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Abstract

We introduce a framework for estimating the effect that a binary treatment has on a binary

outcome in the presence of unobserved confounding. The methodology isapplied to a case

study which uses data from the Medical Expenditure Panel Survey and whose aim is to esti-

mate the effect of private health insurance on health care utilization. Unobserved confounding

arises when variables which are associated with both treatment and outcome are not avail-

able (in economics this issue is known as endogeneity). Also, treatment and outcome may

exhibit a dependence which cannot be modeled using a linear measure of association, and

observed confounders may have a non-linear impact on the treatment andoutcome variables.

The problem of unobserved confounding is addressed using a two-equation structural latent

variable framework, where one equation essentially describes a binary outcome as a function

of a binary treatment whereas the other equation determines whether the treatment is received.

Non-linear dependence between treatment and outcome is dealt with by usingcopula func-

tions, whereas covariate-response relationships are flexibly modeled using a spline approach.

Related model fitting and inferential procedures are developed, and asymptotic arguments

presented.

Key Words: Bivariate binary outcomes; Copula; Endogeneity; Penalized regressionspline;

Simultaneous equation estimation; Unobserved confounding.

1 Introduction

Quantifying the effect of a non-randomly assigned treatment on an outcome is a challenging task

in observational studies. An approach to calculate such an effect is to match subjects on the

basis of observed features or the so-called propensity score, and then compute the treatment effect

∗r.radice.bbk@ac.uk
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as the difference between the observed responses of the matched subjects corresponding to the

levels of the treatment (e.g., Heckman et al., 1997; Rosenbaum & Rubin, 1983). However, this

method is only valid when the unobserved variables that influence the treatment are independent

of the outcome, conditional on the covariates in the model. We consider the situation in which the

researcher is interested in estimating the effect of a binary treatment on a binary outcome in the

presence of unobserved confounders (i.e., unknown or not readily quantifiable variables associated

with both treatment and outcome). In economics, this problem is commonly framed in terms of

a regression model from which important regressors have been omitted and hence become a part

of the model’s error term. In this context, the treatment is termed exogenous if it is not associated

with the error term after conditioning on the observed confounders, and endogenous otherwise. We

address this issue by specifying a simultaneous model for treatment and outcome; this route has

been previously taken by several scholars (e.g., Chib & Hamilton, 2002; Greene, 2012; Heckman,

1978; Maddala, 1983; Marra & Radice, 2011a). Other approaches are available to account for

unobserved confounding; see the detailed review of Clarke & Windmeijer (2012).

To fix ideas, let us consider a case study which uses data from the Medical Expenditure Panel

Survey (MEPS) and whose goal is to estimate the effect of having private health insurance on

the probability of using health care services. Private health insurance status, which is an important

determinant of the use of health care services, is a potentially endogenous variable. This is because

unobserved variables, such as allergy and risk aversiveness, are likely to influence both health

service utilization and private insurance decision. Sometimes the effect of private health insurance

can be interpreted as adverse selection or moral hazard (e.g., Buchmueller et al., 2005). Adverse

selection occurs when individuals with a greater demand formedical care, because of poor health

for instance, are expected to have a greater demand for insurance. Moral hazard refers to the

tendency of people to be more inclined to seek health services, and doctors to be more inclined

to refer them when all costs are covered. The matter is further complicated by the fact that the

effects of observed confounders, such as age and education,may be complex since they embody

productivity and life-cycle effects that are likely to influence private health insurance and health

care utilization non-linearly. If these relationships aremismodeled then the effect of insurance

on the probability of using health care services may be biased (e.g., Marra & Radice, 2011a).

Moreover, insurance status and health care utilization mayexhibit a non-Gaussian association

(Winkelmann, 2012).

Unobserved confounding can be controlled for by using the recursive bivariate probit model

(Heckman, 1978). This model controls for unobserved confounding by using a two-equation struc-

tural latent variable framework, where one equation essentially describes a binary outcome (e.g.,

health care utilization) as a function of a binary treatment(e.g., insurance coverage) whereas the

other equation determines whether the treatment is received. The model is completed by assum-

ing that the latent errors of the two equations follow a standard bivariate Gaussian distribution

with correlationθ; θ 6= 0 suggests that unobserved confounding is present, hence joint estimation

of the two equations is required. Some applications in economics and bio-statistics are provided

by Goldman et al. (2001), Jones et al. (2006), Gitto et al. (2006), Latif (2009), Kawatkar & Nichol
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(2009) and Li & Jensen (2011). The limitations of this model are, however, the inability to deal ef-

fectively with non-linear covariate effects and non-Gaussian dependencies between the treatment

and outcome equations. To model flexibly covariate-response relationships, Chib & Greenberg

(2007) and Marra & Radice (2011a) introduced Bayesian and likelihood estimation methods based

on penalized splines, respectively. To deal with the problem of non-Gaussian dependence between

treatment and outcome, Winkelmann (2012) discussed a modification of the recursive bivariate

probit that maintains the Gaussian assumption for the marginal distributions of the two equations

while introducing non-Gaussian dependence between them using the Frank and Clayton copulas.

The contribution of this article is twofold, one methodological and the other practical. First,

we extend the procedures discussed in Marra & Radice (2011a) and Winkelmann (2012) to make

it possible to deal simultaneously with unobserved confounding, non-linear covariate effects and

non-Gaussian dependencies between treatment and outcome.In particular, we generalize the pe-

nalized likelihood estimation approach based on the assumption of bivariate normality presented

in Marra & Radice (2011a) by allowing for non-Gaussian dependencies between the two model

equations; this is achieved by employing some classic copulas, such as Clayton, Frank, Gumbel

and Joe, and the rotated versions of Clayton, Gumbel and Joe. We also provide some theoretical ar-

gumentation related to the asymptotic behavior of the proposed estimator and the ensuing formula

to calculate the treatment effect. Second, we implement themethods discussed in this article in

theR packageSemiParBIVProbit (Marra & Radice, 2015). This can be particularly attractive

to practitioners who wish to fit such models. Swihart et al. (2014) and Genest et al. (2013) have

also adopted the copula paradigm to model multiple binary outcomes. One of the main contribu-

tions of the former article is to establish the connection between existing marginalized multilevel

models and copulas. The work by Genest et al. (2013) discusses models for vectors of binary out-

comes in the which the marginal distributions depend on covariates through logistic regressions

and the dependence structure is modeled through meta-elliptical copulas. Our approach does not

deal with multivariate binary outcomes, although it can be extended to this context. However, as

opposed to Swihart et al. (2014) and Genest et al. (2013), theproposed methodology can account

for non-linear covariate effects, and more importantly canmitigate the issue of endogeneity.

The rest of the paper is organized as follows. Section 2 mainly discusses the model structure,

parameter estimation, confidence intervals and variable selection. Section 3 applies the proposed

methodology to the MEPS data mentioned above, whereas Section 4 discusses the limitations of

the proposed framework and concludes with some future extensions. The online supplementary

material includes some of the details required to calculatethe asymptotic variance of the treat-

ment effect, details on the structure of the score vector andHessian matrix used in the algorithm,

asymptotic considerations related to the proposed estimator and the ensuing formula to calculate

the treatment effect, and the results of a simulation study.

3



2 Methods

2.1 Model definition

The focus is on a pair of random variables(y1i, y2i), for i = 1, . . . , n, whereyvi ∈ {0, 1}, v can

take values1 and2, andn represents the sample size. Variabley1i refers to the treatment and

y2i to the outcome. The observedyvi is determined by a latent continuous variabley∗vi such that

yvi = 1(y∗vi > 0), where1 is the classic indicator function. We assume thaty∗vi ∼ N (ηvi, 1) where

ηvi ∈ R is a linear predictor defined in the next section forv = 1, 2. The probability of event

(y1i = 1, y2i = 1) can be defined by using the copula representation (Sklar, 1959, 1973)

P(y1i = 1, y2i = 1) = C(P(y1i = 1),P(y2i = 1); θ),

whereP(yvi = 1) = Φ(ηvi), Φ(·) is the cumulative distribution function (cdf) of the standard

univariate Gaussian distribution,C is a two-place copula function andθ is an association parameter

measuring the dependence between the two marginalsP(y1i = 1) andP(y2i = 1). In other words,

the joint distribution is expressed in terms of marginal distributions and a functionC that binds

them together. A substantial advantage of the copula approach is that the marginal distributions

may come from different families. Note that the marginal cdfs are conditioned on covariates (see

the definition ofηvi in the next section), but for notational convenience we havesuppressed this

when expressing the marginal distributions. Some of the copulas considered are Clayton, Frank,

Gaussian, Gumbel, and Joe as well as the rotated versions of Clayton, Gumbel and Joe. Rotation

by 180 degrees leads to the survival copula (C180), while rotation by 90 (C90) and 270 degrees (C270)
allows for negative dependence which is not possible with the non-rotated and survival versions.

The copulas considered here are displayed in Figure 1. The counter-clockwise rotated versions

can be obtained using (e.g., Brechmann & Schepsmeier, 2013)

C90(ui, vi) = vi − C(1− ui, vi),

C180(ui, vi) = ui + vi − 1 + C(1− ui, 1− vi),

C270(ui, vi) = ui − C(ui, 1− vi),

whereui = P(y1i = 1) andvi = P(y2i = 1). The ranges ofθ for the copulas rotated by 90 and

270 degrees are on a negative scale; e.g., for Gumbel rotatedby 90 and 270 degreesθ has to be

smaller than−1. For full details on copulas and their properties see, for instance, Nelsen (2006).

The log-likelihood function for the recursive bivariate probit model can be expressed as

` =
n

∑

i=1

{y1iy2i log p11i + y1i(1− y2i) log p10i + (1− y1i)y2i log p01i + (1− y1i)(1− y2i) log p00i} ,

wherep11 = P(y1i = 1, y2i = 1), p10i = P(y1i = 1, y2i = 0) = P(y1i = 1)− P(y1i = 1, y2i = 1),

p01i = P(y1i = 0, y2i = 1) = P(y2i = 1) − P(y1i = 1, y2i = 1) andp00i = P(y1i = 0, y2i = 0) =

1− [P(y1i = 1) + P(y2i = 1)− P(y1i = 1, y2i = 1)].
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As it can be seen from Table 1,θ may be difficult to interpret in some cases. To this end,

the well known Kendall’sτ ∈ [−1, 1] can be utilized. Alternatively, Tajar et al. (2001) suggest

using the odds ratio and gamma measure proposed by Goodman & Kruskal (1954). These can be

defined asζ = p00p11/p10p01 andγ = ζ − 1/ζ + 1, respectively. The odds ratio has rangeR

whereasγ ∈ [−1, 1].

Clayton

 0.01 

 0.05 

 0.1 

 0.15 

 0.2 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Frank

 0.01 

 0.05 

 0.1 

 0.15 

 0.2 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Gaussian

 0.01 

 0.05 

 0.1 

 0.15 

 0.2 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Gumbel

 0.01 

 0.05 

 0.1 

 0.15 

 0.2 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Joe

 0.01 

 0.05 

 0.1 

 0.15 

 0.2 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Student−t

 0.01 

 0.05 

 0.1 

 0.15 

 0.2 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 1: Contour plots of some classic copula functions with standard normal margins for data simulated using
association parameters2, 5.74, 0.71, 2, 2.86, and0.71, respectively (these values are consistent with a medium
positive correlation). The Gaussian, Student-t (here withthree degrees of freedom) and Frank copulas allow for equal
degrees of positive and negative dependence. Gaussian and Frank show a weaker tail dependence as compared to
Student-t, and Frank exhibits a slightly stronger dependence in the middle of the distribution. Clayton is asymmetric
with a strong lower tail dependence but a weaker upper tail dependence. Vice versa for the Gumbel and Joe copulas.

