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What is already known about this subject? Previous work has indicated that both physical 

activity (PA) and sedentary behaviour may moderate the association between genes and 

obesity. 

What does your study add? This study provides novel evidence that the combination of 

lower levels of PA and higher levels of sedentary behaviours results in stronger associations 

between our genetic risk score for BMI. 

 

  



4 
 

Abstract  

Objective - To investigate whether the association between a validated genetic profile risk 

score for body mass index (BMI) (GPRS-BMI) (based on 93 SNPs) and phenotypic obesity 

(BMI) was modified by the combined categories of PA and sedentary behaviours in a large 

population-based study.  

Methods - This study included cross-sectional baseline data from 338,216 white European 

adult men and women aged 37-73 years. Interaction effects of GPRS-BMI with the combined 

categories of PA and sedentary behaviour on BMI were investigated.  

Results - There was a significant interaction between GPRS-BMI and the combined 

categories of objectively-measured PA and total sedentary behaviour (P[interaction]=3.5x10-6): 

among physically inactive and highly sedentary individuals, BMI was higher by 0.60 kg.m-2 

per SD increase in GPRS-obesity (p=8.9x10-50); whereas the relevant BMI difference was 

38% lower among physically active and low sedentary individuals (β:0.37 kg.m-2, p=2.3x10-

51). A similar pattern was observed for the combined categories of objective PA and TV-

viewing (inactive/high TV-viewing β:0.60 versus active/low TV-viewing β:0.40 kg.m-2, 

P[interaction]=2.9x10-6).  

Conclusions - This study provides evidence that combined categories of PA and sedentary 

behaviours modify the extent to which genetic predisposition to obesity results in higher 

BMI.  
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Introduction 

The environment in many societies is today considered ‘obesogenic’ and it has been 

suggested that the dramatic increase in obesity prevalence in recent years has been driven by 

changes in lifestyle, including increases in energy intake and reductions in physical activity 

(PA) (1, 2, 3). However, there is also robust evidence from twin studies suggesting that 

obesity is a “multifactorial” condition and that 40-70% of the variability in obesity can be 

attributed to genetic factors (1, 4). Whilst the obesogenic environment and genes can 

individually account for a large proportion of the prevalent obesity recent research has also 

indicated that these two factors interact to further increase obesity (5). Some genetic factors 

may operate independently of environment, but others may confer greater predisposition to 

weight gain in an obesogenic environment (6), a hypothesis supported by the results of twin 

studies of changes in adiposity in response to environmental influences (4). 

Thus far, limited evidence of genotype-lifestyle interaction effects on BMI has been 

generated, and most of these studies have been at single locus level, despite the genetic 

influences on BMI being polygenic. Most studies to date investigating potential gene-PA or 

gene-sedentary behaviour interactions for adiposity, have been focused on the effect of 

individual genes (7, 8, 9, 10, 11, 12). Only a few studies have investigated whether polygenic 

risk scores or genetic profile risk scores for BMI (GPRS-BMI), which provide great BMI 

prediction than a single gene, interact with PA (13, 14, 15, 16, 17, 18, 19) or sedentary 

behaviour (16, 20, 21). To date, only one study has investigated the modifying effect of 

combined PA and TV-viewing on the genetic predisposition related to adiposity outcomes 

(15). However, this study had a relatively small sample size (n~12,000), the genetic risk score 

was derived from a relatively small number of BMI loci (32-SNPs) and TV-viewing was used 

as main exposure, which only represents part of the sedentary behaviour spectrum (15). 

Recent evidence suggests that the joint effect of physical activity and sedentary behaviours 
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may be more informative (22) than considering the effect of physical activity or sedentary 

behaviour independently. Recent prospective studies have demonstrated that being highly 

sedentary and physically inactive is associated with a larger adverse effect on mortality than 

those who are active but highly sedentary, or vice versa (22). This joint detrimental effect of 

physical activity and sedentary behaviours may also modify the genetic predisposition to 

obesity; however, there is limited evidence on this regard (15). In the current study, we 

therefore investigated whether the associations of a comprehensive and validated GPRS-BMI 

(23) with BMI was modulated by the combined categories of PA (both objectively-measured 

and self-reported) and sedentary behaviours (total sedentary behaviour and TV-viewing) in 

the UK Biobank cohort, a large population sample. 

 

Methods 

Study design 

Between April 2006 and December 2010, UK Biobank recruited more than 500,000 

participants (5.5% response rate), aged 40-69 years from the general population (24). 

