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Abstract

We introduce a framework for estimating the effect that a binary treatmertrha binary
outcome in the presence of unobserved confounding. The methodolagyplied to a case
study which uses data from the Medical Expenditure Panel Survey hodenaim is to esti-
mate the effect of private health insurance on health care utilization. @naasconfounding
arises when variables which are associated with both treatment and outoemet avail-
able (in economics this issue is known as endogeneity). Also, treatmentugcmh® may
exhibit a dependence which cannot be modeled using a linear measussoofation, and
observed confounders may have a non-linear impact on the treatmeati@mone variables.
The problem of unobserved confounding is addressed using a twadienq structural latent
variable framework, where one equation essentially describes a bintgnoe as a function
of a binary treatment whereas the other equation determines whether thesines received.
Non-linear dependence between treatment and outcome is dealt with bycoginlg func-
tions, whereas covariate-response relationships are flexibly modetefauspline approach.
Related model fitting and inferential procedures are developed, amdpsstyc arguments
presented.

Key Words: Bivariate binary outcomes; Copula; Endogeneity; Penalized regresgime;
Simultaneous equation estimation; Unobserved confounding.

1 Introduction

Quantifying the effect of a non-randomly assigned treatmarman outcome is a challenging task
in observational studies. An approach to calculate suchffactdas to match subjects on the
basis of observed features or the so-called propensitg sand then compute the treatment effect
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as the difference between the observed responses of th@edatabjects corresponding to the
levels of the treatment (e.g., Heckman et al., 1997; Rosent&aRubin, 1983). However, this
method is only valid when the unobserved variables thatenite the treatment are independent
of the outcome, conditional on the covariates in the model.céhsider the situation in which the
researcher is interested in estimating the effect of a pitraatment on a binary outcome in the
presence of unobserved confounders (i.e., unknown or adilyequantifiable variables associated
with both treatment and outcome). In economics, this prakikecommonly framed in terms of
a regression model from which important regressors have begtted and hence become a part
of the model’s error term. In this context, the treatmenérsied exogenous if it is not associated
with the error term after conditioning on the observed canfiers, and endogenous otherwise. We
address this issue by specifying a simultaneous modeldatrtrent and outcome; this route has
been previously taken by several scholars (e.g., Chib & HamiR002; Greene, 2012; Heckman,
1978; Maddala, 1983; Marra & Radice, 2011a). Other appraaeahe available to account for
unobserved confounding; see the detailed review of Clarkei&dwieijer (2012).

To fix ideas, let us consider a case study which uses data frefkledical Expenditure Panel
Survey (MEPS) and whose goal is to estimate the effect ofnigagrivate health insurance on
the probability of using health care services. Privatetheakurance status, which is an important
determinant of the use of health care services, is a poligrgiadogenous variable. This is because
unobserved variables, such as allergy and risk aversigeaes likely to influence both health
service utilization and private insurance decision. Sames the effect of private health insurance
can be interpreted as adverse selection or moral hazargd Beighmueller et al., 2005). Adverse
selection occurs when individuals with a greater demandnedical care, because of poor health
for instance, are expected to have a greater demand foramsewr Moral hazard refers to the
tendency of people to be more inclined to seek health sexvared doctors to be more inclined
to refer them when all costs are covered. The matter is fudbmplicated by the fact that the
effects of observed confounders, such as age and educaizynbe complex since they embody
productivity and life-cycle effects that are likely to infiace private health insurance and health
care utilization non-linearly. If these relationships anessmodeled then the effect of insurance
on the probability of using health care services may be Higseay., Marra & Radice, 2011a).
Moreover, insurance status and health care utilization exdybit a non-Gaussian association
(Winkelmann, 2012).

Unobserved confounding can be controlled for by using ticensve bivariate probit model
(Heckman, 1978). This model controls for unobserved camdmg by using a two-equation struc-
tural latent variable framework, where one equation egdgntdescribes a binary outcome (e.g.,
health care utilization) as a function of a binary treatm(eng., insurance coverage) whereas the
other equation determines whether the treatment is reeiee model is completed by assum-
ing that the latent errors of the two equations follow a staddivariate Gaussian distribution
with correlationd; 6 # 0 suggests that unobserved confounding is present, hemteegiimation
of the two equations is required. Some applications in ecoc® and bio-statistics are provided
by Goldman et al. (2001), Jones et al. (2006), Gitto et aDG20Latif (2009), Kawatkar & Nichol



(2009) and Li & Jensen (2011). The limitations of this model &dowever, the inability to deal ef-
fectively with non-linear covariate effects and non-Gaausslependencies between the treatment
and outcome equations. To model flexibly covariate-respoakationships, Chib & Greenberg
(2007) and Marra & Radice (2011a) introduced Bayesian antiHid@d estimation methods based
on penalized splines, respectively. To deal with the proldénon-Gaussian dependence between
treatment and outcome, Winkelmann (2012) discussed a roatilifin of the recursive bivariate
probit that maintains the Gaussian assumption for the makgistributions of the two equations
while introducing non-Gaussian dependence between thamg thee Frank and Clayton copulas.

The contribution of this article is twofold, one methoddlzg and the other practical. First,
we extend the procedures discussed in Marra & Radice (20hbta)énkelmann (2012) to make
it possible to deal simultaneously with unobserved confimap non-linear covariate effects and
non-Gaussian dependencies between treatment and outbopegticular, we generalize the pe-
nalized likelihood estimation approach based on the assamgf bivariate normality presented
in Marra & Radice (2011a) by allowing for non-Gaussian depetes between the two model
eqguations; this is achieved by employing some classic espsluch as Clayton, Frank, Gumbel
and Joe, and the rotated versions of Clayton, Gumbel and Joalsé&/provide some theoretical ar-
gumentation related to the asymptotic behavior of the pgege@stimator and the ensuing formula
to calculate the treatment effect. Second, we implemenitdiods discussed in this article in
theRpackageseni Par Bl VPr obi t (Marra & Radice, 2015). This can be particularly attractive
to practitioners who wish to fit such models. Swihart et aD1#) and Genest et al. (2013) have
also adopted the copula paradigm to model multiple binatgaues. One of the main contribu-
tions of the former article is to establish the connectiotween existing marginalized multilevel
models and copulas. The work by Genest et al. (2013) dissusedels for vectors of binary out-
comes in the which the marginal distributions depend on mates through logistic regressions
and the dependence structure is modeled through metseglipopulas. Our approach does not
deal with multivariate binary outcomes, although it can kterded to this context. However, as
opposed to Swihart et al. (2014) and Genest et al. (2013prty@sed methodology can account
for non-linear covariate effects, and more importantly catigate the issue of endogeneity.

The rest of the paper is organized as follows. Section 2 mdistcusses the model structure,
parameter estimation, confidence intervals and varialdetsen. Section 3 applies the proposed
methodology to the MEPS data mentioned above, whereao8ekttliscusses the limitations of
the proposed framework and concludes with some future sites. The online supplementary
material includes some of the details required to calculaeasymptotic variance of the treat-
ment effect, details on the structure of the score vectorHgrbian matrix used in the algorithm,
asymptotic considerations related to the proposed esimaai the ensuing formula to calculate
the treatment effect, and the results of a simulation study.



2 Methods

2.1 Model definition

The focus is on a pair of random variables;, y2;), fori = 1,... n, wherey,;, € {0,1}, v can
take valuesl and2, andn represents the sample size. Variaplerefers to the treatment and
y2; 10 the outcome. The observegd is determined by a latent continuous variapjesuch that
vwi = L(y;, > 0), wherel is the classic indicator function. We assume tjat~ N (1,;, 1) where
Ny € R is a linear predictor defined in the next section for= 1,2. The probability of event
(y1; = 1,40, = 1) can be defined by using the copula representation (Skla8, 195 3)

Py = 1,920 = 1) = C(P(y1; = 1), Py = 1);0),

whereP(y,;, = 1) = ®(n,;), ®(-) is the cumulative distribution function (cdf) of the stantla
univariate Gaussian distributiofijs a two-place copula function afids an association parameter
measuring the dependence between the two mardiials = 1) andP(y.; = 1). In other words,
the joint distribution is expressed in terms of marginatriisitions and a functio® that binds
them together. A substantial advantage of the copula apprisahat the marginal distributions
may come from different families. Note that the marginalscalfe conditioned on covariates (see
the definition ofy,; in the next section), but for notational convenience we symgpressed this
when expressing the marginal distributions. Some of thellespconsidered are Clayton, Frank,
Gaussian, Gumbel, and Joe as well as the rotated versionaytb@ Gumbel and Joe. Rotation
by 180 degrees leads to the survival copdla), while rotation by 90¢y,) and 270 degrees{;,)
allows for negative dependence which is not possible wighntbin-rotated and survival versions.
The copulas considered here are displayed in Figure 1. Tieteoeclockwise rotated versions
can be obtained using (e.g., Brechmann & Schepsmeier, 2013)

