-1,%x:] , we have

X

sty = Mok, -0+ N

*(x-x D (10.4)

—_— 1—1
h,

where h, = x, - x,_,

Ve then integrated twice and determined the constants of integration
but this 1s a lengthy procedure and it is apparent that, since S(x)
is cubic, we can approximate to f(x) using a suitable quadratic

polynomial.
In the interval ([x.,x:] let f(x) be approximated by the quadratic
polynomial q(x) where

qx) = f(%:) + (X-%Xo)Ma + A% ... (10.5)
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This ensures that q(x.) = f(x,) and q'(x.) = M, = f'(x.).

Ve also have

qQ(x:) = f(x1) fix=) + hhoMs + ADZE ., ..., (a)

q' () = My = M. + 2Abh L. (b

so that, eliminating A from the equations (a) and (b)) gives the
relationship
X = 2¢ f‘l _f-n)_n‘:‘
h,

In any interval (a1, X4] we can similarly define a quadratic
polynomial qi(x) wusing the values fi..,, fi and M..,
(where £, =f(x(i:) ) so that
Q1 () = fi-1 + (X=X )My + As(xx-300)2 L., (10.6)

and thereby find the recursive scheme from which to determine the N,

Moo= 2¢ fr T e ceee.. Q0.7

h:
1f we now integrate qi(x) over the interval [xi-1,%:] we find

Si - S4-v = hefs -y + '/2H1-~1hzt+ 1/3AR®

where Si = S(xi).

Ve find that

Ay = Ky - My )
2h.
so that
Si - Sioy = §T<n. +2Me1) 4 hafsr .. (10.8)
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This is the form of the recursive scheme for S. that was first
arrived at. If, however, we find qi1(x:) from equation (10.6),
multiply this by %h, , substitute for A: and add this to equation

(10.8) we find the "symmetric" form of the recursive scheme for S;:

z
L (fy + £4-4) - 9‘ (N, - M)

Si — Sy = 12

N

and this is the form that we now use in the computational scheme.
Not only does this provide a more efficient algorithm for computing
the S: but it also facilitates the estimation of its error bound.

10.4 THE COMPUTATIORAL SCHEME.
The method of computation used to evaluate integral in Equation

(10.1> using the Direct Cubic Spline Approximation on the mesh

a =X <%0 ¢ Lo, { Ay =
is given by
1 S,=0: M = f'(
1 h = X, X
2 for
(111> N, = h:f* -f,.,) - M _, i=1,...,n
1v) Si = Si1- + l"Ii(fa + £.-4) - Bf(li - Mi-y)
2 12
e (10090
Ultimately
b
s = éf(x)dx+e
n a n

where E., is the error term.
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It can be shown by direct summation that the scheme (10.8) is

equivalent to

...... (10.10)

Equation (10.10) is of +the same form as the truncated Euler
MacLaurin integration formula and is in "symmetric" form . If f e
C4[a,bl] and we expand the integral

X1

§ f(x) dx

X411
using the Euler-Maclaurin expansion formula (which can be found in a
book such as that by Scheid®®), summing over all the intervals gives

the form

b n

_ h 1z
£ dx = X [2A(f, + £, ) - 22 - £1_D)
a 1=1 2 12
n h4
TI > L5 £$32) + 0™
=1 720 .. (10.11)

where h 1s the maximum length of any subinterval, h., in the
intervalla, bl

1f we compare Equations (10.10) and (10.11) we see that the first
twoterms of the Euler-MacLaurin Integral Expansion have the same

coefficients as the Direct Cubic Spline Approximation.
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10.5 ERROR ESTIMATE FOR THE DIRECT CUBIC SPLINE
1f, then, we subtract Equation (10.11) from (10.10), we find

b 1 n
s - § f(x) dx = __ X hT LG - M) - (f,_, - M, _)]
a 12 1=1
1 n
- I hA{P- £532) +  om”n
720 {i=1
Ve (10.12)
Let us define
X1
F. = é fx) dx
a
Ei = St - Fy
ey = f; - M
From the computational scheme (10.9) we have
2
Sy - 811 = .12“ (fa + £4.4) - lfé (My - Nin)
and the Euler MacLaurin integral expansion gives
& )
Fi = Fiy = 2’(f1 + f4.4) - %é oy, - £ + 325 (52> - £522)
+ 0<¢h®)
So that 1f we write
E: = 81 - Fu (the error in S.)
es = f3 - My (- the error in Mi)
we have
h? h?
E« - Eyr = Lt (@1 — €1-1) = 153 - £522) + 0™
12 720 ’
e (10,13
Let us suppose that
e, =fy, - M, = A f£{® + B f{4> +C,£{% + ,.,... (10.14%8
From My + Myy = 2 £y - £4-4)
h,
+ = (f + £} ) - 2 (f, + £ )
we have e ey = (f} $ -1 a, Es =1



Expanding this about x=x:-w writing t=¥h: and f=f.-w etc.,

es +tei—v = [(f' + £f" + %t2fe=? + ,.) + (£ - tf" + Wt2L£<™> +,. )]
1

+ 3 [(f + tf' + BE=E" + /et@£53> 4+ .. .)
- (f - tf' + Bt=2E" - YetAfc2> + ... )]
= 2(F' + BETECDO 4 Vo 8FB> . = ' = V[ tIfCB> — N[ o gefcB> — )

= 2/3t21‘(39 + l/“taftan + ...

2
giving ey + es1 = Ei fi2a t t iR+ 0

© 200 (10.1%)

1f we now expand the expression on the right hand side of Equation

(10.14) about x=Xi-w using the same notation for t and f we find

e; + e1.1 =

ATEC3> 4 t£94> 4 WEZECS> ] 4 Ay [£932 - tfce> ¢ K2fes> )
+ B LFC4Pt 4 t£57 4 KE2ESO ] + By [£94° — ££<5> 4 WE2L<S> ]
$ CiLER + ££75° & WEZEC7O 1 4 Casa[£57 — t<5> 4 WE2£<7) ]

oo . (10.16)

Comparing this with Equation (10.15) we find the relationships

2
Ay + Ayy = h_‘_
6

hy
5 (As — A4-1) + (By - By-y) =0

2 a
EL(Ai + A1) + E‘(Bi ~ Bi-1) + (Cy + Cy) = h‘
8 2 240

and from these relationships we can generate the A:;, Bi and Ci once

we have suitable starting values.