Participants attended one of 22 assessment centres across England, Wales and Scotland (25), 

where they completed a touch-screen questionnaire (including self-reported PA), had 

physical measurements taken and provided biological samples, as described in detail 

elsewhere (25). Imputed genotypes were available for 488 369 participants, of these 

participants, 338,216 had full data available for genotype data available for the GPRS-BMI 

SNPs, self-reported physical activity and sedentary-related behaviours used in this study after 

exclusions (detailed below, due to quality control, relatedness, mismatching of reported 

gender and genetically estimated sex, and non-white ethnicity). 103,712 participants 

(including 62,881 with genotyping data) had objectively-measured PA data available.  
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The main outcome measure considered was BMI. The independent predictor variable of 

interest was a genetic profile risk score for BMI; combined categories of PA and sedentary 

behaviours or TV-viewing were treated as moderators. The combined categories were a) 

High PA / Low sedentary time “busy bees”; b) High PA / High Sedentary time; c) Low PA / 

Low Sedentary time; and d) Low PA / high sedentary time “couch potato”. Socio-

demographic factors, major illness, smoking status, dietary intake and genetic principal 

components analysis were included in the statistical models as potential confounders.  

UK Biobank received ethical approval from the North West Multi-centre Research Ethics 

Committee (REC reference: 11/NW/03820). All participants have given written informed 

consent in accord with the principles of the Declaration of Helsinki. 

Procedures 

At baseline assessment, self-reported PA was recorded using a self-completed questionnaire 

based on the International Physical Activity Questionnaire (IPAQ) short form (26), with 

participants reporting frequency and duration of walking, and of moderate and vigorous 

activity undertaken in a typical week (26). Data were analysed in accordance with the IPAQ 

scoring protocol (weighting applied: walking: 3.3 metabolic equivalents [METS]; moderate 

physical activity 4 METS and vigorous physical activity: 8 METS), and total PA was 

calculated as the sum of times spent walking and engaged in moderate and vigorous activity, 

expressed in METs-min.week-1. Physically active individuals were identified if they meet the 

PA recommendation of ≥600 MET-min.week-1 of moderate-to-vigorous PA (26).  

A proxy measure of total time spent in sedentary activities was calculated by asking “how 

many hours do you spend during your leisure time watching TV, doing PC screening or 

driving in a typical day?”, and this combined figure was used as a proxy for sedentary 

behaviours (expressed as hours.day-1). High sedentary individuals were identified using the 
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median (the cut-off point for low and high total sedentary time was >4.5 hours.day-1) and the 

identification of high TV-viewing was >3 hours.day-1. 

An objective, accelerometer-based measure of PA was obtained in a subset of participants 

using a tri-axial wrist-worn accelerometer (AX3, Logging Accelerometer), collected from 

May 2013 until December 2015. Devices were dispatched to 106,053 participants and were 

returned by 103,720. Of the participants who provided accelerometry data 7,001 participants 

were excluded due to poor accelerometer wear time - defined as not having at least three days 

(72 hours) of data and or lacking data in each one-hour period of the 24-hour cycle scattered 

over multiple days. A further 11 were excluded due to poor device calibration, leaving a total 

of 96,706 participants. Of these only 62,881 had genetic data available. Mean daily 

accelerations (cumulative acceleration during each day; expressed in milli-gravity.day-1) 

calculated using Open Movement AX3 open-source software (Open Lab, Newcastle 

University, UK) (27), were used as the objectively-measured total PA. The grouping of active 

and inactive individuals was estimated using the median value for the UK Biobank cohort 

equivalent to >24.0 milli-gravity.day-1. 

Dietary information was collected via a self-reported dietary frequency questionnaire (Oxford 

WebQ), with questions about usual consumption of a range of foods (28). Participants were 

invited to complete the online questionnaire on five occasions between April 2009 and June 

2012. For participants who completed more than one questionnaire, we used an average 

estimate of the 5 questionnaires completed. Total energy intake and total energy derived from 

macronutrients were calculated from the information recorded in the 5th edition of McCance 

and Widdowson’s “The composition of food” (29). 

Area-based socioeconomic status was defined from postcode of residence using the 

Townsend score, which is derived from census data on housing, employment, social class and 

car availability (30). Smoking status was self-reported at baseline and included 3 categories 
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(smoker, ex-smokers, non-smokers). Medical history (physician diagnosis of diabetes, 

hypertension, CVD, cancer and other major illness) was collected from the self-completed, 

baseline questionnaire. Height and body weight were measured by trained nurses during the 

initial assessment visit. BMI was calculated as (weight/height2) and the WHO criteria (2) 

used to classify BMI into: underweight <18.5, normal weight 18.5-24.9, overweight 25.0-

29.9 and obese ≥30.0 kg.m-2.  Waist circumference was used to classify participants as central 

obese (women ≥88cm and men ≥102 cm) (2).  

