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Using agent-based models to
understand the role of individuals in the
song evolution of humpback whales
(Megaptera novaeangliae)
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Abstract
Male humpback whales produce hierarchically structured songs, primarily during the breeding season. These songs
gradually change over the course of the breeding season, and are generally population specific. However, instances have
been recorded of more rapid song changes where the song of a population can be replaced by the song of an adjacent
population. The mechanisms that drive these changes are not currently understood, and difficulties in tracking individual
whales over long migratory routes mean field studies to understand these mechanisms are not feasible. In order to help
understand the mechanisms that drive these song changes, we present here a spatially explicit agent-based model inspired
by methods used in computer music research. We model the migratory patterns of humpback whales, a simple song
learning and production method coupled with sound transmission loss, and how often singing occurs during these
migratory cycles. This model is then extended to include learning biases that may be responsible for driving changes in the
song, such as a bias towards novel song, production errors, and the coupling of novel song bias and production errors.
While none of the methods showed population song replacement, our model shows that shared feeding grounds where
conspecifics are able to mix provide key opportunities for cultural transmission, and that production errors facilitated
gradually changing songs. Our results point towards other learning biases being necessary in order for population song
replacement to occur.
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Humpback whales have been intensely studied for more

than 40 years, attracting different generations of research-

ers due to the complex, stereotyped songs produced by

males (Payne & McVay, 1971). All over the world, whales

in acoustic contact, usually within a breeding population,

tend to conform to the same song display; across time,

songs gradually change (evolve) and, generally, the indi-

viduals of a population manage to keep up with the

changes, singing the most updated version of the display

(Payne & Payne, 1985; Payne, Tyack, & Payne, 1983;

Winn & Winn, 1978). In certain cases, this highly confor-

mist system changes abruptly when a new song is intro-

duced, presumably by a few individuals leading the whole

population to quickly abandon the old song and conform to
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the novel display (Garland et al., 2011; Noad, Cato, Bry-

den, Jenner, & Jenner, 2000). While these population-level

events have been recorded and studied extensively, the

individual mechanisms that allow humpback whales to

maintain a high degree of conformity over continuously

evolving songs, as well as switch quickly to a novel song

when this is introduced in the population, remain unclear. It

is not currently feasible to track individual whales over

timescales relevant to breeding seasons while also moni-

toring their acoustic interactions and song production.

However the use of agent-based models, where individual

agent behaviour can be controlled and the population-level

outcomes can be compared to empirical observations,

offers one way toward generating hypotheses about song

learning at the individual level. Therefore, we present here

a theoretical investigation based on agent-based modelling

that aims to identify individual learning strategies that

might produce the population-level song characteristics

observed in humpback whales.

Theoretical studies that focus on conformity and cultural

evolution across different taxa are extremely useful in pro-

viding new insights and contributing to the ongoing debate

relative to the selective forces behind cultural evolutionary

processes. Moreover, investigating vocal convergence can

be extremely helpful in order to understand social struc-

tures, group cohesion, group identity and affiliation

(Tyack, 2008) as well as social complexity (Freeberg, Dun-

bar, & Ord, 2012). The presence of song conformity within

humpback whale populations is not an isolated instance

across animal cultural evolution, but rather a very peculiar

example of a more general process of group vocal conver-

gence common to multiple taxa (Tyack, 2008). Birds rep-

resent a well-studied group in particular for the

investigation of cultural evolution and transmission of

acoustic displays such as songs. Birdsong dialects have a

long history of study (Marler & Tamura, 1964) and the role

of vocal learning in the development of song variation has

been investigated in several species (Catchpole & Slater,

2008). Moreover, vocal plasticity affects the emergence of

within-group song and call convergence even when the

groups are artificially assembled from unrelated birds of

different flocks (Baptista & Schuchmann, 1990; Fara-

baugh, Linzenbold, & Dooling, 1994; Hile & Striedter,

2000; Mammen & Nowicki, 1981; Nowicki, 1989). Among

mammals, female greater speared-nosed bats (Phyllosto-

mus hastatus) modify their calls as a result of group com-

position changes, achieving an increased similarity among

the new group members (Boughman, 1998). Among

marine mammals, killer whales (Orcinus orca) show stable

vocal traditions over a period of 25 years (Ford, 1991), and

captive studies suggest that individual killer whales can

learn from their conspecifics (Bain, 1986; Crance, Bowles,

& Garver, 2014). Sperm whale (Physeter macrocephalus)

population structure appears to be characterised by vocal

“clans” (Gero, Bøttcher, Whitehead, & Madsen, 2016;

