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OPTOPHONE DESIGN: 

OPTICAL-TO-AUDITORY VISION SUBSTITUTION FOR THE BLIND 

EXTRACT 

An optophone is a device that turns light into sound for the 

benefit of blind people. The present project is intended to 

produce a general-purpose optophone to be worn on the head 

about the house and in the street, to give the wearer a 

detailed description in sound of the'scene he is facing. The 

device will therefore consist'of an'electronic camera, some 

signal-processing electronics, earphones`, and a battery. The 

two major problems are the derivation of (a) the most suitable 

mapping from images to sounds, and (b) an algorithm to perform 

the mapping in real'time on existing electronic components. 

This thesis concerns problem (a). Chapter 2 goes into the 

general scene-to-sound mapping problem in some detail'and 

presents the work of earlier investigators. Chapter 3 1- 
discusses the design of tests to evaluate the performance of 

candidate mappings. A theoretical performance test (TPT) is 

derived. Chapter 4 applies the TPT to the most obvious 

mapping, the cartesian piano transform. Chapter 5 applies the 

TPT to a mapping based on the cosine transform. Chapter 6 

attempts to derive a mapping by principal component analysis, 

using the inaccuracies of human sight and hearing and the 

statistical properties of real scenes and sounds. Chapter 7 

presents a complete scheme, implemented in software, for 
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representing digitised colour scenes by audible digitised 

stereo sound. Chapter 8 tries to decide how'many numbers are 

required to specify a steady spectrum with no noticeable 

degradation. Chapter 9 looks'at a scheme designed to produce 

more natural-sounding sounds related to more meaningful 

portions of the scene. This scheme maps windows in the scene 

to steady spectral patterns of short duration, the location of 

the window being conveyed by simulated free-field listening. 

Chapter 10 gives detailed recommendations as to further work. 
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ABBREVIATIONS 

CIE Commission internationale de l'Lclairage 

CPR_ candidate psychophysicalyrepresentation 

dBDL decibel difference limen 

DC direct current 

DL difference limen 

ERB equivalent rectangular bandwidth c 

erb not an abbreviation but a word (Figure 3.2) 

ERD equivalent rectangular duration 

erb not an abbreviation but a word (Section 7.2.1) 

FDL frequency difference limen 

FFDL formant frequency difference limen 

FFT fast Fourier transform 

FT Fourier transform 

GDL frequency difference limen in erbs 

co P general problem of, optophonics 

JND just noticeable difference 

KL Karhunen-Loeve 

PA power attenuation 

PIA property of inconsequential ambiguity 

PR psychophysical representation 

PRL power ratio limen 

TPT theoretical performance test 
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CHAPTER 1 INTRODUCTION 

1.1 General 

This thesis'reports on research done in the wider context 

of a project. In order to set the scene, this 

introduction first describes the project as a whole, then 

specifies which part of the project is the subject of the 

present research and-thus of the thesis, and ends by, 

'introducing the research. 

1.2 The project 

An optophone is a`device-that turns light into? sound: for 

the benefit of blind people. The present'project is 

intended to produce a general-purpose optophone to be 

worn on the head about the`house'and'in the street, to 

give'the wearer a detailed description in sound of the 

scene`he is facing. The device will therefore'consist of 

some kind of electronic camera, -some signal-processing 

electronics, earphones, and a battery. 

1.3 The purpose 

Although the'word optophoneýappeared in pre-war 
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dictionaries, the only successful optophones available 

are devices to read aloud printed text. The requirement 

for a device that would describe intelligibly whatever it 
E 

was pointed at, including text such as signs in. the_ 

street, is self-evident, since that is exactly what sight 

does and what is missing from the blind person. 

C 

1.4 The beneficiaries 

The blind form about 0.15% of the-population, of which 

25% are totally blind or have only light perception 

(Trouern-Trend & Bering Jr 1969). If we balance out on 

the one hand those totally blind but unable for whatever 

reason to use an optophone with on the other those with 

some sight that would sometimes-like to see more clearly, 

we have 0.04% of°, the population as potential customers. 

Unfortunately most blind people are poor. Although many c 

may be prepared to pay 'dearly for-a good optophone, few 

would be able to. The social services of some; countries 

may contribute in varying degrees. It is possible that 

the signal processing requirements would make the 

electronics too expensive, but the price of similarly 

complex items such as video cameras is encouraging. 

If we assume that three quarters of the world lives in 

countries too poor to afford. optophones; for, their blind 
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population, then the number of potential customers comes 

to at most 2_million. 

1.5 Some potential difficulties 

The ability of subjects to learn the mapping of scenes to 

sounds implicit in their optophone will be one of the big 

unknowns of the whole project. Initially, of course, the 

sounds from the optophone will be completely meaningless. 

The bulk of the learning will be done in private, with 

the user finding out for himself what sounds are made by 

familiar objects in the home. In addition, there might 

be scope for some more formal training, where the sound 

of-unreachable objects such as buildings would be 

explored by means of hands-on models. Third, with a 

particularly puzzling sound, there would sometimes be the 

opportunity to ask a friend "What's that over there? " 

There are plenty of examples of the human ability to 

learn, in time, to recognise effortlessly the meaning of 

completely arbitrary signals, such as learning a language 

or learning to read., 

There.. is also the danger of an optophone acquiring a bad 

, name, by: new, users giving up through lack of support. 

However good the product, it is not anticipated that many 

users would be able to learn, to, use one, just from braille 

instructions without some further encouragement. I have 

-17 
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several times bought a language course without 

subsequently learning the language. Most blind people 

know no braille anyway. 

There is a chance that users might find any optophone of 

the type described too uncomfortable in some way. Given 

on the one hand that many nowadays like to wear personal 

radios in the street, and on the other that the optophone 

could be instantly turned off to enable proper hearing, 

this is considered unlikely. 

1.6 Earlier work 

There has never been an optophone of the type proposed 

here, although there have been applications for patents. 

One reason has been the attention paid by researchers to 

echolocation, where the user detects his surroundings by 

listening to the echos, suitably transformed into sound 

by the electronics, from ultrasonic noises the device 

sends out. The reasoning behind this research preference 

is that echolocation is used by animals that can't see. 

The mistake is not to have realised why the animals can't 

see. They can't see because they go about in the dark 

(bats) or in murky water (dolphins), not because they 

don't have eyes. Every animal that goes about in 

daylight prefers to have eyes. The advantages of an 

is 
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optophone over an echolocator are that theFecholocator 

cannot see anything far, or through glass, or on paper. 

One hears sporadically of new echolöcv 1tors (see 

references underrRARDWARE - BLIND AIDS- ECHOLOCATION), 

but-1 have never seen a 'blind person wearing one. 

Philips of the Netherlands have recently applied'for an 

optophone patent (Meijer 1992). Both the general idea of 

a high-resolution optophone andýthe particular scene-to- 

sound mapping claimed were described in my 1987 MSc 

dissertation (O'Hea 1987), which concluded that the 

mapping was not very good. 

To my knowledge the only other recent work on optophonics 

was Carver Mead's (Mead 1989,207-227). 

Both Mead and Philips 'ä p ppear to have been too keen to get 

into the implementation (hardware' design) without 

thinking enough about what mapping they wanted to 

implement. This amounts to solving problem b before 

problem a'(Section 1.7 below). 

Because of the failure of electronic mobility devices in 

general, a successful'optophone would only displace guide 

dogs and white canes: - - 

.. , }. 5 ' 
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1.7 The technical approach 

In hardware terms the technical approach is easily stated 

and, apart perhaps from some specialised chips, already 

solved and available off the shelf: electronic cameras, 

signal-processing electronics, earphones and batteries. 

These are becoming smaller, cheaper, lighter and better 

all the time, and just crying out for someone to fit them C 

together into this type of application. 

What is not so self-evident is how to design the software 

for such an optophone, or whether one is possible even in 

theory (the present research concludes that it is). The 

two major problems to be overcome are therefore 

a the derivation in mathematical terms of the mapping 

from images to sounds most suitable to the, needs of 

a blind person 

b the derivation of an algorithm to perform the 

mapping, or a good enough approximation to it, in 

real time on existing electronic components. ' 

The first of these two problems is the subject of the 

research covered in this thesis. 

The solution to problem b, the real-time mapping 

algorithm, really has to wait until the theoretical 

C 
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mapping, the answer to problem a, is known.. . However, 

some attention must be paid , to speed even in developing 

the theoretical mapping, since otherwise it will be 

impossible to test on an. ordinary computer.., -. 

1.8 The present research 

J 
-. The present-research addresses problem a above, and 

therefore. amounts to an attempt to answer the question 

"What do you want things to sound like? " Such things 

must include; not, onlyall the , things.., the optophone 

designer, can: thinkýof but also , anything- else the blind 

person might point the optophone-at, -. 
including objects 

not yet invented. The approach in this project to 

solving this problem is based on the following four 

requirements, all based on common sense. 

_ý '"1 

Previous work. It is of course necessary to take 

into, account all-, that-, is known about, -the. - " 

psychophysics of seeing and hearing. The research 

already undertaken in-this-respect can be judged by 

the 'list of 'over : 600 references 'compiled since the 

project started. 

2 Continuity. Small changes"in-the scene-should 

result in small changes in the sound. No two scenes 

are ever identical, butane would not-want-a new 
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scene to sound completely different from a similar 

scene that was already familiar. 

t 
3 Completeness. No'scene should be unmappable nor any 

sound unused. On the one hand, every scene should 

be mappable since there is no knowing what the 

optophone will be pointed at. On the other hand, if 

some sounds were unused, then this would squeeze all 

possible'scenes on to a smaller range of sounds, 

resulting in more loss of detail than necessary. 

4 Subjectivity. Undetectable' differences in'scenes or 

sounds don't count, even'if detectable by the 

hardware. That is to say, ` proper account must be 

taken of the resolution of human sight'and hearing. 

1.9 Results 

Having only the above four self-imposed. requirements to 

"go on, the work proceeded according to no fixed plan. 

-Many'different schemes (that is, scene-to-sound mappings) 

were investigated before being dropped. Sometimes they 

were abandoned for some inherent defect, sometimes 

because a more promising scheme came to mind. Not all of 

the schemes dropped were blind alleys; some were later 

revived in some modified form before being again 

-abandoned-or left open. 

1\ 22 
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Chapter 2 goes into the general scene-to-sound mapping 

problem in some detail and presents the work of earlier 

investigators. 

Chapter 3 discusses the design of tests to evaluate the 

performance of candidate mappings. Most favoured are 

tests of mappings in functioning optophones, requiring 

users to perform some well defined task, such as reading, 

against the clock. The need for sufficient training is 

stressed. 

Testing at an earlier stage of the development of a new 

mapping, without the need for a fully functioning 

optophone, or even of a user, is possible by the 

following sequence of calculations: 

C) 

1") 

1 

2 

Obtain a digital still scene using a television 

camera. 

Calculate the corresponding sound using the 

mapping under trial. 

3 Calculate an almost perceptibly different sound 

using the known inaccuracies of human hearing. 

4 Recalculate the digital scene using a suitable 

inverse version of the mapping. 

23 
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5 Criticise the recalculated scene visually, by 

comparison with the original or otherwise. 

i 6 See if there emerge any clues to a better 

mapping. 

This is called the theoretical performance test (TPT). 

Note that it is only possible if the mapping has an 

inverse. 

Chapter 4 applies the TPT to the most obvious mapping, 

the cartesian piano transform. A more elaborate version 

of the piano transform is taken up again in Chapter 7. 

Chapter 5 presents a scheme based on the cosine 

transform, and attempts to evaluate the scheme by the 

theoretical performance test of Chapter 3. Due to 

eagerness to press on with other ideas, audible sounds 

for this scheme were never produced and a proper 

subjective assessment was therefore not possible. 

Neither, having regard to the qualities of the scheme, is 

one recommended. 

Chapter 6 considers how it might be possible to derive 

the most appropriate scheme from first principles, using 

on the one hand knowledge of the inaccuracies of human 

sight and hearing, and on the other knowledge of the 

statistical properties of real scenes and sounds. 
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Difficulties with this approach led to its abandonment 

until its reuse in the scheme of Chapter 9. 

Chapter 7 presents a complete scheme, implemented in 

software, for representing digitised colour scenes by 

audible digitised stereo sound. Luckily, despite being 

based on the piano transform, the mapping in this scheme 

is not invertible, so application of the theoretical 

performance test described in Chapter 3 was not possible. 

This forced attention onto the design of proper 

subjective tests, also discussed in Chapter 3. 

Chapter 8 tries to decide how many numbers are required 

to specify a steady spectrum for human consumption, with 

no noticeable degradation. This information is required 

in Chapter 9. 

Chapter 9 looks at a scheme designed to produce more 

natural-sounding sounds related to more meaningful 

portions of the scene. This scheme maps the contents of 

a window in the scene to a steady spectral pattern of 

short duration, the location of the window being conveyed 

by simulated free-field presentation of the sound. 

Conclusions and recommendations form Chapter 10. 

25 
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1.10 Style 

Optophonics touches on many different specialised fields 

of study. I have tried to treat each one in elementary 

fashion, which is the level I started at in all of them. 

Hence the chatty style. Those familiar with a subject 

will inevitably find the corresponding sections laboured. 

The style was not chosen for them. 

The continental we is used quite a bit, a result of me 

having grown up in France. It refers in a general way to 

me and the reader facing a problem together, and is a 

convenient way of avoiding constant use of the passive. 

I try in general to use words as in ordinary English, and 

to resist where not helpful the theft and devaluation of 

words practised by some professionals. For instance, 

brightness and loudness have their ordinary meaning and 

don't generally refer to any particular scale of 

measurement. 

1.11 References 

All references consulted during the course of this work 

are listed, though not all referred to directly in the 

text. In order to form a more useful guide to further 

study, the references are ordered by subject, and within 

26 

C 

ý_ 

c 



subject by date. However, many of the subjects included 

have only a few references, and the list is not at all 

comprehensive in this respect. 

1.12 Figures 

The figures are all closely connected to the text. In 

general, the text will not be clear without looking at 

the current figure. In addition, figures are if possible 

annotated, the intention being to make each as self- 

explanatory as possible. Where this has not been 

possible, a compensatory level of explanation will be 

found in the text. Unannotated ficures have the same 

orientation as the rest: the top of the figure is the 

left of the paper. 

n 
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CHAPTER 2 GENERAL DISCUSSION AND EARLIER WORK 

2.1 Comparison of scenes and sounds, sight and hearing 

In looking for a mapping from scenes to sounds, it is 

natural to look at what attributes describe scenes and 

what attributes describe sounds, and to try to match the 

attributes two by two, one scene attribute against_one 

sound attribute. 

People have looked for analogies between seeing and 

hearing for a variety of different reasons, ranging from 

the most primitive to the most complex. For instance, 

one can ask on the one hand. whether brightness is more 

analogous to loudness or to pitch, and on the other hand 

whether there is any connection between the evolution in 

music from Brahms to Schoenberg and the evolution in 

painting from Renoir to Picasso. 

C 
Comparison of symphonies and paintings is instructive. 

The salient difference is that, even though both take 

time to take in, in a symphony order is everything, in a 

painting nothing. The different bits of a painting can 

be looked at in any order, and are in fact never looked 

at in the same order twice. Some studies (see under 

PSYCHOPHYSICS - SIGHT - EYE MOVEMENTS) show general 

tendencies in the order in which people look at things, 

28 
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but no-one would claim that the painting is changed by 

the order. 

The references headed PSTCHOPHYSICS - GROSSMODAL STUDIES 

make fascinating reading, but no consensus emerges that 

might be useful in optophonics. In general the authors 

are obliged either to discuss the subject discursively 

and anecdotally, or, if performing experiments, to limit 

their scope to comparing just one or two of the variables 

in each domain. 

Handel (1988) concludes that no one analogy is 

sufficient, the best depending on context. However, a 

mapping depending on context, -in addition. to requiring 

artifical intelligence to implement,, would violate our 

continuity requirement.. 
,,, 

The problem with trying to match such variables as 

brightness and pitch two by two is that there are more 

perceived dimensions in scenes than in sounds. Even if 

we leave out the third spatial dimension (distance from 

the viewer) as being generated in the viewer, and colour 

as being of minor importance, we are still left with a. 

scene described by a brightness function of (x, y, time)- 

and a sound described by a_loudness function of 

(pitch, time). 

tr i 

One way forward could well be to-sample the scene in 
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black and white at say one-second 

each frozen scene to a one-second 

Evolution of the scene would then 

detecting differences between suci 

Much of the work reported here is 

intervals, and then map 

sound sequence. 

be derived by the user 

cessive sound sequences. 

based on this scheme. 

For a more detailed discussion of different possible 

mappings, see O'Hea (1987). 

2.2 Some past mappings 

A good overview of electronic mobility aids for the blind 

was provided by Kay (1984). The other main work to 

recommend to the newcomer is Warren & Strelow (1984). 

There is very little in either about optophonics, most 

workers having been attracted either to other inputs such 

as echolocation or to other outputs such as vibrotactile 

displays. 

The eight known attempts at optophone mappings are by 

Fish (1976) 

Dallas (1980) 

Kurcz (1981) 

Deering (1984) 

Tou S Adjouadi (1984) 

O'Hea (1987) 
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Nielsen, Mahowald, & Mead (1989) 

and Meijer (1992). 

2.2.1 Fiah (1976) 

Fish (1976) mapped vertical position to tone frequency 

and horizontal position to binaural , loudness difference 

in several systems where the sound at any instant 

depended on the brightness gradient at one point of the 

scene only, the scene-being scanned by the point in 

raster fashion. The mapping, together with the 

heliotrope of Kurcz (below), is thus an example of a 

point mapping. 

The scanning rate was variable, being faster when no 

=edges were being crossed. In this way more time was 

spent on interesting parts of the scene than, on plain 

areas. 

Subjects were able to identify 18 test patterns with at 

most four hours training. They could also describe new 

patterns not in the training set, ", indicating that they 

had understood the mapping. Minimum presentation time 

was from 0.8 to 8 seconds depending on-the complexity of 

the pattern. 
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2.2.2 Dallas (1980) 

Dallas (1980), in a patent application, mapped vertical 

position in the two-dimensional visual field to sound 

frequency, horizontal position to-time, and brightness to 

loudness. Thus a horizontal white line would sound like 

a continuous tone, the higher the'line the higher the 

tone, 'and a vertical white line would-sound like a click 

or thud, the further to the left the earlier the click. 

Permutations and reversals of this mapping are also 

covered in the patent application. 

Dallas's mapping is an'example'of the piano transform, 

rediscovered independently by O'Hea (1987)sand Meijer 

(1992) and so named because one can imagine the scene 

being scanned from left to right'by, a vertically oriented 

piano keyboard having the high notes at-the top of the 

picture. 

The piano transform is an example of a slot mapping. 

This simply means that the scene may be considered masked 

by a template containing a slot (long thin hole). The 

template is drawn across the scene at a steady speed and 

perpendicularly to the slot in direction. The sound at a 

given time depends only on the part of the scene showing 

through the slot at that time. In. the piano transform, 

the slot is the piano keyboard. 
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2.2.3 1Curcz (1981) 

Kurcz (1981) describes a hand-held device called a 

heliotrope which senses the light output from only one 

point in the scene. The heliotrope is used to scan the 

scene manually at will in any direction and outputs a 

sound related to the light intensity at the point. 

2.2.4 Deering and Tou & Adjouadi (1984) 

Deering and Tou & Adjouadi, both in Warren & Strelow 

(1984), use verbal description as output, a line 

independently discovered by my daughter Shanti: "Easy, 

Daddy. If it sees a dog, why doesn't'it just say 

,.. 7.. .. Dog. 

My instinctive revulsion against such a device needs 

explaining. Computers, compared to people, are 

notoriously bad at visual recognition. To build 

recognition into an optophone is to forget that 

optophones are to be worn by real people, potentially far 

better recognisers of objects than any computer. In 

addition, to build recognition into an optophone 

inevitably involves censorship of the scene, which I also, 

find abhorrent. 
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2.2.5 O'Hea (1987) 

O'Hea (1987) discussed the general problem of optophone 

mapping and considered a number of desirable properties 

that a mapping should have, arguing strongly for the 

presence of a fovea. Two mappings were simulated on 

computer. 

One of the mappings simulated was the same as in Dallas's 

work, although O'Hea was unaware of this. He called this 

mapping the piano transform, and found it unsatisfactory, 

especially for conveying a wide light shape on a dark 

background, where the mapping is equivalent to trying to 

convey two notes on the piano (the edges of the shape) by 

playing all the notes in between. 

The second mapping simulated, though only partially, was 

again a slot mapping, this time from edge orientation to 

musical (circular) pitch, and from position along the 

slot to interaural intensity difference. The edges were 

analysed at different spatial scales each separated by a 

factor of 2, with the corresponding sound two octaves 

higher or lower (a separation of one octave being a 1800 

edge rotation or sign reversal). 
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2.2.6 Nielsen, Mahowald and Mead (1989) 

Nielsen, Mahowald and Mead (in Mead 1989) mapped the time 

derivative of light log-intensity at any place in a two- 

dimensional visual field to an auditory transient (click) 

filtered so as to appear to come from the same place in a 

two-dimensional auditory field (using simulated free- 

field listening). This mapping has the practical 

advantage of being uninterrupted in time. 

It is claimed that the selection of time derivatives as 

the information to transmit enables the perception of 

motion and thus in theory the reconstruction of the third 

spatial dimension. While this is so for parallax motion 

of the camera, it is not clear how or whether the effect 

is suppressed during panning motion, and if so what is 

used instead. Presumably, steadily fixated scenes would 

produce silence in the same way as steadily fixated test 

objects disappear (Riggs et al, 1953). 

n 
It is not clear that the best possible mapping should 

turn a normally unnoticeable effect of human vision (the 

disappearance of steadily-fixated test objects) into an. 

overwhelmingly present characteristic of the optophone. 

2.2.7 Meijer (1992) 

Meijer (1992), in a patent application by Philips of the 
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6 
Netherlands, used the piano transform, in a way not 

obviously different from Dallas (1980) but in a more 

modern electronic implementation. 

f 

2.3 Spaces for sounds 

2.3.1 Multidimensional scaling 
C 

In looking for a mapping from scenes to sounds, it is 

natural to ask if there is such a thing as a 

multidimensional scene or sound space, in which any scene 

or sound would be represented by"a point. If so, and the 

two spaces for scenes and sounds were sufficiently 

similar, then simply equating the two spaces would 

produce a mapping. 