Coo(us, v;) = v; — C(1 — wy, v;),
Clg()(ui,vi) = Uj; + V; — 1 + C(l — Uy, 1— UZ'),

Coro(ui, v;) = u; — C(u;, 1 — vy),

whereu; = P(y;; = 1) andv; = P(y; = 1). The ranges of for the copulas rotated by 90 and

270 degrees are on a negative scale; e.g., for Gumbel rdigte@ and 270 degreéshas to be

smaller than-1. For full details on copulas and their properties see, fstance, Nelsen (2006).
The log-likelihood function for the recursive bivariateopit model can be expressed as

l= Z {y1iv2ilog prii + y1i(1 — y2i) log proi + (1 — y1i)y2i log pori + (1 — y1:) (1 — y2i) log pooi }
i1

wherepy;; =Py, = 1,y2i = 1), p1oi = P(y1i = 1,y2s = 0) =P(y1; = 1) — Py, = 1,y = 1),

poti = P(y1i = 0,92 = 1) = P(yo;s = 1) — P(y1; = 1,y = 1) andpoo; = P(y1; = 0,92 = 0) =

1 - []P(yu = 1) + ]P(yzi = 1) - P(Qli =1,y = 1)]



As it can be seen from Table #,may be difficult to interpret in some cases. To this end,
the well known Kendall'sr € [—1, 1] can be utilized. Alternatively, Tajar et al. (2001) suggest
using the odds ratio and gamma measure proposed by Goodmans&a{ (1954). These can be
defined asl = poop11/p1opor andy = ¢ — 1/ + 1, respectively. The odds ratio has rarige

whereasy € [—1,1].

Clayton

Gumbel

Frank

Gaussian

Joe

Student-t

Figure 1: Contour plots of some classic copula functiondsiandard normal margins for data simulated using
association parametes 5.74, 0.71, 2, 2.86, and0.71, respectively (these values are consistent with a medium
positive correlation). The Gaussian, Student-t (here thitee degrees of freedom) and Frank copulas allow for equal
degrees of positive and negative dependence. Gaussianrankl $how a weaker tail dependence as compared to
Student-t, and Frank exhibits a slightly stronger depecdémthe middle of the distribution. Clayton is asymmetric

with a strong lower tail dependence but a weaker upper tpidéence. Vice versa for the Gumbel and Joe copulas.

2.1.1 Linear predictor specification

The linear predictor for the treatment equation can be &mritts

i

whereas that for the outcome as

K;

JE— uT .
= Upon + S1ky (Z1k11)7
k1=1

K>

T = Yy + Uy + Z Saka (22kai);

ko=1

(1)

(2)



Copula Range of 0,

Clayton 6 € (0,00) log(6 — ¢)
Frank 6 € R\ {0} 0—e¢
Gaussian/Student-td € [~1,1]  tanh™'(0)
Gumbel 6 € [1,00) log(6 — 1)
Joe 0 € (l,00) log(d—1—¢)

Table 1: Parameter range of dependence coeffiéiémt some classic copula functions and transformatiénsof 6
used in optimization. Quantityis set to the machine smallest positive floating-point nunmbeitiplied by 10¢ and
is used in some cases to ensure that the dependence pasaliedtetheir respective ranges.

wherey is the effect of the treatment on the outcome on the scaleedliear predictory], =

(1, U194, . . . ,u1py;) is thei™™ row of U; = (uyy, .. .,uln)T, then x P, model matrix containing
P, parametric terms (e.g., intercept, dummy and categor@ahbles),a; is a coefficient vec-
tor, and thes;;, are unknown smooth functions of th€, continuous covariates;; ;. Varying
coefficient models can be obtained by multiplying one or ner®oth terms by some predic-
tor(s) (Hastie & Tibshirani, 1993), and smooth functionsgwb or more covariates can also be
considered (Wood, 2006). Similarly;, = (1, us;, . . . , usp,;) is thei'™ row vector of then x P,
model matrixUs = (uyy, ..., Ugn)T, a; IS a parameter vector, and thg,, are unknown smooth
terms of theK, continuous regressors,;. The smooth functions are subject to the centering
(identifiability) constrain® """ | s, (zu%,) = 0forv =1,2,k, =1,..., K, (Wood, 2006).

The smooth functions are represented using the regregsdior approach (e.g., Ruppert et al.,
2003). Specificallys,k, (zr,i) IS approximated by a linear combination of known spline $asi
functions b, ; (2.1,i), and regression parametessy, ;, i.€. syr, (Zok,i) = Z;-];’“f Bukey vk (Zukyi) =
BI,% Buk, (zok,:), WhereJ,, is the number of spline bases used to represgnt:), Bk, (zur,i) IS
thei** vector of dimension/,;, containing the basis functions evaluated at the observatjg;,
i.€. Buk, (Zoki) = {buko1(Zokyi)s Duky2(Zokai)s - - - Dok o, (zvkvi)}T, and3,;, is the correspond-
ing parameter vector. Evaluatii®),, (z,x,;) for eachi yields .J,,, curves with different degrees
of complexity which multiplied by some value @f,;, and then summed will give a (linear or
non-linear) estimate fof,;, (z,x, ); See Ruppert et al. (2003) for a detailed overview. Basis func-
tions should be chosen to have convenient mathematical amenical properties. We employ
low rank thin plate regression splines (Wood, 2003), algffomany spline definitions (includ-
ing B-splines and cubic regression splines) are supportediinmplementation. Note that for
one-dimensional smooth functions, the choice of splinendafn does not play a crucial role
in determining the shape &f;, (z.,;) (Wood, 2006). The cases of smooth terms multiplied by
some covariate(s) and of smooths of more than one variabavf@a similar construction; see
Wood (2006, Chapter 4) for full details. Linear predictorsdhd (2) can, therefore, be written as
i = ULCY1+51T¢51 andny; = ¢y1i+u;a2+B§iﬁz, WhereB;- = {Bm(%u)T, ..., Bur, (ZvK,,z‘)T}
andB] = (B..... 8k, ). After definingXy;, = (u];, B};)T andXs; = (y1;,u3;, BJ;)T, we have
ni = X{;01, andny; = X,,8, whered! = (o], 8]) andd] = (v, ag, 87 ). Note that the presence
of a binary endogenous variablesg does not alter the log-likelihood function presented in the
previous sectionP(yy;, y2;) can be written a®(y»;|y1;)P(y1:), hence its form does not change if



n2; Includesyy;.

To identify the parameters in;, it is typically assumed that an exclusion restriction oa th
exogenous variables holds: the regressors in the treagqgeation should contain at least one or
more covariates (usually referred to as instruments) rabtided in the outcome equation. How-
ever, as shown for instance in Han & Vytlacil (2014), Marra &dRe (2011a) and Wilde (2000),
the presence of this restriction may not be necessary.

2.2 Sample average treatment effect

The effect ofy;; on the probability thai,; = 1 is of primary interest. In other words, the aim
is to investigate how the treatment changes the expectedmet Thus, the treatment effect is
given by the difference between the expected outcome vattrtrient and the expected outcome
without treatment. Different measures of treatment effeste been proposed in the literature.
Here, we focus on the average treatment effect in the spesaifiple at hand, rather than that in
the population (SATE; Abadie et al., 2004). In our case, this be defined as

1 n
SATE(S,X) = n ZP(Z/% = Ly = 1) = P(y2i = 1y1s = 0),
i=1

where
¢ (@), o5 =");0)
q’(ﬁli) ’

=) = € (®(ma), (i ="); 0)

1 —®(ny;) ’
the linear predictors are defined in the previous secbi;é’jhi:’") represents the linear predictor
evaluated af;; = r for r equal to 1 or 05T = (48],4,,6), andX = (xy|...|x,)" wherex; is
defined agX],, XJ)T. SATE(d, X) can be estimated usirRATE(d, X), whereas a confidence
interval for it can be obtained employing the delta methqueHically, the appropriate estimator
of the asymptotic variance 6fATE(4, X) is

]P(yzi = Hyu = 1) =

P(y2 = 1|y = 0) =

OSATE(8,X) "
BE]

OSATE(S, X)

s , ©

6=6

5=6

whereV is the covariance matrix af defined in Section 2.4 and

OSATE(6,X)
I

.
OSATE(8,X)T OSATE(8,X)T OSATE(S, X)
94, T ’ Bl ’

with elements defined in Section S.1 of the online suppleargmhaterial. Alternatively, Bayesian
posterior simulation can be employed (see Section 2.4).