Ve can see that er = f, - M

£ 28, - £ + £

’ h,
2 a
= (£ + f! - hf" + g'f§3> - g'f§4> o)
2 b ) a
- %Efl = (fi - hf) + g‘ff - g'ffa’ + 2if§" + ..)]
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= 9? 3y Q? ca
f 12f + ...
h2
This gives us (since A. = 0) A, = 6'
and Ay = 'Ye(hZ - b2 4 .... + hZ + h?)

Now equation (1.13) gives us

h2 hdl
Ei = Eihv = 2 (€1 - e3-1) - t (2> - f<3>) + Q)
12 720
which, since E. = 0 and e- = 0 yields directly
a s
E, = EL foor - B fi4> + 0h®)
72 120

Vhen 1i>1 and we expand about x=X:-w and using equation (10.14)
we find

Bi - Eavn = D8(A, - Ayoy)f632 = DX gcas 4 g7
; — 1-n 1—-
12 720
...... (10.17
so that
h:Z
Eq = Eqn = 2 (h%Z - 2h7_ 4.... + 2h3 + 2h¥)£53) + O(b®)
72
1
NOW Et = E (Er - E\‘--l) (Eo = 0)
r=1
hence
i Bz
Es = 22[ 55 fi22 (B2 - 2hZ_ 4+ ..., ¥ 2hz + 2h3) 1 + E, + 0(b®)
r:

I1If h 1is the maximum absolute value of subinterval and f<:’ 1is the

maximum absolute value of f<1>(x) in (a,b)] then

i
2
{Edl ¢ %2 f¢=>1 L (h® - 2hZ_,  + ...... ¥ 2h% ¢ 2h?) + IEvI+ O™
r=2
...... (10.18)
1 -
Now I ¢t -2h=_, + ....... + 2hZ t 2b%)
r=2
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i i-1 r
= I bz + 21
r=2 r=2 j=1

and the second term of this is a triangular sum.

i-1 r
) Z(—l)‘"‘“*‘“hf
r=2 j=1
= bbb, - hE b ...
- hf_z + hf_3 = e .
N S SO
= - hfwl - hf~3 T - h§
=-hf , -h{ 5, - ....... - bh¥

Now we can

E(-1)¢r—dae1opz

Hence
+ h2 + hZ + W%
+ hZ + hZ + h?
+ hZ + h2 + h?
- hZ + hZ - h?
- hZ + h?
_h?

if 1 is even

if 1 is odd .

write the inequality (10.18) in the form

h= i i-1 r
IBel ¢ 72 fe=2> L h2 + 2¢r L(-1)er—d+1>h2
r=1 r=2 j=1
and, if 1 is even, we find
| 2 + bz ,¢ b2+ bz 4, +hZ + hE + b7
-2hz -2h7_, -2b2 |
= | @z-nz) 4 I BT 4+ 3 - nD 42 |
or, 1f 1 is odd;
| B2+ p2, + b2, e mz 4 ... 42402402
-2hz_, -2hZ__ ~2h2 -2b7 |
= | mr-mrp s @zznzy 4.+ 2 - D |
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so that this gives us

4 5
IEal ¢ ib? fca> 4 ih® fean

7
144 720 + 07

Vhen h is constant simplifications of this error bound take place in
particular cases (as will be shown in the following sections) but it
has been pointed out that there 1s also one interesting case which
pccurs when we make the arbitrary choice A. = h®*/12 for then we

find that A. = h*/12 for all i and equation (10.17) yields :

i h= i hE i
Es = [ (B — Evy) = 7., L (A. - Ar-»-—‘)f‘?; - = L fc42> + Oh?”)
- 12" v 720 ° tron
r=1 r=1 r=1
i
hs ) }
Ba = - .5, I fi%) + 0%
r=1

It 1s not clear whether or not this can be put to practical

advantage in any way but it does pose an interesting question.
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10.6 RELATIONSHIPS BETVEEN THE DIRECT CUBIC SPLINE APPROXIMATION ARND
OTHER 1RTEGRATION RULES.

In the speclial case where h is constant and n is fixed, the formula
that results from (10.9) is

n h=®
N O, f, ) - T, - £
i=

1 12 T e (10.19)

3
N

Under the same circumstances the Buler-Maclaurin formula for the

function f(x) ¢ C4la,b) |is

b p D W=
$tooax = 2xoa, w1, 0 - Mar -1
a 2 1=1 12
+ nb* fiviy)
720
for some y : a ¢ x ¢ b

1f f'., 1s known, and we replace M, imn (10.19) by this known value,
then this will give us the truncated form of the Euler-MacLaurin
formula andthen the error in S. , {f f(x) ¢ C4la,bl , as an
approximation to theintegral of f(x) in [a,b] is

{b-a)h?
720

fiv(y)
1t is interesting to note too that if we consider the usual cubic
spline approximation, s(x), to f(x) in [a,b]l , it was shown in the
B.Phil thesis by VWilliams*= (p.10) that the formula for the integral
given by Davis & Rabinowitz“® can be written as

b b

§ f(x) dx « é s(x) dx = b
2
a i=1

h2
o, + £, - 73 €L - L)

M5

g0 that the formula for the Direct Cubic Spline Approximation is,
when f! is known, the same as that for the integrated Cubic Spline.
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Moreover, if we consider the special case of the scheme using
equation (10.8) or equation (10.9) for S: computed for n=2 then we
find that

S@) =0: N = £'( : h = %(b-a)

M, =2, - £, - M,
S, =S, , +h=(M, +2M, ) +hf,
s =5 +2 ¢ +5 -2 wm -
or PR = PR 2 n 11 12 1 M. i=1,2

is exactly Simpson's First Rule so that

S, =2 (f, + 4f, + £)

= [<) 2

Wi

See Phythian and Villiams®'.