Multidimensional scaling is an automatic technique 

designed to place a sensation into a multidimensional 

space in such a position that it is closest to sensations 

that appear most similar to it and farthest from those 

that appear most different (see references under 

PSYCHOPHYSICS - MULTIDIMENSIONAL SCALING). Famous 

examples of its use are the horseshoe shape of the 

colours of single-wavelength light and the circular 

arrangement of pure tones. 
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The technique has several variants, but they all involve 

asking subjects how different sample sensations are from 

one another. While it would be unsafe to ask, "How many 

times bigger is the difference between sensations C and A 

than between B and A? ", it is reasonable to ask, "Is C 

more different from A than B is? ". From the resulting 

ranking, the multidimensional space is derived. 

Theoretically, it would be possible to represent every 

sound as a point in a subjective multidimensional sound 

space and every scene in a similar scene space, using 

these techniques. It would then suffice to equate the 

two spaces, or the N most important dimensions of each, 

to obtain the required mapping from scenes to sounds. 

n 

Unfortunately, not only would a sufficiently thorough 

sampling of all possible scenes produce a huge number of 

sample scenes, but subjects would be required to compare 

each of these samples with every other, making an 

astronomical number of comparisons. The same of course 

applies to sounds. The method is rapidly defeated by 

combinatorial explosion. 

2.3.2 Trial and error 

An attempt was made, in the case of steady sounds, to 

derive a subjective multidimensional space by reasoning 
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0 
from what is already known. 

Consider two sounds A and B consisting of a single pure 

tone each. Suppose we plot them as points on 1a graph of 

loudness against pitch (Figure 2.1). As shown, A and B 

are of the same loudness but different pitch. We then 

turn A and B down so that they are inaudible, obtaining 

sounds C and D. Whereas A and B sound different, C and D 

sound the same (silence), and yet there is still a-C 

distance between C and D on the graph. Thus distance on 

this graph cannot be made to represent difference in 
46, E 

sensation. 

t 

An (r, e) representation is more suited (Figure 2.2). If 

pitch is related to angle 0 from the x axis, and loudness... 

to distance r from the origin, then silence has only one 

position (the origin). If 0 is so scaled that the 

audible frequency spectrum fits into 360", then the space 

is largely used up by all possible pure tones. However, 

the close resemblance of tones one octave apart is not 

reproduced in this scheme. 

8 can be rescaled so that 3600 corresponds to one octave, 

and a third dimension introduced, also related to pitch 

(Figure 2.3). This new dimension z represents monotonic 

or straight pitch f, as opposed to 0 which represents 

cyclical or circular pitch or pitch-in-the-octave p. The 

terms straight and circular will be used here. The space 
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for pure tones is now a helical surface. A previous 

defect is reintroduded, however, since all points along 

the new axis now represent silence. 

This defect is overcome by collapsing all points on the 

new axis z on to the origin, or, equivalently, 

representing straight pitch not as distance along the 

z axis'but by angle " from it, -and loudness as distance 

not from the z axis but from the origin (Figure 2.4). 

t 

What sounds-can be assigned to the'space between the 

turns of the helix? Two-tone sounds, with the tones one 

octave apart, 'fill the space nicely, with overall 

loudness as distance from the origin, and the relative 

loudness of the two tones proportional to the relative 

closeness of the two adjacent turns of the pure-tone 

surface. -: ý 

Encouraged by the apparently successful derivation of 

this space, much thought went into extending it to 

encompass more complex steady sounds, with no success at 

all. One reason for suspecting that extension of any 

pure-tone space to more complex sounds would be 

inappropriate is that while a sound can be composed of 

many pure tones, it can only have one pitch. It is true 

that a sound containing only a few dominant pure tones 

can have a different pitch according to which tone is 

being attended to, but it can only have one pitch at a 
ýr. 
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time [Plomp, 1976]. 

2.4 Automated derivation of sapping 

An apparently less restrictive approach is to ignore the 

dimensional structure of scenes and sounds and represent 

each by a one-dimensional list of numbers (a vector). 

Standard ways of doing this are the raster scan for 

scenes and the time sampling of air pressure for sounds, % 

but there'may be better ways for our purpose. 

In contrast to the conscious pairing off of attributes 

described above, the idea here is to derive a suitable 

mapping blindly, using only the known statistical 

properties of the numerical vectors describing scenes and 

sounds, the known discriminatory properties of human 

sight and hearing, and some automatic procedure to do the 

derivation. 

The approach adopted is based on the premise that if the 

following two requirements are met then the mapping will 

be satisfactory. First, that in order to "sound right" 

the sounds should be generated from vectors having the 

same mean, variance and covariance as vectors 

representing real sounds. Second, given that both sight 

and hearing are imprecise, that the imprecision in 

hearing the sound should correspond, via the mapping, to 
.r 
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the imprecision of human vision. In other words, a 

mapping should not do better than human vision at 

conveying one aspect of the scene if it means doing worse 

at conveying another. 0 

2.4.1 Producing sounds with the "right" statistics 

The first requirement may be achieved as follows. 

Suppose a large number of real sounds are represented as 

vectors a and the mean, variance and covariance of the 

vectors are calculated. Call the mean vector n. From 

the resulting covariance matrix, a matrix S can be 

derived such that premultiplying sound vectors s-n by S 

produces vectors w whose elements are totally 

uncorrelated. 

w-S (s - n) (l) 

This is a standard decorrelating procedure called 

principal component analysis and the matrix S is called a 

Hotelling or Karhunen-Loeve (KL) transform (eg Gonzales & 

Wintz, 1987, p122ff). It is usual to arrange the rows of 

a KL transform so. that the elements of the resulting 

uncorrelated vectors appear in order of variance. 

Now suppose some vectors w are generated from 

uncorrelated random elements having zero mean and the 

correct variance, are then premultiplied by the 
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inverse Sl of S, and have the mean vector n added 

back on. 

s S-1 w+n (2) 

Then the resulting sound vectors a have the same mean, 

variance and covariance as those of real sounds. 

Now suppose the same were done for scenes, obtaining 

scene vectors p (for "picture"), a mean scene m, a KL I 

transform P, and uncorrelated vectors v from 

v P(p-m) (3) 

,. 
If the scene and sound vectors p and a are chosen, by 

adjusting the amount of detail in one of them, to be of 

the same length, and if the elements of v and w are in 

order of variance, and if the variances of v and w are 

not too different, then v may be a good candidate for w, 

and sounds may be generated from scenes by 

s= S-1 P (p - m) +n (4 ) 

2.4.2 Proper distribution of imprecision 

The second requirement depends on the elements of p and a 

being correctly scaled. Ozeki (1979) pointed out that 

unless proper attention was paid to the relative scaling 

of the different variables, principal component analysis 
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could be made to prove anything. For instance, one 

component could be made vastly more important by 

expressing it in millimetres instead of metres. Ozeki's 

solution was to scale the variablesSaccording to the 

amount of noise present in their measurement. 

What seems to correspond to noise for our purpose is the 

difference limen (DL), also called the just noticeable 

difference (JND). In hearing, for instance, the 

intensity difference limen is in the region of '1 or 2 dB 

(Moore, 1989). If the sound vector a were chosen as a 

list of intensity values (say a raster scan of a 

spectrogram), then the numbers would have to be in say 

2-dB units, and a change of 1 in the value of any of the 

numbers would be taken to correspond-to a just detectable 

change in the sound. Let such a vector be called a 

psychophysical representation (PR). 

Similarly, a vector representation for scenes would be 

required in which a change of 1 in the value of any of 

the numbers would correspond to a just noticeable change 

in the scene. 

2.4.3 Limitations 

There are two main difficulties` in this approach. First, 

the scenes and sounds must be described, by initial and 
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probably nonlinear transformations from the raw data, in 

terms of PRs, that is, in terms of variables with values 

expressed in units of a difference limen. Difference 

limens, to be reproducible, are generally deriied using 

very contrived sounds. It is not immediately clear that 

such results can be usefully extended to describe general 

sounds. 

In many studies (PSYCHOPHYSICS - HEARING - AUDITORY 

PROFILE ANALYSIS), Green in particular has shown that the 

intensity difference limen of one tone in a complex sound 

depends, on the intensity and frequency of the other tones 

(quite, apart from the masking effect). In general, the 

more tones and the more equal their intensities, the 

smaller the intensity difference limen of any one of 

them. 

Second, KL transforms only remove linear correlation. 

Any strong nonlinear correlations in either the scene or 

.. sound variables would invalidate the method. 
C 

A subjective method for testing the suitability of a PR 

for the present purpose is as follows. Having derived 8 

or P, generate random sounds or scenes by using 

uncorrelated random numbers of the correct variance and 

applying 61 or P. Suitable PRs will produce sounds or 

scenes, of every description and with no preponderance of 

any particular type. If this can be achieved to a 
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certain degree for both scenes and sounds, then the 

object of mapping all scenes to all sounds is also 

achieved to the same degree. 

The progress made along these lines is reported in 

Chapter 6. 

1 2.5 Invariances 

Unfortunately, there are more invariancesrin vision than 

in hearing. Things undeniably look "the same" when moved 

sideways, upwards or further away. Sounds sound 

"the-same" when slowed down (but with no frequency 

change) or-delayed. Three against two. Interestingly, 

things don't look the same when rotated more than a 

certain amount. A square turned through 450 is called 

"a diamond". Reading upside-down is difficult. Upside- 

down faces are often impossible to recognise. 

A similarly limited invariance on the sound side is 

invariance to frequency shift. 

Of the three visual invariances listed, the strongest 

seems to be invariance to size. The strength of 

invariance to translation is a difficult one, since one 

doesn't usually try to recognise something without 

looking at it. Certainly the invariance seems strong 

with the fovea still inside the object boundary. 
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It is interesting to speculate what invariance in the 

scene could be made to correspond to speed invariance in 

the sound. Take two otherwise identical time-varying 

sounds, sound B lasting twice as long as sound A. Twice 

as much information can be extracted from B than from A, 

so a mapping from scene size to sound duration suggests 

itself. However, in the case of general complex sounds, 

the increase in detail is all in one direction, so there 

would be an increase in resolution in whatever in the 

scene maps to time in the sound, and no increase in the 

orthogonal direction. 

There is a class of sounds where this is not true, and 

where a slowing down of the sound (still not altering the 

frequencies) involves greater resolution not in the time 

but'in the frequency direction. 'This is the case with 

sounds made only of short pure tones, since it is known 

that, up to a duration of about 0.1 s, the frequency 

difference limen decreases with increasing tone duration 

(Moore 1989). It might be interesting to design some 

intermediate class of sound which would increase 

resolution in both directions when played slower. Three 

words of caution, however. ' First, restricting the sounds 

produced by an optophone to a certain class would violate 

our requirement n" 3- completeness (see Chapter 1). 

Second, real sounds already contain spectral peaks (in 

the way that real scenes contain edges), and it is 

uncertain to what extent such a process happens already. 
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Third, we have to distinguish carefully between the 

difference limens of pure tones and the difference limens 

of spectral resonance peaks, which are much coarser. 

t 
It is important to realise that other invariances than 

those listed above come into play inhuman vision, 

notably invariance to affine (shear) distortions and 

distortions associated with rotation of three-dimensional 

surfaces about a vertical axis. Affine distortions, 

modified for perspective at close range, are the 

distortions that happen to, say)the letter R when it is 

painted on the three visible faces of a cube and then 

photographed. These invariances are comparable in 

strength to translation and size invariance, in that they 

do not hinder instant recognition. 

Whatever the mapping, therefore, there will unfortunately 

be strong unmapped invariances. Is this a disaster? 

I think not. Invariances can be learnt. Suppose we have 

no built-in invariance to vertical translation, as with 

the cartesian piano transform with the keyboard vertical. 

An object shifted up four octaves (by the user tilting 

his head downward from looking say 300 above the object 

to 300 below it), and also stretched a bit by the action 

of the erb scale, will initially be unrecognisable (the 

Donald Duck effect). But the transformation to the sound 

will be exactly the same every time the head tilts 

downward through 600, and similar to when it tilts 50" 

Sr. 
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or 70 . In time, one should be able to predict this 

transformation accurately, in the same way that one can 

learn in time to predict the path of falling objects and 

catch them, and to carry out an amazing variety of 
d 

skilled tasks. 

2.6 Colour 

2.6.1 General 

Colour is an immensely complicated and deceptive subject. 

We will only go into it here as little as necessary. 

A good starting point for further study is Pratt (1978). 

It is known that there are three types of colour receptor 

in the human eye, and that the sensation of colour is due 

to differential excitation of the three types of 

receptor. This accounts for the representation of colour 

in digital systems by three numbers, usually either the 

amounts of red, green and blue or the amounts of 

brightness, saturation and hue. 

Hue is a pure measure of colour excluding brightness or 

saturation. Saturation is a measure of the strength or 

paleness of the colour. Pratt (1978, p28) and Gonzalez & 

Wintz (1987, p192) define saturation in opposite 
5F 
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directions. While Pratt has "saturation describes the 

whiteness of a light source", Gonzalez & Wintz have "The 

pure spectrum colors are fully saturated" and. "the degree 

of saturation being inversely proportional to the amount 

of white light added". Thus white is either totally 

saturated or totally unsaturated, and it's a good idea to 

check which way the word is being used. Here, white is 

unsaturated. - 

Consider a set of three cartesian coodinate, axes. They 

form the edges starting at one corner of a. cube, the 

corner being the origin. Let these three axes-represent 

amounts of red, green and-blue respectively. - The origin 

therefore represents black. One line leaving the origin 

and going off into the cube joins progressively lighter 

greys. 

In television systems, the numbers are so scaled that 

ý this grey line is straight and ends up at white at the 
\. J 

far. corner of the cube. Now place the cube with the grey 

line vertical andzthe origin at the bottom. Take a cross 

section a short way above the origin, roughly horizontal 

but with some tilt. A triangular figure results, with 

one corner on each of the three axes. It is possible to 

choose the tilt so that all the colours in the plane of 

the section have much the same brightness and differ only 

in saturation and hue. 
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Unfortunately, not all natural colours fall within the 

triangle, some requiring negative coefficients. In 1964 

the CIE (Commission internationale de 1'6clairage) 

specified chromaticity coordinates in which tYe three 

numbers for red, green and blue were never negative. 

Although the system had not much else going for it, it 

came into common use as a basis for the presentation of 

colours regardless of brightness. 

Figure 2.5 is based on the 1964 CIE coordinates. The 

triangle shown is the triangle described above. The 

horseshoe is the pure colours (colours of one wavelength 

only), outside which no colours exist. 

MacAdam (Pratt 1978) investigated colour difference 

limens and expressed the results in the CIE plane. 

surrounding any point in the plane is a ring of other 

points representing just noticeably different colours. 

These rings became known as MacAdam's ellipses. 

Unfortunately, they vary manyfold in both size and 

ellipticality over the CIE plane, while in a 

psychophysically satisfactory plane they would be of 

constant size and circular. 

Inspired by experiments on the perception of colour by 

partially colourblind people, Oleari (1991,1993) 

produced a new and computationally tractable set of 

colour coordinates (Figure 2.5) in which difference 
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limens are constant. Where colours are used in the 

present research (Chapter 7), they are-first expressed in 

terms of Oleari's saturation and hue. Yx 

.. - ti 

t) 

Note that in Oleari's system the spectral colours do not 

all have the same saturation. This is reasonable, since 

the system is psychophysically based and there is no 

reason to expect the spectral colours all, to appear 

equally saturated. However, it does pose a problem if it 

is desired to scale the saturation to the range 0 to 1 or 

0 to 100%. A 100% value must then be chosen which most 

colours will never attain. -1. 

2.6.2 Should colour be included in an optophone? 

The answer depends on the balance betun how useful it 

is to do and how easy it is to do. As- long as it was 

difficult, colour was omitted from television. Later, it 

was universally included. 

7 

My own feeling is that as long as -it- is- not- too 

difficult, it should be included. First, all the 

hardware for capturing colour scenes is there. Second, 

colour is useful, specially for looking for things and 

for living in a man-made environment. ' Third, optophones 

are bound to be difficult to use at the beginning, and 

the more clues as to the nature of an'object the better. 
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Fourth, if colour is omitted initially as-a matter of 

policy, there is the danger of the resulting black-and- 

white mapping being incompatible with a future colour 

mapping, requiring users to start the learniig process 

again from scratch. 

Refer to Figure 6.2 (or 6.3) giving spatial frequency 

sensitivity of human vision. The curve concerns grey 

scenes or the brightness of colour scenes. There is an 
C 

equivalent curve for sensitivity to, the spatial frequency 

of variation in chromaticity (colours of the same 

brightness). Starting at the fine end-of the scale, on 

the "best the eye can do" side, the chromatic response 

curve rises from zero in a similar way to the achromatic 

curve but at resolutions more than three times coarser 

(Pratt 1978). Having reached its peak, however, the 

chromatic curve carries on forever at the peak response 

of 1. Thus the whole of the "best the eye wants to do" 

side is horizontal and equal to 1. 

The conclusions for optophone design are twofold. First, 

it is not necessary or desirable to model colour in as 

fine a spatial detail as brightness. Because it only 

needs to be one tenth as finely specified on a solid- 

angle or pixel-count basis, it should demand relatively 

little computation and be well worth doing. Second, it 

is not necessary or desirable to reduce the response to 

. colour as the size of the coloured area increases. 
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2.7 Music 

I 

2.7.1 General 

Music is a subject that can. do with a lifetime's study, 

and I am no musician. Should I therefore steer clear 

of it? The psychophysics of, hearing is a subject that 

can do with a lifetime's study, and I am no 

psychophysicist. Reasoning along those lines, I would 

steer clear of most subjects and not make an optophone. 

It could well be that-so little work on optophones has 

ever been attempted because there are no specialists in 

all the subjects involved. The only course in such 

circumstances is to have a go but to limit one's delving 

strictly to the exigencies of the task at hand. It is 

for this reason, for instance,, that I have, managed to 

avoid almost all reference to, physiology, however 

interesting rods and cones and phase locking of spike 

trains might be. 

The argument against music in an optophone is that there 

are nonmusical sounds., 
- 

If nonmusical sounds are 

excluded, then our completeness, requirement-(Chapter 1) 

, is violated. Thus there can be musical. sounds but not 

only musical sounds., In. fact, since musical sounds 

exist, the completeness requirement requires that they be 
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included. The question is'whether they should just 

happen randomly every now and again as an unintentional 

result of the mapping, or whether they should be " 

deliberately made to correspond to some subjectively 
r separate aspect of scenes. Since we have a shortage of 

dimensions in sounds as compared to scenes, subjectively 

recognisable classes of sound, such äs music, should 

indeed be brought into use in this way (unless we're 

deriving a mapping blind by the KL method). 
C 

2.7.2 Musical key space 

One of the foundations of polyphonic music is the concept 

of key (Karolyi 1965). A key is formed by three notes in 

harmony, either spaced 3,4 and 5 semitones apart to form 

a minor key, or 4,3 and 5 semitones apart to form a 

major key. These'notes are circular notes (see'section 

2.3.2 above) which is why three notes specify three 

intervals and not two. Looked at another way, three 

intervals in the normal way require four notes, but the 

first is the same as the fourth. 

The'keys are named by the lower note of"interval 3 in the 

case of minor keys"and of'interval 4 in the case of major 

keys. Leapfrogging does not change the key: 'intervals 

(3,4,5), (4,5,3) and (5, '3, '-4) all form the same key 

provided the lower note of'interval'3 has the same name 
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in each case. There are twelve minor keys and twelve 

major keys. 

The twenty-four keys can be pictured more clearly by 

examining the kind of space they occupy. Suppose all 

twenty-four are named on paper and joined by a line if 

they differ by only one note. The result is Figure 2.6. 

The keys lie on a two-dimensional surface. On close 

inspection, however, it is seen that the surface can be 

folded and rejoined so as to form a torus. 

It is possible to move continuously between keys by 

moving along the lines shown. First the note to be 

changed is softened and disappears when the middle of the 

line is reached. Then its replacement gradually appears, 

and reaches full strength at the end of the line. At the 

middle of the line only two notes are present. However, 

no two lines are centred on the same two notes, so there 

is no ambiguity in doing this. 

F- 
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CHAPTER 3 TESTING OF MAPPINGS 

3.1 General I 

It is very'difficult to think of a test that would rank 

scene-to-sound mappings in order of desirability. 

Suppose two optophones have been invented and it is 

desired to compare them. In the same way as magazines 

review cars or computers, it would be possible to 

allocate points to such attributes as battery life, 

weight, price, reliability in the rain, and so on, and 

compare a weighted sum of the-results. 

3.1.1 Categorical testing 

C 

But how about the mapping? In comparing two mappings, 

the two things to be compared are themselves comparisons, 

namely between what is there and what is seen. 

(Arguments as to whether an optophone would allow a blind 

person to "see" are futile. The convention adopted here 

is that since the input to the optophone is light, the 

optophone does enable, however badly, the user to see. ) 

In a test, therefore,. a user must be able to report 

accurately what he sees, or no proper comparison can be 

made. 
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Unfortunately, a picture being worth I forget how many 

thousand words, reporting accurately what you see is only 

possible if it involves naming items in the picture the 

listener already knows about. 

One field in which it is easy for the user to report 

accurately what he sees, in the sense of naming items in 

the scene, is reading out loud. Comparison, of reading 

speeds, as a function of hours of training, would give 

useful results. 

In another test, a user might be asked to-name as quickly 

as possible all the objects on the table in front of him. 

3.1'. 2 Noncatgorical and objective testing 

General seeing, of a noncategorical nature, is more 

difficult, and few tests come to rind. Some might find 

the following test impressive: blindfolded or recently 

blinded realistic painters might be'asked to paint the 

scene in front of them. 

On the other hand, it, can be argued that all useful 

seeing is categorical, in the sense implied by the 

sentence "I can't see what that is. " In that sense, 

worrying about testing noncategorical seeing is a red 

herring. 
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I am particularly concerned not to get bogged down in an 

endless series of tests using artificial patterns 

designed to describe objectively the performance of a 

particular mapping, in the way that human vision is 

tested in psychophysical experiments. The key word here 

is "objectively", and I must say that for me it is a 

dirty word. All tests, in all fields of enquiry, are 

ultimately subjective. "Objective" tests are only 

locally objective, and are in fact subjective by reason 

of the subjective choice of the test criterion. 