2.1.1 Linear predictor specification

The linear predictor for the treatment equation can be written as

η1i = uT

1iα1 +

K1
∑

k1=1

s1k1(z1k1i), (1)

whereas that for the outcome as

η2i = ψy1i + uT

2iα2 +

K2
∑

k2=1

s2k2(z2k2i), (2)
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Copula Range ofθ θ∗
Clayton θ ∈ (0,∞) log(θ − ε)
Frank θ ∈ R\ {0} θ − ε
Gaussian/Student-tθ ∈ [−1, 1] tanh−1(θ)
Gumbel θ ∈ [1,∞) log(θ − 1)
Joe θ ∈ (1,∞) log(θ − 1− ε)

Table 1: Parameter range of dependence coefficientθ for some classic copula functions and transformations,θ∗, of θ
used in optimization. Quantityε is set to the machine smallest positive floating-point number multiplied by106 and
is used in some cases to ensure that the dependence parameters lie in their respective ranges.

whereψ is the effect of the treatment on the outcome on the scale of the linear predictor,uT

1i =

(1, u12i, . . . , u1P1i) is the ith row of U1 = (u11, . . . , u1n)
T, then × P1 model matrix containing

P1 parametric terms (e.g., intercept, dummy and categorical variables),α1 is a coefficient vec-

tor, and thes1k1 are unknown smooth functions of theK1 continuous covariatesz1k1i. Varying

coefficient models can be obtained by multiplying one or moresmooth terms by some predic-

tor(s) (Hastie & Tibshirani, 1993), and smooth functions oftwo or more covariates can also be

considered (Wood, 2006). Similarly,uT

2i = (1, u22i, . . . , u2P2i) is theith row vector of then × P2

model matrixU2 = (u21, . . . , u2n)
T, α2 is a parameter vector, and thes2k2 are unknown smooth

terms of theK2 continuous regressorsz2k2i. The smooth functions are subject to the centering

(identifiability) constraint
∑n

i=1 svkv(zvkvi) = 0 for v = 1, 2, kv = 1, . . . , Kv (Wood, 2006).

The smooth functions are represented using the regression spline approach (e.g., Ruppert et al.,

2003). Specifically,svkv(zvkvi) is approximated by a linear combination of known spline basis

functions,bvkvj(zvkvi), and regression parameters,βvkvj, i.e. svkv(zvkvi) =
∑Jvkv

j=1 βvkvjbvkvj(zvkvi) =

βT

vkv
Bvkv(zvkvi), whereJvkv is the number of spline bases used to representsvkv(·), Bvkv(zvkvi) is

the ith vector of dimensionJvkv containing the basis functions evaluated at the observation zvkvi,

i.e. Bvkv(zvkvi) =
{

bvkv1(zvkvi), bvkv2(zvkvi), . . . , bvkvJvkv (zvkvi)
}T

, andβvkv is the correspond-

ing parameter vector. EvaluatingBvkv(zvkvi) for eachi yieldsJvkv curves with different degrees

of complexity which multiplied by some value ofβvkv and then summed will give a (linear or

non-linear) estimate forsvkv(zvkv); see Ruppert et al. (2003) for a detailed overview. Basis func-

tions should be chosen to have convenient mathematical and numerical properties. We employ

low rank thin plate regression splines (Wood, 2003), although many spline definitions (includ-

ing B-splines and cubic regression splines) are supported inour implementation. Note that for

one-dimensional smooth functions, the choice of spline definition does not play a crucial role

in determining the shape of̂svkv(zvkvi) (Wood, 2006). The cases of smooth terms multiplied by

some covariate(s) and of smooths of more than one variable follow a similar construction; see

Wood (2006, Chapter 4) for full details. Linear predictors (1) and (2) can, therefore, be written as

η1i = uT

1iα1+BT

1iβ1 andη2i = ψy1i+uT

2iα2+BT

2iβ2, whereBT

vi =
{

Bv1(zv1i)
T, . . . ,BvKv

(zvKvi)
T
}

andβT

v = (βT

v1, . . . ,β
T

vKv
). After definingX1i = (uT

1i,B
T

1i)
T andX2i = (y1i, uT

2i,B
T

2i)
T, we have

η1i = XT

1iδ1 andη2i = XT

2iδ2 whereδT

1 = (αT

1 ,β
T

1 ) andδT

2 = (ψ,αT

2 ,β
T

2 ). Note that the presence

of a binary endogenous variable inη2i does not alter the log-likelihood function presented in the

previous section;P(y1i, y2i) can be written asP(y2i|y1i)P(y1i), hence its form does not change if
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η2i includesy1i.

To identify the parameters inη2i, it is typically assumed that an exclusion restriction on the

exogenous variables holds: the regressors in the treatmentequation should contain at least one or

more covariates (usually referred to as instruments) not included in the outcome equation. How-

ever, as shown for instance in Han & Vytlacil (2014), Marra & Radice (2011a) and Wilde (2000),

the presence of this restriction may not be necessary.

2.2 Sample average treatment effect

The effect ofy1i on the probability thaty2i = 1 is of primary interest. In other words, the aim

is to investigate how the treatment changes the expected outcome. Thus, the treatment effect is

given by the difference between the expected outcome with treatment and the expected outcome

without treatment. Different measures of treatment effecthave been proposed in the literature.

Here, we focus on the average treatment effect in the specificsample at hand, rather than that in

the population (SATE; Abadie et al., 2004). In our case, thiscan be defined as

SATE(δ,X) =
1

n

n
∑

i=1

P(y2i = 1|y1i = 1)− P(y2i = 1|y1i = 0),

where

P(y2i = 1|y1i = 1) =
C
(

Φ(η1i),Φ(η
(y1i=1)
2i ); θ

)

Φ(η1i)
,

P(y2i = 1|y1i = 0) =
Φ(η

(y1i=0)
2i )− C

(

Φ(η1i),Φ(η
(y1i=0)
2i ); θ

)

1− Φ(η1i)
,

the linear predictors are defined in the previous section,η
(y1i=r)
2i represents the linear predictor

evaluated aty1i = r for r equal to 1 or 0,δT = (δT

1 , δ
T

2 , θ), andX = (x1| . . . |xn)
T wherexi is

defined as(XT

1i,X
T

2i)
T. SATE(δ,X) can be estimated usingSATE(δ̂,X), whereas a confidence

interval for it can be obtained employing the delta method. Specifically, the appropriate estimator

of the asymptotic variance ofSATE(δ̂,X) is

∂SATE(δ,X)

∂δ

T

∣

∣

∣

∣

∣

δ=δ̂

Vδ

∂SATE(δ,X)

∂δ

∣

∣

∣

∣

δ=δ̂

, (3)

whereVδ is the covariance matrix ofδ defined in Section 2.4 and

∂SATE(δ,X)

∂δ
=

[

∂SATE(δ,X)

∂δ1

T

,
∂SATE(δ,X)

∂δ2

T

,
∂SATE(δ,X)

∂θ

]T

,

with elements defined in Section S.1 of the online supplementary material. Alternatively, Bayesian

posterior simulation can be employed (see Section 2.4).
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2.3 Parameter estimation

Since the range ofθ is bounded in most cases, we use a proper transformation of it, θ∗, and

defineδT

∗
= (δT

1 , δ
T

2 , θ∗), to ensure that in optimizationδ∗ ∈ Rp, wherep is the total number

of parameters; see Table 1 for ranges ofθ and the transformations employed. Let us denote the

log-likelihood for a given copula function as̀(δ∗). Given the flexible linear predictor structure

considered here, unpenalized estimation can result in smooth term estimates that are too rough to

produce practically useful results (e.g., Ruppert et al., 2003). This issue is dealt with by using a

penalty term, such as
∑2

v=1

∑Kv

kv=1 λvkv
∫ {

s′′vkv(zvkv)
}2
dzvkv for the one-dimensional case, which

measures the second-order roughness of the smooth terms in the model. Theλvkv are smoothing

parameters controlling the trade-off between fit and smoothness and can take values in[0,∞).

Since regression splines are linear in their model parameters, the overall penalty can be written as

βTSλβ whereβT = (βT

1 ,β
T

2 ), Sλ =
∑2

v=1

∑Kv

kv=1 λvkvSvkv and theSvkv are positive semi-definite

symmetric known square matrices expanded with zeros everywhere except for the elements which

correspond to the coefficients of thevkthv smooth term. The expressions for thebvkvj(zvkvi) and

Svkv depend on the type of spline employed and we refer the reader to Ruppert et al. (2003) and

Wood (2003, 2006) for these details. The function to maximize is

`p(δ∗) = `(δ∗)−
1

2
βTSλβ, (4)

where the penalty term can be written asδT

∗
S̃λδ∗/2 whereS̃λ is an overall penalty matrix defined

asdiag(0T

P1
, λ1k1S1k1 , . . . , λ1K1S1K1 , 0

T

P2
, λ2k2S2k2 , . . . , λ2K2S2K2 , 0) with 0T

Pv
= (0v1, . . . , 0vPv

).

2.3.1 Estimatingδ∗ given smoothing parameters

Given λ̂T = (λ̂1k1 , . . . , λ̂1K1 , λ̂2k2 , . . . , λ̂2K2), we seek to maximize (4). To this end, we use a

trust region approach which is generally more stable and faster than its line-search counterparts,

particularly for functions that are, for example, non-concave and/or exhibit regions that are close

to flat (Nocedal & Wright, 2006, Chapter 4). Leta be an iteration index. Intuitively speaking,

line search methods choose a direction to move fromma toma+1 and find the distance along that

direction which gives the best improvement in the objectivefunction. If the function is non-convex

or has long plateaus then the optimizer may search far away fromma but still choose anma+1 that

is close toma (hence offering a marginal improvement in the objective function). In some cases,

the function will be evaluated so far away fromma that it will not be finite and the algorithm will

fail. Trust region methods choose a maximum distance for themove fromma to ma+1 based on

a “trust region” aroundma that has a radius of that maximum distance, and then let a candidate

for ma+1 be the minimum of a quadratic approximation of the objectivefunction. Since points

outside of the trust region are not considered, the algorithm never runs too far and/or too fast from

the current iteration. The trust region is shrunken if the proposed point in the region is worse/not

better than the current point; the new problem with smaller region is then solved. If a point which is

close to the boundary of the trust region is accepted and it gives a large enough improvement in the

function then the region for the next iteration is expanded.If a point along a search path causes the
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objective function to be undefined or indeterminate, most implementations of line search methods

will fail and user intervention is required. In the trust region approach, the search forma+1 is

always a solution to the trust region problem; if the function atma+1 is not finite or not better

than the value atma then the proposal is rejected and the trust region shrunken.Finally, a line

search approach requires repeated estimation of the objective function, while trust region methods

evaluate the objective function only after solving the trust region problem. Hence, trust region

methods can be considerably faster when the objective function is expensive to compute. Full

details can be found in (Nocedal & Wright, 2006, Chapter 4).