2.3 Parameter estimation

Since the range of is bounded in most cases, we use a proper transformation @f, iand
defined] = (87,4, ,0.), to ensure that in optimizatiod, € R?, wherep is the total number
of parameters; see Table 1 for range® @nd the transformations employed. Let us denote the
log-likelihood for a given copula function &@$d.). Given the flexible linear predictor structure
considered here, unpenalized estimation can result in gnteon estimates that are too rough to
produce practically useful results (e.g., Ruppert et al0320This issue is dealt with by using a
penalty term, such aEi:l Eﬁj’zl Aok [ {3;’,% (Zoky ) }2 dz,, for the one-dimensional case, which
measures the second-order roughness of the smooth terhresiimodel. The\,,, are smoothing
parameters controlling the trade-off between fit and smuesth and can take values|[ih o).
Since regression splines are linear in their model parasidtee overall penalty can be written as
BTS\Bwhered™ = (8],8]),S =37, ny”: | Ak, Suk, @nd theS,, are positive semi-definite
symmetric known square matrices expanded with zeros evemanexcept for the elements which
correspond to the coefficients of thé!* smooth term. The expressions for the, ; (zuk,:) and
S.k, depend on the type of spline employed and we refer the readRuppert et al. (2003) and
Wood (2003, 2006) for these details. The function to maxamz

((8.) = (8.) ~ 5678, (4)

where the penalty term can be writtend&sS, 4, /2 whereS, is an overall penalty matrix defined
asdiag(0p,, Ak, Sikys - - s Mt Sikcys Opy s A2ko oty - - - » A2k Sy 0) With O, = (01, ..., 0y, ).

2.3.1 Estimatingd. given smoothing parameters

Given AT = (Mg, .- 5 Aikys Adkys - - - > A2k, ), We seek to maximize (4). To this end, we use a
trust region approach which is generally more stable ariéifaisan its line-search counterparts,
particularly for functions that are, for example, non-cave and/or exhibit regions that are close
to flat (Nocedal & Wright, 2006, Chapter 4). Letbe an iteration index. Intuitively speaking,
line search methods choose a direction to move frogto m,; and find the distance along that
direction which gives the best improvement in the objedtinection. If the function is non-convex
or has long plateaus then the optimizer may search far away:fr, but still choose am,,; that

is close tom,, (hence offering a marginal improvement in the objectivection). In some cases,
the function will be evaluated so far away from, that it will not be finite and the algorithm will
fail. Trust region methods choose a maximum distance fontbee fromm, to m,,; based on

a “trust region” aroundn,, that has a radius of that maximum distance, and then let ad=ed
for m,.1 be the minimum of a quadratic approximation of the objectfiwgction. Since points
outside of the trust region are not considered, the algaritever runs too far and/or too fast from
the current iteration. The trust region is shrunken if theposed point in the region is worse/not
better than the current point; the new problem with smad#lgiran is then solved. If a point which is
close to the boundary of the trust region is accepted andasg@ large enough improvement in the
function then the region for the next iteration is expandead point along a search path causes the



objective function to be undefined or indeterminate, mogi@mentations of line search methods
will fail and user intervention is required. In the trust iy approach, the search fot, is
always a solution to the trust region problem; if the funetet m,; is not finite or not better
than the value atn, then the proposal is rejected and the trust region shrunkerally, a line
search approach requires repeated estimation of the mej@anction, while trust region methods
evaluate the objective function only after solving the tmegion problem. Hence, trust region
methods can be considerably faster when the objectiveiumd expensive to compute. Full
details can be found in (Nocedal & Wright, 2006, Chapter 4).

Let us define the penalized gradient and Hessian at iteratiasugg’] = gl — S;\di“] and
Hl = T — S, wheregl” is made up off = 00(8.)/081 5, _gla g = 00(8.) /02l 5,_ e
and gi[,f” = 00(8,)/00.|, _y=, and the Hessian matrix has3ax 3 matrix block structure with
(r, )t elemenmﬂ = 826(5*)/86r85,f]5T:5La]76h:5}[7a}, r,h=1,...,3, whered; = 0,; details on
the structure ofj andH can be found in Section S.2 of the online supplementary mahté&ach
iteration of the trust region algorithm solves the problem

. sla]y def a a1 “ .
min £,(871) = - {fp(éi}) +p'gl +§pTﬂpp} so that ||p|| < 1,

ol = arg min f;(éL“}) + ol
p

where|| - || denotes the Euclidean norm anid represents the radius of the trust region. At each
iteration of the algorithmf;(éial) IS minimized subject to the constraint that the solutiorsfal
within a trust region with radius!”. The proposed solution is then accepted or rejected and the
trust region expanded or shrunken based on the ratio bettheemprovement in the objective
function when going froms\” to 6™ and that predicted by the quadratic approximation. The
exact details of the implementation used here can be foukiyer (2013) who also discusses
numerical stability and termination criteria. Note thaanthe solution, the trust region algorithm
typically behaves as a classic unconstrained algorithm.

2.3.2 Estimating givend,

If the model has more than one smooth term per equation, gtenation of\ by direct grid search
optimization of, for instance, a prediction error criterican be computationally burdensome. It
is therefore pivotal for practical modeling to estimaten an automatic way. There are many
techniques for automatic multiple smoothing parametémasgion within the penalized likelihood
framework; see Ruppert et al. (2003) and Wood (2006) for detaiverviews. (Note that joint
estimation ofd, and via maximization of (4) would clearly lead to over-fittingnsee the highest
value of(,(4,) would be obtained wheA = 0.)

s . \T .

Let us defineX = (le . ]Xn) , whereX; = diag{X;, X3;, 1} with X;; andXs; defined in
Section 2.1.1W! as a block diagonal matrix made upf 3 matriceswg‘” with (r, k)™ element
given by —02((8..);/01riOnpi| w, T h = 1,2,3, wherens; = 6,, andd as a vector

_lal _
Nri="y; sNhi="}p;



-
with i element given byﬂ“l - { 0U(8,): /Ol 1, OU(8.): /Ol 1, OU(8,): /O] M} .
~ Mi=ny,; T - 7721—7721' N3i="N3;

We then have thagl?) = X'd — §,6” and#[") = —X'WIIX — ;. Let us use the fact that
close to convergence the trust region algorithm behave<kssic unconstrained algorithm and
assume thag"™ is a new updated guess. Applying a first order Taylor expartsig, a1 around
5, setting the resulting expression to zero, and using theeegpns above fcgé and’HL“}, we
find that

Sl = (X WIIX + ) 71X Wil

71 -
wherez!? = (WM> d + X681, Thuss'™™ is clearly the solution to the penalized iteratively
re-weighted least squares problem

arg min ||z — Haé 12 + 8]S4,

6*

wherezH14 = Wzl andX ™ = WX, In the derivation aboval/@ can also be taken to
be the expectation of minus the second derivatives of thditetihood with respect to the linear
predictors.

From standard likelihood theorg,= v/ WW ~'d has meai®) and covariance (identity) matrix
I, andzt = E(z") + €, whereE (z*) = p,r = VWX4?, §° is the true parameter vector
andV (z*) = V(e) = I. The predicted vector value fa' is given byp,+ = Asz*, where
Ax = VWX(X WX + §;)~'X ' v/W (known as influence matrix). Following the argumentation
in Wood (2006, Chapter 4)" will be normally distributed in the large sample limit. Nothe
smoothing parameters have to be estimated and since theatsdi smooth functions should be
as close as possible to the respective true functions, iemsénse to estimadeso thatg,+ is as
close as possible tp,+. To this end, we employ the expected mean squared error ohdlael,
which in this case is

E (||pez+ — f1z+|* /) = E (|2 — Axzt —€|?) /i
=E(||z" — Axz'|?) /i + E (—€"€ — 2€" pp+ + 26" Axpayr + 26" Axe) /it
=E (||z" — Axz®|?) /i — 1 + 2tr(Ay) /n,

wheren = 3n and t(A ) represents the effective degrees of freededfi)(of the penalized model.
The smoothing parameter vector can be estimated by mimman estimate of the expectation
above, that is

V(A) = ||zt — Axz™||? /7 — 1 + 2tr(Ay) /7. (5)

This is equivalent to the expression of the Un-Biased Riskniegtr reported, for instance, in
Wood (2006, Chapter 4) as well as to the Akaike informatiotedon (A/C) after dropping
irrelevant constant. The latter equivalence can essmibi@lseen by noticing that the first term on
the right hand side of (5) is a quadratic approximatiorHZf(S*) to within an additive constant.

10



In practice, giver5£“+1], we solve the problem

At = arg min V(A) & ||zttt - Alettlgnlet 2 n gy otr(Aletthy (6)
A

using the automatic approach by Wood (2004), which is basddewton’s method and can eval-
uate in an efficient and stable way the componentg(ik) and their first and second derivatives
with respect tdog(A) (since the smoothing parameters can only take positiveesaluBroadly
speaking, this is achieved using a series of pivoted QR amglikr value decompositions which
make the evaluation of the quantities invoIviA&’“], for new trial values of\, cheap and deriva-
tive calculations efficient and stable; see Wood (2004)dérdetails.