An example of a nominally objective test is the 

theoretical performance test described below. The 

performance criterion is carefully spelled out and the 

mappings tested against it. Unfortunately there are 

subjective reasons for thinking that the criterion is not 

very good. 

In case the distinction between the objective and 

subjective approaches isn't yet clear, I'll have one last 

go. The objective approach is to carefully specify a 

test criterion and to test performance against it. The 

subjective approach is to carefully choose a test 

criterion, `then carefully specify it and test performance 

against it. The first is good science, the second good 

science. 
ý.. ý, .ý 
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3.1.3 Importance of training 

Care will be needed to test 

mappings and not of the use: 

sufficient training? It is 

amount of training expected 

mapping to prove its worth: 

several months. 

the performance of the 

rs. Havt the users all had 

important to bear in mind the 

to be needed for even a good 

several hours a day for 

Note that the word "training" is not intended here to 

mean a predetermined or directed activity, merely time 

spent using one's optophone. 

y$ 

To be convinced ofRthis, consider another'crossmodal 

activity: 'representing the sounds of a language by 

arbitrary shapes on paper, otherwise known as writing. 

How long does it take to'learn to read? The answer 

depends almost entirely on how-'fast. Alphabets (used in 

Europe) and syllabaries (in'India and south-east. Asia) 

can be learnt in a day (and, if not used, forgotten 

almost as quickly) in the sense that any word can then be 

deciphered without reference to a key. 

Suppose on the other hand one wanted to know whether 

Hindi writing (the Devnagri script) was better than 

English writing (the Roman script) for the English 

language. Suppose'a test were devised involving reading 

speed, English in Roman against English in Devnagri. 
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There is no difficulty in doing this: many signs in 

India are in English in Devnagri script (Bank of India, 

Indian Airlines, and so on). Now let's ask the question 

again (how long does it take to learn to read? ) in the 

following sense: - how long would one have to practise 

reading English in Devnagri in order for the result of 

the test not to be biased if favour of Roman? Quite a 

long time. I 

C 
3.1.4 - Previous work 

Nothing has been found in the literature on the subject 

of testing scene-to-sound mappings. Mann (1965) and 

Tachi et al (1983) have devised an automated-procedure 

for evaluating the navigational skills of users of 

mobility devices for the blind. However, the mobility 

devices they test are designed to impart a predetermined 

course for the blind person to follow. 

ý. 

3.2 Theoretical performance test (TPT) 

3.2.1 Motivation 

Hearing is imperfect in that slightly different sounds 

are indistinguishable. If that were. not the case, then 
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the ears would have unlimited bandwidth (information 

carrying capacity) and many mappings would be perfect. 

One way to evaluate a mapping from scenes to sounds is as 

follows. 

1 Obtain a digital still scene using an 

electronic camera. 

2 Calculate the corresponding sound using the 

mapping under trial. 

3 Calculate an almost perceptibly different sound 

using the known inaccuracies of human hearing. 

4 Recalculate the digital scene using a suitable 

inverse version of the mapping. 

5 Criticise the recalculated scene visually, by 

comparison with the original or otherwise. 

6 See if there emerge any clues to a better 

mapping. 

This section presents a method for corrupting sounds 

(Step 3) for this purpose. 

All sounds produce an excitation pattern along the 

basilar membrane of the ear (Moore, 1989). The 
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excitation pattern resulting from a simple sound, 

consisting of. five pure sinusoids is-shown in Figure 3.1. 

The excitation pattern is a graph where the ordinate, 

representing the strength of the excitation, i, s a 

function of the abscissa, representing either frequency 

or position along the membrane, the two being 

monotonically related. -=The value of-the ordinate at a 

particular frequency is derived by weighting the powers 

of all the sinusoids or narrow noise-bands in the sound 

according to their distance from the frequency in 

question, and summing (Moore & Glasberg, 1983). (It is 

assumed that the sound is sufficiently--steady for 

, temporal masking to be ignored. ) The ordinate is 

therefore in units of sound power (W/m2) or in decibels 

thereof, while the abscissa is in Hz. or some monotonic 

function of Hz such as octaves, erbs (Figure 3.2) or 

critical bands (Moore, 1989). 

- There are good reasons for taking the parameters of the 

excitation pattern, and not the usual physical parameters 

-of. the sound, as our mathematical description of what is 

tobe corrupted. If the excitation pattern is taken as 

an exact function of the sound, it follows that small 

changes in the pattern,. just like small changes in the 

sound, are inaudible. When the sound consists of a 

single sinusoid (or narrow noise band), it is possible to 

determine by what margin its power can be imperceptibly 

varied, and if the answer is t1 dB, you can either say 
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that the difference limen of the power of the sinusoid 

is 1 dB, or that the difference limen of the excitation 

level is 1 dB. However, if a second, louder sinusoid is 

now added to the sound, the original sinusoid may be 

completely masked, in which case it may be increased in 

power severalf old or removed completely without 

noticeable effect, and its difference limen is no 

longer 1 dB. 

A procedure which faithfully reproduces this effect is to 

apply the difference limen concept to the excitation 

pattern, and say that two sounds are noticeably different 

if their excitation patterns differ anywhere by more than 

the relevant difference limen. There is much in the 

literature on exactly how true this is (see under 

PSYCHOPHYSICS - HEARING - MASKING - Simultaneous, in 

particular Lutfi (1983) and Moore (1985)), but it is 

taken to be sufficiently true for the present purpose. 

.y 

3.2.2 Bounds on corrupted intensities - Method 1 

With the above in mind, what would it mean to "calculate 

an almost perceptibly different sound using the known 

inaccuracies of human hearing"? Clearly, the corruption 

must not be such as to produce a noticeably different 

excitation pattern, so one approach might be "to 

calculate the excitation pattern, introduce random errors 
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into it (random but smaller than a difference limen), and 

recalculate the sound". The difficulty here is how to 

prevent the random errors from producing an impossible 

excitation pattern, that is, one that can onlylbe 

produced, mathematically, by some sinusoids having 

negative powers. 

If P is a vector of the powers of a set of n sinusoids in 

order of increasing frequency, and E is the vector of the 
C 

excitation levels at the same n frequencies, then 

B AP (1) 

where A is an n by n attenuation matrix with unit 

principal diagonal and values tailing off towards zero in 

the other two corners. If the sinusoids are few and well 

separated in frequency, A is little different from the 

unit matrix I. 

Corrupting E and reversing (1) we have 

pý ý A-'(E + R) (2) 

where R is a vector of the n random errors and P' is the 

reconstituted sound. 

" . "I tom, i 

To appreciate the difficulty, say 

0 s1 . 39 . 08 

n=3 P= 1A . 42 1 . 39 
0' . 11 . 42 1 
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giving, from (1), 

. 39 
S= 1 

. 42 

Now say 

-. 08 
R- . 25 

-. 08, . 

with'each element less than 1 dB (26%) of E. 

Inverting A, 

1.2 -. 51 .1 
A-' - -. 54 1.42 -. 51 

.1-. 54 1.2 

and, from (2), 

-. 23 
P1 - 1.45 

-. 24 

Not only are the first and third elements of P' negative, 

but the second is. more than 1 dB (our assumed difference* 

limen) from the second element of P. So although 

+-, R)* is within a difference limen of E, it is not 
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a possible nor even a useful excitation pattern. 

3.2.3 Bounds on corrupted intensities - Method 2 

A different approach is to ask what bounds the perception 

of E puts on the values of P'. That is, what are the 

minimum and maximum values of pi' that would not produce 

an audible change in E? 

By the nature of the attenuation matrix A, the element 

of E most affected by changes in pi is ei, so the minimum 

and maximum values of pi' are those that decrease and 

increase ej by the relevant difference limen, or zero if 

such a decrease is not possible. Taking A and P and the 

difference limen as before, and using superscripts - and 

+ for minimum and maximum, we have 

. 31 . 49 
s -u 1 26 = . 79 B' = 1.265 = 1.26 

. 33 . 53 

Taking pl as an example, we have, from (1), 

So 

p1' + e1ýiY + 813'3 ' ei 
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Pi" _ ýý - (ate + ai3pi) 
= ei - (ei - pi) 
= pi+0; -el 

and, in'9enera1, 

Pi - Ps + ei - e1 

I'D or --ýi «ý 

P' P+E+-E (3) 

Similarly, 

P- - max (0, p +I- : H) (4) 

10) 

ro 

So here, 

0 .1 
P- . 79 P+ 1.26 

0 . 11 

Notice that each element of P and P4 is derived here 

without regard to its neighbours. That,. is, Y and Pý 

contain the lower and. upper bounds to the power of any 

sinusoid provided the others are unchanged. - The question 

arises whether-any sound P' lying between r and P+ is an 

acceptable corruption of P. Take P' = P4. The 

corresponding excitation pattern, from (1), is, 
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.6 
Se AP' = 1.34 

. 65 

t 

Which is clearly greater than 84 and therefore out of 

bounds. 

3.2.4 Bounds on corrupted intensities - Method 3 c 
A solution to this difficulty is to delay the derivation 

of bounds pill and pill+ until some corrupted value pi' 

lying between pi and p1 has been chosen and substituted 

for pi. 

Define P' as an updatable vector containing pi for those 

sinusoids not yet corrupted and pi' for those already 

corrupted. Define E' = AP'. Take P, A, E, E and EA as 

before, and suppose p1' is chosen as p1+ = . 1, also as 
C. 

before. P' is now [. 1 1 0]T, and E' is [. 49 1.04 . 43]1. 

Note that el' = ei+, as expected. -Now to `choose p2' . 

Since el' depends to some extent on p2' and is already at 

its upper limit when calculated using p2' =']P2, p2' can 

be chosen no greater than p2. This shows`that, in 

choosing how to corrupt'the power of'one sinusoid, we 

must take care that the new excitation pattern remains 

within bounds at all other locations as well. 
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In our example with three sinusoids, consider the bounds 

on p2' with p1' already chosen. P' is (p1' p2 p3)1 , and B' 

is AP', or, in full, 

Fi+aiyp3+aup3 - ei 
82111 f Pa f 82313 - e2 

ah>pi f aS. pa f P3 - 64 

The upper bound p1+ to p2' is given by 

pi+a', a 2 +aup3 s e1' 
ap+&., i%s eä 
a31Fi + '331p. + p3 s 49ý. 

With some rearrangement and substitution these three 

equations give 

R" s eis - pi _ asps 
ail 

s ei - (ei - sups) 

e, -ei 
s p3 f 

a12 

P2 s '123Pi 
t ez'' (ee-p2) 

A" s eä - ýýPi - P, 
a32 

S p2 + 
a32 

75 



a 

r 

and, in general, 

pj + mina e= - es (5) 
all 

0 

Similarly, 

pj max (0, pj + maxi ä 
ij 

ý! "'\ 
ýv, 

Note that there is no requirement in this method to 

corrupt the sinusoids in increasing order of frequency or 

in any other particular order. 

In the above discussion the intensity difference limen 

has been considered to be a fixed number of decibels 

regardless of level. For very quiet sounds this isn't 

true, as illustrated in Figures 3.3 and 3.4, which give 

the slightly more complicated equations for e and e; 

necessary to deal sensibly with sounds near threshold 

(Figure 3.5). The behaviour of the two bounds near 

threshold is shown in a complete excitation pattern in 

Figure 3.1. 

3.2.5 Choice of corrupted intensities 

To complete the corruption of P into P', we have to 

decide how to choose each pi' knowing the bounds pi' 

76 
C 



and pj+. Now P' is the user's best stab at P,, ao it seems 

reasonable to choose for pi' the most likely value of pi 

according to its probability distribution between the 

given bounds. However, the statistics of P will depend 

on the mapping producing P from the scene, so we have to 

look at the statistics of the scene. 

The necessity for the best stab at P was demonstrated by 

early attempts to use, instead, the worst stab at P that 

was still inaudibly different from P. In the scene 

reconstructed from the corrupted sound, this worst-stab 

strategy produced obvious artefacts auch as pronounced 

striping in some direction. A user would obviously not 

be fooled into thinking that everything he looked at was 

striped, and would instead try to get the best out of his 

optophone. 

Let X be a suitable set of parameters describing the 

scene, chosen so that each pi is a function of only 

one zr, and not of (xi, x,... ). This is in general 

possible because such a tuple would only be generating 

one pi and can therefore be replaced by a single zr which 

is a function ofthe tuple. 

However, in the case of an unspecified mapping, 

(Pj. Pk. " .. ) may also be functions-of x. This can arise 

for instance- if it is decided, for clarity, to sound some 

feature of the scene in two different ways in case one is 
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masked. 

Let` 

P, - fi (Xs) (7) 

To avoid ambiguous inverses, let each fi be monotonic and 

either rising or falling. Then 

xa - fi1(Di) (8) 

is either a lower or an upper bound on sT depending on the 

sign of the slope of f. Similarly, 

X: s ` fi1(1ýi) (9) 

Combining the evidence from each of the relevant 

sinusoids, we have 

xs- max s min (x; 1, x; 1) (10 ) 

and 

xs - mini max (x 1, x; 1) (11) 

as the lower and upper bounds on zr, where i refers to 

those sinusoids whose powers are functions of zr. 

Let Y' be the corrupted-scene, and choose between :r 

and : Y4 as the centroid of the probability distribution 

of zr between those bounds. Again, this will depend on 
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what set of parameters X actually is. Having chosen : r', 

update P' with 

Di Ft(xz) (12) 

`Note that'in the general case the 'elements of P' are 

updated in dependent groups'rather than singly, "as 

described. 

7) 

3.2.6 Limitations 

The first limitation ' is' that the TPT is only possible if 

the mapping has an inverse with which-to reconstitute the 

scene from the corrupted sound: " Chapter 7 presents such 

a scheme with no inverse. 

The second limitation is that the additivity of masking 

is only approximate, as mentioned above. 

0 
The third limitation is that the test, as it stands, only 

applies to sufficiently steady sounds. When'trying to 

convey large I amounts of information'as sound, it is 

natural-to do so as fast astpossible. It'isknown that 

the perception of a spectral profile degrades`as the 

presentation time'is reduced. The TPT is of no help in 

estimating the presentation speed giving best 

performance. 
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It may be possible to adapt the kernel or point-spread 

function derived in Chapter 6 to produce a two- 

dimensional TPT along the lines of the one-dimensional 

TPT described here. On the other hand, it may be thought 

not worth while,, since the best presentation speed may 

also be expected to increase with user training. 

The fourth limitation applies when the TPT is used for 

each ear separately. The method in effect assumes that 

two independent signals can be received in each ear 

without difficulty, whereas in fact both signals can be 

used only if closely related, when the differences 

"-j between the two become significant. If the differences 

.-- 
between the-signals at each ear are not of the type 

caused by the position of a single sound source, then the 

signals are incompatible and one or other must be 

ignored. 

The fifth limitation is that the information is 

considered to be contained in the intensity of the sound 

at predetermined frequencies. A scheme containing say 

10 spectral peaks, with the information contained in both 

the intensity and frequency of the peaks, is not covered. 

Actually, this is an instance of an earlier limitation: 

a mapping with no inverse. In order to apply the 

theoretical performance test to such a mapping, an 

inverse would have to be devised in the form of a peak- 

picking algorithm working on the corrupted excitation 
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pattern and giving as output corrupted versions of the 

peak intensities and frequencies. 

The sixth limitation is that however many frequencies 

(sinusoids) in the audible range are used, and however 

closely packed they are, it is-assumed that there can 

never be any confusion between them. For instance, where 

the TPT is used in the following chapters, the number of 

rows of pixels and so the number of sinusoidsdis 175. 

Given that the audible range is about 30 erbe wide, that 

makes 0.17 erbs per sinusoid. While this is wider than a 

frequency difference limen, whether for, sinusoids or 

narrow noise bands (Moore 1973a&b, Gagne & Zurek 1988), 

confusions in the heat of, the moment still. seem probable. 

-Suppose one sinusoid completely masks its neighbour, a 

common occurrence at such a close spacing, and that the 

dominant sinusoid is mistakenly identified as the masked 

T) 

neighbour. Now consider two mappings, one in which 

adjacent sinusoids are closely correlated, one not. The 

identity mistake would be more serious in the second 

mapping than in the first, but this difference in 

performance between the two mappings would not be 

revealed by the TPT. 

The seventh limitation concerns interference between 

closely spaced sinusoids. The spacing being less than an 

erb, there will be interference (heard as beatsvif the 

sound stays steady long enough). The, closer, the spacing, 
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the longer the interference repetition period, and the 

slower the sound must be presented to allow a 

sufficiently long time average of the intensities to get 

the assumed accuracy. This is not properly m. delled by 

the TPT, which assumes the excitation pattern to be 

derived from a time average of the intensities, whereas 

in fact the excitation pattern has its own time constant 

or equivalent rectanglar duration (ERD) of around 8 ms 

(Moore & Glasberg 1988). Note that it is not immediately 

clear whether this deficiency of the TPT underestimates 

or overestimates the performance of a mapping with 

closely spaced frequencies. 

I consider that these limitations of the TPT are so 

severe and fundamental that further work to improve it, 

although interesting, would be a waste of time and money 

', better spent on testing mappings in their proper 

environment, namely a functioning head-mounted prototype 

optophone, which as discussed above would be so much more 

revealing. 

3.2.7 Implementation 

Main program main in file \cwork\progs\bear. c 

main first reads a-data'file'heardata. t containing 

instructions as to the various options for the run. Some 
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questions have only one allowable answer and were 

intended for future use. Not all options available have 

even been tested. 

main then calls hear. .. 

Data file heardata. t in \cwork\orous 

For completeness, an example of heardata. t is given here. 

picture (with extension bm or q) gbike. q 

add to output file name c 

start at line 0 

scan [hv] v 

brightness function ['r] r 

colour function (not for g files) [r] r 
x colours treated (not for g files) [st] s 

three transforms (g files use only 1st) [Pc] ccc 
frequencies [eh] e 

e&h: bottom frequency (Hs) 50 

e: frequency spacing (erbe) .2 
loudness function [eps] P, 

e: exponential poc = pow(rl, kx) rl 10 

p: power poc = pow(max(O, kx), 'n) n 1.1 

s: shift poc=kx+s a `2 

ear distribution [mail s 
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Allowable options are in sgare brackets. Where only one 

option appears, others were foreseen but not implemented. 

The colour options have never been used and are not 

tested. All input files therefore must begin with g 

(grey). The important options are as follows. 

The two transforms available are p for piano and c for 

cos, described in the following chapters. 

The frequency options are e for equalerb and h for 

harmonic, and concern the distribution of frequencies in 

the audible range. Only equalerb has been tested. 

The loudness function relates scene variable x to 

sinusoid power p in the form of a function from kz 

to p/c, called kztopoc in the code, with inverse poctokz. 

Here k is either 1 or -1, as determined by the choice of 

ear distribution, and c is a reference power varying with 

frequency to give the proper "pre-emphasis". Only 

loudness function p has been tested, withn chosen for no 

reason at all as 1.1. 

The ear distribution options are m for mono, a for stereo 

and i for independent. In the mono case, there is only 

considered to be one ear and the scene vector X is 

distributed along the audible range of the frequency 

scale. In the stereo case, each element of X may be 

sounded in either ear, in the left ear when negative and 
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in the right ear when positive. The intention here is 

that extreme values should be heard (not masked) whether 

positive or negative. In the independent case, the two 

ears are considered independent, anj half the elements 

of Y are assigned to the left ear and half to the right. 

Function bear in file \cwork\lib\be ring2. c 

hear first calls aethearing in file \cwork\lib\hearing. c 

to set various hearing constants. 

hear then calls settransform in file \cwork\lib\trans. c 

and zstatistics in, file \cwork\lib\pic. c to calculate the 

statistics of the variables in X necessary to calculate 

when the time comes the distribution of the current x 

knowing the adjacent previously corrupted values in X. 

hear then calls eardistribution in file 

\cwork\lib\hearing2. c to allocate'frequencies in each ear 

to each element of X. 

bear then calls setfreq in file \cwork\lib\hearing2. c to 

calculate various constants at each frequency and in 

particular-the attenuation matrix A between the list of 

frequencies fa at which sinusoids are present and the 

list of frequencies fe at which it is desired to 

calculate excitation levels. 
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For each row or column of the picture, hear then first 

calls fortransform in file \cwork\lib\hearing2. c to carry 

out the transform from picture column (or row) to X, then 

calls corrupt in file \cwork\lib\hearing2. c to corrupt X 

according to the TPT described above, and then calls 

backtransform in file \cwork\lib\hearing2. c to 

recalculate a corrupted column (or row) of the picture 

from the corrupted X. 

C 

From pixel value to element of X 

Let the pixel value be y255, with a range of 0 to 255. 

For compatibility between transforms, it is desired first 

that the input to the forward transform have elements of 

unit variance, and second that all transforms be unitary 

(that is, that the sum. of the variances of the transform 

output equal the sum of the variances of its input). 

Define a pixel variable yj with range 0 to 1 and related 

to 12M by 

Y-55 (27) 
ass 

with nl chosen so that 71 has a mean value of 0.5. Let 

the standard deviation of ?, be aig1. Values of 

ß1 -2 (28) 

86 
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and 

sigi - 0.2 (29) 

have been fixed as being reasonable. 

Define a second pixel variable y related to ?1 by 

Y- iý (30) 

and designed to have unit variance. Combining the two, 

we have 

I1%: ASS , (31) 
"1g1 2S5 

as an element of the,. input vector Y to the forward 

transform. 

The output from the forward transform is the vector X. 

The implemented options for fortransform and 

backtransform are only piano and cos. 

In the case of the piano transform, elements of X are 

related pixel by pixel to the corresponding elements of Y 

by the equation 

x y-fý" (32) 

F. I.. 
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I can't remember where the 6 came from, but it is very 

close to the mean ybar of y, given by 

TI (33) 
i1aa f 

which comes to 2.5. 

For additional details, see the relevant chapters below. 

