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Two-time state formalism for quantum eavesdropping

Kieran Flatt,∗ Sarah Croke, and Stephen M. Barnett
School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

The key piece of knowledge which quantum eavesdroppers can access is the correlation between
prior and future events, i.e. the post-selected results of the legitimate preparations and measure-
ments. We present a method for optimising eavesdropping strategies which is closely related to
the two-time state formalism, the natural way to analyse such scenarios; it converts the task of
optimisation into an eigenvalue problem. Our framework is applied to the familiar BB84 and B92
protocols as well as to the largely unexplored three-state scheme, which has a remarkable feature:
the best eavesdropping strategy does not extract any information about the sent state.

I. INTRODUCTION

Quantum key distribution (QKD) is a set of protocols
that share a key between two legitimate communicat-
ing parties and use the quantum mechanical concept of
measurement disturbance to ensure that any eavesdrop-
ping is flagged to the legitimate users [1, 2]. In a typical
strategy, one of these parties will produce a quantum
state, the signal, and send it through a quantum chan-
nel to a second party who measures the state. We shall
follow standard procedure in naming these actors Alice
and Bob respectively. After Bob’s measurement, one of
the two publically shares information which allows for a
pre-determined subset of send-measure correlations to
be saved. This process is called sifting. Finally, logi-
cal bit values are assigned. According to the principle
of measurement disturbance, any interlocutor hoping
to know which states were exchanged will leave a mea-
surable trace of their activity: Alice and Bob could in
principle uncover them by examining the final set of
logical bits. Nonetheless, this illegitimate party (Eve)
will attempt to hide behind systemic noise and quan-
tum cryptanalysis partly involves calculating her best
strategy.

In designing an eavesdropping strategy, one wants to
take into account information from both the past (from
the interlocutor’s perspective, i.e. the signal sent by Al-
ice) and future (the post-measurement sifting process).
This approach contrasts with quantum mechanics as it
is often presented, as a predictive theory in which a
state is modified by a sequence of measurements. In
a recent paper [3] we developed a framework, closely
linked to that of two-time states, more suitable to the
task at hand. In that work, we consider physical pro-
cesses in which a quantum state is prepared and sub-
sequently measured twice. Probabilities are calculated
using the inner product of two vectors: one associated
with the first measurement and one associated with ev-
erything else (preparation, second measurement, post-
selection at any point). There is a clear analogy between
this and our QKD eavesdropper, who now becomes an
ideal case study for examining joint probabilities as in-
ner products. On a formal level, it is also similar to

∗ k.flatt.1@research.gla.ac.uk

expressions for probability found in the literature on
measurement-device-independent QKD [4–6] and hence
may find some utility in extending the security proofs
of that research programme such that the more tra-
ditional single-transmitter, single-receiver protocols are
also covered.

We introduce operator space and show how it can
be used to represent sequences of measurements, link-
ing our results with the related formalisms of two-time
states [7] and quantum combs [8]. In the following sec-
tion, we use this to find the optimum eavesdropping
strategies for three different QKD protocols: BB84, B92
and three-state. Our results are translated into the lan-
guage of Kraus operators. While a large literature is
dedicated to the proof of security against arbitrary at-
tacks (in particular for the former two protocols), it
should be emphasised that exploring specific forms of
attack can still lead to new insights. This will be seen
especially for the three-state scheme.

II. BACKGROUND

A mathematical result with many applications in
quantum information theory is the Choi-Jamio lkowski
isomorphism. Choi’s isomorphism [9] is a correspon-
dence between channels and states. It may be thought
of as arising from a mapping between the set of oper-
ators on a Hilbert space H and the set of vectors on
the space H⊗H; Jamio lkowski’s [10] is similar though
replaces the latter space with H⊗H† (the dagger indi-
cating the dual space). One way of interpreting these
two theorems is in terms of gate teleportation though
a number of recent works have emphasised a different
reading in terms of conditional probabilities [11]. Re-
lated to this are a pair of other works which will help
to contexualise our method.

Firstly, Silva et al [7] have examined the roles of pre-
and post-selection in reconstructing two-time states. A
state |ψ〉 is prepared by a single party who sends this on
to an observer that performs any measurement before
returning the state to the preparer. Finally, the first
party performs a measurement; if the desired result |φ〉
is the outcome then the state is kept, else the second
party forgets their result. The scheme is analogous to
quantum key distribution, if Alice and Bob are consid-
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ered a single party. The two-time state interpretation
of this process is that |ψ〉 is a forwards evolving “ket”
state and that |φ〉 is a backwards evolving “bra” state;
the tensor product of these two is the two-time state.
Probabilities are then calculated by taking the inner
product of this object with a suitably defined “Kraus
density vector”.

Secondly, there exists a body of work concerning
quantum networks, combinations of quantum channels
and POVMs e.g. [8, 12]. A quantum comb, the main
analytical tool in the theory of quantum networks, is
defined as the Choi-Jamio lkowski operator for a given
network. As will be seen, this is very closely related
to our original, reconstructions-inspired, route to this
formulation in which we were led from the positivity of
inner products on Liouville space to the complete posi-
tivity of operators on the dual space H⊗H†.

The experimental scenario of quantum key distribu-
tion does not require use of the full range of description
offered by either of these frameworks. That the two
states (associated with Alice’s signal and Bob’s mea-
surement) are pure means that we need only use a sub-
set of all possible two-time states. That the legitimate
parties are connected by a single channel means that
we do not need to consider the full range of quantum
combs, which can include maps between any number of
Hilbert spaces, or the “link product” operation which
concatenates multiple channels. Two-time states and
quantum networks are thus generalisations of the frame-
work we will use and is now presented.