Genetic data analysis 

Imputed genotypes were available for 488 369 participants in the UK Biobank cohort. 

Genotyping was performed using the Affymetrix UK BiLEVE Axiom array (Santa Clara, 

CA, USA) on an initial 50,000 participants; the remaining 450,000 participants were 

genotyped using the Affymetrix UK Biobank Axiom® array.  The two arrays are extremely 

similar (with over 95% common content). Aiming to maximize homogeneity and GPRS-BMI 

applicability, we excluded those who self-reported ancestry other than white British, related 

people (second degree or greater: kinship coefficient ≥0.884), people with high levels of 

heterozygosity and missingness (>5%), and people whose reported sex was inconsistent with 

sex inferred from the genetic data. The UK Biobank core team centrally performed a check 

for excessive heterozygosity. Extreme heterozygosity or high rates of missingness, or both, 

can be indicators of poor sample quality due to, for example, DNA contamination. UK 

Biobank provided a list of samples with unusually high heterozygosity and we excluded those 

samples according to their recommendations. Further information on the genotyping process 

is available on the UK Biobank website (http://www.ukbiobank.ac.uk/scientists-3/genetic-

data). 

GPRS-BMI was derived from a set of 93 SNPs that was in turn derived from the 97 genome-

wide significant BMI-associated SNPs reported by Locke et al. (23) (Supplementary Table 

http://www.ukbiobank.ac.uk/scientists-3/genetic-data
http://www.ukbiobank.ac.uk/scientists-3/genetic-data


10 
 

S1). 95 of these 97 SNPs were genotyped in the UK Biobank cohort, the two missing SNPs 

were rs2033529 (chr6, position 40,456,631, gene TDRG1) and rs12016871 (chr13; 

26,915,782; MTIF3), while two further SNPs (rs9925964 and rs17001654) were excluded on 

the basis of deviation from Hardy-Weinberg equilibrium (P <1 x 10-6) as assessed with 

PLINK (31); there were no proxy SNPs (r>0.8) within the UK Biobank dataset. We 

constructed an externally-weighted GPRS-BMI for each participant, weighted by the per 

allele effect size estimates reported in the GIANT consortium study (beta per one-SD unit of 

BMI) (23) and calculated according to the procedure given in the PLINK manual 

(http://pngu.mgh.harvard.edu/~purcell/plink/profile.shtml), using the -no-mean-imputation 

flag. GPRS-BMI values were normally distributed across the UK Biobank cohort. 

 

Statistical analysis 

Baseline data were used for present analyses. Robust regression analysis was used to test for 

associations between BMI and GPRS-BMI. Robust regression analyses were conducted 

instead of standard regression, as the latter can produce biased standard errors if 

heteroscedasticity is present (a statistical term that describes unequal variance in data), as 

shown previously (16). We tested for heteroscedasticity using the Breusch-Pagan test as 

implemented with the estat hettest in STATA (32). Robust regression analysis produces 

robust standard errors, using the vce(robust) option in STATA, which relaxes the assumption 

that errors are both independent and identically distributed and are therefore more robust.  

The weighted GPRS was transformed to a z-score before use in models, so data are presented 

as BMI changes per SD increase in GPRS. Associations between GPRS and BMI were 

investigated using robust regression analyses for continuous variables and robust logistic 

regression for BMI categories (BMI ≥25.0 kg.m-2; BMI ≥30.0 kg.m-2), with the lower BMI 

category treated as the referent. These analyses were conducted using a fully adjusted model 

http://pngu.mgh.harvard.edu/~purcell/plink/profile.shtml
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(as specified below) but also using a sensitivity analyses where all participants with 

comorbidities (diabetes, hypertension, CVD, cancer and all major illness were excluded from 

analyses (n=108,345).  

Interactions between the combined categories of PA (derived from total PA expressed as 

MET.min.week) and sedentary behaviours (derived from discretionary TV-viewing and PC-

screen time expressed in hours.day-1) and GPRS-BMI in their effects on BMI were 

investigated using robust regression analysis. For this a multiplicative interaction term of 

GPRS-BMI x categories of PA/SED were fitted in the model. 

For each of the approaches described above, we adjusted our models for age, sex, 

deprivation, education qualifications, recruitment center, month of recruitment, the first 10 

principal components of ancestry and genotyping batch, smoking status, dietary intake 

(alcohol, fruit & vegetable, red meat, processed meat, cereals, bread and cheese) and 

comorbidities (diabetes, hypertension, cardiovascular diseases, cancer, major illness). 