Function corrupt in file \cwork\lib\hearina2. c 

corrupt carries out the TPT described above. Notable 

functions called are etoeb in \cwork\lib\hearing. c and 

ebtoxb in \cwork\lib\hearing2. c. etoeb ("excitation to 

excitation bounds") calculates the upper and lower bounds 

on imperceptible changes to a given excitation level. 

ebtozb ("excitation bounds to z bounds") translates the 

bounds on the excitation level to the corresponding 

bounds on the value of x. 
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Figure 3.3 
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Figure 3.4 
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RAPTER 4 SCHE4E 1- CARTESIAN PIANO TRANSFORM 

4.1 Motivation ýf 

The cartesian piano transform (Dallas 1980, O'Hea 1987, 

Meyer 1992) is the simplest and problablyTthe first 

mapping from scenes to sounds that comes to mind. The 

short definition of the piano transform is that the scene 

becomes the spectrogram, or some similar time-frequency 

representation, of the sound. The term piano transform 

arose because the scheme maps the scene y (or z or radial 

or circumferential) position to-the piano keyboard (or 

some similar monotonic function of frequency), and the 

perpendicular scene position to time. If the transform 

maps the keyboard to the scene z or y direction then the 

transform is cartesian, and if to the radial or 

circumferential direction then it is polar. 

4.2 Implementation 

y 
ýý 

The cartesian piano transform was applied to two scenes 

represented by 175 rows and 320 columns of greyscale 

pixels, one natural and one artificial (Figures 4.1 

& 4.2). The keyboard was, taken to represent vertical 

position, so the sound spectrum was specified at 175 

frequencies equally spaced (when expressed in orbs, 
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Figure 3.2) in the audible range. 

320 sound spectrums. Were calculated, one for each column 

of pixels, and sub'ected to the TPT. 

The program used was bear. c, described above. 

4.3 Results 

P 

4.3.1 Effect of-intensity difference linen 

The three figures 4.3 to 4.5 are the result of applying 

the theoretical performance test to'the cartesian piano 

transform, in mono mode, with the intensity difference 

limen taken as 1,2';, and 3 dB"-respectively. As expected, 

the performance deteriorates-rapidly with increasing 

intensity difference limen. The intensity' difference 

limen is of course not something that can in reality be 

chosen at will, and for that reason is not included in 

the data file heardata. t. For all subsequent work, 

unless otherwise stated, the intensity difference limen 

was set at2 dB, as in Figure 4.6. 
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4.3.2 Effect of ear distribution 

Stereo mode, in which negative and positive values of 

elements of X are sounded in opposite ears, gave mild 

improvement seen in Figure 4.7-as compared to Figure 4.4. 

4.3.3 Conclusion 

t 

This feeble treatment of the cartesian piano transform 

doesn't do it justice.. In particular, it was only 

subjected to the theoretical performance test and never 

actually sounded. Why? A similar scheme, using 

artificial shapes, was-sounded by O'Hea (1987), who 

reported a mushy sound like trying to convey two notes on 

the piano by playing all the notes in between. 

Nevertheless, more interesting ideas came along as a 

result of the thought processes going on during the 

course of the feeble treatment. 

The first idea that came along was from the field of 

image or data compression. It was naively thought that 

since the ears are an information bottleneck, it would be 

better to have a scheme that sounded uncorrelated 

variables instead of pixel brightnesses. This resulted 

in the work on the cosine transform reported below. 

ý'_` The second idea was to improve the piano transform by 
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spatial high-pass filtering intended to crispen the edges 

before further processing into sound. At the same time, 

however, many other improvements suggested themselves 

simply as a result of the decision to skip the TPT and 

think about mappings in their proper context, namely a 

functioning optophone. One of the results was a modified 

piano transform incorporating not only high-pass 

filtering but also foveation, colour discrimination and 

size invariance. This is reported in Chapter 7. 

h. 
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CHAPTER 5 SCHEME 2- COSINE TRANSFORM (BOUSTROPHEDON) 

5.1 Motivation 
x Ar 

The notion of slowing down a television signal to 

auditory frequencies (without necessarily including the 

line and frame synchronising pulses) is tempting because 

of its simplicity. 

In the normal method of scanning a scene, the sensor 

starts at the top left corner and scans the scene 

horizontally line by line, ending in the bottom right 

corner, as in reading English. In a typical scene, one 

line of the scan is very similar to the previous and 

following lines. The signal is therefore nearly 

periodic, at least locally. If slowed down to auditory 

frequencies, a scene would sound like a 'sound sequence of 

a few seconds, depending on the scan resolution. 

Unfortunately, many different scenes could produce the 

same sound, since the phase information in the signal is 

largely unrecognised by the ear. 

This difficulty can be overcome by scanning one line from 

left to right and the next from right to left. (Before 

writing became very common, this is the way the ancient 

Greeks wrote, and they called it boustrophedon, after the 

way a bullock ploughs a field. ) The resulting signal is 
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not only nearly periodic (with a period of two lines) but 

also symmetrical. It therefore contains no phase 

information and can be fully reconstructed from the 

amplitudes of the frequencies present. The ear detects 

squared amplitudes, meaning that positive and negative 

amplitudes are indistinguishable. 

Two ways of overcoming this are as follows. Either a 

constant can be added to each amplitude, making them all 

positive, or the positive ones can be played to one ear 

and the negative ones to the other. Either method 

involves considerably more processing (a cosine transform 

followed by an inverse cosine transform of the rectified 

amplitudes) than promised by the idea at first sight. 

These two schemes were assessed as follows. 

1 Digitised scene submitted to line-by-line 

cosine transform. 

2 Resulting amplitudes rectified according to 

scheme. 

3 Amplitudes corrupted by normal hearing 

imperfections (masking, finite difference 

l imens ) 

4 Scene reconstituted from corrupted amplitudes 
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by inverse of 2 and 1 and compared with 

original. 

Step 1 is a standard operation. Step 2 is simple and 

described above. Step 3 is a complicated operation 

-derived specially for this study, and is described in 

detail in Chapter 3., 

0 
5.2 Results 

Original and reconstructed scenes using the scheme adding 

a constant to all amplitudes are shown in Figures 4.1 

and 5.1 and in Figures 4.2 and 5.2. Bu contrast, 

Figure 5.3 shows a scene corrupted and reconstructed 

using the scheme sending amplitudes of different signs to 

each ear. As expected, the scheme sending amplitudes of 

different signs to each ear performs better than simply 

adding a. constant to all amplitudes. However, several 

-points must be borne in mind. 

First, the assumption that completely different sounds 

can usefully be sent to each ear is invalid: slight 

differences in loudness and timing are useful in 

localising sounds (see. references under PSYCHOPHYSICS - 

HEARING - BINAURAL EFFECTS and PSYCHOPHYSICS - HEARING - 

LOCALISATION), but if the differences are too great then 

attention is directed to only one ear, as in listening to 
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the telephone (PSYCHOPHYSICS - HERRING - ATTENTION). 

Second, a sound wave consisting of only cosine waves of 

positive amplitude has a sharp peak at the start of every 

period. In practice, for reproduction through 

loudspeakers or earphones, the phase of each frequency 

would have to be shifted differently so as to remove this 

peak. 

The third point concerns the method of assessment, the 

C 

TPT, which although nominally objective is ultimately 

visual and subjective. This is quite proper, since it 

automatically deals with such things as selective 

sensitivity to errors at different spatial frequencies 

(Mannos & Sakrison 1974). The one thing missing is 

foveation. As argued in O'Hea (1987), because hearing is 

much slower than sight in terms of information rate, in 

order to provide a useful resolution without resorting to 

tunnel vision, foveation is needed even more in an 

optophone than in natural vision. Visual assessment of a 

foveated scene is difficult, however, since the eye 

naturally wanders off the fovea and-finds-'the area*of 

interest to be blurred. 

Note that the boustrophedon could be made radial, thus 

producing foveation of a sort. 

Fourth comes the time dimension. In corrupting the 
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scene, it is assumed that the sound is changing slowly 

enough for transient effects such as forward and backward 

masking to be ignored. Thus the scene is not properly 

corrupted perpendicularly to the scan lines, and it is 

not possible by this method to determine a suitable 

number of scan lines or, equivalently, the time required 

to sound a whole scene. 

Last, and most fundamental, is the explanation of the 

poor performance of the cosine transform in this context. 

It is known (Pratt 1978) that for natural scenes the 

cosine is a highly decorrelating transform. This means 

that there is not much connection between the amplitudes 

of adjacent frequencies. Because of simultaneous masking 

(Moore 1989), only the locally dominant frequency can be 

heard, and the others must be assumed either to be zero 

at startup or unchanged if newly masked. 
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6.1 Motivation 

0 

0 

CHAPTER 6 PRINCIPAL CONPOPENT ANALYSIS 

The statistical analysis of scenes and sounds was 

prompted by the prospect of an automatically generated 

mapping as described in section 2.4. To recapitulate 

that section, what is required is that a scene, or a 

sound, be represented by a vector of numbers expressed in 

units of one difference limen and of known mean, variance 

and covariance. 

6.2 Statistics of scenes 

6.2.1 Scenes as pixel brightnesses 

,1 

The standard way of expressing a scene is an array of 

pixel brightnesses. With the rows or columns placed end 

to end, these become a vector. It is usual to model a 

scene as a two-dimensional Markov process (Pratt 1978), 

with adjacent pixel correlation p of something like 0.95, 

of pixels two pixels apart p=, and so on. The more 

detailed the scene, the lower the value of p, but a 

representative value is sufficient for our purpose. 

e 
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Brightness, grey-scale value, illuminance, illumination, 

intensity, irradiance, irradiation, lightness, luminance, 

luminosity, luminous flux, radiance, radiant energy, 

radiation, are all terms at times used confusingly. 

I will try to avoid as many of these as possible. 

Luckily, many sentences containing such words only refer 

to a qualitative dark-to-light scale of no particular 

definition. The only term whose meaning might initially 

appear self evident is "amount of light", even though it 

usually means "amount of light per unit area (or 

subtended solid angle) per unit time". 

The brightness scale that interests us is the scale with 

a constant difference limen. This scale may then be 

multiplied by a constant so that the difference limen is 

equal to 1. 

The brightness difference limen is constant over a very r 

wide range when expressed as the just noticeable 

percentage difference in the amount of light (yes, per 

unit solid angle subtended at the eyes and per unit time) 

coming from two adjacent patches (Pratt 1978). This 

difference is about 2%. The required brightness scale is 

therefore a logarithm or some similarly curved function 

of the amount of light. Note in contrast the value of 

the intensity difference limen in sound - around 1 dB 

or 26% (Moore 1989). 
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It is reasonable to assume: that this nonlinearity is 

taken into account in the mapping of incident light to 

pixel value inherent in a system for producing digital 
c 

images, and in the mapping from pixel value to radiant 

light inherent in a system for displaying'digital images. 

This is the case for the present system, as shown in the 

upper third of Figure 6.1. These sixteen different greys 

are the nearest the system can get to a continuous grey 

scale. The point to note is that the subjective 

difference between adjacent greys does not particularly 

increase from right to left or from left to right. Some 

brightness steps do appear more pronounced than others; 

-this is a feature. of 'the printing software and is not the 

case on the screen. 

For this reason, the grey scale, or pixel value in the 

case of black and white scenes, is taken here as the 

required brightness scale needing only a multiplying 

constant to become a difference-limen (DL) scale. 

T, 

In order to convert the pixel value to units of one 

difference limen, it is necessary to know how many 

different values can be distinguished. Real-scenes can 

be satisfactorily displayed with 64 grey levels. Scenes 

with areas of smoothly. varying brightness, such as a 

face, show unsatisfactory contouring when 32 grey levels 

are used, while scenes with much detail can be 

satisfactorily displayed with only 16 grey levels (Pratt 
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1978, Gonzalez & Wintz 1987). The multiplying factor 

from grey scale to DL scale is therefore equal to the 

required number of grey levels divided by the original 

number of grey levels. 

Let us refer to this candidate psychophysical 

representation as CPR A. 

6.2.2 Effect of spatial separation 

Unfortunately, -the above procedure is based only on 

adjacent greys and does not model the increase of 

difference limen with separation. It is very difficult 

to compare the brightness of patches that are not 

adjacent. 

C 

Consider the central third of Figure 6.1. Here the grey 

scale is'divided into only five values. Number the 
C_- 

panels one to five and consider the central panel, n"3. 

Compare two patches, patch A in the left half of panel 3, 

near panel 2, and patch B in the right half of panel 3, 

near panel 4. It is a well known effect; known as the 

Mach-band effect, that patch A looks brighter than 

patch B, even though the amount of light coming from each 
is physically the same. One'can convince oneself of this 

by covering up panels 2 and 4, whereupon the difference 

disappears. 
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Similarly, panels 2 and 5"in the bottom third 'of 

Figure 6.1 are the'same'grey, but'panel 2 looks brighter 

because of-its dark surround. The strength'of the effect 

varies with subtended angle, 'as can 'be explored by 

placing Figure'6.1 at `the far side 'of -the room "and 

looking at it from different distances. " 

One way of`explaining the'Mach=band effect is to say that 

low spatial frequencies are relatively less important to 

human vision than higher frequencies. 'This'is an easily 

acceptable statement if one considers-the lowest and next 

lowest spatial frequencies-as compared to some much 

higher frequency. Take any-natural-scene. -Corrupt the 

lowest spatial frequency (sometimes called the"DC 

component). All that results is an overall shift in 

brightness, which in a complete scene, as opposed to a 

picture in a frame witha surround that does not change, 

is simply not noticeable. Similarly, ' corrupting the next 

lowest frequency results in a vague lightening of one 

half of the scene and darkening of-the other half, again 

hardly noticeable. On the other "hand, ' corrupting a much 

higher frequency by the same amount results in quite 

objectionable stripes across the scene. 

The relative importance of'different spatial frequencies 

has been studied systematically. 'Mannos & Sakrison 

(1974) produced a frequency weighting function which 

peaks arbitrarily at 1 at a , frequency of'8 cycles per 
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degree, falling, to 0.05 at. frequency 0. Remembering what 

was. said above about the difference between scenes and 

pictures, we might make the weighting function fall to 

zero at frequency zero. Both functions are shown in 

Figure 6.3, but the curves are indistinguishable in 

Figure 6.2. 

Note in-particular the different nature of each side of 

the graph. In Figure 6.3, based on wavelength or feature 

size, the left side of the graph merely represents the 

best the eye can do under the various physical and 

-physiological constraints present in the eye and in the 

nature of light, while the right side reflects, the 

relative importance of different scales in the scene. 

This is the side of current interest. 

A standard-demonstration of the. variation of sensitivity 

of the eye. to spatial frequencies is Figure 6.4. The 

poor quality is due to the figure being produced by dot- 

'matrix printer, and some indulgence is requested. The 

figure is formed by sinusoidal swings between black and 

white along the top of the figure, diminishing, 

progressively in amplitude to constant grey along the 

bottom. The wavelength is about 8 mm at the centre of 

the figure. To place this wavelength at the peak 

sensitivity reported by Mannos & Sakrison, the figure 

: should be viewed at a distance of around 4 M. At that 

distance, all of the far left of the figure appears a 
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constant grey, the grey area being narrower towards the 

top of the figure. Note that this demonstration concerns 

the �best the eye can do" side of'-the curve that does not 

at the moment interest us. 

Striking evidence of the lack of importance attached by 

the eye to longer spatial wavelenths is illustrated in 

Figure 6.5 (Schroeder 1983), in which all the high 

frequencies of the original photograph have been removed 

and replaced by the lines that form the figure, but in a 

clever way which leaves the lower frequencies intact. 

However, it is not possible to gain access to these lower 

frequencies. The information they contain can be seen if 

the figure is placed so far away that they cease to be 

low frequencies. Another way is to place the figure some 

centimetres behind frosted glass, thus removing the 

spurious high frequencies contained in the lines. Only 

by doing one of these things is it possible to tell that 

the man is wearing glasses. 

Now an optophone, as does any other piece of equipment 

designed to capture scenes, will have its own physically 

limited resolution. In terms of cycles per degree, this 

may even be variable, either electronically or by means 

of a zoom lens. Thus both the position of the peak in 

Figures 6.2 and 6.3 and the entire "best the eye can do" 

side of the curve are for the present purpose of little 

interest, since they refer specifically to human vision. 

'` ) 
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We are therefore free to use similar curves peaking at 

whatever spatial frequency is most appropriate. 

6.2.3 Scenes as filtered pixel brightnesses 

Two new candidate psychophysical representations (vectors 

with DL scales) now suggest themselves. One is to 

express the scene as a vector of spatial-frequency 

coefficients by means of a Fourier or cosine transform, 

and weight the coefficients according to the Mannos & 

Sakrison curve. Call this CPR B. The other is to add a 

further step, namely reconvert the weighted coefficients 

into a filtered version of the scene and use the 

resulting pixel values. Call this CPR C. The question 

is whether either of these is a true PR. 

Consider first CPR B, consisting of Fourier transform 

coefficients. Take a scene transformed from 256 x 256 

pixels to 256 x 128 Fourier magnitudes and 256 x 128 

Fourier phases. If the magnitudes are numbered according 

to spatial frequency, the numbering goes from -128 to 128 

in one direction and 0 to 128 in the other, thus covering 

all orientations. The frequencies are from 0 to 

128 cycles/scene. 

Unfortunately, there are in vision the visual equivalent 

of critical bands in hearing (Julesz 1971, p67), and 
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these visual critical bands are over an octave wide. 

Suppose that the scene, -or part of'it, has"a strong 

component at 70 cycles/scene in some orientation. The 

existence of critical bands of more 
than 

an octave means 

that weaker components from 50 to, 100 cycles/scene in the 

same orientation are masked, the nearer the component to 

70 cycles/scene the greater the masking effect, in the 

same way as auditory masking was described when 

discussing the TPT. This means that the difference limen 

of one number in CPR'`B depends on the 'size of other 

numbers-, -and CPR B is not a true PR. 

CPR'C is more similar to CPR A than CPR B is. ' CPR A 

didn't work because whether a'change in the value of one 

of the numbers was noticeable depended on what' other 

numbers were changed at the same time. In particular, if 

a sinusoidal-change-were applied, then the height'of the 

just noticeable sinusoid increased with the sinusoid 

wavelength. `Apply a similar just noticeable sinusoidal 

change to CPR C. '"'Does'its magnitude still depend on its 

wavelength? 

The filtering involved in creating CPR C multiplies the 

magnitudes of the si'nusoids' constituting aI scene, =-änd of 

sinusoidal changes to it, by the weighting of the Mannos 

<&-Sakrison curve. The result. is intended to be a set of 

sinusoids of equal visual importance. If CPR ,C is a 
filtered scene consisting of sinusoids . of-equal. visual 
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importance, then changes of the same magnitude will be 

equally noticeable regardless of scale, and the smallest 

`noticeable change (the difference limen) will be the same 
t 

regardless of scale. We will therefore take CPR'C to be 

a true PR. 

6.2.4 Statistics of scene PR 

Suppose that as a first stage an optophone captures a 

512 x 512 pixel unfiltered scene subtending an angle 

of 120". As discussed above, assume the peak spatial- 

frequency sensitivity, to be 1 cycle/degree instead of 

8 cycles/degree, since 8 cycles per degree is even less 

than the pixel separation. 

For simplicity,, and because distant pixels are hardly 

correlated, take a 16 x 16 pixel picture in the scene. 

This is helped by taking an adjacent-pixel correlation p (2; 

of 0.9. Let the vector representation of this picture be 

a 256 element column vector p with the first row of the 

scene as the first 16 elements, the second row as the 

-second 16 elements, and so on.. The covariance matrix of 

. the vector is a 256 x 256 element matrix C, with cii as 

the covariance of pixels pi and pi. Thus Cif is the 

variance of pixel pi., Since all pixels have the same 

, variance, C is equal apart from a scale factor to the 

correlation matrix R: 

'\) 12 2 
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C o' R (1) 

where o2 is the pixel variance. 

Figure 6.6 has six panels, numbered 1 to'3 along the top 

half and 4 to 6 along the bottom half. The top left 

panel (panel 1) is a representation of R (or C), with the 

black diagonal representing the highest correlation (= 1) 

and the other elements given by 

pes. -, p ror, - zay+ cot -w 1 (2) 

where pis, the` adjacent-pixel correlation as discussed 

earlier. 

Panel 2 of the figure'is. a rearrangement'-of R so that 

each 16 x 16 submatrix is'a map of the scene itself and 

shows the correlation'of each pixel with the pixel shown 

darkest. 

Panel 3 is an extension at the same scale of any of the 

squares of panel 2 beyond the picture boundaries. 

Now consider'the correlation properties of the PR 

consisting of the filtered scene. 'Let F -be-. a-filter 

similar-to the`Mannos & Sakrison filter described above, 

so that the filtered,, scene p'°is given-by 

`l 
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Then the covariance matrix C' of p' is (Pratt 1978) 

C= FCFr 

where superscript * denotes complex conjugation and T 

transposition. Since F is real, the * need not 

concern us. 

(4) 

The bottom three panels of Figure 6.6 show the covariance 

matrix C' in the same three ways as C in the top three 

panels. Note that correlation between pixels now 

stretches much less far, as expected. 

C' was in fact not calculated by two 256 x 256 matrix 

multiplications as implied by equation (4), since many of 

the numbers in C' are the same. Instead, panel 6 was 

obtained directly from panel 3"by the process illustrated 

in Figure 6.7. - Panel 1 is the same as panel 3 of 

Figure, 6.6, namely the-correlation of a near-central 

pixel of the 512 x 512 scene to all the others. It turns 

out that the same effect as equation (4) can be obtained 

by filtering this correlation image by the two- 

dimensional circularly symmetric version of the square of 

the spatial frequency sensitivity curve. This spatial 

filter is shown-in panel 4 (the small panel), with the 

frequencies numbered Oato 128 cycles/scene starting in 

the top left corner. The calculation was done using two- 

dimensional-. forward and inverse fast Fourier transforms. 

For information, panel 3 shows the same filter on a 
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°'wavelength instead of a frequency base, 'to the same scale 

as the'512 x 512 scene in panel 1. Note the peak at only 

a few pixels distance from, the origin. 

6.2.5 Decorrelation of scene PR 

Karhunen-Lo&ve transforms P and P' for both p and p' have 

been derived from their covariance matrixes (the English 

plural is=deliberate) C and C'. Each row of P is an 

eigenvector of the covariance. matrix C (Gonzalez & Wintz 

1987). The inverse Prl of P, used to reconstruct a scene 

vector p from an uncorrelated vector v, is equal to the 

transpose PT of P, so from equation (3) of Chapter 2 

p pTv+m (5) 

The vector v can then be understood as containing a list 

of weights multiplying the columns of i, each of which is 

a basis function for constructing a scene. The bottom 

two panels in Figure 6.8 show PT and P'T. In the same way 

as panel 2 of Figure 6'. 6 is a rearranged version of the 

covariance matrix in panel 1, so the columns of PT 

and P'T, the basis functions, have been rearranged into 

the 16 x 16 pixel squares of the top two panels of 

Figure 6.8. 

