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ABSTRACT OF THESIS 
-APPLICATIONS OF NUKERICAL ANALYSIS IN NAVIGATION" 

by 
ROY WILLIAlfS 

PRESENTED FOR THE DOCTOR OF PHILOSOPHY DEGREE 11 APPLIED XATHBKATICS 
July 1994 

Part one of the thesis contains ~n ~nalysis of the methods of 
computation in navig~tion. We start with loxodromic navigation and, 
although this subject is ~ well documented, we make a positive ~ttempt 
to ~nalyse the subject matter using the methods of differential 
geometry. We then turn to the problem of shortest path curves and set 
out ~n alternative method of solving the problem of navigating along the 
arc of ~ great circle on the surface of ~ sphere which can be 
generalised to other surfaces. In particular , a contribution made by 
the thesis is an analysis of the problem of navigating along shortest 
path geodesic arcs on the surface of a spheroid which i ntroduces ~n 
algebraic representation of the geodesic curve by solving Clairaut' s 
equation using a cylindrical transformation. We are therefore able to 
compute the the coordinates of the positions of pOints along the path of 
the geodesic and the length of arc along the path of the. geodeSic curve 
can then be computed step by step between these pOints by a numerical 
method - the Direct Cubic SpUne method which was first introduced by 
this author in the Bachelor of Philosophy thesis in 1982 and is 
developed further in part 2 of this thesis. We apply this method also 
to the special problem of computing the distance along the shortest path 
between nearly antipodean points on the surface of a spheroid. 
We ~nalyse the problem of computing an observer's position on the 
surf~ce of the Earth using astronomical observations and show how a 
position locus is distorted when it is transferred over the surface. 'le 
offer a method of computing the observer's position by a series of 
observations of a single astronomical body taken over a comparitively 
short period of time and which does not necessarily include an 
observ~tion ~t the tiDe of meridian passage of the body. 

In part two of the thesis we discuss the Direct Spline approximation to 
integralS and give some error bounds. The Direct Cubic Spline is a step 
by step method of fitting a cubic spline to the integral of a function 
directly which computes the value of the integral of the function step 
by step between the data points which need not be evenly spaced. 'le 
extend the idea to spl1nes of higher order and give the fOMlUlaa from 
which they may be obtained but we show that, except for a particular 
special form of the direct quartic spUne. the higher order direct 
splines do not yield algorithm for computing integrals which are as 
efficient as the Direct Cubic Spline. 



o 

INTRODUCTION 



The Science of lavigation has entered the electronic age with a 

great deal .01 enthusiasm and energy. Orbltti ng man made satellites 

have, to a large extent, replaced the stars in the attentions of a 

modern navigator and it is the orbits of these satellites, rather 

than the rotation of the heavens, which now tend to control the 

pattern by which the observer's position is fixed during the day. 

The science is moving forward at a fast rate. Radio position fixing 

systems, which were created rapidly in the years immediately 

following the second world war many as a result of methods 

developed during that period out of necessity ) and which, for the 

science of navigation, seemed to have made such great strides 

forward at the time, have been and gone and are now obselete, 

historical even. The new age of space travel ( again largely through 

the necessity ) has hel ped to produce compact computer controlled 

positon fixing systems with built in computational procedures. These 

are systems which not only keep the observer informed of his present 

position but which also hold his history file and which update his 

travel plans. 

During this time we have not perhaps paused to think how the 

classical methods of navigation, particularly the mathematics, could 

be reviewed to give a DOdern outlook to the subject. liven today, 

some educational programs, particularly in seagOing navigation, seem 

to be designed purposely to avoid the use of the calculus. For this 

reason methods are still in use which are only approximations. Due 

to the advent of modern computing devices, which relieve the tedium 

of long computations and the possibility of errors, this is no 

longer necessary. Many problems, which seemed algebraically and 

numerically intractable previously, can now be treated as a routine 

and, consequently, JIIlny aspects of the matheJllltical ana1ysi8 can 

also be reviewed and perhaps improved. 

In this thesis, therefore, this is our theDB. Ye have taken the 

opportunity to introduce some new nUDerical Dethods of our own which 

we find to have particularly useful applications in navigation and 
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we have used the methods of differential geometry to make what we 

feel is a reasonably full analysis of the methods of navigation when 

applied to the sphere and the spheroid. This has, in turn, lead us 

to make what we feel are some contributions to the mathematical 

theory. 

Part 1 of the thesis is concerned with the application of numerical 

methods in navigation, paying due attention to the underlying 

mathematical models used. There does not seem to be any written 

exposition in navigation which adopts a rigourous mathematical 

approach to the subject. It is the purpose in the early chapters of 

this thesis, therefore, to correct this. We adopt two models for the 

shape of the Earth - the spherical model and the spheroidal DOdel -

and, using the methods of differential geometry, show how the 

fami liar navigational formulae are derived. The spherical model is 

not such a bad approximation when applied to the problems in 

navigation, if it used conSistently, but, in practice, this has not 

been so and the habit developed where elements computed from 

different IIDdels have been used in the SlJ1II8 [oTIllUla. For example, 

this mistake was actually made in two different publications of 

nautical tables. A correction to apply to the Mean Latitude to give 

Jriddle Latitude for an observer travelling along the arc of a 

loxodrome (rhumb line) was computed when middle latitude was 

determined using a foruula which was given as 

Cos(Xiddle Latitude) = Difference 01 latitude 

Difference of Meridional Parts 

As is well known, difference of latitude is the number of Ddnutee of 

arc on the ueridian of a sphere but the difference of meridional 

parts used to compile the above mentioned correction table wae a 

table compu11.ed from spheroid. data. the middle latitude correction 

table wae published through a number of edi tione and this went 

apparently unnoticed but it seems that the theory behind the .. thod 

of computation known as "Xiddle Latitude Sailing" wae never really 

widely understood. If difference of latitude ie replaced by the 
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:meridian distance then the formula for middle latitude would be 

correct. 

In chapter 1 we define the ways in which a position on the Barth's 

surface may be defined when both spherical and spheroidal models are 

used. The spheroidal model is a TeBulaT spheroid by which we Dean 

that the spheroid is generated by revolving an ellipse about its 

minor axis and that this spheroidal model is used as a global model 

for the surface of the Barth. We set the Earth in a spherical 

coordinate system denoted in the standard form for these 

coordinates; r, e, ~ where e is the longitude and ~ is the 

geocentric latitude. Since arc length and geodetic latitude are 

intrinsic properties of the surface we use the standard notation for 

intrinsic coordinates and denote arc length by s and geodetic 

lati tude by ..,. 

In chapter 2, using the methods of differential geometry, we analyse 

the problem of navigating along a loxodrome on the surface of a 

sphere. We are concerned here to derive with mathematical rigour the 

familiar navigational formulae for the spherical model and, although 

the method is now only historical, we try to give a rigorous 

derivation of the theory behind the method known as "Xiddle Latitude 

Sailing". W.X.Smart' presented a complete analysis of Xiddle 

LaU tude SaU ing for both the sphere and the spheroid. In both 

cases he relies upon the computation of meridional parts but, in 

fact, on the surface of the sphere the problem can be solved 

approximately without meridional parts. In the case of the spherOid, 

however, the problem cannot really be solved without recourse to 

formulae provided by the method of Xercator Sailing s"o that the 

method does not exist independently. 

Chapter 3 deals with the same problem for navigating on the surface 

of a spheroid. For comparatively small gains in accuracy this 

problem on the surface of the spheroid needs some fairly high 

powered numerical methods to aid its solution but it does stimulate 

a lot of theoretical interest and the best way find a nu_deal 
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solution still promotes discussion in the pages of the Journal of 

Navigation. This author had a paper published in 19812 concerning 

the computation of meridian distance and since then there have been 

others written on the same theme. The latest contribution was by 

Kitt C. Carlton Wippern in 19923 • 

In chapter 4 we discuss the problem of navigating along the shortest 

paths on the surface of a sphere. These shortest paths are, of 

course, great circles and, although the methods of spherical 

trigonometry are well suited to many aspects of the solution of this 

problem, we show also that the problem can be also be solved very 

conveniently by defining a great circle in the form of a 

differential equation (Clairaut's equation> and solving this 

equation using numerical integration by the Direct Cubic Spline 

method. The direct cubic spline method was introduced in the 

Bachelor of Philosophy thesis by this author and is developed 

further in this thesis in chapter 10. This method of numerical 

integration has the convenience of being a step by step method which 

computes intermediate points along the path sequentially, the 

distance between theD, the overall distance from the starting point 

and the course at the intermediate points. The intermediate points 

can be chosen by the navigator to coincide with the "way· points 

that would normally be chosen. For great circles the method gives 

results whose accuracy leaves nothing to be desired by the sea-going 

navigator even though it is a numerical 11 approximation". AI though 

the methods of spherical trigonometry give exact formulae from which 

to compute the elements of the great circle, the numerical results 

froll the direct cubic spl1ne are indistinguishable and it can be 

argued that there is IlOre computation to be done in the methods 

using spherical trigonometry. It is not the purpose, however, to 

compete with the methods of spherical trigonometry but to provide an 

alternati ve I18thod of solution which can be generalised to other 

surfaces. 

This, then, leads into chapter 5 where we solve the sa .. ahortest 

path problem on the surface of a spheroid by defining the geodesic 
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arc by means of Clairaut's equation as in chapter 4. There is, of 

course, a great deal more numerical computation needed. For 

navigators the. most widely promulgated methods of solving this 

problem seem to be the cDrrectiDn methods where a correction is 

applied to the great circle distance on the sphere in order to 

determine the shortest distance between two pOints with 

corresponding positions on the surface of the spheroid. See, for 

instance, the publication by Paul D. ThoDBs~ published by the U. S. 

Naval Oceanographic Office. In the publications concerned with 

Geodetics the problem of computing the shortest distance on the 

surface of a spheroid is generally posed in two ways - the "direct" 

problem and the "inverse" problem. The "direct" problem is posed so 

that, given a starting position on the surface of the spheroid, an 

inl tial course (azimuth) and a distance travelled, we compute the 

final position when the path taken is the shortest path. The 

"inverse" problem is posed so that, given two points on the surface 

of the spheroid we compute the shortest distance between them. The 

direct problem is not one that is often posed by the navigator and 

the inverse problem is only a partial answer to the navigator's 

quest. What the navigator needs is a system of computation which 

will plot the path of the geodesic arc so that this path can be 

considered for suitability and so that the intermediate points can 

be plotted on a chart. In other words, given any longitude, the 

naVigator would like to know the corresponding laU tude where the 

geodesic arc crosses the meridian. One of the uj or expositions 

written on the problem of geodesic arcs on the surface of the 

spheroid was produced by Fichot8
• In that work Fichot says that, in 

general, the geodesic arc is not expressible in algebraic form: 

" .. Exception fai te pour l' equator et les ellipses Dieridiennes, 

aucune de ces courbes n'est algebrique .. " We have found no other 

author who contradicts this statement but we have opted to solve 

the problem by a :method different to that which appears in the 

11 terature and to solve Clairaut' s equation using transforJllltions 

which, in effect, project the geodesic arc onto the surface of a 

cylinder coaxial with the spheroid. There is a lot of manipulative 

algebra <details of which are shown in appendix 1) but, for the 
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effort, we find that. for a geodesic curve which reaches its vertex 

where the geocentric latitude is _v and the longitude is av, when 

the geodesic curve, is not the equator or a meridian then _ and a are 

connected by the relationship 

where 
a2 (1-e2 )2 + tan2 _

v
sin2 u 

a2 (1-e2 ) + tan2 _
v
sin2 u 

u' = 5in--1 (tan - ) 
tan ;v 

du 

and a is the equatorial radius of the spheroid. When the surface 

is a sphere then the same equation applies and ~(;) = 1 

Lamberts. paying tribute to Fichot. stated that. at that time (1942> 

the work by Fichot was the fullest exposition so far written on the 

subj ect of geodesic arcs on the surface of the spheroid and that 

there was no comparable work written in English. He went on to say 

that it was his intention to publish further work on the subject 

himself and. in particular. to publish work on the special problem 

of the shortest distance between nearly antipodean points. As far I 

can see. such a full exposition in Bnglish has not appeared. Papers 

appear regularly which continue to recoDDend improvements to the 

solution of the direct and inverse problems following an analysis of 

the problem similar to that of Fichot. These methods of computation 

are really now very well developed. One of the more recent of these 

was written by Bowring'" who "lS0 deals with the special problem of 

the nearly antipodean points. 

In chapter 6 we define what we mean by nearly antipodean points and 

show how. from our solution of Clairaut's equation, we can compute 

the shortest distance between two nearly antipodean points which 

both lie on the Equator. We find a particularly useful expression in 

simple form which gives the half period, Sp (the difference of 

longi tude between two successive transi ts of the equator by the 
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geodesic), of a geodesic arc given the geocentric latitude, 1v, of 

its vertex. This expression is 

a 2 (I-e2 )2 + tan2 _
v
sin2 u 

a 2 (I-e2 ) + tan2 _
v
sin2 u 

du 

We also extend the application of the method to the ellipsoids with 

varying eccentricities and compute the periods of the geodesic 

curves on such surfaces . In chapter 7 we then formulate the general 

problem of computing the shortest distance between nearly antipodean 

pOi nts usi ng the method of chapter 5 and the results of chapter 6 

with respect to the values of the periods of geodesics with given 

vertices and show how this can be utilised in voyage planning at 

sea. 

In chapter 8 we discuss the ways in which nuuerical methods can be 

applied to the computation of position from astronomical 

observations. There has been much interest shown in this aspect of 

navigation recently due, it seems, to the development of the leisure 

industry and the interest shown by people of strong technical 

background in scientific fields who are part of this new 

development. Although much of astronomical navigation may seem 

obselete in light of modern improvements to navigation brought on by 

the introduction of global position fixing systems from satellltee 

it is still an interesting theoretical persult. One of this author's 

contributions in this respect was contained in a paper published by 

the Journal of Iavigation@l in which. in response to. two other 

authors who made an over simplification of the problem of 

transferring a position circle, it waa shown mathematically that the 

original position circle, when transferred. is no longer a circle 

but suffers a distortion. This Day well account for problems which 

are encountered by an observer close to a pole of the Barth when 

taking astronomical observations a large distortion of a 

transferred position circle takes place close to the pole when the 
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observer travels at an oblique angle to the meridian and this can be 

seen clearly from the plots of the transferred circles. 

We extend this work on astronomical navigation into chapter 9 where 

we are particularly concerned with observations taken of a single 

body over a comparatively short period of time and from which, at a 

time chosen, we can compute the altitude and its rate of change. 

Given these two pieces of information we can then fix the observer's 

position. The classical situation in which this technique is applied 

is at the time of culmination when the maximum altitude of the 

observed body and the time that it occurs is computed from a 

sequence of observations taken over a period surrounding the time of 

the maximum. The technique is usually described graphically but was 

set in mathematical terms by Matti Ranta9
• This idea was extended by 

this author 'O to find the altitude and its rate of change for any 

fixed time that the body was visible to the observer by observing 

the body over a period of about forty minutes surrounding the fixed 

time for which the observed position is required. The method 

described requires the smoothing of the observed altitude data and 

the fitting of a least squares function approximation which we then 

differentiate to find the rate of change. We tryout two sDOothlng 

techniques; we experiment with a least squares trigonometric 

approximation and with the least squares orthogonal polynomial 

approximations of Forsythe " . The least squares trigonometric 

approximations give the better results on the data used. 

In part 2 of this thesis we describe the D1rect Cubic Sp11ne. This 

is a variant of the familiar spline, used in a way that makes it 

particularly convenient for numerical integration. Its derivation 

will be found in chapter 10 with a more comprehensive error analysis 

than has appeared hitherto. We show that the direct cubic splins is 

a generalisation of Simpson's Rules which can be applied to compute 

the integral between any two ordinates and that the ordinates need 

not be evenly spaced. The method has been applied on many occasions 

in part one of the thesis, in particular, in chapter 3, to the 

computation of meridian distance on the surface of the spherOid, in 
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chapter 4 to the step by step solution of the great circle problem 

and, in chapter 5, to the step by step solution of the problem of 

navigating along the path of a geodesic curve on the surface of a 

spheroid. In part two there is also a discussion of some possible 

extensions of this idea to the higher order splines. The approach is 

descri bed in detail in chapter 11. lone of the algorithms for 

computing integrals using these direct higher order spline 

approximations produce very worthwhile results, however, with the 

exception of the quartic spline, used with a "borrowedw form for 

computing the Wmoments" , which is efficient and which has been used 

by this author when applied to certain problems in ship stability. 

For the time being, then, this is as far as we go. In particular 

<perhaps because of our own familiarity> we have found the Direct 

Cubic Spline ApproxiJllltion to be a useful tool in our researches, 

particularly when applied to the solution of numerical problems in 

navigation and we can only hope that what is written here will also 

be of use or of interest to others. 

This work began in collaboration with Professor J.E.Phythian before 

it was thought that I should enter a formal course for the Doctor of 

Philosophy degree. Professor Phythian then became my supervisor but, 

when he took up an academic post abroad, the direct supervision was 

taken over by Professor C.W.Clenshaw. I am greatly indebted to these 

two gentlemen for their meticulous reading, creative criticism and 

supporti ve suggestions. Thus encouraged, the work has, I believe, 

been undertaken and completed in a spirit of true philosophy. 
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PART ONE 

APPLICATIONS 
OF 

NUMERICAL METHODS 
IN 

NAVIGATION 



-~-

THE GEOMETRY 
OF 

THE EARTH 



1.1 THE SHAPE OF THE EARTH. 

In the study of Navigation the simplest approximation adopted for 

the shape of the Earth is a sphere. This is a reasonable 

approximation, if it is used consistently, and introduces no serious 

errors in most cases. There are, however, some surprises when 

shortest path curves are required, for example when we need to find 

the shortest path between two nearly antipodean points. <Antipodean 

points are points which lie at the opposite extremities of a 

diameter). For reasons such as this we require a better 

approximation to the shape of the Earth and the next simplest 

approximation is a regular oblate spheroid. Generally, a spheroid is 

simply defined as a "sphere-like" surface but the re8ular spherOid 

is generated by revolving an ellipse, whose eccentricity is small, 

around the minor axis. This axis coincides with the axis of 

revolution of the Earth. The poles of the Earth, whether it is 

coneidered to be a sphere or a spheroid, are found at the points 

where the axis of revolution cuts the surface. The poles are 

designated lorth (I) and South (S). An observer si ted above the 

North pole and looking down upon the surface would view the Earth to 

be rotating anticlockwise. See Figure 1.1. 

\ 
\ 
\ 
\ G' 

~ E 

FIGURE 1. 1 - THE EARTH AS A SPHERE. 
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In Figure 1.1 0 is the centre of the Earth and the equator (WGEG') 

is the circle on the surface of the Earth which is the locus of all 

points which are equidistant from both poles. The seDdcircle .GS is 

a meridian. A meridian is the curve of intersection with the Earth's 

surface of a plane through the axis of revolution. The equator 

bisects the meridians. 

The second approximation, the spheroid, is a better approximation 

to the shape of the Earth but it does make the computations in 

Navigation much more complicated. Indeed, for manual computations, 

it is often too difficult to assume anything else but that the Earth 

is a sphere. 

TheTe is some argument as to which si ngle spheroid best suits the 

Earth's shape. Slightly different values are assigned to flattening, 

f, of the different spheroids and the agencies responsible to 

different governments for surveying sometimes each adopt a distinct 

spheroid which, they feel, best suits the shape of the Earth as they 

recognise it. The flattening, f is given by 

a - b f = __ 
a 

where a is the length of the semi major axis of the selected 

generating ellipse and b is the length of its semi minor axis. 

It is a fact that, in different geographical locations, the surface 

of the Earth is better approxiuated locally by one spheroid than 

another and so, in effect, the Earth is best approximated by a 

sDooth union of different spheroids. The ocean basins, for instance, 

may each be fitted better by different spherOids although most books 

of nautical tables do stick to one spheroid which approxiDDtes the 

whole surface of the Earth. Globally, therefore, the Barth is alDOat 

invariably approximated by a re8ular spheroid, it ia in the science 

of surveying that more local refinements are needed and practised. 

Some examples of the values assigned to the eccentricity of the 

meridional ellipse of the Terrestial Spheroid aa determined at 
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different times and places can be found in the book by G.Bomford 14 

or in the publication known familiarly as " Bowditch" 12 the full 

title of which is THE AMERICAI PRACTICAL IAVIGATOR. 

On the surface of a spheroid the Equator and a meridian are defined 

in the same way as on the surface of a sphere. On the surface of a 

spheroid, however, whilst the Equator is still a circle, the 

meridians are ellipses. Instead of defining a spheroid by its 

flattening we more often (as we will here> define the spheroid by 

referring to the eccentricity of its meridtonal ellipses which are 

all identical in shape. The flattening, f, of the spheroid is 

related to the eccentricity, e, of its meridional ellipse by 

f = 1 - ./ (1-e2 ) 

We use the term "spheroid" because, in the case of the Earth, the 

eccentricity of the meridional ellipse is small (~ 0.08) and, hence, 

the surface is still "Sphere-like". In the case of other planets, 

such as Jupiter, where the eccentricity of the meridional ellipse is 

larger (a 0.3) then the surface is more aptly referred to as an 

Ellipsoid. 

1.2 DBFIIIIG POSITIOI 01 THE SURFACB OF THE SPHERICAL EARTH MDDEL. 

On the surface of a sphere a circle defined by the intersection of 

the sphere with a plane through its centre is known as a GREAT 

CIRCLB and the unique great circle whose plane is perpendicular to 

the axis of revolution of the Earth is known as the equator. Any 

other circle on the surface of a sphere which is not a great circle 

is called a SKALL CIRCLE. 

In the science of lavigation, where, in certain circumstances, the 

sphere is still often used as an approximation to the shape of the 

Earth, the position of a point is expressed in terms of its LATITUDB 

and LOIGITUDE. The latitude of all points on the equator is zero and 

the latitude of any other point P, on the surface of the sphere is 

defined by the ansle at the centre of the sphere subtended by the 
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arc of the meridian through P from the point P to the point where 

the meridian through P cuts the Equator. See Figure 1. 2. In the 

Figure, N is the North pole, 10 is the axis of revolution and E is 

the point where 'the meridian through P cuts the Equator. 

The angle _ is the LATITUDE of the point P . 

.. 

FIGURE 1.2 

E 

A particular meridian is selected for which the longitude is zero. 

On the surface of the Earth this meridian is the Greenwich Meridian 

- the meridian which passes through the Greenwich Observatory. The 

longitude, 9, then of any other point P on the surface of the sphere 

representing the Earth is the angle between the planes through the 

axis of revolution of the Barth one of which contains the Greenwich 

meridian and the other the meridian through the point P. See Figure 

1. 3. 

A circle on the surface of the sphere whose plane is parallel to the 

equatorial plane is known as a PARALLEL OF LATITUDB so called 

because all pOints on this circle are in the same latitude. Bxcept 

for the equator, parallels of latitude are SMALL circles. In Figure 

1.3 the arc PG'P' is a small circle. 
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I 

w B 

s FIGURE 1.3 

In navigation and in geography latitude and longitude are expressed 

in degrees and minutes - latitude as north or south of the equator 

and longitude as east or west of the Greenwich meridian. The ranges 

are 

900S , ~, 9001 

1800 W < e , 1800 B 

To give a matheJllltical treatDent to the methods in lavigation we 

should express the angles in radians and, preferably, in the ranges 

and 

-l6n , ~ ( I6n 

o ,e, 2x 

(North Posi ti ve) 

(East Positive) 

Distances on the surface of a sphere or a spheroid are expressed in 

a natural way in units of the length of one minute of arc of the 

Equator. The accepted value for. this unit is 6087.2 feet or 1852 

metres. This unit is known as the Geographical lile and we will use 

it throughout in our treatment of navigational _thods. There 1s 

another "mile" which is sometimes referred to as the "Iautical 
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Mile". This mile is a standard mile of 6060 feet and is the 

approximate length of one minute of arc of the meridian in the 

vicinity of Southern England. Some confusion has arisen in practice 

at sea because dtstances computed from engine revolutions or rotator 

logs have not been consistent. The errors have, however, been small 

and negligible in most cases. 

1.3 DBFINIIG POSITION 01 THE SURFACE OF THE SPHEROIDAL EARTH MODEL. 

Let the surface of the Earth be modelled by a regular spherOid 

whose meridians are a family of elUpses of the same eccentricity 

and which share a CODJDOn minor axis. At a point P on this surface 

the angle su btended at the centre of the Earth by the arc of the 

meridian through P from the equator to P 1s the GEOCENTRIC LATITUDB. 

At the same point P the angle at which the normal to the meridian at 

P cuts the equatorial plane is the GEODETIC LATITUDB. See 

Figure 1. 4. 

I 
I __ I P 

~ I I "-

" I 
:~/~ 

o 

FIGURE 1.4 

E 

In the Figure 1.4 : 

_ is the GBOCBITRIC latitude 

1 is the GEODBTIC latitude and 

_ and 'I are connected by 

tan _ = (1 - e2 )tan 1 

Where e is the eccentricity of 

the meridional ellipse. 

The longitude of a point P is expressed in the saDS way as on the 

surface of a sphere. 

On the surface of a regular spheroid the Geodetic Latitude is also 

the Astronomical (Geographical) Latitude. The Geodetic Latitude is 

the term used by the surveyor. In local conditions such as 

mountainous regions, where abnormal gravitational effects upon a 

plumb line may be observed the normal to the surface is considered 

to lie along this plumb line. On the side of a mountain ,therefore, 

- 15-



a geographer, who is using a global approximation to the surface of 

the Earth, may find a slightly different value for the latitude of a 

particular point than the surveyor who is considering a local 

approximation to the same surface. For a complete discussion of this 

one should read the books by Cotter 13 and BoDford 14 • However, in 

Navigation we confine ourselves to computations on the surface of a 

regular spheroid which is a global approximation to the surface of 

the Earth. 
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NAVIGATING ALONG 
A LOXODROMIC CURVE ON THE 

SURFACE OF A SPHERE 



2.1 INTRODUCTION. 

The science of navigation, although it is a numerical science, is 

presented in the reference texts in a manner which tends to be 

empirical rather than analytical. There is 11 tUe evidence of 

mathematical rigour and little use is made of the techniques of the 

calculus. It is the purpose in this chapter, therefore. to analyse 

the methods of computation used in navigation by relating them to 

the results obtained by considering the differential geometry of the 

sphere and thereby to prove the forlllJlae that are in cOlDllOn use. 

Some of these results and proofs can be found scattered through the 

pages of books on differential geometry but not always in a concise 

or complete form in books on navigation. 

2.2 THE LOXODROXIC CURVE. 

A LOXODROMB, known IIDre familiarly to seafaring Navigators as a 

RHUMB LIN!, is a curve on a surface of revolution which cuts all the 

meridians at the same angle. 

I 

s 

FIGURE 2.1 
A LOXODROJfE Olf THE 
SURFACE OF A SPHERE. 

Figure 2.1 shows a loxodrome on the surface of a sphere which cut. 

the meridians at an angle a. To the seafaring lavigator it is a line 

of constant course and there are obvious reasons why it is d •• irabl. 

to cross the Oceans on such a line rather than to take the short •• t 
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route which would be the first choice in most circumstances. Weather 

conditions are one such reason why a navigator might choose not to 

follow the shortest route to his destination and the flow of the 

Ocean currents are another. If we consider the particular example of 

the North Atlantic Ocean, for instance; from the Gulf of Xexico to 

the Western Approaches of the British Isles we have the "Gulf 

Stream" which is a flow of warm water between the tropics and cooler 

northern climes. This current of water closely follows the great 

circle path so that any traffic from the UK or lorthern Europe 

headed out from the English Channel to Borth American or the 

Caribbean Islands will oppose this current for a large part of the 

journey. It turns out that, on the direct route to the Caribbean 

Islands, in order to avoid the Gulf Stream, most ships will follow 

one constant course once they have cleared the English Channel even 

though this path will be longer in distance. In winter this has the 

added advantage that the ship will JllQke quicker progress to the 

sduth and thus clear the stormy regions earlier. Ocean Routing is a 

sub branch of the science of Javigation which studies these matters 

in detail. 

The loxodrome is an endless curve of finite length which, for every 

value of a: 0 < a < "/ 2 ,spirals to end liDit point at the pole. 

When a = "lA , for instance, the length of the loxodrome from any 

1nl tial polnt on the Equator to the pole ls, for the spherical 

model, 

an ,/2 
2 

where a is the radius of the sphere. <See Lipechutz'S). 

2.3 STEREOGRAPHIC PROJECTIOI OF A LOXODROMIC CURVB. 

In general, under the Stereographlc Projection, a point P on the 

surface of a sphere is projected onto a tangent plane. The source of 

the projection is the point which is the antipode of the point of 

tangency. <Two points on the surface of a sphere are antipodes to 

each other when they lie at the opposite ends of the same diameter>. 
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The stereographic proj ection is a conformal mapping and, in the 

stereographic projection of the Terrestial Sphere onto a polar 

plane, (a plane tangent to the pole) where the source of the 

projection is the opposite pole, the image of a loxodrome is an 

equiangular spiral. This is because, under the projection, angles 

are preserved and this is the one single and cODlJlOn property by 

which both curves can be defined. Figure 2.1 shows the projection 

from the South Pole, under the stereographic projection, of a point 

P on the surface of the Terrestial Sphere to the point pI in the 

plane tangent to the Borth Pole. 

N r 

/' 
./ 

I I ./ 

IL--
o 
I / 

I / 
I I 

/ a 

S 

./ 

/ 
/ 

I 

---I 
I 

/ 

I 
I 

P' 

FIGURE 2.2 

STEREOGRAPHIC PROJECTION. 

The stereographic projection is often used to map the Barth's polar 

regions. The meridians on the surface of the sphere are' projected 

into the radial lines (in the polar plane) which are the 

intersections of the polar plane with the planes containing the 

meridians. If the initial line (9=0) of polar coordinates in the 

polar plane corresponds with the Greenwich Xeridian then the 

longitude on the surface of the Terrestial Sphere corresponds to the 

angular coordinate in the polar plane. SiDple considerations of 
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geometry in Figure 2.2 show that the radius, r, in the polar plane 

of the point P' from the pole, I, is given by 

...... (2.1> 

where a is the radius of the Terrestial Sphere and, is the latitude 

of the point P. 

The stereographic projection of the surface of a sphere onto a 

tangent plane is a conformal mapping which can be defined 

analytically (Struick 16
). We now show geometrically how angles are 

preserved under the stereographic projection of the surface of a 

sphere onto the polar plane. We can use the essential geometrical 

features to show that, in a similar Danner, we can project the 

surface of a spheroid onto the polar planei this is also a conformal 

mapping. 

T T' S 

FIGURE 2.3 

p 

The tangent plane to the sphere at point P cuts the polar plane in a 

line through the point T in the polar plane. This line (TS in Figure 

2.3) is at right angles to the plane of the meridian through P on 

the sphere and also at right angles to the projection of this 

meridian in the polar plane. From Figure 2.2 above we can deduce 

that the triangle PTP', which lies in the plane of the lI8ridian 

through P, is isosceles so that PT = P'T. This ls a consequence of 

the fact that the angles TPP' and TP'P are both equal to w/ 4 + ,/2. 