Analyses performed for objectively measured PA were additionally adjusted for season and 

wear time. All analyses were performed using STATA 14 statistical software (StataCorp LP). 

Results 

The main characteristics of the participants by GPRS-BMI quartile, the combined categories 

of PA (self-reported and objectively-measured total PA) and sedentary-related behaviours 

(total sedentary behaviour and TV-viewing) are summarised in Table 1, S2-S5, respectively. 

In summary, 53.7% of the cohort was female, mean age was 56.9 years, 10.1% were current 

smokers, 66.8% were overweight or obese based on their BMI. Based on self-report total PA, 

54.4% of the participants were physically active (>600 MET-min.week-1). The correlation 

between objective and self-reported PA was r=0.180, whereas the correlation between overall 
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discretionary sedentary time and TV-viewing was r=0.640. There was non-significant 

association between the GPRS-BMI and the exposures of interest (Supplementary Table S6).  

Association of genetic profile risk score with BMI 

GPRS-BMI explained 1.5% of the variance in BMI, with greater genetic risk being 

associated, as expected, with a higher BMI (Supplementary Table S7).  

Interactions between GPRS-BMI and the combined categories of PA and sedentary 

behaviours 

Before we investigated the combined effects of PA and sedentary behaviours on the genetic 

risk for BMI, we performed analyses for each exposure, separately (Figure 1 and 

Supplementary Table S8). These results show that the association between the GPRS-BMI 

and BMI were of similar magnitude for those with low levels of PA (objective and self-

reported) and those with high levels of sedentary behaviour and TV-viewing.   

The combined categories of objectively-measured PA and total sedentary behaviour 

significantly modified the association of GPRS-BMI with BMI (P-interaction=3.5x10-6) 

(Figure 2 and 3, and Supplementary Table S9). The genetic effect of the GPRS on BMI 

increased across the combined categories of objective PA and sedentary behaviour: an 

increase of 1 SD in the weighed GPRS was associated with an increment of 0.37 kg.m-2 in 

participants who were physically active and had low sedentary behaviour “busy bees”, but the 

magnitude of the association was significantly higher in those participants who were 

physically inactive and had high sedentary behaviour “couch potato”  (Beta: 0.60 kg.m-2 per 1 

SD change in the GPRS ) (Figure 2 and 3, and Supplementary Table S9). Those in the lowest 

quartile (Q1) of the GPRS-BMI and who were in the “couch potato” category had 2.6 units 

higher BMI than those who were physically active and had reported lower sedentary 

behaviour (Figure 3). However, those in the highest quartile of GPRS and who were in the 



13 
 

“couch potato” category had a 3.2 kg.m-2 higher BMI compared to those who were physically 

active and had low sedentary behaviour (Figure 3). These findings were replicated for self-

reported PA with an even higher magnitude of association between self-reported PA and 

sedentary behaviour combined categories (Figure 2 and 3 and Supplementary Table S9).  

 

Similar results were found when TV-viewing was used as a proxy for sedentary behaviour (P-

interaction=2.9x10-6) (Table 3 and Figure 2 and 3, and Supplementary Table S10). The 

strength of the GPRS-BMI association with BMI was higher for those in the “couch potato” 

category (lower accelerometer PA and high TV-viewing) (Beta: 0.60 kg.m-2 per 1 SD 

increment in the GPRS) compared to those who were physically active and reported low TV-

viewing time (Beta: 0.40 kg.m-2 per 1 SD increment in the GPRS) (Figure 2). Those with the 

lowest GPRS-BMI (Q1) but who were in the “couch potato” category were 2.5 kg.m-2 heavier 

than those with high PA and low TV-viewing individuals. However, this difference increased 

to 3.1 kg.m-2 in the highest quartile (Q4) for GPRS-BMI) (Figure 2 and 3). Similar interaction 

effects were found for self-reported PA (Figure 2 and 3, and Supplementary Table S10). 