Let us define the penalized gradient and Hessian at iterationa as g[a]
p = g[a] − S̃

λ̂
δ
[a]
∗ and

H
[a]
p = H

[a] − S̃
λ̂
, whereg[a] is made up ofg[a]

1 = ∂`(δ∗)/∂δ1|δ1=δ
[a]
1

, g[a]
2 = ∂`(δ∗)/∂δ2|δ2=δ

[a]
2

andg[a]3 = ∂`(δ∗)/∂θ∗|θ∗=θ
[a]
∗

, and the Hessian matrix has a3 × 3 matrix block structure with

(r, h)th elementH[a]
r,h = ∂2`(δ∗)/∂δr∂δ

T

h |δr=δ
[a]
r ,δh=δ

[a]
h

, r, h = 1, . . . , 3, whereδ3 = θ∗; details on

the structure ofg andH can be found in Section S.2 of the online supplementary material. Each

iteration of the trust region algorithm solves the problem

min
p

˘̀
p(δ

[a]
∗
)

def
= −

{

`p(δ
[a]
∗
) + pTg[a]

p +
1

2
pT

H
[a]
p p

}

so that ‖p‖ ≤ r[a],

δ[a+1]
∗

= arg min
p

˘̀
p(δ

[a]
∗
) + δ[a]

∗
,

where‖ · ‖ denotes the Euclidean norm andr[a] represents the radius of the trust region. At each

iteration of the algorithm,̆̀ p(δ
[a]
∗ ) is minimized subject to the constraint that the solution falls

within a trust region with radiusr[a]. The proposed solution is then accepted or rejected and the

trust region expanded or shrunken based on the ratio betweenthe improvement in the objective

function when going fromδ[a]
∗ to δ

[a+1]
∗ and that predicted by the quadratic approximation. The

exact details of the implementation used here can be found inGeyer (2013) who also discusses

numerical stability and termination criteria. Note that, near the solution, the trust region algorithm

typically behaves as a classic unconstrained algorithm.

2.3.2 Estimatingλ givenδ∗

If the model has more than one smooth term per equation, then estimation ofλ by direct grid search

optimization of, for instance, a prediction error criterion can be computationally burdensome. It

is therefore pivotal for practical modeling to estimateλ in an automatic way. There are many

techniques for automatic multiple smoothing parameter estimation within the penalized likelihood

framework; see Ruppert et al. (2003) and Wood (2006) for detailed overviews. (Note that joint

estimation ofδ∗ andλ via maximization of (4) would clearly lead to over-fitting since the highest

value of`p(δ∗) would be obtained when̂λ = 0.)

Let us definẽX =
(

X̃1| . . . |X̃n

)T

, whereX̃i = diag
{

XT

1i,X
T

2i, 1
}

with X1i andX2i defined in

Section 2.1.1,W[a] as a block diagonal matrix made up of3×3 matricesW[a]
i with (r, h)th element

given by−∂2`(δ∗)i/∂ηri∂ηhi|ηri=η
[a]
ri ,ηhi=η

[a]
hi

, r, h = 1, 2, 3, whereη3i = θ∗, andd[a] as a vector

9



with ith element given byd[a]
i =

{

∂`(δ∗)i/∂η1i|η1i=η
[a]
1i
, ∂`(δ∗)i/∂η2i|η2i=η

[a]
2i
, ∂`(δ∗)i/∂η3i|η3i=η

[a]
3i

}T

.

We then have thatg[a]
p = X̃

T

d[a] − S̃
λ̂
δ
[a]
∗ andH[a]

p = −X̃
T

W[a]X̃ − S̃
λ̂
. Let us use the fact that

close to convergence the trust region algorithm behaves as aclassic unconstrained algorithm and

assume thatδ[a+1]
∗ is a new updated guess. Applying a first order Taylor expansion tog[a+1]

p around

δ
[a]
∗ , setting the resulting expression to zero, and using the expressions above forg[a]

p andH[a]
p , we

find that

δ[a+1]
∗

= (X̃
T

W[a]X̃ + S̃
λ̂
)−1X̃

T

W[a]
z
[a],

wherez[a] =
(

W[a]
)−1

d[a] + X̃δ
[a]
∗ . Thusδ[a+1]

∗ is clearly the solution to the penalized iteratively

re-weighted least squares problem

arg min
δ∗

‖z+,[a] − X̃
+,[a]

δ∗‖2 + δT

∗
S̃
λ̂
δ∗,

wherez+,[a] =
√

W
[a]
z
[a] andX̃

+,[a]
=

√
W

[a]
X̃. In the derivation above,W[a] can also be taken to

be the expectation of minus the second derivatives of the log-likelihood with respect to the linear

predictors.

From standard likelihood theory,ε =
√

WW−1d has mean0 and covariance (identity) matrix

I, andz
+ = E (z+) + ε, whereE (z+) = µz+ =

√
WX̃δ0

∗
, δ0

∗
is the true parameter vector

andV (z+) = V (ε) = I. The predicted vector value forz+ is given byµ̂z+ = A
λ̂
z
+, where

Aλ =
√

WX̃(X̃
T

WX̃ + S̃
λ̂
)−1X̃

T√
W (known as influence matrix). Following the argumentation

in Wood (2006, Chapter 4),z+ will be normally distributed in the large sample limit. Now,the

smoothing parameters have to be estimated and since the estimated smooth functions should be

as close as possible to the respective true functions, it makes sense to estimateλ so thatµ̂z+ is as

close as possible toµz+. To this end, we employ the expected mean squared error of themodel,

which in this case is

E
(

‖µz+ − µ̂z+‖2/ň
)

= E
(

‖z+ − Aλz
+ − ε‖2

)

/ň

= E
(

‖z+ − Aλz
+‖2

)

/ň+ E
(

−εTε− 2εTµz+ + 2εTAλµz+ + 2εTAλε
)

/ň

= E
(

‖z+ − Aλz
+‖2

)

/ň− 1 + 2tr(Aλ)/ň,

whereň = 3n and tr(Aλ) represents the effective degrees of freedom (edf ) of the penalized model.

The smoothing parameter vector can be estimated by minimizing an estimate of the expectation

above, that is

V(λ) = ‖z+ − Aλz
+‖2/ň− 1 + 2tr(Aλ)/ň. (5)

This is equivalent to the expression of the Un-Biased Risk Estimator reported, for instance, in

Wood (2006, Chapter 4) as well as to the Akaike information criterion (AIC) after dropping

irrelevant constant. The latter equivalence can essentially be seen by noticing that the first term on

the right hand side of (5) is a quadratic approximation to−2`(δ̂∗) to within an additive constant.
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In practice, givenδ[a+1]
∗ , we solve the problem

λ[a+1] = arg min
λ

V(λ) def
= ‖z+,[a+1] − A[a+1]

λ
z
+,[a+1]‖2/ň− 1 + 2tr(A[a+1]

λ
)/ň (6)

using the automatic approach by Wood (2004), which is based on Newton’s method and can eval-

uate in an efficient and stable way the components inV(λ) and their first and second derivatives

with respect tolog(λ) (since the smoothing parameters can only take positive values). Broadly

speaking, this is achieved using a series of pivoted QR and singular value decompositions which

make the evaluation of the quantities involvingA[a+1]
λ

, for new trial values ofλ, cheap and deriva-

tive calculations efficient and stable; see Wood (2004) for full details.

2.3.3 Sketch of algorithm

The two steps, detailed in Sections 2.3.1 and 2.3.2, are iterated in a “performance iteration” fashion

(Gu, 2002) until the algorithm satisfies the stopping criterion max
∣

∣

∣
δ∗

[a] − δ∗
[a+1]

∣

∣

∣
< 10−6. The

steps can be summarized as follows:

step 1 For a given parameter vector valueδ[a]
∗ and holding the smoothing parameter vector fixed at

λ[a], find an estimate ofδ∗:

δ[a+1]
∗

= arg min
p

˘̀
p(δ

[a]
∗
) + δ[a]

∗
.

step 2 Construct the working linear model quantities needed in (6) usingδ[a+1]
∗ and find an estimate

of λ:

λ[a+1] = arg min
λ

V(λ).

A slight modification ofV(λ) is worth mentioning. If the estimated smoothing parametersyield

curve estimates that are deemed to be too rough and smoother functions are desired then the trace

of the influence matrix can be increased by a factor> 1. Kim & Gu (2004) found, in a different

context, that using as inflation factor of1.4 corrects the tendency to over-fitting of prediction error

criteria.

The asymptotic behavior of the proposed estimator and the ensuing formula to calculate the

treatment effect is detailed in Section S.3 of the online supplementary material.

2.4 Confidence intervals and variable selection

At convergence, the covariance matrix ofδ̂∗ can be written asV
δ̂∗

= −H
−1
p HH

−1
p . However, the

alternative Bayesian resultVδ∗ = −H
−1
p can be employed as well. For smooth functions, at finite

sample sizesVδ∗ can produce intervals with close to nominal ‘across-the-function’ frequentist

coverage probabilities (Marra & Wood, 2012). This is because the Bayesian covariance matrix

includes both a bias and variance component in a frequentistsense, a feature that is not shared

by V
δ̂∗

. Note that for unpenalized model componentsVδ∗ andV
δ̂∗

are equivalent. Recall that
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in (3) Vδ rather thanVδ∗ is needed. This can be easily obtained by usingθ in place ofθ∗ when

constructing the covariance matrix.

Point-wise confidence intervals forŝvkv(zvkvi) can be obtained using

N (svkv(zvkvi),Bvkv(zvkvi)
TVδ

∗vkv
Bvkv(zvkvi)), whereVδ

∗vkv
is the sub-matrix ofVδ∗ that corre-

sponds to the regression spline parameters associated withŝvkv(zvkvi). Intervals for non-linear

functions of the model coefficients (e.g.,θ, γ and SATE) can be conveniently obtained by simula-

tion from the posterior distribution ofδ∗ as follows:

step 1 Drawnsim random vectors fromN (δ̂∗, V̂δ∗).

step 2 Calculatensim simulated realizations of the function of interest. For instance, for a Gaussian

copulaθ = tanh(θ∗), henceθsim = (θsim1 , θsim2 , . . . , θsimnsim
) whereθsimi = tanh(θsim

∗,i ), i =

1, . . . , nsim.

step 3 Usingθsim calculate the lower, (ς/2), and upper,1− ς/2, quantiles.

Small values fornsim are typically tolerable. Parameterς is usually set to0.05.

Strictly speaking, point-wise confidence intervals for smooth components are not adequate

for variable selection purposes, although they are often used in practice (e.g., Ruppert et al.,

2003). To test smooth components for equality to zero we use the results by Wood (2013). Let

us definêsvkv = Bvkv(zvkv)β̂vkv , whereBvkv(zvkv) denotes a full column rank matrix,zvkv =

(zvkv1, zvkv2, . . . , zvkvn)
T andVsvkv = Bvkv(zvkv)Vδ

∗vkv
Bvkv(zvkv)

T. It is then possible to obtain

approximate p-values for testing smooth components for equality to zero based on

Trvkv = ŝTvkvVrvkv−
svkv

ŝvkvv̇χ
2
rvkv

,

whereVrvkv−
svkv

is the rankrvkv Moore-Penrose pseudo-inverse ofVsvkv , which is employed to deal

with possible rank deficiencies. Parameterrvkv is selected using the notion ofedf used in (6).