These square basis functions are shown enlarged in 

Figures 6.9 and 6.10, -' one from i and one from P'T. They 
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can be readily understood as building blocks for making 

16 x 16 pixel scenes. The basis functions derived from 

the filtered and unfiltered scene statistics are 

remarkably similar, so much so that having forgotten to 

make a note I can't even tell which is which. 

The big difference is between the variances of the 

elements of v and those of v'. This is shown in 

Figure 6.11. The main conclusion is that p' is already 

largely decorrelated and there is much more to be lost by 

discarding the higher-numbered coefficients of v' than is 

the case with v. 

6.3 Statistics of full-spectrum sounds 

6.3'. 1 Notional auditory time-frequency filter 

A psychophysical representation (PR). for steady sounds 

has been derived in section 3.2 dealing with the 

theoretical performance test. This PR turned out to be 

excitation levels on an erb abscissa, excitation levels 

being taken instead of sound intensity levels so as to 

deal with masking. 

Sounds in general are not steady, and masking takes place 

in both the frequency direction and the time direction. 
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R general PR is required based on a time-frequency plane 

in much the same way as a spectrogram is. ,, An attempt was 

made to derive a two-dimensional masking pattern reaching 

forwards and backwards in time as well as into adjacent 

frequencies. The object was to obtain something like a 

two-dimensional impulse response which could-be applied 

at any location in the time-frequency representation of a 

sound to determine the additive contribution to the 

overall time-varying excitation pattern by the sound 

power sampled at that location. 

Researchers have studied masking of short probe tones by 

many types of sound pattern, including pure tones, chirps 

and noise. (References are given under PSYCHOPHYSICS - 

HEARING - MASKING - Temporal. ) Probes have been placed 

above and below the masker in frequency, =before and after 

the masker in time, and in both frequency and time gaps 

in the masker. 
a 

All the maskers have been extended in frequency, time, or 

both, since because of the uncertainty principle (Gabor 

1946)-it is not possible to have a point-like sound in 

the time-frequency plane. This in itself would not seem 

to preclude the derivation of the time-frequency masking 

pattern of a notional point-like sound, ''provided that, 

when used additively, the pattern could reproduce the 

-effects measured with extended: maskers. 
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In'the event, it was`not-possible to reproduce some of 

the measured effects or to reconcile others. For 

example, Penner (1979)'showed that forward masking 

diminishes more rapidly the louder the masker, making 

forward masking not additive. Houtgast (1977) found that 

forward masking by two pure tones can be less than by one 

alone. This can be, construed as being additive if the 

masking pattern around the tip of a stopped pure tone is 

negative. in a region after the tip in time and lower in 

frequency. Kohlrausch (1988), on the other hand, found 

masking between down-chirps to be considerably-less than 

masking between otherwise similar up-chirps. If masking 

were subdivisible and additive, then on the basis of 

Houtgast one would expect the opposite effect in 

-Kohlrausch, since between up-chirps the probe is after 

and below much more masker than between down-chirps. 

Faced with this evidence, a sensible compromise approach 

is to take a point-sound masking pattern such that when 

summed. alonq a, pure tone it reproduces the simultaneous 

masking patterns of Moore & Glasberg (1983) and when 

summed-along a gap in a noise it reproduces the temporal 

masking patterns of Moore et al (1988). It is not 

necessary to vary the shape of the point-sound masking 

pattern to deal with transient sounds such as clicks with 

a wide spread of frequencies if the pattern is only used 

on valid-time-frequency representations of sounds which 

have the proper spread built in. 
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The point-sound masking-pattern can be considered an 

impulse response or point-spread function. Reversed in 

time and frequency this becomes a filter. The function 

is given by the equation 

W Wý Wt (6) 

where 

or, = or., + Wes (7) 

WTI - (1 - v) (1 + PL ltau- tsa l) (8) 

Wý V (1 +pI taue- tto I) e p, I6.. o Ls. ) (9) 

Y 0.0001 (10) 

pi 2/t; tout > tin ' (11) 
2/t3* tont < tsn 

P. - 2/t; twt i tiw (12) 

$ý t roue < tim 

ti - 0.006 e (13) 

tl - 0.003 (14) 
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ti 0.030 8 (15) 

(16) tz - 0.015 0 

and 

T+Wt - (1 - w) (1 + Qlfot-fsl) e'ait. " ''1 +w (17) 

w 0.0001 (18) 

g- 4/ERB (19) 

ERB - afar + bfa�t +c (20) 

a=0.00000623 

b=0.09339 

c= 28.52 

In the above equations, subscripts in 

sound and excitation, subscripts 1 any 

skirt, and superscripts - and + refer 

forward masking respectively. 

The equations for W are dimensionless 
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and out refer to 

32 refer to tip and 

to backward and 

and refer to ratios 
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of sound-power. Nöte that Wfýis none other than the power 

attenuation PA producing the steady excitation pattern of 

Figure 3.1 (Moore & Glasberg 1983), while Wt is a 

similarly derived time window for broad-band sounds 

(Moore et al 1988). rro, ýý x 

It is easy to show that 

fW dt kt W, (24) 

and 

fWdf kt Wt (25) 

where F is some inaudibly high frequency and kt and kf are 

constants. Thus, to within multiplicative constants 

required to standardise the peaks at 1, this notional 

auditory time-frequency filter will simulate both the 

steady auditory filter of Moore & Glasberg (1983) and the 

auditory time window of Moore et al (1988). 

Figures 6.12 and 6.13 show the notional point filter 

resulting from the above equations, the tip in terms of 

power ratio and the skirts in terms of decibels, scaled 

to peak at 1. In these figures, fin is the ordinate and 
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foot is 1000' Hz. Similarly, * tip is the abscissa, and 

tout is 0. 

ýý. 

Figures 6.14 and 6.15 show the corresponding notional 

impulse response. In these figures, fin is 1000 Hz and 

fout is the ordinate. Similarly, tin is 0 and tout is the 

abscissa. Note that while the filter is taken to be 

symmetrical in terms of linear frequency (which is more 

or less true), the impulse response isn't. This is 

because, in terms of linear frequency, the filter becomes 

wider when centred at a higher frequency. 

Note that the-filter and impulse response are by no means 

circular, being instead pinched in off the major axes. 

This goes some way towards reproducing the suppression 

effect (see under PSYCHOPHYSICS - HEARING - MASKING - 

Suppression), which would require hollows off the major 

axes even going negative in some quadrants. 

C 
Programs: \lwork\kernel. wk3 and \lwork\psf. wk3. 

6.3.2 PR based on time-frequency representation 

Several short passages of speech and music have been 

analysed with a view to deriving the statistics of real 

sounds. Figure 6.16 shows the PR of an extract from a 

financial bulletin read by an American lady saying "[The] 
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pound benefitted from the dollar's weakness and rose to 

the giddy height of one dollar ninety point four two, 

that's the highest for four years, before dropping 

back]". The PR, as expected, looks very much like a 

spectrogram, with high intensity shown dark. 

The PR has the following features. First, the ordinate 

is frequency. on an erb scale, giving constant resolution 

in that direction. Because of this the fundamental and 

first two harmonics along the, bottom of the PR have much 

the same. separation as the top two formants along the top 

of the PR. As an aside, these top two formants are 

present in most vowels and voiced consonants, but the top 

formant disappears during /n/ and /m/ (see "from", "and" 

,. and "ninety"), 
-the next formant down disappears during 

the American /r/ (see "dollar" and "four"), and both 

disappear during /w/ (see "weakness" and, "one"). 

-Second, the time and frequency resolution are 

deliberately kept down to what is audible by smudging the 

primitive time-frequency representation derived ` from' the 

sound itself by the notional time-frequency auditory 

impulse response-of Figure 6.14. The impulse response 

being asymmetrical in time and frequency, and variable 

with frequency, this is easier said than done. 

Following Loughlin et al (1993) we take our required 

time-frequency energy distribution of the one-dimensional 
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sound signal as given by the following equation: 

Sý(t, fl 
ff 

Nl(t-t'. f-f') 8 (t', f') dt' df' (26) 

where iif is the W of equation (6) centred on frequency f, 

and E is the raw Wigner distribution of the energy of the 

sound signal a. The Wigner distribution itself is 

impossibly precise and therefore goes negative, while any 

real-world filter W does the necessary blurring and makes 

the result E' positive. For more detail see the 

references under HATREHATICS - SIGNAL PROCESSING - 

TIME-FREQUENCY ANALYSIS. 

Still following Loughlin et al (1993), a more useful 

formulation, since we do not have the Wigner distribution 

ready, is 

I/1" /- vý(4, f-f) s(f+ */2) s (f . 4/2) ejlsf t df d4 

(27) 

where " is frequency lag, Vf is the Fourier transform of 

Nf in the first of its arguments, and S is the Fourier 

transform of the sound signal a. 

Now a Fourier transform of a time signal gives values at 

preset equally spaced values of frequency. We on the 
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other hand require a PR at frequencies equally spaced on 

an erb scale. This is solved by rewriting Equation (27) 

as 

Se (t, fl f F(;, fl e1ýNý (28) 

Where 

JVz(4. f-f') S(f'+"$/2) S' (fl- 4/2) df' (29) 

may be calculated for arbitrary f at which S need not be 

known. 

For more details, pick the code of 

\cwork\progs\hearstat. c. 

The PR for sounds derivedhere is designed to have the 

resolution of human hearing. As an interesting 

crossmodal exercise in resolution, measure the distance 

at which the PR of Figure 6.16 can be comfortably seen. 

For me this is about 4 in. At this distance the vertical 

angle subtended by the whole frequency range in the 

speech is around 0.7". The straightforward piano 

transform attempts to map the complete vertical field of 

vision of say 120" on to this frequency range. 
r 
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6.3.3- Statistics of sound PR 

Figure 6.17 shows the PR of the full text (apart from the 

initial "The") together with a bottom row of 10 panels 

showing the correlation between the excitation at one 

frequency and the excitation at all other frequencies and 

a range of time lags. High correlation is shown dark. 

Panel 1 and panels 9 and 10 are to be disregarded, the 

relevant base frequency being outside the range of 

frequencies in the signal. 

Figures 6.18 and. 6.19 show similar information for two 

musical extracts, one a rapid dance, the conga, and one 

the opening bars of Brahms's 4th symphony. 

Bearing in mind the enormous computation required to 

decorrelate a 16 x 16 pixel picture, it was decided to 

investigate simultaneous correlation of the excitation 

pattern by itself, with no time lag. This is given by a 

section up the left-hand edge of each panel in the bottom 

row in Figures 6.17 to 6.19. These sections are plotted 

in Figure 6.20 for the speech and Figure 6.21 for the 

Brahms. 

The fall-off of correlation with frequency separation 

- appears to be divided into a steeper central portion and 

a shallower skirt, and tobe largely independent of 

r, 
centre frequency. In order to try to extract this trend, 

136 



("fit 

all correlation curves are superimposed and averaged in 

Figure 6.22 for the speech and in. Figure. 6.23. for the 

Brahms, and the two 

Figure 6.24. Given 

speech and music in 

insignificant, and 

points: 

averages again superimposed in 

the scatter, the difference between 

this'respect is considered 

common line fitted to both sets of 

p max (1 - 0.27 8Ag, 0.78 e"O"0is ý') (30) 

6.3.4 Decorrelation of sound PR 

A covariance matrix based on equation (30) was generated 

(*ýv 

and KL basis functions extracted in the same way as 

explained for scenes. Figure 6.25 shows every fifth 

basis function obtained. The corresponding figure for 

scenes is 6.9 or 6.10. 

Figure 6.26 shows the KL transform coefficient variance. 

As expected, the variance falls off rapidly with 

coefficient number in a similar way to the variances-for 

unsharpened pictures in Figure 6.11. 

Figure 6.27 shows a randomly generated excitation pattern 

using random numbers, the variances of Figure'6.26, the 

basis functions of Figure 6.25, and equation (2) of, 

Chapter 2. Excitation patterns generated in this way 
(i; 
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only rely on statistical similarity to real ones, and 

have no other safeguard against-being impossible (slope 

too steep in dB/erb). 

Programs: \cwork\progs\speckl. c and \lwork\speckl. wk3. 

6.4 Statistics of sparse-spectrum sounds 

6.4.1 Preamble 

If most possible sinusoids are not present in a sound 

,. 
(often effectively the case) a smaller number of numbers 

results from specifying only those that are present, 

which means that their frequencies must count as 

variables as well as their loudnesses. The statistics of 

('"ýý 1 
1, 

,, 

sounds defined in such a way were examined by generating 

sets of sinusoids at random frequencies and loudnesses 

and sifting out the valid ones, defined as those in which 

none of the sinusoids is masked by the others. This 

proved easier said than done. 

For sounds like these, with N sinusoids, the PR vector 

fed to the KL decorrelating procedure consists of a list 

of the N frequencies followed by the R loudnesses, both 

in units of their resptective difference limens, and is 

therefore 2$ long. 
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6.4.2 Generating procedure 

1ß 
First, the number N of sinusoids (or spectral peaks) is 

chosen. Next, each is assigned at random a frequency 

lying comfortably in the audible range (3 to 33 erbs). 

Third, the sinusoids are numbered in increasing order of 

frequency. 

Next, comes the assignment of loudnesses. If any sinusoid 

masks another, the masked sinusoid effectively ceases to 

exist, and the chosen number of numbers is false. Random 

assignment of loudnesses, except when, the sound consists 

of very few sinusoids, -is impractical, since so many of 

the sounds produced are. invalid. Some forethought is 

required., 

Suppose the first loudness is chosen at random (within a 
CID# 

specified range) and assigned at random to one of the 

sinusoids, say sinusoid A. A second sinusoid B is chosen 

at random from those remaining. The presence of the 

first sinusoid changes both upper and lower limits on the 

loudness of the second, raising the lower limit (so that 

A doesn't mask B) and lowering the upper limit (so that B 

doesn't mask A). "In -'the general 'case, instead of 

sinusoid A, there will already be several sinusoids whose 

loudness has_been, fixed, but the principle is the same. 
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Unfortunately, this doesn't work either, except when 

there are very few sinusoids, because there soon appears 

a pair of limits with the upper limit lower than the 

lower. 

Instead, it is necessary to start with a pattern known to 

be valid, with the loudnesses all set half way between 

the overall limits. These overall limits are set at 

threshold (Figure 3.5) for the lower limit and at some 

chosen maximum level for the upper limit, boosted at high 

and low frequencies by the inverse of the dBA weightings 

of Figure 7.11. 

Each sinusoid, chosen at random as before, is then 

assigned a new loudness. The problem is to calculate the 

limits to this new loudness so that the sinusoid isn't 

masked by any of the others nor masks any of them. Call 

the sinusoid being adjusted sinusoid B, power p8 in W/m=, 

loudness 18 in dB SPL, frequency f8 in Hz and qe in erbs. 

First the lower limit pe. This is set at one difference 

limen above the excitation level at frequency B due to 

the loudnesses of all the other sinusoids, whether 

adjusted or not: 

ps = po$ + PRL E Ps Asa (31) 

where Afinfelt is the power attenuation matrix element given 
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by the equation for PA in Figure 3.1 or by equation (17), 

the inclusion of the threshold power'`poB, is justified in 

Chapter 3 (Figures 3.3 and 3.4), and PRL is the power 

ratio limen corresponding to the decibel difference 

limen dBDL: 

PRL s 1010 (32) 
ý..... . 

The upper limit to the loudness of sinusoid B is set by 

the most vulnerable of the other sinusoids. Call this 

sinusoid i. Sinusoid i must be left at least one 
difference limen above the excitation pattern produced by 

all other sinusoids including B: 

ps > pos f PRL Epj All (33) 

Replacing item B with item i in the summation and 

rearranging, and taking the minimum over all i, the upper 
limit"to the loudness of B is given by 

(1+PRL) pt - Pot 
1 -D p1 A 1 p min pRL (34) 

Jos Aju 

For some reason it is still possible with this procedure 

to produce sets of sinusoids in which one or more are 

masked, as shown by curve D in Figure 8.9. 
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6.4.3 Decorrelation of sparse-spectrum PR 

The statistics of sounds generated in this way were 

examined as follows. First, as many sounds are generated 

as are necessary to obtain 1000 valid sounds (all 

sinusoids distinct). Each is considered to be a vector 

of length 2N, with as the first N elements the sinusoid 

frequencies in GDLs and as the second N elements the 

loudnesses in dBDLs. For this purpose, GDL is taken 

equal to a constant 0.1 erbs, and dBDL equal to 3 dB. 

A covariance matrix was derived from the valid sounds 

generated and KL basis functions extracted in the same 

way as explained for scenes. These are shown in 

Figure 6.28. The corresponding figure for scenes is 

Figure 6.9 or 6.10 and for full-spectrum sounds 

Figure 6.25. 

Figure 6.29 shows the KL transform coefficient variance. 

The corresponding figure for scenes is Figure 6.11 and 

for full-spectrum sounds Figure 6.26. 

Figures 6.28 and 6.29 together lead to the conclusion 

that, as is known intuitively, the frequencies of 

formants or sinusoids are of far greater significance 

than their loudnesses. 
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The figuri corresponding to-Figure. "6.27 showing. how a 

random-excitation. -pattern generated. in the. KL domain is 

Figure 3.1 (with error bounds added)., it is. in-fact 

impossible to reproduce Figure. =3.1 (or, -6.27): except by 

photocopying, since every recalculation uses different 

random numbers and results`inýa completely-different 

excitation pattern. 

Programs: \cwork\progs\ranspekl. c, \lwork2\ranspekl. wk3, 

\lwork\excite. wk3. " 

6.5 Matching of scene and sound basis functions 

6.5.1 Ambiguous sounds necessary 

As mentioned above, 'full-spectrumýezcitation patterns 

generated in the KL domain (Figure 6.27) can be 

impossible in the sense of being too steep in dB/erb.. 

The corresponding event in the case of sparse-spectrum 

sounds is not an impossibility but-the disappearance by 

masking of one or more of the sinusoids. 

One way to reduce the frequency of this happening, 

applied-in preparing Figure. 3.1abut not-Figure 6.27, is 
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to reduce'by some reduction factor (called squeeze in the 

programs) the range of the KL coefficients generated. 

This results on the one hand, as desired, in less 

frequently, ambiguous sounds (frequency of some component 

inaudible), but on the other hand reduces the gamut of 

sounds available for representing scenes. 

C 

The inescapable reason for this is the central limit 
. ýt 
theorem (Papoulis 1984), which states that the sum (the 

result of an inverse KL transform) of uncorrelated random 

variables (the KL coefficients generated) tends to have a 

more normal distribution the more numbers there are in 

the sum, whatever the distribution of the individual 

numbers summed. Thus it is not possible, by for instance 

giving the, KL-transform coefficients rectangular 

distributions, to ensure nice sharp cutoffs to the 

parameters of the sounds produced. 

Worse still, KL coefficients not generated at random but 

derived from ,a scene would themselves be largely normally 

distributed already. 

6.5.2 Ambiguous matching necessary 

Two points to note from the decomposition of scenes into 

basis functions. First-, it can be seen from Figure 6.11 

that, although ranked in order of variance, 'some of the 
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basis functions have the's me'variance andare-equally 

weighted. Figures 6.9 and 6.10 show that this occurs 

when two basis functions are the same apart from a 90" 

rotation. Basis functions 1"and 2 are-an-example 

(counting starts at 0). Such pairs are ordered`at 

random. 

Second, looking at Figure 6.9, if basis function 2 is a 

rotation of basis function 1, why has basis function 3, 

with two white quadrants and two black, no such partner? 

The answer is that, for basis function 3, rotation by 900 

is the same as multiplication by -1. This is counted as 

the same basis function because its use would only 

involve changing the sign of the weighting attached to it 

in the vector v. The point to note is that the sign of 

basis function 3, and of every other basis function in 

Figures 6.9 and 6.10, has been chosen at random. 

Now let's return to the purpose of the exercise, which is 

to do the same for sounds and then match the basis 

functions one for one. The question is: does it matter 

which ordering and which sign are chosen? Suppose a 

scene is decorrelated by this method (say for storage 

purposes) and then reconstructed with the same weights 

but with random reordering of equally weighted basis 

functions and with random selection of a sign for each 

weight. The result is total confusion. And yet such 

random choices are precisely what the method requires. 
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The method therefore results in a very large number of 

different mappings. 

C 

How. are we to choose the best? We can choose two at 

random and compare them, but what will that tell us? 

Such a plodding approach is ruled out by the training 

required for each mapping, discussed in Chapter 3. Not 

knowing what to do next with the KL method, we go back to 

the drawing board and find ourselves having what turns 

out to be another stab at the piano transform. 
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Figure 6.1 
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Figure 6.3 
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Figure 6.4 
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CHAPTER. 7. SCAEKE 3- POLAR PIANO TRANSFORM 

7.1 Motivation 

The first go at the piano transform, described in 

Chapter 4, was abandoned rather hastily, without 

wondering whether its deficiencies could be put right. 

To recap, these deficiencies were 

Insufficient stressing of edges. The eye is 

very sensitive to edges, while the ear is 

sensitive to spectral peaks. Some 

differentiation or high-passing of the scene 

seems called for. 

2 Very poor resolution. Comparing the auditory 

ERB of one thirtieth of the auditory bandwidth 

with the visual peak spatial-frequency response 
c' 

of 8 cycles/degree in say a 1200 field of view, - 

the unfoveated piano transform has a solid- 

angle resolution 1000 times coarser than human 

vision. 

3 Dubious invariance. Take the piano keyboard to 

be vertical. Invariance to horizontal 

translation of the scene is excellent - merely 

a time shift in the sound. Vertical 
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translation of the scene corresponds to a 

frequency shift'in the sound. Mild shifts 

produce the famous Donald Duck effect. Shifts 

of over an octave make sc#unds very hard to 

recognise. Divers on helium require special 

processing of their speech to beunderstood. 