The above case illustrates the more general rule that, in the equal
interval case, if the number of intervals, n, 1is even, then S, is
independent of f'(a) so that, in theory, provided n is always even,
any value of f'(a) would serve as the initial value of M.. To prove
this let

Adding these gives

2(¢f ) 2(f

X, + 2K = o1 Tal e EERLLARGNES
i+1 i h b
- 2, ,, -t [ 2¢, - £, _ ) 2 _, - £, D) ‘M,
h h h
2(f - £ 1 (-1)t-r 2(¢f_ -~ f )
= 141 1 + > " -1 + (..1)1-—v--rlf;
h r=1 h
for {3 1 .
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Vhen 1=1 we have

2(F, - )

K, + 2 f! = =+ f!
h

The integral §S.. is found from
+2M) +hEf, ) L. (10.20)

and, when the sum over i is taken, the terms (-1)*-r*'f! cancel in
pairs so that, if n is even, the aggregate of these terms is zero.
It can be shown from ¢(10.20) that, when n=4 ,

h
S, = 5(f4+4f:

-3 c

+2f_ + Af + £)

1 (=]

which is the compound form of Simpson's Rule and, for all n while
2nh is less than the length of the interval of integration, we also
find

+ af + 2f oo+ 26, + 4, 4 f

22

=2 Zn- O)

Conversely, if a function f(x), which 1s assumed to bhave a
continuous first derivative and which is defined over an interval
which is subdivided by a regular mesh, is integrated numerically by
the compound form of Simpson's Rule, then the values {S24) 80
determined are, in fact, node values at the even numbered node
points of the Direct Cubic Spline Aproximation to the Integral of
f(x) over the same mesh. The Direct Cubic Spline, in a sense
therefore, "interpolates” Simpson's Rule and the interpolating
function, S(x), is given by

s =8, + T x4+ Mot thra-x,_ )2 = 1ab® 4 Usx -x, 7]

6h 2h

+ (x-x,_f,_,
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10.7 THE PERFORMANCE OF THE DIRECT CUBIC SPLINE APPROXIMATION.

If we compare the error bound (10.14) of the Direct Cubic Spline
Approximation with the error term for Simpson's First Rule over two
intervals then we find that they are of the same form. Also, in
light of the above relationship between the Direct Cubic Spline
computational scheme, with h constant and n=2, and Simpson's First
Rule, we can infer that the Direct Cubic Spline Approximation to an

Integral Function is a generalisation of Simpson's First Rule.

The advantages that the Direct Cubic Spline Approximation has over
other similar integration rules (Simpson and 1low order Gaussian
rules) is that, for the Direct Cubic Spline, the ordinates do not
have to be defined at specific points, the integral can be computed
step by step between any two ordinates and the number of ordinates
need not be specified in advance.

On the debit side, however, we find that, employing computational
echeme (10.8) for the Direct Cubic Spline, since S(x) is cubic, the
integrand, f(x) is approximated by a piecewise quadratic polynomial
and therefore 1its derivative, f'(x), by a plecewise straight 1line.
Experience shows that the method gives 1its best results over
intervals where the derivative, f'(x), 1s monotonic. Ve can ,
however, generalise by going one step further - fitting a direct
quartic spline to the integral and using the derivative computed
from the X-Spline of Clenshaw and Regus®Z. This 1s dealt with in

the next chapter.

10.8 SOME APPLICATIONS OF THE DIRECT CUBIC SPLINE APPROXIMATION.

A number of applications of the use of the Direct Cubic Spline have
appeared in Part One of this thesis. The method is particularly
useful in the procedure used to compute the points along the arcs of
geodesic curves on the surfaces of the Sphere and the Spheroid. For
Navigational purposes it 1is quite wusual, in practice, to compute
points step by step along these arcs and the distances between them
and, since we also know the boundary derivatives in most cases, the
method suits the situation well. There are also some applications in

ship technology to which the method is very well suited.
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HIGHFEFR ORDER DIRECT SFPLINE
APPROX T MATIONS
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11.1 INTRODUCTION.

Having achieved some measure of success with the Direct Cubic Spline
approximation to an integral it would seem logical to investigate
whether or not any higher order splines can be used in the same way
to compute the values of integrals by a recursive scheme similar to
that developed for the Cubic Spline and whether or not any
improvement in results can be achieved thereby. Experience shows,
for instance, that the cublc spline gives best results when the
first derivative of the integrand is monotic - the computational
scheme (1.9) does not respond well when a point of inflexion in the
integrand occurs in the interval of integration - a higher order

spline may well give better results in this respect.

11.2 DERIVATION OF THE DIRECT QUARTIC SPLINE APPROXIMATIOR .
Let S(x) be the Quartic Spline Approximation to the function F(x) in

the interval [(a,bl where
X

F(x) = § £(t) dt
a

and f(x) is assumed to be continuous with continuous first and
second derivatives.

Let the interval [a,bl be subdivided by points xi,%X=2,....,X1-1
such that

a = Xo ( Xy < ...... < Xyr--1 ( X = b

S(x) is the piecewise quartic polynomial in (a,b)l such that, in the

subinterval [x,..,%4)

S(x) = g,(x) = a,x* + b,x* + ¢, x* + d,x + e,

and S(x) has continuous derivatives S'x, S"w and S’ (x)
throughout [a,bl . Since the indefinite integral S(x) is a quartic
polynomial then the integrand will be a cubic. In the interval
(R, X1 this cubic can be suitably defined by c.(x) where

Col(X) = foo + Mo Gt-%5) + BNy 7 (Xx-%02 4+ A(x-x,)2 ... (11.1)
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this ensures that Cu(Xe) = fo
cl(x) = Mo = f!
cl(xe) = No = £2

Vhere, in addition to the function values at the mesh points we
assume that at x=x. the values of f'(x.) and f" (x.) are known.

If we now differentiate c.(x) twice and determine cZ(x:) we find

(NT - N-:-)
6h,

A=

where hy = %y - %, .

