
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Optimising Parcel Deliveries in London Using Dual-Mode Routing

Nguyen, T.B.T., Bektas, T., Cherrett, T., McLeod, F., Allen, J., 

Bates, O., Piotrowska, M., Piecyk, M., Friday, A. and Wise, S.

 

This is a post-peer-review, pre-copyedit version of an article published in Journal of the 

Operational Research Society.

The definitive publisher-authenticated version of Nguyen, T.B.T., Bektas, T., Cherrett, T., 

McLeod, F., Allen, J., Bates, O., Piotrowska, M., Piecyk, M., Friday, A. and Wise, S. 

(2018) Optimising Parcel Deliveries in London Using Dual-Mode Routing, Journal of the 

Operational Research Society, DOI: 10.1080/01605682.2018.1480906. is available 

online at:

https://dx.doi.org/10.1080/01605682.2018.1480906

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161771222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1080/01605682.2018.1480906
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


Optimising Parcel Deliveries in London Using Dual-Mode Routing
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Abstract

Last-mile delivery operations are complex, and the conventional way of using a single mode of

delivery (e.g. driving) is not necessarily an e�cient strategy. This paper describes a two-level

parcel distribution model that combines walking and driving for a single driver. The model aims

to minimise the total travelling time by scheduling a vehicle's routing and the driver's walking

sequence when making deliveries, taking decisions on parking locations into consideration. The

model is a variant of the Clustered Travelling Salesman Problem with Time Windows, in which

the sequence of visits within each cluster is required to form a closed tour. When applied to a

case study of an actual vehicle round from a parcel carrier operating in London, savings of over

20% in the total operation time were returned over the current situation where 104 transactions

from 99 consignees were being delivered to 57 stopping points.

Keywords: last-mile delivery, clustered travelling salesman problem; time windows.

Introduction

Business-to-consumer (B2C) and Consumer-to-all-parties (C2X) parcel deliveries account for almost

two-thirds of UK parcel volume with forecasts suggesting that these sectors will grow by up to 5.5%

per annum (Royal Mail, 2016). With consumers demanding ever faster, more reliable and convenient

delivery services, the UK market has seen an increase in the proportion of parcels sent for next-day

delivery (IMRG and Metapack, 2016) with 43% of consumers reporting a negative experience with
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home delivery (Metapack, 2015). Such demands put great pressure on parcel logistics providers

who operate in a very competitive market and for low pro�t margins. Vehicle rounds are organised

out of local depots with loads partitioned into geographical areas with round orders dictated by

pre-planned premium deliveries. In dense urban areas, the operational reality is that for more than

50% of the daily round time, the vehicle can be stationary by the roadside whilst the driver is out

delivering to consignees, walking up to 9 km per day on foot (Piotrowska et al. (2017); and Allen et al.

(2017a)). For this reason, many multi-drop parcel carriers allocate drivers to speci�c geographical

patches so that they develop detailed local route knowledge including parking, access restrictions,

tra�c congestion hot spots along with a rapport with their clients. This means that the last-mile

optimisation challenge facing schedulers in this domain can be considerable with many companies

leaving the route order entirely to the driver's discretion as they believe that the combination of

driving and walking cannot be accurately replicated by traditional routing and scheduling software

(Allen et al. (2017b)).

One of the main issues, seldom considered in current routing and scheduling or catered for within

vehicle routing packages, is that parking directly outside the delivery address may not be possible

which can lead to an over-estimation of driving distance as a result of being unable to model `�nal-

approach' walking. For dense urban environments, a dual-mode (driving and walking) routing model

is warranted which would require a walking network to be de�ned alongside a road network with

associated parking locations and waiting time limits. This is inherently di�cult to construct as the

detailed network knowledge is held by the driver, acquired through time and experience. This is

made more complex by issues such as: (1) Dynamic collection requests received during the round

which the driver has to satisfy (dynamic or on-line vehicle routing problems Toth and Vigo (2014);

(2) Time constraints placed by consignees for premium `same-day' deliveries or on drivers in terms of

drivers hours regulations; (3) Tra�c and road network conditions which may be known in advance

or may change randomly due to incidents and congestion; (4) Access restrictions which could be

temporary relating to infrastructure maintenance or vehicle speci�c as a result of new emission zone

legislation .