Becauseedf is not an integer, it can be rounded as follows (Wood, 2013)

rvkv =

{

floor(edfvkv) if edfvkv < floor(edfvkv) + 0.05

floor(edfvkv) + 1 otherwise
,

which proved effective in semiparametric bivariate probitmodels (Marra, 2013). Alternatively,

variable selection can be achieved by adopting a single penalty shrinkage approach as described

in Marra & Radice (2011a) and Marra & Wood (2011).

3 Analysis of health care utilization data

The analysis presented in this section was performed in theR environment (R Development Core Team,

2015) using the packageSemiParBIVProbit (Marra & Radice, 2015) which implements the

methodology discussed in this article.
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Variable Definition

Outcome
visits.hosp =1 at least one visit to hospital outpatient departments
Treatment
private =1 private health insurance
Demographic-socioeconomic
age age in years
gender =1 male
race =1 white, =2 black, =3 native American, =4 others
education years of education
income income (000’s)
region =1 northeast, =2 mid-west, =3 south, =4 west
Health-related
health =1 excellent, =2 very good, =3 good, =4 fair,=5 poor
bmi body mass index
diabetes =1 diabetic
hypertension =1 hypertensive on
hyperlipidemia =1 hyperlipidemic
limitation =1 health limits physical activity

Table 2: Description of the outcome and treatment variables, and observed confounders.

3.1 Data

We used a data-set from the 2012 MEPS (http://www.meps.ahrq.gov/) which includes

information on demographics, individual health status, health care utilization and private health

insurance coverage. We excluded individuals younger than 18 years old given their different

overall health profiles and expected usage patterns as compared to those of older individuals.

Individuals who were older than 64 years old were also excluded since the availability of Medicare

obviates the primary insurance decision for almost all US citizens. Individuals that did not have a

complete set of socioeconomic and demographic control variables were excluded from the sample

(e.g., missing values for education or income). After exclusions, the final data-set contains 10950

observations. Table 2 summarizes the variables used in the analysis. The choice of these variables

was motivated largely by the findings reported in previous related studies (e.g., Shane & Trivedi,

2012, and references therein).

3.2 Models

Following previous work on the subject (e.g., Holly et al., 1998; Shane & Trivedi, 2012), the equa-

tions for private health insurance and health care utilization were specified, inR notation, as

treat.eq <- private ~ as.factor(health) + as.factor(race) +

as.factor(region) + limitation + gender + diabetes +

hypertension + hyperlipidemia + s(bmi) + s(income) +

s(age) + s(education)

out.eq <- visits.hosp ~ private + as.factor(health) + as.factor(race) +

13
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as.factor(region) + limitation + gender + diabetes +

hypertension + hyperlipidemia + s(bmi) + s(income) +

s(age) + s(education)

whereas.factor coerces its argument to a factor and thes() symbols refer to the unknown

smooth functions described in Section 2.1.1. The smooth components were represented using pe-

nalized thin plate regression splines with basis dimensions equal to 20 and penalties based on

second order derivatives (Wood, 2006). In cross-sectionalstudies, 20 bases typically suffice to

represent well smooth functions, although sensitivity analysis using more spline bases is advis-

able when the effective degrees of freedom of the smooth components are close to the number

of bases used. We also used two alternative spline definitions (i.e., B-splines with second order

difference penalties and cubic regression splines with second order penalties); the resulting esti-

mated curves did not change significantly as compared to those obtained using thin plate splines.

The non-linear specification forbmi, income, age andeducation arises from the fact that

these covariate embody productivity and life-cycle effects that are likely to affect the treatment and

outcome non-linearly. In fact, in related studies, Holly etal. (1998) considered a model for health

care utilization that contains linear and quadratic terms in bmi, income, age andeducation

whereas Marra & Radice (2011b) specified a model containing smooth functions of them. Consid-

ering all copulas discussed in Section 2.1, and including the case in which the outcome equation

is estimated alone (this will be referred to as Independent), we fitted 19 copula models. Based

on theAIC and Bayesian information criterion (BIC) reported in Table 3 the preferred models

are the Gaussian, Gumbel0, Clayton180 and Joe0. After applying the Vuong (Vuong, 1989) and

Clarke (Clarke & Windmeijer, 2012) tests to the four models, itemerged that the Vuong test can

not discriminate among the models whereas the Clarke test favors Gumbel0 over the others.

3.3 Empirical results

3.3.1 Measure of dependence

We start off by commenting on the results for the dependence measures of all models fitted (see

Table 3). These represent the association between the unobserved confounders after controlling

for observed confounders. Overall, the models withoutAIC/BIC support, which account for

a negative dependence, indicate absence of association between the two equations with intervals

which either span all plausible (negative) values forγ/τ or collapse to their point estimates. This

behavior is typically observed when the data are inconsistent with the restrictions on the range

of the dependence parameter, case in which model misspecification should be strongly suspected

(e.g., Trivedi & Zimmer, 2005). The models withAIC/BIC support, which account for a posi-

tive dependence, do not exhibit such a behavior and suggest alow association. Interestingly, the

small yet significant dependence parameters obtained for Gumbel0 indicates that there exists some

positive association between the unstructured terms of themodel equations for private health insur-

ance and hospital utilization which is most likely due to thepresence of unobserved confounders.

This positive relationship suggests that individuals withprivate health coverage are more likely to
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use health care services as compared to those without coverage.

3.3.2 SATE of private health insurance

The estimated SATE (in%) and confidence interval (CI) for all fitted copula models are reported

in Table 3. The Table also reports the estimated SATE for the case in which the unobserved

confounding issue is not taken into account (Independent).Several points are worth noting.

• The chosen models (Gaussian, Gumbel0, Clayton180 and Joe0, which account for a positive

dependence) show similar point estimates with overlappingCIs. The models that account

for a negative dependence (which have noAIC/BIC support) exhibit estimates that are

systematically smaller than those produced by the preferred models (and that produced by

the Independent model). As pointed out in the previous section, the negative dependence

models have estimated dependence parameters that are on theboundary of their parameter

spaces, hence suggesting that these models are not supported by the data.

• If the presence of unobserved confounders is not accounted for then the estimated SATE is

smaller (4.11%) than that obtained using the chosen models which can control for this issue

(around4.56%). Based on these estimates the direction of the bias appears to be downward.

This result seems counter-intuitive in the sense that if we assume that possible confounders

are allergy and risk aversiveness, then an upward bias should be expected (individuals with

a greater demand for medical care are expected to have a greater demand for insurance).

The explanation behind this apparent contradiction is thatemployer-provided insurance is

generally limited to full-time workers and is positively related to the worker’s income. The

empirical evidence indicates that workers who are in poorerhealth are less likely to obtain

employer-sponsored coverage (e.g., Buchmueller et al., 2005).

• Using the Gaussian copula the estimated SATE is4.61%, which does not really differ from

those obtained using the other supported copula models. This is most likely due to the low

association observed. Whenγ/τ → 0 the copula models converge to the normal product

distribution, case in which all copulas entail very similardistributions. As shown in simula-

tion (see Section S.4 of the online supplementary material), larger differences are likely to

be observed when the association between the treatment and outcome equations is stronger.

In such a scenario, different copulas would entail different distributions (as shown in Figure

1), hence the use of the appropriate copula model can make a difference.

3.3.3 Parametric components

We report the estimated effects for the Gumbel0 copula model. Similar results where obtained

using the other preferred models (these are available upon request).

Most of these effects have the expected signs. Regardinggender, females are slightly more

likely of being hospitalized than males. This may be explained by a higher demand for medical

services among women during their reproductive years (e.g., Sindelar, 1982). As forrace, there

is not a significant difference between whites and nonwhitesin terms of purchasing private health
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Copula ŜATE (95% CIs) γ̂ (95% CIs) τ̂ (95% CIs) AIC BIC

Independent 4.11 (0.75,7.48) - - 17628.02 18116.06
Gaussian 4.61 (3.15,6.06) 0.39 (0.03,0.64) 0.13 (0.003,0.25) 17621.97 18070.06
Student-t3 4.81 (3.26,6.36) 0.61 (0.38,0.74) 0.34 (0.22,0.45) 17640.29 18085.16
Student-t6 4.56 (2.95,6.16) 0.48 (0.15,0.71) 0.21 (0.08,0.35) 17628.08 18075.64
Student-t9 4.53 (2.95,6.10) 0.44 (0.12,0.74) 0.18 (0.03,0.30) 17624.51 18071.92
Student-t12 4.53 (2.98,6.08) 0.40 (0.07,0.71) 0.16 (0.04,0.29) 17623.01 18070.49
Frank 4.30 (2.92,5.69) 0.29 (0.00,0.55) 0.13 (0.001,0.25) 17622.32 18070.02
Clayton0 3.98 (2.62,5.35) 0.11 (0.01,0.73) 0.03 (0.003,0.27) 17624.37 18075.35
Clayton90 3.97 (2.44,5.49) 0 (-1,0) 0 (-1,0) 17670.23 18263.54
Clayton180 4.52 (3.08,5.96) 0.17 (0.064,0.45) 0.09 (0.03,0.24) 17622.57 18072.41
Clayton270 3.98 (2.21,5.76) 0 (-1,0) 0 (-1,0) 17624.94 18081.31
Gumbel0 4.62 (3.17,6.08) 0.29 (0.09,0.63) 0.13 (0.05,0.31) 17621.05 18069.71
Gumbel90 3.96 (2.42,5.51) 0 (0,0) 0 (0,0) 17672.95 18261.34
Gumbel180 4.02 (2.64,5.40) 0.10 (0.01,0.64) 0.03 (0.001,0.34) 17624.42 18076.04
Gumbel270 3.96 (2.19,5.74) 0 (0,0) 0 (0,0) 17664.94 18280.32
Joe0 4.50 (3.06,5.95) 0.16 (0.04,0.48) 0.09 (0.03,0.26) 17622.66 18072.62
Joe90 3.96 (2.58,5.34) 0 (-1,0) 0 (-1,0) 17670.94 18287.37
Joe180 3.97 (2.62,5.33) 0.04 (0.00,0.80) 0.01 (0,0.54) 17624.76 18079.31
Joe270 3.96 (2.26,5.67) 0 (-1,0) 0 (-1,0) 17669.94 18291.33

Table 3: Estimated SATE (in%), gamma measureγ, Kendall’s τ , AIC andBIC obtained using different copula
models for the 2012 MEPS data. 95% confidence intervals for the SATE have been obtained using the delta method
detailed in Section 2.2, and those forγ andτ using Bayesian posterior simulation as described in Section 2.4. For the
Independent model the information criteria have been calculated assuming that the treatment and outcome equations
are not associated.

insurance but there is some difference in terms of being hospitalized; black individuals seem to be

less likely to use health care services as compared to whites. This is consistent with the findings

by Shane & Trivedi (2012). Regardingregion, residents of the Midwest are more likely to

have a private insurance and to use health care services as compared to those of the Northeast.