The tangent at P to the loxodrome lies in the tangent plane through 

P. Let this tangent cut the polar plane in T'. Clearly, the point T' 

lies on the line TS. See Figure 2.3. 
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Let the angle at P in the triangle TPT' (Figure 2.3) be ex. If we 

consider the triangles PTT' and P'TT' then they are congruent since 

both are right angled at T, the side TT' is commmon and PT = PT' as 

we have seen. Hence the angle at P' in triangle P'TT' is equal to ex 

also. This is a general result because the tangent PT' could be the 

tangent to any curve on the surface of the sphere through the point 

P. 

This geometric proof can, of course, be applied just as well for a 

point P in the Southern Hemisphere. 

Conversely, it can be deduced from the foregoing that the above 

projection of the surface of the sphere is a conformal mapping if, 

and only if, the triangle PTP' in Figure 2.2(i) is isoceles. In the 

proj ection of the surface of the spheroid onto its polar plane we 

can therefore make the mapping conformal if the equivalent of the 

triangle PTP' is also isosceles. This mapping is described in 

Chapter 3. 

Under the stereographic projection of the surface of the sphere onto 

the polar plane, the equation of the image of the loxodrome in polar 

coordinates is 

r = ro exp[-(9 - 90 } cot exl ...... (2.2) 

are the coordinates of the projection of some 

initial point Po on the 10xodroDe and ex is the angle at which the 

loxodrome cuts the meridians on the surface of the sphere. 

To prove this let At be an element of the image of the loxodrome in 

the polar plane. Since angles are preserved under the stereographic 

projection then the angle, a, at which the loxodroDl! cuts the 

meridians must be the same angle at which the image of the loxodrome 

cuts the radial lines in the polar plane. 

Figure 2.5 shows an element of the image of the 10xodroDe in the 

polar plane. Since the loxodrome is directed towards the pole then 

so is its image and, hence, corresponding to the eleDent 6S of the 
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loxodrome, we have 61: (=PR> (triangle PQR - Figure 2.5>. Also in 

Figure 2.5 we have r.6e (=PQ> along the arc of the circle 

r = constant 

and -6r (=QR) along the radial line e = constant. 

FIGURE 2.5 

AN ELElfENT OF THE IllAGE OF A LOXODROIIB. 

From the triangle PQR <Figure 2.5) we see that 

tan a !I - ~ 
Ar 

And, in the limit as 61: ~ 0 we have 

dr 
r 

= - cot a de 

Integrating from an initial point Po where r=ro and 8=80 we find 

In r - In ro = - cot a <9 - 90> 

which gives r = ro exp[-<9 - 80)cot a] as required. 
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2.4 NAVIGATING ALOIG THB PATH OF A LOXODROKB 01 THB SURFACE OF A 
SPHBRB. 

Let us consider that the Earth is a sphere on which the position of 

a point P is determined by its latitude, ~, and its longitude, 9, 

where ~ and 9 are measured in radians. If a is the radius of the 

Earth then the distance along the Deridian from the Equator to P is 

a~ and the distance along the parallel of !at! tude from the 

Greenwich Keridian to P is a9 cos I. See Figure 2.6 where B is the 

Borth Pole, IG is an arc of the Greenwich Keridian, GB is an arc of 

the Equator and PG' is an arc of the parallel of latitude through P. 

PK, the perpendicular from P to the axis of revolution is the radius 

of the parallel of latitude and PK = a COB I. 

G' 

G 

I 

K 

o 
I 

I 
/ 

a cos 1 -- ---

./ 
/' 

" ./ 

FIGURE 2.6 

B 

Let a be the radius of the Earth. The distance between two points 

p, and P2 on the same meridian whose latitudes are I, and 12, 

respectively, and which is equal to a<'2 - ,,) <12 > ,,) ia known 

as the DIFFERBICE OF LATITUDB. The difference of latitude i., in 

fact, the angle '2 -" expressed in minutes. 

Similarly, the distance along the equator between the feet of the 

meridians through two points p, and P2 whose longitudea are 9, and 
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92. respectively. and which is equal to a(92 - 9,) (92 > 9,) is 

known as the DIFFEREICE OF LOIGITUDE. The difference of longitude is 

the angle 92 - 9, expressed in minutes. 

If we now consider a small element of length 68 of a 10xodroE 

through P which cuts the Eridians at an angle a then 1::.1 is the 

small increEnt in the latitude and A9 is the small increment in the 

longi tude which results from DDving the small distance 68. 

Corresponding to this element As we have a triangle PQR (Figure 2.7> 

in which PQ (= As) is along the arc of the loxodroDe. QR (= a 1::._> 

is along the meridian through Q and R and PR (= a cos I 1::.9) ls along 

the parallel of latitude through P. The angle at P ls equal to a . 

Q 

M FIGURE 2.7 

A SJlALL ELE/fEIT ~s OF THE LOXODROllB. 

P a cos _ A9 R 

In the limit as I::.s of 0 the triangle PQR beCOES a right angled 

triangle in which 

PQ = ds PR = a cos I d9 and 

It is from this triangle that we deduce the formulae that are 

relevant to an observer travelling along the path of a loxodrome. 
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2.5 THE MBRCATOR PROJBCTIOI. 

The Xercator Projection is so called because it was introduced by 

Gerhard Mercator early in the 17th century. According to Bowditch14 , 

Xercator constructed his chart purely to satisfy the needs of the 

sea-going navigator who needed a chart on which hi. line of constant 

course (his "Rhumb Line") would be a straight lin •. 

On the surface of a sphere, along a parallel where the latitude is 

~, the ratio of the length of one minute of arc of the meridian to 

the length of one minute of longitude along the parallel is 

sec, I 1 . 

If, then, the surface of the sphere is mapped onto another surface 

so that this ratio is preserved and, at the same time, the images of 

the meridians and parallels of latitude are also orthogonal then the 

angle of the rhumb line (loxodrome) will also be preserved. 

Mercator achieved this by mapping the surface of the sphere onto the 

surface of an infinite cylinder, coaxial with the sphere and of the 

saDe radius. Under this mapping, the meridians on the surface of the 

sphere are mapped into the meridians on the surface of the cylinder 

<which are straight parallel lines> and the parallels of latitude on 

the sphere are mapped into circles of equal radius on the surface of 

the cylinder. These circles are contained in planes perpendicular to 

the meridians. The length of arc of one minute of longitude is then 

constant on the surface of the cylinder. When the latitude i. " 

therefore, the length of image on the cylinder of one minute of arc 

of the Deridian on the sphere in units of the length of one minute 

of longitude on the cylinder must be equal to sec , . 

These image .lements on the surface of the cylinder of the minut •• 

of arc of the meridian on the surface of the sphere became known as 

"XBRIDIOIAL PARTs". The first table of meridional parts was compiled 

by Bdward Certaine in 1599 and it was froD this table of meridional 

parts that Xercator constructed his chart. 
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Considerlng that Certaine compiled his table in the days before 

Leibniz or Newton we must assume that the entries in his table were 

computed in a manner similar to the following: 

When the latitude is In and n is the number of minutes of arc, then, 

if X<ln> is the sum of the meridional parts, we find 

n 
X<_n> = E sec _, 

i=1 

The mapping that Xercator would then have used to construct his 

chart would have been defined by 

n 
E sec I, 

i=1 
9 ~ 9 

In modern term, if 

finer mesh so that 

we subdivide the maridian of the sphere by a 

~, - 1,-1 = h and let h~O then we find: 

1 
1<_> = ~ sec u du 

o 
. . .. .. (2.3) 

and the Xercator projection of the surface of the sphere onto the 

surface of the cylinder is given by 

I 4 sec u du 
o 

9 ~ 9 

so that, on the chart, <which ia the cylinder ·unrolled·) the 

meridians are Dapped into parallel lines and a loxdrome ia mapped 

into a sraight line which cuts the mappings of the meridian. at the 

same constant angle as the loxodrome i tseU cut. the meridians on 

the surface of the sphere. Figure 2.8 is an illustration of a 

Kercator chart. 



~------~------~-------+--------W50·N 

~------~------;-------4-------~40·N 

~------~------~-------+--------ft30·N 

s·w 

F lOUD 2. 8 - A IIBRCATOR CHART 
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The Jlercator projection is sometimes referred to as a "cylindrical 

projection" which can be misleading, for, although the Xercator 

projection ls the mapping of the surface of a sphere onto the 

surface of the infinite coaxial cylinder of the same radius, hW 

cannot present tbls ~ppin8 visually. Tbe Cylindrical Projection is 

the particular projection which is the mapping of the surface of a 

sphere onto the surface of the same infinite coaxial cylinder as the 

Mercator projection but defined by the mapping 

_ of a tan _ 9 ... e 

2.6 METHODS OF COMPUTATIOI 11 MERCATOR SAILIIG. 

The navigational formula which are derived for calculating the 

components of the right angled triangles defined by the intersection 

of a loxodrome with the meridians and the parallel. of latitude are 

collectively known as the foraulae for JlBRCATOR SAJLJIG. 

From the limiting forD of triangle PQR in Figure 2.7, we find 

= tan a 

Separating the variables gives 

a d9 = (tan a) a sec I dl 

where it will be noticed that we have not cancelled a froD both 

sides of the equation. 

If the observer has travelled along the path 01 the loxodrome fro. 

the point Po (longitude 90, latitude 10) to the point P1 (longitud. 

8" latitude _1) we integrate to find 

11 
a(91 - 90) = ( ~ a sec 1 dl ) tan a 

10 
. . . . .. (2.4) 

This equation - (2.4) - is fundamental -for a ship sailing along tbe 

arc of a loxodrome. 
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The expression aC8, - 90 ) 

is the DIFFEREICB OF LOIGITUDB between Po and p, and is 

conventionally measured in minutes. The abbreviation for the 

difference of longitude "is D'LO.G. 

For a point P, where the latitude is " we also define the function 

MC,) : 

-= a + sec u du = (2.5) 
o 

The function, M(,>, is known as the IBRIDIOIAL PARTS of the point P 

being a function of the latitude, ,. This is the distance frOD the 

Equator to the image of the point P in Kercator's Projection. 

Meridional Parts are expressed in units of the length of one minute 

of arc of the Bquator. In lautical Table., lIeridional Parts are 

tabulated for each one minute of arc of the meridian and, even until 

the middle of the twentieth century, this tabulation was for the 

sphere. On a Kercator chart at the parallel where the latitude is _ 

the ratio of the scale of longitude to the scale of laU tude is 

locally 1 sec , . The integral , , It, sec, d, , ... 
is the DIFFBRBICB OF IERIDIOIAL PARTS and, iD DavigatioDal DotatioD, 

ls abbreviated to D'XP. In navigational DotatioD, therefor.,.quation 

<2.4> ls written 

D'LOIG = D'XP x TAI(Couree> ...... (2.6> 

To compute the distance, 8, froD Po to p, along the arc of the 

loxodrome we use triaDgle PQR to find 

ds = a sec O! d, 

then we hav., OD integratioD 

...... (2.7) 
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As we saw, the quantity a(_l - 10> is the difference of latitude 

measured in minutes and, in navigational notation is abbreviated to 

D'LAT 60 that equation (2.7) is written in the fora 

DISTAICB = D'LAT x SBC(Course> 

Distance cannot, in general. be Deasured directly between two point. 

on a Mercator chart but, locally, a good approximation can be 

obtained. This can be seen by noting that, using the Dean value 

theorem, D'RP may be written as 

where Im is BODe value of _ such that '0 < , .. < , 1 • 

When a <, 1 - '0) = 1 the length of the image of one Jlinute of 

lati tude is aeen to be sec ,.... We find, however, that ,in the 

li.it. as '1 ~ 10 the image length of one geographical Jlile along 

the meridian is equal to sec '0 . At the .a .. tiDe the image length 

of one Jlile along the parallel of laU tude '-'0 is also equal to 

sec , ... 

2.6 BXARPLBS OF CALCULATIOIS USIIG XBRCATOI SAILIIG. 

The navigator uses tha method of Xercator Sailing in two ways - to 

calculate the final poSition, Pl. after saUing a given distance 

along the arc of a loxodroaa froJl a point Po or to find the course 

and distance made good between two observed positions, Po and P,. 
Tbe _tbod is reduced to tbe 8imple application' of plane 

trigono_try to tb. rigbt angled triangle. for_d by the 

intersection of tbe 10xodroDe with tbe _ridiaD through Po and 

parallel of latitude tbrough P, shown in Figures 2.9(i) and 2.9(11). 

Figure 2. 9 (11) is a triangle on tbe surface of the sphere and 

Figure 2.9 <i) la a triangle on the surface of the coaxial cylinder. 

An example of each of the •• calculation. followa. 
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D'LONG P, DBPARTURB P, 

D'MP D'LAT 

FIGURE 2.9(1) FIGURE 2.9(11) 

EXAMPLE 1. At noon on one day the observer' e poei t 1 on was 31 °4~' I 

32°35' E and on the next day at noon the position was 360 30' I 

40~20'E. Find the course and distance made good in the twenty four 

hour period and the average speed for the day. 

Fro. nautical tables we find the values of the _ridlonal parts 

function 11(1) : 

11(36°30'1) 2355.19 

11(310 45'.) 2010.72 

D'XP 344.47 

Pinal Longitude 40°20' 

Initial Longitude 32°35' 

D'LoDS 7°45' (= 465 ~nutes of arc) 

Fro. equation (2.4> or (2.6) and Pigure 2.7(i) 

Tan a = D'LOIG 

D'JO' 

Pinal LaU tuda 

lDi Ual LaU tude 

D'LAT 

= 
465 = --

344.47 

360 30,,00' 

31°45.00' 

1.3498998 

40 45.00' (= 285 ~Dute. of arc) 
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From equation (2.7) 

S : a(~, - ~o) sec a : 478.79 

COURSE: 053-28.1' . DISTAICE : 478.79 SPIED: 19.95 knots. 

EXAIPLE 2. An observer in position 30°00'1 300 00'S travels a 

distance of 500 nautical .Ues along a 10xodroJIB on a course of 

045Q
• Find the final position. 

From equation (2.1) we find ths D'LAT (: a(_, - _0)] 

D'lAT s s cos a = 500 . cos 450 = 353.55 ~nut.s of arc 

On a course of 0450 the obaarver increa.e. latitude and 80 tbe 

Difference of Latitude is lorthward 

Initial latitude 30°00' 

D'Lat + 5°53.55' 

Pinal Latitude 350 53.55' 

Pro. lautical Tables we find 

so that 

1 (35°53 . 55' ) 

1(30°00.00') 

D'JIP 

2309.47 

1888.38 

421.09 

Prom equation (2.4) or <2.&) we now find 

D'lOIO • D'XP tan 450 

bence D'LOIG = 421.09 .inute. of arc. 
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On a course of 0450 the observer increases the longitude to the Bast 

so that we add the difference of longitude 

Initial Longitude 

D'Long 

Pinal Longitude 

FIIAL POSITIOR 

30"'00.00' 

7 0 01. 09' 

37 0 01. 09' 

There is, of course, no need to perform theBe computations tbis way 

in this day and age since we have cOllPllttng devices which _ke 

redundant the need to keep tables. The integral in equation (2.3) is 

a standard integral and does integrate exactly to a form whicb can 

be computed easily. However, as another consequence of tbe 

availability of the computer we no longer use the spberical 

approximations and concentrate .are on tbe performing tbe eame 

computations on the surface of the Spheroidal Bartb. 

It is interesting to note that the set of lorie's lautlcal Tables'? 

that were used to complete the above computation are a set publiehed 

in 1948 and give tables of Xeridional parts for both the sphere and 

the spheroid and that the table for Meridional Parts for the sphere 

is given preference where one would have thought the more accurate 

version for the spheroid would have bad pride of place. 

In the first set of Jorie' 8 Jautical Tables'· that the author 

acquired as an officer cadet iD 1954 (and whicb were published in 

1954) there i. only one table of Xeridional Parts - that for tb. 

Terrestial Spheroid. 

Inman's Rautical Tables" of 1952 give a table of larldional Parte 

for the sphere with a footnote explaining that the larldional Parte 

for the spheroid can be obtained by enteri ng the table with the 

"reduced" latitude. 
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2.6 MIDDLE LATITUDE SAILIIG. 

On the surface of a sphere Middle Lati tude Sa11i ng is a .. thod of 

computing course and distance along the arc of a loxodroma without 

involving Mercator's Projection. On a surface of a spheroid, 

however, Middle Latitude sailing cannot be used independently 

although the method is still docuDented. 

Consider, once again, an observer travelling along a loxodro. on 

course a on the surface of a sphere. We have, at a point P on the 

loxodrome where the latitude is _ and the longitude is 9, the 

differential triangle PQR (Figure 2.7) where a ie the equatorial 

radius of the Earth and s is the arc length along the loxodro... The 

angles are measured in radians and the distances in the unit of one 

minute of arc of the Bquator. 

In the triangle PQR the side PQ is along the tangent to the 

loxodrome at P, the side QR is along the tangent to the .ridian and 

the departure, PR (= d>. say) which ie along the tangent to the 

parallel of latitude, is given by 

d>' = a cos I d9 . 

Thu8 when the observer travels along the loxodro.. fro. a point Po 
<latitude 1o, longtlude 90 > to the point Pn (latitude _n, longitude 

9n > then the departure made good, >., ie given by 

,,9n 
>. = a '1 cos I d9 

9 0 

(2.7> 

Departure i. the length of the aide oppoaite to the cour .. angle, a, 

in Figure 2.Q(ii). 

low I is a function of 9 and, indeed, they are related by the 

equaUon 
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.. (2.8) 

Tbis equation, (2.'8) can be deduced from equations <2.1) and (2.2). 

It is difficult from this relatlonship to ezpress 1 explicitly in 

terms of 9 and perform tbe integration in equation (2.7) so we 

proceed wit bou t doi ng so. Since cos _ is posi ti ve and a Iso 

decreasing in the interval [0."/21, we can apply the Second Rean 

Value Theorem for Integrals through whlch we find that for some 

value X of 1 such that ,.". , )( , _n 
we have 

9n 
). = a cos )( i d9 

90 

or ~ = a(9,., - 90 > cos )( ...... (2.9) 

This is saying that 

DBPARTURB = D'LOIG x IlEA. OF COS LAT I 
whereas, in common parlance, this forDUla i8 often quoted a8 

DBPARTURB = D'LOIG x COS OF IBA! LAT 

and even applied that way. 

Strictly speaking of course, COS)( is not the .. an of C08 _ when 

but, rather, sane value of cos , which eatisfies 

equation <2. g). In the case of a sphere, however, if we use the 

simple form of the mean value we find that 

cos )( = 
In t cos , dl 
10 

and that, over short distances, the error in 80 dolDS i. Dot 

serious. Hence, fro. equation (2.9) we find 
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or a(9" - 90) 
X = (sin _" - sin _0) . . . . .. (2.10) 

(_" - _0) 

and this 1s a fairly simple formula from which to cODpute departure 

on the surface of a sphere. 

As an example let us compute the course and distance made good 

between the points Po (31°45', 32°35' E) and Pn (36°30" 40°20' E) 

making use of the above formula (4) and also by the method of 

Kercator Sailing to compare the results. 

Frail the Middle Latitude Sal ling method we find 

Course Made Good = 053-28.6' Distance = 478.86 

and from Mercator Sailing we find 

Course Made Good = 053-28.1' Distance = 478.79 

The value used for the radius of ths Barth in both ca.s. was 

a = 3437.7468 geographical .ilea. 

Over longer distances such as the passage acro •• an ocean, equation 

(2.10) is not accurat. enough and we laI.t then u •• 60_ nu_rical 

method to evaluate the integral in squation (2.7> •• prasaing , in 

terms of 9 by equation (2.8). 
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-3-

NAVLGA7'LNG ALONG 
A LOXODROMIC CURVE ON THE 

S{.TRFACE OF A SF-RENOL D 



3.1 IRTRODUCTIOI. 

The shape of the Earth is better approximnted by a regular spheroid 

rather than a sphere by which we !lean, in this case, a spheroid 

which is a surface of revolution generated by revolving an ellipse 

about its minor axis. On su~h a surface the meridians are ellipses. 

The eccentricity of the meridians is small (~ 0.08) and there is no 

general agreement as to which exact value is the "best" value to 

effect a global fit of this surface to the surface of the Earth. For 

a mathematical treatment of the methods of navigating along a 

loxodromic curve on the surface of a spherOid it does not really 

matter which precise value we use. We will use the letter "e· to 

denote the eccentricity and, where nU!lerical results are required, 

we will use the value e = 0.08227 which is the value (attributed 

to Clar-ke> computed in 1666 from survey data gathered in Jorth and 

Central America and Greenland. This particular value was chosen 

because this author became faDiliar with it through using the 

"American Practical lavigator" 12. 

Despite the fact that the knowledge that the Earth is ellipsoidal in 

shape and not spherical has long been well known it has not even yet 

been fully embraced in the science of lavigation. In this chapter we 

will review the work done in recent years. 

3.2 COKPUTIIG THB LEIGTH OF A KBRIDIAI 01 TRB SURFACE OF A SPHEROID. 

I 

E 

FIGURE 3.1 

SBCTIOJ( OF A SPHEROID l' THE PLAJlE 

OF A 1fERIDIAlf. 
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Let us suppose that the 8arth is a regular spheroid and that the 

eccentricity of the meridional ellipse is e. Figure 3.1 shows part 

of the section of the spheroid in the plane of a meridian. In Figure 

3.1 the centre of the spheroid is at 0 and I is the lorth Pole. OB 

(= a) is the Equatorial radius. At the point P the geocentric 

latitude is , and the geodetic latitude is 1. 1 and, are connected 

by 

(1 - e2 )tan 1 = tan, ...•.. (3.1> 

The radius, ap , (= OP in Figure 3.1> of the spheroid at point P is 

given by 

I 1 - e 2 

Sp = a . . . . .. (3.2) 
1 - e 2 c082 , 

where a is the equatorial radius of the spheroid. This can be seen 

from elementary consideration of the geometry of the ellipse. 

Let 6~ (= PR in Figure 3.2) be an s.all element of the meridian at 

P. In the triangle PQR of Figure 3.2 PQ i. the arc of a circle of 

radius ap centred at the centre of the spheroid and we have 

PQ = ap 6, . The angle QPR i& <1-') which is the angls between the 

normal at P and the radi us of the spherOid at P. In the lilli t as 

6". ... 0 the triangle PQR ia a right angled triangle with the right 

angle at Q and we find 

p 

FIGURE 3.2 

The length of the meridian, therefore, fro. the Bquator to the point 

P (wbere the latitude is 'p) is given by L(,p> and the funotional 

notation L<,> is used to denote the Length of the .. ridian fro. the 
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equator to the point on the meridian where the latitude is 1. We 

find then 

. . . . .. (3.3) 

Since the latitude of the point P on the terresUal spheroid is 

expressed forully as a geodetic latitude then the integral (3.3) 

must also be expressed in terDe of the geodetic latitude. 

If we use equation (3.1) to find 1 in terms of I and differentiate 

to find d1 in terms of d1 then, after Bome manipulation, the 

integral (3.3> becomes 

. . . . .. (3.4> 

so that when the geodetic laU tude of the poi nt P is 1,.. then the 

distance along the meridian froD the Equator to P is given by L(1p) 

in equation (3.4). 

As an analogy with Meridional Parts we have called this function 

value L(1,..) the LATITUDB PARTS at the point P. In the past it has 

been the pracUce to compute the length of the meridian on the 

surface of the Terestial Spheroid by computing the number of Dinutes 

of arc in the Difference of Geodetic Latitude and declaring this to 

be the length of arc in Geographical Xile.. Indeed, even now, none 

of the standard text books recollll8Dd anythi ng different but .imple 

numerical mathods such as the Direct Cubic Spl1na (which we will 

describe in Part 2 of this the.is) can give the value of the 

integral (3.4) in geographical mil.s correct to two decimal place. 

when the step length of the procedure is as much a8 50. A table of 

LATITUDE PARTS was computed by the author20 , and i. ShOWD in 

Appendix 2. The computation is based ~n the Clarke (18ee) spheroid 

where the eccentricity, e, of the _ridional elliptle t. taken a. 

0.08227. The paper, detailing the method of co~tation of Latitude 

- 3Q-



Parts, was published by the Journal of lavigation. At that time it 

was still the practice at sea to compute manually but now it is 

clear that with a modern small PC the values of the integral (3.4) 

can be computed directly as a subroutine in a computer programme 

while solving the general problem of navigating along a loxodromic 

curve. Other papers have peen published along the same theJl8. In 

1948 D.H.Sadler21 and then in 1950 J.E.D.WilliaJlS2 .2 both published 

works which recommended a more accurate solution to the problem of 

computing the course and distance along the arc of a loxodromic 

curve between two points on the surface of a spheroid. Both of these 

authors each recommended and produced a table of correctione to be 

applied to the Difference of Latitude between two points on a 

meridian, when the Difference of Latitude is expressed in minutes of 

arc, in order to find the actual distance along the Jl8ridian between 

the two points in geographical miles. Implicit in their approach was 

the fact that the computations would be perfor_d manually. After 

the publication of the Table of LaU tude Parts by the author:Zo , 

Hairawa23 acknowledged the introduction of the term "Latitude Parts" 

and published his own table for the Bessel spheroid for which the 

eccentricity of the meridional ell ipse is 0.081697 . This is the 

spheroid computed by Bessel based on survey data collected in China, 

Korea and Japan. 

Since the total length of arc of the meridian from the equator to 

the pole is ,in the Bessel spheroid, 5390.9& geographical miles 

while the distance from the equator to the pole in the sphere with 

tbe same radius <3437.7468 geographical miles) is 5400 geographical 

miles, one migbt be tempted to assume that the error per degree of 

lat! tu de is only about 0.1 geographical miles but the form of the 

meridian is, in fact, such that, from the Equator up to latitude 

approximately 550
, the length of one minute of arc of the .. ridien 

is less than one geographical Bdl. and, above latitude approxi.ately 

55Q to the Pole, the length of one minute of arc of the meridian is 

greater than one geographical mile. To the sea-going navigator this 

is important since DOst cODlJll8rcial activity lies within latitude. 

55°1 and 45°S. The error in using the Difference of Latitude inetead 
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of Latitude Parts is therefore n~arly always in the sa.a sanse. On 

the surface of the Clarke spheroid, for instance, where the 

eccentricity e=0.08227 approximately, the distance from the Equator 

to a point P where the geodetic latitude is 1° is equal to 59.56 

geographical miles correct to two decimal places. The difference of 

laU tude in minutes of arc would approximate this distance as 60 

geographical miles - an error of 0.44 geographical miles and DUch 

greater than the average. 

3.3 THE MBRCATOR PROJBCTIOI OF THB SURFACB OF A SPHEROID. 

The projection favoured by lavigators for drawing charts is the 

Kercator Projection. This projection was discussed in Chapter 2 with 

reference to the sphere. In a similar manner the surface of the 

spheroid is prdjected onto a cylinder whose radius is equal to the 

equatorial radius of the spheroid and whose axis coincides with the 

axis of revolution of the spheroid. For the spheroid the mapping is 

defined by the equations 

I 
I ~ ~ ap sec(1-_> sec I d_ 

o 
e ~ e 

The lercator Projection of the surface of the spheroid onto the 

coaxial cylinder of the same radius as the spheroid i. a conformsl 

mapping in which the length of one minute of arc of longitude is 

constant and angles are preserved. The parallels of latitude on the 

surface of the spheroid are transformed into circles on the surface 

of the cylinder but they are all of radius equal to the Bquator and 

contained in parallel planes. The Xeridians of the Spheroid 

transform into the meridians of the cylinder and, of course, they 

cut the images of the parallels of latitude at right angle •. 

Let ds be the differential element along the arc of the lozodrome 

on the surface of the spheroid between the points P and Q which 

cuts the meridians at a consta~t angle a. See Figure 3.3. 



FIGURE 3.3 

P apcos _ de R 

Corresponding to ds. the distance (PR) along the meridian through 

P to the parallel of geocentric laU tude <QR) ie apsec (t--) d_ 

(as determined in section 3.2) and the distance <QR) along the 

parallel where the geocentric latitude ie _ ie apcoa _ d9 . Th .... 

by ele.antary considerations of trigonometry. 

tan a = a"cos _ de 

a"seo('I-_) d_ 
• . • ••• <3.5) 

We find that the differential (a de) of the Difference of Longitude 

(D'LOIG) to be 

a d9 = (tan a) a sec <t--) sec , d_ ...... <3. e) 

If we now consider that an observer has travelled along the 

loxodrome froD the Equator where _=0 and 9=80 to a point P where 

_=_p and e=8
p 

then we find by integrating equation (3.e) 

If. therefore. we Bap the point P whose geocentric latitude ie ,p 
onto the eurface of the cylinder 80 that the distance. K(,p), along 

the meridian from the Equator to the image of P is given by 

hence 

...... (3.8) 
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We see then that, under the transformation 

9 ~ 8 

the angle a is preserved and that the mapping is conforaal. 

3.4 COKPUTATIOI OF KERIDIOIAL PARTS. 

The length of one minute of arc of latitude on the surface of the 

cylinder varies as a function of latitude and, for a given value of 

the geodetic latitude, 1, on the surface of the spheroid, the 

distance, along the meridian on the surface of the cylinder is 

given by )(1>, the JlBRIDIOIAL PARTS for the geodetic latitude 1 

determined below. In nautical tables the meridional parts are 

expressed in units of the length of one minute of arc of the 

equator. 

The image of the loxodroJDe under the I.rcator Projection is a 

circular helix which cuts the meridians of the cylinder at the same 

constant angle as the loxodrome cuts the meridians on the surface of 

the spheroid. 

Bquation (3.8) is the lavigator's formula 

D'LOIG = D'IP x TAI<Course) for the spheroid. 

In the mapping, therefore in which equation <3.8) holds, the angle, 

a, is preserved, the meridians on the spheroid are mapped into the 

meridians of the cylinder and the perpendicular distance between the 

meridians on the surface of the cylinder 18 constant. 

FIGURE 3.4 

, 
••••• , ••••••••••••••• I ,=0 

P 
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If the cylinder is then ·unfolded· onto a plane then the loxodrome 

1s a straight line which cuts the lleridians at the angle a and we 

bave a right angled triangle. The right angle is at the point of 

intersection of the meridian 9=9 0 with the parallel of geocentric 

latl tude _=_0.. a (9 ... - 90) (which ls the perpendicular distance 

between the meridians on the flat plane) is the side opposl te the 

angle a and X<_ ... ) is the side adjacent to the angle a (Triangle PQR 

in Figure 3.4). 

If we differentiate equation (3.1), solve for d_ and substttute into 

equation (3.7), then, along an arc of the loxodrolll! between two 

positions Po and Pn where the geodetic latitudes are 10. and 1" and 

the longitudes are 90 and 9n , respectively, and the course is a, we 

find 
'I., 

a(9 n - 9 0 ) = (tan a) ~ a(1-e2 ) sec(1-_) cos, sec2 '1 d1 
90 

In the integral on ths right hand side we express _ In ter .. of 1 by 

means of equation (3.1) and rearrange to find 

. . . . .. (3. g) 

which integrates exactly to 

'In I 1 t e ain _ I a In [tan("/ .. + '1/2») - ("ae) In ( 1 i ) 
1~ - e a n 'I 

. . . .. (3.10) 

The integral (3.9) and its solution given by <3.10) give the length 

of the meridian I' IfERCATOR'S PROJECTIO' OF THE SPHEROID between two 

points where the geodetic latitudes are 10 and 'In. This distance la 

known as the DIFFHRBICH OF KBRIDIOIAL PARTS and ia .. aaured in the 

units of the length of one minute of arc of the Iquator. The 

integral over the Interval (0,1) for 0' 1 '"x ie tabulated into 

a Table of Meridional Parts for the Terrestial Spheroid and ia now 
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published in books of lautical tables to aid JMnua1 computations. 