While there is a rich and ever-growing literature base on vehicle routing and scheduling applications

and solution methods (Toth and Vigo, 2014), there still remains a signi�cant gap between theory (and

the software packages based on this theory) and its practical application to the parcel distribution

sector. This paper attempts to contribute to this gap by investigating how walking can be integrated

as part of the last-mile carrier activity. The distribution model studied here arises as part of actual

delivery operations of a parcel carrier operating in London for a single driver. We pose the problem

as a variant of the Clustered Travelling Salesman Problem with Time Windows, where driving takes

place between the clusters and walking is used within the clusters, hence the use of a dual-mode

routing structure. There is an additional condition that the sequence of deliveries within each cluster

must form a closed tour. A mixed-integer programming formulation is described that provides a

schedule for the driving and walking to minimise the total operation time such that deliveries are

made to customers within prescribed time windows.
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The remainder of this paper is structured as follows. After a brief review of the literature in the

next section, we present the problem and the formulation. The subsequent section describes the

case study and the application of the model. Conclusions are provided in the last section.

Literature Review

Within the routing and scheduling literature, the studies that are most relevant to our setting are

those that �nd routes on clustered (or generalised) networks, where the set of nodes is assumed to

be partitioned. There are two main ways in which such problems have been described. The �rst

is to use generalised routing models, including the generalised travelling salesman problem (GTSP)

and the generalised vehicle routing problem (GVRP), in which only one node from each cluster

is required to be visited. However, these problems ignore the intra-cluster routing decisions. The

second way is to use clustered routing models, including the clustered travelling salesman problem

(Clustered-TSP) and the clustered vehicle routing problem (Clustered-VRP), which require all nodes

in the graph to be visited, and where, upon entering a cluster, all nodes in that cluster must be

visited before moving on to another cluster. The general problem assumes that the nodes within a

cluster are visited successively, but the point of entry to and exit from a cluster will not necessarily

be the same node. In other words, intra-cluster routes are paths and not closed tours.

Generalised routing models

Earlier studies on generalised routing Laporte et al. (1987), Noon and Bean (1991), Fischetti et al.

(1995), Laporte et al. (1996), Fischetti et al. (1997) have focused on solving the generalised travelling

salesman problem (GTSP). Laporte et al. (1987) described a branch and bound algorithm for solving

the GTSP where the cost of travel between any two nodes is asymmetric. Noon and Bean (1991)

presented a Lagrangian relaxation algorithm to compute a lower bound on the total cost of an

optimal solution and heuristically determined an upper bound by identifying and removing arcs and

nodes which were not in an optimal solution. Fischetti et al. (1995) introduced a general theorem

to derive classes of facet-inducing inequalities for GTSP relevant to subtour elimination and comb

constraints. Laporte et al. (1996) described how a wide variety of combinatorial problems could

be modelled as the GTSP. Fischetti et al. (1997) described a branch and cut algorithm for the

symmetric GTSP.

The relevant studies on the GVRP include those by Ghiani and Improta (2000), Pop et al. (2009),

Baldacci et al. (2010), Bekta³ et al. (2011), Moccia et al. (2012). Ghiani and Improta (2000)

described an e�cient transformation of the GVRP into a capacitated arc routing problem, limiting

the transformation to symmetric cases. Pop et al. (2009) presented an application of an ant colony

algorithm to solve the GVRP. Baldacci et al. (2010) have presented a wide variety of applications of

the GVRP as modelling tools for combinatorial optimisation problems. These included the travelling

salesman problem (TSP) with pro�ts and several vehicle routing problem (VRP) extensions. Bekta³
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et al. (2011) presented and compared four integer linear programming formulations for the GVRP,

and described branch-and-cut algorithms for two of the formulations. The only work on the GVRP

with time windows that we are aware of is the one by Moccia et al. (2012), who described an

incremental neighbourhood tabu search heuristic for the problem.

Clustered routing models

Algorithms for the Clustered-TSP include the Lagrangian relaxation of Jongens and Volgenant

(1985) for the symmetric variant of the problem, the tabu search of Laporte et al. (1996), the
5
3 -approximation algorithm of Anily et al. (1999), the two-level genetic algorithm of Ding et al.

(2007), the simulated annealing algorithm of Schneider et al. (2010), and the sequential constructive

crossover 2-opt search and a local search mechanism of Ahmed (2014). The Clustered-VRP is a

generalisation of the Clustered-TSP, for which two integer linear programming formulations have

been described by Pop et al. (2012), and solved using local search and a hybrid genetic algorithm

by Vidal et al. (2015). We are not aware of extensions of the clustered routing models that take into

account time window restrictions.