Consider that a quantum state is observed twice in
series. We can separate this out into three processes: a
preparation which leaves the state with a density oper-
ator ρ and two measurements associated with positive
operator-valued measures (POVMs) π(1)

i =
∑
ν A

ν†
i A

ν
i

and π(2)
j =

∑
λB

λ†
j B

λ
j . According to the standard rules

of quantum mechanics [13, 14] the joint probability of
outcomes i and j respectively will be given by

P (i, j|ρ) =
∑
λν

Tr(Aνi ρA
ν†
i B

λ†
j B

λ
j ). (1)

The sets Aνi and Bλj are Kraus operators [15]: they en-
code information both about the probability distribu-
tion of outcomes as well as the associated state trans-
formation for a given measurement.

In a recent article [3] inspired by quantum recon-
structions [16, 17], we were interested in the minimal
set of physical principles which make Eq. (1) unique.
This led us to employ the framework of operator space
[18, 19]. By the Choi-Jamio lkowski isomorphism [9, 10],
operators in the Hilbert space H are associated with
vectors (written as |·〉〉) in the related space H ⊗ H†:
|i〉〈j| ↔ |ij†〉〉. For a generic operator A we have

A =
∑
ij

aij |i〉〈j| ↔
∑
ij

aij |ij†〉〉. (2)

The labels i and j here are the basis vectors on the two
spaces used, where the superscript dagger on the j is

meant to indicate that this piece of the vector lies in
the dual space, H†. Liouville space is equipped with
an inner product denoted by the trace rule, so that
〈〈A|B〉〉 = Tr(A†B). This final point is what allowed
our axiomatic approach to work, and in the field of
quantum reconstructions one often finds a close link be-
tween probabilities and inner products.

We are now able to recast our probability rule, Eq.
(1), in operator space. It suffices to consider only the
limited case in which the prepared state is pure and
the second measurement is a projective measurement.
In such a case the former is ρ =

∑
i λiλ

∗
j |i〉〈j|, and

the latter can be written in the same basis, π(2)
j =∑

kl c
(j)
k c

(j)∗
l |k〉〈l|. We introduce a vector

|Ψj〉〉 =
∑
ik

λic
(j)∗
k |ik†〉〉, (3)

which encodes both the preparation and final measure-
ment. The other objects required to describe a series of
measurements are the relevant Kraus operators, associ-
ated with the first measurement. Using the same basis,
we write Aνi =

∑
lm α

(iν)
lm |l〉〈m|. In our framework this

is represented by the Choi-Jamio lkowski vector of the
Hermitian conjugate,

|Aνi 〉〉 =
∑
lm

α
(iν)∗
lm |lm†〉〉. (4)

Outer products |Aνi 〉〉〈〈Aνi | of these objects are the su-
peroperators for a given channel. The latter are closely
related to quantum combs, which can be understood as
the Choi operators associated with a given channel ver-
sus our Jamio lkowski operators. Both |Ψj〉〉 and |Aνi 〉〉
are analogous to similar objects which appear in the
theory of two-time states.

A natural interpretation of the two vectors from Eqs.
(3) and (4) is in terms of Bayesian statistics for the first
measurement. The former, Eq. (3), includes prior infor-
mation concerning the pre- and post-selected state; the
latter, Eq. (4), is written in terms of posterior informa-
tion related to the probability of a given outcome and
the method by which the measurement is performed.
This contrasts with both standard quantum mechan-
ics, in which we have a knowledge about a state at a
given time and ask how future measurements are im-
pacted, and retrodictive quantum mechanics, in which
we have knowledge of a measurement outcome and want
to know which state was prepared [20, 21]. The link
with measurement-device-independent QKD [4–6] is ap-
parent in the process of combining initial and final in-
formation, associated with Alice and Bob’s activities,
to produce a two-time state. In measurement-device-
independent QKD both Alice and Bob produce light
pulses in selected states to send to a central untrusted
server. Our treatment of an intercept-resend strategy
produces an analogous state formed from Alice’s prepa-
ration and Bob’s measurement and challenges Eve to
derive as much information as possible from this with-
out being detected.
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Eq. (1) can now be written as

P (i, j|ρ) =
∑
ν

〈〈Aνi |Ψj〉〉〈〈Ψj |Aνi 〉〉. (5)

This tells us that pre- and post-selection has the same
form as a superoperation, in contrast with the first mea-
surement which would usually play this role. Condi-
tional rather than joint probabilities can of course be
calculated from this using Bayes’s rule.

Readers familiar with entanglement-based QKD anal-
yses may find it useful to make links between that
formalism and the one we make. In entanglement-
based QKD, Alice and Bob share a maximally entangled
Bell state |φ+〉. Each party then performs a measure-
ment on it, corresponding to the preparation and mea-
surement states of the equivalent measurement-based
scheme. If we restrict our attention to pure states, then
we can assign |ψA〉 to Alice’s measurement and |ψB〉 to
Bob’s. The probability distribution of their outcomes
is then given by P (A,B) = |〈ψA|〈ψB |φ+〉|2. It is al-
ready seen that the joint Alice-Bob measurements ap-
pear as a bipartite state in this scheme, and in fact by
the Choi-Jamiolkowski isomorphism already discussed
we have |Ψj〉〉 ↔ |ψA〉|ψB〉 (where the j subscript is
associated with Bob’s outcome). With this in mind
we can also associate the Kraus vector, Eq. 4, with
an equivalent bipartite state A†iν ⊗ I|φ+〉. Our proba-
bility rule Eq. 5 is then equivalent to the expression
P (i, j|ρ) =

∑
ν |〈ψAψB |A

†
iν ⊗ I|φ+〉|2. That there are

two bipartite states here, one associated with Alice and
Bob’s actions and the other with Eve’s, is the key math-
ematical tool which we have used.

III. KEY DISTRIBUTION EAVESDROPPING

As discussed earlier, QKD is a pre- and post-selecting
process that correlates the former with the latter. This
gives some initial knowledge to Eve, who will take ad-
vantage of these correlations in optimising her eaves-
dropping strategy. This is the task we now turn to.