 

Discussion 

Main findings 

This study provides novel evidence that the associations between a 93-SNP GPRS-BMI and 

BMI are substantially moderated by the combination of PA (self-reported and objectively-

measured PA) and sedentary behaviour (total sedentary behaviour and TV-viewing). These 

results substantially and meaningfully extend the limited evidence available to date on 

interaction between GPRS-BMI and the combination of PA and TV-viewing (15). Moreover, 

our data indicate that these interactions were independent of a range of confounders including 

socio-demographic factors, diet, and co-morbidities. In this study, we provide novel evidence 

that the genetic predisposition to obesity was higher in those with low PA (<600 MET-
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min.week-1) and higher discretionary sedentary behaviour (>4.5 h.day-1), based on the 

weighed 93-SNP GPRS-BMI. These findings emphasise that, although obesity is partly 

genetically determined, lifestyle could play an important moderating role. Indeed, our 

findings suggest that being physically active may, in part, overcome a genetic predisposition 

to obesity and it is also possible that the potential benefits of favourable lifestyle factors may 

act more strongly in individuals with higher genetic propensity to obesity. In individuals with 

highest GPRS-BMI (Q4), having a low level of objectively-measured PA combined with 

higher sedentary time was associated with a 2.9 kg.m-2 higher BMI (over 8.5 kg bodyweight 

for someone 1.75 m tall) compared to those having a high level of PA and low sedentary 

time. Thus, individuals who have high genetic predisposition to obesity may be able to reduce 

their adiposity by maintaining both a high level of PA and lower levels of sedentary 

behaviour. While the causality of this association cannot be ascertained from the present data, 

the present findings make a case for intervention studies to determine the effects of adopting 

healthier physical activity behaviours, particularly in individuals genetically susceptible to 

obesity.   

All previous studies have investigated the interaction between genetic risk of obesity and PA 

(13, 14, 15, 16, 17, 18, 19) or sedentary behaviour (16, 20, 21), as separate exposures. 

However, there is new evidence suggesting that both PA and sedentary behaviour are 

independently associated with detrimental health outcomes and that they act in an additive 

manner on health outcomes (22). Examining the joint effects of these two behaviours is 

important as participation in both occurs to varying degrees throughout the day and are both 

considered separately in public health guidelines. To date, only one small scale study has 

investigated the effect of TV-viewing and PA joint classification on the genetic 

predisposition to obesity in 7,740 women and 4,564 men using a 32-SNPs genetic risk score 

(15). Although, Qi et al., failed to report a significant interaction between the GPRS and the 
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joint classification for TV and PA, they did find that among individuals with the lowest tertile 

of physical activity and >21 hour per week of TV watching, an increment of 10 points in the 

weighted GRS was associated with an increase of 2.5 [95% CI: 1.5; 3.5] kg.m-2 in BMI 

(P<0.001), while the genetic effect was largely attenuated (β=0.5 [0.1, 1.0] kg/m2, P=0.03) 

among individuals with the highest tertile of physical activity and 0-5 hour per week of TV 

watching (15). Our study, therefore, provides novel evidence and the limited evidence 

available to date. Our study has reported that the joint classification of PA and sedentary 

behaviour significantly modify the genetic predisposition to obesity in a large cohort, this was 

true for both self-reported and objectively measured PA. Moreover, we used total sedentary 

behaviour in addition to TV viewing as the main exposure, which provide a more accurate 

quantification of sedentary activities that occur on a daily basis, other than just TV-viewing. 

On the question of self-reported PA, previous studies have found that self-reporting of PA 

can attenuate the apparent association between PA-related variables and health outcomes, due 

to regression-dilution bias (33). All previous studies considering GPRS-BMI have used self-

reported data on PA (10, 11, 34, 35, 36, 37, 38), which is prone to substantial measurement 

error (33) and can result in biased estimates of the interaction (39). Thus, both objectively-

measured and self-reported PA were adopted in this study to provide a more robust estimate 

of the magnitude of the genetic susceptibility and, interestingly, the present data show similar 

patterns of interactions with both measures: difference in BMI between the inactive/high 

sedentary and active/low sedentary groups was 2.6 kg.m-2 and 3.2 kg.m-2 for the lowest (Q1) 

and highest (Q4) quartiles of GPRS- BMI, respectively, when PA was objectively measured; 

however, this BMI difference between these two groups was 1.9 kg.m-2 and 2.8 kg.m-2 for Q1 

and Q4 when PA was self-reported. This effect is similar for the combined categories of PA 

and TV-viewing.  

Strengths and limitations of the study 
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Previously, most studies have been conducted in relatively small cohorts, using a restricted 

number of genes to derive their genetic risk scores. Thus, the present data with more than 

330,000 participants and a comprehensive 93-SNP genetic risk score, substantially extends 

the current evidence base. The UK Biobank cohort is representative of  a large general 

population cohort with respect to age, sex, ethnicity and deprivation, although it is not 

representative in other regards (24, 40). The wider generalizability of the findings are limited 

to White Europeans and similar work is needed in different ethnic populations. PA was 

measured by self-report using a validated questionnaire, and also objectively assessed using 

validated methods, trained staff and standard operating procedures. This enables direct 

comparison to previous reports and quantification of the extent to which errors in self-

reported PA could distort the true underlying relationships between PA and adiposity (33). 