One other relevant problem to our setting is the truck-and-trailer routing problem (TTRP), which

does not assume that the input graph is clustered, but treat the cluster formation as part of the

decision problem. In this problem, a truck coupled with a trailer is used to perform deliveries but

some customers may not be accessible using the trailer. In such cases, the trailer can be decoupled

and left at a parking place, but needs to be collected at a later point in the round. The problem also

addresses the decision process related to the number of times the trailer should be parked and where

the best sites would be. Solution algorithms that have been described for the TTRP include a tabu

search heuristic (Scheuerer, 2006) and a simulated annealing heuristic (Lin et al., 2010). The TTRP

with time windows has also been investigated, for which the existing methods include a branch-and-

price algorithm that uses a path-based formulation of the problem (Parragh and Cordeau, 2017),

a simulated annealing algorithm (Lin et al., 2011) and a memetic heuristic (Mirmohammadsadeghi

and Ahmed, 2015). Our problem can be seen as a special case of the TTRP where the clusters are

�xed, with the `truck' corresponding to the driver and the `trailer' being the van.

Contribution of the study

In an attempt to better replicate the realities of last-mile delivery where servicing groups of customers

on-foot makes up a signi�cant part of the driver's daily activity, we make the following contributions

in this paper:

1. Based on actual parcel delivery operations, we introduce and formally de�ne a two-level clus-

tered routing problem for a single driver that consists of one driving route and a set of intra-

cluster walking routes, and which incorporates time window restrictions dictated by the cus-

tomers.
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2. We present a mixed integer programming formulation for the problem that integrates the

decisions concerning routing of one driver, determining a parking location in each cluster, and

the walking sequences within each cluster. The model is initially stated as a nonlinear integer

programming formulation, which is then linearised.

3. We test the model on real data collected from parcel carrier rounds operating in central London

and present results that yield the potential savings in overall operation time as well as e�ects

of introducing additional time window restrictions on the resulting solutions.

In contrast to the generalised routing models described above, an explicit consideration of intra-

cluster routes and the walking time required makes our problem di�erent to the generalised routing

models described above. Furthermore, the fact that intra-cluster visits should be closed tours, as

opposed to paths, di�erentiates our problem from the existing clustered routing models.

Problem De�nition and Modelling

Let G = (V, A) be a complete graph, where V = {0, 1, 2, . . .} is the set of nodes and A =

{(i, j) : i ∈ V, j ∈ V, i 6= j} is the set of arcs. Set V is partitioned into a number of clusters,

with each cluster Vp identi�ed with an index p from within a set K of indices, with p = 0 showing

the (singleton) cluster that the depot belongs to. For each arc (i, j) ∈ A, we assume a known driving

time αij > 0, and walking time βij > 0. Each customer node (or a delivery point) i ∈ V \ {0} is
associated a hard time window [ai, bi] within which the delivery for that node must be made.

The routing problem is de�ned for a single driver with a van that carries all the parcels of customers

that have been assigned to the driver. The choice of the clusters is down to the driver or the

dispatcher, which we assume to have also been �xed prior to driver leaving the depot. In each

cluster p ∈ K\{0}, we assume that the driver will either park at or near a delivery point, which we

refer to as a parking location, the selection of which will be part of the decision problem. However,

irrespective of the choice of the parking location, we assume a constant walking time ωp from the

parking location to the �rst delivery point within the cluster, and a constant time ρp for parking

and unloading parcels from the vehicle. Finally, we assume that the driver spends ζ units of time

for handing over parcels at each consignee, which we assume to be constant and identical for each

delivery point.

The problem consists of jointly (i) selecting one parking location in each cluster Vp, for all p ∈ K,

(ii) �nding a driving route that starts and ends at the depot and spans the parking locations, and

(iii) determining a set of walking routes for each cluster Vp with |Vp| ≥ 2 that start and end at the

parking node of that cluster. The aim is to minimise a weighted combination of the driving and

walking time, weighted by parameters γ ≥ 0 and θ ≥ 0 such that γ + θ = 1, and to ensure that the

deliveries at each customer are made within the respective time windows.

Figure 1 shows an example solution to a problem instance with �ve clusters, including that of the

depot, four of which contain a total of eight delivery points shown by C1�C8.
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Figure 1: An example solution to a problem instance with eight customers and �ve clusters

The thick lines in Figure 1 from the depot show the driving sequence where the vehicle parks at

(or nearby) customers C1, C2, C6 and C7, in the given order, before returning to the depot. The

dashed-lines show the walking trajectory between consignees' delivery points within each cluster.