There are a number of senses in which the quality of
a given strategy could be measured and here two fig-
ures of merit are considered. Both seek to quantify the
amount of information Eve has extracted from a single
bit, in which we are motivated by the fact that, choos-
ing to demonstrate our method instead of performing
a complete security analysis, we restrict our attention
to incoherent attacks in which she intercepts and mea-
sures each system independently from the others. One
figure of merit is the probability that all three parties
finish up with the same bit value, P (A = E = B). The
other is this probability conditioned upon the fact that
Alice and Bob share the bit, P (A = E = B|A = B),
which can of course be derived from the former as a
conditional probability:

P(A = E = B|A = B) = P(A = E = B)
P(A = B) . (6)

In realistic implementations, a set of post-measurement
privacy amplification procedures will occur such that
this latter figure is often more relevant for individual
attacks. A useful third parameter is the induced quan-
tum bit error rate, the probability P (A 6= B) that Eve’s
actions cause Alice and Bob to end the protocol with
different logical bits, which we will also calculate for
each scheme. If this is too high, Alice and Bob will
abort the protocol. In realistic quantum communica-
tions systems it is impossible to avoid noise. Security
proofs thus provide a different quantum bit error rate,
Q, which is the number of logical bits which are as-
signed different values by the two legitimate users. We
will also provide this value for context.

In order to make Eve’s attack minimally disturbing,
we can let her associate a single Kraus operator with
each bit value. We will also use that there is symme-
try between logical bits: given the high level of sym-
metry in the protocols under consideration, it should
hold that if all three parties relabel which measurement
outcomes correspond to which bit values then all prob-
abilities are invariant (for example, the probability that
all three bit values are 0 is equal to the probability that
all three bit values are 1). Indeed, for each of the figures
of merit we are considering, there will always exists a
strategy which is bit symmetric and achieves the same
value as one which does not have this structure. We
can thus restrict attention to such attacks, as discussed
in [22]. This set of operations is subject to a constraint
that the overall measurement must be trace-preserving,
which is typically represented by the requirement that
the POVM elements sum to the identity. In our formal-
ism, this corresponds to∑

ij

〈i†|Aj〉〉〈〈Aj |i†〉 = I, (7)

where i represents any complete set of basis vectors.
Each term

∑
i〈i†|Aj〉〉〈〈Aj |i†〉 in the sum on the left

hand side of this equation corresponds to the relevant
POVM element, associated with a given Kraus operator
vector. Eq. (7) can be derived by summing Eq. (5)
over all i, j (and assuming a single value for ν). If we
consider the limited case of a pure state ρ = |ρ〉〈ρ|, then
applying that the second POVM satisfies

∑
i π

(2)
i = I

leads one to the form∑
ij

〈〈ρi†|Aj〉〉〈〈Aj |ρi†〉〉 = 1. (8)

This equation is of the form 〈ρ|A|ρ〉 = 1 and we require
that it holds for all ρ; this implies that A = I and Eq.
(7) follows.

We further note that here we have considered that
the input space is a qubit, for which Eq. (7) implies
that ∑

i

Tr (|Ai〉〉〈〈Ai|) = 2. (9)
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For just two symmetric Kraus operators we thus find
〈〈A0|A0〉〉 = 〈〈A1|A1〉〉 = 1, and hence are searching for
normalised Kraus vectors. This simplifies our optimisa-
tion task below.

To help readers follow the calculations below, we will
briefly outline our process for finding the optimal eaves-
dropping strategies in each case. The initial step is
to construct the superoperators, |Ψj〉〉〈〈Ψj | in Eq. 5,
which correspond to Alice and Bob sharing a bit value
in a given timeslot. For example, if Alice sending the
pure state |0〉 and Bob measuring the state |1〉 in a rou-
tine results in a shared bit value, we will associate to
such an event the superoperator |01†〉〉〈〈01†|. In a gen-
eral routine, there will be more than one correlation
associated with a bit value and an overall superoper-
ator is then constructed by summing over the relevant
cases. The next step is to associate with Eve’s interven-
tions a Kraus operator; in what follows we investigate
the simplest case in which one measurement outcome is
associated with each bit value. Then, using Eq. 5, an
overall probability rule is found for each of our figures
of merit. By examination these can then be maximised
and, typically, we find that the task of finding optimal
eavesdropping strategies is rewritten as an eigenvalue
problem.

A. BB84

To illustrate our approach, we consider first the most
prevalent protocol in QKD literature, BB84 [23, 24].
This uses the set of four qubit states |0〉, |1〉, and
|±〉 = (|0〉 ± |1〉)/

√
2. Alice chooses with equal prob-

ability between these and sends the state to Bob, who
measures using a POVM corresponding to projections
onto each state before announcing which of the two or-
thogonal bases (|0〉, |1〉 or |+〉, |−〉) he measured. In the
case that Alice sent a state not in the relevant set, it is
discarded; in the remaining cases the two parties now
share knowledge of a quantum state and assign bit val-
ues: 0 for |0〉 or |+〉 and 1 otherwise. BB84’s security
has been demonstrated in a number of different context
[25, 26], and with a slight modification is found to be
secure with an error rate below Q = 18.9% [27].

An eavesdropper’s task in a given time-slot is to
identify the correlations between Alice’s sent state and
Bob’s measured state without giving themselves away.
Our basic eavesdropping model is to associate with Eve
a single Kraus operator for each logical bit value which
we label |Ei〉〉. Then, by Eq. (5), the probability that
all three parties have the same bit value, given that the

bit is not discarded during sifting, is

P(A = E = B)
= P(A = 0)P(B = 0, E = 0|A = 0)
+ P(A = +)P(B = +, E = 0|A = +) + ...