2.3.3 Sketch of algorithm

The two steps, detailed in Sections 2.3.1 and 2.3.2, agdé@in a “performance iteration” fashion
(Gu, 2002) until the algorithm satisfies the stopping cidtermax |8, — 8.1 < 105, The
steps can be summarized as follows:

step 1 For a given parameter vector valsé and holding the smoothing parameter vector fixed at
Al find an estimate of,:

ol = arg min Evp(&[f‘]) + ol
p

step 2 Construct the working linear model quantities needed in $&)g}5£‘l+” and find an estimate

of \:

At — arg min V(A).
A

A slight modification of)’(A) is worth mentioning. If the estimated smoothing parameyestsi
curve estimates that are deemed to be too rough and smootiatiohs are desired then the trace
of the influence matrix can be increased by a factor. Kim & Gu (2004) found, in a different
context, that using as inflation factor bfl corrects the tendency to over-fitting of prediction error
criteria.

The asymptotic behavior of the proposed estimator and theieg formula to calculate the
treatment effect is detailed in Section S.3 of the onlingpgapentary material.

2.4 Confidence intervals and variable selection

At convergence, the covariance matrixdfcan be written a¥/ 5. = —H, 'HH, . However, the
alternative Bayesian resilts, = —H, ! can be employed as well. For smooth functions, at finite
sample sized/s, can produce intervals with close to nominal ‘across-theefion’ frequentist
coverage probabilities (Marra & Wood, 2012). This is beeatie Bayesian covariance matrix
includes both a bias and variance component in a frequesgtige, a feature that is not shared
by Vs . Note that for unpenalized model compone¥ts andV; are equivalent. Recall that
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in (3) Vs rather tharV s, is needed. This can be easily obtained by uging place off, when
constructing the covariance matrix.

Point-wise confidence intervals féy;, (z,,;) can be obtained using
N (Suky (Zokyi)s Bok, (Zokei) "V 6,0, Buk (Zok,i)), WhereVs . is the sub-matrix oV, that corre-
sponds to the regression spline parameters associated wijth,. ;). Intervals for non-linear
functions of the model coefficients (e.d,,y and SATE) can be conveniently obtained by simula-
tion from the posterior distribution a¥, as follows:

step 1 Draw n,;,,, random vectors from\ (4., Vs, ).

step 2 Calculaten,;,, simulated realizations of the function of interest. Fotamge, for a Gaussian
copulad = tanh(6,), henced*™ = (65", 05™, ... 65" ) wheredy"™ = tanh(057"), i =
1, vy Ngim -

step 3 Using#*™ calculate the lower(/2), and upper] — /2, quantiles.

Small values forn,;,, are typically tolerable. Parameters usually set t@.05.

Strictly speaking, point-wise confidence intervals for sthocomponents are not adequate
for variable selection purposes, although they are oftesd us practice (e.g., Ruppert et al.,
2003). To test smooth components for equality to zero we husedsults by Wood (2013). Let
us definesS,;, = By, (zvku)kav, whereB,, (z,1,) denotes a full column rank matriz,,, =
(Zokols Zoky25 - - - > Zokyn) | @NAVs, = By, (Zok,)Vs,,s, Buk, (Zok,) - Itis then possible to obtain
approximate p-values for testing smooth components foaldguo zero based on

_ ol Toks — & y 2
Trvkv - SUkJUVS:k: Svkva’!’vku7

whereV ™ is the rankr,;, Moore-Penrose pseudo-inversewyf, , which is employed to deal
with possible rank deficiencies. Parametgy, is selected using the notion efif used in (6).
Becausedf is not an integer, it can be rounded as follows (Wood, 2013)

Y

floor(edf,x, ) if edf,r, < floor(edf,;,)+ 0.05
e floor(edf,.,) +1 otherwise

which proved effective in semiparametric bivariate probiddels (Marra, 2013). Alternatively,
variable selection can be achieved by adopting a singlelyestainkage approach as described
in Marra & Radice (2011a) and Marra & Wood (2011).

3 Analysis of health care utilization data

The analysis presented in this section was performed iR #@reironment (R Development Core Team,
2015) using the packadggem Par Bl VPr obi t (Marra & Radice, 2015) which implements the
methodology discussed in this article.
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Variable Definition

Outcome

Vi sits. hosp =1 at least one visit to hospital outpatient departments
Treatment

private =1 private health insurance
Demographic-socioeconomic

age age in years

gender =1 male

race =1 white, =2 black, =3 native American, =4 others
educati on years of education

i ncone income (000Q’s)

regi on =1 northeast, =2 mid-west, =3 south, =4 west
Health-related

heal t h =1 excellent, =2 very good, =3 good, =4 fair,=5 poor
bmi body mass index

di abet es =1 diabetic

hypertensi on =1 hypertensive on

hyperli pi dem a =1 hyperlipidemic

limtation =1 health limits physical activity

Table 2: Description of the outcome and treatment variabled observed confounders.

3.1 Data

We used a data-set from the 2012 MERSt(p: / / wwww. neps. ahr g. gov/ ) which includes
information on demographics, individual health statusltimecare utilization and private health
insurance coverage. We excluded individuals younger tl&agehrs old given their different
overall health profiles and expected usage patterns as cethpa those of older individuals.
Individuals who were older than 64 years old were also exadgince the availability of Medicare
obviates the primary insurance decision for almost all Uems. Individuals that did not have a
complete set of socioeconomic and demographic contrabbas were excluded from the sample
(e.g., missing values for education or income). After egidos, the final data-set contains 10950
observations. Table 2 summarizes the variables used imtigsis. The choice of these variables
was motivated largely by the findings reported in previolateel studies (e.g., Shane & Trivedi,
2012, and references therein).

3.2 Models

Following previous work on the subject (e.g., Holly et a98; Shane & Trivedi, 2012), the equa-
tions for private health insurance and health care utibratvere specified, iR notation, as

treat.eq <- private ~ as.factor(health) + as.factor(race) +
as.factor(region) + limtation + gender + diabetes +
hypertension + hyperlipidema + s(bm) + s(incone) +

s(age) + s(education)

out.eq <- visits.hosp ~ private + as.factor(health) + as.factor(race) +
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as.factor(region) + limtation + gender + diabetes +
hypertension + hyperlipidenmia + s(bm) + s(incone) +
s(age) + s(education)

whereas. f act or coerces its argument to a factor and$tfg symbols refer to the unknown
smooth functions described in Section 2.1.1. The smootlpoomnts were represented using pe-
nalized thin plate regression splines with basis dimerssixual to 20 and penalties based on
second order derivatives (Wood, 2006). In cross-sectisnalies, 20 bases typically suffice to
represent well smooth functions, although sensitivitylygsia using more spline bases is advis-
able when the effective degrees of freedom of the smooth oaeids are close to the number
of bases used. We also used two alternative spline defigifiog, B-splines with second order
difference penalties and cubic regression splines witbrsgorder penalties); the resulting esti-
mated curves did not change significantly as compared t@tbbtined using thin plate splines.
The non-linear specification fdrmi , i ncome, age andeducat i on arises from the fact that
these covariate embody productivity and life-cycle eBebat are likely to affect the treatment and
outcome non-linearly. In fact, in related studies, Hollyakt(1998) considered a model for health
care utilization that contains linear and quadratic temmsni , i ncome, age andeducat i on
whereas Marra & Radice (2011b) specified a model containirgp#imfunctions of them. Consid-
ering all copulas discussed in Section 2.1, and includiegctise in which the outcome equation
is estimated alone (this will be referred to as Independeve)fitted 19 copula models. Based
on the AIC and Bayesian information criterio3( C) reported in Table 3 the preferred models
are the Gaussian, GumpgeClaytong, and Jog. After applying the Vuong (Vuong, 1989) and
Clarke (Clarke & Windmeijer, 2012) tests to the four modelgniterged that the Vuong test can
not discriminate among the models whereas the Clarke testf&umbe] over the others.