Individuals’ evaluation of theirhealth states is a potential predictor of health care utilization.

Those who are in good health are less likely to access health care services. In the same vein,

those who expect themselves to be in good health have little to gain from insurance while those

who are in poor health are more likely to purchase health insurance. The results for the hospital

utilization equation support this hypothesis indicating that the less healthy individuals are, the

more likely they are to be admitted into hospitals. The positive relationship between self-assessed

health and insurance purchase is counter-intuitive to the hypothesis of moral hazard and adverse

selection. However, such finding is not unusual and has been obtained in several previous studies

(see Srivastava & Zhao, 2008, and references therein). The more objective measures of health

status (i.e.,diabetes, hypertension andhyperlipidemia) suggest that medical need

is an important determinant of hospital utilization and insurance purchase.

3.3.4 Non-parametric components

Figures 2 and 3 report the smooth function estimates for the treatment and outcome equations (and

associated intervals) when applying the Gumbel0 model on the MEPS data. The estimated smooth
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Treatment Eq. Outcome Eq.
Variable Parameter estimate Std. error Parameter estimate Std. error
gender -0.02 0.03 -0.37 0.03
race=2 -0.00 0.04 -0.08 0.04
race=3 0.04 0.15 0.35 0.16
race=4 -0.04 0.05 -0.17 0.07
region=2 0.24 0.05 0.16 0.06
region=3 0.06 0.04 -0.22 0.05
region=4 0.01 0.04 -0.37 0.06
health=2 0.04 0.04 0.10 0.05
health=3 -0.11 0.04 0.33 0.05
health=4 -0.27 0.06 0.48 0.07
health=5 -0.39 0.09 0.67 0.10
diabetes 0.12 0.06 0.06 0.06
hypertension 0.09 0.04 0.09 0.04
hyperlipidemia 0.17 0.04 0.9 0.04
limitation 0.05 0.06 -0.49 0.06

Table 4: Estimated coefficients and standard errors of the parametric components of the Gumbel0 model.
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Figure 2: Smooth function estimates and associated95% point-wise confidence intervals in the treatment equation
obtained by applying the Gumbel0 regression spline model on the 2012 MEPS data. Results are plotted on the scale
of the linear predictor. The jittered rug plot, at the bottomof each graph, shows the covariate values. The numbers
in brackets in the y-axis captions are the effective degreesof freedom of the smooth curves. P-values for the smooth
terms ofbmi, income, age andeducation are0.271, < 0.000, < 0.000 and< 0.000, respectively.
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Figure 3: Smooth function estimates and associated 95% point-wise confidence intervals in the outcome equation
obtained by applying the Gumbel0 regression spline model on the 2012 MEPS data. Results are plotted on the scale
of the linear predictor. P-values for the smooth terms ofbmi, income, age andeducation are0.849, 0.01,
< 0.000 and< 0.000, respectively.

functions obtained using the other copula models (not reported here but available upon request)

were similar.

The effects ofbmi, income, age andeducation in the treatment and outcome equations

show different degrees of non-linearity. The point-wise confidence intervals of the smooth func-

tions forbmi in the treatment and outcome equations contain the zero linefor the whole range

of the covariate values. The intervals of the smooth forincome in the outcome equation contain

the zero line for most of the covariate value range. This suggests thatbmi is a weak predictor of

private health insurance and health care utilization, and thatincome might not be an important

determinant of hospital utilization. Similar conclusionscan be drawn by looking at the p-values

reported in the captions of Figures 2 and 3. As for the remaining variables, the estimated effects

have the expected patterns. For example,age is a significant determinant in both equations. The

probability of purchasing a private health insurance is found to increase withage. This is sug-

gestive of a higher probability of private health insurancepurchase as individuals become older

and less likely to stay healthy (e.g., Hopkins & Kiddi, 1996). The probability of using health care

services also increases withage. Insurance decision as well as health care utilization appear to

be highly associated witheducation. Education is likely to increase individuals’ awareness of

health care services and the benefits of purchasing a privatehealth insurance. Higher household

income is associated with an increased probability of purchasing a private health insurance.

It is worth noting that the parametric and non-parametric estimated effects for the outcome
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equation reported here should be interpreted in a qualitative way only. The actual effects can be

calculated by using simulation or by adapting the formulas of Greene (2012) to the current context.

This would account for the fact that the confounders appearing in the treatment equation have an

indirect effect (through the endogenous variable) on the outcome and a direct effect because they

also appear in the outcome equation.

4 Discussion

We have introduced a framework which can allow researchers to estimate the effect that a binary

treatment has on a binary variable in the presence of unobserved confounding, non-linear covariate

effects and non-Gaussian dependencies between the treatment and outcome equations. We have

provided inferential tools for this framework and presented some argumentation related to the

asymptotic behavior of the proposed penalized maximum likelihood estimator and the ensuing

sample average treatment effect. We have also developed thenecessary computational procedures

which are incorporated in theR packageSemiParBIVProbit (Marra & Radice, 2015).

Using the proposed approach, we have examined the effect of private health insurance on

health care utilization using the 2012 MEPS data-set. Thereis a generally accepted notion that

private health coverage is affected by endogeneity as it is not randomly assigned as in a controlled

trial but rather is the result of individual preferences andhealth status, such as allergy and risk

aversiveness. Also, the impacts of continuous confounderssuch as age and education are likely

to be complex since they embody productivity and life-cycleeffects that are likely to influence

non-linearly private health insurance and health care utilization. Finally, insurance and health care

utilization may exhibit a non-Gaussian dependence. To our knowledge, no studies have exam-

ined the impact of private health coverage accounting for endogeneity, non-linear contributions of

observed confounders and non-Gaussian dependence betweeninsurance and health care utiliza-

tion, partly due to the lack of appropriate analytical and computational tools. By applying the

introduced statistical framework to the 2012 MEPS data we found that not accounting for the en-

dogeneity issue underestimates the effect of private health insurance and that some of the observed

confounder effects are non-linear. We also found that the Gaussian, Gumbel0, Clayton180 and Joe0
models were equally supported. This was due to the low yet significant association observed be-

tween the treatment and outcome equations, case in which thecopula models entail very similar

distributions. However, as shown in simulation, the use of the appropriate copula model may make

a difference when the association between the two equationsis strong.

Since marginal distributions other than Gaussian may be plausible in applications, we explored

the possibility of modeling the margins using skew probit links derived from the standard skew-

normal distribution by Azzalini (1985) as well as the power probit and reciprocal power probit

links discussed by Bazan et al. (2010). We opted for these links as they include the probit link

as special case and have desirable mathematical properties. The use of these approaches did not

lead to SATE results different from those reported in Table 3. Moreover, the convergence of the

algorithm slowed down considerably and sometimes it was notpossible to find a solution. As
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pointed out by Azzalini & Arellano-Valle (2013), in the simpler context of continuous outcome

variables, having a parameter which regulates the distribution’s skewness enjoys attractive formal

properties from the probability point of view. However, a practical problem in applications is the

possibility that the maximum likelihood estimate of the skewness parameter diverges. That is,

the profile log-likelihood for the skewness coefficient may be flat in a non-negligible portion of

situations. This issue has vanishing probability for increasing sample size, but for finite samples it

occurs with non-negligible probability.

A limitation of the copulas employed in this article is that they are exchangeable (Durante,

2009; Frees & Valdez, 1998; Nelsen, 2007). In the context of our case study, this means that the

probability of (not) having private health insurance conditionally to the usage (or not) of health

care services is equal to the probability of using (or not) health care services knowing that a

private health insurance can (not) be used. Following the approach detailed in Frees & Valdez

(1998), we employed the copulaCκ1,κ2(u, v) = u1−κ1v1−κ2C(uκ1 , vκ2), 0 < κ1, κ2 < 1, which has

the property of includingC as a limiting case. We encountered the same issues mentionedabove,

even when using a model with a small number of covariates and without smooth functions.

An interesting avenue for future research includes the use of semi- and non-parametric copula

approaches. These would allow the margins and/or the copulato be estimated non-parametrically

using, for instance, smoothing methods such as kernels, wavelets and orthogonal polynomials.

Broadly speaking, if the specification of the model for the margins and copula is correct, then the

parametric approach will outperform semi- and non-parametric methods; however, the reverse will

be true under misspecification. Without any valuable prior information, semi- and non-parametric

techniques should be favored as they will be more flexible in determining the shape of the under-

lying distribution. However, in practice, such techniquesare typically limited with regard to the

inclusion of a large set of covariates, may require the imposition of restrictions on the functions ap-

proximating the underlying distribution and may be computationally demanding (e.g., Deheuvels,

1981a,b; Genest et al., 1995; Tutz & Petry, 2013). While a fully parametric copula approach is

less flexible than semi- and non-parametric approaches, it is computationally more feasible and it

still allows the user to assess the sensitivity of results todifferent modeling assumptions.

Another interesting extension would be to consider trivariate system models, controlling for

the endogeneity of the treatment and for non-random sample selection in the outcome (e.g.,

Srivastava & Zhao, 2008). Finally, a future release ofSemiParBIVProbit will allow the user

to model the copula parameter as a function of a linear predictor to allow for different degrees of

endogeneity across observations; the theoretical and computational framework remains essentially

unchanged.
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Supplementary material to “Copula regression

spline models for binary outcomes”

S.1 Derivatives ofSATE(δ,X) with respect toδ

The components in∂SATE(δ,X)/∂δ that are referred to in Section 2.2 are given below.

∂SATE(δ,X)

∂δ1
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1

n

n
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∂SATE(δ,X)
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and

∂SATE(δ,X)
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=

1

n

n
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∂
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The quantities inside the square brackets of (7), (8) and (9)can be written as

{
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and
∂C(Φ(η1i),Φ(η2i);θ)

∂θ

Φ(η1i)

∣

∣

∣

∣

∣

y1i=1

+
∂C(Φ(η1i),Φ(η2i);θ)

∂θ

1− Φ(η1i)

∣

∣

∣

∣

∣

y1i=0

,

wherehv = ∂C(Φ(η1i),Φ(η2i); θ)/∂Φ(ηvi), v can take values1 and2, φ(·) is the density function

of the standard univariate Gaussian distribution, and all the other quantities are defined in Section

2.
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S.2 Gradient and Hessian ofδ∗

Recall thatC
(

Φ(η1i),Φ(η
(y1i=1)
2i ); θ

)

= P(y1i = 1, y2i = 1) and the probabilities for the other

three events defined in Section 2.1. Also, recall from Section 2.3 thatδT

∗
= (δT

1 , δ
T

2 , θ∗). The

quantitiesg andH that are referred to in Section 2.3.1 are given below.
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and∂θ/∂θ∗ can be obtained using the transformations in Table 1.
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Hessian
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∂2P(y1i = 1, y2i = 1)

∂δ1∂δT

1

,

∂2P(y1i = 0, y2i = 1)

∂δ1∂δT

1

= −∂
2P(y1i = 1, y2i = 1)

∂δ1∂δT

1

,

∂2P(y1i = 0, y2i = 0)

∂δ1∂δT

1

= −∂
2P(y1i = 1, y2i = 0)

∂δ1∂δT

1

.