= 1
4(〈〈E0|

(
|00†〉〉〈〈00†|+ |+ +†〉〉〈〈+ +† |

)
|E0〉〉

+ 〈〈E1|
(
|11†〉〉〈〈11†|+ | − −†〉〉〈〈− −† |

)
|E1〉〉). (10)

The factor of 1/4 here is the probability that Alice sends
a given state [28]. One can see straightforwardly that
this figure will be maximised if we let the eavesdropper’s
Kraus operator vectors be proportional to the eigenvec-
tor with the largest eigenvalue for the relevant superop-
erator. We next require that the overall measure satisfy
bit symmetry and trace preservation, Eq. (7), and find
rather straightforwardly the optimal measurement

|E0〉〉 = 1√
3
(
|00†〉〉+ |+ +†〉〉

)
|E1〉〉 = 1√

3
(
|11†〉〉+ | − −†〉〉

)
. (11)

Each of these vectors has an eigenvalue of 3/2 with the
relevant superoperator taken from Eq. 10 and so we
have found that P(A = E = B) = 3/4 is the maximum
value that this figure of merit can take.

It is useful to know the quantum bit error rate for
such a measurement. In the BB84 strategy, the two le-
gitimate parties will disagree on the value of their logical
bit value if the receiver’s measured state is orthogonal
to that which was sent. We have

P(A 6= B) = 1
4
∑
i

〈〈Ei|
(
|01†〉〉〈〈01†|+ |10†〉〉〈〈10†|

+|+−†〉〉〈〈+−† |+ | −+†〉〉〈〈−+† |
)
|Ei〉〉.

(12)

This is evaluated using the above measurement vectors
(Eq. 11). Taking just one outcome for example, we find(
|01†〉〉〈〈01†|+ |10†〉〉〈〈10†|

+|+−†〉〉〈〈+−† |+ | −+†〉〉〈〈−+† |
)
|E0〉〉

= 1
2
√

3
(
|01†〉〉+ |10†〉〉+ |+−†〉〉+ | −+†〉〉

)
. (13)

From this, the overlap is found to be

〈〈E0|
(
|01†〉〉〈〈01†|+ |10†〉〉〈〈10†|

+|+−†〉〉〈〈+−† |+ | −+†〉〉〈〈−+† |
)
|E0〉〉 = 1

3 (14)

The same result is found for the equivalent expression
involving |E1〉〉. Hence, the total probability that Alice
and Bob’s bit values disagree in a given timeslot is

P(A 6= B) = 1
4 ×

2
3 = 1

6 . (15)
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Finally, by Eq. 6, the above two results give P(A =
E = B|A = B) = (3/4)/(5/6) = 9/10 as the fraction
of cases for which all three parties share a bit value,
conditioned upon agreement between the two legitimate
users, for this strategy. Using Eq. (4) we can write the
measurement Eq. (11) in terms of Kraus operators:

E0 = 1√
3

(|0〉〈0|+ |+〉〈+|)

= 1
2
√

3
(2I + σx + σz) , (16)

E1 = 1√
3

(|1〉〈1|+ |−〉〈−|)

= 1
2
√

3
(2I − σx − σz) . (17)

Here, σx = |+〉〈+| − |−〉〈−| and σz = |0〉〈0| − |1〉〈1| are
the usual Pauli matrices and I the identity.

As previously mentioned, we will also derive the mea-
surement (again assuming that Eve has two possible
measurement outcomes |Ei〉〉 ) that maximises the lat-
ter figure of merit. We can use Eq. (6); the numerator
will be given by Eq. (10) and the denominator will be

P(A = B) =
∑
i

〈〈Ei|
(
|00†〉〉〈〈00†|+ |11†〉〉〈〈11†|

+|+ +†〉〉〈〈+ +† |+ | − −†〉〉〈〈− −† |
)
|Ei〉〉. (18)

We can apply the principle of bit symmetry to write
this in terms of |E0〉〉 only:

P(A = E = B|A = B) =
〈〈E0|

(
|00†〉〉〈〈00†|+ |+ +†〉〉〈〈+ +† |

)
|E0〉〉

S

S = 〈〈E0|
(
|00†〉〉〈〈00†|+ |+ +†〉〉〈〈+ +† |

+|11†〉〉〈〈11†|+ | − −†〉〉〈〈− −† |
)
|E0〉〉 . (19)

It is seen by inspection that this expression maximises
to the case of definite agreement between all three par-
ties if we enforce the constraint

〈〈E0|
(
|11†〉〉〈〈11†|+ | − −†〉〉〈〈− −† |

)
|E0〉〉 = 0, (20)

and are led to the form

|E0〉〉 = a|0+†〉〉+ b|+ 0†〉〉. (21)

By symmetry the other measurement outcome must be
associated with a Kraus vector

|E1〉〉 = a|1−†〉〉+ b| − 1†〉〉. (22)

a and b in the above equations are two variables which
we are free to vary subject to the constraint

a2 + ab+ b2 = 1; (23)

a requirement which follows from trace preservation.
Any measurement which satisfies the three previous

equations will form a valid POVM and ensure that Eve,
Alice and Bob all agree on a bit value given that the lat-
ter pair do. As one example, we choose a = 1 and b = 0,
giving |E0〉〉 = |0+†〉〉 and |E1〉〉 = |1−†〉〉, correspond-
ing to the Kraus operators E0 = |+〉〈0|, E1 = |−〉〈1|.
The first of these outcomes cannot occur if the signal
state is |1〉; otherwise it will leave the qubit in state |+〉.
If the state |0〉 is sent then this outcome is retained and
if |−〉 is sent then the bit values disagree, which is not
a member of the set of outcomes under consideration.
Thus all three parties agree on a bit value 0. However,
for this arbitrarily chosen measurement we can calculate
P(A 6= B) = 1/2. It is sensible of Eve to ask that this
final variable be minimised (equivalently, the converse
probability be maximised), subject to our previously
derived constraints. One arrives at

P(A = B) = 1
2(a+ b)2, (24)

derived from Eq. (18). The maximum value that this
function can take within the domain given by Eq. (23)
is 2/3, corresponding to the point a = b = ±1/