3.3 Empirical results
3.3.1 Measure of dependence

We start off by commenting on the results for the dependereasares of all models fitted (see
Table 3). These represent the association between the emeldsconfounders after controlling
for observed confounders. Overall, the models withddi'/ BIC' support, which account for
a negative dependence, indicate absence of associatiwedrethe two equations with intervals
which either span all plausible (negative) values+or or collapse to their point estimates. This
behavior is typically observed when the data are incon#ist&h the restrictions on the range
of the dependence parameter, case in which model missicifishould be strongly suspected
(e.g., Trivedi & Zimmer, 2005). The models with/C'/ BIC support, which account for a posi-
tive dependence, do not exhibit such a behavior and sugdest association. Interestingly, the
small yet significant dependence parameters obtained foit@liindicates that there exists some
positive association between the unstructured terms ahtigel equations for private health insur-
ance and hospital utilization which is most likely due to plnesence of unobserved confounders.
This positive relationship suggests that individuals vpitivate health coverage are more likely to
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use health care services as compared to those without gevera

3.3.2 SATE of private health insurance

The estimated SATE (ifit) and confidence interval (Cl) for all fitted copula models aearted
in Table 3. The Table also reports the estimated SATE for #se ¢n which the unobserved
confounding issue is not taken into account (Independ&eyeral points are worth noting.

e The chosen models (Gaussian, Gumb€layton, and Jog, which account for a positive
dependence) show similar point estimates with overlap@iteg The models that account
for a negative dependence (which have AbC'/BIC support) exhibit estimates that are
systematically smaller than those produced by the praefenedels (and that produced by
the Independent model). As pointed out in the previous secthe negative dependence
models have estimated dependence parameters that are looutihgary of their parameter
spaces, hence suggesting that these models are not supipypttee data.

e If the presence of unobserved confounders is not accouatdtidn the estimated SATE is
smaller ¢.11%) than that obtained using the chosen models which can ddatrihis issue
(around4.56%). Based on these estimates the direction of the bias apmpelesdownward.
This result seems counter-intuitive in the sense that if sgime that possible confounders
are allergy and risk aversiveness, then an upward biasdheutxpected (individuals with
a greater demand for medical care are expected to have &igdeshand for insurance).
The explanation behind this apparent contradiction is énaployer-provided insurance is
generally limited to full-time workers and is positivelylagd to the worker’'s income. The
empirical evidence indicates that workers who are in pobeaith are less likely to obtain
employer-sponsored coverage (e.g., Buchmueller et al5)200

e Using the Gaussian copula the estimated SATEG$%, which does not really differ from
those obtained using the other supported copula models.iFhost likely due to the low
association observed. Whetrir — 0 the copula models converge to the normal product
distribution, case in which all copulas entail very simifstributions. As shown in simula-
tion (see Section S.4 of the online supplementary matetaater differences are likely to
be observed when the association between the treatmenugsuhee equations is stronger.
In such a scenario, different copulas would entail diffédistributions (as shown in Figure
1), hence the use of the appropriate copula model can malieegedce.

3.3.3 Parametric components

We report the estimated effects for the Gumbmdpula model. Similar results where obtained
using the other preferred models (these are available wguprest).

Most of these effects have the expected signs. Regagingler , females are slightly more
likely of being hospitalized than males. This may be exmdiby a higher demand for medical
services among women during their reproductive years, @igdelar, 1982). As forace, there
is not a significant difference between whites and nonwhitésrms of purchasing private health
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Copula SATE 95% Cls) 4 (95% Cls) 7 (95% Cls) AIC BIC
Independent 4.11 (0.75,7.48) - - 17628.02 18116.06
Gaussian  4.61 (3.15,6.06) 0.39 (0.03,0.64) 0.13 (0.003,0.25) 17621.9770.080
Student4  4.81 (3.26,6.36) 0.61 (0.38,0.74) 0.34 (0.22,0.45) 17640.29 18085.16
Student-§ 456 (2.95,6.16) 0.48 (0.15,0.71) 0.21 (0.08,0.35) 17628.08 18075.64
Student-$ 453 (2.95,6.10) 0.44 (0.12,0.74) 0.18 (0.03,0.30) 17624.51 18071.92
Studentt,  4.53 (2.98,6.08) 0.40 (0.07,0.71) 0.16 (0.04,0.29) 17623.01 18070.49
Frank 4.30 (2.92,5.69) 0.29 (0.00,0.55) 0.13 (0.001,0.25) 17622.32 1BD70
Clayton, 3.98 (2.62,5.35) 0.11 (0.01,0.73) 0.03 (0.003,0.27) 17624.37 18075.35
Clayton,,  3.97 (2.44,5.49) 0 (-1,0) 0 (-1,0) 17670.23 18263.54
Claytong, 4.52 (3.08,5.96) 0.17 (0.064,0.45) 0.09 (0.03,0.24) 17622.57 18072.41
Clayton,,  3.98 (2.21,5.76) 0 (-1,0) 0 (-1,0) 17624.94 18081.31
Gumbe)) 4.62 (3.17,6.08) 0.29 (0.09,0.63) 0.13 (0.05,0.31) 17621.05 18069.71
Gumbel,  3.96 (2.42,5.51) 0 (0,0) 0 (0,0) 17672.95 18261.34
Gumbels,  4.02 (2.64,5.40) 0.10 (0.01,0.64) 0.03 (0.001,0.34) 17624.42 18076.04
Gumbebr,  3.96 (2.19,5.74) 0 (0,0) 0 (0,0) 17664.94 18280.32
Joe 450 (3.06,5.95) 0.16 (0.04,0.48) 0.09 (0.03,0.26) 17622.66 18072.62
Joey 3.96 (2.58,5.34) 0 (-1,0) 0 (-1,0) 17670.94 18287.37
Joaso 3.97 (2.62,5.33) 0.04 (0.00,0.80)  0.01 (0,0.54) 17624.76 18079.31
Joer 3.96 (2.26,5.67) 0 (-1,0) 0 (-1,0) 17669.94 18291.33

Table 3: Estimated SATE (ift), gamma measure, Kendall's7, AIC and BIC obtained using different copula
models for the 2012 MEPS data. 95% confidence intervals Bo6#TE have been obtained using the delta method
detailed in Section 2.2, and those foandr using Bayesian posterior simulation as described in Seetid. For the
Independent model the information criteria have been tatled assuming that the treatment and outcome equations
are not associated.

insurance but there is some difference in terms of beingitedzed; black individuals seem to be
less likely to use health care services as compared to whit@s is consistent with the findings
by Shane & Trivedi (2012). Regardingegi on, residents of the Midwest are more likely to
have a private insurance and to use health care servicesrgmaped to those of the Northeast.
Individuals’ evaluation of theiheal t h states is a potential predictor of health care utilization.
Those who are in good health are less likely to access heafthservices. In the same vein,
those who expect themselves to be in good health have htiigin from insurance while those
who are in poor health are more likely to purchase healthrarsze. The results for the hospital
utilization equation support this hypothesis indicatihgttthe less healthy individuals are, the
more likely they are to be admitted into hospitals. The pasitelationship between self-assessed
health and insurance purchase is counter-intuitive to yip@tiesis of moral hazard and adverse
selection. However, such finding is not unusual and has ble&mned in several previous studies
(see Srivastava & Zhao, 2008, and references therein). Tdre objective measures of health
status (i.e.di abet es, hypert ensi on andhyper | i pi dem a) suggest that medical need
is an important determinant of hospital utilization anduir@ce purchase.

3.3.4 Non-parametric components

Figures 2 and 3 report the smooth function estimates fordarhent and outcome equations (and
associated intervals) when applying the Gumlbebdel on the MEPS data. The estimated smooth
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Treatment Eq. Outcome Eg.

Variable Parameter estimate Std. erfor Parameter estimate Std. error
gender -0.02 0.03 -0.37 0.03
race=2 -0.00 0.04 -0.08 0.04
race=3 0.04 0.15 0.35 0.16
race=4 -0.04 0.05 -0.17 0.07
regi on=2 0.24 0.05 0.16 0.06
regi on=3 0.06 0.04 -0.22 0.05
regi on=4 0.01 0.04 -0.37 0.06
heal t h=2 0.04 0.04 0.10 0.05
heal t h=3 -0.11 0.04 0.33 0.05
heal t h=4 -0.27 0.06 0.48 0.07
heal t h=5 -0.39 0.09 0.67 0.10
di abet es 0.12 0.06 0.06 0.06
hypert ensi on 0.09 0.04 0.09 0.04
hyperli pi dem a 0.17 0.04 0.9 0.04
limtation 0.05 0.06 -0.49 0.06

Table 4: Estimated coefficients and standard errors of thenpetric components of the Gumpehodel.
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Figure 2: Smooth function estimates and associatéd point-wise confidence intervals in the treatment equation

obtained by applying the Gumbelegression spline model on the 2012 MEPS data. Results @itegbbn the scale

of the linear predictor. The jittered rug plot, at the bottofreach graph, shows the covariate values. The numbers
in brackets in the y-axis captions are the effective degoé&gedom of the smooth curves. P-values for the smooth

terms ofbmi , i ncone, age andeducat i on are0.271, < 0.000, < 0.000 and< 0.000, respectively.
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Figure 3: Smooth function estimates and associated 95%-pise confidence intervals in the outcome equation
obtained by applying the Gumbelegression spline model on the 2012 MEPS data. Results @iteghon the scale
of the linear predictor. P-values for the smooth termbwof , i ncone, age andeducat i on are0.849, 0.01,

< 0.000 and< 0.000, respectively.

functions obtained using the other copula models (not teddnere but available upon request)
were similar.