From c-(xy) and c!(x:) we then find recursive equations through
which we can determine N, and M: respectively. We then integrate
c-(x) s0 that

b4

S, = é Ceo(x) dx
X
Ve find: N, = Qﬂ(f1 - f3) - 6 M. - 2N.
h? h,
n1=no+’§“ (Fr - F=)
St = So + 07 Ry + 300> + Do+ bt 1.2
1 -1 24 1 o 2 g YLy e e e .
11.3 COMPUTATIONAL SCHEME FOR THE DIRECT QUARTIC SPLIRNRE
APPROXIMATION.
Given the initial values
So =0 fo = £(x.) ; Mo = £' (X)) 3 Ko = £" (%)
then we can compute K , Mi and S from the computational

scheme (11.2) and then, 1f we define a suitable cubic polynomial

ci(x) 1in the interval I[xs-y,%s) !

cs () = fav F My (XRa-1) + Nood (X-%1-3)2 4 Ay (X-%X1-)2
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then we find a possible scheme for computing the S,.

The scheme here is :

1) S =0 f, = f(x=2) ;3 Mo = £' (X2) § Ko = " (%)
(11) hy = %1 - Xi-
6 6

(1ii) N, = l;f(f1 £, gtnl_, - 2N, _,

h
Uv) M, = MK, .+ _*(N, + N _D

; : 2 i=1,..... o
h3 h?

vy §, = §8,_,*+ 2—;(1“ + 3N,.,) ¢+ é'_ui__.‘ + hif‘__‘

b
where, ultimately, Sn = é f(x) dx + E.
a

and E,, is the error term.

11.4 EXPERIMENTAL RESULTS FOR DIRECT QUARTIC SPLINE APPROXIMATION.
The results found from applying the computational scheme (11.3) are
rather disappointing. It would seem that this recursive scheme is
unstable for the computation of the N: as 1 increases although it is
quite good in the early stages.

Vhen f(x) = sin x , for instance, we compute the approximation

Un
S(x) ~ F(x) = § sin x dx = (.2928932188
0

using 5 1intervals each of 1length n/ 20 and find that
Sz = 0.202895509 which gives an error of 0.00000229 . Yet, when we

compute the same integral, using 10 intervals each of length n/ac,

we find that Sio = 0.2928647048 which gives an error of
0.000028514 - a ten fold increase in the error for half the
interval spacing ! However, 1f we modify the method, taking

advantage of the self starting capability and then, when 133 ,
computing L'(x:) and L"(x4) - the first and second derivatives of

the cubic Lagrange Polynomial approximation to f£f(x) over the
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interval [(Xi-2,%:] and setting M:s = L'(xy) , Ny = L"(x4) then
we find

Ss
and Sio
which is more in line with what we might have expected. It should be

0.292878578
0.2928912169

noticed though that the Sz computed this way is not so good as the
S found by applying the scheme (11.3) without modification. The
problem, without doubt, seems to be that the equation (iii) of
scheme (11.3) is unstable as 1 increases. If, however, we modify the

scheme in such a way that

W N, =2, -f,_) -M_,
1
2

W N =2 M, - N, - N,
S (1.4

and so that equation (v) of scheme (11.3) remains unchanged then we
will find
Ss

0.2929580156
0.2929128574 .
Although the result for S,o 1is an improvement, and, in further

and Sio

experiments, as h is made smaller, the results show a definite
tendency to converge, these results are not as good, even so, as the
results obtained by applying scheme (10.9> for the Direct Cubic
Spline defined on the same interval with the same mesh.

If, then, following along the lines taken in chapter 10, we look for
the "symmetric" form for the Direct Quartic Spline approximation, we
find

h h= h?
S, =8,_,+ 4, +£ ) - (N -NK_) + (N +N_D
2 4 12
...... 11.5
but then, substituting
N, + K, = E X, - X, ) in (11.5) results in
hi
h h=
S, =8,_,+ 2¢d, +f _)- 2N ~-K_) ... (11.6)
2 12
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which is exactly the same as the "symmetric" form of the Direct
CUBIC Spline approximation since Mi = 8" (x.)
This would imply that the Direct Quartic Spline approximation does
not exist independently. Indeed, as it will be shown below, every
even order Direct Spline Approximation can, in the "symmetric" form,
be shown to be the same as the 1lower order Direct Spline
Approximation, and this would imply, generally, that none of the
even order Direct Spline Approximations exist independently .
This, however, prompts the question as to whether there might be
another way in which we can improve our estimate of the derivative
of the spline given at the mesh points by the M.. One possibility is
given by Clenshaw & Negus“'
In an interval [x.,x.»] subdivided by points X1, X2, .... , Xn-1
such that

o < x10 < ounnn, < Xt € Xn
Ve compute

hy = X1 - X119

By = hyen
hy + hir
g, = fo = fion
hi
then My = (1-B1)&¥4er + B1(3-B:)Ys - BsMa—n. ... AL

Ve find this by fitting a suitable cubic polynomial approximation to
f(x) in the interval [xi-1,Xi+1] where we have the given values
for, fa, fran and a computed value of Mi—v . In the interval

[ %X~,%=] these values wil be f., f., f2 and f! .

Let the cubic polynomial be ci(x) where
Cci1(X) = fiy + Nid (X-Xi-1) + A(X~X1-122 + B(X-X4-1)?

This ensures that cai(x:-2) = f5-v» and clxi-y) = Mooy

When we equate ci(x) at x=x, and x=x,—y to f; and f.-.,
respectively, then we find simultaneous linéar equations from which

to determine the constants A and B. We omit the details here.
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The computational scheme which results when we use this form of the

"moment”, M., as found from the limiting form of the Clenshaw-Negus

X-spline 1s given by the scheme which leads to the equation (11.7)

with the symmetric form of the quartic/cubic spline approximation to

S;

We compute

The results found from experiments with constant b,

the two computational schemes; (10.9) and (11.8),

hs

B4

Y.