The evaluation of the expression (3.10) to give the Difference of 

Meridional Parts (D'KP> presents no problems to the modern cODputer. 

3.5 PROJECTIOI OF THE SURFACE OF THE SPHEROID OITO THB POLAR PLAI!. 

In Chapter 2 we have shoWn how the surface of the sphere is 

proj ected frolD the South Pole onto the plane tangent to the lorth 

Pole under the stereographic projection. In a similar manner we can 

showm how the surface of the spheroid can also be IIIlpped onto the 

plane tangent to the Borth Pole so that the IIIlpping is conformal. 

We do not project the surface from a single paint but the point of 

projection moves a10n8 the axis of the spheroid. See Pigure 3.5i. 

I 

JlI 

I 
I ,/// 

J,-,::~/~ 
01 / 

s 

I 
I 
1 

FIGURE 3.51 

T T' 

FIGURB 3.511 
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The geometrical basis of the projection is that the triangle PTP' 

must always be isoceles. When this is so then the faces PTT' and 

P'TT' of the wedge PTT'P' (Figure 3.5ii) are congruent triangles in 

which the angle TPT' (the angle at which the 10xodrolllE! cuts the 

meridian) and the angle TP'T' <the angle at which the iJllage of the 

loxodrome cuts the radial Hne in the polar plane) are equal and 

therefore preserved by the projection. The line TT' is the 

intereection of the plane through P which ie tangent to the spheroid 

and the polar plane (the plane which is tangent to the pole). 

If ~ is the geodetic laU tude then the angle at T in the triangle 

PTP' is equal to ~.-~ and, hence, when triangle PTP' is isocelee, 

it can be deduced that the angle at S' (the point where the line pip 

produced cuts the axis of the spheroid> is equal to ".K - I~. 

The length, therefore, of the radius vector r (=IP') in the polar 

plane is given by 

r = lP' = (~) tan('I •• - ,,~) 

where 

The stereographic projection is useful in JIIapping the Polar Regions. 

3.6 COKPUTATIOI OF COURSE AID DISTAICB ALOIG A LOXODROKIC CURVB 01 
THE SURFACB OF A SPHEROID. 

If we refer again to Figure 3.3 and to the li.tting quanti tie. that 

result fro. the triangle PQR we see that 

BO that the distance I s, between two ob.erved poet tion wbere tbe 

geocentric latitudes are 10 and _n is given by 

-" s = (sec a) ~ apsac(t-_> d _ 
_ 0 
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If the latitudes are expressed in geodetic forD (which is usual> 

then 

. . . . .. <3.11) 

The integral on the right hand side is the Difference of LaU tude 

Parts and le abbreviated to D'LP. Equation 3.11 is written 

1 DISTAICB = D'LP x SBC<Course) 

We wl11 now rework the examples used 1 n chapter 2 usi ng the sa_ 

posi tions but noting that I on the surface of the spheroid, the 

latitudes are now geodetic latitudes. 

The -Sailing- Triangles are now shown in Figures 3.6(i) and 3.e(11). 

D'LONG DEPARTURE 

D'XP O'LP 

FIGURB 3.6 (j) FIGURB 3.6(11) 

Example 1. At noon on one day the observer'. post tiOD was 31°45'. 

32°35' B and on the next day at Doon the post tion was 3e030'. 

40°20' E. Find the course _de good In the twenty four hour pertod 

and the average speed for the day. 

Frail Jauttcal Tables: X<360 30') 
X<31""45' ) 
D'XP 
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Tan a 

Final Longitude 
Initial Longitude 
D'LOIG 

D'LOIG 465 = = 
D'KP 342.97 

a = 53°35.3' 

From Table of Latitude Parts <Appendix 2> 

L(36°30') 

L<31"45' > 

D'LP 

B = D'LP sec a = 478.42 

40"20' 
320 35' 

70 45' <=465 minutes) 

= 1.3558037 

2177.94 

1893.96 

283.98 

COURSE = 053°35.3' DISTAICE = 478.42 SPEED = 19.93 knots 

The results are not very di fferent froll those obtained for the 

spherical Earth model (053°28.1', 478.79, 19.95) but, 1f we bad used 

Difference of Latitude instead of DifferllDce of Latitude Parts we 

would have found 

s = D'LAT sec a = a(1" - 10> sec a = 480.14 

This justifies the opening remark of Chapter 1 - that if the 

spherical model is used cons1steDtly then the BOdel i. an acceptable 

approximation but, in fact, the lIOdel has not been used conaiatentl, 

and it bas been the practice to use D'LAT (for a sphere) .In the __ 

formula ae the course angl., a, determined froll spherOid data. 
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We now rework the second example again where, given the initial 

posi tion and the course and distance stealEd, we need to find the 

final pos! tion. This not such a straightforward problea on the 

surface 01 a spheroid. We will perform the computation using a PC 

with the following proceedure. Ve can compute the 0' LP from the 

formula 

D'LP = s cos a 

and let us suppose that we have found D'LP = ~ <say> . Then 

= ~ .. .... <3.12) 

Ve know '10 but we need to deterlli ne 'In from (3. 12). This can be 

done by defining F<Yn) by 

and solving the non-linear equation 

method. 

Ye have F' <'In) = f<Yn) = 
J<1 - e 2 aln2 "n)3 

a<1 - e2 ) 

~ 

and we can determine 'In from the iterative ache .. 

'I ...... , = y .. -

usins lewton' B 

The initial approxiaation ." for 'In can be obtained by a •• uDins 

that A is equal to the Difference of Latitude in Idnut •• of arc and 

then 
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Given, then, that we have determined the final latitude, 1n, we can 

determine the Meridional Parts, M<t"), and the Difference of 

Meridional Parts D'MP = M(,") M(,o). Ve then find the 

Difference of Longitude, O'LOBG, [ = a(8" - 80 )1 from 

a<8n - 80) = D'MP cot Of 

and the final longitude, en, is 

en = 1 (O'MP cot Of) - 90 a 

The details of the computed solution for Example 2 with the computer 

program now follow overleaf. 
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3.7 THE COMPUTER PROGRAX TO SOLVE EXAMPLE 2. 

EXAMPLE 2. An observer in position 30"00'1 30"'00'B travels a 

distance of 500 nautical lIiles along a loxodroll9 on a course of 

045~. Find the final position. 

10 REM: PROGRAM TO COMPUTE PINAL POSITIOB 
20 REM: GIVEN COURSE ABD DISTANCE MOVBD 
30 INPUT "latl?",x,y:INPUT "Dietance?",d:IBPUT "course?",c 
40 INPUT "Longl?",u,v 
50 LPRINT "Initial Lat ";x;y::LPRIBT "Initial long";u;v 
60 LPRINT "Distance ":d::LPRINT "Course ";c 
70 REM: Latitude in degrees (x) and Minutes (y) 
80 a=3437.7468~:e=0.0824834:pi=3.1415Q2054~ 
90 REM: This value of e is used in Nories Tables 
100 x=x+(y/00):x=x.pi/180:c=c.pi/180:DLP=d.COS(c) 
110 REM: Latitude and course angle expressed in radians 
120 g=a.(1-e A2)/«1-(e*SIN(x»A2)A(3/2» 
130 REM: g is the integrand of L(x) 
140 n=3.a.(1-e A2).(e A2).SIB(2.x) 
150 n=n/(2.«1-(e.SIB(x»A2)A(5/2») 
lOO REM: n is the derivative of g 
170 y=x+(dlp/a):FOR i= 1 TO 10:h=y-x 
180 REM:y is the 1st approximation to final latitude 
190 f=a.(1-e A2)/«1-(e*SIN(y»A2)A(3/2» 
200 REM: f is the integrand of L(y) 
210 m=2.(f-g)/h-n:s=h.(f+g)/2-(h A2).(m-n)/12 
220 REM: m is the approximate derivative 01 1 
230 REM: s is the direct cubic spline 
240 REM: approximation to L(y) 
250 s=s-DLP:y=y-<s/f):NBXT i 
260 REM: we iterate to find y using 
270 REM: Newton's Method 
280 lat2=y:lat1=x:y=y.180/pi:x=IBT(y):y=(y-x).00 
290 LPRIIT 
300 y=ROUND(y,3):LPRINT "PINAL LATITUDE = ":x:y: 
310 REM: We now calculate the final longitude 
320 y=lat2:x=latl:MPl=LOG(TAB«x/2)+(pi/4») 
330 MP1=MP1-(e/2}.LOG«1+e.SIB(x»/(1-e.SIB(x») 
340 MP1=a.MP1:MP2=LOG(TAN«y/2)+(pi/4») 
350 MP2=MP2-(e/2).LOG«1+e.SIR(y»/(1-•• SIB(y») 
300 MP2=a.XP2:DLONG=(MP2-MP1}.TAB(c) 
370 x=u:y=v:x=(x*OO)+y 
380 x=(x+DLOIG)/60:y=(x-IIT(x».60:x=IBT(x) 
390 y=ROUND(y,2) 
400 LPRIIT:LPRINT "FINAL LONGITUDE =":x:y:BND 
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Initial Lat 30 0 Initial long 30 0 
Distance 500 Course 45 

FINAL LATITUDE = 35 
FINAL LONGITUDE = 37 

54.9 
1. 28 

In chapter 2 using the spherical approximation to the shape of the 

Earth we found 

FIBAL POSITION 35°53.55'1 37°01.09'W. 

The difference in the latitudes is quite significant. 

3.8 THE METHOD OF CARLTON WIPPERN USING ELLIPTICAL INTEGRALS. 

The function L(1) gives us the length of arc of the meridian on the 

surface of a spheroid froD the equator to the parallel where the 

geodetic latitude is 1. This the length of the arc of an ellipse and 

can also be evaluated using an elliptical integral. The use of the 

elliptical integral to compute the length of arc of the meridian was 

featured in the paper by Carlton-Wippern24 published in the Journal 

of Navigation in May 1992. It does mean that the latitude DUst be 

transformed to suit the form in which the elliptical integral is 

expressed . 

Let a meridian on the surface of a spheroid whose equatorial radius 

is a and polar radius b be expressed in cartesian coord1n~tes in the 

usual manner so that the origin is at the centre of the spheroid. 

Its equation is 

and the length of arc from the point P on the ellipse where the x 

coordinate is Xp to the extremity of the major axis is given by 

the integral 
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+ 
dy 2 (-) dx 
dx 

If we use the substitution x 
sin X = a 

-'2 
a ~ J(1 - e 2 sin2x) dx 

XI'> 

which is an elliptical integral. 

then this integral becomes 

The angle X is the angle subtended at the point P' on the auxilliary 

circle by the abcissa of the point P on the ellipse. X is connected 

to the geocentric latitude. 1. and then the geodetic latitude. 1. by 

the equations 

tan 1 = (1 - e 2 )tan t 

sin X = cos , J 
1 - e 2 

-1---e-:-2 c-os-2 -, 

See Figure 3.3. 

R 

FIGURB 3.3 
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Carl ton-Wippern did not give any numerical results to his method 

probably because the basic formulae that he uses are well founded. 

His method follows the pattern of the method used in section 3.6 and 

in the computer program of section 3.7 here. 
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-4-

NAVIGATING ALONG THE GEODESIC 
PATH BETWEEN TWO POINTS 

ON THE StTRFACE OF A SPHE.RE 



4.1. GEODESIC ARCS. 

While it is often convenient, in order to avoid the flow of current 

or adverse prevailing weather conditions, to navigate across the 

oceans between two points along a line of constant course it would 

seem more logical to seek the shortest path. Over long distances 

often the result is a compronise, part of the journey along a 

loxodromic curve and part along the shortest path. We have discussed 

the problem of navigating along the arc of a loxodromic curve in 

Chapters 2 and 3 - now we will consider the problem of navigating 

along the shortest path. 

On any surface of suitable continuity class the shortest path 

between two points on the surface is along the arc of a GEODESIC 

CURVE. The deUni tion of a geodesic curve on a surface is a curve 

along whose length, at every point, the normal to the curve is also 

the norDBl to the surface at that point. There DBy be arcs of DOre 

than one geodesic curve through the two points and the corresponding 

arcs of these geodesic curves Day be of different length. There may 

also be Dare than one geodesic arc between the two points which are 

of the same length. 

We are particularly concerned with the problems of determining the 

shortest path between two points on the surface of a SPHERE and on 

the surface of an OBLATE SPHBROID both of which are used as 

approximations to the shape of the Barth. The sphere and the oblate 

spheroid are surfaces of revolution. An oblate spheroid is generated 

by revol vi ng an e lli pse a bou t 1 ts mt nor axi s and a sphere is the 

special case in which that ellipse is a circle. In this chapter we 

consider the shortest path on the surface of a SPHERE. 

4.2 GEODESIC ARCS DJ THE SURFACE OF A SPHERE. 

On the surface of a sphere all geodesic curves are great circles. A 

great circle on the surface of a sphere is a circle whose plane 

passes through the centre of the sphere and, except for points which 

are antipodean, the great circle arc which passes through two points 
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is unique . The plane of this great circle is generally defined by 

the two points together with the point at the centre of the sphere 

so that, when the two points are antipodean, the three points are 

then colinear and there are an infinite number of planes which pass 

through these points. Consider, for instance, the family of circles 

whose cOlllJJlOn diameter lies along the axis of revolution of the 

sphere. 

Figure 4.1 shows a plane intersecting a sphere through its centre O. 

The closed curve WQER is a great circle. 

FIGURE 4.1 

4.3 SURFACES OF REVOLUTIOI - CLAIRAUT'S EQUATIOI. 

On a surface of revolution which satisfies the required continuity 

conditions a special set of plane geodesic curves are defined by the 

intersection of the surface with a plane through the· axis of 

revolution. These geodesic curves are known as meridians. Figure 4.2 

shows meridians on the surface of a sphere. In the case of a sphere 

all the meridians begin and end on the axis of revolution at the 

extremities of a diameter. In the figure these extremities are Band 

S. known as the Poles. and, on the surface of the Earth these are 

deSignated as the Borth Pole and the South Pole. 
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s 

FIGURE 4.2 
IlERIDIANS ON THE 

SURFACE OF A SPHERE 

If any other geodesic on the surface of revolution cuts the 

meridians Mo, m', .... ,~. in points Po, p" ... ,f" at angles Yo, 

l" .... , ~n, respectively, then we find 

risin II = constant I (4.1) 

where rt is the perpendicular distance from Pt to the axis of 

revolution. See Figure 4.3 

Equation (4.1) is known as CLAIRAUT'S EQUATION. (Lyusternlk2s .) 

FIGURE 4.3 

-..1" 

III 
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The proof of Clairaut's Equation which follows is taken from the 

book by Be11 2s . It applies to any surface of revolution which 

satisfies the required continuity properties and it follows from the 

basic definition of a geodesic curve on a surface as stated in 

section 4.1 i. e. a geodesic curve is a curve on a surface along 

which, at every point, the normal to the curve is also the normal to 

the surface at that point. 

In the xyz coordinate frame let the surface be represented by the 

equation 

F(x,y,z) := 0 

and let the curve on this surface be defined in terms of the arc 

length parameter s so that, at a point P on the curve the vector 

OP (= r) is given by 

~ r := x(s) i + yes) j + z(s) k 

The normal to the surface is along the direction of the vector 

(F, . ." Fy , F:z) 

where F:.:, Fy , and F:r. are the first partial derivatives of the 

function F(x,y,z) with respect to x,y,z, respectively. The normal to 

the curve is along the direction of the vector 

From this we see that, if the curve is a geodesic curve, 

... (4.2) 

for some constant ~. 

low, on a surface of revolution, the z coordinate can be expressed 

in terms of x and y and the implicit function F(x,y,z) may thus be 

written in the form 

F (x, y, z) = f { J (x:2 + y2)} - Z 

so that, substituting 

F ... = x f 1 (u) 
u 

Fy = I fl (u) 
u 
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hence from equation (4.2) 

or 

so that 

In polar 

X 
~~y d 2 x 
ds2 - Y ds2 = 0 

~ (x ~I _ y dx 
ds ds ds 

x ~I 
ds 

dx 
- Y ds 

= 0 

= constant 

coordinates x = u cos e and 

dx du cos e - u de 
sin e = ds ds ds 

dy du 
sin e + u de cos e = ds ds ds 

• . . . .. (4.3) 

y = u sin e 

Substituting these in equation (4.3> and rearranging gives 

u:2 d&. = constant 
ds .. .... (4.4) 

and this is the general result for a surface of revolution as given 

by 8e11 26 • 

In the particular case of the sphere consider the differential 

element ds of the geodesic arc between points P and R (Figure 4.4). 

At P let the latitude be _ and the longitude e Corresponding to ds 

we have u sec _ d_ (= PQ) along the arc of the meridian through P 

and u de (= QR) along the parallel of latitude through Q and R. 

P u de 

Q 

I 

I 
I ..... 
R 

FIGURE 4.4 
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The angle PQR 

sin 

(= l) is given by 

'¥ = ~ 
ds 

so that equation (4.4> becomes 

u sin 1 = constant 

which Is Clairaut's Equation as given by equation <4.1). 

7.5 NAVIGATING ALOBG THE ARC OF A GREAT CIRCLE ON THE SURFACE OF THE 
SPHERICAL EARTH. 

Let us consider a point P on the arc of a great circle which cuts 

the meridian though P at an angle '¥. Let ds be the di fferential 

element of the great circle at P. See Figure 4.5. In the triangle 

PQR corresponding to ds (=PQ> we have PQ = a dl and 

QR = a cos I dB where a is the radius of the sphere. 

Q 

--------------l 
l' 

la dl 
I 

I 
___ J 

P a cos _ de R 

FIGURE 4.5 

From triangle PQR we see that 

sin Y = a cos _ dB 

ds 

and, sustituting this into Equation (4.1), we find the differential 

equation 

since the length of the perpendicular from P to the axis of 

revolution is a cos 1 . 
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At the vertex, V, of the great circle, (the point on the great 

circle at which the latitude is a maximum - see figure 4.6), let the 

latitude be _v. At this point the great circle cuts the meridian at 

right angles and for this curve we then have y = n'/-2 and 

sin Y = 1 so that the constant in equation (4.1) is equal to 

a cos ~v 

FIGURE 4.6 

E 

s 

The great circle that passes through the point P and reaches i te 

vertex, V, in latitude ~v ie therefore defined by the differential 

equation 

(4.5) 

and equation (4.1) can also be written in the form 

cos ~ sin ~ = cos ~v (4.6) 
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We can solve equation (4.5) using the substi tutlon 

(See Figure 4.7) and by expressing ds in terms of 

y p' 

E 

We find 

"-
"­ , 

1 .... 

o 

and, from Figure 4.5, we see that 

FIGURE 4.7 

EP' = Y = a tan _ 

Using these substitutions Equation <4.5) becomes 

dS = dy 

and its solution is 

y = a tan 1 

dy and de. 

(4.7) 

where y .... = a tan 1", and SE is the longitude in which the great 

circle crosses the equator. Equation (4.7) represents the 

cylindrical projection (not the JIlercator Projection) of the great 

circle onto an infinite cylinder which is coaxial with the sphere. 
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If the great circle passes through the points PA I where y = yA 

and a = aA and Pe where Y = ye and 9 = ae I then we 

can find yv and 9,;:: froD equation (4.7) 

tan aE 
YAsin 9 - Yesin aA = e (4.8) 
YAcos 9 -e Yecos aA 

and Yv = yAcoSeC(aA- aE ) ,. , ... (4.9)a 

or Yv = yBcosec(ae- a e ) ...... (4.9)b 

Replacing y = tan _ in (4.7) we find the general equation which 

gives the latitude, _. in terms of the longitude, a, along the arc 

of a great circle : 

I tan _ = tan _v sin(S - So) (4.10) 

To determine the distance, s, along the arc of the great circle 

between PA and Pe we separate the variables in equation (4.5) and 

integrate to give 

s = (4.11) 

Al though this integral does have an analytical solution it can be 

just as easy to compute numerically since, for navigational 

purposes, it is desirable to compute a number of intermediate points 

along the path of the Great Circle. The step-by-step method of the 

Direct Cubic Spline (which is described in Part 2 of this thesis) 

suits this purpose well and we also find that, when _ = _v and 

_ = 0, the derivatives of the integrand in equation (4.11) are both 

equal to zero and this provides us with the boundary conditions 

which are a desirable (but not essential) part of the Direct Cubic 

Spline computational scheme. 
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Subdividing the interval at points where the longi tudes 

are 

and such that 

we can determine the corresponding latitudes _ 1 , ~:2 , •••• , ~ ,,-1 

of intermediate points between PA and Pe using whichever of the 

equations (4.9)a or (4.9)b is relevant. 

If the vertex of the great circle l1es on the arc between PA and Pe 

then we can express the integral in equation (4.11) as the sum of 

two parts: 

~ee f{e) de = ~ev f{e) de + ~ee f (e) de 
eA eA 9v 

~ee ~ee tA or f{e) de = f (e) de f(9) de 
eA e v ev 

and the boundary condition f' (ey) = 0 can be applied. 

Similarly, if the great circle arc between PA and Pe crosses the 

Equator then 

and the boundary condition f' (9E) = 0 can be used. 

From equation (4.6) we can determine the angle between thp. great 

circle and the meridian at any point along the path and, .hence, for 

the navigator, the course to steer. 

The spherical model is the one most often used by seagoing 

navigators as the model for the shape of the Earth particularly in 

the manual method of computation of shortest distance. This 

computation is usually called "Great Circle Sailing" and its 

solution is usually effected using the methods of Spherical 
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Trigonometry - the Spherical Cosine Formula and Napier's Rules. The 

methods described here, however, can be just as simple to apply and 

do give us a lead into to solving the more complicated problem of 

determining the shortest path on the surface of a spheroid. 

4.5 COMPUTATION OF POSITIOIS ALONG THB GREAT CIRCLE PATH AID THE 
COURSE AND DISTANCE BETVEEI THEM. 

As an example of the application of the Direct Cubic Spline 

Approximation to the computation of intermediate points along the 

path of a great circle arc on the surface of a sphere and the 

courses and distances between them, let us consider the arc of the 

great circle which starts at the Equator in longitude 0° and reaches 

its vertex in latitude 45° at longitude 90°. 

At a poi nt P on this particular great circle arc the lat! tude, ~, 

and the longitude, 9 , are related by 

tan ~ = sin e. 

This is a consequence of equation (4.10). 

Let us choose a set of intermediate points {Pt} along the path of 

the great circle where the longi tudes {9 t} of these poi nts are 

evenly spaced at 50 intervals. The latitudes {~,} are given by 

At the point Pt the integrand, ft (the value of f(9) when 9=9,), in 

equation 4.11 is, in this case, given by 

and the course angle, ~t, is, from equation (4.6), given by 

If Si is the approximation to the distance PoPi along the arc of the 

great circle and the {Xt} are the moments of the cubic spIine, then 

the computational scheme (Part 2 - chapter 1 : section 1.4 ) for the 

lat! tudes of the points along the path, the course angles and the 

distances is given by 
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So 0 . fo a ';2 Mc. 0 h 
1[ e., 0 _.'" 0 = = = = = = . 36 

For i = 1 to 18: 

ei = ih 

_i = tan-I (sin et> 

Yi = sin-I (l6 {2 sec It> 

fi = a {2 cos:2_ 1 

2(ft - f i _. 1 ) 
Xi = - Mt ·--1 

h 
h f i .-,} 

h~.2 

M: i - 1 ) Si = S:\--I + -(ft + - 12 (Kt -2 

The results from the computation are shown in Table 4.1 below. 

i 8i -, COURSE DISTAICE 

1 5 4""58.9' 045.22"'" 423.20 
2 10 9°51. l' 045.86'" 840.12 
3 15 14°30.6' 046.92'" 1245.22 
4 20 180052.9' 048.36"" 1634.19 
5 25 22°54.6' 050.14° 2004.20 
6 30 26°33.9' 052.2400 2353.90 
7 35 29°50.3' 054.60° 2683.15 
8 40 32°43.9' 057.20'" 2992.76 
9 45 35°15.9' 060,00° 3284.14 TABLE 4. J 

10 50 370 27.22 062.97'" 3559.08 
11 55 39°19.4' 066.070 3819.54 
12 60 40°53.6 1 069.30° 4067.54 
13 65 42°11.2' 072.61 0 4305.07 
14 70 43'''13.2' 076,00° 4534.03 
15 75 44""00.4' 079.45'" 4756.28 
16 80 440 33.7' 082.95° 4973.56 
17 85 44°53.4 086.47 5187.60 
18 90 45""00.0' 090,00 5400.00 

It is interesting to note that when i=18 the actual results for 

the latitude and the course were correct to 7 decimal places and the 

distance was correct to 4 decimal places. For the purpose of the 

table the results have been rounded to two decimal places. 
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The work in this section appeared as a paper published in the 

Journal of Ravigation27. 

4.6 SOLUTIOR OF GREAT CIRCLE SAILIRG PROBLEX USING SPHERICAL 
TRIGOROXETRY. 

A spherical triangle is the area enclosed by the intersection 

three great circles. Figure 4.8 shows a spherical triangle PAB 

the surface of a sphere. In the triangle the angles are denoted 

P, X and Y and the sides as p, x and y. The sides are expressed 

angles where p. x and y are the angles subtended at the centre 

the sphere by the arcs IY, PY and PI respectively. 

FIGURE 4.8 

/ 

of 

on 

by 

as 

of 

To solve the triangle for navigational purposes we use the SPHERICAL 

eosIn FORKULA. 

Gi ven a spherical triangle PlY with angles at P, I and Y and sides 

P, x, y where side p is opposite angle P, etc., we would use the 

Cosine Formula in the form 

cos P = cos P - cos x cos y 
sin x sin y 
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Or, to find a side (p, say> we would use the Cosine Formula in the 

form 

cos p = cos x cos y + sin x sin y cos P 

In Jlavigation the point P would normally be used to denote the 

position of the Pole. The initial position on the great circle would 

be X and the final position at Y. We will know the angle at P which 

is the difference of longitude between X and Y and we will know the 

angles subtended by the arcs PX (=y> and PY (=x) 
y = ~n - _x x = ~n - _v 

where ~x and ~y are the latitudes of the points X and Y 

respectively. 

Using the cosine formula to find the angle X, which will be the 

initial course along the path of the great circle, we would find 

cos X = 
cos x - cos p cos y 

sin p sin y 
(4.12) 

and to determine the angle subtended by the arc which is the side p 

of the triangle, we would use 

cos p = cos x cos y + sin x sin y cos P (4.13) 

If the point P, then, is a pole of the Spherical Earth, and the path 

of the great circle is from X to Y we would first determine the 

angle at X which is the initial course of the great circle using the 

!quation (4.12). Ye would then determine the angle, p, subtended by 

the arc XY so that the distance, s, in geographical miles along the 

arc of the great circle between X and Y using Equation (4.13) is 

s = ap 

where a is the radius of the spherical Earth and p is expressed in 

radians. 

Using the information we have now found we would then compute the 

posi tion of the vertex, V, (the point at which the latitude along 
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the arc of the great circle is a maximum) which mayor may not lie 

between X and Y. See Figure 4.9. 

P P 

X X 

FIGURE 4.8 

The angle at V in spherical triangles PVX and PYV are right angles 

and this simplifies the application of the Cosine Formula. In 

triangle PVX we know the angle subtended by the arc PI and we have 

found the angle at X above. Ye therefore find the angle, v, 

subtended by the arc PV from 

sin v = sin y sin X 

and the angle at P (Pvx) in the triangle PVX from 

cot Pvx = cos y tan X 

We then find the latitude, lv, and longitude, av, of the vertex 

Given then that we wish to find the latitudes {_i} of intermediate 

pOints lying in longitudes {all we have 

tan It = tan Iv cos (B v - ei) • 
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We would compute any information required in triangle PYV in a 

similar manner. 

The methods employing spherical trigonometry are well tried and 

tested. It is not therefore necessary to show the results that would 

be obtained by the methods of spherical trigonometry as a comparison 

with the Direct Cubic Spline method although this is done indirectly 

in Chapter 5. It is hard to imagine, in any case, that any results 

better than those shown in table 4.1 could be achieved by any 

method. 

There is not much to choose in the amount of computation required in 

et ther of the above methods of computing the distance along the 

great circle path but the first method, utilising the Direct Cubic 

Spline Approximation, we do find a step by step method of computing 

the intermediate positions and the course and distance between them 

along the great circle arc during the process of computing the 

overall distance. This saves a lot of time. The same :method also 

serves to solve the similar problem of computing the shortest 

distance along a geodesic arc on the surface of a spheroid which is 

a better approximation to the shape of the Earth and where the 

methods of spherical trigonometry do not apply. 

4.6 THE GNOXIC PROJECTION OF THE GREAT CIRCLE. 

If, from the centre of the sphere, we proj ect the arc of a great 

circle onto a tangent plane then the resulting imge is always a 

straight line. This projection, known as the Gnomic projection, has 

many uses in navigation and many large scale navigational charts of 

ports and harbours are constructed using this projection .. There are, 

however, gnomic projections of the Ocean Basins from which a 

navigator can layoff his great circle track as a straight line and 

then pick off pOints to transfer to the Kercator Chart. This is 

sometimes done instead of the computations above but there is a 

consequent 1095 of accuracy. 
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In the case where the tangent plane is the polar plane then. with 

the origin at the pole. using polar coordinates (r.9) where 

r = a cot _ and e is the longitude. the equation of the gnomic 

projection of a great circle is 

r = rv sec(9 - av) (4.14) 

where rv = a cot Iv. See Figure 4.9 . 

p' I r p' 

/ 

o a E 

(1) (11) 

FIGURB 4.9 

Figure 4.9 (i) shows a section through the axis of the sphere and 

the point P. The point P' is the projection of P in the polar plane. 

The straight line VIP' in the tangent plane <Figure 4.9 (11» is the 

projection onto the polar plane of the arc VP of the great circle. 
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5.1 GEODESIC PATHS ON THE SURFACE OF A SPHEROID. 

On the surface of a sphere the geodesic paths are the great circles 

but on the surface of an .oblate spheroid the geodesic paths are not 

so easily defined except that the Equator of the spheroid is a 

circle and its neridians are ellipses. An oblate spheroid is 

generated by revolving an ellipse about its minor axis. On the 

surface of a spheroid the shortest path between two points, Po and 

Pn, is along the arc of a geodesic curve but this curve, unlike a 

great circle on the surface of a sphere, is not always a plane curve 

nor is it necessarily part of a closed curve. This means that if we 

project the arc of the geodesic curve from the centre of a spheroid 

onto a plane tangent to the spheroid then the resulting locus is 

not, in general, a straight line as it is in the case of the gnomic 

projection of the great circle on a sphere. 

A spheroid whose neridians are ellipses of fixed eccentricity is a 

better approximation to the shape of the Earth than the sphere and 

it is the approximation that we shall use here. In fact, the Earth 

may be better approximated by the smooth union of a number of 

spheroids and, in the science of navigation, the distances accross 

the different ocean basins may be calculated using a different value 

for e, the eccentricity of the meridional ellipse. Corresponding to 

the spheroid which we will adopt as the approximation to the shape 

of the Earth, there is a sphere whose equator coincides with the 

equator of the spheroid. We will refer to this sphere as the 

CORRESPONDIIG SPHERE. We have chose to call this sphere the 

"corresponding sphere" because the latitude , on the surface of the 

sphere corresponds directly to the geodetic latitude 1 on the 

surface of the spheroid. 