Sedentary behaviour and TV-viewing were self-reported, thus mis-reporting biases (33) may 

have led to an underestimation or overestimation of the magnitude of the association between 

GPRS and BMI. However, based on the present data with accelerometer PA, this may not 

substantially influence their interaction with GPRS- BMI on adiposity.  

A limitation of the study is that the GPRS only captures a small proportion of the genetic 

variance in BMI. The variance explained here is 1.5%, compared with the 2.7% of variance 

explained by the 97 SNPs identified in the GIANT consortium’s mega-GWAS (13). This 

difference likely reflects the differences in cohort structure (single cohort vs multiple cohorts) 

and small biases unaccounted for in the meta-analysis methodology. As shown recently by 

Tyrell et al., residual confounding is another limitation likely to happen in gene x 

environment interactions studies, including UK Biobank (16). Moreover, collider bias is also 

another limitation in the UK Biobank, as participants were biased towards being from more 

affluent backgrounds. Finally, we performed robust regression analyses to account for 

potential statistical artefacts that can bias gene x environment interaction studies. This is 
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relevant when groups of overweight individuals have a wider variance in BMI than groups of 

thinner individuals and these differences in BMI can create false positive evidence of 

interaction.  

Implications of findings 

Data from 900,000 adults from the collaborative analyses of 57 prospective studies reported 

that a 5 kg.m-2 increase in BMI was associated with 30% higher risk of all-cause mortality 

and 40% higher risk for CVD mortality, over 13 years of follow up – with events in first 5 

years excluded (41). Given the high current prevalence of overweight and obesity worldwide 

(42), it is important to develop strategies to reduce adiposity to public health.  The present 

data – the largest study to date, with the most comprehensive GPRS for BMI available – 

clearly demonstrate that the association between the combined indices of PA and sedentary 

behaviour on adiposity outcomes are evident in those with a high genetic predisposition to 

obesity. Evidence of such gene–lifestyle interactions may empower and motivate individuals 

to adopt healthier lifestyle and sleep-related behaviours through knowledge that such 

behaviour change can be effective in preventing obesity and, therefore, risk of obesity-related 

non-communicable diseases (43). Our findings are relevant to the health and employment 

sectors and suggest that promoting higher physical activity and less time spent in sedentary 

behaviours should be promoted, alongside with other key lifestyle behaviours including 

healthy sleep (44) and diet (16), as a means of combating the obesity epidemic. As described 

previously (16), PA and sedentary behaviours are only two factors from an extensive list of 

obesogenic risk factors, which together are best captured by an individual’s socioeconomic 

status. Therefore, public health messages targeting only PA or sedentary behaviours would 

have limited effect on attenuating the genetic predisposition to obesity if other lifestyle key 

risk factors are not considered.   
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In conclusion, despite the fact that this 93-SNP GPRS was associated with BMI, our results 

show that the combined lower levels of PA and higher levels of sedentary behaviours results 

in stronger associations between our genetic profile and obesity. These findings are relevant 

for public health and suggest that promoting PA and reducing sedentary behaviours, 

alongside with other healthy lifestyle behaviours, particularly in those who are genetically 

susceptible, could be an important strategy for addressing the current obesity epidemic and 

disease burden.  
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Table 1.  Cohort characteristic by genetic risk score quartiles 

 Overall Lower Low/Middle Middle/High Higher 

Socio-demographics      

Total n 388,616 84,738 84,656 84,625 84,597 

Women, n (%) 181,752 (53.7) 45,528 (53.7) 45,574 (53.8) 45,457 (53.7) 45,193 (53.4) 

Age (years), mean (SD) 56.9 (8.0) 56.9 (8.0) 56.9 (8.0) 56.9 (8.0) 56.8 (8.0) 

Deprivation index tertile 
Lower 
Middle 
Higher 

 
121,571 (36.0) 
116,090 (34.3) 
100,547 (29.7) 

 
30,771 (36.4) 
29,089 (34.4) 
24,767 (29.3) 

 
30,468 (36.0) 
29,046 (34.4) 
25,034 (29.6) 

 
30,189 (35.7) 
29,157 (34.5) 
25,170 (29.8) 

 
30,143 (35.6) 
28,798 (34.1) 
25,576 (30.3) 

Smoking status, n (%) 
   Never 
   Previous 
   Current  

 
184,448 (54.7) 
118,951 (35.2) 
34,023 (10.1) 

 
46,937 (55.6) 
29,261 (34.7) 

8,227 (9.7) 

 
46,372 (55.0) 
29,514 (35.0) 
8,501 (10.0) 