Rendell & Whitehead, 2003), that present strong

conformity to a shared vocal pattern (Gero, Whitehead, &

Rendell, 2016) which remains stable over decades (Rendell

& Whitehead, 2005).

Humpback whales represent an extreme example of

vocal conformity due to the large geographical and demo-

graphic scales at which this phenomenon occurs and the

high fidelity with which vocal patterns are transmitted.

Male humpback whales produce long, complex, stereo-

typed, and hierarchically organised sound sequences,

“songs”, first described by Payne and McVay (1971).

Songs consist of individual sound “units” grouped into a

“phrase” – a series of phrase repetitions constitutes a

“theme”, and a “song” is a cycling sequence of themes.

The production of songs is exclusive to males (Glockner,

1983; Tyack, 1981; Winn & Winn, 1978), and this strongly

indicates that song is a sexually selected trait which plays

an important role in mating behaviour (Herman, 2016).

Males within a population usually conform acoustically

to a common song (Winn & Winn, 1978). Two species of

birds present a similar type of male-only vocal convergence

at the colony level: village indigobirds (Vidua chalybeata)

(Payne, 1985) and yellow-rumped caciques (Cacicus c.

cela) (Feekes, 1982), but with important differences com-

pared to humpback song. Within a neighbourhood, indigo-

bird males tend to imitate singers with high mating success

and males tend to retain their songs from one year to the

next, with only minor changes to the song structure (Payne,

1985). Conversely, the content of humpback whale songs

changes gradually and continuously over time (termed

“song evolution”) (Payne et al., 1983) as units and/or

themes are added, modified or deleted (Cerchio, Jacobsen,

& Norris, 2001; Payne & Payne, 1985; Payne et al., 1983).

However, Noad et al. (2000) described another type of song

change off eastern Australia, termed a “song revolution”,

and characterised by a complete replacement of the song

sung by the eastern Australian population between 1996

and 1998 by the introduction of a novel song, belonging

to the western Australian population. This dramatic song

replacement was a learning phenomenon of such speed it

could only be explained by cultural transmission. Further

studies have described the eastward spread of different

song types across contiguous populations breeding in the

western and central South Pacific (Garland et al., 2011),

highlighting the potential importance of migratory corri-

dors and feeding grounds for song transmission and popu-

lation connectivity (Garland, 2011; Garland et al., 2013;

Garland et al., 2015). All humpback whale populations,

excluding the one found in the Arabian Sea, migrate annu-

ally between high-latitude feeding grounds and low-

latitude breeding grounds (Clapham, 2000) and singing

occurs predominantly, but not exclusively, during the

migration and the breeding season (Cato, Paterson, &

Paterson, 2001; Garland et al., 2013; Noad & Cato, 2007;

Payne & McVay, 1971; Stimpert, Peavey, Friedlaender, &

Nowacek, 2012; Vu et al., 2012).

2 Music & Science



The complexity and the dynamism (song evolution vs.