N,

S

X3

h;:..

h, +
fi

h,
(1-81)=2Y41 41

2
Se-1 + l—h(‘.ft + f40) - b

X1

1

hyts
i

2

+ Ba(3-B)Ys - BiMiy

hi
12 (M,

- M)

(11.8)

conducted using

are shown in Table

11.1.
n SIMPLE FORM CLENSHAV-REGUS
H\'\ SV Y HI‘\ S"\

/= 18 }-1.0006351]1.00000032|-1.00000022| 0.99999992
é cos x dx | 19 |-1.0005700]1.00000026|~-1.00000017| 0.99999994
o 20 |-1.0005144}1.00000021|~1.00000014| 0.99999995
= 1.0 21 |-1.0004665|1.00000017|-1,00000012| 0.99999996
22 |-1.0004250|1.00000014]-1.00000010| 0.99999996

/=2 18 }-0.0006351{1.00000032| 0.00001847} 0.99999991
é sin x dx | 19 [+0.0005700]|0.99999961| 0.00001570| 0.99999993
o 20 ]-0.000514411.00000021| 0.00001346] 0.99999994
=1.0 21 |+0.0004665}0.99999974| 0.00001163] 0.99999995
22 |-0.0004250/1,00000014| 0.00001011] 0.99999906

23 1+40.0003889]0.99999982| 0.00000885| 0.99999997
1 8 2.7160480]1.71828416| 2.71843142| 1.71828105
§ e dx 9 2.714461211,71828540| 2.71838695| 1,71828136
0 10 2.7168514)1,71828278| 2.71835827| 1.71828153
= 1.718282 | 11 2.7157231]1.71828343| 2.71833923| 1.71828163
12 2.7172881)1.71828229| 2.71832599| 1.71828169

8 |[-0.8319192] 0.8427023] -0.8305305| 0.8427008

erf (1) 9 |-0.831596 | 0.8427018| -0.8304458| 0.8427008

= 0.8427008 10 |-0.8313535| 0.8427015] -0,8303885| 0.8427008

11 |-0.8311726| 0.8427013| -0.8303479| 0.8427008

12 |-0.8310303| 0.8427011]| -0.8303202| 0.8427008

TABLE 11.1
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In the last example in Table 11.1 the correct value of F'(1) to 7D
is -0.8302150.

Vhen the Clenshaw-Negus form of the moment is used it can be seen
that the results converge consistently for the values of both Mi and
Si: but, when the simple form of the moment is used, two sequences of
and S,

number of intervals and one corresponding to the even number of

values of M, seem to appear, one corresponding to the odd

intervals, and that each sequence converges separately with the
sequence corresponding to the even 1intervals giving the better

results.

To show the advantage that can be found from using unequal intervals
consider the case where we compute the integral

2.8
§ e ™ dx
o
using 16 intervals - first when they are all equal to 0.175 and
second when they are defined according to the sequence
hs = 0.1 + (1-1)0.01 1i=1,...,16

The results are shown in Table 11.2 :

SINPLE FORM CLENSHAV REGUS
H\'\ SV'\ n‘1 S\1
EQUAL -0.06319964 0.93919481 -0.06080124 0.93918869
UNEQUAL] -0.06123427 0.93919447 -0.06078267 0.93918890
TRUE -0.06081006 0.93918994 -0,06081006 0.93918994
TABLE 11.2

11.5 DIRECT QUINTIC SPLINE APPROXIMATION TO AN INTEGRAL FUNCTION .
The obvious next step is to carry the idea of the Direct Spline
approximations even further and to investigate the possibilty of
deriving the recursive scheme which will give the Direct Quintic
Spline approximation to the integral of a function f(x) .

542 (x)

Proceeding as before, let us define as the linear function
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P, P

cad e - h -
Se4r (30 hi(x X, b, .

where Py = S“4° (xy)

If we are given the initial values

S¢4>(a) = Po = £¢32(a)
S5¢*>(a) = No = f"(a)
S" (a) = Mo = £'(a)
S' (a) = fo = f@@)
S(a) =0

where Ni = 8°2*(xy) and M, = S"(x:)> ,then, after integrating
successively and determining the constants of integration, we will

find the recursive scheme

_ e4 24 12
1) P, = h?(f‘ -f._) - h= Hi-l - h‘l‘"‘ - 3P, ,
h,
(1) R, =N _, + 5“(?1 + P )
h2
i N =M_,+ (P, +P,_,) +h N
“w) 2 a a
5, =8,.,t gt(f1+ fi-1) - %‘(Hi— mi-1) + %é(N1+ Ni-v) - ga(Pt‘ Pi--1)
for {i=1, .... ., m» L. (11.10)

This recursive scheme is even more unstable than the scheme (11.3)
and gives virtually no worthwhile results at all. The obvious cause
is the calculation of the highest derivative - P, - and.'again, we
can try to alleviate this by modifying the scheme and find an
alternative method of computing the derivatives. The first attempt
is to replace (1), ({i1), and (ii1i) in scheme (11.10) by

) N, = %

2

h

aH N
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(i) P, = %(N - N

and, although this is effective in reducing the instability and
results in a convergent computation as h is made smaller, it is
still rather crude. Ve can improve this, however, by using these
alternative approximations to +the derivatives only as first

approximations then making successive approximations finding

2
(1) Moo= N,_, +D5p, 4+ 2P, > + N,
6
(i)' N = %f“i - M,_) - N,_,
L] 1] P 2‘
STEELEN YL AR

Applying the above to compute the integral

Wn

é sin x dx

0
we find that, with interval spacing h = n/z0 , Ss = 0.2928165725
which gives an error of 0.0000766463 and when we reduce h to h =
n/ a0 we find Sio = 0.2928757802 which gives an error of
0.0000174386 - results which are still not as good as those which
can be achieved using the Direct Cubic Spline Approximation !

11.6 GERERALISATION TO HIGHER ORDER DIRECT SPLINE APPROXIMATIONS.

The pattern of the recursive formulae which give us the algorithms
for applying the Direct Cubic, Quartic and Quintic Spline
approximations becomes familiar. The formula which gives S; in the
Direct Cubic Spline scheme, for instance, shows itself as the
formula for S"(xs;) in the Direct Quintic Approximation scheme, and
it can therefore be predicted that the the formula which will give
S"(x:1) in the Direct Sextic Approximation scheme will be of the same
form as that which gives S(x«) in the Direct Quartic Approximation
scheme. Thus we can see then that a recursive scheme can be

developed quite easily for higher order Direct Spline Approximations
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although their efficiency as algorithms for computing the integral
is very much in doubt. The problem in the cases of the Direct
Quartic and Direct Quintic Approximation schemes , (11.3) and
(11.10>, respectively, 1is the computation of the highest order
derivatives - N, and Pys. . The formula which gives the highest order
derivative is, in fact, a transposition of the formula which gives
the known first derivative of the spline, S'(x:) [= f(x4)]}, in terms
of the higher derivatives. These formulae are obviously very
unstable, particularly for the quintic, while the other formulae in

the schemes are, really, very stable.