 
46,021 (54.6) 
29,874 (35.4) 
8,422 (10.0) 

 
45,118 (53.5) 
30,302 (36.0) 
8,873 (10.5) 

Obesity-related markers      

BMI, kg.m-2 27.4 (4.8) 26.6 (4.4) 27.2 (4.6) 27.6 (4.8) 28.2 (5.1) 

BMI Categories, n (%) 
   Underweight (<18.5) 
   Normal weight (18.5-24.9) 
   Overweight (25.0 to 29.9) 
   Obese (≥30.0) 

 
1,700 (0.5) 

110,757 (32.7) 
144,553 (42.7) 
81,606 (24.1) 

 
597 (0.7) 

32,239 (38.0) 
35,925 (42.5) 
15,977 (18.8) 

 
448 (0.5) 

28,833 (34.1) 
36,251(42.8) 
19,124 (22.6) 

 
368 (0.4) 

26,485 (31.3) 
36,183 (42.8) 
21,589 (25.5) 

 
287 (0.3) 

23,200 (27.4) 
36,194 (42.8) 
24,916 (29.5) 

Body fat (%)  31.3 (8.5) 30.6 (8.4) 31.1 (8.5) 31.6 (8.5) 32.1 (8.6) 

Waist Circumference (cm) 90.3 (13.4) 88.8 (12.8) 89.8 (13.2) 90.7 (13.5) 92.0 (14.0) 

Central Obesity, n(%) 113,182 (33.4) 23,990 (28.3) 27,199 (32.1) 29,399 (34.8) 32,594 (38.5) 

Physical activity      

Total PA (METs-hour.week-1), mean 
(SD) 

44.6 (62.4) 44.4 (62.0) 44.6 (62.6) 44.8 (63.1) 44.6 (61.8) 

Objective total PA (milli-gravity.day-1), 
mean (SD) 

27.9 (8.2) 28.1 (8.2) 27.9 (8.2) 27.9 (8.3) 27.8 (8.2) 

Physical active individuals, n (%) 184,083 (54.4) 45,921 (54.2) 46,194 (54.6) 45,935 (54.3) 46,033 (54.4) 

TV viewing (h.day-1) 2.8 (1.6) 2.8 (1.6) 2.8 (1.6) 2.8 (1.6) 2.8 (1.6) 

Total Sedentary Behaviour (h.day-1) 5.0 (2.3) 5.0 (2.2) 5.0 (2.3) 5.1 (2.3) 5.1 (2.3) 
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Dietary intake       

Total energy intake (Kcal.day-1) 2,174 (650) 2,180 (642) 2,177 (652) 2,171 (646) 2,168 (660) 

Protein intake (% of TE) 15.5 (3.5) 15.4 (3.4) 15.4 (3.5) 15.5 (3.5) 15.6 (3.6) 

Carbohydrates intake (% of TE) 47.1 (8.0) 47.1 (7.9) 47.2 (8.0) 47.1 (8.0) 47.1 (8.1) 

Total Fat intake (% of TE) 32.1 (6.6) 32.2 (6.5) 32.0 (6.6) 32.1 (6.6) 32.1 (6.7) 

Saturated intake (% of TE) 12.4 (3.3) 12.4 (3.3) 12.3 (3.3) 12.4 (3.3) 12.4 (3.3) 

Polyunsaturated fat intake (% of TE) 14.4 (7.2) 14.5 (7.2) 14.4 (7.3) 14.4 (7.2) 14.4 (7.3) 

Processed meat intake, n(%) 
Never  
<1 a week  
2-4 a week  
>5 times a week 

 
27,775 (8.2) 

101,290 (30.0) 
195,809 (58.0) 

13,259 (3.8) 

 
6,857 (8.1) 

25,165 (29.7) 
49,331 (58.3) 

3,262 (3.9) 

 
6,968 (8.2) 

25,212 (29.8) 
48,982 (57.9) 

3,379 (4.0) 

 
6,954 (8.2) 

25,587 (30.3) 
48,632 (57.5) 

3,334 (4.0) 

 
6,996 (8.3) 

25,326 (30.0) 
48,864 (57.8) 

3,284 (3.9) 

Sugar intake (% of TE) 22.4 (6.8) 22.4 (6.8) 22.5 (6.8) 22.5 (6.9) 22.4 (6.9) 

Starch intake (g.day-1) 122.9 (46.1) 123.1 (45.4) 123.3 (46.2) 122.4 (46.0) 122.6 (46.7) 

Alcohol intake (% of TE) 5.3 (6.5) 5.4 (6.5) 5.4 (6.6) 5.3 (6.6) 5.2 (6.5) 