revolution) of the acoustic behaviour of humpback whales,

coupled with the geographical scale at which whales move

and transmit their songs, make the experimental study of

this species extremely challenging. Moreover, due to the

logistics of fieldwork – and the impossibility of captive

studies – recordings of individuals are typically applicable

to only a single point in time. This means that there is very

little information on song changes in individuals, and

acoustic studies have mainly focused on song similarity

within and between populations. Due to these difficulties,

the mechanisms that drive whales to dramatically change

their song repertoires during song revolutions while para-

doxically retaining song convergence in between such

events are yet to be understood. Similarly, the differing

patterns observed in the North Pacific, where breeding

populations separated by thousands of kilometres sing the

same song (Cerchio et al., 2001) or similar versions of it

(Darling, Acebes, & Yamaguchi, 2014), and the South

Pacific, where periodic “revolutionary” changes typically

cause breeding populations to sing different songs at any

given time (Garland et al., 2011; Noad et al., 2000), are

unexplained. The first step towards solving this conundrum

is to understand how individual humpback whales learn

from each other and how they are able to maintain

population-wide song conformity while songs are showing

continuous cultural evolution, but the challenges of follow-

ing individual humpback whales for more than a few hours

at a time are immense. Therefore, we used an agent-based

modelling approach to study the humpback whale song

system using a bottom-up approach, programming beha-

viour at the individual level and observing outcomes at the

population level.

Individual-based models have shown how the accumu-

lation of copying errors and the introduction of new song

types through population turnover could lead to the devel-

opment of local dialects (Goodfellow & Slater, 1986; Sla-

ter, 1986; Williams & Slater, 1990). Subsequent studies

have highlighted how aggression towards non-conformers

can evolve, and potentially lead to population convergence

in song (Lachlan, Janik, & Slater, 2004). Other spatially

explicit modelling studies looked at the factors affecting

song divergence between contiguous populations of song-

birds under a variety of vocal learning modes (pre and post-

dispersal learning, song-based mating preferences, genetic

and cultural mutations among others), finding that intra-

sexual selection – song matching between neighbours – and

female song preferences towards the songs of their popu-

lation were the main factors driving the formation and

maintenance of dialects (Ellers & Slabbekoorn, 2003;

Rowell & Servedio, 2012). More recently, agent-based

models have been developed to test the roles of conformity,

innovation, and random errors (as well as other learning

strategies) in the emergence of dialects in sperm and killer

whales (Cantor et al., 2015; Filatova & Miller, 2015).

While none of these models incorporate song that

approaches the complexity of those produced by hump-

backs, agent-based models have, however, been success-

fully used in music research to create autonomous

composition systems in which agents construct their indi-

vidual song repertoire through their acoustic interaction

with other agents (Miranda, Kirke, & Zhang, 2010), as well

as investigating the role of novelty in mate selection (Todd

& Werner, 1999). Agent-based modelling has found signif-

icant application in linguistics, where researchers have

used it to show that unidirectional vertical cultural trans-

mission may be a driving factor in the emergence of struc-

ture in language (Kirby, 2001) and has also been used to

explain how vowel systems change over time (de Boer,

2002). Finally, Kirke, Freeman, Miranda, and Ingram

(2011) used agent-based modelling to produce a live musi-

cal interaction between simplified versions of humpback

whale songs and a saxophone played by a musician. While

biologically this did not provide new insight, it showed that

these kinds of models could be adapted to the kinds of

questions outlined here and hence directly inspired the

present study.

The modelling approach presented here aims to simulate

both the movement and acoustic behaviour of individual

humpback whales. Since humpback whale migratory beha-

viour is of potentially key importance for the occurrence of

inter-population song transmission (Garland et al., 2011),

intra-population song conformity (Winn & Winn, 1978)

and song revolution events (Noad et al., 2000), our models

needed to be spatially explicit. A model that aims to repro-

duce a natural system in its entirety will likely fail, espe-

cially in a behaviourally complex system such as

humpback whale populations. However, a bottom-up mod-

elling approach informed by data, and incorporating the

salient characteristics of the acoustic and movement beha-

viour of humpback whales, could still be useful to capture

the emergent properties of this system, and to produce tes-

table hypotheses for future field experiments. Using four

different modelling scenarios developed from a single

agent-based architecture we investigate: (1) the role of

sound transmission loss and migratory movement in song

conformity, (2) the effect of novelty on an individual’s

song learning process as well as its influence at the popu-

lation level, (3) whether song production errors may be an

important factor in song evolution, and (4) which scenarios

produce population-level characteristics comparable to the

ones observed in the wild.

Materials and methods

Model design

In order to explain the design of the model, here we

describe the behaviours of a single agent in detail. Beha-

viours are divided into three categories: (1) movement

rules, (2) song production rules, and (3) song learning rules.