H2,2 =
∂2`(δ∗)

∂δ2∂δT

2

=
n

∑

i=1











y1iy2i

∂2P(y1i=1,y2i=1)

∂δ2∂δT2
P(y1i = 1, y2i = 1)−

[

∂P(y1i=1,y2i=1)
∂δ2

]2

[P(y1i = 1, y2i = 1)]2

+ y1i(1− y2i)

∂2P(y1i=1,y2i=0)

∂δ2∂δT2
P(y1i = 1, y2i = 0)−

[

∂P(y1i=1,y2i=0)
∂δ2

]2

[P(y1i = 1, y2i = 0)]2

+ (1− y1i)y2i

∂2P(y1i=0,y2i=1)

∂δ2∂δT2
P(y1i = 0, y2i = 1)−

[

∂P(y1i=0,y2i=1)
∂δ2

]2

[P(y1i = 0, y2i = 1)]2

+ (1− y1i)(1− y2i)

∂2P(y1i=0,y2i=0)

∂δ2∂δT2
P(y1i = 0, y2i = 0)−

[

∂P(y1i=0,y2i=0)
∂δ2

]2

[P(y1i = 0, y2i = 0)]2











,
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where

∂2P(y1i = 1, y2i = 1)

∂δ2∂δT

2

=
∂h2
∂δ2

φ(η2i)X2i − h2φ(η2i)η2iXT

2iX2i,

∂2P(y1i = 1, y2i = 0)

∂δ2∂δT

2

= −∂
2P(y1i = 1, y2i = 1)

∂δ2∂δT

2

,

∂2P(y1i = 0, y2i = 1)

∂δ2∂δT

2

= −φ(η2i)η2iXT

2iX2i −
∂2P(y1i = 1, y2i = 1)

∂δ2∂δT

2

,

∂2P(y1i = 0, y2i = 0)

∂δ2∂δT

2

= −∂
2P(y1i = 0, y2i = 1)

∂δ2∂δT

2

.

H3,3 =
∂2`(δ∗)

∂θ2
∗

=
n

∑

i=1











y1iy2i

∂2P(y1i=1,y2i=1)
∂θ2

∗

P(y1i = 1, y2i = 1)−
[

∂P(y1i=1,y2i=1)
∂θ∗

]2

[P(y1i = 1, y2i = 1)]2

+ y1i(1− y2i)

∂2P(y1i=1,y2i=0)
∂θ2

∗

P(y1i = 1, y2i = 0)−
[

∂P(y1i=1,y2i=0)
∂θ∗

]2

[P(y1i = 1, y2i = 0)]2

+ (1− y1i)y2i

∂2P(y1i=0,y2i=1)
∂θ2

∗

P(y1i = 0, y2i = 1)−
[

∂P(y1i=0,y2i=1)
∂θ∗

]2

[P(y1i = 0, y2i = 1)]2

+ (1− y1i)(1− y2i)

∂2P(y1i=0,y2i=0)
∂θ2

∗

P(y1i = 0, y2i = 0)−
[

∂P(y1i=0,y2i=0)
∂θ∗

]2

[P(y1i = 0, y2i = 0)]2











,

where

∂2P(y1i = 1, y2i = 1)

∂θ2
∗

=
∂2C(Φ(η1i),Φ(η2i); θ)

∂θ2
∗

,

∂2P(y1i = 1, y2i = 0)

∂θ2
∗

= −∂
2P(y1i = 1, y2i = 1)

∂θ2
∗

,

∂2P(y1i = 0, y2i = 1)

∂θ2
∗

= −∂
2P(y1i = 1, y2i = 1)

∂θ2
∗

,

∂2P(y1i = 0, y2i = 0)

∂θ2
∗

=
∂2P(y1i = 1, y2i = 1)

∂θ2
∗

.
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H1,2 =
∂2`(δ∗)

∂δ1∂δT

2

=
n

∑

i=1







y1iy2i

∂2P(y1i=1,y2i=1)

∂δ1∂δT2
P(y1i = 1, y2i = 1)− ∂P(y1i=1,y2i=1)

∂δ1

∂P(y1i=1,y2i=1)
∂δ2

[P(y1i = 1, y2i = 1)]2

+ y1i(1− y2i)

∂2P(y1i=1,y2i=0)

∂δ1∂δT2
P(y1i = 1, y2i = 0)− ∂P(y1i=1,y2i=0)

∂δ1

∂P(y1i=1,y2i=0)
∂δ2

[P(y1i = 1, y2i = 0)]2

+ (1− y1i)y2i

∂2P(y1i=0,y2i=1)

∂δ1∂δT2
P(y1i = 0, y2i = 1)− ∂P(y1i=0,y2i=1)

∂δ1

∂P(y1i=0,y2i=1)
∂δ2

[P(y1i = 0, y2i = 1)]2

+ (1− y1i)(1− y2i)

∂2P(y1i=0,y2i=0)

∂δ1∂δT2
P(y1i = 0, y2i = 0)− ∂P(y1i=0,y2i=0)

∂δ1

∂P(y1i=0,y2i=0)
∂δ2

[P(y1i = 0, y2i = 0)]2







,

where

∂2P(y1i = 1, y2i = 1)

∂δ1∂δT

2

=
∂h1
∂δ2

φ(η1i)X1i,

∂2P(y1i = 1, y2i = 0)

∂δ1∂δT

2

= −∂
2P(y1i = 1, y2i = 1)

∂δ1∂δT

2

,

∂2P(y1i = 0, y2i = 1)

∂δ1∂δT

2

= −∂
2P(y1i = 1, y2i = 1)

∂δ1∂δT

2

,

∂2P(y1i = 0, y2i = 0)

∂δ1∂δT

2

=
∂2P(y1i = 1, y2i = 1)

∂δ1∂δT

2

.

H1,3 =
∂2`(δ∗)

∂δ1∂θ∗
=

n
∑

i=1

{

y1iy2i

∂2P(y1i=1,y2i=1)
∂δ1∂θ∗

P(y1i = 1, y2i = 1)− ∂P(y1i=1,y2i=1)
∂δ1

∂P(y1i=1,y2i=1)
∂θ∗

[P(y1i = 1, y2i = 1)]2

+ y1i(1− y2i)

∂2P(y1i=1,y2i=0)
∂δ1∂θ∗

P(y1i = 1, y2i = 0)− ∂P(y1i=1,y2i=0)
∂δ1

∂P(y1i=1,y2i=0)
∂θ∗

[P(y1i = 1, y2i = 0)]2

+ (1− y1i)y2i

∂2P(y1i=0,y2i=1)
∂δ1∂θ∗

P(y1i = 0, y2i = 1)− ∂P(y1i=0,y2i=1)
∂δ1

∂P(y1i=0,y2i=1)
∂θ∗

[P(y1i = 0, y2i = 1)]2

+ (1− y1i)(1− y2i)

∂2P(y1i=0,y2i=0)
∂δ1∂∂θ∗

P(y1i = 0, y2i = 0)− ∂P(y1i=0,y2i=0)
∂δ1

∂P(y1i=0,y2i=0)
∂θ∗

[P(y1i = 0, y2i = 0)]2

}

,
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where

∂2P(y1i = 1, y2i = 1)

∂δ1∂θ∗
=
∂h1
∂θ∗

φ(η1i)X1i,

∂2P(y1i = 1, y2i = 0)

∂δ1∂θ∗
= −∂

2P(y1i = 1, y2i = 1)

∂δ1∂θ∗
,

∂2P(y1i = 0, y2i = 1)

∂δ1∂θ∗
= −∂

2P(y1i = 1, y2i = 1)

∂δ1∂θ∗
,

∂2P(y1i = 0, y2i = 0)

∂δ1∂θ∗
=
∂2P(y1i = 1, y2i = 1)

∂δ1∂θ∗
.

H2,3 =
∂2`(δ∗)

∂δ2∂θ∗
=

n
∑

i=1

{

y1iy2i

∂2P(y1i=1,y2i=1)
∂δ2∂θ∗

P(y1i = 1, y2i = 1)− ∂P(y1i=1,y2i=1)
∂δ2

∂P(y1i=1,y2i=1)
∂θ∗

[P(y1i = 1, y2i = 1)]2

+ y1i(1− y2i)

∂2P(y1i=1,y2i=0)
∂δ2∂θ∗

P(y1i = 1, y2i = 0)− ∂P(y1i=1,y2i=0)
∂δ2

∂P(y1i=1,y2i=0)
∂θ∗

[P(y1i = 1, y2i = 0)]2

+ (1− y1i)y2i

∂2P(y1i=0,y2i=1)
∂δ2∂θ∗

P(y1i = 0, y2i = 1)− ∂P(y1i=0,y2i=1)
∂δ2

∂P(y1i=0,y2i=1)
∂θ∗

[P(y1i = 0, y2i = 1)]2

+ (1− y1i)(1− y2i)

∂2P(y1i=0,y2i=0)
∂δ2∂∂θ∗

P(y1i = 0, y2i = 0)− ∂P(y1i=0,y2i=0)
∂δ2

∂P(y1i=0,y2i=0)
∂θ∗

[P(y1i = 0, y2i = 0)]2

}

,

where

∂2P(y1i = 1, y2i = 1)

∂δ2∂θ∗
=
∂h2
∂θ∗

φ(η2i)X2i,

∂2P(y1i = 1, y2i = 0)

∂δ2∂θ∗
= −∂

2P(y1i = 1, y2i = 1)

∂δ2∂θ∗
,

∂2P(y1i = 0, y2i = 1)

∂δ2∂θ∗
= −∂

2P(y1i = 1, y2i = 1)

∂δ2∂θ∗
,

∂2P(y1i = 0, y2i = 0)

∂δ2∂θ∗
=
∂2P(y1i = 1, y2i = 1)

∂δ2∂θ∗
.

The expressions for∂C(Φ(η1i),Φ(η2i); θ)/∂θ∗, ∂2C(Φ(η1i),Φ(η2i); θ)/∂θ2∗, hv, ∂h1/∂δv, ∂hv/∂θ∗,
and∂h2/∂δ2 for all the copulas considered in this paper are implementedin SemiParBIVProbit

(Marra & Radice, 2015). These have been derived analyticallyand verified using numerical deriva-

tives.

S.3 Asymptotic considerations

As in Kauermann (2005) and Radice et al. (2015), consistency of the proposed estimator can be

proved by considering the situation in which the spline bases approximating the smooth compo-

nents are of a fixed high dimension. Since the unknown smooth functions may not have an exact

representation as linear combinations of given basis functions, the unknown functions and param-
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eters may not be asymptotically identified by their estimators as the sample size grows. However,

in practice basis dimensions have to be fixed, and assuming that these are of a high dimension (so

that the the truth is likely to be in the space of the large basis), it is possible to assume heuristically

that the approximation bias is negligible compared to estimation variability (e.g., Kauermann,

2005).