There is another sphere which is known as the JACOBI (AUXILLIARY> 

SPHERE. This sphere is, physically, the same sphere as the 

corresponding sphere but the relationship between the latitude, on 

the Jacobi sphere and the geodetic latitude 1 on the surface of the 

spheroid is given by 
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tan 1 = ~(1-e2) tan, . 

The latitude I is known as the -Reduced" latitude of the spheroid. 

There is a special relationship between the geodesic arc on the 

surface of the spheroid whose vertex 1 ies in !at! tude ,.... and the 

great circle on the surface of the Jacobi sphere whose vertex lies 

in corresponding latitude ~ .... - at points with corresponding values 

of the latitude the azimuth angle of the spheroidal geodesic is the 

same as the azimuth angle of the great circle. This result is due to 

Jacobi and hence the auxilliary sphere is sometimes known by his 

name. At points where latitudes correspond the longitudes, however, 

do not, in genera 1 , correspond. We do not :make use of the J acobi 

sphere in this analysis; we make use exclusively of the relationship 

between the spheroid and the corresponding sphere . 

On the surface of a spheroid the number of geodesic arcs joining two 

pOints Po and Pn differs according to the relative positions of the 

two points on the surface. As in the case of the sphere there are, 

for instance, an infinite number of meridians which join the poles 

but this is not so for any other antipodean points. We have, 

however, the new problem of .EARLY antipodean pOints, l.e. those 

points for which the difference of longitude exceeds a certain fixed 

value (~ 1790 24' on the surface of the terrestial spheroid). These 

points form a special case and with which we will deal in the next 

chapter. In the case of antipodean points which are not the poles 

the shortest paths are easily defined on the surface of the spheroid 

- there are two equal shortest paths, both of which coincide with 

the path of the meridian one of which passes through the north pole 

and the other through the the south pole. These paths are 

iDpractical for the use of seafaring naVigators but are very useful 

to aviators. 

In this chapter we shall deal with the computation of the shortest 

path along a geodesic arc between two points which are not 

antipodean or "nearly antipodean" and for which it turns out that 

the geodesic arc is unique. We shall use the standard notation for 
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spherical coordinates with the origin of the coordinate system at 0, 

the centre of the spheroid. The GBOCERTRIC LATITUDE is then denoted 

by 1 and the LONGITUDE by 8. The GEODETIC (ASTRONOMICAL) LATITUDE at 

a point P on the surface ,is the angle between the normal to the 

surface at P and the plane of the Equator. This is an intrinsic 

property of the surface and we will denote it by..,. The ranges of 

values of 1, .., and 8 are 

w 

o , 

N 

16n 

2n 

I ' 

I " I \ 

I \ 
I \ 

I I 
I II 

I \ 

(North post ti ve) 

(East positive) 

....... ~:..~-:.. .... -, , 
" ........ " " .... , .... , .., , ...... , .' , " , " \1' 'V\ 

I \ ----- ----,----
I \ \ \-'\ I' \ \ , .......... lp' \ \ I" On, , \ E 

_' -.-.---- ;.&... .. ~-t":r: - - - - - - -',--t --,-..- .... - ~ - I', .... -7_- .:-__ -:. -: - - - - __ , ____ ' , 
~~- 1,1 -. -_ -- __ I l-_ 

~~ I I' I - - -L - I 
-" " I I --

" ., O. 

0" 

s 

FIGURB 5. 1 - THE GEODBSIC PATH PoPVPN 0' THE SPHBROIDAL EARTH. 
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Figure 5.1 is a representation of the Earth as a regular oblate 

spheroid. 0 is the centre of the spherOid, I is the North Pole, S is 

the South Pole and the line 108 is the axis of the spherOid. The 

meridian IGS is the Greenwich Keridian, WGE is the Equator. The arc 

PoPVPn ls the geodesic arc joining the points Po and Pn and V ls the 

vertex of the geodesic . V may not necessarily lie between Pc> and 

Pn. P is a general point along the path of the geodesic between Po 

and PM and Pe: is the point where the geodesic, when extended, 

crosses the Equator, or, if p", and Pr. lie 1 n opposi te hemi spheres, 

PE ls the point between Po and Pn . 

Qo, Q, Qv, Q .... are the points on the Equator where the meridians 

through Po, P, Pv, Pr .. respectively, cut the Equator. The angles 

GOQ.", GOQ, GOQv, GOQ., are therefore the longi tudes of the points Po, 

P, Pv, Pn, respectively and the angles Q,,,OPo , QOP, QvOPv, Q,.,OP" 

are the geocentric latitudes. 

5.2 THE EQUATIOJ OF A GEODESIC CURVE OK THE SURFACE OF THE 
SPHEROIDAL EARTH. 

Let us consider that the Earth is a regUlar spheroid with equatorial 

radius a, polar radius b and that the eccentricity of the meridional 

ellipse is e. See Figure 5.2. 

I 

b 

FIGURIJ 5.2 

Let a position on the surface of the spheroid be determined by its 

geocentriC laU tude, I, and its longitude, e. The distances are 

measured in units of one minute arc of the equator and the angles 
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are in radians. Let the geodetic latitude be 1. ~ and tare 

connected by the relationship 

tan 1 = (1-e2 )tan t ••.... <5.1> 

Since a spheroid, like the sphere, is a surface of revolution 

fulfilling the required continuity conditions we can, once again, 

apply Clairaut's Equation. 

FIGURE 5.3 

Let there be a geodesic arc joining two points Po and PM which 

passes through intermediate points P" P2, ... , Pn-l . See Figure 

5.3 . Let the geodesic arc cut the meridians through these points at 

angles Y" Y2, ... ,Yn-l respectively, then Clairaut's equation 

gives 

rtsin Yi = constant .. . . .. (5.2) 

where rt is the perpendicular distance from p, to the axis of 

revolution. 

Let P be a point on the geodesic arc joining points P~ and Pn on the 

surface of a spheroid. The radius of the spheroid at point P is 

given by 

a"" = a . .. . .. (5.3) 
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Let the geodesic arc through P cut the meridian at an angle ~. Let 

ds be the differential element of the geodesic at P. If we consider 

the differential triangle PQR <Figure 5.4) - PQ is along the 

tangent to the meridian and PR is along the tangent to the geodesic 

- we have 

Q apcos ~ de R PQ = apsec<'I-I) dl 
1------

I 

I 
I 

PR = ds 

al=.sec <..,-1) d_ I 
I 

1 QR = apcos _ de 

P 

FIGURE 5.4 

Since, on the surface of a spheroid, the perpendicular distance, r, 

of the point P from the axis of revolution is given by 

r = ap cos _ then, from triangle PQR, we see that 

and so 

sin ~ = apcos I de 

ds 

I r sin 1 • a~cos2' (~> = constant = c, say, I ... (5.4> 

This equation (5.4) is the fundamental equation which we will use 

for the geodesic on the surface of the spheroid and, in the 

following sections, we will transform this equation to find a 

solution which will give us the relationship between the geocentric 

lati tude, I, and the longitude, 9, at any point along the path of 

the geodesic. 
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5.3 THE EQUATION OF THE CYLINDRICAL PROJECTION OF A GEODESIC O~ 
THE SURFACE OF A SPHEROID. 

If 

"- , FIGURE 5.5 
"-

" I "-

E a 0 

From the centre, 0, of the spheroid, let us project the surface of 

the spheroid onto the surface of a coaxial cylinder of the same 

radius using the simple cylindrical projection (not the Kercator 

projection) so that the point P on the surface of the spheroid 

corresponds to the point P' on the cylinder. See Figure 5.5. 

The points 0, P and P' lie on a a straight line and y is the 

perpendicular distance EP' from the Equator to the point p'. 

Hence y = a tan I and 

while 8 remains unchanged. 

a ___ dy 

Using these substitutions in Equation (5.4) we show, in Appendix 1, 

that this leads to the form 

(5.5) dy:2 
(a:2 (1-e2) + y2] 

(y~ - to!) d82 = 
[a 2 (1-e2)2+ y2) 

y~ 
a'2 (l-e"2) (a2- c 2 ) 

where = . . . . .. (5.6) 
c 2 

and c is the constant in Equation (5.4). The details of the algebra 

involved in the transformation of Equation (5.4) into (5.5) are 

quite lengthy. 
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Clearly 

y~ > 0 and 

and I:!I < 1 

Yv is real. 

so that and hence 

lote also that when y = yv then d1- = 0 de and that the point 

(9v, yv) on the cylindrical proj ection of the geodesic arc is a 

turning point and so this corresponds to a vertex of the geodesic 

itself . 

If we let V denote the point on the geodesic where y = yv at 

a = av and ~ = ~v then V is the vertex of the geodesic - the point 

at which the geodesic approaches nearest to the pole. From Equation 

(5.4) we see that, since, at the vertex, ~ = 90° , then 

. . . . .. (5.7) 

where av is the radius of the spheroid at the vertex. 

Taking positive square roots and separating the variables in 

equation(5.5) and then integrating, we find 

9' - eE = dy .. (5.8)a 

where y' lies in the interval (O.y,,), e' is the corresonding 

value of the longitude and 9E is the value of the longitude when 

y = 0 (at the point PE on the geodesic - the point where the 

geodesic crosses the Equator). 

If fey) = [a2 (1-e2):2+ y2) 

[a2(1-e:2) + y2) 

then, in the interval [O,y,,) ,f<y) is continuous and non-negative 

so that we can apply the Second J(ean Value Theorem for Integrals 

through which , for any interval [0. y' ) contained in [0, yvl , 

there exists Xy 0 ~ Xy ' y' such that 
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. . . . .. <5.9) 

From equations <5.8) & (5.9) we find 

dt 

Substitute t = yv sin u on the left hand side and simplifying the 

right hand side gives 

u 
, f(Y v sln u) du = 

o 

from which we find 

If we write 

1 
u 

u 
, f(Yvsin u) du 

o 

and y = a tan _ 

then the solution of the dlfferential equation (5.4) may be written 

. .. (5.10)a 

where = 
1 ~u U ~ f(Yvsln u) du 

o 

and 

Alternatively. as a solution of equation (5.5) we find 

Bv - 9' = dy .. <5. 6)b 
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where we now find that av is the value of a at the vertex of the 

geodesic. 

Applying the second mean value theorem to equation (5.8) b there 

exists a value X~ in the interval [y',Yv] such that 

~yv dy 
av - 8' = f(X~) '1 

y' "(y~ - 1'2) 

making the substitution y = yvcos u and writing y = a tan ~ 

then we find that the solution of equation (5.4) may be written in 

the alternative form 

where 

and 

tan _ = tan ~v cos[p(X~)' (av - 8)] 

= 
1 ~u 
- '1 f(yvcos u) du 
u 0 

5.4 THE PERIOD OF TBE GEODESIC ARC. 

. . .. <5.10)b 

Through either of equations (5.10) we have thus defined the position 

of a point on the path of the geodesic curve and the general nature 

of this equation shows that the projected path of the geodesic 

follows a sinusoidal curve whose period is less than 3600 <since ~ 

is always just a little greater than unity> and whose amplitude is 

yv. We can determine the period of the geodesic from equation (5.8). 

Let the value of the longitude at the vertex of the geodesic be av. 
We know then that 9v - BE is one quarter of the sinusoidal period. 

If we use the substitution y = yv sin u on the right hand side of 

equation (5.6) we then find that the period of the geodesic which 
reaches its vertex in latitude ~v is 
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In Figure 5.6 we show the path of the cylindrical projection of the 

geodesic arc over two cycles. This shows that the geodesic arc on 

the surface of a spheroid which is not a meridian or the Equator 

winds around the spheroid and does not meet itself again unless the 

value of l/(l-Xv) is an integer. 

We will find it convenient to use the value of the half period of 

the geodesic which we will denote by Bp. Bp is therefore given by 

where Xv is the value of X(X y > when y=Yv . 

t 

I 

y 

.. (5.11> 

~--~--------------------------------------------

I 
S I 

o ----------------------~- --,---------------------~-\ 190 
I 
I 

OPQ __ Cycle 1 
\ 

\1 
), 

I QRS ----- Cycle 2 I , 
"'--yvl---------------------------- I-------

I I 

FIGURE 5.6 - PROJECTION OF A GEODESIC CURVE ON THE SURFACE OF A 
SPHEROID 06TO A COAXIAL CYLINDER OF EQUAL DIAKETER. 
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5.5 THE DISTANCE ALONG THE GEODESIC ARC. 

Let s be the distance along the geodesic arc from the point Pc. 

<9o, ~o) to the point P., (9." ~n) where the difference of longitude 

between the two points is less than 180<3 and such that the two 

points cannot be considered to be "Iearly Antipodean" . Since with 

equation (5.7) we have determined the value of the constant in 

equation <5.4) we can rewrite equation (5.4) as 

Separating the variables and integrating then gives 

s = 

Since we have y = a tan _ 

_ as a function of 9 by 

where 

and 

1 
). 

1 ~u = u j f(Yvsin u) du 
o 

u = sin- 1 I 
yv 

. . . . .. (5.12) 

we can use equation (5.10) to express 

. . . . .. (5.13) 

In navigation the popular existing methods of computing the shortest 

distance on the surface of a spheroid which seem to be Dest widely 

referred to are due to Andoyer21!1 and Lambert2'9. Both of these 

authors use a method which involves applying a correction to the 

great circle distance on the corresponding sphere and both Jl9thods 

can be handled by manual computation. T. Hairawa23 also applied the 

same method in a recent publication. Here, however, we use a Direct 

Kethod applying the equations that we have derived above and use 

iterative procedures where, when we are given the longitude, e, we 

compute _, y and then s. This is described in detail in section 

5.7. 
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5.6 THE COURSE ALOIG THE PATH OF THE GEODESIC. 

It has already been shown as a direct consequence of Clairaut's 

equation that, if the geodesic cuts the meridian where the latitude 

is I at an angle V, then we have 

The angle V is the AZIKUTH and the course in the 360' notation is 

derived from it. 

5.7 COMPUTATIONAL PROCEDURES. 

To begin the computation of the distance, s, along the path of the 

geodesic arc between the two points Po <1,=>,90) and P.., <_n, a, ... ) we 

first need to know the position PE (O,aE) , where the geodesic arc 

between the points (or its extension) crosses the Equator, and 

Pv <_v,a,,) the position of the vertex. Ye will also need 

approximations for the values of ).0 and )., .... These are the values of 

). when _ = _0 and _ = _n , respectively. An approximation for ).i 

when _ = _ t can be determined froD the application of numerical 

methods to the scheme 

yi = a tan If. <y .... = a tan _,,) 

u" = sin- 1 It 
yv 

1 1 
Ut 

= ~ f(Yvsin u) du 
X" Ut 

0 

From equation (5.9) we find, at Po and PM' respectively, 

and 

yv sin[).Q(a~ - aE)] - yo = 0 

yv sin[).n<a, ... - aE)] - yn = 0 
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We can solve these equations (5.15) and (5.16) simultaneously for yv 

and 8E using the two dimensional form of Newton's method. 

If we compute the values of 8E and yv which would be found from 

equations <4.7) and (4.8) of Chapter 4 by considering, as a first 

approximation, that the Barth is a sphere, then we can use the 

values of yv and BE so found as the first approximation to the 

solution of equations (5.15) and <5.16) by Newton's Kethod. During 

the i terati ve procedure we must also compute values of >'0 and ).n 

corresponding to Yv. 

Raving found satisfactory values of 8E and yv we can then find 

f.., : 

('lv) 
a 

It may be more convenient to find the value of 9v rather than 9E in 

which case we find the simultaneous solutions of the equations 

yv cos[ p'o (9v - 9,,,,») - y.,:> = 0 

yv Cos[p.n(9v - 9n ») - yn = 0 

(5. 17) 

(5.18) 

To start the actual computation of the distance, s, along the 

geodesic arc we must first subdivide the longitude interval [9 0 ,9n] 

in some manner; we introduce convenient intermediate points 8 1 , 

9:2, ...... , 9,,-1 and find the corresponding latitudes _I, _2, 
, In-l . 

To do this we set up an iterative scheme with first approximations 

found from the great circle on the corresponding sphere. 

Given at, yv and 9E we can f1nd the <ydo values (the initial 

approximation to Yt) from equation 4.6 

<Yt}o = yv sin (8t - aE) for i=1,2, ... ,n-l 
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The iteration steps then involve repeatedly computing and 

{yt> ,I using 

{ut> ,1--1 = s1n- 1 {yd,I-- 1 

yv 

1 1 {Udj-1 

= ~ f(Yvsin u) du 
nd ,1 (ut> j - 1 

0 

and 

for j=1, 2, .... until convergence is deemed to have occurred when 

for each i and for some preassigned tolerance € > 0 . 

Once the iteration has converged to give values for ~i and yl then 

_i can be calculated from 

_ t = tan- 1 (It) 
a 

Given now the values of the geocentric latitudes {~i} (i=0,1, ... ,n) 

corresponding to the longi tudes {ed, we can compute the ordinate 

values for the integrand in equation (5.12>. Ye can, for 

convenience, rewrite the equation in the form 

s = 

if 9E ~ 9 c • ~ en 

or in the form 

s = 

if eo , eE ' 
en 

~en :2 :2~ 
j a""cos ~ de 

ee: avcos _'" 

J,8e: a:2cos2_ 
j "" de 

Bo avcos _v 
+ 

1,90 a:2cos:2_ 
'1 "" de 

Be: a",cos _v 

~
8n .~ _ 

a"cos-_ 
"" de 

9r;: a"cos 1v 

This enables us to take advantage of the fact that the derivative of 

the integrand is zero when which is helpful in the 

application of the step by step method of the Direct Cubic Spline. 
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In most problems in sea-going navigation where ships are usually 

confined to what are termed the "Iavigable Latitudes" and to the 

main ocean basins the method of determining the distance as 

described above is generally applicable. There are, however, 

circumstances, in theory, when the method wi 11 become 111-

conditioned. Consider, for instance, the case when the the vertex of 

the geodesic is in high latitude and when, as a consequence, in low 

lati tude, the initial azimuth of the geodesic path is very small 

i.e. when the angle, ~, between the meridian and the geodesic arc is 

small. There is then a large change in latitude for a small change 

in longitude and it becomes necessary to transform equation (5.12> 

to allow for this. 

If we differentiate with respect to de in equation (5.12) 

ds = a~cos2_ 
de 2\ .... cos Iv 

and, from equation (5.8) we find 

whence 

e - SE = ,I f(a tan u) sec2 u du 

o J(tan2 ,v - tan2 u) 

de 

dl 
= 

f(a tan _> sec2_ 

J(tan2 _ v - tan2 ,) 

Taking these together we find 

= = f(a tanl> a~ ds ds de 

de M 

The distance, s', along the arc of the geodesic in an interval 

[10,1'] contained in the interval [Io,'v] is then 

s' = 
f(a tan ~) a: _______ ~ ___ d_ 

av cos 'v J(tan2Iv- tan2 1) 
. .. <5.18) 
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The reason for the restriction is that there is a singularity in the 

integrand in equation (5.18) when 

geodesic arc reaches its vertex. 

at the point where the 

It is only necessary to use equation <5.18) when the azimuth angle. 

y. is small and there is a large change in the lat! tude over a 

comparatively small interval in the longitude. As the azimuth angle 

increases along the path of the geodesic then, clearly, we can 

revert to using equation (5.12) for computing the distance over the 

part of the geodesic curve which includes the vertex before the 

geodesic arc reaches its vertex where Y = 900 In practice the 

point at which we revert to using equation (5.12) can be decided on 

the value of Y. It might be logical, for example, to choose Y = 450 

but, in most circumstances, this proceedure is not necessary and 

will only be required in those cases where the vertex of the 

geodesiC is in high latitude. In the next chapters where we discuss 

the computation of the shortest distance between Jearly Antipodean 

points , where the geodesic paths do reach high latitude, then we 

will need to use equation <5.18) to compute the distance along the 

relevant arc . 
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5.6 THE CORRECTIOR METHOD OF LAMBERT. 

Let us consider two points X and Y on the surface of the spheroidal 

Earth Model whose geodetic (astronomical> latitudes are to and 'In, 

respectively. Let PXY be the spherf.cal triangle on the corresponding 

sphere (Figure 5.7) . 

P 

FIGURE 5.7 

x 
y 

In Figure 5.7 P is the pole and p, x, y are the sides of the 

triangle PlY expressed as the angles subtended at the centre of the 

sphere by the arcs XY, PY and PX, respectively. Having computed s, 

the great circle distance in geographical miles froD X to Y then the 

correction, AS, to apply to this great circle distance to give us 

the distance along the geodesic arc joining the points X and Y on 

the surface of the spheroid is, according to Lambert2', 

where 

where 

sin2 \1 cos2 6'1 As = ~af(3 sin p - p) r 

cos2 ~p 

cos:2'1 sin2At - ~af(3 sin p + p) 
sin2 ~p 

f [ = 1 - J(1-e 2 )] is the flattening of the spheroid and 

and 

- 89-



5.7 EXPERIMENTAL RESULTS. 

As an example we wi 11 compute the path of the geodesic arc froD a 

position 51·46'N 55·22'W , off Belle Island in Newfoundland, to a 

position 55·32'N 7·14'W toff Inistrahull in Ireland. Treating the 

Earth as a shpere and using the great circle method the distance is 

found to be 1691.61 geographical miles but, along the shortest path, 

treating the Earth as regular spheroid, we find that the distance is 

1695.24 geographical miles Table 5.1 below gives the details of 

the spheroidal computation. The way points are chosen to include the 

vertex of the geodesic <which is oulined in the table by the dotted 

lines) and then points along the path so that the longitude 

interval from the initial position to the vertex is subdivided by 

evenly spaced points and then the longitude interval from the 

vertex to the final position subdivided by evenly spaced points 

also. 

WAY LOIGITUDB LATITUDE DISTAICE AZIMUTH 
POIIT GEOCENTRIC _ GEODETIC ., (COURSE) 

0 55·22.00' 51·34.80' 51-46.00' - 063.14 
1 49·53.96' 53" 6.98' 53-18.02' 220.052 067.49 
2 44·25.93' 54"18.87' 54"29.76' 426.426 071. 91 
3 38"57.89' 55"12.67' 55-23.44' 622.813 076.38 
4 33"29.86' 55"50.01' 56- 0.69' 811.719 080.90 
5 28 - 1. 82' 56 "11. 98' 56"22.61' 995.336 085.44 

2~F33~77-; --5iFIg~23-;-- ------------- -H77~787- --------
6 56-29.85' 090.00 

I7-:27~I8-; --56·12~90-;-- ------------- -I347~730- --------
7 56-23.53' 094.26 
8 12"20.41' 55"53.73' 56- 4.41' 1519.554 098.51 
9 7"14.00' 55"21. 25' 55-32.00' 1695.240 102.73 

TABLE 1 - PATH OF GEODESIC FROJ( BELLE ISLAND TO IlfISTRAHULL. 

It was considered of interest to perform the same experiments as 

were done by T. Hairawa:2:3 since some of this work written· here was 

presented in a paper to the Journal of lavigation by the author with 

J. E. Phythian30 as a response to the paper by Hairawa in the same 

Journal . In his paper Hairawa drew comparisons between the methods 

of computing distance on the surfaces of the sphere and the spheroid 

along the arcs of loxodromic curves and geodesics. In the case of 

the geodesiCS he used the correction method of Lambert. Our 
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computations are based on the same spheroid data used also by 

Hairawa <Bessel's Spheroid : e = 0.081697 , a = 3437.7468 >. The 

method presented by us is referred to as the "Direct JIIethod" and the 

method used by Hairawa as the "Correction JIIethod" . The experiment 

consisted of computing the shortest distance between pairs of points 

which are 1000 of longitude apart and lying on the same parallel of 

latitude and letting the latitude vary from 10Q to 80°. The results 

are shown in Table 5.2 below. 

TABLE 5.2 

GEOGRAPHICAL Dl D:2 D3 D" Ds LATITUDE 

10'''' 5876.82 5876.83 5877.3 5877.33 5877.33 
200 5525.02 5525.02 5526.9 5526.96 5526.96 
300 4987.29 4987.29 4991. 2 4991. 21 4990.21 
40'" 4311. 84 4311.84 4317.6 4317.61 4317.61 
50"" 3539.84 3539.86 3546.7 3546.71 3546.70 
600 2702.52 2702.55 2709.3 2709.29 2709.26 
700 1822.67 1822.71 1828.1 1828.08 1828.04 
80"" 917.31 917.34 920.3 920.32 920.28 

In Table 5.2 

Dl is the Great Circle Distance on the surface of the 

corresponding sphere as computed using the Cosine Formula. 

D2 is ths Great Circle Distance on the surface of the corresponding 

sphere as computed by the Direct Jlethod with e=O and intermediate 

points taken along the Great Circle at 50 intervals in the 

longitude. 

D3 is the shortest distance on the surface of the spheroid as found 

by Hairawa3 with the Correction Method. 

D4 is the shortest distance on the surface of the spheroid as found 

by the Direct Jlethod wi th poi nts intermediate along the geodesic 

arc taken at intervals of 5° in the longitude. 
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D5 is the shortest distance on the surface of the spheroid as found 

by the Direct method with intermediate pOints along the geodesic 

arc taken at intervals of 1° in the longitude. 

The distances computed by Hairawa were probably taken between pOints 

on the same parallel of latitude because, in the Correction Method, 

the formula takes a particularly siDple form in this instance. The 

lati tudes of the two end points of the geodesic arc appear in the 

formula symmetrically and we also find that the best results are 

obtained from the correction method when these latitudes have the 

SaDe absolute value. 

In the example of the distance from the position off Belle Island 

in lewfoundland, to a pOSition off Inistrahull using the Direct 

Method the shortest distance, found taking intermediate points along 

the path at intervals of approximately equal to 5° in the longitude, 

is found to be 1695.24 geographical miles - a difference of 3.63 

geographical miles from the great circle method . Lambert's method 

in this case gives a distance of 1695.25 geographical miles. 

In response to the paper presented to the Journal of lavigation by 

Yilliams & Phythian30 a paper was published by Roger Bourbon31 

describing an improvement to the Correction lethod of Lambert and 

involving further iterations. He used the example of the shortest 

distance between the points of Belle Island and Inistrahull and gave 

this distance as 1695.27 geographical miles. 

5.8 REKARKS OB THB BXPBRlKEITAL RESULTS. 

The lathemtical problem of describing the geodesic paths on the 

surface of a spheroid by analytical equations is a classical one, 

first solved by Clairaut and given in the book by Todhunter3 :Z • 

However, it has never been easy to give a numerical solution to 

Clairaut's Bquation (5.4) for all cases. MOst solutions use 

iterative methods and this has required the use of computers. In the 

past, therefore, alternative solutions, such as the Correction 
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Kethod, have had to suffice. By modern standards the Great Circle 

solution is not really good enough and, since electronic computing 

devices are now widely used, it is possible now to obtain accurate 

numerical solutions. There has also been the danger, as pointed out 

by Hairawa23 that, in seagoing navigation, it is a practice to use 

formulae which are not correct theoretically. There is really no 

need to continue this practice now that algorithms are available 

which can compute distances to very acceptable accuracy. Indeed, as 

was mentioned in the introduction to the thesis, much has been 

published on the single problem of computing the distance along the 

geodesic arcs of a spherOid and claims that it can be done correct 

to a millimetre for a reular spheroid are justified. For 

navigational purposes. however, this level of accuracy is not 

strictly necessary and we have concentrated more on the computation 

of the positions along the arc of the geodesic which requires a 

method such as the direct method as described in this chapter. 

For the positions chosen by Hairawa the results obtained from the 

Direct Kethod and the Correction JIIethod of Lambert compare 

favourably. They both differ from the Great Circle Distance and, 

where they differ froD each other, that difference is small compared 

to the difference each has with the Great Circle Distance. 

10 error analysiS has been done here on the Correction Kethod . As 

to the Direct JIIethod, we would expect that the main source of error 

would be due to round off, particularly in the approximation to the 

value of ~. The error due to round off which affects D4 in Table 5.1 

can be estimated by the difference between D1 and D2 which at its 

maximum is 0.04 geographical miles. We are confident. that, by 

iteration, the error in the final result due to the value of X is 

reduced to a negligible amount. It is our belief, then. that the 

distance D4 in Table 5.2 is as good an estimate to the shortest 

distance between the specified points on the surface of the sheroid 

used as the approximation to the shape of the Barth that we need to 

make. 
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When second approximations are taken the correction methods of 

computing the length of arc along a geodesic curve on the surface of 

the terrestial spheroid are qUite adequate for the purpose but, 

from this method, we do not gain any information about the path that 

the geodesic takes. This is important to the navigator and this is 

the reason that we have chosen to use this direct method - so that 

by applying a step by step method of solution of Clairaut's equation 

we can determine intermediate paints along the path, the distance 

between them and the angle at which the geodesic curve cuts the 

meridans at the intermediate points. The path of the geodesic curve 

can then be plotted on a Mercator chart in the traditional manner. 

Automatic systems for voyage planning also use intermediate points 

along the projected path which are called "Way Points". The 

positions of these "way points" have to be determined and it is 

always better for the navigator to achieve the "way points" along 

the path as near as possible. 
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THE SHORTEST DISTANCE BETWEEN 
NEARLY ANTIPODEAN POINTS 

ON THE EQUATOR 



6.1. INTRODUCTION. 

There is a special problem in finding the shortest path geodesic arc 

that joins two Nearly Antipodean points on the surface of the 

spheroidal Earth. Nearly 'Antipodean Points are points which are 

almDst 180· apart in longitude but which have the same latitude in 

opposi te hemispheres. The speci fic longitude at which this problem 

occurs is defined below. It turns out that, in this case, the 

shortest path can deviate quite considerably from the path predicted 

by the method described in Chapter 5 and from the great circle path 

on the corresponding sphere. When points are exactly 180· apart in 

longitude then the shortest path between them is along the meridian. 

Lambert 29 , in his paper entitled "THE DISTANCE BETWEEN TWO WIDELY 

SEPARATED POnTS ON THE SURFACE OF THE EARTH", published in 1942. 

having given a solution which was applicable in most cases, stated 

that there was a particular difficulty in using the Correction 

Method to determine the shortest distance between two Dearly 

antipodean points on the surface of the spheroidal Earth but this 

was not fully analysed in that paper. The problem has been solved by 

several authors since and one of the JIIOre recent is Bowring7. The 

method described in Chapter 5 in this thesis computes the shortest 

distance between two pOints on the spheroidal Earth model but this 

distance is along a geodesic arc between the points which closely 

follows the great circle arc on the corresponding sphere. Indeed the 

method here in Chapter 5 uses the great circle values as initial 

approximations in subsequent iterative procedures and. for similar 

reasons, whilst the method gives the shortest distance for most 

cases, it does not give the shortest distance for the case when two 

pOints are nearly antipodean. We will now adapt our procedure to 

correct this. 

The theory of this subject has been discussed before by Helmert:!<3 

and Fichot34 (among others) but it seems that there has been no such 

full exposition in English. Lambert, in his paper, stated that it 

was his intention to publish further work on this problem, in 

English, but, to our knowledge. this has not appeared and. as far 
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as we can see, no work similar to that of Fichot by another author 

has appeared either. We will recapitulate the statement of the 

problem posed by Lambert and present our solution . 

e.2 IBARLY ANTIPODEAN POINTS ON THE EQUATOR. 