The effects obm ,i ncone, age andeducat i on in the treatment and outcome equations
show different degrees of non-linearity. The point-wisafatence intervals of the smooth func-
tions forbm in the treatment and outcome equations contain the zerddinihe whole range
of the covariate values. The intervals of the smooth focomnre in the outcome equation contain
the zero line for most of the covariate value range. This eatgthabm is a weak predictor of
private health insurance and health care utilization, &atlithconme might not be an important
determinant of hospital utilization. Similar conclusiozen be drawn by looking at the p-values
reported in the captions of Figures 2 and 3. As for the remginariables, the estimated effects
have the expected patterns. For examalge is a significant determinant in both equations. The
probability of purchasing a private health insurance ismfbto increase wittage. This is sug-
gestive of a higher probability of private health insurapcechase as individuals become older
and less likely to stay healthy (e.g., Hopkins & Kiddi, 1996he probability of using health care
services also increases willge. Insurance decision as well as health care utilization apfze
be highly associated wittducat i on. Education is likely to increase individuals’ awareness of
health care services and the benefits of purchasing a pheatiéh insurance. Higher household
income is associated with an increased probability of pastiy a private health insurance.

It is worth noting that the parametric and non-parametrtoresded effects for the outcome
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equation reported here should be interpreted in a quaktatay only. The actual effects can be

calculated by using simulation or by adapting the formufaSreene (2012) to the current context.

This would account for the fact that the confounders appgan the treatment equation have an
indirect effect (through the endogenous variable) on theamue and a direct effect because they
also appear in the outcome equation.

4 Discussion

We have introduced a framework which can allow researcloeestimate the effect that a binary
treatment has on a binary variable in the presence of unad$eonfounding, non-linear covariate
effects and non-Gaussian dependencies between the treainteoutcome equations. We have
provided inferential tools for this framework and presenseme argumentation related to the
asymptotic behavior of the proposed penalized maximuniii@ed estimator and the ensuing
sample average treatment effect. We have also develope@tessary computational procedures
which are incorporated in thie packageSem Par Bl VPr obi t (Marra & Radice, 2015).

Using the proposed approach, we have examined the effedtivaitgy health insurance on
health care utilization using the 2012 MEPS data-set. Thseeaegenerally accepted notion that
private health coverage is affected by endogeneity as dtisamdomly assigned as in a controlled
trial but rather is the result of individual preferences &mea@lth status, such as allergy and risk
aversiveness. Also, the impacts of continuous confourslgck as age and education are likely
to be complex since they embody productivity and life-cyefiects that are likely to influence
non-linearly private health insurance and health careatibn. Finally, insurance and health care
utilization may exhibit a non-Gaussian dependence. To oomedge, no studies have exam-
ined the impact of private health coverage accounting fdogeneity, non-linear contributions of
observed confounders and non-Gaussian dependence behgaemce and health care utiliza-
tion, partly due to the lack of appropriate analytical andhpatational tools. By applying the
introduced statistical framework to the 2012 MEPS data wadothat not accounting for the en-
dogeneity issue underestimates the effect of privateltnegstirance and that some of the observed
confounder effects are non-linear. We also found that thes&an, Gumbeg| Clayton, and Jog
models were equally supported. This was due to the low yeifgignt association observed be-
tween the treatment and outcome equations, case in whiatofhda models entail very similar
distributions. However, as shown in simulation, the uséefappropriate copula model may make
a difference when the association between the two equat@iong.

Since marginal distributions other than Gaussian may hesgiée in applications, we explored
the possibility of modeling the margins using skew prolmk$ derived from the standard skew-
normal distribution by Azzalini (1985) as well as the poweokit and reciprocal power probit
links discussed by Bazan et al. (2010). We opted for these kaskthey include the probit link
as special case and have desirable mathematical propértiesuse of these approaches did not
lead to SATE results different from those reported in Tablé®reover, the convergence of the
algorithm slowed down considerably and sometimes it waspossible to find a solution. As
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pointed out by Azzalini & Arellano-Valle (2013), in the sitep context of continuous outcome
variables, having a parameter which regulates the distoibs skewness enjoys attractive formal
properties from the probability point of view. However, agtical problem in applications is the
possibility that the maximum likelihood estimate of the wkess parameter diverges. That is,
the profile log-likelihood for the skewness coefficient mayflat in a non-negligible portion of
situations. This issue has vanishing probability for iasiag sample size, but for finite samples it
occurs with non-negligible probability.

A limitation of the copulas employed in this article is thhey are exchangeable (Durante,
2009; Frees & Valdez, 1998; Nelsen, 2007). In the contextunfoase study, this means that the
probability of (not) having private health insurance caiaghally to the usage (or not) of health
care services is equal to the probability of using (or no@ltmecare services knowing that a
private health insurance can (not) be used. Following therageh detailed in Frees & Valdez
(1998), we employed the copul, ., (u,v) = u' "o ="2C(u", v"2), 0 < K1, ke < 1, which has
the property of including as a limiting case. We encountered the same issues menaboed,
even when using a model with a small number of covariates attut smooth functions.

An interesting avenue for future research includes the tiserni- and non-parametric copula
approaches. These would allow the margins and/or the coplbla estimated non-parametrically
using, for instance, smoothing methods such as kernelsglatavand orthogonal polynomials.
Broadly speaking, if the specification of the model for the gives and copula is correct, then the
parametric approach will outperform semi- and non-parametethods; however, the reverse will
be true under misspecification. Without any valuable pnéorimation, semi- and non-parametric
techniques should be favored as they will be more flexiblestemining the shape of the under-
lying distribution. However, in practice, such technigaes typically limited with regard to the
inclusion of a large set of covariates, may require the intjposof restrictions on the functions ap-
proximating the underlying distribution and may be comfpiatally demanding (e.g., Deheuvels,
1981a,b; Genest et al., 1995; Tutz & Petry, 2013). While g fplirametric copula approach is
less flexible than semi- and non-parametric approachescdmputationally more feasible and it
still allows the user to assess the sensitivity of result$ifferent modeling assumptions.

Another interesting extension would be to consider tratrisystem models, controlling for
the endogeneity of the treatment and for non-random sanmgiéet®n in the outcome (e.g.,
Srivastava & Zhao, 2008). Finally, a future releas&efm Par Bl VPr obi t will allow the user
to model the copula parameter as a function of a linear pi@dic allow for different degrees of
endogeneity across observations; the theoretical anduatignal framework remains essentially
unchanged.
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Supplementary material to “Copula regression
spline models for binary outcomes”

S.1 Derivatives ofSATE(4, X) with respect to §

The components INSATE(4, X) /04 that are referred to in Section 2.2 are given below.
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The quantities inside the square brackets of (7), (8) andg®)e written as
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whereh, = C(P(n1;), P(n2); 0)/0P(n,;), v can take values and2, ¢(-) is the density function
of the standard univariate Gaussian distribution, anchallather quantities are defined in Section
2.




S.2 Gradient and Hessian oD,

Recall thatC (q»(m,-),@@gg“ﬁ));e) = P(y;; = 1,52 = 1) and the probabilities for the other
three events defined in Section 2.1. Also, recall from Sac®® thatd] = (47,48, ,0.). The
quantitiesg andH that are referred to in Section 2.3.1 are given below.
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The expressions f@C (P (n;), ®(12:); 0)/00., O*C(P(ny;), P(nw); 0) /062, h,, Ohy /D, Oh, | D0,,
andoh, /09, for all the copulas considered in this paper are implemeint8dni Par Bl VPr obi t
(Marra & Radice, 2015). These have been derived analytiaaliverified using numerical deriva-
tives.

S.3 Asymptotic considerations

As in Kauermann (2005) and Radice et al. (2015), consistehttyegproposed estimator can be
proved by considering the situation in which the spline baggproximating the smooth compo-
nents are of a fixed high dimension. Since the unknown smawitiibns may not have an exact
representation as linear combinations of given basis fomgt the unknown functions and param-
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eters may not be asymptotically identified by their estimsa#s the sample size grows. However,
in practice basis dimensions have to be fixed, and assumanghtbse are of a high dimension (so
that the the truth is likely to be in the space of the larged)agiis possible to assume heuristically
that the approximation bias is negligible compared to esimn variability (e.g., Kauermann,
2005).