Health status, n (%)      

Diabetes history 16,199 (4.8) 3,586 (4.2) 3,838 (4.5) 4,080 (4.8) 4,695 (5.6) 

Cancer history 26,490 (7.8) 6,744 (8.0) 6,672 (7.9) 6,571 (7.8) 6,503 (7.7) 

CVDs 101,039 (29.8) 23,871 (28.2) 25,036 (29.6) 25,585 (30.2) 26,547 (31.4) 

Hypertension 77,662 (22.9) 18,273 (21.6) 19,254 (22.7) 19,691 (23.3) 20,444 (24.2) 
1Data presented as mean and standard deviation (SD) for continuous variables, and as n and % for categorical variables. BMI: body mass index; 

PA: physical activity; MET: metabolic equivalent task; TE: total energy intake; CVD: cardiovascular disease; GPRS: genetic profile risk score. 

Physically inactive individuals were defined as achievement <600 MET.min.week-1.
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Figures legends 

Figure 1. Association between genetic profile risk score and BMI by physical activity (self-

reported and objective) and discretionary sedentary-related behaviours.  

Data presented as beta coefficients and their 95%CI. The beta coefficient indicates the change in BMI 

per SD increase in the genetic profile risk score by the high and low levels of PA (self-reported or 

objectively-measured PA) and high or low levels of total sedentary behaviours. High sedentary 

individuals were identified using the population median equivalent to >4.5 hours.day-1, high TV-

viewing was defined as >3 hours.day-1, physically inactive individuals was defined as <600 MET-

min.week-1 and the population median was used to define inactive individuals based on accelerometer 

PA (<24.0 milli-gravity.day-1). The p-value for the interaction between GPRS and the categories of PA 

or sedentary behaviour indicate that the association between the GPRS-BMI and BMI differ by levels 

of PA or sedentary-related behaviours. Analyses were adjusted for age, sex, deprivation, education 

qualifications, recruitment centre, month of recruitment, the first 10 principal components of ancestry 

and genotyping batch, smoking status, dietary intake (alcohol, fruit & vegetable, red meat, processed 

meat, cereals, bread and cheese) and comorbidities (diabetes, hypertension, cardiovascular diseases, 

cancer and major illness). Analyses performed for objectively measured PA were additionally adjusted 

for season and wearing time whereas analyses performed for sedentary behaviours and TV-viewing 

were additionally adjusted for total self-reported PA and those for PA (self-reported and objectively) 

were additionally adjusted for overall sedentary behaviours.      

PA: physical activity; BMI: body mass index. *objectively measured physical activity.  
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Figure 2. Association between genetic profile risk score and BMI by combined categories of 

physical activity and discretionary sedentary-related behaviours. 

Data presented as beta coefficients (95%CI). The beta coefficient indicates the change in BMI per SD 

increase in the genetic profile risk score by the combined categories of PA (self-reported or objectively-

measured PA) with total sedentary behaviours (top panel figure) and TV-viewing (bottom panel). The 

p-value for the interaction between GPRS and combined categories of PA and sedentary behaviour 

indicate that the association between the GPRS-BMI and BMI differ by these categories. Analyses were 

adjusted for age, sex, deprivation, education qualifications, recruitment centre, month of recruitment, 

the first 10 principal components of ancestry and genotyping batch, smoking status, dietary intake 

(alcohol, fruit & vegetable, red meat, processed meat, cereals, bread and cheese) and comorbidities 

(diabetes, hypertension, cardiovascular diseases, cancer and major illness). Analyses performed for 

objectively measured PA were additionally adjusted for season and wearing time.  

PA: physical activity; BMI: body mass index.* objectively measured physical activity. 

 

Figure 3. Association between genetic profile risk score and BMI by the combined categories of 

physical activity and sedentary-related behaviours.  

Data presented as adjusted BMI means by combined categories of PA, total sedentary behaviour and 

quartiles of GPRS. Figure (A) is self-reported PA and total discretionary sedentary behaviour, (B) is 

objective PA and total discretionary sedentary behaviour, C is self-reported PA and TV-viewing, and D 

is objective PA and TV-viewing. Analyses were adjusted for age, sex, deprivation, education 

qualifications, recruitment centre, month of recruitment, the first 10 principal components of ancestry 

and genotyping batch, smoking status, dietary intake (alcohol, fruit & vegetable, red meat, processed 

meat, cereals, bread and cheese) and comorbidities (diabetes, hypertension, cardiovascular diseases and 
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cancer). Analyses performed for objectively measured PA were additionally adjusted for season and 

wearing time. 

 

 