√
3. If we

take only the positive value (ignoring the overall phase,
irrelevant for Kraus operators) our set of Kraus vectors
is

|E0〉〉 = 1√
3
(
|0+†〉〉+ |+ 0†〉〉

)
|E1〉〉 = 1√

3
(
|1−†〉〉+ | − 1†〉〉

)
. (25)

We can understand how to physically implement this
attack by writing it in the more familiar form of Kraus
operators acting on Hilbert space, done using the iso-
morphism Eq. (4). We find

E0 = 1√
3

(|+〉〈0|+ |0〉〈+|)

= 1√
6

(σx + σz + I) ,

E1 = 1√
3

(|−〉〈1|+ |1〉〈−|)

= 1√
6

(σx + σz − I) . (26)

In order to physically implement a pair of Kraus oper-
ators, one may perform a controlled-NOT gate acting
in the basis in which they diagonalise. Here, that role
is played by the Breidtbart states |0B〉 = cos(π/8)|0〉+
sin(π/8)|1〉 and |1B〉 = sin(π/8)|0〉 − cos(π/8)|1〉. Eve
uses a suitable initialised qubit probe as the gate’s tar-
get and the Alice-Bob qubit as the control. This is
the well-known Fuchs-Peres-Brandt attack [22, 29–31],
which has emerged as here as the solution to a simple
eigenvalue problem.

B. B92

Our second illustration is the B92 protocol developed
by Bennett, who realised that it was possible to modify
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the protocol such that it is performed using just two
states [32]. Alice sends either |0〉 or |+〉 and Bob mea-
sures using the same POVM as in the BB84 protocol.
The two outcomes |0〉 or |+〉 are consistent with both
possible signal states; they are sifted out. The outcome
|−〉 can only occur if |0〉 is sent and the outcome |1〉 can
only occur if |+〉 is sent. These two outcomes are thus
kept and associated with the bit values 0 or 1 respec-
tively. This is (one variation of) the B92 protocol, which
is provably secure [33, 34] up for noise below Q = 3.4%.

There is an added complexity in this protocol, com-
pared to BB84, which we must be careful of. Due to
the non-orthogonality of the post-selected states, Eve’s
measurements have the ability to change the proportion
of bits which are sifted. Taking this into account, our
first variable to optimise is

P (A = E = B)

= 〈〈E0|0−†〉〉〈〈0−† |E0〉〉+ 〈〈E1|+ 1†〉〉〈〈+1†|E1〉〉
T

T =
∑
i

〈〈Ei|
(
|0−†〉〉〈〈0−† |+ |01†〉〉〈〈01†|

+|+−†〉〉〈〈+−† |+ |+ 1†〉〉〈〈+1†|
)
|Ei〉〉 ,

(27)

where T is the probability that a given bit value is not
sifted from the protocol. This will occur whenever one
of the relevant measurement outcomes occurs whether
the desired signal state correlation has occured or not.
Furthermore, Alice and Bob of course are unaware of
Eve’s results and hence we sum over those two out-
comes. We again take advantage of the bit symmetry
previously discussed. This leaves us with a form entirely
in terms of |E0〉〉:

P (A = E = B)

= 〈〈E0|0−†〉〉〈〈0−† |E0〉〉
T ′

T ′ = 〈〈E0|
(
|0−†〉〉〈〈0−† |+ |01†〉〉〈〈01†|

+|+−†〉〉〈〈+−† |+ |+ 1†〉〉〈〈+1†|
)
|E0〉〉 , (28)

By inspection it is seen that this maximises for P (A =
E = B) = 1 if

〈〈E0|
(
|01†〉〉〈〈01†|+ |+−†〉〉〈〈+−† |

+|+ 1†〉〉〈〈+1†|
)
|E0〉〉 = 0. (29)

The only set of vectors which satisfy this are those of
the form

|E0〉〉 = A| − 0†〉〉, (30)

and, by symmetry,

|E1〉〉 = A|1+†〉〉, (31)

where A is a constant which is to be found, such that
the derived measurement is trace preserving. In the

Hilbert space formulation of quantum mechanics, this
measurement is represented by the Kraus operators
E0 = A|0〉〈−| and E1 = A|+〉〈1|, which replace the
states |−〉 and |1〉 with |0〉 and |+〉 respectively. As nei-
ther pair of states is orthogonal, we can see that the
measurement does not span the state space. This can
be seen alternatively by substituting these two vectors
into (7):

A2 (|1〉〈1|+ |−〉〈−|) = I. (32)

Clearly there exists no value of A which satisfies this and
hence the measurement defined by Eqs. (30) and (31)
cannot be complete in itself. We can, however, propose
a third outcome |E2〉〉 such that our trace preservation
condition is fulfilled. Our task then becomes to max-
imise A such that the condition

A2 (|1〉〈1|+ |−〉〈−|) + 〈0†|E2〉〉〈〈E2|0†〉
+〈1†|E2〉〉〈〈E2|1†〉 = I (33)

can still hold for some |E2〉〉. We can begin by defining
an operator X = 〈0†|E2〉〉〈〈E2|0†〉 + 〈1†|E2〉〉〈〈E2|1†〉.
Optimising the measurement is equivalent to finding the
maximum A such that this operator is positive semi-
definite. Rearranging the above constraint, one finds

X = (1−A2/2)|0〉〈0| − (A2/2) (|0〉〈1|+ |1〉〈0|)
+(1− 3A2/2)|1〉〈1|. (34)

This operator’s two eigenvalues are found to be 1 −
A2 ± (A2/

√
2); we only need ensure that the lower

value is positive and this holds if A2 = 2 −
√

2.
This choice gives a single non-zero eigenvector, |ψ〉 =
(
√

2−
√

2/2)((−1 −
√

2)|0〉 + |1〉), and any |E2〉〉 that
satisfies

X = 〈0†|E2〉〉〈〈E2|0†〉+〈1†|E2〉〉〈〈E2|1†〉 = |ψ〉〈ψ| (35)

is consistent with this maximum value of A, that which
ensures that Alice, Eve and Bob have a shared bit value
given the occurence of outcomes |E0〉〉 and |E1〉〉. Our
choice here is the usual freedom found in measurement
theory that a number of Kraus operators are consistent
with a given POVM element.