At every cycle of the model, movement, song production,

Mcloughlin et al. 3



and song learning are carried out sequentially: an agent first

moves, then, with a given probability, produces a song, and

finally listens to, and potentially learns from, songs pro-

duced by other agents (Figure 1). A single model iteration

(i) ends when every agent in the population has carried out

these actions. Since only male humpbacks have been

observed singing (Glockner, 1983; Tyack, 1981; Winn &

Winn, 1978), all agents in the models are considered to be

male, and the role of female whales is not investigated here.

All models were created in Python using the SciPy pack-

age, and based on the design presented in Kirke, Miranda,

Rendell, and Ingram (2015).

Movement rules

In the model, agents exist on a two-dimensional Cartesian

plane. In order to simulate the migratory movements of

humpback whales at the ocean basin scale, the agents move

both within and between a common feeding ground and

two geographically distinct breeding grounds (each repre-

senting a distinct breeding population). During the feeding

season, agents move across the feeding ground using a

standard random walk. At the end of the feeding season

they simultaneously start their migrations towards their

respective breeding grounds (in the two breeding grounds

case, half the agents are assigned to each ground). At the

end of the breeding season the agents will return to the

common feeding ground. Although time is not explicit in

the model, the ratio between the numbers of iterations is set

to mimic the relative duration of the different seasons,

resulting in a migratory cycle comprising 12,000 iterations,

divided into 2,000 migration, 4,000 breeding, a further

2,000 migration back to the feeding grounds, and finally

4,000 iterations in the feeding ground. The maximum speed

of the agents is constrained so that agents cannot travel any

further than a single integer on the Cartesian plane during a

single iteration. This does not confine agents to a strict grid.

Agents can exist on decimal points of the grid such as 0.5.

Surrounding each individual agent are two zones of

influence with respect to movement: a zone of repulsion

(ZOR) and a zone of attraction (ZOA). The ZOR is used to

maintain a minimum distance among the moving agents.

Two agents in each other’s ZOR will calculate a new tra-

jectory in order to avoid each other. In the wild, males have

been observed inhibiting each other’s singing activity when

joining together (Darling & Bérubé, 2001; Darling, Jones,

& Nicklin, 2012). To mimic this behaviour in the model,

two agents will temporarily stop singing while in each

other’s ZORs. The ZOA is used as an acoustic active space;

agents will move towards the nearest singing agent within

their ZOA. This behaviour is based on field observations of

males’ attraction towards nearby singers (Darling et al.,

2012). In the first part of the analysis we conducted a para-

meter space exploration in which we tested how varying

Figure 1. Flow diagram of the process of song production and learning. Each singer agent (I) possesses a numeric song representation,
SR (II), for visual purposes we represent this with a coloured matrix (III) in which different colours indicate different transition
probabilities. The singer agent samples its SR using the equation at (IV), where x is the output theme, c is the cumulative summation of
the probability vector (the row of our transition matrix we are currently sampling from), and U is a uniformly distributed random
number between 0 and 1, to produce a song sequence (V). The listener agent receives the song sequence (VI), estimates a SR from the
song sequence (VII) and compares it to its own SR (VIII) using the weighted average equation (IX), where I is the received song salience.
Finally, the listener agent updates its own SR completing the learning process (X).
Source: Whale drawing courtesy of Larry Foster.
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values of ZOR and ZOA might influence agents’ song

learning (Table 1). In the second part of the analysis we

ran all the models with the ZOR and ZOA set to 0.1 and 10

respectively; these values were selected both on the out-

come of the parameter space analysis and the song trans-

mission loss characteristics recorded in eastern Australia

(Noad, pers. obs.). These movement rules were modified

from existing work on animal collective movement and

flocking (Couzin, Krause, James, Ruxton, & Franks,

2002; Shiffman, 2012). At each iteration an agent’s move-

ment is a combined function of the rules given by these

zones and either a random walk, if on breeding or feeding

grounds, or a migratory impulse to head toward a given

destination if on migration. If an agent is seeking a target –

such as breeding/feeding grounds or another agent – noise

is added to the agent’s trajectory in order to make their move-

ment patterns less linear. The breeding and feeding grounds

are defined as circular areas, and once migrating agents arrive

within the target area they revert to random walk movement

(Shiffman, 2012).