The driver must visit all consignee delivery points in any cluster and return to the parking location

before driving the vehicle to any subsequent cluster. This, for example, can be seen in the cluster

containing customers C2�C5, in which the vehicle is parked at location C2, following which the driver

visits the customers in the order shown, before returning to C2 to continue on to the subsequent

cluster on the route.

Integer programming formulation

An integer programming formulation for the problem above uses a binary variable xij for each arc

{(i, j) ∈ A : i ∈ Vp, j ∈ Vl, p, l ∈ K, p 6= l} that equals 1 if the arc is traversed in the driving mode,

and 0 otherwise. Similarly, a binary variable yij for arc {(i, j) ∈ A : i, j ∈ Vp, p ∈ K, i 6= j, |Vp| ≥ 2}
is equal to 1 if the arc is traversed using the walking mode, and is equal to 0 otherwise. We also

de�ne, for each cluster p ∈ K, a non-negative continuous variable tp that shows the arrival time

into the cluster, t̂i that shows the arrival time at a node i ∈ V and sp as the total time spent in a

customer that depends on the order in which nodes are visited in the cluster. The problem can then
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be modelled as the following integer linear programming formulation that we denote by P1.

Minimise γ
∑

i∈Vp,p∈K

∑
j∈Vl,l∈K\{p}

αijxij + θ
∑

p∈K:|Vp|≥2

∑
(i,j)∈A:i,j∈Vp

βijyij (1)

subject to∑
i∈Vp

∑
j∈V \Vp

xij = 1 p ∈ K (2)

∑
i∈V \Vp

∑
j∈Vp

xij = 1 p ∈ K (3)

∑
i∈V \Vp

xij =
∑

i∈V \Vp

xji j ∈ Vp, p ∈ K (4)

sp = ωp + ρp + ζ p ∈ V, |Vp| = 1 (5)

sp = ωp + ρp + |Vp|ζ +
∑
i∈Vp

∑
j∈Vp\{i}

βijyij p ∈ K, |Vp| ≥ 2 (6)

tp − tl +M
∑
i∈Vp

∑
j∈Vl

xij + sp ≤M −
∑
i∈Vp

∑
j∈Vl

αijxij p ∈ K, l ∈ K\ {0} , p 6= l (7)

tp − tl +M
∑
i∈Vl

∑
j∈Vp

xij − sl ≤M −
∑
i∈Vl

∑
j∈Vp

αijxij p ∈ K, l ∈ K\ {0} , p 6= l (8)

∑
i∈Vp\{j}

yij = 1, j ∈ Vp p ∈ K\ {0} , |Vp| ≥ 2 (9)

∑
j∈Vp\{i}

yij = 1, i ∈ Vp p ∈ K\ {0} , |Vp| ≥ 2 (10)

∑
i∈Vp

yij =
∑
i∈Vp

yji j ∈ Vp \ {i},

p ∈ K\ {0} , |Vp| ≥ 2 (11)

t̂i ≥ tp i ∈ Vp, p ∈ K (12)

t̂i ≤ tp + sp i ∈ Vp, p ∈ K (13)

ai ≤ t̂i ≤ bi i ∈ V (14)1−
∑

h∈V \Vp

xhi

(t̂i − t̂j +Myij
)
≤M − (βij + ζ) i, j ∈ Vp, i 6= j,

p ∈ K\ {0} , |Vp| ≥ 2 (15)

xij ∈ {0, 1} i ∈ Vp, j ∈ Vl, p, l ∈ K, p 6= l (16)

yij ∈ {0, 1} i, j ∈ Vp, p ∈ K, i 6= j, |Vp| ≥ 2 (17)

tp, sp ∈ R+ p ∈ K (18)

t̂i ∈ R+ i ∈ V. (19)
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The objective function (1) minimises the total weighted travel time which includes driving time

between clusters and the time spent in each cluster. Constraints (2) and (3) ensure that only one

visit is made to each cluster in the driving mode. Constraint (4) demands that the arrival into and

departure from a cluster are made from the same node. Constraints (5) and (6) model the total

time spent in each cluster, and di�erentiate between singletons and those with at least two delivery

points. In the former case, the total time includes the parking and unloading time, the walking time

from the parking location to the delivery point, and the service time at the delivery point. In the

latter case, the total dwell time within a cluster will depend on the sequence of visits made within

that cluster, and includes the walking time, parking and unloading time, the walking time between

the delivery points, and the total service times of all the nodes of that cluster. Constraints (7) and

(8) eliminate subtours between clusters. In particular, they dictate that the arrival time at a cluster

l is no earlier than the sum of the time of arrival at the immediately preceding cluster p, the driving

time between the two clusters l and p, and the total time sp spent at cluster p.