In this section, we present some argumentation related to the asymptotic behavior of the pe-

nalized maximum likelihood estimator defined as

δ̂∗ = argmax
δ∗

`p(δ∗),

where`p(δ∗) is given in (4),δ̂∗ = (δ̂1
T

, δ̂2
T

, θ̂∗)
T, and the behavior of the ensuing SATE estimator

constructed in Section 2.2. Note that̂SATE = SATE(δ̂,X) is based on̂δ = (δ̂1
T

, δ̂2
T

, θ̂)T where

θ̂ = θ̂(θ̂∗) is a proper inverse transformation of parameterθ̂∗ found as result of maximizing the pe-

nalized likelihood. We consider the situation in which the spline bases approximating the smooth

components{bvkvj, j = 1, . . . , Jvkv , kv = 1, . . . , Kv, v = 1, 2} are of a fixed high dimension, i.e.

theJvkv are fixed. Note that the unknown smooth functions{svkv , kv = 1, . . . , Kv, v = 1, 2} may

not have an exact representation as linear combinations of given basis functions and consequently

the unknown functions and parameters may not be asymptotically identified by their estimators as

the sample size grows. However, the case of fixed basis dimensions is of relevance as in practice

these have to be fixed and assuming that these are of a high dimension, it is possible to assume

heuristically that the approximation bias is negligible compared to estimation variability (e.g.,

Kauermann, 2005). In this scenario, the method provides estimates which tend in probability to

quantities best approximating the unknown functions and parameters in terms of Kullback-Leibler

measure. (Recall that the Kullback-Leibler distance between two density functionsf andg is

defined asKL(f ||g) =
∫

∞

−∞
f log(f/g) if f is absolutely continuous with respect tog and 0 oth-

erwise.) LetLt be the likelihood function for the true model which, in our case, contains the true

smooth functions appearing in the linear predictorsη1 andη2 given in (1) and (2) and true value

of θ∗ of a given copula, and let̀t be the corresponding log-likelihood. Then the Kullback-Leibler

distance between the likelihoodLt in the true model and the likelihoodL(δ∗) in the model where
∑K1

k1=1 s1k1(z1k1i) and
∑K2

k2=1 s1k2(z2k2i) are replaced with their spline approximationsBT

1iβ1 and

BT

2iβ2 is equal to

KL(Lt||L(δ∗)) = E
(

`t − `(δ∗)
)

,

where the expectation is taken with respect to the true modeldistribution andδ∗ = (δT

1 , δ
T

2 , θ∗)
T.

Define parameter vectorδ0
∗
= (δ0

1
T
, δ0

2
T
, θ0

∗
)T as the minimizer of the above distance, that is

δ0
∗
= argmin

δ∗

KL
(

Lt||L(δ∗)
)

,

and consequently letδ0 = (δ0
1
T
, δ0

2
T
, θ0)T whereθ0 = θ0(θ0

∗
) is a proper transformation ofθ0

∗
. It

follows thatδ0
∗

is the maximizer of the expected unpenalized log-likelihood `(·) and as a conse-

quenceEg(δ0
∗
) = 0. Remind thatg(δ∗) andH(δ∗) denote the gradient vector and Hessian matrix
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of `(·) calculated at a pointδ∗ and letgp(δ∗) = g(δ∗) − S̃λδ∗ andHp(δ∗) = H(δ∗) − S̃λ be

the penalized versions of them. Below, we define classic conditions related to the score vector,

Hessian and Fisher information matrix as well as the penaltymatrix (see, e.g., Kauermann (2005)

who used similar assumptions in the context of survival models). The assumptions are

(A1) g(δ0
∗
) = OP (n

1/2),

(A2) EH(δ0
∗
) = O(n),

(A3) H(δ0
∗
)− EH(δ0

∗
) = OP (n

1/2),

(A4) S̃λ = o
(

n1/2
)

, whereS̃λ is defined in Section 2.3.

Conditions (A1) and (A3) are the assumptions ofn1/2 asymptotics (e.g., Barndorff-Nielsen & Cox,

1989). Note that, as then observations are assumed to be independent,g(δ0
∗
) andH(δ0

∗
) are made

up of sums of independent random variables. Assumptions (A1) and (A3) imply that, given the

model, the average values1
n
g(δ0

∗
) and 1

n
H(δ0

∗
) over the random sample converge in probability to

their expected values at the raten−1/2. Condition (A4) can be equivalently formulated asλvkv =

o
(

n1/2
)

for kv = 1, . . . , Kv, v = 1, 2, assuming that the matricesSvkv are asymptotically bounded.

This assumption is rather weak as it allows the smoothing parameters to grow as the sample size

increases, at a rate smaller thann1/2. In fact, the sequencêλ based on the mean squared error

criterion described in subsection 2.3.2 is bounded in probability (e.g., Kauermann, 2005).

Theorem 1. Under conditions (A1)-(A4) we have

δ̂∗ − δ0
∗
= OP (n

−1/2) as n→ ∞.

Remark 1. Note that the above theorem states the consistency and its rate for the vector of

parameterŝδ∗ = (δ̂T

1 , δ̂
T

2 , θ̂∗)
T which includes the transformed dependence parameterθ∗ used in

optimization (see Section 2.3 and Table 1). However, if we assume that the inverse transformation

θ∗ 7→ θ is differentiable then by using the mean value theorem we immediately obtain that the

above result holds also for the vector of coefficientsδ̂ = (δ̂T

1 , δ̂
T

2 , θ̂)
T which contains the copula

dependence parameter on the original scale.

Let SATE0 be equal to

SATE0 =
1

n

n
∑

i=1

{

P
0(y2i = 1|y1i = 1)− P

0(y2i = 1|y1i = 0)
}

,

where

P0(y2i = 1|y1i = 1) =
C

(

Φ(η02i
(y1i=1)

),Φ(η01i);θ
0
)

Φ(η01i)
,

P0(y2i = 1|y1i = 0) =
Φ(η02i

(y1i=0)
)−C

(

Φ(η02i
(y1i=0)

),Φ(η01i);θ
0
)

1−Φ(η01i)
,

(10)

η01i = XT

1iδ
0
1 andη02i = XT

2iδ
0
2 andθ0 = θ0(θ0

∗
) is the appropriate transformation of parameterθ0

∗
. In

order to prove consistency for the estimator of theSATE we introduce the additional assumption

that the
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(A5) probabilities (10) are differentiable as functions ofδ and their gradients are bounded in

the neighborhood ofδ0, uniformly for all xi = (XT

1i,X
T

2i)
T.

Theorem 2. If conditions (A1)-(A5) hold then

ŜATE− SATE0 = OP (n
−1/2) as n→ ∞,

whereŜATE = SATE(δ̂,X) as defined in Section 2.2.

Proof of Theorem 1.We show that the following approximation holds

δ̂∗ − δ0
∗
≈

(

−EH(δ0
∗
) + S̃λ

)−1 (

g(δ0
∗
)− S̃λδ

0
∗

)

, (11)

which implies the asymptotic consistency ofδ̂∗ at the raten−1/2. We adopt the argumentation used

in the theory of maximum likelihood estimation (e.g., McCullagh, 1987) which involves a Taylor

expansion of the score in the neighborhood ofδ0
∗
. A similar approach was used by Kauermann

(2005) and Kauermann et al. (2009) in the context of penalized spline smoothing. For simplicity

of notation, we omit all terms of order higher than 1 and assume that higher order derivatives of

the log-likelihood behave in a similar manner as those defined in (A1)-(A3).

The first-order Taylor expansion ofgp(·) aroundδ0
∗

implies

gp(δ̂∗) = gp(δ
0
∗
) +Hp(δ

0
∗
)(δ̂∗ − δ0

∗
) + (higher order terms),

which, after using the fact thatgp(δ̂∗) = 0 and inverting the above series (e.g., Barndorff-Nielsen & Cox,

1989), leads to

δ̂∗ − δ0
∗
= −Hp(δ

0
∗
)−1

(

g(δ0
∗
)− S̃λδ

0
∗

)

+ . . .

We then decomposeHp(δ
0
∗
) as

Hp(δ
0
∗
) =

(

H(δ0
∗
)− EH(δ0

∗
)
)

+
(

EH(δ0
∗
)− S̃λ

)

= R − F(λ),

whereR = H(δ0
∗
) − EH(δ0

∗
) represents a stochastic error andF(λ) = −EH(δ0

∗
) + S̃λ is the

penalized Fisher information matrix. Now, letf(·) = (· − F(λ))−1 be an auxiliary function of a

matrix argument. Using the Taylor expansion off(R) aroundf(0), we obtain

Hp(δ
0
∗
)−1 = −F(λ)−1 − F(λ)−1R(F(λ)−1)T + . . .

Now, assumptions (A2)-(A4) imply

Hp(δ
0
∗
)−1 = −F(λ)−1

(

I+ RF(λ)−1 + . . .
)

= −F(λ)−1
(

I+OP (n
−1/2)

)

,

whereI is an identity matrix. Thus

δ̂∗ − δ0
∗
= F(λ)−1

(

g(δ0
∗
)− S̃λδ

0
∗

)

(I+ oP (1)) + . . . , (12)
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which proves (11) and hence

δ̂∗ − δ0
∗
= OP

(

n−1/2
)

as n→ ∞. (13)

Remark 2. (a)From approximation (12), the asymptotic bias and covariance matrix ofδ̂∗ can be

derived. Specifically,

bias(δ̂∗) = E

(

δ̂∗ − δ0
∗

)

≈ −F(λ)−1S̃λδ
0
∗
,

where the propertyEg(δ0
∗
) = 0 of δ0

∗
has been used, and

Cov(δ̂∗) ≈ −F(λ)−1
EH(δ0

∗
)F(λ)−1, (14)

which follows from the fact thatCov(g(δ0
∗
)) = −EH(δ0

∗
). In addition, conditions (A2) and (A4)

imply that

bias(δ̂∗) = o(n−1/2) and Cov(δ̂∗) = O(n−1).

(b) Assumption (A4) implies that

√
nCov(δ̂∗) ≈

{

1√
n
E
[

−H(δ0
∗
)
]

}−1

and
√
nVδ∗ ≈

(

− 1√
n
H(δ0

∗
)

)−1

,

whereVδ∗ = −H
−1
p is the Bayesian approximation of the covariance matrix ofδ̂∗ mentioned in

Section 2.4. Thus, the frequentist asymptotic approximation (14) and the Bayesian result become

equivalent as the sample sizen grows to∞.

(c) As g(δ0
∗
) is a sum of i.i.d. components, it follows that(−EH(δ0

∗
))

−1/2 g(δ0
∗
)

d→ N (0, I).

Hence, approximation (12) also implies asymptotic normality of the normalized estimator̂δ∗. The

asymptotic normality holds also for the vector of parameters (δ̂T

1 , δ̂
T

2 , θ̂)
T containing the depen-

dence parameterθ on the original scale. However, as for some copulas parameter θ is bounded,

the normal approximation may not be accurate for small sample sizes.

Proof of Theorem 2.Recall thatŜATE = SATE(δ̂,X) whereSATE(δ,X) can be expressed as
1
n

∑n
i=1 sate(δ, xi), with sate(δ, xi) determined by

C
(

Φ(η1i),Φ(η
(y1i=1)
2i ); θ

)

Φ(η1i)
−

Φ(η
(y1i=0)
2i )− C

(

Φ(η1i),Φ(η
(y1i=0)
2i ); θ

)

1− Φ(η1i)
.