Worst still is the effect of size change, 

7 causing` changes in' high frequencies opposite to 

those in low frequencies. ' 

4 No colour. 

For historical accuracy, it should be pointed out that 

the present work on the piano transform did not develop 

as an improvement on the cartesian piano'transform of 

Chapter 4 as might be inferred from the above. It was 

instead the result of "going back to the drawing board" 

and "starting again from scratch" after the inconclusive 

results of Chapter 6. 

7.2 Remedies 

7.2.1 Invariance and resolution 

The compromise chosen for the polar piano transform is to 

map scene size to sound delay, thus obtaining excellent 
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size invariance.. Scene rotation is mapped to sound 

frequency shift, thus matching those two limited 

invariances. 

Unfortunately, the second sound invariance - invariance 

to speed of presentation with frequencies unchanged - is 

left unused by this method. Thus either horizontal or 

vertical translation of the scene results in a distortion 

of the sound, though perhaps not sufficient to make an 

object unrecognisable if it remains roughly centred. 

The mapping is achieved by first representing the scene 

by, a standard (r, 8) polar grid of pixels. The scene is 

therefore circular. For two reasons, it is decided to 

sound the scene in two halves, first the left and then 

the right. The first reason, as will be shown below, is 

that this gives a good balance between, resolution and 

display duration. The second reason is to do with left- 

right symmetry, which in vision is readily 
, 

recognisable. 

A symmetric or near-symmetric scene, such as a face or 

some letters of the alphabet, may by this method be given 

either a symmetric sound, where the second half of the 

sound is a time reversal of the first, or a repeated 

sound, where the second half is a repeat of the first, 

such sounds being readily recognisable as such by the 

listener. 

For descriptive purposes,. place the origin at the centre 
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of the scene and start the angle at zero at the : axis, 

increasing anticlockwise in the usual way. Map'scene 

angle e of 900 to the highest sound frequency-and proceed 

through increasing angles and decreasing frequencies to 

the lowest sound frequency at scene angle 0= 2700. Thus 

only the left half of the scene is mapped to'the whole 

sound freqency range. 

The slot scans the scene as shown in Figure 7.1. Start 

the slot radius r at its maximum value R at the scene 

circumference. As sound time increases from t O,. so 

scene radius r decreases from R"until r= 0 when t T/2, 

by which time the left half of the scene has been 

sounded. 

-. k 

Let the unit of measurement be the pixel spacing in the 

original cartesian scene available for processing. Let 

the polar resolution initially be isotropic, with 

Ar - rob (1) 

If each ring of polar pixels-takes-the same time At to 

sound, equation (1) implies a logarithmic relationship 

between slot radius r and sound time t. 

With a usual number of pixels in a digital scene and with 

the sound spectrum specified at a sensible number of 

'frequencies, we have at ; the circumference Ar >>-l. As r 

1"1r° `°ti,, " 'decreases 'from R towards 0, it reachesa radius at which 
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r=1. From there on inwards, there is insufficient 

resolution in the original cartesian picture to justify 

further reduction in slot speed, so inside this circle 

dr/dt remains constant. In any case, some sogt of 

deviation from an ever diminishing slot speed is 

required, or'the centre would never be reached. 

Integrating equation (1) gives the number of radial 

pixels, which is equal to T/2At if T is the time taken to 

sound both halves of the scene. Thus 

20t = 
2a (1n 2S 

+ 1) (2) 

where S is the number of circumferential pixels and S/2 

is the number of discrete, frequencies specifying the 

sound. ,,. 

Similarly, the equation giving the progress of the slot 

in time is 

S e2s 
s rV, t-tt<TSAt 

2n 2 2it 
j 's 

At .i 279 

where 5/2U'-, is the changeover radius, at which the polar 

resolution becomes"bigger"or smaller than the cartesian 

resolution. 
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The derivative of equation (3) gives the inward scanning 

speed of the semicircular slot. 

As promised, we can now examine the trade-off between 

resolution and display duration. In slot-based schemes, 

the minimum time necessary to play the slot without loss 

of information (this is after a long period of training) 

can't be eapected., to, be less than an erd. . This 
, 
is 

another invented word intended to be the time equivalent 

of the erb, with d for duration instead of b for 

bandwidth, and is the duration of the rectangular time 

window having the. same areaýas the auditory time window 

of Moore et al (1988). 
, Integrating equation (8) of 

-Chapter 6. (equation, (9) has little effect), the ERD of 

f: .- the time window comes, to ., 11 -, 

C; + 7 (4) 
,. _ = 0.009s 

One erd is therefore defined as a time unit of 0.009 s. 

With the pixel numbers of Figure 7.1, let the sound 

spectrum (for reasons discusse'd'ünrderPcolour, below) be 

specified at 73 discrete frequencies, in 6 octaves of 
12 semitones, each semitone considered to'cörrespond to 

one circumferential pixel. So S= 146. With a At of 1 

erd, the time taken to sound the whole scene, from 

equation (2), is T=1.4 3-fr If on the other hind the 

scheme had mapped the same ` frequencies to one whole 
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circle'of pixels, the both radial and circumferential 

resolution would have been halved, and the scene duration 

would only have been a quarter as much: 0.35 s, or 

almost three scenes a second. Similarly, if each of the 

four quadrants had been mapped on to the whole frequency 

range, with a quartercircular slot swept inwards four 

times to sound the whole scene, resolution would have 

been doubled in each direction and the whole scene would 

have taken 5.6 s. 4 

Figure 7.2 shows the raw cartesian scene used, a face 

called Shanti. Inset panels-show various"stages of 

computation. Panel 1, the top left panel, shows the 

geometric side of affairs, namely the mapping described 

so far. The ordinate of panel 1, as of all the other 

inset panels, is frequency and the abscissa is time, but 

the content of panel 1 is still recognisably the scene. 

The reason for presenting the panel as an inset to the 

raw cartesian scene is to show it at the same scale in 

terms of resolution, with one polar pixel in the panel 

the same size as one cartesian pixel in the main picture. 

Thus while the cartesian scene is 480 pixels high, the 

panels . are only 73 
; notes high. 

For discussion, panel .1 is'reproduced enlarged, as 

Figure 7.3. A vertical line down the centre of the 

figure corresponds to a single point at the polar origin. 
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The horizontal line from top left corner to top dead 

centre is identical to the line from top right corner to 

top dead centre, and corresponds to the radius at 

e= 90° . Similarly, the horizontal line from bottom left 

corner to bottom dead centre is identical to the line 

from bottom right corner to bottom dead centre, and 

corresponds to the radius at 9= 270". 

As it is, the second half of the polar scene is scanned 

from the centre outwards. Since the scene is nearly 

. symmetrical, the second half of the sound is nearly a 

time reversal of the first. (By scanning the second half 

of the scene inwards, it can be easily arranged, instead, 

for the second half of the sound of a symmetrical scene 

to be a repeat of the first. ) 

KýMý 

The sound is invariant to scene size in that a smaller 

face would merely delay the first half of the sound and 

bring forward the second half. (In the case of both 

halves of the scene being scanned inward, both halves of 

the sound would be delayed. ) 

For.. future reference, panel 1 consists of numbers in the 

range. 0 to 1. 

c. 

ý Fc - ^e ý. 

ý, 
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7.2.2 Stressing of edges 

Going downwards from top left, the second panel of 

Figure 7.2, reproduced as Figure 7.4, is a 

differentiation of the first panel, a procedure intended 

to correspond to the linear rise from zero of the start 

of the spatial frequency sensitivity curve of Figure 6.2. 

Edges are shown black, brightness gradients grey. 

Panel 2 is then blurred to produce panel 3, reproduced as 

Figure 7.5, intended to be a measure between O : and 1 of 

fineness of scale, with a high response corresponding to 

areas of detail. The use of this will become clear 

further on. 

7.2.3 Colour 

ýý 

p 

The colour mapping tried out here is a mapping from hue 

to musical key. Now hue is a one-dimensional circular 

thing (Figure 2.5), while musical keys lie on a torus 

(Figure 2.6). There is one circular way to list musical 

keys so that they are all used up. Start from C in the 

top left corner of Figure 2.6 and proceed through e and G 

down to E on the bottom line. This E reappears next to 

the original C on the top line. Carry on in the same 

direction down to G# on the bottom line, and so on. it 

only takes three circuits of the torus to come back to 
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the original key of C. 

Figure 7.6 shows how this circular list of keys may be 

mapped in a continuous way to hue. Panel 4 (Figure 7.7) 

shows the result of converting hue to note loudness 

according to the principles of Figure 7.6. The 

calculation in fact differs from Figure 7.6 in two ways. 

First, the hue used is Oleari's hue, 'so the'cölours on 

the bottom row of Figure 7.6 are not necessarily in the 

right place, either as concerns relative spacing or the 

anchoring of green to C major. Second, the result of the 

mapping of Figure 7.6, which is a weighting from 0 to 1 

for each note, is further multiplied by the saturation 

(also a value from 0 to 1) to produce the weightings of 

Figure 7.7. 

For any hue, three notes per octave are sounded, so a 

coloured area in the scene has to occupy an octave or 

more of the slot in order to impart its hue. Note that 

an octave is three or four times coarser than an erb 

(Figure 3.2), and chromatic resolution is three or four 

times coarser than achromatic resolution (section 2.6.2). 

For areas smaller than this, calculation of hue is not 

helpful. This is the reason for the measure of fineness 

of scale constituting Figure 7.5, which works as follows. 

Panel 5 (Figure 7.8) is simply the maximum of panels 3 

and 4 (Figures 7.5 and 7.7). The result is a loudness 
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weighting w from 0 to 1 emphasising contrast in areas of 

detail and colour in areas of less detail. 

Panels 6 and 7 (Figures 7.9 and 7.10) are almost final 

spectrograms for the left ear and right ear respectively, 

calculated as follows. Let b be a number in panel 1 (for 

"brightness"). Let 1 and r refer to panels 6 and 7. 

Then 1= w(1 - b) and r= wb. Alternatively, if z is 

a zero-mean version of panel 1, then 1= w(0.5 - z) and 

r= w(0.5 + z). 

Finally, panels 6 and 7 are scaled for overall loudness 

and frequency-dependent "pre-emphasis" according to the 

dBA scale (Figure 7.11) before being sounded. 

7.2.4 
. 

Implementation 

See program \cwork\progs\soundpic. c. 
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CHAPTER 8 DUMBER OF PLUMBERS REQUIRED TO SPECIFY A SPECTRUM 

8.1 Preamble 

r --1% 

For the purpose of our next scheme, described in 

Chapter 9, we need for economy to know the smallest 

number of numbers required to specify a sound spectrum 

for human consumption, that is to say without noticeable 

degradation. 

A spectrum can be specified either as a set of loudnesses 

at a prearranged set of frequencies, or as a number of 

frequency-loudness pairs. There are other ways, but 

these are ways associated with known difference limens. 

The first of these two ways was used in Chapters 6 and 7, 

where the spectrum was specified by 100 numbers for the 

purposes of analysis (Figures 6.16 to 6.19), by 

50 numbers for the purposes of demonstration (Figures 

6.25 to 6.27), and by 73 numbers for the purposes of 

synthesis (inset panels of Figure 7.2). Our ultimate 

purpose is synthesis. We do not want to degrade the 

scene more than the user's ears will. On the other hand, 

overspecification of the spectrum will merely'raise`the 

cost of the optophone to no good effect. 
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8.2 Argument based on correspondance of erbs and erds 

Several different lines of argument come"'to mind. First, 

compare the question to the similar öne''in the time 

dimension. If it'is thought unnecessary to specify the 

spectrum more often than once per era (section 7.2.1), '-- 

then, having regard to the similarities between the, time 

and frequency dimensions (Figures 6.12 to 6.15), it 

should be unnecessary to specify the spectrum more often 

than once per erb, which if the spectrum is 30 erbs wide 

requires some 30 numbers. 
" wh " 

8.3 Argument based on frequency difference'limens 

Second, it might be thought appropriate to relate the 

frequency spacing to the frequency difference limen. 

There appear at first to be three different frequency 

difference limens, but luckily they'can be reduced to a 

single frequency difference limen which is a function of 

the duration and bandwidth of the sound whose frequency 

is being varied. The three are as follows. 

1 The frequency difference limen'of a single pure 

tone. This is remarkably small, as low as 0.2% in 

the range 300 to 3000 Hz (Figure 8'. 1), provided it 

is sounded for 0.1 $ or more. This method would 

require some 1150 numbers in this range alone. The 
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., single pure tone frequency difference limen jumps 

significantly at around 5 kHz, above which frequency 

is not tracked by phase locking of aural pulse 

trains (Moore 1989). 

Program: \lwork\fdl. wk3. 

2 The frequency difference limen of a single narrow 

noise band. A narrow noise band sounds like an 

unsteady pure tone. Moore (1973) found that at 

centre frequencies of 2 kHZ and 4 kHz, the frequency 

difference limen of a single narrow noise band was 

higher than that of a pure tone, but by a factor of 

less than2 (compare curves with points on left 

axis of Figure 8.2). At 6 kHz, there was negligible 

difference, again explained by the absence of phase 

locking. Moore's stimuluses (the English plural is 

deliberate) lasted 100 ms. The differences between 

Figure 8.1 and the points on the left axis of 

Figure 8.2 are not explained, and probably only 
c 

indicate the use of different subjects. 

The formants (spectral resonance peaks) of Gagne & 

Zurek (1988) produced with a white noise source also 

fall in-the category of a narrow noise band. 

Plotted as the solid square points in Figure 8.2, 

the centre-frequency difference limens show no trend 

associated with centre frequency from 300 

200 



to 2000 Hz, provided the DLs are expressed in erbs. 
.41 

Program: \lwork\formant. wk3. 

3 The frequency difference limen of a voiced formant 

(formant with periodic source). The difference here 

: is'{the presence of other sinusoids associated with 

the source., The, pitch of the sound is that. of the 

-source, whereas with a white noise source the pitch 

of the sound is that of the formant frequency. The 

greater scatter of Gagne & Zurek's results with a 

periodic source is ascribed to the coincidence or 

otherwise of one of the sinusoids-with the formant 

centre frequency. - 

The important-thing to note however is that there is 

no overall difference between the-centre-frequency 

difference limens of narrow noise bands and of 

voiced formants, meaning that the presence of 

components other than at the frequency being varied 

does not necessarily impair detection of-change. 

The formant frequency difference limen (FFDL) was found 

by Gagne & Zurek (1988) to'depend on the width of the 

formant according to the formula- 

FFDL 0.079 _g (1) 
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where F is formant resonant frequency in Hz and Q is the 

parameter in the resonant filter with response 18(f); 

given by 

(xcfý 1# (2) 
(1-(fP)) +(fQF) 

For our more general purposes we want FFDL in terms of 

the resonant freqency and the width of the formant. The 

formant half-power width W in Hz is given approximately 

by 
(H 

W= F/Q i3) . 

Substituting, 

FFDL = 0.07 9 VIM (4) 

This equation is not satisfactory as it has FFDL going to 

zero as the formant bandwidth W goes to zero, and so can 

only locally be true. 

On a more natural erb scale, if FEDL is the formant erb 

difference limen and B is the half-power width of the 

formant in erbs, then 

FFsDL FFDL 
ERB 

(5) 

and I` 
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ERB 

' 'with ERB given by equation (20) of Chapter 6. 

As noted above, expressing the difference limen in erbs 

eliminates dependence on frequency, at least in the range 

of Gagnb & Zurek's tests. The=resulting equation 
MI (Figure t 8.2) , is 

., 

FEDL OG - 0.209 B`447: (7) 

Suppose the spectrum to be specified consists of spectral 

peaks 1 erb wide. 'Then the relevant difference limen 

(Figure 8.2) is about 0.2 erbs, 'and if the whole spectrum 

is 30 orbs wide then a total of 150 numbers is required 

to specify it. This doesn't appear a very sensible 

arrangement, since if a number is available every 

0.2 erbs, one ought on the Nyquist argument be able to 

specify spectral peaks every 0.4 erbs. If the peaks are 

0.4 instead of "1 erb'-wide, the relevant difference limen 

is no longer '0.2 erbs'. An fact, ' from equation (7), -the 

difference limen which gives a bandwidth. of two DLsäis 

equal to 0.1 erbs, and°the whole spectrum would then 

require `300 numbers. 

Programs \lwork\formant. wk3. 
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S .4 Argument based on spectral modulation depth 

Third, there might be some clue in comparing the depth of 

modulation in the excitation pattern caused by sinusoids 

of different spacings to the intensity difference limen 

of 1 or 2 dB. This is done in Figures 8.3 and 8.4. 

Sinusoid spacings for these two-difference limens fall 

closely on either side of 1 erb, which could well mean 

something. This method brings us back down to 

30 numbers. 

Program: \lwork\specmod. wk3. 

8.5' Argument based on information theory 

8.5.1 '`General 

_. r 

Fourth, because of the blurring effect of the masking 

pattern, there ought to be a spacing below which nothing 

more is to be-gained in the way of information. 

Figure 8.5 shows the relation between the range of a 

variable expressed in difference limens and the 

information contained in knowledge-of its value. Both 

Gaussian and rectangular distributions are considered, 

but the equation for the Gaussian case.. breaks down near 
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the origin. For calculation purposes a rectangular 

distribution will be assumed. 

,, 
In the case of a number of such varia)les, as contained 

in the PR of a sound, the simple way. of calculating the 

total information, by summing the information in each 

number (or multiplying by the number of numbers if they 

are equally informative), is invalid because the numbers 

are correlated. The correlation of the elements of a 

sound vector was examined in Chapter 6 and found to 

follow the equation in Figure 6.24. This equation was 

used in Chapter 6 to decorrelate a 50-element sound 

vector. 

The solid squares. in Figure 8.6 show further work of this 

nature, using sound vectors from 10 to 150 numbers long. 

The hope was that the information contained in these 

vectors would level off beyond a certain vector length, 

corresponding hopefully, in view of Figures 8.3 and 8.4, 

to a spacing somewhere in the region of 0.5 to 1 erb. 

Unfortunately, nothing of the sort happens (solid 

symbols, Figure 8.6), and this is put down to inaccurate 

modelling of the correlation coefficient at close 

spacings (equation (30) of Chapter. 6). 

td 
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8.5.2 Fine correlation of auditory excitation pattern 

An improved description of the correlation of excitation 

patterns at close spacings can be derived as follows. 

Consider a sound spectrum specified by a vector a in 

decibels, n numbers long. The PR of this is a blurred 

and scaled version of a, with the blurring caused by the 

width of the auditory filter. Let F be an nxn matrix 

with an auditory filter in each row, centred on the 

frequency corresponding to the row number (that is, 

centred on the diagonal element). The elements of F are 

given by the equation for PA in Figure 3.1, multiplied by 

the local element spacing in Hz and normalised to have a 

total (not peak) weighting of 1. Now PA stands for power 

attenuation, and F can only operate on a sound vector sP 

in units of sound power (W/ng). The result of applying 

the filter, also in units of sound power, is 

eD -F sp (8) 

C 

C 

which can then be expressed in decibels if required. 

If the correlation matrix of sp is RSp, then the 

correlation matrix Rep of ep is (Pratt 1978) 

Rap - FR., For (9) 

where superscript * denotes complex conjugation and 

T transposition. Since F is real, the * need not concern 
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We are interested in the correlation at close,, quarters 

of e,, where auditory blurring is dominant. A good 

approximation and lower bound on the correlation at close 

quarters-of ep is therefore obtainedýby taking as ROP the 

unit matrix I, giving 

R1 -F Fs (10) 

with each element of R'ep given by 

R.,, (i, J) E F(3, k) F(j. k) (11) 

where i and j refer to the two values of foul on which two 

filters are centred, and k refers to all the 

frequencies fin at which the sound has energy. 

From equation (11) it is clear that the correlation 

coefficient between the excitation-pattern power at any 

two close frequencies f1 and . fb is given by 

Pp JW. Wbdf (12) 

where 

alra=ri 
W- (1 + aýr"-rý) e-s; 

(13) 
a zu a 

A 
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with ERB, given by fa in equation (20) of Chapter 6, and 

similarly for Wb. Note that the skirt (w in equation (17) 

of Chapter 6 or-t in Figure 3.1) is irrelevant and set to 

zero. 

Because of the discontinuity in (13), it is necessary to 

partition equation (12). Since (12) is commutative in fa 

and fb, assume without loss of generality that f1 < fb. 

Equation (12) then becomes 

t, 4 
pD = fw; w; df + JW; Wbdf +fW; Wbdf (14) 

where 

a (1+ e EM (15) 

and 

4 (f-r" e (16) 

and similarly for wb and Nb+. 

In general, 

1 (1 + _(f-p)) + s(f-q)) e-&(f-as df (17) ný. 
(Pf2 + Of + R) Of +7 
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Where 

P S8 (18) 
S 

Q-_ (1 + pip +q+ 2/S)) (19) 

Rs _Q+ 
T+ pgrs (20) 

S 

S= -(r + s) (21) 

and 

'T = pr+qs (22) 

Using subscripts 1,2 and 3 for the three integrals in 

equation (14), we have 

ri 
=_ ar4a=s (23) 

sýý 2 Ata. Aea. 

+; ,... 
81 

iJtýL 
52 

J=b 
$3 

sz1s 

The 'resulting excitation-power correlation coefficient pp 

is shown as a function of frequency separat'ion'as the 
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lowest curve in Figure 8.7. - "` 

Program: \cwork\progs\apeckl. c, \lwork2\tiprho. wk3. 

j 

8.5.3 From power correlation to decibel correlation 

C' 

Unfortunately, the psychophysical representation of a 

sound, whose information content can be calculated, is in 

decibels, and we need to know the correlation at close 

quarters of the PR. The relationship between the 

correlation of two numbers and the correlation of their 

decibels is not obvious and was examined by generating 

correlated pairs of numbers and measuring the correlation 

of their conversions. 

For two reasons, the generation was done in decibels, and 

the sound-power correlation measured, not the other way 

round. First, it guarantees positive sound powers and 

thus allows negative numbers to be generated with 

impunity. Second, and more important, is the feeling 

that the normal or rectangular probability distribution 

used to generate the numbers fits decibels better 

than W/n*. 