Constraints (9)�(11) model the walking tours within each cluster. In particular, each delivery point

within a cluster is visited only once. Constraint (12) ensures that the arrival time at a delivery point

in a cluster can be no earlier than arrival time into the parking location of that cluster. Similarly,

constraint (13) models the restriction that the arrival time to a delivery point in a cluster cannot be

later than the departure time from that cluster. Constraint (14) ensures that the service start time to

each delivery point must be within the prescribed time window. Constraint (15) eliminates subtours

within each cluster. Constraints (16) and (17) imposes the restrictions on the variables relating to

the driving and walking decisions. Similarly, constraints (18) and (19) model the non-negativity

restrictions for the remaining variables.

To see the validity of the above formulation for the problem under consideration, it su�ces to observe

that the model represented by constraints (1)�(4), (7), (8), (14), (16) and (18) is that of a TSP with

time windows (TSPTW) which we refer to as P1a. Similarly, the model represented by constraints

(1), (5), (6), (9)�(15), (17) and (19) that we will name as P1b, also corresponds a TSPTW, for each

cluster p ∈ K with |Vp| ≥ 2.

We now show the validity of the former model.

Lemma 1 The model P1a is valid formulation for the TSPTW.

Proof. Constraints (2)�(4) are the assignment restrictions. Constraints (7) and (8) prohibit the

formation of subtours as follows. For a given pair (p ∈ K, l ∈ K \ {0, l}) of clusters, let X (p, l) =∑
i∈Vp

∑
j∈Vl

xij , X (l, p) =
∑
i∈Vl

∑
j∈Vp

xij , αpl =
∑
i∈Vp

∑
j∈Vl

αij , and αlp =
∑
i∈Vl

∑
j∈Vp

αij . For the given pair

(p, l) of clusters, constraint (7) can be written as:

tp − tl +MX (p, l) + sp ≤M − αplX (p, l) (20)

tl − tp +MX (l, p) + sl ≤M − αlpX (l, p) , (21)
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and constraint (8) can be written as:

tp − tl +MX (l, p)− sl ≤M − αlpX (l, p) (22)

tl − tp +MX (p, l)− sp ≤M − αplX (p, l) . (23)

We consider the following two cases:

1. If the driver goes from the cluster p to the cluster l, then X (p, l) = 1 and X (l, p) = 0.

Therefore, constraints (20) and (23), respectively, describe tl ≥ tp+sp+αpl and tl ≤ tp+sp+αpl,

which implies a tight constraint tl = tp + sp + αpl. In this case, constraints (21) and (22),

respectively become tl − tp + sl ≤ M and tp − tl − sl ≤ M , which are always satis�ed with a

su�ciently large M .

2. If the driver goes from cluster l to cluster p, then X (p, l) = 0 and X (l, p) = 1.Therefore,

constraint (20) and constraint (23), respectively, imply tp− tl + sp ≤M and tl − tp− sp ≤M ,

which are always satis�ed with a su�ciently large M . In this case, constraints (21) and (22)

collectively imply a tight constraint tp = tl + sl + αlp.

It is now easy to see that constraints (7) and (8) will be infeasible for a given subtour. 0

The proof shows that constraints (7) and (8) not only eliminate subtours but also calculate the

arrival times in an exact manner. We now show the validity of formulation P1b.

Lemma 2 The model P1b is valid formulation for the TSPTW where the `depot' is the parking

location chosen by model P1a.

Proof. Consider a cluster p ∈ K. Constraints (5) and (6) will ensure that all nodes within the

cluster will be visited exactly once. As to ensuring a feasible tour, consider the two possible cases

below for each node i ∈ Vp:

1. If i is a parking location, then
∑

h∈V \V p

xhi = 1, in which case constraint (15) readsM−(βij + ζ) ≥

0, for all i, j ∈ Vp, i 6= j, p ∈ K \ {0}, |Vp| ≥ 2, which is satis�ed with a signi�cant large M .