Consider first, as Lambert did, two points which both lie on the 

Equator. Al though the Equator is a geodesic curve the shortest 

distance between two points on the Equator is not, as one lIight 

imagine, always along the Bquator. When the difference of longitude 

between them is greater than a certain fixed value <which according 

to LaDbert, is approximately 179°24') then the shortest path between 

them is along another geodesic arc which takes a northerly (or 

southerly> route in order to take advantage of the flattening of the 

spheroid. 

At each point on the surface of a spheroid a faDily of geodesic 

curves is defined and these geodesic curves emanate in all 

directions from the point. From the poles these families are the 

meridians but frOD all other points the family is defined by 

Clairaut's Equation (Lyusternik28 ) written in the forD 

a~ cos 1 sin Y = av cos Iv ",," (6.1) 

where, at a point P along a geodesic arc, a~ is the radius of the 

spheroid, ~ is the geocentric laU tude and Y is the angle between 

the geodesic and the meridian through P. This equation (6.1> was 

derived in Chapter 5. A particular meDber of the faadly is specified 

by ~" <the geocentric latitude of the vertex, V, of the geodesic 

curve) and each meDber of the family has a slightly different 

sinusoidal period. The sinusoidal period of a geodesic is related to 

the geocentric latitude of its vertex so that the higher the 

lati tude of the vertex the greater is the sinusoidal period. The 

half period of a geodesic is the difference of longitude between two 

successi ve passes of the geodesic through the Equator. The half 
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period, Bp, of a geodesic which reaches its vertex in latitude _v is 

given by equation (5.11). 

Let us consider the family at geodesic arcs which start at the point 

with latitude 0° and longitude 0° , which have their end points on 

the Equator also and which have their vertices in the Northern 

Hemisphere. See Figure 6.1. The family of geodesics in the Northern 

Hemisphere are shown by the continuous arcs in the figure. To each 

member of the family, starting at the same point, there corresponds 

a symmetrical geodesic of equal length 1 n the Southern Hemisphere 

and terminating at the same point also. The members of this family 

of geodesics in the Southern Hemisphere are marked by the broken 

lines in Figure 6.1. 

The longitudes of the end points of the geodesics all fall in the 

interval SL ( a '1800 where aL. is Lambert's value 

(=t 179·24' which is given as 211: V (1-e2
) in chapter 5) but the 

longitudes of these end points are different for each member of the 

family. The extreme members of the family are that part of the 

Equator itself between longitudes O· and eL (vertex 0·, half 

period eL) and the meridian with end points in longitudes O· and 

180· (vertex 90·, half peri od 180· ). lote then, that when the 

difference of longitude, Sd, falls in the interval 8L < 80::1 , 180·, 

there are three geodesic arcs Joining the two points - the Rortherly 

geodesic, the Southerly geodesic and the Equator - but only two of 

them - the Northerly geodesic and the Southerly geodesic - give us 

the equal shortest distance. The Equator will give us the shortest 

path when ed' aL. , for then all three paths will coincide. This 

means that if the difference of longitude, eo::l, between two .points on 

the Equator is less than or equal to this figure then the shortest 

path between them is along the Equator. If, however, 

1790 23.898' , ad ~ 1800 

then the shortest path is along a northerly or southerly route -

either are possible and both give the same shortest distance. 
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FIGURE ~.1. CYLINDRICAL PROJECTIOI OF GEODESIC PATHS BETWEEN TWO 
NEARLY ANTIPODEAN POINTS 01 THE EQUATOR. 
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It was shown Chapter 5 that, along the arc of a geodesic which 

crosses the Equator in 1 ongi tude ae: and reaches its vertex in 

latitude lv, longitude Bv , at any point along the geodesic arc where 

the latitude is I and the longitude is a, then; and a are related 

by the equations 

Y = a tan ; ( yv = a tan Iv ) 

a aE ~y a 2 (1-e2 )2+ t::z dt - = 
0 a 2 (1-e2 ) + t2 v'(y~ - t2) 

whose solution may be expressed in the form 

(6.2) 

where 1 1 f u) du = - f(Yvsin 
~ u 0 

and u = sin-- 1 1. 
yv 

This is found from the differential equation 

(6.3) 

which was also derived in Chapter 5 and defines the path of a 

geodesic on the surface of a spheroid by means of Clairaut's 

equation expressed as a differential equation. 

It was shown in chapter 5 that the half period, ap , of the geodesic 

is given exactly by equation (5.11) which is 

du .... (6.4) 

where 

- 99-



A typical geodesic whose vertex is at latitude ~v and whose half 

period is 9p is marked by the dotted line in Figure 6.1. 

Table 6.1, in column 2, shoWS the value of the half period, 9p , of 

the geodesic with its vertex in the latitude given in column 1. This 

value is the value of the longitude where the geodesic, which 

started out in latitude 0·, longitude 0·, crosses the Equator again. 

Bp is computed from equation (6.4) with yv = a tan Iv 

a = 3437.7468 geographical miles and e = 0.081697 

LATITUDE OF HALF PERIOD DISTANCE PoP ... DISTAICE PoP ... INITIAL 
VERTEX (~v) (Bp) ALOlfG EQUATOR ALONG GEODESIC AZIMUTH 

(g. m. ) (g. m. ) ('0 

10"'" 1790 24.451' 10764.45 10764.44 079.970 

200 1790 26.091 ' 10766.09 10765.99 069.940 

30° 179°28.769' 10768.77 10768.38 059.92° 
40° 1790032.391' 10772.39 10771. 32 049.91 00 

500 179""'36.850' 10776.85 10774.42 039.91° 
60° 179'::>42. 007' 10782.01 10777.43 029.920 

700 1790 47.704' 10787.70 10779.77 019.940 

80° 179"'53.871' 10793.87 10781.40 009.97° 

TABLE 6,1. SHORTEST DISTANCES FOR NEARLY ANTIPODEAI POINTS 
ON THE EQUATOR 

Table 6.1 also shows, in column 3, the distance along the Equator 

between two points Po and Pn when the difference of longitude 

between them is equal to Bp. This value is simply the angle ap 

expressed in minutes of arc and gives the result in geographical 

miles. Column 4 of Table 6.1 gives the shortest distance between Po 

and P". It was shown in Chapter 5 that the distance, s, along the 

geodesic arc between two points Pc- and p" whose longi tudes are ac:. 
and an, respectively, is 

s = ~9n a:cos2 1 de 

Sc:> avcos -v 
. . . . .. (6.6) 

where _ is expressed in terms of 9 by equation <6.2). 
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Since, in this case, both points lie on the Equator and we have 

ep = e., - e.:> 

or eF"_' = 2 (e" - e.,,) 

then the distance, s, in Equation (6.6) is, in 

conveniently computed from 

s = 2 ~ev a~cos21 de 

ee> avcos 1" 

practice, more 

. . . . .. (6.7) 

Given 1v from column 1 of Table 6.1, if this 1" ~ 60· then we have 

used a combination of Equations <5.18) and (6.7> to compute the 

distance s. We find a value 1', and a corresponding value e 

somewhere near to the point on the geodesic where y = 45· so that 

r f<y> a2 
9 = 

'0 
p d1 

a", cos ~v ./(tan2_v - tan2~) 

+ t" a;cos2 _ 
de . , ... (6.8) 

e' a" cos _.., 

The procedure for evaluating the integrals in equation (6.8) were 

described in chapter 5. 

The entry in column 5 gives the initial azimuth, y, of the path of 

the geodesic from the point on the Equator. This depends .also upon 

the geocentric latitude of the vertex, 1", and is given by : 

sin Y = a" cos 1" 
IS 

. . . . .. (6.5) 

where a" is the radius of the spheroid at the vertex. 
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6.3 GEODESIC CURVES ON THE SURFACES OF OTHER PLANETS. 

The Earth is usually considered to be "spheroidal" where the term 

spheroidal is used in the sense that the Earth is "sphere-like" 

because the flattening is small. The inner planets (J(ercury, )tars 

and Venus), like the Earth, are also spherOids since the flattening 

of these planets is small too but, in the case of some of the outer 

planets. such as Jupiter, the information so far gathered would 

suggest that the flattening is much more distinct. Measurements 

would indicate that the eccentricity of the meridional ellipse of 

Jupiter is approximately equal to 0.3. The planet Jupiter is 

therefore more aptly referred to as an ellipsoid of revolution. 

There is no geometrical difference between a spheroid and an 

ellipsoid of revolution and here we will use the terms freely to 

mean the same thing. 

In the case of the Earth and the planets the axis of rotation of the 

planet is also the axis of revolution about which the ellipsoidal 

shape of the planet is generated. Indeed, there are good reasons why 

this should be so - the spheroidal or ellipsoidal shape is the 

condition of hydrostatic equilibrium of the planet due to its 

circular motion about its axis. The conditions of hydrostatic 

equilibrium depend upon its physical constitution and its angular 

velocity. See, for instance, the book by Samuel Glasstone35 • 

Al though the mathematical analysis of geodesic arcs on the surface 

of a spheroid as described in Chapter 5 and iD the foregoing 

sections of this chapter have been written with the Earth in mind, 

where the flattening of the surface is small and the eccentricity of 

the meridional ellipse is aproximately equal to 0.08, .it is not 

difficult to see that it will work equally well for a surface such 

as Jupiter where the eccentricity of the meridional ellipse is 

approximately equal to 0.3. 

Ye can set up a coordinate system on the surface of a planet with 

latitudes and longitude defined in a similar manner to that on the 

Earth. The Poles of a planet will be those points on the surface 
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where the axis of rotation cuts the surface and the North Pole will 

be the pole above which an observer, looking down upon the pole, 

will observe the planet to be rotating anticlockwise. The equator of 

a planet w111 be a circle which is the locus of points which are 

equidistant from both poles. At a point P on the surface of the 

planet the geocentric latitude, I. will be the angle subtended at 

the centre of the ellipsoidal planet from the Equator to P and the 

geodeti c lat! tude will be the angle between the normal to the 

surface at P and the Equatorial plane. See Figure 6.3. 

J 

FIGURE 6.3 

W~ ______ -L~~~ __ ~ __________________ ~ E 

S 

The longitude • S. will be the angle between the plane through a 

selected meridian where 9=0 and the plane through the meridian at P 

measured Eastwards. The relationship between the coordinates of a 

point on a geodesic curve on the surface of an e~lipsold is 

therefore 

where 

tan _ = tan _v sin [X(S - SE)] 

1 
~(Xy) = f(x

v
) 

as defined in chapter 5. _v is the latitude of the vertex and 9E is 

the longitude where the geodesic crosses the Equator. The half 
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period of a geodesic curve on the surface of an ellipsoid is given 

exactly by equation (6.4) . 

Table 6.2 shows the values of the half period of a geodesic for 

given eccentricity of the meridional ellipse of an ellipsoid and at 

intervals of 20· in the latitude of the vertex. On the surface of a 

planet in which the eccentricity of the meridional ellipse is 0.25, 

for instance, the geodesic curve which reaches its vertex at a point 

where the geocentric latitude is 40· will have a half period of 

175·41. 7' . 

TABLE 6.2 - HALF PERIODS OF GEODESIC CURVES ON THE SURFACES OF 
ELLIPSOIDS OF REVOLUTION. 

LATITUDE OF VERTEX OF GEODESIC 

e 0'" 200 400 600 8000 

0.05 179°46.5' 179<:047.3' 1790 49.7' 179°53.3' 179°57.7' 

0.10 1790 5.9' 179c , 9.2' 1790 18.6' 179°33.1' 1790 50.8' 

0.15 177 0 57.8' 1780 5.4' 178°27.0' 178°59.6' 179""39.5' 

0.20 176""21. 8' 176°35.6' 177°14.6' 1780 13.0' 179°23.8' 

0.25 174017.1' 174"'39.3' 1750 41.7' 1770 13.7' 1790 3.9' 

0.30 1710 42.2' 172°15.9' 173°48.4' 1760 2.2' 1780 40.2' 

0.35 168°36.9' 1690 24.7' 171 0 34.9' 174°39.1' 178°13.0' 

0.40 164<:058.4' 166'" 4.6' 169° 1.7' 1730 5.4' 177°42.7' 

Although they are very close to it, none of the planets are really 

regular ell ipsoids, and, indeed, information about the details of 

the shapes of the planets (and of the Earth even) is constantly 

being updated. For lavigational purposes, however, it ie probably 

accurate enough to assume that the Earth is an oblate spheroid whose 

meridians are ellipses whose eccentricity is approximately equal to 

0.082. The eccentricities of the meridians of Xercury, liars and 

Venus are considered to be less than this value and the 

eccentricities of the meridians of Jupiter and Saturn somewhat 

greater. 
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-7-

THE SHORTEST DISTANCE BETWEEN 
NEARLY ANTOPODEAN POINTS 

OFF THE EQT...TATOR 



7.1. NEARLY ANTIPODEAN POIJTS OFF THE EQUATOR. 

We have analysed the case when two nearly antipodean points both lie 

on the Equator and a similar situation occurs when two nearly 

antipodean points have the· same latitude in opposite hemispheres. 

Let the two points be Po and Pn . If the latitude of one of them is 

'0' say, then the latitude of the other point will therefore be -";" 

As was stated in section 6.2 of Chapter 6, from Po a family of 

geodesic curves emanates in all directions and are defined by the 

equation 

but, in this case, ~v ~ '0 
Let us consider the geodesic whose vertex latitude, ~v, is equal to 

'C). The half period of the geodesic whose vertex is in latitude 'V 
(='0) will be 8 p as determined from column 2 of Table 6.1 

corresponding to the vertex latitude ,V (='0) in column 1. If, then, 

the difference of longitude between Po and Pn is less than or equal 

to 9p (see Figure 6.3) the shortest distance between them will be 

along the geodesic arc as computed by the method described in 

Chapter 5. 

Latitude (') 

~----~~-~----------------------------------------------Po 

Longitude (9) 

e = e - e 
p n '" 

-------------------------------------------=--~-~------~ 

FIGURE 7.1. CYLINDRICAL PROJECTION OF GEODESIC ARC 
(HALF PERIOD = 9p ) 
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If, however, Bp < Bd ~ n: then the shortest path will be along a 

different route which takes advantage of the flattening of the 

spheroid and this path will be along a geodesic arc whose half 

period will be equal to the difference of longitude between the two 

pOints Pc. and Pn . See Figure 7.2. Once again it turns out that, when 

ep < Bd ( n: , there are three geodesic arcs joining two nearly 

antipodean points off the Equator just as there are three geodesic 

arcs joining two nearly antipodean points on the Equator but only 

two of them in each case give the equal shortest paths. Between two 

nearly antipodean points off the Equator there are, therefore, two 

equal shortest paths along the arcs of geodesics whose half period 

is equal to 8d , one of which takes a northerly route through its 

vertex in the northern hemisphere and the other takes a southerly 

route through its vertex in the southern hemisphere. There is also a 

third geodesic, which we will call the IlfTERJlEDIATE GEODESIC, whose 

half period is equal to 8J'" which closely follows what would be the 

great circle path on the corresponding sphere and which plays 8 role 

which would be the equivalent to the Equator in the case of two 

nearly antipodean points on the Equator. 

Lati tude (1) 

p .... 
---------------~-~--~-

-10 ----.-.. --.-

-I .... ------

\ 
\ Longitude (9) 

8n 
• , , , , 
._---_., 

• P I " '- -L~_~_~ _____ ~ __ 
FIGURE 7.2. CYLINDRICAL PROJECTION OF THE GEODESIC PATH BETWEB! 

TWO NEARLY ANTIPODEAN POINTS OFF THE EQUATOR. 
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Figure 7.2 shows the cylindrical projection of the three geodesic 

arcs between two typical nearly antipodean points off the Equator. 

The continuous I ine shows the shortest path geodesic which passes 

through its vertex in the northern hemisphere and the broken 11 ne 

shows the shortest path geodesic which passes through its vertex in 

the southern hemisphere. The dotted line shows the path of the 

intermediate geodesic whose half period is equal to ap and which has 

its vertices at geocentric latitudes fJo. The three geodesics in 

Figure 7.2 all start at the point Po, latitude _0' longitude 90' and 

end at Pr-, , lat! tude -1<:0, longitude 9n • The northerly geodesic 

reaches its vertex at Pv, latitude _v, longitude av, and crosses the 

Equator at PE where the longitude is SE. From the point Po there is, 

in fact, a family of geodesics to points near Pn similar to the set 

described in Section 6.2 and illustrated in Figure 6.1. This family 

has one of its end points at Po and the other at a point in latitude 

-_0' Once again, the latitude of the vertex of the geodesic is 

related to its half period and, although all the geodesics leave Po 

in latitude _0' longitude 9<." when they arrive in latitude -_.=> they 

are not all in the same longitude. This longitude will depend upon 

the half period of the geodesic. See Figure 7.3. The continuous arcs 

are the shortest path geodesics which pass through their vertices in 

the northern hemisphere and the broken arcs are the shortest path 

geodesics which pass through their vertices in the southern 

hemisphere. The dotted line shows the Intermediate Geodesic for this 

family. The limiting members of the family are the Intermediate 

Geodesic (vertex in latitude _0' half period ap ) and the meridian 

through Po (vertex at latitude 90°, half period 180°). 

When 9",. < ad ~ 1£ , then the absolute value of the geocentric 

latitude, _v, of the vertices of the two equal shortest path 

geodesics between two nearly antipodean points off the Bquator can 

be found by inverse interpolation of Table 6.1, taking ad as equal 

to the half period in column 2 . Table 6.1 is, in fact, held on 

file on our computer at Intervals of 10 of the geocentric latitude 

of the vertex, _v. 
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Latitude (~) 

-------------------------'-::.;--=--==--------------------------

1..,= ~, 

1 = 0 

\ \ \ 

\ \ \ 

\\ "" .... 
1..,= -_Cl --------\--~------~--------------------------~~-~ 

\." --- ..,/// 
1..,= -~1 ----------\------,,------~--~---~-:.::----~-~------

\" / \. ..-'" /' 
1..,= -1

2 
----------------,----- ...... :--. -- - -----~------------

/"" 

----J = -1 ------------------------~~-------------------------7'..., 3 

FIGURE 7.3. CYLINDRICAL PROJECTION OF GBODBSIC ARCS THROUGH Po. 
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It was shown in Chapter 5 and in Section 6.2 that, along a 

geodesic whose vertex lies in latitude Iv which crosses the Equator 

in longitude 8~ j the latitude, " and the longitude, 8, of a point 

on the geodesic are related.by 

where 
1 1 

u 
= ~ f(Yvsin u) du 

). u 
.. .... (7.1> 

0 

u = sin- 1 I 
yv 

and y = a tan , 
Given then, that we have two points: Po, in latitude ,0, longitude 

ao; and PII' in latitude -''''., longitude 9", and that, from Table 6.1, 

we determined ,v, the latitude of the vertex of the geodesic whose 

half period is equal to the difference of longitude, ad (= en-So) 

then we find 

a~ = a - ! sin- 1 Io 
C> Xc. yv (7.2) 

The shortest path, therefore, between Po and Pn is along a geodesic 

arc which reaches its vertex in latitude ,V (which corresponds to a 

geodesic whose half period Is equal to Bd) and which crosses the 

Bquator in longitude BE. 

We have determined four points along the path of the geodesic which 

are 

See Figure 7.2. 
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We can compute the distance PC'PM piecewise along the three separate 

arcs p(~Pv, PvPE, PEP,..,. The distance along the arc P""P .... is then 

+ + .. <7.3) 

Each integral in (7.3) will be evaluated numerically by the same 

method that was used in Section 5.6 for the integral in equation 

(5.12), subdividing the intervals of integration by points where the 

longitudes are 81(i=1,2, .... ,n-1) and determining the corresponding 

latitudes <It} using the same iterative procedure. 

7.2 AN EXAMPLE OF SHORTEST DISTANCE BETVEEI NEARLY ANTIPODEAN 
POINTS. 

As an example, let us consider the shortest distance froD positions 

off Fremantle in Western Australia (latitude 32°S, longitude 

115°30' E approximately> to a fixed position (latitude 32°1, 

longi tude 64°V) off the island of Bermuda in the Atlantic. It is 

customary practice for seagoing navigators to choose departure and 

arrival positions for sea passages and we would not be stretching 

the credulity of this practice in this case if we decide that both 

positions should be on parallels where the absolute value of the 

geocentric lat! tu de is 320
• By the same principle, let us fix the 

longitude of the arrival position off Bermuda at 640 00' and adjust 

the departure position off Fremantle to suit our purposes. 

Table 7.1 shows, for two points in opposite hemispheres with 

geocentric latitude i32o, the equivalent data as shown in Table 6.1 

for two points on the Equator. Given lv, the latitude of the vertex, 

we find 9p from equation (6.6). The distance along the intermediate 

geodesiC is computed by the method of Villiams & Phythian30 and is 

the distance along the path which closely follows what would be the 

great circle path on the corresponding sphere. The distance along 
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the shortest path is given by Table 7.1 since the shortest distance 

along a geodesic path with given vertex is the same for any two 

poi nts between which the difference of longitude is equal to the 

half period of the geode~ic for any geodesic on the spheroidal 

Earth. 

VERTEX OF HALF PERIOD DISTANCE ALONG DISTANCE ALONG INITIAL 
GEODESIC OF GEODESIC IIfTERMEDIATE SHORTEST PATH AZIJlUTH 

(~v) (9 p ) GEODESIC (s) (10) 

320 1790 29.420' 10768.9 10768.9 090.00" 

35"" 179°30.468' 10769.7 10769.7 074.97° 

40° 1790 32.391' 10771. 5 10771. 3 064.54'" 
---45;;--- ------------- -------------- -------------- ---------179°34.526' 10773.3 10773.0 056.43° --------- ------------- -------------- -------------- ---------

500 179"'36.850' 10775.1 10774.4 049.22° 

60° 179':>42. 007' 10779.6 10777.4 036.06° 

TABLE 7.1 SHORTEST DISTANCES FOR NEARLY ANTIPODEAI POIITS 
IN LATITUDE ~32°. 

Let us focus our attention on the geodesic path whose vertex lies in 

latitude 45°, Since the difference of longitude between the 

departure and arrival positions must be chosen to be equal to the 

half period of this geodesic and we have fixed the longitude of the 

arrival position at 64°W, then the longitude of the departure 

position must be chosen as 115°34.526'. Thus the coordinates of Po 

are 

~ 0 = -32''''00' 90 = 1150 34.526' 

Corresponding to ~o = -320 we find tan ~D = -0.624869352 

and, since ~v = 450 then tan Iv = 1 

so that 10 a tan ~C> tan ~o = = 
yv a tan ~v 

From equation (7.1) we also find ~o er 1.003186 
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Hence, using these values of tan ~o and Xo in equation (7.2), we 

find a value for aE, the longitude of the point where the geodesic 

crosses the Equator : 

or 

1. e. 

This geodesic 

where 
J[ 

is 
).v 

Hence 

which is 

The longitude 

SE = ac . -! sin-- 1 (y~ ) 
X." yv 

SE = 115034.526" _ sin- 1 (-0.62469352) 
1. 003186 

8E = 154°6.741" (E) 

also crosses the Equator at longitude a~ where 

8' = 8 +!! 
E E: XV 

given by equation (5.11) 

8~ = 333°41.267" 

of the vertex, av, is given by 

ay 1t = SE - 2);v 

8y = 1540 6.741" - 89<'47.263" 

ay = 64 0 19.478' (E) 

Computing the distance along the intermediate geodesic path by the 

method of WUUams & Phythian:Jo gives 10773.3 geographical miles. 

The intermediate path is the dotted line in Figure 7.3 - it crosses 

the Equator, halfway between the departure and arrival paints, 

somewhere on the African Continent and has its vertices at latitude 

t320 very nearly. It is symmetric about the Equator and closely 

follows what would be the great circle path on the corresponding 

sphere. We find, however, that the distance along the southerly 

geodesic, which is one of the two shortest paths, is 10773.0 

geographical miles. This distance is only marginally smaller than 

the distance along the intermediate geodesic but what is surprising 
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and important is that the path taken is along an entirely different 

route and navigable entirely by sea. The route heads southwards 

initially to its vertex in the South Indian Ocean at 450 S and 

64"19' E (approximately>. It passes close to the west of Capetown, 

crossing the parallel of 35"S in longitude 17°56'E (approximately>, 

proceeds northward through the South Atlantic Ocean and crosses the 

Equator in longitude 26°23' W (approximately>. In Figure 7.3 the 

continuous line shows this route. There is, of course, another route 

(along the northerly geodesic) of equal length which passes through 

its vertex in latitude 450 1. This route is marked by the broken line 

in Figure 7.3. 
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FIGURE '1.3. GEODESIC PATHS FROK FRElfANTLE TO BERlIUDA. 
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Surprising again is the fact that a small change in the difference 

of longitude between the departure and arrival positions will result 

in another path which will differ considerably from the above path. 

This does mean that, in fact, the computation of position along the 

geodesic path is relatively unstable although the distance 

calculation itself is not. 

7.3. CONCLUSION. 

Theoretically speaking, nearly antipodean points, in the sense used 

here, are those points which have exactly the same latitude in 

opposite hemispheres and whose longitudes fall within the specified 

range which is applicable to that latitude. Naturally, points whose 

latitudes differ in absolute value by only small amounts which might 

fall inside the error bounds for the computation could also, in 

practice, be considered nearly antipodean for all practical 

purposes. 

The work in chapters 6 and 7 is an expansion of the paper by 

Yilliams & Phythian36 published in the Journal of lavigation. 

As has been shown, the saving in distance by using a shortest path 

geodesic between two nearly antipodean points instead of the path 

along the intermediate geodesic is only sDBll, and, for most 

practical purposes, negligible. The routes taken by the shortest 

path geodesics are, however, geographically significant in many 

cases and could provide advantageous alternatives to the navigator. 

-114-



B 

COMPUTATION 
OF 

A~TRO~O~ICAL FIXE~ 



8.1 THE GEOGRAPHICAL POSITION OF A HEAVENLY BODY. 

At any instant in time each heavenly body (the Sun, Koon, Planets 

and Stars) is directly above some point on the surface of the Earth, 

that is, it lies on the line which is normal to the surface of the 

Earth at that point. This point on the surface of the Earth is known 

as the GEOGRAPHICAL POSITIOI of the heavenly body and the heavenly 

body is also at the ZENITH of an observer placed in that position. 

The point X in Figure 8.1 is the Geographical Position of the 

astronomical body t. The Zenith for an observer at a point Z on the 

surface of the Earth is the point in space at the extremity of the 

normal to the surface at Z. The body', for instance lies at the 

zenith of the point X. 

FIGURE 8. J 

w E 

,/ 

S 

The CELESTIAL SPHERE is an imaginary sphere of no fi1ed radius but 

centred at the centre of the Barth and onto whose surface the 

posi tions of all the heavenly bodies are mapped. The Celestial 

Equator is the intersection of the Celestial Sphere by the plane 

through the Earth's Equator. Positions on the surface of the 

Celestial Sphere are described by angular coordinates. Declination 

(which is the exact equivalent of latitude) is the angular 

coordinate of the heavenly body lorth or South of the Celestial 
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Equator. The declination of a heavenly body immediately gives the 

latitude of the geographical position of the heavenly body. The 

angular coordinate on the surface of the Celestial Sphere from which 

we obtain the longitude of the Geographical Position of the 

heavenly body on the surface of the Earth is the HOUR AIGLE. Hour 

Angle is expressed in degrees from 00 to 3600 and is measured 

westwards because the bodies in the heavens themselves move 

westwards relative to an observer on the surface of the Earth. The 

GREENWICH HOUR ANGLE (GHA) of a heavenly body is the angle between 

the image of the Greenwich meridian on the Celestial Sphere and the 

meridian through the body. The longitude of the Geographical 

Position of the body is obtained from the GHA 

LOIGITUDE = 2x - GHA 

lIautical Almanacs provide us with the information from which to 

compute the Geographical Position. The Nautical Almanacs are 

published yearly and the Declination and GHA of the Sun, Koon, and 

maj or Planets are gi ven for hourl y interval s throughout the year. 

Interpolation Tables to interpolate the GHA and Declination of these 

bodies for minutes and seconds are also given where it assumed that 

the hourly changes are more or less constant. 

The GHA ls also tabulated hourly for a reference point on the 

Celestial Sphere which is known as the FIRST POINT OF ARIES. This 

point is a reference point established by astronomers. It is the 

point on the celestial equator at which the sun crosses at Vernal 

(Spring) Equinox. The position of the First Point of Aries varies 

very slightly and is so named because, at the time that this point 

was first established, it lay in the constellation of Aries. In the 

case of stars, Hour Angle is then Deasured from the FIRST POIIT OF 

ARIES. The angle between the meridian on the Celestial Sphere which 

passes through the First Point of Aries and the ueridian through a 

particular star is known as the SIDEREAL HOUR AIGLE (SHA). For a 

star the values of the Declination and the SHA vary little and are 

tabulated once every few days. We obtain the GH! of star (t) from 

GHA(') = [GH!<Aries) + SHA('») mod(2x) 
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8.2 ASTRONOMICAL OBSERVATIOJS 

In Navigational terms an astronomical observation means an 

observation of any heavenly body - stars, sun, moon or planets. These 

observations are the altitudes of the heavenly bodies above the 

horizon taken using a sextant. For a seafaring Javigator this 

horizon is usually the sea horizon (VISIBLE HORIZON> and for an 

aviator the horizon is usually an artificial horizon (SEISIBLE 

HORIZON) in a bubble sextant. 

Figure 8.2 shows the Visible Horizon, VV', and Sensible Horizon SS', 

for an observer at the point Z whose height above the surface of the 

Earth is h. The angle SZV is known as the DIP of the Sea Horizon . 

• 

R R 

FIGURE 8.2 - OBSERVER'S VISIBLE AID SENSIBLE HORIZOJ(S. 

The plane through the centre of the Earth which is parallel to the 

Sensible Horizon is the RATIONAL HORIZON. (RR' in Pigure 8.2). 

After the altitude has been read froD the sextant it is corrected to 

give the altitude of the centre of the body from the centre of the 

Earth above the RATIOIAL HORIZON. 

The altitude of the body (f) is RD' in Figure 8.2. The point X is 

the Geographical Position of •. 

Raving found the altitude of a heavenly body,., we subtract this 

fron 90° to give us the ZENITH DISTANCE of • which is the angle ZO' 

in Figure 8.2. When the Zenith Distance is expressed in minutes of 
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arc it gives us the distance in geographical miles along the Great 

Circle arc between the observer and the Geographical Position of the 

heavenly body. 

This zenith distance then gives a POSITION CIRCLE on which the 

observer must lie. The circle has its centre at the geographical 

posi tion of the heavenly body and its radius is zenith distance. 
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FIGURE 8.3 - POSITION CIRCLE ON THE SURFACE OF THE SPHERICAL 

EARTH. 

If we take two simultaneous observations of two different heavenly 

bodies then this defines two position circles, and, at one of the 

points of intersection of these position circles, we will find the 

observer's position. The observer will usually have a good estimate 

of his position beforehand and this should determine, with very 

little possibility of ambiguity, which of the two points of 

intersection of the position circles is the observer's position. If 

it happens that there might be ambiguity, then this can be resolved 

by taking three observations of three distinct heavenly bodies. 
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8.3 DEFINING THE EQUATION OF A POSITION CIRCLE USIIG THE METHODS OF 
SPHERICAL TRIGONOMETRY. 