Let ~S(x) be the nth degree Direct Spline Approximation to the
function F(x) over the interval [a,b) , where F(x) is the integral
of the function f(x) € C~'[a,bl] over the subinterval [a,x]
contained in (a,bl.

The formula giving S (X) in the subinterval (x.-»,x.] can be

predicted to be

WS@) = WS, ) # WS FR-OT et genen BTE)
nth, n'h,
n - n-r
#aSin ;¢ (-Dyrhpor FRa-d)
r=2 r! (n-r!
n-2 (x-x A
+ X Sl nS; ) ceeeas (11,10
r=]1 r!

where ».S{"’ is the rth derivative of ~S(x) at x=x,

We can prove this result (11.11) by Induction. Let us assume that
the result is true.

The first derivative of the (n+l)th Direct Splne Approximation -
ne1S' (x) - is of the same form as (11.11) with . 1S'(X1-1) = f4

and we therefore find :
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perSTG0 = £, 4 et T -OT gy 5o KON
nth, n'h,
n (xX-x yr—r
+ nea8{™ X (=1)rhy! i1
r=2 . r! (n-r)!

n-2 -
+ z (x—xl-l) n‘_‘s< r+12

r=1 r! -1 .

1f we then integrate ,.+:S'(x) with respect to x we will find

- e+l - n+
n-rlS(X) = xfi.._l + n-o-lS;‘*‘-—..__..__(x x"_') _ + (‘1)"-1—»!8:2\’——————-—(}(! x)
(n+l)nth, (n+)n!h,
n-1 - N ne 1
+ n+|S;’n:’ X (-1)"hr? (x xi“) + (-1)".—\-”8‘;"“’ hi x
r=2 (n-r+)r! (n-rH! n!
n-1
(x-x,_ . )r+? A,
+ = - 18T+ C,

r=2 (r+l)r!

where Cn: 1s the constant of integration .

At  x=x.
- Nnhrn+1
rro-lS(xi__1) = .-w--‘S‘__, = xi_‘f’__‘ + n-o-‘lS:':;’( 1) h"
(n+1)'h,
s (~1)ohoe
+ n+1S:2" 1 11 + Cnl.
n!

and, transposing this equation to give Cn: we find that

. (=1)*h7
Chsv =wnedS, , =%, f, , S0y %
(n+1)!
. (-1)mhop~?
- nvo-'ls“'zg ___.______i__ x,._..|
n!
and hence
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— +1
(x-x, _, "

a1 S(xX) = (x—xi——l)fg—] + ‘j_,..'S:\'\)
(n+i)th
i
(g~ i+
toanSimy <D X
(n+1)th,
n-1 e s
+ N+‘S:2; ZI ("1)” h (x xi*l)
r=2 r! (n-r+i)!
n-l - Ll
bansimenn MOy gimenn B
n! (n+1)!
n-2
e (x-x,_)r+?
+ z: n%\Si_‘l> R 1 1 + Sih'
r=1 (r+1)!

The first and seventh terms can be collected to give

1
(x_xi“')rn+18cr)

R |
1 r!

M

since f, , = S, y and then the fourth, fifth and sixth terms

Laledl |

can also be collected to give

ntl (x-%x, . )™r
ne18{N) X (-1)rh7! i-1
r=2 r!(n-r!
s0 that
- "+
rer SO0 = e Sx,_ ) + merSmr XX
(n+l)th,
- i+
b e Sin; (-1 B THTT
(n+1)!h,
n+l
. oy (x=x,_ )T
eS8 X (-Drhr? i
r=2 r! (n-r)!
n-1 (x-x PN
+ 3N T TA-T n+1 8507 ceeene (1112
r=1 r!

Which is the formula (11.10) in which n+l replaces n. The formula is

true for n=3 and n=4 hence, by induction, it is true for all n.
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11.7 COMPUTATIONAL SCHEME FOR NTH ORDER DIRECT SPLINE APPROXIMATION
Following along with our theoretical considceration of the nth order
spline approximation to an integral function we can develop the
camputational scheme which is equivalent to the scheme (1.8) for the
Direct Cubic Spline even though, when n24, their efficiency as an
algorithm for computing the integral is in doubt. The scheme is :

Given PSP = 0 1 Stk = fre k=1,2,....,n-2
then
hern-ke—10 n-k _ .
nS(kZ’ - nS(k R} + i [ ns(nm'l 3+ S(n—-)) Z (_1)!‘ ——(-n—k-L‘— 3
t 1 PN t et r! (n-k-rj!
(n-k)! r=2
n-k-2 e
+ x A WSy
r=1 r!
for k=mn-2, .... ,,,o . ... (11. 13

11.8 CORCLUSIONS ON HIGHER ORDER DIRECT SPLINE APPROXIMATIORS TO
INTEGRALS.

None of the schemes of computation for the higher order Direct
Spline Approximations investigated in this chapter, and that we have
tried, have proved to of any great value when applied to the
particular problems that we have chosen. The problem seems to be
focussed on the computation of +the derivatives, which 1is not
unexpected since the computation of derivatives often does result in

instability.
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The aim of part one of +this thesis bas been to present a
mathematical analysis of the methods of computation in navigation
and to effect some new numerical solutions. In the past the methods
of computation in navigation have generally been simplified to suit
manual computations. However, with the advent of computer software
and the introduction of the electronic chart these simplifications
can no longer be considered adequate or necessary. As we stated in
the introduction, the spherical model for the shape of the Earth
is, for most practical purposes in navigation, quite adequate, 1if
used consistently, but, with the computer to do the work for us, the
spheroidal model is obviously more fitting and this model has become
the focus of our attention. It was considered useful, however, to
analyse the properties of the curves on the surface of the spherical
Earth model since this simplification serves to illustrate the same
pattern of mathematical analysis which we can use to develop the
equations for navigating along curves on the surface of the
spheroid. All the chapters from chapter 3 onwards contain work which
has been published .