It is important to note that we deliberately designed the

distance values to correspond to the Cartesian plane, and

the sizes of the feeding grounds, breeding grounds, and

zones of influence are inspired by real-world ratios rather

than by distance metrics such as kilometres.

Song production rules

Agents in the model are equipped with a first-order Markov

model, enabled using a first-order transition matrix

(Figure 1, II). Hereafter we will refer to this as a song

representation (SR), as it is a numeric representation of a

given song structure. In our model, songs are represented

by a sequence of integers. Song is modelled at the theme

level, so that each integer corresponds to a potential theme

from a humpback whale song (Figure 1, V). While it has

been shown that a Markov model cannot adequately cap-

ture the hierarchical structure of humpback whale songs

when they are represented as a long string of units (Suzuki,

Buck, & Tyack, 2006), more recently this method has been

used successfully to represent songs at the theme level

(Garland, Rendell, Lamoni, Poole, & Noad, 2017). Our

model is best understood as representing songs as

sequences of themes, while noting that this abstracts out

the complexity of phrase structure found in real song.

Agents have a given probability, Ps, of singing at each

model iteration – this probability varies depending on

whether the agent is on a breeding ground (Ps ¼ 0.8), a

feeding ground (Ps¼ 0.08) or on migration (Ps¼ 0.5), with

values chosen based on empirical observations. An agent

produces songs by sampling from the SR transition matrix

using the equation in Figure 1, IV. The output theme,

represented here by a number, is then appended to a list

(Figure 1, V). The output theme also informs the agent

which row to sample from next. Agents use this algorithm

in a recursive function to generate songs of varying length.

This process continues until the row sampling arrives at the

last row of the matrix, at which point the song is considered

complete and sampling stops. The resultant sequence of

themes is then the realised song of that agent for that single

model iteration.

Song learning rules

As song is an acoustic signal, we modelled its decay as a

function of the distance between a singer and receiver. We

calculated what we term the intensity, I, of a song arriving

at a receiver, as 1/d2, where d was the Euclidean distance to

the singer. When an agent, the listener, “hears” the song of

another agent, the singer, then it will estimate the transition

matrix that generated the received song based on the

observed theme transitions. The listener will then update

its own SR matrix as a function of this estimated transition

matrix, the received intensity (I), and learning rules as

specified in the following four model scenarios.

Model 1: Distance-only. Here, learning depends only on

intensity, I. The listener’s new SR transition matrix, SR
0
l;

is given by:

SR
0

l ¼ SRl �ð1� IÞ þ ðSRs �IÞ ð1Þ

Where SRl is the listener’s original transition matrix,

and SRs is the transition matrix that the listener estimates

from the realised song sequence produced by a singing

agent. Hence, the degree of learning is a function of

distance-only. This provides a baseline condition – agents

Table 1. Parameters used for the parameter space exploration.

Parameter name Parameter value

Number of iterations (i) 12,000
Number of migration cycles 1
Population size 10, 100
Breeding ground size (MGS) 50, 500
Feeding ground size (FGS) 50, 500
Zone of repulsion (ZOR) 0.1, 10
Zone of attraction (ZOA) 0.1, 10, 100
Maximum song length 100 themes
Song representation (SR) matrix size 5 by 5, 50 by 50
Probability of a song production

error (Pe)
0.1, 0.01, 0.001

Singing probability depending on
iteration number (i) (Ps)

i0–i2,000 ¼ 0.50
(migration)

i2,000–i6,000 ¼ 0.80
(breeding grounds)

i6,000–i8,000 ¼ 0.50
(migration)

i8,000–i12,000 ¼ 0.08
(feeding grounds)

Note. The “size” of each circular area mentioned in the table and in the
text (MGS, FGS, ZOR, ZOA) refers to the area’s radius.

Mcloughlin et al. 5



learn what they hear and the closer the singer, the more they

change their own song to match what they are hearing.