A spherical triangle on the surface of a sphere is the area enclosed 

by the intersections of three great circles. Figure 8.4 shows the 

spherical triangle PZX. In the triangle the angles are at P, Z and X 

and the sides are p, z, and x. The sides are expressed as angles 

where p, Z and x are the angles subtended at the centre of the 

sphere by the arcs ZX, PZ and PX on the surface of the sphere, 

respectively. 

To determine a side of the triangle, p say, we would use the 

SPHERICAL COSINE FORMULA form which we would find 

cos p = cos Z cos x + sin Z sin x cos P (8.1) 

The details of how this formula is derived may be found in the book 

by Gmf'7. 

P 

FIGURE 8.4 - A SPHERICAL TRIAIGLE. 

z 

Ye can give a particular physical significance to triangle PZX and 

show that equation (8.1) is the equation of the position circle on 

the surface of the spherical Earth. 

See Figure 8.5. In the figure the point P is at the Pole and the arc 

PG is the Greenwich meridian. Let the poi nt X be the geographical 

posi tion of the heavenly body and let the point Z be the variable 

position of the observer who lies on a circle around the point X the 

radius of which is the arc ZX (= ap where a is the equatorial radius 

of the Earth in nautical miles>. 
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If the geographical position of the point X is (X.~) where X is the 

laU tude of the geographical position of the observed body <its 

declination) and X is the longitude (2n - GHA) and <_, 8) are the 

coordinates of the variable. point X then the angles subtended by the 

arcs PX (=z) and PZ (=x) are 

x = "n - _ 

The angle at P is x-a and equation (6.1) becomes 

cos p = sin _ sin X + cos _ cos X cos <~-a) .. (6.2) 

P is the angle obtained from the observation and equation (6.2) will 

give us the locus of the variable point (_, a). The angles are all 

expressed in radians with latitude, _. and longitude, a bounded by 

-~n ( _ '~n <North positive) 

o a 2n (East positive). 

/ 

G 

FIGURE 8.5 - POSITION CIRCLE 
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If we now obtain a second observation of a heavenly body whose 

geographical position is (X',X') and the resulting zenith distance 

angle is p' then we find 

cos p' = sin I sin X' + cos I cos X' cos 0.' -8> I .. (8.3) 

The observer's position is therefore the selected solution for I and 

e of the pair of simultaneous non-linear equations (8.2) and (8.3>. 

To solve these equations analytically by elimination is a lengthy 

procedure and its final solution requires a lot of function 

evaluations. One of the ways of computing the coordinates of the 

points of intersection of the position circles directly was 

presented in a paper by Arturo and Raphaele Chiesa3e in the Journal 

of Navigation. The derivation of the equations is lengthy but, in 

the end, the longitude, e, and then the latitude, I, of the points 

of intersection of the position circles are given explicitly. The 

method involves determining the chord which is the arc of a great 

circle and which is common to both position circles. This was also 

done by Bernard Spencer39
• The solution to the problem can, however, 

be effected more economically using Newton's Method for two 

dimensions with the Dead Reckoning Position of the observer used as 

a first approximation. 

6.4. COMPUTATION OF AN ASTROBOKICAL RUBBING FIt. 

In a RUNNING FIX the second observation, probably of the same 

heavenly body as the first, is taken after the observer has 

travelled an appreciable distance along the arc of a 10xodroDe. This 

is a common practice and, indeed, it was customary, on almost every 

Bri tish Ship on Ocean passage, to compute the -noon position- (a 

serious ritual> from the intersection of a position line obtained 

from the sun approximately three hours before noon w1 th a lat! tude 

obtained directly from the meridian passage of the sun at noon. In 

their paper Chiesa & Chiesa:ge state that it is simply a case of 

transferring the geographical position of the heavenly body at the 

first observation along the arc of the loxodrome that the observer 

has experienced, drawing the position circle around it and then 

-121-



computing the intersection of this transferred position circle with 

the position circle obtained from the second observation. The 

mathematics does, however, show that the problem of transferring a 

posi tion circle is more complicated than that. This was ini Ually 

pointed out to this author by a colleague in a private 

communication. There are certain theoretical implications in the 

problem of transferring a position circle which were not mentioned 

by Chiesa & Chiesa39
• In fact, the transferred locus is no longer a 

circle but suffers a distortion and, in response to the the paper by 

Chiesa and Chiesa, this author4 <:> wrote a paper which was also 

published by the Journal of Navigation. 
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It is, after all, the position of the observer which has changed and 

so, if the observer lies in a certain position on a position locus 

then it is that point on the locus which must be transferred. Since 

we are uncertain as to which exact point on the locus the observer 

lay at the time of the first observation then we must transfer each 

point of the locus the same distance on the same course along a 

loxodrome from that point. Now each point will transfer in a 

slightly different manner as can be seen by actual plotting so that 

the original position circle does not retain its shape. See Figure 

8.6. which illustrates the extreme distortion of a transferred 

position circle in the vicinity of the pole. 

If we move every point of the position circle (8.2) through a 

distance s (in nautical miles) along a loxodrome on course a, then 

the general point (_,e) on the position circle (8.2) transfers to 

the point <I',e'). These coordinates are related by 

s _ = _' - cos a a 

-' e = e' - tan a + sec u du 

-

. . . . .. (8.4) 

. . . . .. (8.5) 

where _' is the latitude and 9' is the longitude of a point on the 

transferred locus . 

Using the substitutions (8.4) and <8.5) in equation <8.2) we find 

the equation of the transferred position locus: 

cos O.-k-S , ) = 
s cos p - sin<_' - - cos a) sin X a 

s cos(I' - - cos a) cos X a 
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where 
~' 

k = tan a ~ sec u du 
~ 

k is the difference of longitude experienced by the observer 

travelling along the loxodrome and is expressed in radians. 

Figure 8.7 shows the actual distortion that takes place when each 

point of the arc AA' of a position circle is transferred 300 

nautical miles on a course of 045'''' along the arc of a loxodrome. The 

arc BB' is the image. The diagram is drawn to scale in the 

stereographic projection where a circle on the surface of the sphere 

is projected into a circle in the stereographic plane. 
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Now we have shown in Chapter 2 that a loxodromic curve on the 

surface of a sphere is a curve of finite length which spirals 

towards an end limit point at each pole, therefore the loxodrome, 

which passes through a point P on a position circle defined by 

equation B.1, where the coordinates of Pare <_p,9p), on course a, 

is of finite length to the pole so that, if the distance, d, steamed 

by the observer, is greater than the distance along the loxodrome on 

course a from P to the pole, then the point P has no image point on 

the transferred locus defined by equation B.6. A point <_,9) on the 

posi tion circle will therefore have an image on the transferred 

locus only if 

I; + d cos al , ~n 
a 

B.5 COKPUTIIG OBSERVED POSITION FROM A RUIIING FIX. 

The observed position at the time of the second observation is the 

selected solution of the pair of simultaneous non-linear equations 

8.3 and 8.6. Since a direct method of doing this in this case would 

seem to be out of the question, we use a numerical method such as 

lIewton's method. We know that there are two solutions satisfying the 

pair of equations; lewton's method will find one of them. The 

observer will ave knowledge of his Dead Reckoning position and if 

this is used as the first approximation then the iterative 

proceedure will give the observer's true position. 

In the standard method of determining the observer's position in the 

days before the advent of the computer the position was found after 

aD elaborate method of plotting position lines which ·were, in 

effect, those small arcs of the position circle which lay close to 

the dead reckoning position. Early computer methods systemised this 

plotting proceedure. Our chosen method of finding the observer's 

position will require a computer. Indeed, in a system designed to 

find the observer's position from astronomical observations using a 

computer the method of finding the position directly from the 

intersection of the position loci is probably the most efficient. 
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Simultaneous and running fixes can be solved equally well in one 

computer programme designed for both cases. 

In most cases, and in sea-going Navigation particularly, where 

activity is restricted to what are termed the "Javigable Latitudes", 

a representation of the whole of the transferred position locus is 

not necessary to find its intersection with a position circle. 

Moreover, that portion of the position circle expressed by equation 

8.1, which is relevant to the observer and on which he might be 

expected to lie, will almost certainly have a complete image on the 

locus represented by equation 8.6. 

The latitude obtained by astromical observation is known as the 

ASTRONOMICAL LATITUDE, and is, in fact, the geodetic latitude and 

not the geocentric laU tude even though it is measured from the 

centre of the Earth. This is because the Earth itself is only 

considered to be a point at the centre of the Celestial Sphere. 

It must be admitted that there is often little practical value in 

allowing for the distortion of a position circle when the observer 

travels along a loxodrome, since the error in estimating the course 

and distance made good between the observations may well exceed any 

correction made by allowing for the distortion. levertheless we 

believe that it is advisable to use accurate formulae whenever 

possible. 
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9 

COJ'tl£F' t.TT I NO FOS I T I ON 
FROJ'tl£ OBSERVATION 
OF A SINGLE BODY 



9.1 OOKPUTIRG THE POSITION BY OBSERVATION AT MERIDIAN PASSAGE. 

We have considered the computation of the observer's position by 

taking a "Running Fix-, by which method the position is fixed by 

taking two observations of -the same heavenly body some hours apart, 

but now we will consider the possibil1 ty of fixing the observer's 

posi tion by taking observations of a single heavenly body over a 

much shorter interval of time. 

When the geographical positions of the observer and a heavenly body 

have the same longitude then, provided that the observer is 

stationary and that the rate of change in the declination of the 

body is negligible, the body will be at its maximum or minimum 

altitude. We refer to this as the MERIDIAN PASSAGE of the heavenly 

body through the observer's meridian. In this circumstance the 

latitude of the observer can be computed directly from the altitude. 

See Figure 9.1 which shows a section through the Celestial Sphere in 

the plane of the observer's meridian at the time of meridian 

passage. 

z 

R ____ ~------------------~~------------------~------- R' 

FIGURE 9.1 
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The Earth, and hence the observer, is just a point and lies at 0 

which is at the centre of the sphere. The heavenly body is at X and 

Z is the zenith. The line EE' is the plane of the Equator and the 

angle E' OX is the declination which, at the same time, is the 

latitude, X' of the geographical position of the body. The line IS 

is the axis of rotation of the Earth. The line ROR' is the plane of 

the Rational Horizon <defined in chapter 8) and the angle XOR' is 

the altitude of the heavenly body. 

In equation <8.2) 

simple form 

).-9 = 0 

cos p = cos <--X> 

whence we find that either 

or 

and the equati on reduces to the 

. . . . .. <9.1) 

If a is the true altitude of the heavenly body then p = ~x - a so 

that 

; = <"x-a) + X . . . . .. (9.2)a 

or _ = X - <\ix-a) ...... (9.2)b 

If, at the time of ueridian passage, the exact Greenwich Mean Time 

can be determined then we also have a method of finding the 

longitude and hence the observer's position. Each one Ddnute of time 

difference between the meridian passage of the heavenly body at 

Greenwich and the passage of the same body through the observer's 

meridian will be equal to fifteen Ddnutes of arc in the difference 

in the longitude. This is due to the angular velocity of rotation 

of the Earth. The difficulty arises in the estimation of the exact 

aament at which the body reaches its maximum altitude. From 

experience, even when a heavenly body is at high altitude and where 

it is changing its altitude fairly rapidly, it is difficult to 

estimate the time of the maximum to the nearest minute. For a 

yachtsman, on an ocean passage and far from land where sea 
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conditions make astronomical observation difficult anyway, this 

might be an acceptable approxiD8tion - one minute would give the 

longitude to within fifteen minutes of arc - but for the navigator 

engaged in commercial business the process would have to be refined 

and this can be done. 

If the observer is stationary, one way is to take an altitude of the 

heavenly body some minutes before meridian passage and while it it 

still changing altitude rapidly enough that this change is easily 

observable. After noting the exact time of this observation, we then 

wait until the body has crossed the meridian and then note the exact 

time that the body is again at the same altitude after meridian 

passage. The mid point of this time interval will then be the time 

of meridian passage and the longitude can then be determined. See 

Figure 9.2 in which' represents the body. The figure is a graph of 

altitude, a, against time, t. 

a 

lAX --------------------=-~-~---,----

, 

t 
t", 

FIGURE g.2 

9.2 COKPUTIIG THE OBSBRVED POSITIOI AT THB TIKE OF CULKI NAT 101. 

The accuracy of the above method of determining the Daximum 

al ti tide of the astronomical body will depend also upon the fact 

that the body is not changing the laU tude of its geographical 
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position at too great a rate. In the case of the sun. which is the 

body that is most often used in the observation of meridian passage, 

the maximum hourly rate of change in the declination of the sun that 

takes place is approximately 1 minute of arc and this occurs at the 

time of the equinox. At the time of the solstices this rate of 

change in declination of the sun is zero. At certain times, 

therefore, allowance should be made for this rate of change. The 

moon moves much more rapidly and the hourly rate of change in its 

declination can be as much as nearly 1'7 minutes of arc. Even when 

the moon is close to the maximum absolute value of its declination 

there is still an appreciable hourly rate of change. When there is 

an appreciable hourly rate of change in the declination of the 

observed body then the maximum altitude will not occur exactly at 

the time of meridian passage, and, when this is the case, equations 

(9.2)a and (9.2)b no longer hold so that we Dust go back to equation 

(8.2). We refer to the occurrence of the maximum or minimum altitude 

as GULKHfATIOB. 

In most cases the problem is a dual one - not only do we have to 

determine the difference between the time that the heavenly body 

crosses the observer's meridian and the time of occurence of maximum 

altitude due to the change in geographical position but we have the 

additional problem that the observer may be moving at an appreciable 

speed and the time of the maximum altitude might no longer coincide 

with the time of meridian passage due to this effect also. 

Solutions to this problem have been published recently by 

J.I.Wilson41 and Matti Ranta42 . Both authors use more or less the 

same mathematical analysiS but, whereas Wilson offers' a mainly 

graphical solution, Ranta uses numerical analysis. Let us first 

analyse the method of solution of the problem as presented by 

Ranta42 . 

We need to know the value of a at culminati.on. This is estimated by 

Ranta42 by taking a series of observations of the altitude, a , of 
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the body during a time interval which includes the time of 

culmination, fitting a polynomial 

n 
cx(t) = I: crt r 

r=o 

and computing the value of (X when a' (t) = 0 . 

If a least squares quadratic is fitted then clearly the time of 

culmination, t~t is given at 

c t = - , 
c 

2c:z 

and the altitude, (Xc, at this time is 

a = c -
C ." 

:2 C, 

Let us consider an observer in a position (Z> on the surface of the 

Earth where the latitude is _ and the longitude is e. The observer 

finds the altitude, a, of a heavenly body (X) whose declination is X 

and whose Greenwich Hour Angle is 2x-X. The spherical triangle, 

PZX, which results from this observation is shown in Figure 9.3. 

p 

FIGURE g.3 

z------~ 
p (=!61t-a) X 
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In Figure 9.3 P is at the North Pole and, as a result, equation 

(8.2) gives us 

cos p = sin _ sin X + cos ~ cos X cos (~-9) 

Since p = ~n - a this can be written 

sin a = sin _ sin X + cos ~ cos X cos (~-9) . . . . .. (9.3) 

Iowa, 1, x' 9 and ~ are all functions of the time, t, so that, 

differentiating equation (9.3) with respect to t gives 

da 
cos a dt = cos _ sin X ~~ + sin _ cos X ~~ 

- sin _ cos X cos (~-9) ~t 
dt 

- cos _ sin X cos (X-9) a~ 

- cos _ cos X sin (~-9) (~~ - ~~) 
dt dt 

Re-arranging gives 

cos a ~~ = [cos _ sin X - sin _ cos X cos (X-9») ~~ 

+ [sin _ cos X - cos 1 sin X cos (X-e») ~~ 
dt 

- cos _ cos X sin (X-9) (~~ - ~~) 
dt dt 

From the spherical cosine formula we see that 

cos 0-9) 
= sin a - sin _ sin X 

cos _ cos X 
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and from the spherical sine formula 

sin 0.-9) = 
cos ex sin Z ,"',. (9.5)b 

cos X 

where Z is the azimuth ( the angle at the position of the observer), 

If we substitute equation (9.5)a in the coefficients of ~t and ~X 
dt dt 

and substitute equation (9.5)b in the coefficient of (~~ - ~~) in 

equation (9.4) and divide the equation through by cos ex the result 

is 

dex 
dt = 

where we 

cos X 

and 

cos Z 

cos Z ~t 
dt 

+ cos X ~X 
dt 

have substituted 

sin I - sin ex sin X = 
cos ex cos X 

sin X - sin ex sin ~ = 
cos ex cos ~ 

- sin Z cos ~ (~~ 
dt 

Now cos X can also be expressed in the form 

cos X = - cos (x-e) cos Z + sin (x-e) sin Z sin _ 

~~) 
dt 

. .. (9.6) 

and. if the observer is moving at a speed V with northerly component 

V~ and easterly component V~. then 

~~ = V" dt 
de = Ve sec I dt 

so that. if we substitute all this into equation (9.6) and re­

arrange we find 
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dex 
dt = [V~ - cos(X-9)~~] cos Z 

dt 

+ [ Ve + sin(X-9) sin _ ~~ dX - cos _ dt ] sin Z 

. . . . .. (9.7) 

At the time of culmination when 
da = 0 dt we can solve equation 

to give us the value of the angle Z 

Z = tan- 1 

Ve + sin(X-9) sin _ -
dt 

dX 
- cos - dt 

. . . . .. (9.8) 

where - ~n < Z < ~n if the geographical position of the body is 

to the north of the observer and ~n < Z < '/2n if the 

geographical position of the body is to the south of the observer. 

We can find then that the angle at P [= (X-a)] in the spherical 

triangle PZI is found from the sine formula and 

x - a = sin- 1 sin Z cos ex 

cos X . . . . .. (9.9) 

The Greenwich Hour Angle, GHA, of the body can be found from the 

lautical Almanac for the time of culmination whence >.. = 2n: - GHA 

and, hence, from equation (9.9), we can determine the lon~itude, 8, 

at this time. 

We can now solve equation (9.3) to give us the latitude, ~, at the 

time of culmination. Ranta42 does this by writing 

sin ex = R cos (~ - k) 
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which gives 

and k = tan- 1 tan X 

cosn-a) 

Hence _ = cos-- 1 
sin a + tan- 1 tan X 

cosn-9) 

. . . . .. (9.10) 

To summarise, then, the procedure for finding the observer's 

position at the time of culmination of a heavenly body is to take a 

series of altitudes of the body surrounding the time of culmination, 

to fit an interpolating polynomial to the data thus found giving the 

altitude as a function of time and, from this interpolating 

polynomial, to find the maximum altitude and the time at which it 

occurrs. We then find, by iteration, the latitude, _, and the 

longi tude, a, of the observer at the time of CUlmination by using 

equations (9.8), (9.9) and (9.10). The first approximations for _ 

and 9 will be the Dead Reckoning position of the observer at the 

estimated time of culmination. 
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9.3 COMPUTATIONAL EXPERIMENT. 

James N.Wilson41 provided useful data from which to experiment with 

the computational formula of the previous section. His data was 

obtained on voyages in a yacht off the coast of California near 

Catalina Island. He observed the altitude of the sun for 

approximately one hour during which time it reached its highest 

al ti tude. He himself only used those observations taken in a ten 

minute period which included culmination from which he estimated, 

graphically, the maximum altitude. We will use the same observations 

over the same period but we will fit a least squares quadratic to 

this data and, from this quadratic approximation, we will compute 

both the time of culmination and the corresponding altitude. The 

data is shown in Table 9.1 below. 

.... 

.... 

TIME 

11 50 39 
11 51 41 
11 52 21 
11 53 31 
11 54 30 
11 55 04 
11 56 16 
11 56 52 
11 57 42 
11 58 42 
11 59 20 
12 00 58 

ALTITUDE 

32'55. l' 
32'56.1' 
32·56.2' 
32'58.5' 
32'56.9' 
32°57.5' 
32'57.5' TABLE 9.1 
32'57.6' 
32°57.6' 
32°59.9' 
32°57.5' 
32°55.1' 

In the first experiment the least squares quadratic polynomial was 

fitted to all the data points of Table 9.1 and, from this we found 

that 

(1) to: = 11 56 23 OCc = 32 ° 58. l' 

In the second experiment the same type of curve was fi tted to the 

seven points marked in Table 9.1 by arrows on the left. In this case 

we found 

(2 ) tc: = 11 56 14 OCr: = 32'57.6' 
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In the third experiment we fitted the least squares quadratic to the 

data points in Table 9.1 marked by an arrow on the right. we found 

(3) tc == 11 56 11 (Xc = 32"58.6' 

Using the first of these results - (1) - we then find the latitude, 

~, and the longitude, e, of the observer using the iterative scheme 

tan Zn == 
- V cos ¥ 

Q cos ~n-1 + V sin ¥ 

sin Z., cos (X 
sin(8->.)" = 

cos ~n = 

cos X 

sin (X - sin 1"-1 sin X 

cos X cos(8->.),., 

""" (9.11>1'1 

. . . . .. (9. 11) b 

. . . . .. (9.11>c 

¥ is the course angle on which the observer is moving at speed V 

knots. Since the observations of the sun were taken near to the time 

of the winter solstice then the rate of change in declination is 

zero. W11son41 states that he was steering a course of 210° at a 

speed of 6 knots. The altitude, (x, as given in Table 9.1 is the 

altitude as read froD the sextant and is the altitude of the sun 

above the visible horizon. To this altitude we must add a correction 

of 13.9' to give the altitude of the sun above the rational horizon. 

This gives ac = 33°12'. 

In the iterative scheme (9.11) we use the initial values 

10:> == 33°40.0' 

X = 23" 8.9' 

The results that we obtained for ~ and (~-e) were 

_ == 33°39.1' ~-e == 0°21. 8' 

At the time of culmination, from the Nautical Almanac, we find that 

the Greenwich Hour Angle of the sun was 118°26.8' so that 
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~ = 360° - GHA = 241°33.2' 

and 8 = 241°33.2' + 0"21.8' = 241°55.0' 

West of Greenwich this gives 

Longitude = 118"5.0' W . 

Tbis longitude does not agree very well with the position found by 

Wilson:l'CI. He finds that the longitude of the observed position is 

118"15.3' W . The difference occurs because we disagree about the 

time of culmination. His time of culmination, found graphically 

using in a way which will be described below, is 11 57 09. The 

time of culmination that we determined here in the first experiment 

using all the observations was 11 56 23 . 

Wilson41 did not estimate the time of culmination frOD the data in 

Table 9.1 but took two further sets of altitudes of the sun - one 

set before culmination and one set after culmination. These two sets 

of altitudes are shown in Tables 9.2 and 9.3 : 

Tum ALTITUDE TIKE ALTITUDE 

11 28 21 32°34.0' 12 19 54 32°42.6' 
11 28 59 32"35.5' 12 21 10 32 ° 41. 2' 
11 30 00 32°34.0' 12 22 51 32°37.6' 
11 30 44 32°36.9' 12 23 47 32°36.6' 
11 31 24 32°38.5' 12 24 50 32°35.0' 
11 32 06 32°37.5' 12 26 01 32°33.9' 
11 32 42 32°40.3' 
11 33 12 32°40.3' 

TABLE g.2 TABLE g.3 

From these tables, 9.2 and 9.3, Wilson41 faired straight lines, 

graphically, and from their point of intersection, estimated the 

time of highest altitude - the Ume of culmination. He estimated 

the time of culmination at 11 57 09 . However, fi tUng least 

squares straight lines to the data of tables 9.2 and 9.3 we find, 

algebraically, that the point of intersection of the straight lines 

estimated the time of culmination at 11 58 51 
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In conclusion, it must be said that the data is not really of the 

best kind to demonstrate the method of computing the ship's position 

at the time of culmination although Yllson41 obtains good results 

from it in that he puts his observed position very close to his dead 

reckoning position. The data was obtained by taking observations of 

the sun aboard a small ketch in the open sea off Catal1na Island, 

California. The observations were also taken in December when the 

sun was almost at its maximum southerly declination. Wilson41 does 

not say what criteria he has used to fair his straight lines through 

the points on his graph which he reproduces in his paper but it 

would appear that another individual might just as well find a 

different result since the angle between the straight lines is 

small. This author, having faith in the general approach adopted by 

Ranta42 , will endeavour to obtain data for himself at sea. 
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9.4 GENERALISATION OF THE METHOD OF RABTA42. 

It would seem that at any time other than the time of culmination we 

can just as well take a series of observations of the altitude, a, 

of a heavenly body and,after fi tUng a least squ8res function 

approximation, ex(t), through the data points, we would 

differentiate to find cx' (t.",) at a time, to, which we would choose 

for making an observed position. Substituting this value of 

in equation (9.7) we could use this equation to find our first and 

subsequent approximations to Z ... combined then with equations (9.11> b 

and (9.11)c to form an iterative scheme for computing 0.-9) and _ 

at time to. 

Let us consider first that the observer is stationary - that V=O 

in equation (9.7). The equation then becomes 

:~ = [sin(~-8) sin ~ ~~ - cos ~ ~i] sin Z - [cos(~-8) ~~] cos Z 

. . . . .. (9.12) 

If we express equation (9.12) in the form 

where 

R sin(Z-k) = ~i then 

tan k = cos 0.-8) ~X 
dt 

sin(~-e) sin _ ~x 
dt 

- cos ~ ~~ 
dt 

R2 = [sin(X-8) sin _ ~X - cos _ d~ ]2 + [cos(X-8) ~x ]2 
dt dt dt 

the procedure would then be to take a series of observations CXl, cx::;!, 

CXn at times .... , t., , respect! ve 1 y , such that 

to fit a function approximation CX (t) , and 

differentiate this to find ex' (t). 
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Using the values of a(to) and a' (to) so found we can compute the 

angle Z as above and then the LHA (= ~-e) from 

sin(~-e) = sin Z cos.a(to) 

cos X 
.... " (9. 13) 

To a stationary observer on the surface of the Earth the altitude, 

a, of a heavenly body is given by equation <9.3) 

sin a = sin I sin X + cos I cos X cos(~-8) 

If we write y = sin a we may, therefore, be able to approximate 

efficiently with a sinusoidal function of the form 

y = A sin x + B cos x + C 

where x = X-a . The period of the trigonometric functions Is the 

length of the apparent day (the period elapsing between two 

succesive transits of the observer's meridian by the heavenly body 

). If the body is observed at times <tl} with corresponding 

al ti tudes {at} then we fit Y to this data in the least squares 

sense so that 

s = E <Yl - (A cos Xi + B sin Xl + C)}2 . . . . .. (9.14) 

is a minimum. 

If we find the partial derivatives of S with respect to A, Band C 

then these are the "normal" equati ons and furnish a set of 11 near 

equations (9.15) from which to determine the A,B,C : 
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[ 

E COS2 Xi E COS Xi sin Xi 

I cos Xi sin Xi E sin2 Xl 

E cos Xl E sin Xl 

E cos Xi 

E sin Xi 

E 1 

...... (9.15) 

There are certain circumstances where the matrix defining the system 

(9.15) is singular or nearly so. This occurs, for instance, when the 

hour angle ).-9 (= X) and the altitude a (= sin-Iy> are are both 

close to 45·. In such a case we will perhaps overcome this by using 

the least squares orthogonal pal ynomial approximations. (See 

Forsythe43 ). This approach is very similar to that of Ranta42 , but 

it does not restrict the polynomial approximation to quadratics. 

9.5 EXPERIMENTAL RESULTS. 

In the absence of observed data we can test the computational 

procedure by using the values of the altitude of the sun given in 

Davis's Tables"4
• These tables are intended to give the values of 

the true altitude of the sun (correct to the nearest one minute of 

arc) at intervals of eight minutes but the tables are very old and 

some of the entries are not, in fact, correct to the nearest minute. 

We have, in fact, corrected any entry from Davis that we have found 

to be wrong. We have then appl ied the trigonometric least squares 

approximation to this data. 

On the bridge of an ocean-going cargo ship in good 'observing 

conditions one would normally expect the readings from the sextant 

to give altitudes at better accuracy than one minute. The CODlDOn 

form of the sextant used by seagoing navigators is usually read to 

0.1 of a minute and, although one might not expect the altitudes 

always to accurate to that level, it might not be unreasonable to 

expect accuracy to 0.2 of a minute. Using the spherical cosine 
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formula we have therefore compiled a second table of altitudes 

correct to 0.25 of a minute in order to test the application of the 

Forsythe polynomials to our least squares approximation. The 

Forsythe polynomials did ·not give such good results when the data 

was expressed to the level of accuracy of one minute but gave 

acceptable results at the level of accuracy of 0.25 minutes. 

For the purposes of testing the proceedure of computing the position 

of an observer we have sited the observer on the Greenwich meridian 

(longitude 0°) and at latitudes ranging from 30· to 55· Borth. The 

three examples have been chosen to demonstrate the method in the 

extreme cases that are likely to occur. The first is chosen when the 

sun is at high altitude, the second is chosen when the sun is at low 

al ti tude and the third is chosen when the sun is changi ng its 

declination at the maximum rate. 

EXAMPLE 1. June 10 1990 - 1100 GKT . Declination 23.0117· •. Rate of 

change of declination 0.001597 ·'hour. Hour Angle 345·9.9' 

Rate of change of Hour Angle -14.998 °/hour. Longitude 0·. 

LAT HOUR ANGLB 0.) 

349· 347· 345· 343· 341· 339· 

30· 77·56' 76·27' 74·53' 73·17' 71°39' 69·59' 
35· 74°39' 73·31' 72·16' 70·57' 69°34' 68°09' 
40· 70°38' 69°46' 68°48' 67°45' 66°38' 65°26' 
45" 66·15' 66°35' 64·50' 64·00' 63·06' 62°08' 
50" 61'40' 61·09' 60·34' 59°55' 59·11' 58°24' 
55· 56'59' 56'35' 56'07' 55°36' 55'01' 54·24' 

TABLE 9.5 

The picture presented by the data of Table 9.5 is the "static" 

picture - the declination of the sun is kept fixed. Allowance for 

the effect upon the rate of change of al ti tude by the rate of 

change of declination is made by the added term 
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( sin ~ cos X - cos ~ sin X cos(~-a) ) (~~) 
dt cos IX 

The results from the computation using the above data from Table 9.5 

are shown below in Table 9.6. 