The methods of navigation along the arc of a loxodrome are now fully
developed for the spheroidal model and most applications embrace
this. The single most important aspect of navigating along the arc
of the loxodrome is the computation of meridian distance. Carlton
Vippern®4 defines this distance in terms of elliptical integrals
since the meridian is but the arc of an ellipse but does not do any
actual computation. Bowring®=® gives a new method which will compute
this distance to a very high degree of accuracy but we use the
direct cubic spline which, for our purposes gives us the accuracy we
require (two decimal places of a geographical mile) at a step length

of 5= in latitude along the meridian and because, in this case, the

algorithm is easy to apply.
The great circle method on the spherical model still seems to be the

popular method, in practice, of computing the shortest path geodesic

arc. This 1is because the navigator requires more than just the
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straight forward computation of distance (the methods for which are
well developed for the terrestial spheroid) so that the great circle
method has been the only method available which will give the
intermediate points along the path of the geodesic. We have
therefore presented a solution to the problem of computing the
geodesic arc on the surface of the spheroid in a different way by
starting from the definition of the geodesic by means of Clairaut's
equation. We have solved the equation to give us a relationship
between the geocentric latitude and the longitude of a point along
the path of the geodesic then, using the step by step method of the
Direct Cubic Spline, given the step values in the longitude, we have
found the corresponding values of the latitude and the distance
along the geodesic arc between them. Ve have applied this same
method to the shortest path problems on the surfaces of both the
sphere and the spheroid and, in the case of the sphere, the
algorithm is quick, efficient and in every way comparable with the
methods of spherical trigonometry. In its application to the surface
of the spheroid the algorithm for doing this has also proved to be
simple and efficient even though it involves a fair number of
iterations. The results can be condensed neatly as shown in Table
4.1, chapter 4, for the sphere and Table 5.1, Chapter 5, for the
spheroid. The positions from these tables can be plotted on a chart
to give visual representations of the paths. If the chart is a
standard paper chart then the way points can be plotted and the
usual convention would then be to join the way points with short
rhumb lines. Ve can expect, however, that the electronic chart will
soon be in general use and the application can be refined
considerably. On the electronic chart we will be able to represent
the portions of the geodesic between the way points by curved arcs.
Indeed, the relevant way to do this will be to fit a conventional
cubic spline approximation between the end points of the geodesic

arc with the way points as the "knots" of the spline.
In chapters 5,6 and 7, we believe that we have presented a full

analysis of the solution by a direct method of the problem of

computing the path of geodesic arce on the surface of a spheroid. Ve
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have defined our distances along the arcs of the geodesics by line
integrals computed using the method of the direct cubic spline
approximation. All the results have, we believe, been computed
correct to the first decimal place of a geographical mile. For the
purposes of navigation, either in the air or at sea, this is
adequate. In the future this computed solution can be linked with an
elecronic position fixing system so that, from the input of the
observed position, the path to the destination, initial course and
distance, with its intermediate way points can be quickly updated at
any time. In coastal navigation, where course lines are all short
arcs of a loxodrome, this is done already with the Decca Navigator
system. In a system designed for navigating world wide a choice of
routes - loxpndromic, geodesic or composite - can be onffered from any

observed position to the destination.

Although the methods of analysis and computation of the properties
of geodesic and loxodromic arcs have been developed with the problem
of navigating on the surface of the Earth uppermost in the mind the
methods are not strictly "Earthbound" at all. The analysis is
general to any ellipsoidal surface. Should it soon be possible in a
space vehicle to skim the surface of an outer planet where the
flattening of the surface is more pronounced, then, by our methods,
for navigational purposes, we will be able to compute the path of
the geodesic or loxodromic arcse on such a surface also. For the
shortest path geodesic arc between two points on a surface such as
Jupiter, for instance, where the eccentricity of the meridian
ellipse 1is approximately equal to 0.3, then, the initial
approximation to the path which we can use for the iterative
procedures in the computation will be the "great ellipse” - the
ellipse defined by the intersection of the surface with a plane
through the two points and the centre of the ellipsoid.

At first sight it might seem that our achievement in chapter 8 is
simply a tidy representation of the formulae that are used in
astronomical navigation and, that, since astronomical navigation is,

to some extent, only a sideshow these days, little has been achieved
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by it. There is, however, a little more to it than that. A work of
philosophy must contain some elements which are there because, if
little else, they present an interesting theoretical problem but,
even so, this 1s not entirely the case 1in chapter 8. The
consequences 0f the distortion in the transferred position circle
are worth noting and, in the past, might well have caused some
problems for polar navigators because it is close to the pole that
this distortion is most pronounced. At some stage on the polar
journey it must be necessary to travel at an oblique angle to the
meridians and, since the sun is the only astronomical body visible,
transferred position circles must have been used to fix position. It
would be interesting to analyse the results from such abservations
that were taken by polar explorers and to see whether or not, in

general, such allowances were made.

Ve bhave not made any mention of the way in which astronomical
observations are affected by the spheroidal shape of the Earth. In
truth the position "circle" 1s the locus of intersection of the
surface of a cone and the surface of the spheroid. It would appear
that the cone has its apex at the centre of curvature of the
spheroid at the point which is the geographical position of the
observed body and its axis is along the corresponding radius of
curvature. The position "circle" 1is not, therefore, in general, a
circle. The observer's position when two simultaneous observations
are taken is then at a point of intersection of three surfaces - two
cones which are defined by the astronomical observations and the
surface of the spheroid. This problem is now being studied with the
purpose of finding out whether there is a solution which will give

worthwhile results to the navigator.