The measurement we have derived can be identi-
fied with unambiguous state discrimination [35–38]: by
themselves, |E0〉〉 and |E1〉〉 will not preserve the trace
and this implies that Eve measures the qubit without
resending. Introducing a third measurement outcome
has given us cases for which she does not have a logical
bit however in all other cases eavesdropping will be suc-
cessful. This is well known to be the weakness of B92:
Eve is able to hide behind the losses in the quantum
channel [39].

We now move on to consider our second figure of
merit, which is conditional on Alice and Bob’s agree-
ment. Again we use Bayes’s rule, the probability of



7

agreement between those two parties this time being

P(A = B) (36)

=
∑
i

(〈〈Ei|(|0−†〉〉〈〈0−† |+ |+ 1†〉〉〈〈+1†|)|Ei〉〉.

We now renormalize Eq. (27) and take advantage of bit
symmetry to simplify the expression to

P(A = E = B|A = B)

= 〈〈E0|0−†〉〉〈〈0−† |E0〉〉
U

(37)

U = 〈〈E0|(|0−†〉〉〈〈0−† |+ |+ 1†〉〉〈〈+1†|)|E0〉〉 .
(38)

Following the procedure from previous calculations, we
note that P(A = E = B|A = B) = 1 if

〈〈E0|+ 1†〉〉〈〈+1†|E0〉〉 = 0, (39)

for which we can parameterise the relevant set of vectors
by

|E0〉〉 = a| − ψ†〉〉+ b|φ0†〉〉 (40)

with a, b two free parameters (up to normalisation) and
φ, ψ two states which again are free up to some con-
straints. Requiring symmetry between the two attacks
implies next that we have

|E1〉〉 = c|1λ†〉〉+ d|ρ+†〉〉. (41)

There are a large number of parameters here (the four
complex variables and four states) however they are not
all free, given the bit symmetry and trace preservation
that we are enforcing for all measurements. We choose
to focus first on the former condition, from which we
obtain the requirements

|a〈−†|ψ†〉+ b〈0|φ〉|2 = |c〈1†|λ†〉+ d〈+|ρ〉|2

|a〈1†|ψ†〉|2 = |c〈−†|λ†〉|2

|b〈+|φ〉|2 = |d〈0|ρ〉|2. (42)

The first of these constraints is derived from the prob-
abilities that all three parties agree; the second from
the case in which only Alice and Eve agree; the third
from that in which only Eve and Bob agree. The
fourth possibility (that Alice and Bob agree with each
other but not Eve) is of course automatically satisfied
given the figure of merit under consideration. Given
the freedom still available, we can choose to consider
just a subset of all possible measurements. It can be
seen that all three requirements above hold if we let
|ψ〉 = |−〉, |φ〉 = |0〉, |λ〉 = |1〉, |ρ〉 = |+〉. Furthermore,
we can require that the measurement is complete with
just two outcomes, i.e. that it does not involve unam-
biguous state discrimination, as in the previous result.
In terms of our parameterisation, this involves letting
a = c and b = d and making sure that all four are non-
zero. Finally, we require that the signal state’s trace is

preserved by Eve’s attack, for which Eq. (7) is used to
fix the two remaining degrees of freedom. A calculation
reveals ∑

ij

〈i†|Ej〉〉〈〈Ej |i†〉 =

(
a2

2 + 3b2

2 + ab

)
|0〉〈0|

+
(
b2 − a2)

2 (|0〉〈1|+ |1〉〈0|)

+
(

3a2

2 + b2

2 + ab

)
|1〉〈1|, (43)

in which the contraction has been performed in the
|0〉, |1〉 basis, and the requirement is that expression on
the left hand side is the identity matrix. It is easy to
see that this can only be satisfied if a = b =

√
1/3, so

that the measurement is

|E0〉〉 = 1√
3
(
| − −†〉〉+ |00†〉〉

)
|E1〉〉 = 1√

3
(
|11†〉〉+ |+ +†〉〉

)
. (44)

One finds that a probability of one for the current figure
of merit comes at a cost of introducing an error rate of
P (A 6= B) = 1/5 between Alice and Bob. As with
previous results we can evaluate the Kraus operators:

E0 = 1√
3

(|0〉〈0|+ |−〉〈−|)

= 1
2
√

3
(2I + σz − σx)

E1 = 1√
3

(|1〉〈1|+ |+〉〈+|)

= 1
2
√

3
(2I − σz + σx) . (45)

Let’s consider the specific case in which Alice signals
the state |0〉 in order to aid understanding of the mea-
surement. In one-sixth of cases Eve’s outcome will cor-
respond to the Kraus operator E1, meaning that she
has failed to identify the correct bit value. With this
result, the qubit is left in the state |+〉 which ensures
that Bob disagrees with Alice as to which logical bit is
set in that timeslot: in order for him to arrive at the bit
value 0, he must get the result |−〉, which Eve has made
impossible. This explains why our measurement results
maximise the relevant figure of merit. There is still a
chance of disagreement in the remaining five-sixths of
cases and those lead to the above calculated probabili-
ties.

C. Three-state QKD

The preceding examples are but two of a large set of
QKD protocols that have been considered. We com-
plement these with the example of three-state QKD,
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sometimes referred to as PBC00 [40]. While this proto-
col has been demonstrated experimentally [41], and se-
curity proofs for arbitrary intercept-resend attacks pro-
vided [42, 43] which show that the protocol is secure
up to a noise level of Q = 9.81%, individual eavesdrop-
ping strategies have been less thoroughly explored. We
find particularly surprising results for the optimal eaves-
dropping strategies for this protocol.