LAT 
TRUE COMPUTED TRUE CALC HOUR LONGITUDE ALTITUDE ALTITUDE RATE RATE ANGLE 

30· 75.0167 75.0180 11.8401 11.8377 14·49.8' 0"0.3'E 
35· 72.3749 72.3724 9.5632 9.5662 14·50.5' 0·0.4'W 
40" 68.8854 68.8858 7.5174 7.5194 14"50.3' 0"0.2'W 
45· 64.8996 64.8971 5.8930 5.8964 14"50.7' 0"0.6'Y 
50" 60.6192 60.6192 4.6322 4.6256 14"48.7' 0"1.4'E 
55" 56.1562 56.1577 3.6416 3.6575 14"54.0' 0"3.9'Y 

TABLE 9.6 

Table 9.7 below corrects the altitudes of the sun given in Table 9.5 

to 0.25 of a minute 

LAT HOUR AlIGLE 0.) 
349" 347" 345" 343" 341" 339" 

30" 77·5614' 76·26~' 74·53\4' 73"17' 71"39' 69"59\4' 
35· 74·39\4' 73"30~' 72 "16\4' 70·57' 69"34\4' 68"08~' 
40" 70"38' 69"46' 68"48\4' 67"45\4' 66"37.' 65"2646' 
45" 66"15' 65"35\4' 64"50' 64"00\4' 63"06' 62"08' 
50" 61"40\4' 61"0914' 60"34' 59"54.' 59 "11\4' 58"2446' 
55" 56"58~' 56"34~' 56"07' 55"35.' 55"01~' 54"24' 

TABLE 9.7 

Table 9.8 shows the results from using the Forsythe polynomials on 

the data in Table 9.7 
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LAT 
TRUE COMPUTED TRUE COMP HOUR LOIGITUDE ALTITUDE ALTITUDE RATE RATE ANGLE 

30· 75.0167 75.0165 11.8401 11.8280 14°49.2' 000.9'E 
35· 72.3749 72.3750 9.5632 9.5605 14°49.8' O·O.3'E 
40· 68.8854 68.8869 7.5174 7.5042 14 °48.4' 0"1.7'E 
45" 64.8996 64.8997 5.8930 5.9012 14·51.4' O"1.3'W 
50· 60.6192 60.6188 4.6322 4.6147 14°46.6' 0"3.5'E 
55· 56.1562 56.1556 3.6416 3.6370 14°49.0' 0·1.1'E 

TABLE 9.8 

EXAMPLE 2. December 11 1990 - 1100 GAT - Declination 23·S - Rate of 

change of declination -0.003611 "/hour. Hour Angle 13°17.3' - Rate 

of change of HA -14.9605 ·/hr. 

LAT 
HOUR ANGLE ().> 

9' 11" 13' 15· 17· 19· 

30· 36·18' 35"57' 35·33' 35·05' 34·32' 33·57' 
35· 31·22' 31·04' 30·42' 30·17' 29·48' 29·16' 
40· 26·27' 26·10' 25·51' 25·28' 25·02' 24·33' 
45° 21"30' 21·16' 20·58' 20"38' 20·15' 19·49' 
50· 16"34' 16·21' 16·06' 15·48' 15·27' 15·05' 
55· 11 "37' 11 '26' 11 "13' 10·57' 10·39' 10·19' 

TABLE 9,9 

The results found using the data from Table 9,9 are shown in Table 

9.10 below: 

LAT 
TRUE COMPUTED TRUE COMPUTED COMPUTED LONGITUDE ALTITUDE ALTITUDE RATE RATE HR AlIGLE 

30· 35.4837 35.4855 3.3630 ~.3690 13·18.7' 0·1.4'W 
35· 30.6459 30.6450 3.0103 3.0173 13·17.2' O·O.l'E 
40" 25.7923 29.7906 2.6895 2.6883 13·16.9' O·0.4'E 
45· 20.9271 20.9273 2.3927 2.4042 13·21.7' O·3.4'W 
50" 16.0532 16.0546 2.1136 2.1202 13"19.7' 0·2.4'W 
55· 11. 1732 11. 1742 1. 8471 1.8478 13·17.6 0·0.9'W 

TABLE 9.10 
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EXAXPLE 3. Sept 21st 1990 - 1000 GXT. Declination X=0.728333"N. 

LAT 

30" 
35" 
40" 
45' 
50" 
55" 

Longitude 8=0· 

Hour Angle ~=331°42.3'. d~/dt = -15.003 "'hour 

dX/dt = -0.01618 '/hour 

HOUR ANGLE 0.> 
327' 329' 331' 333' 335" 337' 

47'06' 48'28' 49'48' 51"04' 52"18' 53'28' 
43 0 58' 45"11 ' 46'22' 47"29' 48'36' 49"35' 
40'35' 41"40' 42"42' 43 "41' 44'37' 45"30' 
37'01' 37"57' 38'52' 39'43' 40"32' 41"17' 
33'17' 34'06' 34"53' 35"37' 36"19 ' 36"58' 
29'26' 30"08' 30"48' 31'26' 32'01' 32"34' 

TABLE 9.11 

I 

The results obtained using the data from Table 9.11 are shown in 

Table 9.12 below: 

LAT 
TRUE COMPUTED TRUE CALC LUA LONG ALTITUDE ALTITUDE RATE RATE 

30" 50.2503 50.2507 9.6189 9.6333 28"20.4' 0"2.7'1( 
35" 46.7617 46.7645 8.4903 8.5017 20.1' 2.4'1( 
40' 43.0497 43.0521 7.4407 7.4389 17.3' 0.4'E 
45" 39.1652 39.1631 6.4710 6.4698 17.4' 0.3'E 
50" 35.1472 35.1459 5.5753 5.5731 17.0' 0.7'B 
55" 31.0253 31. 0273 4.7445 4.7414 16.4' 1.3'B 

TABLE 9.12 
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9.6 CONCLUSION. 

In good observing conditions at sea, the kind of conditions which 

would be necessary in any case for taking astromical observations, 

the results above would be achievable. Indeed, a good observer would 

expect altitudes to be of greater accuracy than one minute of arc. 

Kost micrometer sextants are read to 0.1' of arc and all 

computations assume this accuracy. As they stand, most of the 

results for the longitude found above would be very acceptable to an 

observer on an ocean passage. 
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PART TWO 

DIRECT SPLINE APPROXIMATIONS 
TO 

INTEGRALS 



~o 

DIRECT CUBIC SPLINE 
APPROXIMATIONS 

TO 
INTEGRALS 



10.1 INTRODUCTION. 

The theme of the the Bachelor of Philosophy thesis by this author4b 

was the development of algorithms from which to compute the integral 

of a function by fitting cubic splines . The thesis was conceived 

originally to describe the methods by which the cubic spline and the 

bicubic spline approximations could be applied to the problem of 

numerical integration in one and two dimensions. During the 

experiments it became apparent that it was possi bIe to approxhaate 

to the integral of a function directly, that is, to fi t a cubic 

spline to the indefinite integral of a function with given initial 

condi tions. The result is an algorithm which is suitable for both 

manual or automatic computation. Further, the method can be applied 

to problems in both one or two dimensions and it can be shown that 

its error bounds are of the same order as those for the integrated 

cubic splines. Ye use the term Direct Cubic Spline Approximation 

for this algorithm and the analysis used in the thesis to prove the 

results which lead to the steps in the computational procedure was 

lengthy. It is clear now, however, that the Direct Cubic Spline 

Approximation could be developed by simply fitting a quadratic 

polynomial to the integrand and then integrating. In either aproach, 

in addition to the function values of the integrand, an extra 

ini tial condition is required to start the computation: we wi 11, 

therefore assume that the derivative of the integrand at the 

starting point is known. It will emerge, however, that such 

knowledge is not always critical in practice. In section 10.6, for 

instance, we show that if the subintervals are equal in length and 

their number is even, then this is, in theory, irrelevant. The 

method of the Direct Cubic Spline Approximation results in a 'step 

by step' method of numerical integration through which the integral 

between any two ordinates can be found and applicable where the 

ordinates are randomly spaced. 

10.2 NUMERICAL INTEGRATION USING CUBIC SPLIJES. 

The usual method of computing the integral of a function f(x) over 

an interval [a,b) using spline functions is achieved by fitting a 
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spline function s(x) to the integrand f(x) over the interval [a,b] 

at the points of subdivision when [a, b] has been subdivided by 

points Xi (1=1, .... ,n-I) such that 

a = Xo < Xl < ........... < x n - l < xn = b 

and integrating sex} in place of f(x) . 

The cubic spline is the popular spline function used for this 

purpose and, by applying the above procedure using the cubic spline, 

Davis & Rabinowltz46 derive the formula 

b x .... n 
hi(f + 

n h3 1 f(x} dx '" + sex) dx = E f i) - E ~(mi_l+ D:t,> - i-I 

a Xo 1=1 2 i=1 24 
.. (10.1> 

where f = 1 f(x
t

>, h = :t, x -
i Xi_I and the m1 are the -Moments- of the 

spllne 

The details of the computation of the moments of the cubic spline 

can be found 1n the books by Ahlberg, IHlson & Walsh"'" and 

P.K.Prenter"e. In this dissertation, however, we are concerned with 

DIRECT Spline Approximation to the integral function F(x) in the 

interval (a,b] where 

F (x> = 
x 

, f(x) dx 
a 

and f(x) belongs to a suitable continuity class. 

We begin with the Direct Cubic Spline Approximation and develop a 

computational scheme which is both efficient and easy to apply. 
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10.3 DEFINITION OF THE DIRECT CUBIC SPLINE APPROXIKATIOJ. 

In the B.Phi1 thesis by Williams4
$ a method of computing the 

integral 

b 
~ f(x) dx 

a 
. . . . .. <10.2) 

where f (x) is a continuous function which is assumed to have a 

continuous deri vati ve, is found by fitting a cubic spline 

approximation S(x) directly to the function F(x) over the interval 

[a,b) subdivided by points {X:l} <1=1, ... n-l) where 

a = x . ." < x, < 

and where 

x 
F(x) = ~ f(x) dx 

a 

( x..,.-. 1 < x" = b 

( x e [a, b) ) .. <10.3) 

S(x) is referred to as the DIRECT CUBIC SPLINE Approximation to the 

function F (x) . 

In the paper by Phythian & Williams49 , to determine S(x), we 

defined, at each mesh point, Xl, a "Xoment", )(:1, where Xi= S"(xt> 

and then expressed S"(x) as a piecewise continuous linear function 

so that, in each sub-interval [Xi.-1, xd , we have 

SIt (x) = Kt.-1 (xt, - x) + Ki (x - Xt,-l ) <10.4) ., • I • f 

ht, hi 

where h, = x, - X'_l 

We then integrated twice and determined the constants of integration 

but this is a lengthy procedure and it is apparent that, since S(x) 

is cubic, we can approximate to f (x) using a sui table quadratic 

polynomial. 

In the interval [X~,X1] let f(x) be approximated by the quadratic 

polynomial q(x) where 

q (x) = f (xo ) + (x-xo)M.:,. + A(X-X.,,)2 ...... <10.5) 
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This ensures that q(x.",) = f(x.",) and q' (x.,,) = Mo = f' (xo>' 

We also have 

q (x,) = f (x,) = f (x",,) + hd(:~ + Ah~ (a) 

(b) 

so that, eliminating A from the equations (a) and (b) gives the 

relationshi p 

)[, = 2( f·, ----
- fo:> 

) - )L,. 

In any interval 

polynomial qt(x) 

[Xt-I,Xt] we can similarly define a quadratic 

using the values fi-l, fi and Kl-1 

(where ft =f(x(t) ) 50 that 

qt(X) = ft-l + (X-Xt--l)J1(t-l + A t (x-xt __ I):2 ••.••• <10.6) 

and thereby find the recursive scheme from which to determine the Kt 

2( ft - f1.-1 
)[t = ) - Mi-l <10.7) 

hi 

If we now integrate qt(x) over the interval [Xi-IIXt] we find 

where SI = S(Xt). 

We find that 

so that 

Ai = ( Ki - )It·_-, ) 

2h1 

Si - 8t-l . . . • .• <10.8) 
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This is the form of the recursive scheue for Si that was first 

arrived at. If, however, we find ql (Xi) from equation (10.6), 

multiply this by ~hi , substitute for Ai and add this to equation 

<10.8) we find the "symmetric" form of the recursive scheme for Si: 

h h2 
= -2 i (ft + f.-,,) - _1 (Xi - )(t-l) 

12 

and this is the form that we now use in the computational scheme. 

Not only does this provide a more efficient algorithm for computing 

the Si but it also facilitates the estimation of its error bound. 

10.4 THE COMPUTATIOIAL SCHEXE. 

The method of computation used to evaluate integral in Equation 

(10.1) using the Direct Cubic Spline Approximation on the mesh 

a = Xc> < x, < 

is given by 

(1) So = 0 M = f I (a) 

(H) 

(Hi> 

(i v) 

UI timately 

0::> 

hi = Xi - Xi _
1 

1(1 
a 

f 1-'1 ) = h(f i 
-

:I. 

s. = Si--l 

S = n 

b 
~ f(x) dx + 

a 

where E ... , is the error term. 

-

< x., =b 

){i-l 

B 
n 
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It can be shown by direct sUJlllllation that the scheme (10.8) is 

equivalent to 

S = n 

1 n 
2 E hi(f i + f i ._ I ) 

i:l 

1 n 

12 E hf OIl - 111 _ I ) 

i=1 

. . . . .. (10.10) 

Equation (10.10) is of the same form as the truncated Euler 

JllacLaurin integration formula and is in "symmetric" form. If f lE 

C4 [a,bJ and we expand the integral 

Xl 

~ f(x) dx 
Xl·--I 

using the Euler-MacLaurin expansion formula <which can be found in a 

book such as that by ScheidEO ), summing over all the intervals gives 

the form 

b n 
[hl (f hf(f' ~ f (x) dx = E + f

i
_

l
) - - f~_I)] - i - i 

a i=l 2 12 

n 
h4 

+ E 1 (f~ ::0:>_ f(:3» + O(h 7 ) 
1-1 

i=1 720 ...... <10.11) 

where h is the maximum length of any subinterval. hi, in the 

interval[ a, bJ . 

If we compare Equations <10.10) and <10.11) we see that the first 

twoterms of the Euler-XacLaurin Integral Expansion have the same 

coefficients as the Direct Cubic Spline Approximation. 
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10.5 ERROR ESTIMATE FOR THE DIRECT CUBIC SPLINE 

If, then, we subtract Equation (10.11) from (10.10), we find 

Let 

S 
n 

b 
~ f(x) dx = 

a 

us define 

x, 
F, = ~ f(x) 

a 

E, = S~ - Ft 

e, = f' - Mt , 

1 

12 

1 

n 
E· h: [ (f ~ - Kt) - (f ~ _ 1 - K, -1 ) ] 

1=1 

n 
.E h~(f~3)- f~~:) + 

720 i=l 

<10.12) 

dx 

From the computational scheme (10.9) we have 

and the Euler KacLaurin integral expansion gives 

h4 
+ 720 (f~3) - f~~:) 

So that if we write 

E, = S, - F, 

e, = f~ - Mi 

we have 

+ OChe} 

(the error in S,> 

(- the error in Kt> 

h2 
, (e, - e i ·-1) -

12 

Let us suppose that 

= 

From 

we have et + et--l = 
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Expanding this about X=Xi-~ writing t=~hi and f=fi-~ etc. , 

ei + e1-·' = [(f' + tf n + ~t2fC:::~:1 + .. ) + (f' - tf" + "t 2 f(:lt) + .. )] 

+ ~ [(f + tf' + ~t::o?f" + '/st:3 f<::3) + .... ) 
- (f - tf' + "t:2f" - '/st::!!f<-:!!) + .... )] 

giving et + ei·-l = 
6 240 (10.15) 

If we now expand the expression on the right hand side of Equation 

<10.14) about X=Xi·-.... using the same notation for t and f we find 

ei + et···, = 

Adf(:3) + tf(4) + "t2 f(S) .. ] + Ai __ , [ f <':3) - tf(4) + "t2 fc:!5 , 

+ Bdf(4)t + tf(S) + "t:2:f (.5 ) .. ] + Bi _ l [f(4' - tf(S) + "t2 fU:· , 

+ Cd f(l5) + tf(OS) + "t2 f(?) .. ] + Ci_,[f(S) - tf(l5) + "t2 f(7' 

+ ...... . (10.16) 

Comparing this with Equation (10.15) we find the relationships 

Ai + Ai·-l = h~ 

h~(A _ i 

8 

6 

+ Ai-I> + ~l(Bi - Bi-l> + (Cl + Cl-I) = 
2 240 

· . ] 
· . ] 
· . ] 

and from these relationships we can generate the Ai. Bi and Ci once 

we have suitable starting values. 

We can see that 

= f' - ~(f, - fo> + f' 
1 h, () 

h:2 h 3 = (f' + f' h fn + -'f(:~' - _If(4) + ) , ,-', 2' 6' ..... 

2 - -[f, - (1, - hd', h, 
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= + ... 

This gives us (since Ao = 0) 

-
and Ai = '!&(hf. - h:'_t .... ±. ~ + hf> 

Now equation (1.13) gives us 

E E h~ ( ) h4 
i - i····1 = ei - ei···' - __ t (f(!3) - f(:3» + O(h7 ) 

12 720 

which, since Eo = 0 

h4 
El = 1 f::"~:O -

72 

and e.:> = 0 yields directly 

120 

When 1>1 and we expand about X=Xi _ ..... and using equation <10.14) 

we find 

Ei 

so that 

Et 

Now 

hence 

El. 
i 

= I 
r=2 

- E:t···1 = h;(A - :\ - At ··1 ) f~ ~~ -
12 

Ei '- 1 
h:2 

(h:~ 2hf_l+'" . - = i -
72 

i 
Ei = I (Er - E,,-.,) 

r=1 

hS 
f(4) t + O(h7 ) t-... 

720 
, .. , .. (10.17) 

+ 2h~ ±. 2h~)f~::~ + OChe) 

(Eo = 0) 

If h is the maximum absolute value of subinterval and f(i) is the 

maximum absolute value of f(i)(X) in [a,b») then 

lEd ~ ~; f(3)1 : (h~ - 2h!_1 + . 000 •• :t 2h~ ±. 2h~) I + IE11+ O(hS
) 

r=2 

i 
low I (h: - 2h~_1 

r=2 

(10.18) 

-
+ ....... + 2h~ ±. 2h~) 
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1 1-1 r 
= E h2 + 2 E I: (-1) (r--.l+1 :>h=;: 

r 

r=2 r=2 j=1 

and the second term of this is a triangular sum. Hence 

i-1 r 
E E (-1) ('--.1'''' :>h~ 

r=2 j=1 

-= - h:2 + h~_2 - h't -:3 + ... · . ±. h2 + h:2 ±. b2 
1-- 1 :3 :2 , 

-- b2 + ht_=:!! - ... · . . + h:2 ±. h:2 + h2 
~-2 '3 :2 1 

-- h2 + ... · . ±. h:2 + h:2 ±. b:2 
~-:3 :3 :2 1 

- h; + h~ - h~ 

- h~ + h~ 

- b~ 

= - h~_" - h~ if i is even 

if i is odd. 

low we can write the inequality (10.18) in tbe form 

b
2 I I Ell , 72 f <. :3 ) 

i 
E h2 

r 

r=l 
+ 

i-1 r 
2 E E(-l)(r-j+l )h~ 

r=2 j=l 
+ O(hS ) 

and, if i 1s even, we find 

+ + 

-2h~'_1 -2h~_:3 -2h~ 

(h~ h:2 ) + (h~_2- h~_=:!!) + ... + (h~ h~) + b2 , i h:2 :: - -
~-1 1 2 

or, if i is odd; 

I b2 
1 + b2 

i ·-1 + h~_<2 + h~_:!I + ..... + h~ + h2 :2 + h2 
1 

- 2ht_l -2h:2 1-:;1 -2h~ -2h~ 

(h~ h2 ) + (h~_2 h:2 ) + + (h~ h~) I , 1 h:2 = - ... -i-I 1--:3 2 
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so that this gives us 

I E:I I ~ 
ih4 
--- f(3) 
144 + ih6 

ft: 4) 

720 
+ O(h 7 ) 

When h is constant simplifications of this error bound take place in 

particular cases (as will be shown in the following sections) but it 

has been pointed out that there is also one interesting case which 

occurs when we make the arbitrary choice A.:. = h2 /12 for then we 

find that At = h2 /12 for all i and equation (10.17) yields 

i 
El = r (Er - Er-I) = 

r=1 

E:I = 

h:2 i 
- r (A" - Ar"'-I )f(:3) 12 r-~ 

r=1 

hIS i 
- - r f(4) + O(h7 ) 720 r-11it 

r=l 

It is not clear whether or not this can be put to practical 

advantage in any way but it does pose an interesting question. 
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10.6 RELATIONSHIPS BETWEEN THE DIRECT CUBIC SPLINE APPROXlJUTIOR AND 
OTHER INTEGRATION RULES. 

In the special case where h is constant and n is flxed, the formula 

that results from (10.9) is 

= 
h 

2 

n 
E (f 1 ~ f t-- ,) -

1=1 . . . . .. <10.19) 

Under the same circumstances the Huler-MacLaurin formula for the 

function f(x) e C4 [a, bJ ls 

b 
b 

n 
h

2
(f' ~ f(x) dx = E (it ~ f 1- I ) - f' ) 

n 0:' 

a 2 i=l 12 

+ nh
s 

f'V(X> 
720 

for some X a , 
X 

, b 

If f'" is known, and we replace M., in <10.19) by this known value, 

then this wi 11 8i ve us the truncated form of the Euler-MllcLaurln 

formula andthen the error in S" , if f(x) e C4(a,bJ as an 

approximation to theintegral of f(x) in la,b] is 

ih::.11~ f 1 v ( ) 
720 X 

It Is interesting to note too that if we consider the usual cubic 

spline approximation, s(x), to f(x) in la,b] , it was shown in the 

B.Phil thesis by Williams4
$ <p.l0) that the formula for the integral 

given by Davis & Rabinowitz~S can be written as 

b 
~ f(x) dx !!I 

a 

b 
~ s(x) dx = 

a 

b:2 
12 (f:" - f!, ) 

so that the formula for the Direct Cubic SpUne Approximation is, 

when f:" is known, the same as that for the integrated Cubic Spline. 
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Koreover, if we consider the special case of the scheme using 

equation (10.8) or equation <10.9) for Si computed for n=2 then we 

find that 

S(a) = 0 : Mo = f' (a) : h = W!(b-a) 

)I, = 2(f, - f :l._' ) Ih - M
1

_
1 

S" = S' __ I + h2 (M
1 + 2K t __ , ) 16 + hf 1.-1 

Si S'._I + h (f 1 + f 1--1 ) 
h2 

Oil Ki _
l

) = - -
2 12 or 1=1,2 

is exactly S1Dpson's First Rule so that 

See Phythian and Williamss1 • 

The above case illustrates the more general rule that. in the equal 

interval case, if the number of intervals, n, is even, then Sn is 

independent of f' (a) so that, in theory, provided n is always even, 

any value of f' (a) would serve as the initial value of ~>. To prove 

this let 

and 

Adding these gives 

- )I 
i ·-1 

h h 

= 
b h h 

= 2(f 1". 1 - f,> + ~ (_1)I-r 2(f r - fr--I) 

h r=1 h 

for i ~ 1 . 
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When i=1 we have 

2(f
1 

- fo ) 
J{1 + 2 f' = + f' 

'" <:> 

h 

The integral S.·, is found from 

= ...... <10.20) 

and, when the sum over i is taken, the terms (-1)t-r+lf' cancel in 
C> 

pairs so that, if n is even. the aggregate of these terms is zero. 

It can be shown from (10.20) that, when n=4 , 

which is the compound form of Simpson's Rule and, for all n while 

2nh is less than the length of the interval of integration, we also 

find 

Conversely, if a function f(x), which is assuDed to have a 

continuous first derivative and which is defined over an interval 

which is subdivided by a regUlar mesh, is integrated numerically by 

the compound form of Simpson's Rule. then the values {S2l} so 

determined are, in fact, node values at the even numbered node 

points of the Direct Cubic Spline Aproximation to the Integral of 

f(x) over the same mesh. The Direct Cubic Spline, in a sense 

therefore, "interpolates" Simpson's Rule and the interpolating 

function, S(x), is given by 

6h 2h 
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10.7 THE PERFORXABCE OF THE DIRECT CUBIC SPLINE APPROXIMATION. 

If we compare the error bound <10.14) of the Direct Cubic Spline 

Approximation with the error term for Simpson's First Rule over two 

intervals then we find that they are of the same form. Also, in 

light of the above relationship between the Direct Cubic Spli ne 

computational scheme, with h constant and n=2, and Simpson's First 

Rule, we can infer that the Direct Cubic Spline Approximation to an 

Integral Function is a generalisation of Simpson's First Rule. 

The advantages that the Direct Cubic Spline Approximation has over 

other similar integration rules (Simpson and low order Gaussian 

rules) is that, for the Direct Cubic Spl1ne, the ordinates do not 

have to be defined at specific points, the integral can be computed 

step by step between any two ordinates and the number of ordinates 

need not be specified in advance. 

On the debit side, however. we find that. employing computational 

scheme (10.8) for the Direct Cubic Spline, since sex) is cubic. the 

integrand. f(x) is approximated by a piecewise quadratic polynomial 

and therefore its derivative, f' (x,, by a piecewise straight line. 

Experience shows that the method gives its best results over 

intervals where the derivative, f' (x), is monotonic. We can 

however, generalise by going one step further - fitting a direct 

quartic spline to the integral and using the derivative computed 

from the X-Spline of Clenshaw and Begus62 • This is dealt with in 

the next chapter. 

10.8 SOME APPLICATIONS OF THE DIRECT CUBIC SPLIJE APPROXIMATION. 

A number of applications of the use of the Direct Cubic Spline have 

appeared in Part One of this thesis. The method is particularly 

useful in the procedure used to compute the points along the arcs of 

geodesic curves on the surfaces of the Sphere and the Spheroid. For 

Navigational purposes it is quite usual, in practice, to compute 

pOints step by step along these arcs and the distances between them 

and, since we also know the boundary derivatives in most cases, the 

method suits the situation well. There are also some applications in 

ship technology to which the method is very well suited. 
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APPROXIMATIONS 

TO 
INTEGRALS 



11.1 INTRODUCTION. 

Having achieved some measure of success with the Direct Cubic Spline 

approximation to an integral it would seem logical to investigate 

whether or not any higher order splines can be used in the same way 

to compute the values of integrals by a recursive scheme siuilar to 

that developed for the Cubic Spline and whether or not any 

improvement in results can be achieved thereby. Experience shows, 

for instance, that the cubic spUne gives best results when the 

first deri vat! ve of the i ntegrand is monotic - the computational 

scheme (1.9) does not respond well when a point of inflexion in the 

integrand occurs in the interval of integration - a higher order 

spIine may well give better results in this respect. 

11.2 DERIVATIOn OF THE DIRECT QUARTIC SPLIIB APPROXIMATION. 

Let S{x) be the Quartic Spline Approximation to the function F(x) in 

the interval [a,b] where 

F(x) = 
x 1 f(t) dt 
a 

and f (x) is assumed to be continuous with continuous first and 

second derivatives. 

Let the interval [a,b] be subdivided by points Xl, X2, •••• ,X:t'-l 

such that 

a = xc:> < x, < ...... < x.,·- 1 < X., = b 

sex) is the piecewise quartic polynoDdaI in [a,b] such that, in the 

subinterval [Xt ... "xd 

and sex) has continuous derivatives S' (x), ~'(x) and S(3)(X) 

throughout [8,b] . Since the indefinite integral sex) is a quartic 

polynomial then the integrand will be a cubic. In the interval 

[Xo, Xl] this cubic can be suitably defined by Ct(x) where 

c.,,(x) = fo + I(,,(x-x.:» -+ ~R:I.-l (x-x.",):2 -+ A(X-xo)3 ••• <11.1> 
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this ensures that c.~, (x~,.) = f" 

c:, (x".) = M." = f' 
'" 

c:, (xc.) = N,,,, = f" 
"" 

Where, in addition to the function values at the mesh points we 

assume that at X=X.::> the values of f' (xo) and f" (xo) are known. 

If we now differentiate c." (x) twice and determine c:, (x,) we find 

A = 

where h, = x, - x.:> . 

From co(x,) and c~(x,) we then find recursive equations through 

which we can determine N, and M, respectively. We then integrate 

c.::> (x) so that 

We find: I, 6 = hA!(fl -, 

X, = Mc. + hi 
2 

S, So h3 

= + -, 24 

X, 

S, = + cc-(x) dx 
x." 

f.:> ) 6 M.,,, 2110 - -
h, 

(N, - No) 

(N, + 310) + 
h:2 
:2 Jk. -+ h,t", ...... (11.2) 

11.3 COMPUTATIOIAL SCHEKE FOR THE DIRBCT QUARTIC SPLINE 
APPROX I XAT ION . 

Given the initial values 

So = 0 fo = f (x".) x.:> = t' (x.,) I.:) = f" (x",.) 

then we can compute and from the computational 

scheme (11.2) and then, if we define a sui table cubic polynomial 

Ct(X) in the interval [Xi-"XtJ : 
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then we find a possible scheme for computing the Si. 

The scheme here is : 

( i ) So = 0 ; f., = f (x.". ) J{". = f' (x.=-) N.:> = f" (x.,,) 

(ii) hi = XA - Xi-l 

6 6 
(i11) Ni = h 2 (f 1 - f i ._ I ) - h)tl-I - 2R 1 ,_ , 

i 1 

(iv) )t:l = )ti_'+ ~(Nt + N t _ , ) 

2 
1=1, ..... , n 

h3 
I. 

h:2 
1 

(v) Si = Si_l+ 24(N t + 3N
1 

__ ,) + '---f( + hi f i-I 2 i--" 

...... <11.3) 
b 

where, ultimately, S = ~ f (x) dx + En n a 

and E, ... is the error term. 

11.4 EXPERIMENTAL RESULTS FOR DIRECT QUARTIC SPLINE APPROXIMATION. 

The results found from applying the computational scheme (11.3) are 

rather disappointing. It would seem that this recursive scheme is 

unstable for the computation of the Ri as i increases although it is 

quite good in the early stages. 

When f(x) = sin x , for instance, we compute the approximation 

lh 
S(x) ~ F(x) = ~ sin x dx 

o 
= 0.2928932188 

using 5 intervals each of length 

Sr.;; = 0.292895509 which gives an error of 

1ft:;!.:) and find that 

0.00000229 . Yet, when we 

compute the same integral, using 10 intervals each of length n/40. 

we find that S'0 = 0.2928647048 which gives an error of 

0.000028514 - a ten fDld increase in the error for balf the 

interval spacing However, if we modify the method, taking 

advantage of the self starting capability and then, when H3 

computing L' (Xi) and Lit (Xi) - the first and second derivatives of 

the cubic Lagrange Polynomial approximation to f(x) over the 
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interval [ Xi-'3, X t ] and setti ng Kt = L' (Xi), It 1 = L" (Xt ) then 

we find 

S.s = O. 292878578 

and SIO = 0.2928912169 

which is more in line with what we might have expected. It should be 

noticed though that the Ss computed this way is not so good as the 

Sr-; found by applying the scheme <11. 3) without modification. The 

problem, without doubt, seems to be that the equation (111) of 

scheme (11.3) is unstable as i increases. If, however, we modify the 

scheme in such a way that 

(1) 

<ii) N. = :. (K. - Ki _ l ) - Ni-I 
hi ...... <11.4) 

and so that equation (v) of scheme (11.3) remains unchanged then we 

will find 

8s = 0.2929580156 

and SIO = 0.2929128574 

AI though the result for SIC' 15 an improvement, and, in further 

experiments, as h is made smaller, the results show a deUni te 

tendency to converge, these results are not as good, even so, as the 

resul ts obtained by applying scheme <10.9) for the Direct Cubic 

Spline defined on the same interval with the same mesh. 

If, then, following along the lines taken in chapter 10, we look for 

the "symmetric" form for the Direct Quartic Spl1ne approximation, we 

find 

S. = 8.-- 1 + hi(f. + ft._I) - h;(K t - X._ I ) + h~(. +.B ) 
- "'t. t.-I 

2 4 12 

<11.5) 

but then, substituting 

't + It._I = ! (Xl - Mi _ l ) 

hi 
in (11.5) results in 

...... (11.6) 
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which is exactly the same as the "symmetric" form of the Direct 

CUBIC Spline approximation since Ki = SOl (Xi) . 