2. If i ∈ V is not a parking location, then
∑

h∈V \Vp

xhi = 0, in which case constraint (15) reads

t̂i − t̂j +Myij ≤ M − (βij + ζ), for all i, j ∈ Vp, i 6= j, p ∈ K \ {0}, |Vp| ≥ 2, which is the

well-known subtour elimination constraint by Miller et al. (1960). 0

It is worth pointing out that, although constraints (15) are written using the weaker subtour elimi-

nation constraints, they will always hold tight at optimality to guarantee that t̂j = t̂i+βij + ζ when

yij = 1 for a given pair i, j ∈ Vp, i 6= j of nodes in a cluster p ∈ K. In particular, any solution where

t̂j > t̂i + βij + ζ holds for a given pair i, j ∈ Vp, i 6= j of nodes in a cluster p ∈ K would violate

constraints (12) and (13) given that sp is the minimum possible time needed to service the nodes

within the cluster.
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Linearised model

Formulation P1 is nonlinear due to constraints (15). In this section, we provide a linearisation of

this constraint to allow the formulation to be solved by a mixed integer linear programming solver.

To this end, let

zi = t̂i
∑

h∈V \Vp

xhi i ∈ Vp, p ∈ K\{0}, |Vp| ≥ 2 (24)

z1ij = t̂j
∑

h∈V \Vp

xhi i, j ∈ Vp, i 6= j, p ∈ K\{0}, |Vp| ≥ 2 (25)

z2ij = yij
∑

h∈V \Vp

xhi i, j ∈ Vp, i 6= j, p ∈ K\{0}, |Vp| ≥ 2. (26)

We now present the linearisation.

Lemma 3 Constraint (15) can be rewritten in a linearised form as the following set of constraints:

t̂i− t̂j +Myij − zi + z1ij −Mz2ij ≤M − (βij + ζ) i 6= j, i, j ∈ Vp, p ∈ K\{0}, |Vp| ≥ 2 (27)

ai
∑

h∈V \Vp

xhi ≤ zi ≤ bi
∑

h∈V \Vp

xhi i ∈ Vp, p ∈ K\{0}, |Vp| ≥ 2 (28)

zi ≤ t̂i − ai

1−
∑

h∈V \Vp

xhi

 i ∈ Vp, p ∈ K\{0}, |Vp| ≥ 2 (29)

zi ≥ t̂i − bi

1−
∑

h∈V \Vp

xhi

 |Vp| ≥ 2, i ∈ Vp, p ∈ K\{0} (30)

aj
∑

h∈V \Vp

xhi ≤ z1ij ≤ bj
∑

h∈V \Vp

xhi i 6= j, i ∈ Vp, j ∈ Vp, p ∈ V \{0}, |Vp| ≥ 2 (31)

z1ij ≤ t̂j − aj

1−
∑

h∈V \Vp

xhi

 i 6= j, i ∈ Vp, j ∈ Vp, p ∈ V \{0}, |Vp| ≥ 2 (32)

z1ij ≥ t̂j − bj

1−
∑

h∈V \Vp

xhi

 i 6= j, i ∈ Vp, p ∈ V \{0}, |Vp| ≥ 2 (33)

0 ≤ z2ij ≤
∑

h∈V \Vp

xhi i 6= j, i ∈ Vp, j ∈ Vp, p ∈ K\{0}, |Vp| ≥ 2 (34)

z2ij ≤ yij i, j ∈ Vp, i 6= j, p ∈ K\{0}, |Vp| ≥ 2 (35)

z2ij ≥ yij +
∑

h∈V \Vp

xhi − 1 i ∈ Vp, p ∈ K\{0}, |Vp| ≥ 2. (36)
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Proof. We �rst consider the nonlinear term zi = t̂i
∑

h∈V \Vp

xhi where xhi is binary and t̂i is restricted

to be within the interval [ai, bi]. Let u =
∑

h∈V \Vp

xhi. Constraints (2) and (3) imply that u is also a

binary variable. Therefore, the product zi can be written as zi = t̂i × u and can be represented as

the following linear set of inequalities:

u× ai ≤ zi ≤ u× bi (37)

zi ≤ t̂i − ai (1− u) (38)

zi ≥ t̂i − bi (1− u) . (39)

To see that (37)�(39) linearise the nonlinear term, it su�ces to observe that if u = 0 then zi = 0,

otherwise the inequalities read ai ≤ zi ≤ bi, zi ≤ t̂i and zi ≥ t̂i, and collectively imply zi = t̂i.