Trine states are the three symmetric qubit states on
the Bloch sphere, which we can parameterise as

|ψk〉 = 1√
2

(|0〉+ ei2πk/3|1〉), (46)

with i taking the values 0, 1 or 2 corresponding, for ex-
ample, to three linear polarisations of a single photon
separated by π/3. The anti-trine ensemble are the three
states orthogonal to each of these which we label |ψk〉.
Three-state QKD is a protocol which utilises this set of
states. Alice chooses one of the three trine states with
equal probability; it is then sent to Bob, who measures
with a POVM consisting of projections onto the three
anti-trine states suitably weighted so that the overall set
is trace-preserving. In the absence of an eavesdropper,
he has zero probability of measuring the state orthog-
onal to that which was sent and equal probability of
measuring either of the other two. Alice now announces
publically one of the states which she didn’t send. There
are two possibilities: Bob knows this already (which he
announces, causing the bit to be discarded) or this is
new information for Bob (in which case he now knows
what the sent state is). Logical bit values are assigned
as such: if Alice announces that she didn’t send the
state one step clockwise of that which she did, the bit
value is 0. If the former is one step anti-clockwise of the
latter, the bit value is 1.

As an example, consider that Alice sends the state
|ψ0〉 and Bob’s outcome is |ψ1〉. If it is announced that
Alice did not send |ψ1〉 then Bob still does not know
whether she sent |ψ0〉 or |ψ2〉 and so the bit is discarded.
If instead Alice announces that she did not send |ψ2〉
then Bob knows that she could only have sent |ψ0〉. As
|ψ2〉 is anti-clockwise of |ψ0〉, the bit value 1 is assigned
to this run.

As in the previous cases, Eve’s task is to uncover the
relevant bit value without giving away that she is doing
this. We begin our calculation by introducing three

superoperators:

A0 = |ψ0ψ
†
2〉〉〈〈ψ0ψ

†
2|+ |ψ1ψ

†
0〉〉〈〈ψ1ψ

†
0|

+ |ψ2ψ
†
1〉〉〈〈ψ2ψ

†
1|

= 3
4
(
|00†〉〉〈〈00†|+ |01†〉〉〈〈01†|+ |10†〉〉〈〈10†|

+|11†〉〉〈〈11†| − e−i2π/3|00†〉〉〈〈11†| − ei2π/3|11†〉〉〈〈00†|
)

(47)
A1 = |ψ0ψ

†
1〉〉〈〈ψ0ψ

†
1|+ |ψ1ψ

†
2〉〉〈〈ψ1ψ

†
2|

+ |ψ2ψ
†
0〉〉〈〈ψ2ψ

†
0|

= 3
4
(
|00†〉〉〈〈00†|+ |01†〉〉〈〈01†|+ |10†〉〉〈〈10†|

+|11†〉〉〈〈11†| − ei2π/3|00†〉〉〈〈11†| − e−i2π/3|11†〉〉〈〈00†|
)

(48)
AX = |ψ0ψ

†
0〉〉〈〈ψ0ψ

†
0|+ |ψ1ψ

†
1〉〉〈〈ψ1ψ

†
1|

+ |ψ2ψ
†
2〉〉〈〈ψ2ψ

†
2|

= 3
4
(
|00†〉〉〈〈00†|+ |01†〉〉〈〈01†|+ |10†〉〉〈〈10†|

+|11†〉〉〈〈11†| − |00†〉〉〈〈11†| − |11†〉〉〈〈00†|
)

.

(49)

The first two of these correspond to the cases in which
Alice and Bob share a bit value of 0 or 1; the final case is
those for which Alice and Bob are left with mismatched
bit values. We note that all three objects depart from
the identity only in the |00†〉〉, |11†〉〉 subspace. In this
notation, the first figure of merit which we seek to max-
imise is

P(A = E = B) =
1
2 (〈〈E0|A0|E0〉〉+ 〈〈E1|A1|E1〉〉)∑
i〈〈Ei|

(
AX + 1

2 (A0 +A1)
)
|Ei〉〉

.

(50)
The denominator arises from normalising over cases
which aren’t sifted: this will never happen when Al-
ice and Bob disagree but will happen in half of the re-
maining cases (when Alice announces a state that Bob
already knows was not sent).

In the |0〉, |1〉 basis this object is

AX + 1
2(A0 +A1)

= 3
2

(
I − 1

4
(
|00†〉〉〈〈11†|+ |11†〉〉〈〈00†|

))
. (51)

As with A0 and A1, this superoperator differs from the
identity only due to a term in the |00†〉〉, |11†〉〉 subspace.
The optimal strategy must therefore depend only on
these two vectors as any other contributions will lead to
a reduced constant of normalisation without contribut-
ing to an increased probability. The bit-symmetric set
of vectors consistent with this is

|E0〉〉 = 1√
2
(
|00†〉〉+ eiφ|11†〉〉

)
|E1〉〉 = 1√

2
(
|00†〉〉+ e−iφ|11†〉〉

)
. (52)
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It is interesting to note that these correspond to two
unitary transformations: the former a rotation by φ
anti-clockwise around the Bloch sphere and the lat-
ter the anti-clockwise rotation. (The corresponding
Kraus operators are E0 = (|0〉〈0| + eiφ|1〉〈1|)/

√
2 and

E1 = (|0〉〈0| + e−iφ|1〉〈1|)/
√

2, both of which can be
seen to satisfy the usual condition UU† = U†U = I
for a unitary operation, up to a factor of 1/2, which
represents Eve’s probability of choosing each one.) The
unitarity of this operation implies the remarkable result
that Eve gains no information about Alice’s state from
her intervention! This is because, in the three-state
protocol, no bit value is associated with the signal state
itself: rather it is assigned only when Alice makes her
later announcement. Eve’s best strategy is to change
the state Bob receives and in this manner choose which
signal states are subsequently sifted.