The correlated pairs of numbers in dE were generated as 

follows. -First 1000, values of x were generated from a 

rectangular distribution with preset mean of 40 dB and 
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range r of 40 dB. The values thus ranged from 20 to 

60 dB. The standard deviation a is related to the range 

by 

Cl r (24) 
2 

Next, for each value of za value of y was calculated 

from (Kottegoda 1980) 

Y µ+ P d(x-µ) + 1-p d9 
(25 

rw, i 

where e is a random variable with zero mean and standard 

deviation a given by equation-(24). Equation (25) is a 

formula which gives a correlation coefficient between x 

and y of pd and which gives y the same mean and standard 

deviation as x. The correlation coefficient was checked 

using (Paradine & Rivett 1964) 

Pa AExy - ixZy (26) 
(nEx - (Ex) 2) (Y- (MY)') 

The next step was to convert x to sound power in W/n* by 

the standard formula 

Px - 10x/1o-12 (27) 

4., and pr- similarly- obtained fromly, and -the correlation 

coefficient , P-calculated by-, using p1 'and pr in 

01 
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equation (26). 

The operation was repeated for a large number of values 

of Pd and for ranges r of 30,20 and 10 dB. The results 

are plotted in Figure 8.8 together with the fitted 

equation 
} 

1-pn 
Pd P9 ' ZO t n(( o. S)w) ) '(28) 

1-e 

where 

ZO 1- e"0.042 r (29) 

a'0.041 - e'o. osý r (30) 

and 

c 0.161 r+ 5.5 (31) } 

17 

Program: \lwor k2\logrho. wk3. ' 

8.5.4 Effect of fine correlation of excitation pattern 

Armed with this information, we can now repeat the 

analysis of the variation`of-the information content of a 

sound PR vector with the length of the vector. 
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As described above, the information content of a sound 

PR vector cannot be calculated directly because of its 

internal correlation, and is taken instead to be the 

information content of its KL transform coefficients 

(Figure 8.6). The information content therefore depends 

directly on the correlation matrix of the PR vector. 

The result of the repeated analysis is shown as the 

lowest curve, on Figure-8.6. - The information content now 

shows an interesting shift at a vector length of 

around 50, before continuing to rise with vector length, 

though not as steeply as before. This shift corresponds 

to the appearance of high-frequency basis functions 

(eigenvectors), first with such small variances 

(eigenvalues) as to have negative information content 

(equation for h in Figures 8.5 and 8.6), and then with 

negative eigenvalues. 

C The proper way to interpret this is probably to compare 

it with oversampling and aliasing effects-in a Fourier 

analysis of the excitation pattern. If so, then it is 

not clear what is to be gained by increasing the number 

of specification points beyond the shift, even though the 

information content is shown to rise. 

, -., ''Programs: \cwork\progs\apeckl. c, \lwork2\allspekl: wk3. 
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8.5.5 Sparse-spectrum sounds 

Sparse-spectrum sounds, in which both frequency and 

loudness of a relatively small number of sinusoids are 

specified, were also examined in Chapter 6. The 

equivalent of Figure 8.6, showing the information content 

of full-spectrum sounds as a function of the 

specification interval, is Figure 8.9, where the 

corresponding variable is the number of sinusoids. 

It would have been nice to find some sort of upper limit 

to the number of sinusoids as there is a lower limit to 

the specification interval. Unfortunately, sounds of 

this nature become increasingly more difficult to 

generate as the number of sinusoids increases '(curve D, 

Figure 8.9). On the other hand, while 14 sinusoids may 

not sound much, they do become quite crowded if you try 

to imagine them in Figure 3.1. 
C 

8.5.6 Conclusion 

While curve C in Figure 8.9 is a truer measure of the 

information content of a sparse spectrum than curve B, 

curve B may nevertheless be the appropriate curve to 

compare with the results of Figure 8.6 for full-spectrum 

sounds, since the latter involved no squeezing of 

variances (and neither was the validity of the generated 
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sounds checked). 

Comparing curve B, with up to 28 numbers representing the 

sound, with the curve in Figure 8.6 up to 30 spectrum 

specification points, shows no great advantage of one 

method over the other. 

Consideration of information content therefore points to 

use of afull spectrum with a vector length of some 

50 numbers. 

8.6 Argument based on music and speech synthesis 

The four arguments so far presented have assumed that the 

sound representation consists of a set of loudnesses (the 

numbers) at a fixed set of frequencies (the names of the 

numbers). 
C-D 

In specifying music for synthesis, there is generally a 

limit on the number of notes that can be played at once. 

The reason for this is the computational load entailed by 

the large number of overtones (sinusoids at other 

frequencies than the fundamental) that are included in 

each note in order for it to sound like a violin or a 

trumpet. These overtones are often called harmonics, but 

in the general case (for example bells) are not 

necessarily all harmonic. 

Z? 
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Thus there is a distinction between the number of notes 

and the number of different fundamental frequencies a 

note can be given. In simple systems the latter may be 

limited to the number of semitones in six or seven 

octaves, but they can also be made continuously variable. 

In either case, the frequency of a note is no longer a 

name but a number, and the number of these numbers is the 

number of notes that the system allows to be played 

simultaneously. The computational load is such that, 

unless special overtone-pruning measures are adopted 

(eg Haken 1992), the number of notes is invariably less 

than the number of players in a large orchestra. 

The total number of numbers required to specify a 

spectrum in musical synthesis is not limited to one 

fundamental frequency per note. Each note also requires 

a loudness, and specification of its overtones and of the 

spectral profile of its noise content. (Temporal' 

effects, specified by such things as attack and decay 

times and amounts of tremolo and vibrato, are irrelevant 

here since for the moment we are only considering the 

spectrum. ) The overtones and noise profile are usually 

specified by only one number, namely an item in'a list of 

instruments. 

The total number of numbers required to specify a 

spectrum in musical synthesis is thus equal to 3N, where 

N is the number of simultaneous notes. If N is 16 (the 
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first violins, for example, count as one instrument), 

then 48 numbers are required. 

.. ýý Mý 

In speech there is little interest in specifying two 

voices at once, which makes N above equal to 1. The 

numbers required to specify a phoneme are one loudness, 

one fundamental frequency (for voiced phonemes), one 

phoneme name, one dialect name, ' one' language" name, and 

one speaker name (such as "adult female" or "Margaret 

Thatcher"). Each of the above "names" is in fact an item 

in a list, and is thus a number. ' A total}of 6 numbers 

are therefore required to specify a spectrum in speech. 

8.7 Discussion 

To recap, the different lines of thought described above 

give variously 

A 30 erbs and erds 

B 1150 sinusoid frequency Us 

C 150 1-erb formant frequency DLs 

D 300 0.1-erb formant fregency DLs 

E 30 spectral modulation depth 

F -50 information theory 

G 48 music synthesis 

and H6 speech synthesis 

(r'll 
. 
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as. the number of numbers required to specify a spectrum. 

The differences between these numbers are of two kinds. 

First, B, C and D recognise that adjacent notes would 

interfere with each other and so don't allow all the 

notes to be played together, while A, E and F, with their 

1 

wider initial spacing, impose no such restriction. The - 
question then arises as to how A, E and F can convey the 

me 
difference between two sinusoids one frequency DL apart. 

If not, then these methods are deficient, since they 

exclude sounds of this class. Baldi & Heiligenberg 

(1988) and Schorer (1989) attempt in different ways to 

show how this might be achieved. 

Second, all except G and H are intended as methods of 

representing any possible steady sound. The existence in 

G and H of items from lists implies nonreproducible 

sounds, namely those not on the lists.. 

Two further. factors will influence our final choice. 

First, we require our numbers to be in units of 

difference limens in order to apply KL transforms. It is 

hard to see, how items from lists can be in units of 

difference limens, except in the special case of simply 

constraining a variable already in units of difference 

limens to be an integer. 

Second, in order to maximise the rate of acquiring 

218 
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information from the environment, it is expected that the 

sounds, after a longish learning period (Chapter 3), will 

be sounded very fast, leaving no time for the small DLs 

of Figures 8.1 and 8.2 (methods B'and'maybe D) to 

develop. - 

xý 

. ýº 
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Figure 8.7 
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CHAPTER 9 SCHEME 4- FREE-FIELD PATCH TRANSFORM 

9.1 Motivation 

All transforms considered so far have been slot,,, -, - 

: transforms, meaning that the sound at, any time. is., 

-determined by the contents of a slot masking-the scene. 

It is undeniable that a square or round patch from a 

-=scene is subjectively more meaningful than a. -long narrow 

'strip of the scene, which is all that shows. through a 

slot. 

On. the sound side, "a meaningful chunk of sound-that holds 

together is contained between two timeiimits and takes 

up the whole frequency-spectrum, with some sortnof 

spectral continuity from one instant to the next (see 

references under PSYCHOPHYSICS - HEARING - AUDITORY 

STREAMING). Typical examples are the phonemes, of,. speech 

(chosen as the meaning of letters when alphabets are 

invented), the clang or thud of a struck object, and the 

chords in music (the bits musicians choose to write down 

one above the other as happening at the same time). Thus 

speech, music and many natural noises are all naturally 

divisible into short periods of similar spectral content. 

In keeping with common parlance, we shall simply-refer to 

any such period as "a sound". 
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The free-field patch transform is thus an attempt to 

match sounds, as defined here, to shapes (small areas of 

a scene). 

There remains the question tot conveying the position of 

the patch in the scene. This cannot involve the-spectral 

content of`the sound, since that is concerned with-the 

shape in the patch. Two methods-come-to mind. First, to 

sound the'sound in such a way that it-appears to. come 

from the direction of the position of°the-patch in. the 

scene. This is called simulated free-field listening (or 

presentation). Second, to sound the patches in some 

predetermined order. These two methods have very 

different consequences. The title-of the chapter. gives a 

clue as to'which is chosen here. 

9.2` Matching-patches and'sounds 

9.2.1 General 

'It was decided to have another go at the KL method 

abandoned at the end of Chapter 6. -. It. was thought that 

the method might turn out, to be: tractable because of the 

small number of pixels involved,. -not just computationally 

but also from the point of view of matching the basis 

functions and choosing their signs. 
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9.2.2 Psychophysical representation of patch 

Let us now try to match patches and sounds. How does 

this differ from what we've been doing already? For one 

thing, we can now choose the patch size, in terms of 

pixels, to match the number of numbers needed to specify 

a spectrum for human consumption. This is very many 

times less (several thousand times less) than the number 

of pixels in the usual digital image. 

Chapter 8 was devoted to the question of how many numbers 

are needed to describe a spectrum, and gave an answer in 

the region of 50. Accordingly, let us take a patch to be 

described by the following 53 numbers: 

- 25 slopes in the x direction 

25 slopes in the y direction 

- one overall brightness 

- one Oleari x 

- one Oleari y. 

The relative weight given to the colour of the patch 

(three out of 53) is in accordance with the coarse colour 

resolution of human vision, discussed in Section 2.6.2. 

For the meaning of the Oleari x and y colour coordinates, 

see Section 2.6.1. Note that they have nothing to do 

with the x and y directions. 

231 



iýý ý 

Slopes (brightness gradients) are chosen rather than 

brightnesses because of the psychophysical importance of 

edges and their orientation. This importance has even 

been demonstrated physiologically: famous experiments by 

Hubel & Wiesel (1962,1968) showed different areas of the 

visual cortex of cats and monkeys to be sensitive to 

different edge orientations. The choice of slopes over 

brightnesses is equivalent to the linear weighting on the 

"best the eye wants to do" side of Figure 6.2. 

9.2.3 Statistics of patch PR (first go) 

The statistics of the patch psychophysical representation 

were examined in the by now usual way (see sections 6.2.4 

and 6.3.3). First, the 53 numbers were extracted from 

patches from two real scenes, \pics\bike. q and 

\pics\shanti. q, by program \cwork\progs\patstat. c, and 

various correlations calculated. 

Figure 9.1 is divided into seven panels. Bottom right is 

the scene in question. Top left and top right are x and 

y slopes (brightness gradients) respectively, calculated 

from-the four surrounding pixels. These two panels are 

reproduced in Figures 9.2 and 9.3. 

The problem now arises as to how to interpret the 

correlation coefficients derived from the scene. The 
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straightforward way would be a 53 by 53 matrix of 

correlation coefficients'. However; we would-expect many 

of the numbers in this matrix tobe the same, since the 

important f actor`is clearly'~ relative and-, not--absolute 

position. 

Bottom left in' Figure 9.1 are four panels-of-correlation 

coefficients between the first 50 of the 53 variables, 

that is the slopes'only. The purpose'of these-four 

panels 'is to examine the variation of correlation 

coefficient with relative position, as follows below. 

Each of the four panels has as abscissa separation in the 

x direction ands `ordinate'separation in, the y 

direction. The origin'(zero separation) is in the centre 

of each panel. 

Top left of the four is x slope versus, x slope. Top' 

right is yslope''versus x slope (y slope considered 

movable and'x slope fixed). Bottom=left is x slope 

versus y slope. Bottom right is y slope versus y slope. 

We would expect the top left and bottom right, panels to 

be symmetrical about both axes and the bottom right 

panel to be a'90° rotation of the top left panel. Also, 

we would expect the top ' right' and bottom left-panels to 

be symmetrical about lines at 450 to the major axes, and 

both these panels tobe identical. ' Because the ' 

correlation coefficients were extracted from a real 
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scene, -these symmetries are only approximately true. An 

additional problem was the different high spatial 

frequency noise in the x and y directions, easily visible 

in comparing Figures 9.2 and 9.3, caused by the fact that 

the scene is digitised from a raster scan. 

Figures 9.4 to 9.6 show the same information for a second 

scene, \pics\shanti. q. Any directional statistics in 

this scene are heavily influenced, and biased, by 

Shanti's shoulder straps. The expected symmetries hold 

even less for this scene. 

In order to derive correlation. coefficients with the 

correct symmetries, some artificial. patches were 

generated at random, and their statistics examined as for 

the natural scenes, by program \cwork\progs\edglstat. c 

and edg2stat. c. The 6 by 6 pixel, artificial patches each 

contained just one straight edge positioned at random. 

Figure 9.7 shows one such patch. The edge is positioned 

at a random angle from 0 to 360° and-ata random radius 
C 

from the patch centre. The brightnesses of pixels 

straddling the edge are calculated'as shown according to 

how much of the pixel is on each side of the edge. 

The first 12 (of 1000) of these patches are shown in the 

top row of Figure 9.8. The second and third rows show 

the corresponding 5 by 5x and y slopes, with grey zero, 

black negative and white positive. 
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Bottom left is a large panel of 50 by 50 correlation 

coefficients relating all 50 slopes in a patch to each 

other. To produce this correlation matrix the patch 

vector was ordered as in section 9.2.2. 

The same numbers as in this correlatiön mitrix are 

presented in the top two bottom centre panels, this time 

ordered by lag as in Figures 9.1 and 9.4. ` Again, the 

expected symmetries are only approximate, being derived 

from a sample of 1000, not the whole population. 

Nevertheless, the resemblance to the four bottom left 

panels of Figure 9.1 is striking. 

The bottom centre panel of`Figure 9.8 does have the 

expected symmetries. This was achieved by classifying 

the relative positions differently into'a'smaller number 

of categories, namely one quadrant only of the xx panel 

for the zx and yy cases, and'one octant-only of the xy 

panel for the xy and yx'cases. 

The numbers thus obtained are redisplayed in the bottom 

right panel of Figure 9.8 as the final correlation matrix 

to be adopted (at least for 50 out of the 53 elements of 

the patch vector). *-ý 

Finally, the correlation matrix was turned-into a 

covariance matrix by defining the slope difference limen 

to be one fortieth of the maximum slope, and the ' 

/ 235 



l 

°brightness difference limen to be one fortieth of the 

maximum brightness. The Oleari x and y colour 

. coordinates are in difference limen units by definition. 

9.2.4 Decorrelation. of patch PR (first go) 

Karhunen-LoIve basis functions were extracted from the 

53 by 53 covariance matrix obtained as described above. 

These (or every seventh one) are shown in Figure 9.9. 

Figure 9.10 shows the KL transform coefficient variance. 

Figure 9.11 shows a, randomly generated patch using the 

slope basis functions of, Figure 9.9 and the inverse KL 

transform. The 50-slopes are then turned into the 36 

brightnesses shown in the left half of the figure by 

means of a minimum-twist algorithm. Note that what is 

achieved is a patch,, with a clearly coherent edge, 

something lost when working directly with brightness 

statistics. 

9.2.5 Psychophysical representation of sound 

This-has been dealt with at length in Sections 3.2 

and 6.3.2. - 
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9.2.6 Statistics of sound PR 

9.2.7 

9.2.8 

This has been dealt with at length in Section 6.3.3. 

Decorrelation of sound PR 

This has been dealt with at length in Section 6.3.4. 

Matching of patch and sound basis functions 

(first go) 

As a first stab, patch and sound basis functions were' 

simply matched in order of decreasing variance, that is 

Figure 9.10 with Figure 6.26. The results of this 

mapping are shown in Figures 9.12 to 9.15: A similar 

exercise, but using only the shape information (without 

the three colour coordinates), results in Figures 9.16 

to 9.19. 

These two mappings are immediately seen to be deficient 

in two respects. First, as feared, a nice strong feature 

such as a straight edge does not correspond to any 

similarly namable sound (although it might help'to 

actually listen to the sounds shown). 

Second, there is no translation invariance:, If it-is 
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intended to go through the basis functions and match them 

up two by two in order to get a subjectively more 

meaningful . or, otherwise satisfactory mapping, then 

translation invariance is essential, first in order to 

reduce the number of permutations, and second because we 

don't want an off-centre patch to produce a very 

different sound. Again there are two reasons for this. 

First, it is subjectively, unsatisfactory. Second, the 

patch location, if conveyed by free-field listening 

effects, is only approximately known, with an accuracy of 

something, like the patch size itself. 

9.2.9 Translation invariance 

It is possible that a suitable solution would be to work 

with the Fourier transform magnitudes of a patch (either 

the, Figure-6.2-weighted_magnitudes of the FT of the patch 

brightnesses or the magnitudes of the FT of the patch 

brightness gradients). aý 

While such a 
,. 
transform is ambiguous (different brightness 

patterns can produce the same FT magnitude coefficients), 

it can. be argued that. such patterns do not occur 

�-naturally and would therefore not be considered by the 

brain as possible originators of the sound. Not only 

that, but there exist algorithms for automatic 

reconstruction of signals from Fourier magnitude only 
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(see references under that heading). 

From the point of view of the general problem of 

optophonics (GPO - what' is the "best s fene1. to sound" 

mapping given that the variety of sounds is a 

constraint), it can in fact be' 'argued that thi"s' feature 

(the property of inconsequential"ambiguity - PIA) is a 

positive virtue, because it greatly'reduces the number of 

brightness patterns that need to have a mapping into 

sound. Unfortunately, I've only just thought"-of this, 

and so haven't looked into 

Instead, an unambiguous type of translation invariance 

has been investigated, namely automatic centring: 'v The 

idea is to define a measure of interest, and, rstarting 

from a randomly chosen point in the scene, to find the 

locally most interesting patch and then sound it; in much 

the same way -as the eye centres°(fixates) 'on interesting 

features before passing on. -Both the positionland'size 

of the patch are free in the search. 

Ä measure of interest "whi'ch successfully frames in a 

patch such items as eyes and mouths, "and at a'-different 

scale faces or heads, is as'follbws. '°`A two-dimensional 

weighting function, "-zero everywhere outside-`the patch, is 

used to sum the slopes (brightness gradients) in'the 

patch. Patch size is one öf'the'variäbles, and the sum 
must be divided by the sum' of the` weightings before the 
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interest in two patches of different size is compared. 

Unfortunately, there is an additional scale effect. 

Suppose two patches of different size are being compared, 

each containing nothing but an edge in the same position. 

The required answer is that they are both equally 

interesting. However, simple summing of the slope values 

will not give this answer. Suppose for simplicity that 

the weighting function is 1 over the whole patch, that 

the-small patch covers 5 by 5 slope values and the big 

patch 10 by 10, and that the edge is horizontal and falls 

exactly between two rows of pixels and gives a slope of 1 

, when a. slope value is, situated on it. 
_ 

Our interest 

measure is then 5/25 = 0.2 for the small patch and 

,, _-10/100 
=. 0.1 forxthe large patch. 

The size bias applied is shown in Figure 9.20, together 

: with suitable values for the parameters as far as can be 

-ascertained at-present. 
r- ý_ 

The shape of weighting function that seems to work best 

is a: raised radial negative cosine. This is a circular 

-,,, -bell-shape with the centre of the bell depressed back 

down to zero (k =1 in Figure 9.21). This shape tends to 

favour patches centred on an area of. constant_brightness 

surrounded. by an edge - the simplest type of object. 

Figures 9.22-and 9.23 show some patches found 

Eautomatically in this way. In each case across-shaped 
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cursor marks the patch centre at` the start of the search. 

The program finding these patches is 

\cwork\progs\findpat. c. 

Unfortunately, the statistics of patches chosen in this 

Kay are of course different from those of patches chosen 

or generated at random or in some other way. It is 

therefore necessary to rederive the patch covariance 

matrix for such patches. To do this, a robust program in 

the nature of findpat. c is required. A present findpat. c 

is an interactive program to examine the effects of 

different parameters in the interest and bias equations. 

9.3 Next step 

After the statistics of the new type of patch have been 

found in the by now usual way, the interesting step will 

be what was first attempted in Figures 9.12 to 9.15, only 

listening to the sounds too. All the rows of those 

figures will now give much the same sound, since a change 

of row merely involved a translation of the patch over 

the scene. Instead, in the same space, it will be 

possible to examine the sound made by other fundamental 

shapes such as angles and curved or occluded edges (one 

edge disappearing behind another is a fundamental feature 

of the 2D vision of 3D scenes). 
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Then will come the WORK - changing the sign (and 

sometimes within limits the order) of the patch and sound 

basis functions being matched until some sensible results 

are obtained, namely distinctive features matching 

distinctive sounds. 

For further recommendations as to Scheme 4, see 

Section 10.4.3. 
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Figure 9.3 
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Figure 9.4 
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CHAPTER 10 CONCLUSIONS AND RECOMMENDATIONS 

10.1 Recall of objectives 

I 

Before summarising what has been achieved and making 

recommendations for the next steps to take on the road to 

producing a marketable product, it is helpful to recall 

what we were trying to do. 
ý1 

The success of Fish's flying-spot scanner systems (Fish 

1976) shows that there exist schemes allowing people to 

discern shapes and objects by means of an auditory signal 

derived from information captured by a TV camera. Two 

questions arise. First, if Fish did it, what are we 

trying to do? ' Second, if Fish did it, why is his system 

not commonplace? 