The mean value theorem yields

sate(δ̂, xi) = sate(δ0, xi) +
∂

∂δ
sate(δ̃, xi)

T(δ̂ − δ0),

11



for someδ̃ = (1 − c)δ0 + cδ̂, c > 0, where ∂
∂δ
sate(δ̃, xi) is the gradient vector ofsate(·, xi)

expressed as a function ofδ calculated at a pointδ = δ̃, for i = 1, . . . , n. Thus,

ŜATE =
1

n

n
∑

i=1

sate(δ0, xi) +
1

n

n
∑

i=1

∂

∂δ
sate(δ̃, xi)

T(δ̂ − δ0)

= SATE0 +
1

n

n
∑

i=1

∂

∂δ
sate(δ̃, xi)

T(δ̂ − δ0) (15)

As for the second term in (15), Schwarz’s inequality implies

1

n

n
∑

i=1

∂

∂δ
sate(δ̃, xi)

T(δ̂ − δ0) ≤ 1

n

n
∑

i=1

∣

∣

∣

∣

∣

∣

∂

∂δ
sate(δ̃, xi)

∣

∣

∣

∣

∣

∣
||δ̂ − δ0||.

Given the assumption that∂
∂δ
sate(·, xi) is bounded in the neighborhood ofδ0 uniformly for all xi

and that||δ̂ − δ0|| = OP (n
−1/2) proved in (13) (see also Remark 1), the assertion follows.

Remark 3. Expression (14) for the asymptotic covariance matrix ofδ̂ can be used to construct

the asymptotic variance of̂SATE using the delta method, namely

Var ŜATE ≈ −∂SATE(δ0,X)

∂δ

T

F(λ)−1
EH(δ0

∗
)F(λ)−1∂SATE(δ0,X)

∂δ

(

∂θ

∂θ∗
(θ0

∗
)

)2

,

which is equivalent in the limit to expression (3) given in Section 2.2, as motivated in Remark 2(b).

Moreover, it follows from the delta method and Remark 2(c) that the normalized estimator̂SATE

is asymptotically normal. Here again, it is worth noting that the normal approximation would not

be accurate for relatively small sample sizes for copulas having bounded scope ofθ.

S.4 Simulations

To assess the empirical effectiveness of the proposed methodology, we conducted a simulation

study. Following a reviewer’s suggestion, we used the findings of Section 3 and employed a

smaller set of covariates and model settings to keep the study feasible. In particular, we included

two binary variables and two continuous regressors in both the treatment and outcome equations

with effects and covariate range values that were similar tosome of those found in Sections 3.3.3

and 3.3.4. We also simulated the model errors using a Gumbel distribution with low and high

dependence parameter:θ was set to 1.18 (which is what we obtained in the case study) and 7.

Sample sizes were set to 5000 and 1000 and the number of replicates to 250. The models employed

were Gaussian, Student-t3, Frank, Clayton, Gumbel and Joe and their rotated versions. TheR code

used to simulate the data was

library(copula)

teta <- 1.18 # or 7

n <- 5000 # or 10000

n.rep <- 250

12



myCop <- archmCopula(family = "gumbel", dim = 2, param = teta)

bivg <- mvdc(copula = myCop, c("norm", "norm"),

list(list(mean = 0, sd = 1),

list(mean = 0, sd = 1)) )

u <- rMvdc(n, bivg)

x1 <- runif(n,18,66)

x2 <- runif(n,10,70)

x3 <- runif(n,0,20)

x4 <- round(runif(n))

x5 <- round(runif(n))

s1 <- function(x) -0.2*sin(pi/46*x)

s2 <- function(x) -0.0004*(x+0.01*x^3)

s3 <- function(x) 0.0006*exp(0.1*x)

s4 <- function(x) 0.03*x

y1 <- ifelse(0.7 + s1(x1) + s2(x2) + 0.6*x4 - 0.4*x5 + u[,1] > 0, 1, 0)

y2 <- ifelse(-1.5 - 0.18*y1 + s3(x1) + s4(x3) - x4 + 0.75*x5 + u[,2] > 0, 1, 0)

The models were fitted usingSemiParBIVProbit(list(eq1,eq2), BivD=D), where

eq1 andeq2 were specified according to the simulatedy1 andy2 above, andD was equal to

"N", "T", "F", "C0", "C90", "C180", "C270", "J0", "J90", "J180", "J270", "G0",

"G90", "G180" and"G270". The sample average treatment effect (with interval obtained by

posterior simulation or delta method) for each replicate and fitted model was extracted usingAT()

from the packageSemiParBIVProbit, whereas the information criteria were obtained using

AIC() andBIC(). For each model and case considered, we calculated the percentage bias and

root mean squared error (RMSE) for̂SATE, coverage probabilities of the two types of intervals

for SATE, and proportions of times that the models were selected byAIC andBIC over the

replicates. For each replicate, we also stored the estimated smooth functions evaluated at 200

fixed values in the ranges of the respective covariates (e.g., Wiesenfarth & Kneib, 2011).

In Table 5, we have a total of four cases to which we refer to as Case 1 (θ = 1.18, n = 5000),

Case 2 (θ = 1.18, n = 10000), Case 3 (θ = 7, n = 5000) and Case 4 (θ = 7, n = 10000). In all

cases, the models which can only account for a negative dependence do not obviously exhibit a

good performance. In Case 1, Gumbel0 is outperformed by Frank and Joe180, although the biases

of these three models are negligible and the RMSEs do not differ. In Case 2, the performance

of all models but Gumbel0 worsens indicating that as the sample size grows the correctmodel

tends to outperform the competing ones. In these two cases the choice of the correct copula model

based on an empirical sample is extremely difficult and the information criteria are not able to

discriminate between Gumbel0 and some of the competing models. As explained in Section 3.3.2,

in the presence of a low association the copula models entailvery similar distributions, hence

they can not be easily separated. In Case 3 and Case 4, the preferred model is Gumbel0. In these

instances, the association between the treatment and outcome equations is strong which means that

it is easier to select the correct model as the different copula models entail different distributions.

For instance, by comparing the Gaussian copula model (the traditional choice) to Gumbel0 (the

13



copula model used to simulate the data), the performance of the latter is superior in terms of both

bias and variability. This illustrates that erroneously modeling the dependence affects the quantity

of interest (SATE) in terms of bias and efficiency. The empirical coverage probabilities of the

intervals for SATE calculated by posterior simulation and delta method are essentially identical

and very close to the nominal95% level when the bias is negligible; as the bias increases the

coverage worsens since the interval is centered on a biased point estimate. Figure 4 shows the

estimated smooth functions associated to all replicationsfor Case 3 (which seemed to be slightly

more challenging than the other cases as more iterations were needed to achieve convergence).

Overall, the estimated curves recover the underlying functions fairly well, with some exceptions

in which the estimated functions are rougher than they should be.
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ŝ 1
(x

1)

10 20 30 40 50 60 70

−
1.

0
−

0.
5

0.
0

0.
5

x2
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Figure 4: Estimated smooth functions fors1(x1), s2(x2), s3(x1) ands4(x3) obtained when employing the Gumbel0

model for Case 3 (i.e.,θ = 7, n = 5000). Results are plotted on the scale of the linear predictors.The black lines in
each plot represent the estimated smooth functions from allreplications, evaluated at 200 fixed values in the range of
the respective covariate. The true functions are represented by the red solid lines.
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n = 5000 n = 10000

Bias (%) RMSE AIC (%) BIC (%) PS DM Bias (%) RMSE AIC (%) BIC (%) PS DM

θ
=

1.
18

Gaussian 1.3 0.009 12 13 0.94 0.95 1.5 0.007 14 14 0.95 0.95
Student-t3 4.0 0.010 5 4 0.94 0.95 4.1 0.008 4 3 0.94 0.95

Frank 0.3 0.010 8 9 0.95 0.96 0.5 0.007 7 7 0.94 0.95
Clayton0 0.8 0.009 11 10 0.95 0.95 1.2 0.007 0 1 0.95 0.94
Clayton90 -12.7 0.011 7 7 0.82 0.80 -13.4 0.009 8 8 0.80 0.79
Clayton180 -3.1 0.010 4 5 0.94 0.95 -3.3 0.007 17 18 0.95 0.95
Clayton270 -13.4 0.011 3 4 0.81 0.80 -13.5 0.009 7 7 0.81 0.80
Gumbel0 0.4 0.010 16 15 0.95 0.95 0.4 0.007 19 18 0.96 0.95
Gumbel90 -13.1 0.011 0 1 0.81 0.82 -13.5 0.009 0 0 0.78 0.81
Gumbel180 2.2 0.010 12 11 0.96 0.95 2.7 0.007 3 4 0.95 0.95
Gumbel270 -12.8 0.011 0 0 0.81 0.81 -13.5 0.009 0 0 0.80 0.79

Joe0 -3.7 0.010 19 18 0.94 0.95 -4.0 0.007 19 20 0.95 0.94
Joe90 -13.6 0.012 2 1 0.83 0.83 -13.6 0.009 1 0 0.81 0.80
Joe180 0.2 0.009 1 2 0.95 0.94 0.7 0.007 1 0 0.95 0.94
Joe270 -12.2 0.011 0 0 0.82 0.80 -13.2 0.009 0 0 0.77 0.80

θ
=

7

Gaussian -8.2 0.022 17 16 0.91 0.92 -8.3 0.021 14 14 0.91 0.90
Student-t3 -10.1 0.025 14 13 0.91 0.91 -10.3 0.025 15 14 0.91 0.90

Frank -8.3 0.022 2 2 0.91 0.90 -8.3 0.021 3 3 0.90 0.90
Clayton0 -8.2 0.022 7 6 0.92 0.91 -8.2 0.021 4 4 0.90 0.91
Clayton90 -18.0 0.046 3 4 0.71 0.70 -17.9 0.046 2 2 0.70 0.71
Clayton180 -8.6 0.023 3 2 0.91 0.91 -8.7 0.022 15 16 0.91 0.92
Clayton270 -18.0 0.046 3 3 0.71 0.72 -18.1 0.046 2 1 0.70 0.72
Gumbel0 -6.4 0.019 19 20 0.92 0.93 -4.5 0.016 25 24 0.93 0.94
Gumbel90 -18.0 0.046 0 0 0.70 0.72 -18.0 0.046 0 1 0.70 0.72
Gumbel180 -8.2 0.022 13 14 0.91 0.91 -8.2 0.021 2 1 0.90 0.91
Gumbel270 -18.0 0.046 0 0 0.71 0.70 -17.9 0.046 0 1 0.71 0.70

Joe0 -8.6 0.023 16 15 0.92 0.91 -8.7 0.022 18 17 0.92 0.92
Joe90 -18.0 0.046 0 0 0.71 0.73 -18.2 0.046 0 1 0.71 0.72
Joe180 -8.2 0.022 3 4 0.90 0.91 -8.1 0.021 0 0 0.92 0.91
Joe270 -18.0 0.046 0 1 0.72 0.71 -18.0 0.046 0 0 1.71 0.70

Table 5: Percentage biases and RMSEs for̂SATE, percentage frequency at which each copula model was selected byAIC andBIC and empirical coverage probabilities of the intervals
for SATE calculated by posterior simulation (PS) and delta method (DM). Data were simulated using a Gumbel copula with normal margins.
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