Constraints (31)�(33), and (34)�(36) linearise constraints (25) and (26), respectively, in the same

way. 0

The linearised problem represented by constraints (1)� (14), (16)�(19), and (27)� (36) now is solvable

with any commercial MILP optimiser.

Case Study

In this section, we report on numerical experiments on the application of the proposed model and

the insights of the clustering and routing has revealed, using data from a carrier operating in London

during October 2016. The model is implemented in IBM ILOG CPLEX Optimization Studio V12.70

on Desktop Intel Core i5, Processor 3.3GHz running under the Windows 10 operating system. A

computational time limit of 10 hours has been imposed on the solution time of the model for each

run.

Input data description

The input data set used here forms a part of a larger set of data collected, full details of which are

described in Allen et al. (2017a). In particular, the input data set corresponds to a selected round

where one driver make 104 deliveries (transactions) to 99 consignees from 57 stopping locations

(which is thereafter named as delivery locations ) on the 27th October 2016. The delivery locations

are used to determine the driving and walking times using Google maps.

The carrier o�ers three di�erent types of time windows, namely before 9am, before 10am and before

12pm, as are commonly used in practical deliveries. In our input data set, only six out of the

57 delivery locations have a time window attached to them, namely one customer has requested a

delivery before 9am, two customers before 10am and the remaining three before 12pm.

11



Figure 2 shows the actual route used by the driver along with the clustering chosen. Figure 2 shows

the actual routing used by the driver along with the 49 clusters chosen, most of which are singletons.

Figure 2: The actual clustering & routing strategy.

An analysis of the actual operations revealed that 70% of delivery points lied within a minute walk

from where the driver chose as the parking location. As the driver needs time to park the vehicle

and unload parcel/s, the analysis suggested that parking plus unloading time was about a minute

for all clusters. The model was therefore implemented using a one minute walking time allowance

ωp and an additional minute for parking and unloading time ρp for each cluster p ∈ K \{0}. Finally,
consignee service time ζ at each delivery point was also assumed to be a minute. The value of

big-M is set to the latest time that the driver needs to return to the depot, which, on the basis of a

maximum of nine working hours a day for each driver, translates into a value equal to 540 minutes.

The weights γ, θ in the objective function are set equal to 1 and 0, respectively.

A number of statistics on the actual operations are shown in Table 1, under the column `Actual',

where we report the total driving time (Td), total walking time (Tw), total walking allowance (Ta),

total parking, unloading and service time (Tp), total (dwell) time spent in the clusters (Tu = Tw +

Ta + Tp), Total operating time (To = Td + Tu) and �nally the maximum time spent in any cluster

(Tmax) extracted from the data collected on the day.

Using inputs described above, we then undertook a validation of the parameters used in the model

by �xing the sequence of visits of the delivery points as that chosen by the driver on the day and

report the same statistics under column `Model' of Table 1, and comparison results under column

six of the table showing percentage di�erences. As the comparisons show, the model overestimates

the driving time by 17.5% and underestimates the total time spent in the clusters by 17.9%. The

12



discrepancies are due to the estimated times by the online map source as well as possible `short-cuts'

that the driver might have taken on the day. However, the model was able to output the same total

operation time, and identi�ed nearly the same value for the maximum time spent in a cluster. The

latter two results give us su�cient indication that the parameters of the model can be considered to

be accurate enough, which will be used in the rest of the experiments.

Table 1: Summary of the case study's results

Performance (in minutes) Comparison (%)

Actual Model
Scenario

A
Scenario

B
Model vs.
Actual

Scenario A
vs. Model

Scenario B
vs.

Scenario A

Td 240 282 130 115 17.5 �53.9 �11.5

Tw 65 48 82 105 � � �

Ta 48 48 48 34 � � �

Tp 121 96 96 68 � � �

Tu 234 192 226 207 �17.9 17.7 -8.4

To 474 474 356 322 0 �24.9 �9.6

Tmax 28 29 29 23 3.4 0 �20.6

Figure 3: Routing optimisation using the existing clusters

Optimisation results

In this section, we use the model to optimise the routing under two scenarios, namely Scenario A

where we leave the 49 clusters chosen by the driver intact and only optimise the route, and Scenario
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B where we propose a new design comprising 35 clusters1, mainly chosen through geographical

proximity of the delivery points, and optimise the route on these new clusters. The results of the

two scenarios are also shown in Table 1.

Figure 3 shows the resulting optimal solution under Scenario A, which, as also indicated by the

results in the table, leads to a signi�cant reduction (53.9%) on the total driving time, but with an

increase of 17.7% the total dwell time. The total operation time however reduced by 24.9%, with

no increase in the maximum dwell time spent in any cluster.