In this section, we present some argumentation relatedetaslimptotic behavior of the pe-
nalized maximum likelihood estimator defined as

I arg max (,,(d.),

*

where/, (8,) is givenin (4),8, = (8, ", 8, ,0,)", and the behavior of the ensuing SATE estimator
constructed in Section 2.2. Note tREATE = SATE(S, X) is based o = (8, , )T where
6 = é(é*) is a proper inverse transformation of paraméte‘ound as result of maximizing the pe-
nalized likelihood. We consider the situation in which tipére bases approximating the smooth
componentgby,;, 7 =1,..., Juk,. kv = 1,..., K,,v = 1,2} are of a fixed high dimension, i.e.
the J,., are fixed. Note that the unknown smooth functiges,,,k, = 1,..., K,,v = 1,2} may
not have an exact representation as linear combinationseri §asis functions and consequently
the unknown functions and parameters may not be asymptgtidantified by their estimators as
the sample size grows. However, the case of fixed basis diovenis of relevance as in practice
these have to be fixed and assuming that these are of a higimgloneit is possible to assume
heuristically that the approximation bias is negligiblemgared to estimation variability (e.g.,
Kauermann, 2005). In this scenario, the method providesasts which tend in probability to
guantities best approximating the unknown functions amdrpaters in terms of Kullback-Leibler
measure. (Recall that the Kullback-Leibler distance betwie density functionsf and g is
defined akL(f||g) = [~ flog(f/g) if f is absolutely continuous with respectg¢@nd 0 oth-
erwise.) LetL! be the likelihood function for the true model which, in ouseacontains the true
smooth functions appearing in the linear predictpraind, given in (1) and (2) and true value
of 6, of a given copula, and leét be the corresponding log-likelihood. Then the Kullbackhler
distance between the likelihodd in the true model and the likelihoat(d.) in the model where
Zka:l Sk, (Z18y1) andszjz1 S1k, (725,:) are replaced with their spline approximatid®§3; and
B..3. is equal to

KL(L'||L(8,)) = E (¢" — €(8.)) ,

where the expectation is taken with respect to the true naideibution ands, = (67,4, ,0.)7.
Define parameter vectdf = (69", 89", 6°)T as the minimizer of the above distance, that is

8 = argmin KL (L||L(.)) ,
d.

and consequently 1’ = (897,897, 6°)T whered® = #°(6°) is a proper transformation of. It
follows thatd? is the maximizer of the expected unpenalized log-likelithép) and as a conse-
quenceEg(4?) = 0. Remind thag(d.) and?(d.) denote the gradient vector and Hessian matrix



of (-) calculated at a poind, and letg,(d,) = g(d,.) — Sxd. andH,(8.) = H(8.) — Sy be
the penalized versions of them. Below, we define classic tiondirelated to the score vector,
Hessian and Fisher information matrix as well as the pemadtirix (see, e.g., Kauermann (2005)
who used similar assumptions in the context of survival ng)dd@he assumptions are

(A1) g(8?) = Op(n'/?),

(A2) EH(8Y) = O(n),

(A3) H(8)) — EH(d)) = Op(n'/?),

(Ad4) S\ = o (n'/?), whereS, is defined in Section 2.3.

Conditions (A1) and (A3) are the assumptions.6f asymptotics (e.g., Barndorff-Nielsen & Cox,
1989). Note that, as theobservations are assumed to be independgdi) andH.(6°) are made
up of sums of independent random variables. Assumption3 éAd (A3) imply that, given the
model, the average valueg)(6?) and=#(4?) over the random sample converge in probability to
their expected values at the rate!/2. Condition (A4) can be equivalently formulated &g, =

) (n1/2) fork,=1,...,K,,v = 1,2, assuming that the matric8s;, are asymptotically bounded.
This assumption is rather weak as it allows the smoothingrpaters to grow as the sample size
increases, at a rate smaller thali2. In fact, the sequenck based on the mean squared error
criterion described in subsection 2.3.2 is bounded in grdiba(e.g., Kauermann, 2005).

Theorem 1. Under conditions (Al)-(A4) we have
6, —68°=0p(n"?) asn — .

Remark 1. Note that the above theorem states the consistency andtét$arathe vector of
parameter®, = (87,467,0,)T which includes the transformed dependence paranfietesed in
optimization (see Section 2.3 and Table 1). However, if veeiae that the inverse transformation
0, — @ is differentiable then by using the mean value theorem wee@diaiely obtain that the
above result holds also for the vector of coefficiedits: (87, 87,0)T which contains the copula
dependence parameter on the original scale.

Let SATE® be equal to

1 n
SATE’ = - Z {P°(y2i = 1y = 1) =Py = 1y = 0) }
i=1

where -
¢ (I)(noi Y= )7(1:'(7702')?00
PO(yy; = 1|y = 1) = ( : (nY,) 1 >’ 10
0 (g, 17— (g, 1) e(,):0°) (19)
P2(y0; = 1]y = 0) = 1-o(nY,) ’

7Y = X169 andnd;, = X,,69 andg® = 6°(#°) is the appropriate transformation of parameéferin
order to prove consistency for the estimator of #2¢l'E we introduce the additional assumption
that the



(A5) probabilities (10) are differentiable as functionsdadind their gradients are bounded in
the neighborhood a°, uniformly for all x; = (X7;, X3.)T.

Theorem 2. If conditions (A1)-(A5) hold then
SATE — SATE? = Op(n~Y?) asn — oo,
whereSATE = SATE(4, X) as defined in Section 2.2.

Proof of Theorem 1.We show that the following approximation holds
. N .
6. — 8%~ (~EH(E) +8)) (9062 — $nY). (11)

which implies the asymptotic consistencydofat the rate: /2. We adopt the argumentation used
in the theory of maximum likelihood estimation (e.g., Mc@gih, 1987) which involves a Taylor
expansion of the score in the neighborhood%f A similar approach was used by Kauermann
(2005) and Kauermann et al. (2009) in the context of pendli®ine smoothing. For simplicity
of notation, we omit all terms of order higher than 1 and asstimat higher order derivatives of
the log-likelihood behave in a similar manner as those défin¢A1)-(A3).

The first-order Taylor expansion gf(-) arounds? implies

9,(0.) = 0,(8%) + H,(8°)(8, — 8?) + (higher order terms

which, after using the fact thg{,(&) = 0 and inverting the above series (e.g., Barndorff-Nielsen &,Cox
1989), leads to

8. — 8% = —H,(8%)" (g(ag) - éAafz) 4o

We then decomposk,,(8?) as
H,(00) = (H(8%) — EH(8Y)) + (EH(S)) - &) =R~ F(N),

whereR = #(8°) — E#(8°) represents a stochastic error df\) = —EH(8°) + S, is the
penalized Fisher information matrix. Now, Iét-) = (- — F(X))~! be an auxiliary function of a
matrix argument. Using the Taylor expansionf@R) aroundf(0), we obtain

H,(89) = —FA) L= FA)TTRFA) ™M T+ ...
Now, assumptions (A2)-(A4) imply
H,(00) = —FA) T (I+RFA) ™ +...) = =FA) ™ (I+0p(n*?)),
wherel is an identity matrix. Thus
8. 80 = F(N) ™ (9(8%) = $:8Y) (T+0p(1)) + .., (12)

10



which proves (11) and hence

6. — 8" =0p (n?) asn — cc. (13)

Remark 2. (a) From approximation (12), the asymptotic bias and covaganatrix ofd, can be
derived. Specifically,
bias(d,) = E (3* - 553) ~ —F(A) 18,87,

where the propert£g(6?) = 0 of §° has been used, and
Cov(d.,) = —F(\) 'EH(80)F(A) T, (14)

which follows from the fact tha€ov(g(4?)) = —EH(4Y). In addition, conditions (A2) and (A4)
imply that
bias(d,) = o(n~"/?) and Cov(d,) = O(n™").

(b) Assumption (A4) implies that

VnCov(é,) ~ {%E [—H(6?)] }_1
and ' .
Vv, = (=)
whereVs, = —H ! is the Bayesian approximation of the covariance matrig.ofnentioned in

Section 2.4. Thus, the frequentist asymptotic approxiomati4) and the Bayesian result become
equivalent as the sample sizegrows tooc.

() As g(8°) is a sum of i.i.d. components, it follows that E#(8°))"/* g(6%) -5 A(0,1).
Hence, approximation (12) also implies asymptotic nortyali the normalized estimatax.. The
asymptotic normality holds also for the vector of paramse(éf, 52T , é)T containing the depen-
dence parametét on the original scale. However, as for some copulas pararfiesebounded,
the normal approximation may not be accurate for small sasigkes.

Proof of Theorem 2. Recall thatSATE = SATE(d, X) whereSATE(d, X) can be expressed as
L 30  sate(d,X;), with sate(d, x;) determined by

¢ (‘P(nu), q)(né?li:l));@) (") ~C (@(mi), B(ny™"); 9)

D (n14) 1 — ®(ny;)

The mean value theorem yields

2sate(S7 x;)T(6 — 89,

sate(d, x;) = sate(8°,x;) + 7

11



for somed = (1 — ¢)8° + ¢d, ¢ > 0, where sate(6 X;) is the gradient vector ofate(-, X;)

expressed as a function éfcalculated at a pomi =4,fori=1,...,n. Thus,
SATE = ! ansate(tso X;) + Ly 2saute((s )76 — 6%
n T < 96
— SATE? + — Z —sate (8,%)7(8 — 8°) (15)

As for the second term in (15), Schwarz’s inequality implies

— —sate(S,Xl-) 5 — %) < ZH—satedx ]6 8°|.

Given the assumption th%sate(-, X;) is bounded in the neighborhood &f uniformly for all x;
and that|d — 8°|| = Op(n~1/2) proved in (13) (see also Remark 1), the assertion follows.