This would imply that the Direct Quartic Spline approxiJMtion does 

not exist independently. Indeed, as it will be shown below, every 

even order Direct Spline Approximation can, in the "symmetric" form, 

be shown to be the same as the lower order Direct Spline 

Approximation, and this would imply, generally, that none of the 

even order Direct Spline Approximations exist independently 

This, however, prompts the question as to whether there might be 

another way in which we can improve our estimate of the derivative 

of the spline given at the mesh points by the Xi. One possibility is 

given by Clenshaw & Jegus41 

In an interval [X.""Xn] subdivided by points x" X2, 

such that 

x.::> < x, < ......... < X ..... -, < x., 

We compute 

hi = Xi - Xi···-I 

.6i 
hi ,'" = 

h. + hi'" 

f t - f i'-' Y. = 
ht 

then Mt = (1-.B. ):.:y • ,'" + 13s (3-.BdY. - .B.Jli'-' . 

, X .... -I 

... (11.7) 

We find this by fitting a suitable cubic polynoDdal approximation to 

f(x) in the interval [Xt-"Xi~"] where we have the given values 

and a computed val ue of 11, --, 

[X.""X:2] these values wil be fo, f" f2 and 

Let the cubic polynomial be Ct(x) where 

f' <:> 

In the interval 

Ct (x) = f {·-1 + 11 1 -1 (x-X"'-'I) + A (X-Xi-l)2 + B(X-Xl-'l ):B 

When we equate Ct (x) at x=x, and X=X'-I to fs and ft-I, 

respectively, then we find simultaneous linear equations froD which 

to determine the constants A and B. We omit the details here. 
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The computational scheme which results when we use this form of the 

"moment", JIlt, as found from the limiting form of the Clenshaw-Negus 

X-spline is given by the scheme which leads to the equation (11.7) 

with the symmetric form of the quartic/cubic spline approximation to 

Sl 

We compute ht = Xi - Xt"-'1 

J3t. 
h t - 1 = 

hI. + h t ·• 1 

fl. - f 1,-1 
Y1 = 

h t 

Kt = <1-j31)2Y1+l + 13:t(3-131.)Yt -- j31Mt-l 

SI. S:l'--1 !!I. (ft f I. --·1 ) 
h2 

(It, )It.-I) = + + - _1 -2 12 

(11.8) 

The results found from experiments with constant h, conducted using 

the two computational schemesj <10.9) and (11.8) I are shown in Table 

11.1. 

n SIJotPLE FORK CLERSHAW-REGUS 

J(" S,·, Mn Sn 
«/2 18 -1.0006351 1.00000032 -1. 00000022 0.99999992 

~ cos X dx 19 -1.0005700 1.00000026 -1. 00000017 0.99999994 
0 20 -1.0005144 1.00000021 -1.00000014 0.99999995 
= 1.0 21 -1.0004665 1.00000017 -1.00000012 0.99999996 

22 -1.0004250 1. 00000014 -1. 00000010 0.99999996 

"/2 18 -0.0006351 1.00000032 0.00001847 0.99999991 
~ sin x dx 19 +0.0005700 0.99999961 0.00001570 0.99999993 

0 20 -0.0005144 1. 00000021 0.00001346 0.99999994 
= 1.0 21 +0.0004665 0.99999974 0.00001163 0.99999995 

22 -0.0004250 1.00000014 0.00001011 0.99999996 
23 +0.0003889 0.99999982 0.00000885 0.99999997 

1 8 2.7160480 1.71828416 2.71843142 1.71828105 
~ e'< dx 9 2.7144612 1.71828540 2.71838695 1. 71828136 

0 10 2.7168514 1. 71828278 2.71835827 1.71828153 
= 1.718282 11 2.7157231 1.71828343 2.71833923 1. 71828163 

12 2.7172881 1. 71828229 2.71832599 1. 71828169 

8 -0.8319192 0.8427023 -0.8305305 0.8427008 
erf (1) 9 -0.831596 0.8427018 -0.8304458 0.8427008 

= 0.8427008 10 -0.8313535 0.8427015 -0.8303885 0.8427008 
11 -0.8311726 0.8427013 -0.8303479 0.8427008 
12 -0.8310303 0.8427011 -0.8303202 0.8427008 

TABLE 11.1 
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In the last example in Table 11.1 the correct value of F' (1) to 7D 

is -0.8302150. 

When the Clenshaw-Negus form of the moment is used it can be seen 

that the results converge conSistently for the values of both K~ and 

Si but, when the simple form of the moment is used, two sequences of 

values of M1 and Sf. seem to appear, one corresponding to the odd 

number of intervals and one corresponding to the even number of 

intervals, and that each sequence converges separately with the 

sequence corresponding to the even intervals giving the better 

results. 

To show the advantage that can be found from using unequal intervals 

consider the case where we compute the integral 

using 16 intervals - first when they are all equal to 0.175 and 

second when they are defined according to the sequence 

hi = 0.1 + (i-l)O.Ol 

The results are shown in Table 11.2 

SIJ{PLE FORM 

M, .. ST" 

EQUAL -0.06319964 0.93919481 
UBEQUAL -0.06123427 0.93919447 
TRUE -0.06081006 0.93918994 

TABLE 11.2 

i = 1, ... ,16 

CLEISHAY IEGUS 

Il, .. S" 

-0.06080124 0.93918869 
-0.06078267 0.93918890 
-0.06081006 0.93918994 

11.5 DIRECT QUIITIC SPLINB APPROXlKATIOI TO AI INTBGRAL FUICTIOI . 

The obvious next step is to carry the idea of the Direct SpUne 

approximations even further and to investigate the possibil ty of 

deriving the recursive scheme which will give the Direct Qulntlc 

SpIine approximation to the integral of a function f(x) . 

Proceeding as before, let us define S(4)(X) as the linear function 
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Pi 
8(4) (X) ::: h--(x - X

i
_.,) + 

i 

where 

If we are given the initial values 

S(4) (a) ::: Po ::: f (:3) (a) 

scn (a) = No = f" (a) 

S" (a) ::: It:, ::: f' (a) 

S' (a) = fo = f (a) 

S(a) = 0 

...... <11.9) 

where and Ki = S" (XI) • then, after integrating 

successively and determining the constants of integration, we will 

find the recursive scheme 

(1) PI 
ai. 

f 1-' ) 
a!. la 3P 1.-' 

::: h3 (f , - - h<! )li-1 - h 1 1 -, -
I I I 

hi 
(i1> II = N

I
_, + 2(P, + P 1--' ) 

I1 = M
I
_, + h~(p + P I -,) + h

l
l

l
_

1 - I 
(1U) 

6 

for i = 1, .... , n (11.10) 

This recursive scheme is even more unstable than the scheme (11.3) 

and gives virtually no worthwhile results at all. The obvious cause 

is the calculation of the highest derivative - Pt - and. again, we 

can try to alleviate this by modifying the scheue and find an 

alternative method of computing the derivatives. The first attempt 

is to replace (1), (it), and (U 1) in scheme (11.10) by 

(1) 

(11 ) 
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(U i) 

and, although this is effect! ve in reducing the instabill ty and 

resul ts in a convergent computation as h is made smaller, it is 

still rather crude. We can improve this, however, by using these 

al ternat! ve approximations to the deri vat! ves only as fjrst 

approximations then making successive approximations finding 

h'2 
(1) I M' = 1('-1 + ' <p + 2P '-I) + i - :I. 

6 

(i1> I N' = 2.(M' - Jilt_I) - N
i

_
1 j, h ' , 

(11 i) I pI = 2.(N' - N, -I) - P:I.-l :I. h :I. 
i 

Applying the above to compute the integral 

lht 
~ sin x dx 
o 

h:l.N
i

_ 1 

we find that, with interval spacing h = 1[/20 I Ss = 0.2928165725 

which gives an error of 0.0000766463 and when we reduce h to h = 
1[/40 we find S, () = 0.2928757802 which gives an error of 

0.0000174386 - results which are still not as good as those which 

can be achieved using the Direct Cubjc Spline Approximation I 

11.6 GEBERALISATIOJ TO HIGHER ORDER DIRECT SPLIBE APPROXIMATIONS. 

The pattern of the recursive formulae which give us the algorithms 

for applying the Direct Cubic, Quartic and Quintic SpUne 

approximations becomes familiar. The formula which gives ,S, in the 

Direct Cubic Spline scheme, for instance, shows itself as the 

formula for S" (Xi) in the Direct Quintic Approximation scheme, and 

it can therefore be predicted that the the formula which will give 

Sit (Xt) in the Direct Sext!c Approximation scheme will be of the same 

form as that which gives S(Xi) in the Direct Quartic Approximation 

scheme. Thus we can see then that a recursive scheme can be 

developed quite easily for higher order Direct Spline Approximations 
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although their efficiency as algorithms for computing the integral 

is very much in doubt. The problem in the cases of the Direct 

Quartic and Direct Quintic Approximation schemes (11.3) and 

(11.10), respectively, is the computation of the highest order 

derivatives - Ni and Pi. The formula which gives the highest order 

derivative is, in fact, a transposition of the formula which gives 

the known first derivative of the spline, S' (Xi) [= f(xi»), in terms 

of the higher derivatives. These formulae are obviously very 

unstable, particularly for the quintic, while the other formulae in 

the schemes are, really, very stable. 

Let nS(X) be the nth degree Direct SpUne Approximation to the 

function F(x) over the interval [a, bl , where F(x) is the integral 

of the function f (x) f£ Cn--' [a, bl over the subinterval [a, xl 

contained in [a,b]. 

The formula giving ,·,S (x) in the subinterval [Xi-1, Xi] can be 

predicted to be 

S() S( > + S
<n_,,(X-Xi_,)n 

n X =,., Xt _, n i 
+ (-1>n-'nS~~-;-' ,(Xl-X)" 

nthi 

+ 

nthi 

n 
E 
r=2 

(X-X )n-r 
(-1>rh~-' 1-. 

n-2 
E 

(X-Xs._, ) r 

r=l rt 

r! (n-r>t 

...... (11.11) 

where nS~ r) is the rth derivative of nS(X) at x=x 1 • 

We can prove this result (11.11> by Induction. Let us aSSUJDe that 

the result is true. 

The first derivative of the (n+1)th Direct SpIne Approximation -

no-,S' (x) - is of the same form as (11.11) with ,.,+,S· (Xi-') = fi-, 

and we therefore find 
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S• () f + sr.,,) (x-x t _· I )'" 
" .. I X = t ._ I n'" I I. 

+ 
n 

n+ls~r') E 
r=2 

n!h t 

(-1)'"h r -
' 

(X-XI._ I )n-,­
I. 

r! <n-r)! 

n-2 
E 
r=1 

(X-Xl_I)'" SCr+'I) 
----- ,,+·1 i-1 

r! 

If we then 1 ntegrate ,,"1 S· (x) with respect to X we wi 11 ft nd 

S 
= f S I (x-x l _ l )n.1 

,.-,-.1 (x) x t"-I + n+1 r;+' + 

n-l 
+ n .... IS~n:. E (-1)'''h'--'' 

r=2 

(n+1)n!hl. 

(n-r+1)r! (n-r)! 

+ 
n-1 
E 
r=2 

(X-XI._ I )r+1 Sr. .. +-l:> 
n-+ 1 i-1 + 

(r+1)r! 

where Cnl is the constant of integration . 

At X=Xt 

n! 

and, transposing this equation to give ent we find that 

Cnl = r,·+-l S:1_1 -

n! 

and hence 
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+ 

n-1 
+ 1'+1 S~~~ E 

r=2 

(X-X:I._l ),,+1 

(n+l)! hi 

(X-X
1

_.
1 

)rHl 

hr -- 1 (x-x )n--"+1 
(-1)r :1.-1 

r! (n-r+l)! 
hn

-
1 (X-X :t.._l ) 

+ "+IS~~:(-1)n + n+1S~~:(-1)" 

n-2 
E ,., .. 1 S~ ~ ~ 1 ) 

r=1 

n! 

+ 
(r+1) ! 

The first and seventh terms can be collected to give 

n-1 
~ (X-X i __ 1 ) r S~ r) 
L.. ,,,,· .. 1 i ._, 

r=l r! 

(n+l)! 

, and then the fourth, fifth and sixth terms 

can also be collected to give 

so that 

n+1 
E (-1) rh~--·' 

(X-X:l._
1 

)n--r 

r! (n-r)! r=2 

+ n+IS~~=(_1)n(X:t._X)n., 
(n+1)! h:l. 

n-1 
~ (X-X:I._l ),. SC r) 
~ --------- n+' 1-1 

r=1 r! 
(11.12) 

Which is the formula (11.10) in which n+l replaces n. The formula is 

true for n=3 and n=4 bence, by induction, it is true for all n. 
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11.7 COMPUTATIONAL SCHEME FOR NTH ORDER DIRECT SPLINE APPROXIMATION 

Following along with our theoretical considceration of the nth order 

spl1ne approximation to an integral function we can develop the 

computational scheme which is equivalent to the scheme (1.8) for the 

Direct Cubic Spline even though, when n~4, their efficiency as an 

algorithm for computing the integral is in doubt. The scheme is : 

Given 

then 

S < k;' 
n l 

•. ,S( k:> = f'· h - 1 ) 

h (" ... ,.: -1 , 
=nS(I,;'+ 1 [ .... 8<"_···" ... S(n--l) 

1--1 --- l 1--·1 

+ 

for 

(n-k) ! 

n-][-2 
1: 
r=1 

hr-
1 n8': k .. ,' ) 

- 1-·-1 

r! 

k = n-2, .... ,1,0 

k= 1,2, .... , n-2 

n-k 
E (-1)" (n-k)! J 

2 
r! (n-k-r)! 

r= 

...... (11.13) 

11.8 CONCLUSIONS 01 HIGHER ORDER DIRECT SPLINE APPROXlMATIOIS TO 
INTEGRALS. 

None of the schemes of computation for the higher order Direct 

Spline Approximations investigated in this chapter, and that we have 

tried, have proved to of any great value when applied to the 

particular problems that we have chosen. The problem seems to be 

focussed on the computation of the derivatives, which is not 

unexpected since the computation of derivatives often does result in 

i nstabi li ty. 
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CONCL tTS ION 



The aim of part one of this thesis has been to present a 

mathelllatical analysis of the methods of computation in navigation 

and to effect some new numerical solutions. In the past the methods 

of computation in navigaUon have generally been simplified to suit 

manual computations. However, with the advent of computer software 

and the introduction of the electronic chart these simplifications 

can no longer be considered adequate or necessary. As we stated in 

the introduction, the spherical model for the shape of the Earth 

is, for most practical purposes in navigation, quite adequate, if 

used consistently, but, with the computer to do the work for us, the 

spheroidal model is obviously more fitting and this model has become 

the focus of our attention. It was considered useful, however, to 

analyse the properties of the curves on the surface of the spherical 

Earth model since this simplification serves to illustrate the same 

pattern of mathematical analysis which we can use to develop the 

equations for navigating along curves on the surface of the 

spheroid. All the chapters from chapter 3 onwards contain work which 

has been published . 

The methods of navigation along the arc of a loxodroue are now fully 

developed for the spheroidal JOOdel and most applications embrace 

this. The single most important aspect of naVigating along the arc 

of the loxodrome is the computation of meridian distance. Carlton 

Wippern24 defines this distance in terms of elliptical integrals 

since the meridian is but the arc of an ellipse but does not do any 

actual computation. Bowringe3 gives a new method which will compute 

this distance to a very high degree of accuracy but we use the 

direct cubic spline which, for our purposes gives us the accuracy we 

require (two decimal places of a geographical mile> at a step length 

of 50 in latitude along the meridian and because, in this case, the 

algorithm is easy to apply. 

The great circle method on the spherical model still seeus to be the 

popular method, in practice, of computing the shortest path geodesic 

arc. This is because the navigator reqUires more than just the 
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straight forward computation of distarice (the methods for which are 

well developed for the terrestial spheroid) so that the great circle 

method has been the only method available which will give the 

intermediate points along the path of the geodesic. We have 

therefore presented a solution to the problem of computing the 

geodesic arc on the surface of the spheroid in a different way by 

starting from the definition of the geodesic by means of Clairaut's 

equation. We have solved the equation to give us a relationship 

between the geocentric latitude and the longitude of a point along 

the path of the geodesic then, using the step by step method of the 

Direct Cubic Spline, given the step values in the longitude, we have 

found the corresponding values of the latitude and the distance 

along the geodesic arc between them. We have applied this same 

method to the shortest path problems on the surfaces of both the 

sphere and the spheroid and, in the case of the sphere, the 

algorithm is quick, efficient and in every way comparable with the 

methods of spherical trigonometry. In its application to the surface 

of the spheroid the algorithm for doing this has also proved to be 

simple and efficient even though it involves a fair number of 

iterations. The results can be condensed neatly as shown in Table 

4.1, chapter 4, for the sphere and Table 5.1, Chapter 5, for the 

spheroid. The positions from these tables can be plotted on a chart 

to give visual representations of the paths. If the chart is a 

standard paper chart then the way points can be plotted and the 

usual convention would then be to join the way points with short 

rhumb lines. We can expect, however, that the electronic chart will 

soon be in general use and the application can be refined 

considerably. On the electronic chart we will be able to represent 

the portions of the geodesic between the way points by curved arcs. 

Indeed, the relevant way to do this will be to fit a conventional 

cubic spline approxill8tion between the end points of the geodesic 

arc with the way points as the "knots" of the spUne. 

In chapters 5,6 and 7, we believe that we have presented a full 

analysis of the solution by a direct method of the problem of 

computing the path of geodesic arcs on the surface of a spherOid. We 
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have defined our distances along the arcs of the geodesics by line 

integrals computed using the method of the direct cubic spline 

approximation. All the results have, we believe, been computed 

correct to the first decimal place of a geographical mile. For the 

purposes of navigation, either in the air or at sea. this is 

adequate. In the future this computed solution can be linked with an 

elecronic position fixing system so that. from the input of the 

observed position. the path to the destination. in! tial course and 

distance. with its intermediate way pOints can be quickly updated at 

any time. In coastal navigation. where course lines are all short 

arcs of a loxodrome, this is done already with the Decca Navigator 

system. In a system designed for navigating world wide a choice of 

routes - loxodromic. geodesic or composite - can be offered from any 

observed position to the destination. 

Although the methods of analysiS and computation of the properties 

of geodesic and loxodromic arcs have been developed with the problem 

of navigating on the surface of the Earth uppermost in the mind the 

methods are not strictly "Earthbound" at all. The analysis is 

general to any ellipsoidal surface. Should it soon be possible in a 

space vehicle to skim the surface of an outer planet where the 

flattening of the surface is more pronounced. then. by our methods, 

for navigational purposes, we will be able to compute the path of 

the geodesic or loxodromic arcs on such a surface also. For the 

shortest path geodesic arc between two points on a surface such as 

Jupiter. for instance, where the eccentricity of the Deridian 

ellipse is approximately equal to 0.3, then. the initial 

approximation to the path which we can use for the i terati ve 

procedures in the computation will be the "great ellipse" - the 

ellipse defined by the intersection of the surface with a plane 

through the two points and the centre of the ellipsoid. 

At first sight it might seem that our achievement in chapter 8 is 

simply a tidy representation of the formulae that are used in 

astronomical navigation and. that. since astronomical navigation is, 

to SODe extent, only a sideshow these days, little has been achieved 
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by it. There is, however, a little more to it than that. A work of 

philosophy must contain some elements which are there because, if 

little else, they present an interesting theoretical problem but, 

even so, this is not entirely the case in chapter 8. The 

consequences of the distortion in the transferred position circle 

are worth noting and, in the past, might well have caused some 

problems for polar navigators because it is close to the pole that 

this distortion is most pronounced. At some stage on the polar 

journey it must be necessary to travel at an oblique angle to the 

meridians and, since the sun is the only astronomical body visible, 

transferred position circles must have been used to fix position. It 

would be interesting to analyse the results from such observations 

that were taken by polar explorers and to see whether or not, in 

general, such allowances were made. 

We have not made any mention of the way in which astronomical 

observations are affected by the spheroidal shape of the Earth. In 

truth the position ·circ1e" is the locus of intersection of the 

surface of a cone and the surface of the spheroid. It would appear 

that the cone has its apex at the centre of curvature of the 

spheroid at the point which is the geographical position of the 

observed body and its axis Is along the corresponding radius of 

curvature. The position "circle" Is not, therefore, in general, a 

circle. The observer's position when two simultaneous observations 

are taken is then at a point of intersection of three surfaces - two 

cones which are defi ned by the astronomical observations and the 

surface of the spheroid. This problem is now being studied with the 

purpose of finding out whether there is a solution which will give 

worthwhile results to the navigator. 

In chapter 9 we concern ourselves with computing position from the 

observation of a single astronomical body over a short period of 

time. This method would have an application at sea in good observing 

conditions and would give positions which should be better than the 

running fix but it is implicit that the computations are only 

possible using a powerful computing device. It is, however, in the 
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possibility of mechanisation that this method might find its place. 

Judging by the demonstrations of the accuracy of gyroscopic 

stabilisation that have been made recently in weapons technology it 

might be more than just feasible to design an instrument which can 

lock on to a source such as the sun or a star and measure the 

instantaneous altitude and its rate of change. From this the 

observer's position can be computed. automatically. 

given in chapter 9 and displayed for the observer. 

by the method 

This is only 

conjecture. of course, but one is lead to believe that this should 

be possible. Such a system, if it is feasible, would reduce the 

reliance on the orbits of the man made sattelites. 

Part two of the thesis has been devoted to the Direct Spline 

Approximations to integrals. Chapter 10 is concerned exclusively 

with the Direct Cubic Spline Approximation and it is this 

approximation to integrals that is applied to such good effect 

throughout part one. The method is a step by step method and is 

particularly effective in application to line integralS because of 

the in built property of generating points along the path. One 

disadvantage of the method in this respect, however, is that it does 

not converge very rapidly as the interval length is decreased. 

We have shown that the direct cubic spline is a generalisation of 

Simpson' s Rule and a truncated approxiJlfttion of Buler's Integral 

Expansion method. It has the distinct advantage too of being within 

the realm of manual computation. The reqUirement that the derivative 

at one boundary should be known is not, in fact. too IIIJch of a 

disadvantage to the method. In our applications we have found Dany 

cases where the derivative. or a siDple approximation to -it. have 

been easily found. While. in theory. an approximation to the 

derivative will reduce the order of the error bound it is not a 

serious practical consideration. If we are to strictly maintain the 

step by step property of the method it does sometimes mean that in 

the absence of true value of the derivative we might have to make a 

linear approximation, but, in general, we are not so restricted in 

practice. In the case of the geodesic arcs. for instance, we know 
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our destination and can therefore choose the intermediate points in 

advance. In the computer program to compute the length of the 

geodesic arc passing through these intermediate pOints we begin by 

fitting a Lagrange cubic polynomial to the first four intermediate 

points and we have differentiated this Lagrange polynomial to find a 

quadratic approximation to the derivative. 

In Chapter 11 we hope to carry the idea of the Direct Cubic Spline 

into the development of higher order direct spline approximations to 

integrals. We have generated the formulae which will, by the same 

analysis, give us expressions for these higher order direct splines 

but, except in the case of the Direct Quartic SpUne, we have not 

demonstrated that there are any useful algorithms. For the most 

part, then, at the moment, this chapter is just a theoretical 

demonstration which is left as an open question. For the direct 

quartic spline the "moments" of the spline are provided for us by 

the limiting form of the X-spline developed by Clenshaw and legusS2
• 

The integral formula in the direct quartic spline is, however, 

exactly the Same as that in the direct cubic spline and this is 

general for all the higher even order direct splines - the integral 

formula is the same as that of the next lower odd order direct 

spline. 

There are other particular areas of study where the direct spUne 

approximations have a relevant application. We are also using these 

methods in the theory of ship stability where the evaluation of 

integrals with known boundary derivatives are commonly required. As 

a professional navigator it has been particularly rewarding, 

however, to find that the direct cubic spline has. been so 

particularly useful in the science of navigation. 
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APPENDIX ~ 

TRANSFOR..MATION OF EQt.TATION 
<'5. 4-:> TO EQt.TA TION <:5. 5,> 



Using th, substitutions x = ae y = I tan' w, find dx = a de and dy = a IIC 2 , d' 

Ve also hive tan , = X 
a 

--ar-

lin f = y 
J(a2+ y2) 

so that 

Th, equation a~cos2f(~) = avcos fv lily b, frithn 

written ~ = IvCOS 'v , 

and df. cOl2f dy 
a 

_:cos4 ' d92 = ~2[I:COS2' d&2 + _:5,e 2 (t-') d,2] = ~2COI2'[I:de2 + I: COl:' dy2] 
a 

Dividing through by .:e052, and substituting for cos2
' frol abovI WI find 

Frol the Iquation tan's (1-12 )tan. WI find 

and 

Now 

Aho 

, Using th.s. r.lults ., find 

• 12(1_,2)(12+ y2) 

[12(1-.2) + y2] 

........ , (AI.2) 

........ (AI,3) 

Substituting (AI,2), (AI,3) Ind (Al..) into (AI.l) and rllrringing results in 

IS requ ir Id I 
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APPENDIX :2 

A TABLE OF LATITt.TDE PARTS 



--------- --------- --------- --------- --------- ---------0' la' 20' 30' 40' 50' 
0 ----6-:-00- ----9-:-93- ---19-:-86- ---29-:-80- ---39-:-tyr ---49-:-66-
1 59.59 69.53 79.46 89.39 99.32 109.26 
2 119.19 129.12 139.05 148.99 158.92 168.85 
3 178.78 188.72 198.65 208.58 218.58 228.45 
4 238.38 248.31 258.25 268.18 278.11 288.04 
5 297.98 307.91 317.84 327.78 337.71 347.64 
6 357.58 367.51 377.44 387.38 397.31 407.24 
7 417.18 427.11 437.05 446.98 456.91 466.85 
8 476.78 486.72 496.65 506.59 516.52 526.45 
9 536.39 546.32 556.26 566.19 576.13 586.06 

10 596.00 605.94 615.87 625.81 635.74 645.68 
11 655.61 665.55 675.49 685.42 695.36 705.29 
12 715.23 725.17 735.11 745.04 754.98 764.92 
13 774.85 784.79 794.73 804.67 814.60 824.54 
14 834.48 844.42 854.36 864.30 874.23 884.17 
15 894.11 904.05 913.99 923.93 933.87 943.81 
16 953.75 963.69 973.63 983.57 993.51 1003.45 
17 1013.39 1023.33 1033.27 1043.22 1053.16 1063.10 
18 1073.04 1082.98 1092.93 1102.87 1112.81 1122.75 
19 1132.70 1142.64 1152.58 1162.53 1172.47 1182.41 
20 1192.36 1202.30 1212.25 1222.19 1232.14 1242.08 
21 1252.03 1261. 97 1271. 92 1281. 86 1291. 81 1301. 75 
22 1311.70 1321. 65 1331. 59 1341. 54 1351.49 1361.44 
23 1371. 38 1381. 33 1391. 28 1401.23 1411.18 1421.12 
24 1431. 07 1441.02 1450.97 1460.92 1470.87 1480.82 
25 1490.77 1500.72 1510.67 1520.62 1530.57 1540.53 
26 1550.48 1560.43 1570.38 1580.33 1590.29 1600.24 
27 1610.19 1620.15 1630.10 1640.05 1650.01 1659.96 
28 1669.92 1679.87 1689.82 1699.78 1709.74 1719.69 
29 1729.65 1739.60 1749.56 1759.52 1769.47 1779.43 
30 1789.39 1799.35 1809.30 1819.26 1829.22 1839.18 
31 1849.14 1859.10 1869.06 1879.02 1888.98 1898.94 
32 1908.90 1918.86 1928.82 1938.78 1948.74 1958.70 
33 1968.67 1978.63 1988.59 1998.55 2008.52 2018.48 
34 2028.45 2038.41 2048.37 2058.34 2068.30 2078.27 
35 2088.23 2098.20 2108.17 2118.13 2128.10 2138.07 
36 2148.03 2158.00 2167.97 2177.94 2187.90 2197.87 
37 2207.84 2217.81 2227.78 2237.75 2247.72 2257.69 
38 2267.66 2277.63 2287.60 2297.57 2307.54 2317.52 
39 2327.49 2337.46 2347.43 2357.41 2367.38 2377.35 
40 2387.33 2397.30 2407.28 2417.25 2427.23 2437.20 
41 2447.18 2457.15 2467.13 2477.11 2487.08 2497.06 
42 2507.04 2517.02 2526.99 2536.97 2546.95 2556.93 
43 2566.91 2576.89 2586.87 2596.85 2606.83 2616.81 
44 2626.79 2636.77 2646.75 2656.74 2666.72 2676.70 
45 2686.68 2696.67 2706.65 2716.63 2726.62 2736.60 
46 2746.59 2756.57 2766.56 2776.54 2786.53 2796.51 
47 2806.50 2816.49 2826.47 2836.46 2846.45 2856.44 
48 2866.42 2876.41 2886.40 2896.39 2906.38 2916.37 
49 2926.36 2936.35 2946.34 2956.33 2966.32 2976.31 
50 2986.31 2996.30 3006.29 3016.28 3026.27 3036.27 
51 3046.26 3056.25 3066.25 3076.24 3086.24 3096.23 
52 3106.23 3116.22 3126.22 3136.21 3146.21 3156.21 
53 3166.20 3176.20 3186.20 3196.20 3206.19 3216.19 
54 3226.19 3236.19 3246.19 3256.19 3266.19 3276.19 
55 3286.19 3296.19 3306.19 3316.19 3326.19 3336.19 
56 3346.20 3356.20 3366.20 3376.20 3386.21 3396.21 
57 3406.21 3416.22 3426.22 3436.22 3446.23 3456.23 
58 3466.24 3476.24 3486.25 3496.26 3506.26 3516.27 
59 3526.28 3536.28 3546.29 3556.30 3566.31 3576.31 
60 3586.32 3596.33 3606.34 3616.35 3626.36 3636.37 
61 3646.38 3656.39 3666.40 3676.41 3686.42 3696.43 
62 3706.44 3716.45 3726.46 3736.48 3746.49 3756.50 
63 3766.51 3776.53 3786.54 3796.55 3806.57 3816.58 --------- --------- --------- --------- --------- ---------
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APPENDIX :3 

SOME RESULTS 
IN 

SPHERICAL TRIGONOMETRY 



A spherical triangle on the surface of a sphere is defined by the area 

enclosed by the intersection of three great circles. Figure A3.1 shows 

the spherical triangle with vertices A, Band C which are the points of 

intersection of the three great circles the arcs of which are AB(=c), 

BC(=a) and CA(=b). a, band c are expressed as angles where a, for 

instance, is the angle subtended at the centre of the sphere by the arc 

BC. 

A 

c 

FIGURB A3.1 

C----------
a B 

The SPHBRICAL COSINB FORMULAB read 

cos a = cos b cos c + sin b sin c cos A 

or cos b = cos a cos c + sin a sin c cos B 

or cos c = cos a cos b + sin a sin b cos C 

and, interchanging angles for sides we find also 

cos A = sin B sin C cos a cos B cos C 

or cos B = sin A sin C cos b cos A COB C 

or cos C = sin A sin B cos c cos A cos B 
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The SPHERICAL SINE FORXULAE read 

sin a 

sin A 
= 

sin b 

sin B 
= sin c 

sin C 

These results are proved in the book by Margaret GOW37 , 
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