As for Scenario B, the optimal routes identi�ed and the corresponding statistics are shown in Figure

4 and Table 1, respectively. The new route indicates savings of 9.6%, 11.5%, 8.4% and 20.6% as

compared to Scenario A on To, Td, Tu and Tmax, respectively.

Figure 4: Routing optimisation of a proposed strategy

The average dwell times in Scenarios A and B are 15 minutes, and 10.5 minutes, respectively, in

comparison to the 13.5 minutes assumed in the actual operations as prescribed by the model. In

addition, whereas the driver spent 1.6 hours on foot (6.5 km) in the actual operation, this number

changes to 2 hours (7.3 km) and 2.3 hours (10 km) in Scenarios A and B, respectively. The proposed

cluster design implies that the reduction in the overall operation time comes at the expense of the

driver needing to spend more time on foot than with the existing clusters. Moreover, only one cluster

of the proposed clustering strategy exceeds a maximum of 20 minutes parking time, while 2 clusters

of the real operation and the optimal routing with the existing clusters do (Figure 5).

Finally, we look at implication of the workload within each cluster in Scenarios A and B, as shown

in Figure 6. The results indicate that with the proposed clustering, the majority of the proposed

1We elaborate further on the choice of clustering in the conclusions.
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Figure 5: Number of clusters having the time spent within chosen ranges

clusters have work-loads within the maximum of 90 kilograms, except one cluster with a work-load

of 100 kilograms.

Figure 6: Number of clusters having the work-load within chosen ranges
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The impact of timed services

A key issue impacting on the e�ciency of parcel logistics is the proportion of consignees who request

speci�c timed services, and the impact of the increase of this proportion in line with the grown in

same-day delivery requests. To shed some light into this issue, we present the results of additional

experiments in this section by increasing the number of customers with time-sensitive deliveries. To

this end, we �rst randomly choose σ% of the total number |V |−1 of nodes to which time windows are

to be added, where σ ∈ {10, 15, 20} and randomly assign the time windows to these nodes. There

are four ways in which the assignment can be performed: one way is to (approximately) equally

distribute the three types of time windows (before 9am, before 10am and before 12pm) amongst

the chosen nodes, and the other ways are to uniformly apply one of the three time windows to the

chosen nodes. In this way, we generate �ve instances for each con�guration which results in a total

of 5× 3× 4 = 60 instances. Table 2 presents the results of the experiments.

As the table shows, increasing the number of time-sensitive deliveries results in a 43.3% of the

instances being infeasible, indicating that the time window constraints would have to be violated in

order for a feasible route to be identi�ed. In this case, the computational performance of the model

also deteriorates. Under a time limit of 10 hours, we identify feasible, but not optimal routes for

only 21.7% of the instances. In this case, the optimality gaps range from an average value of 2.97%

to a maximum value of 17.8%.

For instances that are feasible (or optimal), however, the addition of time-window restrictions in-

crease the total driving time only marginally, if at all, indicating that those locations with the new

time window restrictions do not change the optimal routes, particularly as the total dwell time ei-

ther remains unchanged or is marginally increased. The maximum dwell time remains the same in

all generated instances, showing the robustness of the design with respect to changes in the time

window constraints.

Conclusions

We have described a practical distribution problem that arises in last-mile deliveries and presented

a mathematical programming formulation that, when applied to the problem, results in optimised

solutions that o�er reductions ing operations time, and particularly driving time. The latter has

implications in terms of reduction of tra�c and energy requirements within urban areas, as well as

greenhouse gas emissions.

The model operates on the basis of a �xed set of clusters within urban zones, which is one aspect

that limits its applicability. One extension of this work would be to optimising the cluster formation

along with the routing and scheduling decisions, which would give rise to a much more di�cult

optimisation problem (e.g., as in Parragh and Cordeau, 2017), and where the di�erence between

the two modes of walking and driving would have to be explicitly represented. In particular, the
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underlying graphs and other data (e.g., travel time) for the two modes exhibit substantial di�erences,

which would need to be taken into account in such an extended model.

Although the model was able to identify optimal solutions to the case study, the di�culties in

solving the model when there are additional time-window restrictions necessitate the adaptation or

extension of the existing heuristics to the problem at hand, but this would once again have to be

done with an explicit consideration of the dual-mode nature of the underlying routing strategy.
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