Substituting the measurement Eq. (52) into Eq. (50)
we obtain the single parameter equation

P(A = E = B) =
1− cos( 2π

3 − φ)
4− cos(φ) . (53)

One can straightforwardly maximise this; we find that
P(A = E = B) = 3/5 for the rotation angle φ =
− sin−1(5

√
3/14) ≈ −0.21π, which has an associated er-

ror rate of 2/15. This is an unexpected result, but can
be rationalised somewhat. There is a π/6 phase differ-
ence between the probability that a given qubit being
either sifted or positively post-selected. The angle φ lies
somewhere between the two.

We can now move onto our second figure of merit, the
same probability conditional on Alice and Bob’s agree-
ment. We find

P(A = E = B|A = B) = 〈〈E0|A0|E0〉〉+ 〈〈E1|A1|E1〉〉∑
i〈〈Ei|(A0 +A1)|Ei〉〉

(54)
a form that again depends only on the coefficients of
|00†〉〉 and |11†〉〉. Our optimal measurement will again
be the unitary given in Eq. 52 with φ now taking a
different value. In terms of this parameter, we find

P(A = E = B|A = B) =
1− cos( 2π

3 − φ)
2 + cos(φ) , (55)

which maximises at φ = −2π/3 to give P(A = E =
B|A = B) = 1; that is, for such an attack, Eve will
always know the bit value when Alice and Bob agree.
This attack thus corresponds to Eve choosing the bit
value through her choice of unitary transformation: if
she chooses 0, the signal qubit is rotated 2π/3 clockwise
around the Bloch sphere and oppositely for bit value 1.
Of course, the trine ensemble also satisfies a 2π/3 rota-
tion, which allows us to understand why this is an opti-
mal measurement. Let’s consider a concrete example of
the protocol. Alice sends the signal state |ψ0〉 and Eve
chooses the unitary |E0〉〉, a rotation 2π/3 around the
Bloch sphere which thus leaves the qubit in the state
|ψ1〉. There is now no chance that Bob’s outcome is

|ψ1〉. This is the reason that Eve is able to achieve such
a high conditional probability: the only two outcomes
possible now are either that the legitimate parties dis-
agree or that all three parties agree. The latter occurs
when Bob measures |ψ2〉 and Alice announces that she
did not send |ψ1〉. The former will occur in all other
cases. To see this better, we have displayed all possible
outcomes conditioned upon Alice sending the state |ψ0〉
in Table I. As can be seen our eavesdropper pays a high
price for this attack, which introduces an error rate of
2/3.

IV. CONCLUSIONS

In developing our method, a consistent assumption
has been the use of a prepare-and-measure scheme
for the physical implementation of the eavesdropping
routine, as opposed to an entanglement-based scheme
which is more common in the literature on quantum se-
curity [1]. We prefer the prepare-and-measure scheme
for reasons of conceptual simplicity (e.g. it does not re-
quire ancillary qubits to be invoked) as well as noting
that it allows us to make a link back to the quantum
reconstructions work [3] which inspired it, detailing the
principles upon which security relies.

Once our formalism is set up, the optimisation fol-
lows rather naturally, with for example the Fuchs-Peres-
Brandt BB84 attack emerging from a straightforward
eigenvalue problem. For B92 we recover the well-known
vulnerability to an unambiguous discrimination attack.
For the three state protocol, the optimum set of Kraus
operators are unitary, i.e. no information is extracted
from the signal qubit. That this surprising result fol-
lows directly from our method demonstrates that it is
a natural way to approach problems involving pre- and
post-selection. The form of this optimal attack is in the
same spirit as results of Silva et al [7] who showed that
projective measurements are not enough for tomogra-
phy of two-time states. These results are summarised
in Table II. It is interesting to note that unambiguous
state discrimination, the best attack against the B92
protocol, perfectly characterises the state; this contrasts
with the unitary operation which appears as the solu-
tion to optimal eavesdropping in the three-state proto-
col and reveals no information about the signal state
there. This highlights that the attack which should be
used in each case strongly depends upon how the proto-
col assigns a bit value to each time slot. It is also seen
that all three protocols allow an eavesdropping strat-
egy in which Eve learns all of Alice and Bob’s error-
free shared bits, so that no level of privacy amplifica-
tion can make the scheme secure for the corresponding
error rates. For the BB84 protocol, this error rate is
one-third, in agreement with the point at which Eve’s
attack becomes entanglement breaking in an entangle-
ment based scheme [44, 45].

A natural development of this work would be to
model proccesses which occur in actual QKD protocols,
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for example lossy channels. This would further high-
light the utility of our approach.
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Alice sends Eve attack (new state) Bob measures Alice announces Alice bit Bob bit
ψ0 0 (ψ1) ψ0 ψ1 0 1

ψ2 1 0
ψ2 ψ1 0 0

ψ2 SIFTED
1 (ψ2) ψ0 ψ1 0 1

ψ2 1 0
ψ1 ψ1 SIFTED

ψ2 1 1

TABLE I. All rows in this table correspond to equally likely runs of the protocol. The third and eighth rows are those
in which all three parties agree, the fourth and seventh are those in which sifting occurs and the rest are those in which
disagreement occurs.

Protocol P (A = E = B) P (A = E = B|A = E)
Type of measurement Max. Value Type of measurement Max. Value Error rate QBER

BB84 Probe-entanglement 0.750 Probe-entaglement 1 0.333 0.189
B92 USD 1 Probe-entanglement 1 0.200 0.034

Three-state Unitary 0.600 Unitary 1 0.666 0.098

TABLE II. Summary of optimal eavesdropping attacks derived in main body of paper. All headers should be easily under-
stood; QBER refers to the maximal tolerable error rate below which the protocol has unconditional security.
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