In chapter 9 we concern ourselves with computing position from the
observation of a single astronomical body over a short period of
time. This method would have an application at sea in good observing
conditions and would give positions which should be better than the
running fix but it is implicit that the computations are only

possible using a powerful computing device. It is, however, in the
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possibility of mechanisation that this method might find its place.
Judging by the demonstrations of the accuracy of gyroscopic
stabilisation that have been made recently in weapons technology it
might be more than just feasible to design an instrument which can
lock on to a source such as the sun or a star and measure the
instantaneous altitude and its rate of change. From this the
observer's position can be computed, automatically, by the method
given in chapter 9 and displayed for the observer. This is only
conjecture, of course, but one is lead to believe that this should
be possible. Such a system, 1f it 1is feasible, would reduce the

reliance on the orbits of the man made sattelites.

Part two of the thesis has been devoted to the Direct Spline
Approximations to integrals. Chapter 10 1is concerned exclusively
with the Direct Cubic Spline Approximation and 1t 1is this
approximation to 1integrals that is applied to such good effect
throughout part one. The method is a step by step method and is
particularly effective in application to line integrals because of
the in built property of generating points along the path. One
disadvantage of the method in this respect, however, is that it does

not converge very rapidly as the interval lemgth is decreased.

Ve have shown that the direct cubic spline is a generalisation of
Simpson's Rule and a truncated approximation of Euler's Integral
Expansion method. It has the distinct advantage toco of being within
the realm of manual computation. The requirement that the derivative
at one boundary should be known is not, in fact, too much of a
disadvantage to the method. In our applications we have found many
cases where the derivative, or a sinple approximation to 1t, have
beer easily found. While, in theory, an approximation to the
derivative will reduce the order of the error bound it is not a
serious practical consideration. If we are to strictly maintain the
step by step property of the method it does sometimes mean that in
the absence of true value of the derivative we might have to make a
linear approximation, but, in general, we are not so restricted in

practice. In the case of the geodesic arcs, for instance, we know
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our destination and can therefore choose the intermediate points in
advance. In the computer program to compute the length of the
geodesic arc passing through these intermediate points we begin by
fitting a Lagrange cubic polynomial to the first four intermediate
points and we have differentiated this Lagrange polynomial to find a

quadratic approximation to the derivative.

In Chapter 11 we hope to carry the idea of the Direct Cubic Spline
into the development of higher order direct spline approximations to
integrals. Ve have generated the formulae which will, by the same
analysis, give us expressions for these higher order direct splines
but, except in the case of the Direct Quartic Spline, we have not
demonstrated that there are any useful algorithms. For the most
part, then, at the moment, this chapter is just a theoretical
demonstration which is left as an open question. For the direct
quartic spline the "moments” of the spline are provided for us by
the limiting form of the X-spline developed by Clenshaw and Regus®=,
The integral formula in the direct quartic spline is, however,
exactly the same as that in the direct cubic spline and this is
general for all the higher even order direct splines - the integral
formula is the same as that of the next lower odd order direct

spline.

There are other particular areas of study where the direct spline
approximations bhave a relevant application. We are also using these
methods in the theory of ship stability where the evaluation of
integrals with known boundary derivatives are commonly required. As
a professional navigator it has been particularly rewarding,
however, to find that the direct cubic spline has. been so

particularly useful in the science of navigation.
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APPENDIX 1

TRANSFORMATION OF EQUATION
(5. 4a> TO EQUATION (5. 5O



Using the substitutions x=2a8 y=atand wefind dx=2adé and dy = a sec?y df

Ve also have tan ¢ = ¥ sin ¢ = ¥ cos § = 2
1 J(a%+ y?) JAT YD
g seery = PV wothat gy s YT g g g = O gy

2 2 2

1
The equation azcoszl(ggﬂ a.tos §,  may be vritten a2cos?§ d9 = )\ ds  vhere we have
vritten ) = accos §v

Squaring this equation and substituling dsZ = aZcos®f d62 + a2sec2(y-4) d¢> we find

attos*f 402 = )\2[aZcos?f 407 + aZsec2(y-4) d#2] = V2cos24[a3d62 + a2 ‘°‘:' dy?)
a

Dividing through by a3cos®$ and substituting for cos®4 from above ve find

(H dy? .
P __dez = A2 [ d62 + sec*(y-f) 1 which, after rearranging, gives

(a%¢ y?) %y
cos2(y-#) (a2a? - \2(a%+ y2)] d8? = )2 dy? vevereeees CALLD)
From the equation tan # = (1-e*)tany we find tang= __Y cos g M1¢)
a(1-e2) J(a*(1-e2)%+ y2]
and §in § = y . Using these results we find
NTHIEUERH]
cos2(y-§) = (a2(}-e2) + y2] R TIrY
LIl % yIIGa%+ y7)
2(1-02) a“(1-e?)
Nov A2 = aZcos?f, = : tos?, = v (A1L3)
{1 = #7cos?f,) GE(T-e%) + y2)
Also .g = a%(1-¢2) 2 32(1-e2) (2% yz) . IR}
(1 - e*cos?$) [a2(1-e%) + y2]

Substituting (A1,2), (A1,3) and (A),4) into (A1,1) and rearringing results in

(a2(1-e2) + y2]

dy? =
Y [a2(1-e2) %+ y3)

(y2 - y2) d6?

as required,
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APPENDIX 2

A TARBLE OF LATITUDE PARTS
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APPENDIX 3

SOME RESULTS
IN
SPHERICAIL, T RIGONOMETRY



A spherical triangle on the surface of a sphere is defined by the area
enclosed by the intersection of three great circles. Figure A3.1 shows
the spherical triangle with vertices A, B and C which are the points of
intersection of the three great circles the arcs of which are AB(=c),
BC(=a) and CA(=b). a, b and c are expressed as angles where a, for
instance, is the angle subtended at the centre of the sphere by the arc

BC.

FIGURE A3.1

The SPHERICAL COSINE FORMULAE read

cos a =cos becosc + sin b sin c cos A
or cos b=cos acosc + sin a sin c cos B
or cos c=cosacosb + ein a sin b cos C

and, interchanging angles for sides we find also

cos A = sin BsinCcosa - cos Bcos C
or cos B=sin AsinCcos b - cos A cos C
or cos C = sin A sin Bcosc - cos A cos B
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The SPHERICAL SINE FORMULAE read

sin a _ sin b _ sin ¢

sin A sin B sin C

These results are proved in the book by Margaret Gow®7.
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