Remark 3. Expression (14) for the asymptotic covariance matriX @fan be used to construct
the asymptotic variance SATE using the delta method, namely

o 0 T 0
Var SATE ~ — SATEWLX) 3y -1y (60)F ()1 ZSATEWS, X) <ae (9‘])) |

00 00 00

which is equivalent in the limit to expression (3) given irc8en 2.2, as motivated in Remark 2(b).
Moreover, it follows from the delta method and Remark 2(cj tha normalized estimatGATE

is asymptotically normal. Here again, it is worth notingtttiee normal approximation would not
be accurate for relatively small sample sizes for copulamigebounded scope ok

S.4 Simulations

To assess the empirical effectiveness of the proposed wchathyy, we conducted a simulation
study. Following a reviewer’s suggestion, we used the figsliof Section 3 and employed a
smaller set of covariates and model settings to keep thg $tadible. In particular, we included
two binary variables and two continuous regressors in bdohreatment and outcome equations
with effects and covariate range values that were similaptae of those found in Sections 3.3.3
and 3.3.4. We also simulated the model errors using a Gumsieibdtion with low and high
dependence parametéet:was set to 1.18 (which is what we obtained in the case study)7an
Sample sizes were set to 5000 and 1000 and the number ofateyslio 250. The models employed
were Gaussian, Student-Frank, Clayton, Gumbel and Joe and their rotated versidmsRTode
used to simulate the data was

library(copul a)

teta <- 1.18 # or 7

n <- 5000 # or 10000
n.rep <- 250

12



my Cop

bi vg

u

x1
X2
X3
x4
x5
sl
s2
s3
s4
yl
y2

The models were fitted usin§em Par Bl VProbit (i st (eql, eq2),
eql andeqg2 were specified according to the simulatetl andy2 above, and was equal to
"N, T, UFE, " Co", " Cc9o", " ci8o0”, " Cc270", " JO", " J90", " J180","J270"," 0",
"@300", " GL80" and" &70". The sample average treatment effect (with interval olethioy
posterior simulation or delta method) for each replicatkfgted model was extracted usiAg ()

<-

<-

<- archmCopul a(famly = "gunbel", dim= 2, param= teta)

<- nvdc(copula = nyCop, c("nornf, "nornt),

list(list(mean = 0, sd = 1),
list(mean = 0, sd = 1)) )

r Mvdc(n, bivg)

runi f(n, 18, 66)

runi f(n, 10, 70)

runi f(n, 0, 20)

round(runif(n))

round(runif(n))

function(x) -0.2*xsin(pi/46xx)

function(x) -0.0004*(x+0.01*x"3)

function(x) 0.0006*exp(0.1xx)

function(x) 0.03*x

ifelse(0.7 + s1(x1) + s2(x2) + 0.6+x4 - 0.4*x5 + u[,1] > O,
ifelse(-1.5 - 0.18+yl + s3(x1) + s4(x3) - x4 + 0.75+x5 + u[,2] > O,

1, 0)

Bi vD=D), where

1,

from the packag&em Par Bl VPr obi t , whereas the information criteria were obtained using

Al C() andBI C() . For each model and case considered, we calculated thenpegeebias and

root mean squared error (RMSE) fﬁ/AT\E, coverage probabilities of the two types of intervals

for SATE, and proportions of times that the models were seteby A/C and BIC' over the
replicates. For each replicate, we also stored the estihateoth functions evaluated at 200
fixed values in the ranges of the respective covariates #igsenfarth & Kneib, 2011).

In Table 5, we have a total of four cases to which we refer to a2 Q&) = 1.18, n = 5000),
Case 24 = 1.18, n = 10000), Case 34 = 7, n = 5000) and Case 4/ = 7, n = 10000). In all
cases, the models which can only account for a negative depea do not obviously exhibit a
good performance. In Case 1, Gumjasloutperformed by Frank and Jgg although the biases
of these three models are negligible and the RMSEs do not.diffeCase 2, the performance
of all models but Gumbeglworsens indicating that as the sample size grows the camedel
tends to outperform the competing ones. In these two casehthice of the correct copula model
based on an empirical sample is extremely difficult and tlierination criteria are not able to
discriminate between GumbBednd some of the competing models. As explained in Sectia,3.3
in the presence of a low association the copula models erggyl similar distributions, hence
they can not be easily separated. In Case 3 and Case 4, theguiafevdel is Gumbel In these

instances, the association between the treatment andoetguations is strong which means that

it is easier to select the correct model as the different leopodels entail different distributions.
For instance, by comparing the Gaussian copula model (#ugitnal choice) to Gumbgkthe

13
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copula model used to simulate the data), the performandeedétter is superior in terms of both
bias and variability. This illustrates that erroneouslydeling the dependence affects the quantity
of interest (SATE) in terms of bias and efficiency. The engairicoverage probabilities of the
intervals for SATE calculated by posterior simulation amital method are essentially identical
and very close to the nomin@b% level when the bias is negligible; as the bias increases the
coverage worsens since the interval is centered on a biasetigstimate. Figure 4 shows the
estimated smooth functions associated to all replicaion€ase 3 (which seemed to be slightly
more challenging than the other cases as more iterations meded to achieve convergence).
Overall, the estimated curves recover the underlying fanstfairly well, with some exceptions

in which the estimated functions are rougher than they shioel

0.4

§1(X1)
0.0 0.2
g2(X2)
-0.5 0.0
| |

-1.0

-0.4
|

0.2 0.4
|

g3(X1)
g4(><3)
0.0

0.0

-04 -0.2

Figure 4: Estimated smooth functions fan(x1 ), s2(z2), ss(z1) andss(x3) obtained when employing the Gumpel
model for Case 3 (i.e = 7, n = 5000). Results are plotted on the scale of the linear predicfting. black lines in
each plot represent the estimated smooth functions froreglications, evaluated at 200 fixed values in the range of
the respective covariate. The true functions are repreddnt the red solid lines.
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aT

n = 5000 n = 10000
Bias (%) RMSE AIC (%) BIC(%) PS DM Bias(%) RMSE AIC (%) BIC (%) PS DM

Gaussian 1.3 0.009 12 13 094 095 15 0007 14 14 095 0.95
Studenty 4.0  0.010 5 4 094 095 41  0.008 4 3 094 0.95
Frank 0.3  0.010 8 9 095 096 05  0.007 7 7 094 0095
Clayton, =~ 0.8  0.009 11 10 095 095 1.2  0.007 0 1 095 094
Clayton, -12.7  0.011 7 7 082 080 -134  0.009 8 8  0.80 0.79

o Clayton,, -3.1  0.010 4 5 094 095 -33 0007 17 18 0.95 0.95
~ Clayton,, -13.4  0.011 3 4 081 080 -135 0.009 7 7 081 0.80
I Gumbe) 0.4 0010 16 15 095 095 04 0007 19 18 096 0.95
= Gumbel, -13.1 0011 0 1 081 082 -135  0.009 0 0 078 081
Gumbels, 22 0010 12 11 096 095 27  0.007 3 4 095 0.95
Gumbe};, -12.8  0.011 0 0 081 081 -135  0.009 0 0 080 0.79
Jog 37 0010 19 18 094 095 -40 0007 19 20 095 0.94
Joey -13.6  0.012 2 1 083 083 -136  0.009 1 0 081 0.80
Joqsg 0.2  0.009 1 2 095 094 07  0.007 1 0 095 0.94
Joerg 122 0011 0 0 082 080 -13.2  0.009 0 0 077 0.80
Gaussian  -82  0.022 17 16 091 092 -83 0021 14 14 091 0.90
Studenty -10.1  0.025 14 13 091 091 -103 0025 15 14 091 0.90
Frank 83 0.022 2 2 091 090 -83  0.021 3 3 090 0.90
Clayto,  -8.2  0.022 7 6 092 091 82 0021 4 4 090 0091
Clayton, -18.0  0.046 3 4 071 070 -17.9  0.046 2 2 070 0.71
Clayton,, -8.6  0.023 3 2 091 091 87 0022 15 16 091 0.92
'~ Clayton,, -180  0.046 3 3 071 072 -181 0.046 2 1 070 072
= Gumbe), -64 0019 19 20 092 093 -45 0016 25 24 093 0.94
Gumbel, -18.0  0.046 0 0 070 072 -180 0.046 0 1 070 0.72
Gumbels, -8.2  0.022 13 14 091 091 -82  0.021 2 1 090 091
Gumbel;, -18.0  0.046 0 0 071 070 -17.9  0.046 0 1 071 0.70
Jog 86 0023 16 15 092 091 -87 0022 18 17 0.92 0.92
Joey -18.0  0.046 0 0 071 073 -182 0.046 0 1 071 0.72
Joqsg 82  0.022 3 4 090 091 -81 0021 0 0 092 0091
Joerg -18.0  0.046 0 1 072 071 -180  0.046 0 0 171 0.70

Table 5: Percentage biases and RMSES/ﬁh;'ﬁE, percentage frequency at which each copula model iestsd byAIC and BIC and empirical coverage probabilities of the intervals
for SATE calculated by posterior simulation (PS) and delehuad (DM). Data were simulated using a Gumbel copula witlmab margins.
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