The success and failure of the flying-spot scanner both 

have the same cause. That cause may be described as 

underambition and overexplicitness. It is a 

characteristic of Fish's system that is important to 

understand but difficult to explain. 

Basically the system works because it laboriously lists 

the positions of the edges in the scene in such a way 

that with a bit of effort you can't go wrong. 
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On the other hand, such a method is only possible for 

simple shapers or objects rather than whole scenes, and it 

is this lack of usefulness, together with the'limitations 

of hardware in 1976, that led to its failure. 

Nevertheless, I should state that in my opinion a cheap 
well turned-out version of Fish's flying-spot'-scanner in 

modern hardware would probably sell. 

Any improvement on Fish's flying-spot scanner must 

therefore be more ambitious while at the same time not 

scorning its qualities. The flying-spot scanner is 

limited by the fact that it is a point mapping. The 

difference between a point mapping, aslot mapping and a 

patch mapping was explained in Chapter 2. The 

distinction refers to which part of the scene generates 

the sound (the spectral content of the sound) at any 

instant. 

The dimensionality ofa sound spectrum as experienced by 

the human ear is of the order of 50 (Chapter 8 was 

exclusively devoted to this question). The 

dimensionality of the information available at a point in 

a scene depends on the scheme - from one for brightness 

in a black and white scheme to maybe six in a colour 

scheme using edge strength and orientation - in any 

case nowhere near 50. Thus a point mapping inherently, 

underuses human hearing. 

r- 
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The objective ofthe. present research is to look at 

schemes that are not inherently limited in any way. That 

is to say, any limitations must be those of human hearing 

only, and no more. Such limitations are well documented, 

while limitations on the ability to learn to recognise 

codes that are audible are speculative and controversial. 

There is an argument, amazingly, in favour of censorship 

of the scene in order not to overload the poor user's 

senses. This argument, originally doubtless a mistaken 

reaction to past failures, unfortunately at one time 

, gained a certain political correctness. The research 

avenues rejected on this basis are of course not known. 

Both slots and patches can have any chosen 

dimensionality. The objective of the present research 

was thus to look at slot and patch mappings - but is 

there anything else? Well, there's Mead's SeeHear 

(Nielsen et al 1989), which produces a continuous sound 

based on the time differential of brightness. It could 

be classed as a patch transform with only one patch, and 
C 

that patch as big as the scene., However, this doesn't do 

justice to the very different nature of the resulting 

scheme as a whole: no worries as to patch size or as to 

which patch to sound next. Better introduce a new class 

and call it a synchronous mapping. 

Synchronous mappings are at the opposite extreme of the 

range from point mappings. At first glance they appear 
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to offer the perfect solution:, just put it on and listen 

to a continuous sound, which will, only change if 

something in the scene changes. Then difficulties 

rapidly appear. The whole scene can have a 

dimensionality of order 50, only. Massive data 

compression is then applied to the captured scene in an 

attempt, to achieve this. Unfortunately, although only 50 

, numbers result, -they are highly decorrelated and not 

matchable to the 50 correlated numbers describing a 

spectrum. Synchronous mappings turn out to be as limited 

as point mappings. 

, .rry'{ Aý 
4t YYý. 

Most: of. the present research concerns slot mappings. It 

would have been nice to spend more of the time looking at 

patch mappings - unfortunately these are much more 

difficult to invent. Whether a slot mapping or a patch 

mapping turns out to be best is something that remains to 

be proved - my bet is on a patch mapping, 

10.2 Achievements 

10.2.1 General 

._t- -ý; ý- ý, _ 

What's been achieved is mainly a greater'insight into the 

general problem of optophonics (GPO), to4n extent that 

it is now possible with considerable confidence to say 

(in the section on recommendations) what should be done 
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next in the way of developing further mappings and 

testing them, in order to arrive at the stage of having a 

marketable product. 

10.2.2 Theoretical performance test (TPT) 
f 

An early achievement was a theoretical performance test 

to which invertible mappings can be subjected. Despite 

r its limitations, discussed at length in Section 3.2.6, 

the TPT has the merit of guaranteeing an upper bound on 

the performance of a mapping. That is to say, if the TPT 

says that certain detail or information will be lost, 

then it will be. This is because the TPT is based on the 

phenomenon of masking to be found in human hearing and 

because this phenomenon is very well documented. 

10.2.3 Statistics of sounds and scenes 

Various statistics of sounds and scenes, as perceived, 

have been measured. This has been done using no great 

data base, the purpose being to get a feel for the 

statistics rather than superexact results. The exercise 

3. y" ... may bei repeated using a large data base at a future date 

if thought necessary. However, this is not one of the 

recommendations. 
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A more important question is what statistics are 

measured. It was shown that the statistics of brightness 

gradients are more informative than those of 

brightnesses, in'which such characteristics of natural 

scenes as the coherence of edges are lost 

(Section 9.2.4). Also important is how the scenes (or 

rather patches therefrom) are selected, centred and 

sized, since that affects both their content and relative 

frequency, and thus their statistics. 

10.2.4 Schemes 1 and 2 

The four ""schemes 'examined were . not all comparable. 

Schemes 1 and 2, the cartesian piano and cosine 

transforms, were not even sounded and only subjected to 

the theoretical performance test (TPT). The TPT showed 

the cosine transform to be worse than the piano 

transform, so Scheme 2 is discarded. 

Scheme 1, the cartesian piano transform, is discarded for 

the four reasons given in Section 7.1-. Should anyone 

nevertheless wish to continue with it, it is worth 

pointing out that it has been implemented by Meijer 

(personal communication) in semiportable form. 
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10.2.5 Scheme 3- polar piano transform 

Scheme 3,. the polar piano transform, 
_, 

has several 

attractive features, not all of which yet have an 

equivalent in Scheme 4. The faults of Scheme 3 were 

Colour wrongly mapped. Hue was mapped to 

musical key, and saturation to musicality, 

where musicality represents the local relative 

loudness of the pure tones (Figure 7.7) and the 

rest of the sound (Figure 7.5). The problem 

comes with colours that are nearly black, like 

Shanti's hair (Figure 7.7). Suppose the colour 

is (r, g, b) = (0, '0,1), where white is 

(255,255,255). The formula for saturation 

causes this to be, treated as a highly saturated 

colour, whereas subjectively it is very nearly 

unsaturated (black). The effect is that 

(0,0,, 1) sounds very different from (0,0,0), 

a violation of our continuity criterion 

(Section 1.8). A small fault, but one that 

needs correcting. 

2 Limited invariance to scene translation. This 

is a fault inherent in Scheme 3, and can't be 

changed. What. isn't known is the long-term 

ability of a user to recognise the shape of a 

wholly off-centre object (centre of scene 

272 



ýýý 

wholly outside object boundary). The short- 

term ability can be assumed zero,: but the long- 

term ability is the one that matters. 

3 Scheme 3 is another slot transform, meaning 

that the sound at any instant is related to the 

brightness distribution along some line drawn 

across the scene. It would be surprising if 

this turned out to be the best arrangement, 

better than relating the sound at-any instant 

to the brightness distribution in a 2-D window 

on to the scene. 

10.2.6 Scheme 4 

Scheme 4 was only partly examined., It is in particular 

not yet clear whether the KL method, can be used 

successfully to map brightness patterns in*, a patch or 

window on the scene to the spectral patterns of a steady 

sound. Recall that the problem with the KL method is 

that each basis function is, arbitrarily signed, which 

means that it works just as well if it and its 

coefficient are both multiplied by -1. The small size of 

the patch, around 6x6 pixels, suggests that, with some 

effort, the problem may be soluble by trial and error. 
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10.3 Recommendations - mappings 

10.3.1 General 

Two promising and fundamentally different mappings 

(Schemes 3 and 4) have been developed in the present 

research. Both of these should be tested in prototype 

optophones, both for their own sake and because two is 

the minimum number of mappings necessary to develop the 

tests on. It will be remembered from Chapter 3 that no 

such general tests at present exist, although Fish (1976) 

developed ad-hoc tests which do adequately describe the 

performance of his mappings. 

C 

Although it is recommended that Schemes 3 and 4, as 

developed here, be tested, that should not be taken to 

preclude the testing of any other schemes that might be 

thought up, provided there*is prima-facie evidence of 

superiority over those schemes. Indeed it is intended 

that the testing of Schemes 3 and 4 should suggest 

improvements to them. The point is that even if the 

changes turn out to be so great as to warrant a change of 

name, then that's fine too. 

10'. 3.2 Tackling PIA 

For instance, how should PIA be best investigated? Would 
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it be possible to adapt one of the other two or is a 

whole new scheme called for? Remember PIA, the property 

of inconsequential ambiguity? It is tempting to sweep it 

under the carpet, but this is only allowable after it is 

shown (and if it can be shown) that any scheme with it 

will be worse than Schemes 3 or 4. ThE? first thing to do 

then is to try to show that there's nothing in it. 

, There's nothing wrong in that, provided it's done 

conscientiously. If that fails, then there is no choice 
but to investigate it. 

The example of PIA we came across (Section 9.2.8) 

concerned the retention of the information in Fourier 

magnitude, and the abandonment of the information in 

Fourier phase, the object being to obtain a sound locally 

invariant to lateral displacement of the patch. It was 

then realised that if the resulting ambiguity only 

occurredRin, theory but not in practice, there would be a 

secondary advantage, namely the exclusion of some 

theoretically possible but in practice nonexistent scenes 

from the domain of the scene-to-sound mapping, thus 

freeing the sounds that those scenes would otherwise have 

mapped to but would never in practice have used. 

Unfortunatelyr(or not, depending on whether you hope PIA 

works),, this particular example is not at first sight 

encouraging. Oppenheim & Lim (1981) showed convincingly 

that a scene reconstructed from its Fourier transform 
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with the magnitudes unchanged but random numbers used for 

the phases is unrecognisable, but that if the correct 

phases are used and random numbers or a constant value 

given to the magnitudes then a recognisable 

reconstruction of the scene results. 

On the other hand, this is not exactly what we are trying 

to do, and the question needs looking at in more detail. 

Nawab et al (1983) show that signals containing not too 

many adjacent zeros can be reconstructed completely from 

the magnitude of their short-time Fourier transform, and 

that the results can be extended to two-dimensional 

images. This seems to correspond to where we first 

encountered PIA in Scheme 4, namely magnitudes of Fourier 

transforms of patches in scenes. 

Here the researcher's general approach to optophonics 

becomes critical. What is his immediate conclusion from 

the above statements? Remember the situation: the user 

is supposed to hear a sound derived from the Fourier E" 

transform magnitude of patches taken from the scene, and 

from that to reconstruct the scene in his head. Does the 

researcher try to decypher Nawab's algorithm, and throw 

up his hands in horror at the thought of asking the user 

. 
to do it in real time in his head? Or does he breezily 

announce that the user will soon get used to it? 

The user is not being presented with the Fourier 
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-magnitude,, but -with -"a sound derived from . the 

. Fourier transform magnitude... ". This derivation, based 

on the KL method developed in Chapter 6, is designed to 

produce, a sensible-sound.. 

The only sensible approach is to try it and see. 

Unfortunately, this means implementing it in one of the 

prototypes.. I think-the method -will- work. 

However, evenrif the method works,, what will-it tell us 

about PIA? How will the benefits of using sounds 

_. -. otherwise abandoned (by being matched to nonexistent 

scenes).. manifest itself?,. Less, -scenes.. are.. beingamapped on 

to. the same number of. sounds. How many times-less? 

In order. to assess a. scheme with PIA, we not only need to 

show that it works but that it is better. If the tests 

are properly: designed-then any. improvement will show up 

in theitests. Nevertheless, in order to. help. decisions 

at a. much earlier. stage, it would be nice to have, a 

-theoretical-,. measure of the benefits, of, a. scheme with PIA. 
*F. 

When we look at the negative of a photograph, we know we 

! , -. are looking at . the, negative, of a, photograph, . and not at a 

photograph of something else. Suppose we decided to 

exploit this example. of PIA, in an optophone by arranging 

the sound produced, by a, scene to be the, same as the sound 

- produced-by the negative, of,,. the-. scene. -. 
Since, every 

ri 
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natural scene has exactly one negative, we would be 

halving the number of possible scenes. Eachýscenewould 

therefore be able to take up (map on to) twice as much 

sound. Is there therefore the notion of'the^amount of 

sound required by, or available to, each scene? 

Perhaps the amount*of sound could be measured'in 

information. If N"numbers specify'a sound and each 

number can have one of n distinguishable values, and if 

the numbers are uncorrelated, then the number S Of 

possible different sounds is nN, and the i,., "-nation 

content of a sound is logt S or N logt- n. In fact` the 

numbers in a sound"PR are correläted, `and calculating the 

information content is more complicated (see Figure 8.6). 

Nevertheless, the point to note is that the information 

is broadly proportional to N and to the log'of n. 

In the two cases we are comparing, we are either mapping 

all positive scenes to S/2 sounds without PIA-, or to S 

sounds with PIA'. ' In the first. case the information 

available per scene is '(roughl'y) logt S/2 'or 1092'S - 1, 

and in the second logt S, a difference of only one bit, 

namely the bit that wöul. d tell-`us"whether the picture was 

positive or`negative. Hardly wörth' making a fuss ' about . 
Yý 's Lt r 

'What is the corresponding factor' in the-, case of the 

Fourier magnitudes? For'each true-to-life scene, how 

many nonsense scenes are there with the same Fourier 

(I 
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magnitudes? Working simply as before, suppose we have 

say N/2 independent phases and N/2 independent magnitudes 

per scene, and that each phase can have n distinct 

values. There are then nN/2 different scenes 

corresponding to every set of 'magnitudes, 1 scene true to 

life and nN/2 -1 others. In the first case we are 

mapping all true-to-life- scenes to S/nN/2 sounds, and in 

the second to S sounds. The'information available per 

scene is roughly logt S- (N logy n)/2 in the first case 

and logt S in the second, a gain of (N logt n)/2 bits per 

scene for PIA. This seems worth pursuing. 

Note that the discussion has been kept very simple and 

that no distinction between scenes and patches has been 

made. 

s 

10.3.3 Scheme 3 

Scheme-3, the polar piano transform, may be tested first 

as it'stands,: -ýwith the exception'that the way colour is 

mapped should be corrected (see Section 10.1.5). 

11 
After that, however, there are no restrictions on what 

may be varied in order to try to improve it. The tests 

(see below) should be of such a nature that they show 

convincingly 
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(a) what variable to adjust next 

and after some work . 
(b) what value for that variable, is best. 

It is not possible or desirable now to guess or plan what 

might be the course of events under (a) above. 

10.3.4 Scheme 4 

Scheme 4, the free-field patch transform, will require to 

be completed before. it can be tested. This means 

C 

Deciding on a sensible method of choosing, in 

the final optophone, the next patch to sound. 

This is presently done by a weighted interest 

function (Section 9.2.8 and Figure 9.21). 

2 Calculating the-statistics of patches chosen in 

this way. 

3 Deriving a KL transform for the patches, as has 

been done several.. times., for_, other things in 

this thesis. 

4 Changing the sign (and sometimes within limits 
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the order) of the patch and sound basis- 

functions being'matched until some sensible 

results are obtained, namely distinctive 

features matching distinctive sounds. 

This item 4 will be long and tiresome and highly.. 

subjective, and for me would have-been very interesting. 

The reason is that'the quantitative sensibleness of 

whatever pairing list is tried is guaranteed by the 

method (barring mistakes), provided the'order of the 

basis functions is not disturbed other than by swapping 

functions of equal or nearly equal eigenvalue. 

The-human input will'supply"any qualitative sensibleness 
41 

achieved. To my knowledge-this task has never before 

been attempted, and-there, is no knowing whether it will 

work. If it doesn't, 'then you will have 'to proceed with 

a mapping based on randomly signed basis functions. We 

know'already that these do'not produce namable sounds 

from namable shapes. What we don't-know , is-whether that 

matters. ' 

A third option, of choosing a patch-to-spectrum mapping 

entirely subjectively and bypassing the KL method 

altogether, is not recommended. First, the options 

become even more numerous, and'second, -, Athe resulting 

mapping will'not even be quantitatively sensible. 
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Having chosen the method.. of selecting the patches to 

sound and thence thepatch-to-spectrum. mapping, there 

remains to derive the method of presenting the sound so 

that the user can tell where in the xy. plane the sound is 

supposed to be coming from. My starting point would have 

been Hirakana & Yamasaki (1983),., who derived direction- 

dependent impulse responses to be applied to any sound 

signal to make it appear. to come from anywhere on a 

sphere surrounding the listener's head (apart from the 

neck), with checks as appropriate against W htman & 

Kistler (1989), Makous. & Middlebrooks. (1990), Wenzel 

et al (1993), and whatever else might turn up. 

There now comes another example of the importance. of the 

researcher's general approachwand. attitude to life. The 

question is: what is the appropriate, scal_ing between the 

. 1angle subtended at the camera between two points in the 

scene and the angles used to generate, the, sounds of the 

patches centred on those two points? The,., question arises 

because the camera might range. from say -30°, to, +30° c 

elevation (0° being dead ahead), while the work of 

Hirakana extends fron -30° to +210° (and sounds actually 

sound different throughout the whole circle)..,: Similar 

remarks apply to azimuth. 

Or 'even; going , back: a step,. does 
. 
the researcher. ask 

himself the question at all?., If not, then the scaling is 

automatically 1, and-there arises approximately a ten- 
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fold loss in localisation accuracy (the location of ten 

times fewer patches can be distinguished since they are 

all crammed into the forward field of vision of the 

camera). 

Even Af the researcher thinks, of the question,. he may 

decide thatýa distortion would be confusing to the user, 

and still use ,a scaling of 1. This is the kind of 

patronising-preemptive-censorship that makes my blood 

boil. To-my mind, }the distortion would disappear. within 

a few days' use at most, and there can be no excuse for 

such a-reduction in performance. 

Happily, in this case no such suggestion has been made or 

is likely to be made'by, anyone, so I can use language 

appropriate to the sin without causing personal offence. 

r .. i 

10.4 Recommendations - Tests 

To begin with, concentrate on those features of the 

mapping that should be immediately accessible. For 

instance, concerning the colour mapping of Scheme 3, it 

should be'much easier to tell ithe colour of the. centre of 

the scene than ofany off-centre object, because only the 

centre of the scene-ever occupies the whole spectrum and 

prevents other colours being sounded'simultaneously. Any 

peripheral: colour-perception would only come very much 
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later and be a bonus. 

Initally, of course, one can expect no sensation of 

colour at all. One would just notice that, in a 

colourful environment, there was one period around the 

middle of each sound which was in a definite musical key. 

A musical key (chord) is a common enough sensation. The 

question will then be how to learn to associate these 

keys to colours. One idea would be a colour chart hung 

on the wall, which the user could check against at will. 

The same idea might be used for objects. One could place 

some objects on a table, and similar objects elsewhere in 

the room, say on shelves on the walls. The idea would be 

to handle an object on the table, to know what it was and 

what it sounded like, and then explore the rest of the 

room, at a distance, for something sounding similar. 

Such an exercise should prove very instructive. 

Initially, the objects might be placed on the shelves 

with the same orientation and lighting as on the table, 

thus guaranteeing a similar sound. Later, the 

orientation of the objects on the shelves might be kept 

secret, and one would have to remember all the sounds the 

object on the table made as it was manipulated in order 

. to find it on the shelf. 

The point is to start from something guaranteed to work, 
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and move on from there. This presupposes that the 

schemes being tested have aspects that are guaranteed to 

work - something to remember in designing them. 

See Fish (1976) for some initial ideas. 

10.5 Recommendations hardware- 

'ýý 
ý. 

10.5.1 Two classes of hardware 

There are two classes of hardware, both optophones, that 

it is essential: to distinguish, namely the prototypes 

designed to test the mappings on the one hand, 4and the 

first marketable product on the other. 

10.5.2 Prototypes for Schemes 3 and 4 

The time has come (April 1994) to build a prototype 

optophone. The reason is not that a mapping has been 

perfected but that an optophone is , necessary, . 
in order, to 

perfect any mapping. 

Be careful not to let difficulties of=implementation 

distort or destroy the characteristics, of the, mapping it 

is desired to test. The research so far has been guided 
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by a deliberate policy of ignoring hardware and real-time 

algorithmic questions. -If, at all possible, these should 

not be'-allowed to`gain the upper hand now. For one 

thing, only one of the two schemes will ever appear in 

marketable form. 

Beware of "testing something else because it might be 

simpler", of answering questions that aren't being asked. ' 

For instance, I expect that a prototype capable of 

performing the mappings of Schemes 3 or 4 will be very 

complicated, with the computational hardware probably 

desk-bound and mains-powered. This may be necessary in 

order to'have the flexibility to-try out major or minor 

variations, a flexibility not required in the final 

product. 

It is to be expected that the prototypes for Schemes 3 

and 4 will have many components in common. Whether one 

talks of one or two prototypes will just be a matter of 

choice. 

10.5.3' First marketable optophone 

The final product will be relatively inflexible, with 

only those' parameters still adjustable-as have proved 

necessary in the early tests. 
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These may be of two kinds. First, parameters that need 

adjusting as the user's competence develops. 

Presentation speed comes to mind as one of these. 

Second, parameters that need adjusting according to the 

task at hand. It may turn out, for instance, that the 

optimum value of some parameter is different for reading. 

In either case a choice will arise as to whether to leave 

! the variable variable and provide an extra knob to adjust 

it, or to fix it at some intermediate value and have a 

simpler and cheaper and worse optophone. One of the 

objects of the tests will be to settle these issues in a 

convincing way. 

It should be expected that the first marketable optophone 

will be a completely different animal from the 

prototypes, at least as concerns packaging. The 

optophones should be on the tough side: they will be 

T'Na called on to operate in all weathers and not always be 

handled gently. 

here, to design 

There are so ma: 

around now that 

I even have the 

that specialise 

way. 

Experienced people will be required 

the casing, power pack, knobs and so on. 

ay excellent electronic consumer items 

there can be no excuse for amateurism. 

strong impression that there are firms 

in packaging people's prototypes in this 
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Plan to have the money in hand to have 50 of these first 

marketable optophones made. Sell them at a profit. 

Solicit and listen to complaints and suggestions. Note 

in particular how these vary with the period of use. 
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