Model 2: Distance þ novelty bias. One hypothesis in the lit-

erature is that novel songs might be more appealing learn-

ing targets for males, possibly due to a preference for

novelty on the part of females (Garland et al., 2011; Noad

et al., 2000). In order to test the role of song novelty in song

convergence and evolution, we introduced a novelty bias,

for which a metric of novelty was required. Taking inspira-

tion from the work of Todd and Werner (1999), we calcu-

late novelty as the difference between the transitions an

agent expects to hear based on its own SR matrix, and the

transitions it actually hears. These differences are then

summed, and divided by the total number of transitions

observed, in order to create a; our novelty value, which is

then used to update the listener’s SR matrix as follows:

SRl
0 ¼ SRl �ð1� ðI � aÞÞ þ SRs �ðI � aÞ ð2Þ

Figure 2 summarises the difference between the learning

processes in Models 1 and 2.

Model 3: Distance þ weighted-edit production error. Hump-

back whale songs are likely subject to production errors,

as are any other animal vocalisations, and such errors may

be important in cultural evolution (Slater, 1986). In order to

test the effect of song production errors on song evolution

we considered a model with no learning bias but errors in

production. We used a weighted-edit approach to introduce

production errors to the realised theme sequence, using

empirical data to weight the probability of a theme being

inserted, deleted, or substituted for another.

Based on empirical observations of theme-level song

variation in the literature (Cerchio et al., 2001; Payne

et al., 1983) a higher probability value (0.8) was given to

insertions compared to deletions and substitutions, which

were both weighted at 0.1. In order to carry out production

errors, the agents first produce a song using their SR

matrix, then a production occurs with probability Pe, a

parameter of the simulation. If that probability is achieved

against a random number draw, a sequence position is

selected at random for editing. Insertion, substitution, or

a deletion is selected based on the above probabilities

against a random number draw and performed at the

selected sequence position. In the case of insertions and

substitutions, the new theme is selected at random.

Model 4: Distance þ novelty bias þ weighted-edit production
error. This scenario represented the most complex hypothesis

considered, including distance, novelty bias and production

error in order to explore how the combination of all three

mechanisms acting on song production and learning would

affect the cultural evolution dynamics in the model system.

Model analysis

Models were analysed in terms of both the changes in the

agents’ SR matrices, and in the realised song sequences

through the model run. Song convergence was measured

by calculating the mean SR dissimilarity between pairs of

agents within and between breeding populations. The SR

dissimilarity between agents a and b was calculated asPn

i¼1

Pn

j¼1
jSRa � SRbjij where n is the size of the SR

matrix, and SRa, SRb are the SR matrices of agents a and

b, respectively. These values were averaged across pairs

of agents in the same breeding population, and pairs

of agents in different populations, to give within and

Figure 2. Comparison of the learning processes of Models 1 and 2 using a common initial spatial scenario. At iteration i the listener
hears two equidistant singers. Depending which model is implemented, the listener’s song representation (SRl

0) at iteration iþ1 will
vary. Using Model 1, the transition probabilities of both singer 1 (SRs1) and 2 (SRs2) will be equally represented in the resulting listener’s
SR. Using Model 2, the listener will favour in its resulting SR the more “unexpected” transitions of singer 1.
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between-population mean SR dissimilarity values at each

iteration. For each model run (henceforth “experiment”),

we calculated the D mean SR dissimilarity as SRi¼1�
SRi¼12000 where the mean SR dissimilarity at the end of the

experiment (SRi¼12000) is subtracted from the one at the

beginning of the experiment (SRi¼1) capturing the overall

trend of convergence (or divergence) in the experiment. In

order to avoid confusing D mean SR dissimilarity with the

mean SR dissimilarity, the D mean SR dissimilarity will be

referred to as the DMSR for the rest of the article. A DMSR

of zero means that the agents SRs have not changed at all;

the greater the value of DMSR the more similar the agents’

SRs. A negative DMSR implies that agents’ SRs have

diverged throughout the model run.

Mean SR dissimilarity therefore measured the degree of

vocal conformity of a particular group of agents. Low dis-

similarity indicates high convergence while high dissimi-

larity represents a more variable acoustic system. In order

to have an empirical reference, we calculated mean SR

dissimilarity based on theme transitions observed from 15

singers’ recordings from eastern Australia – in 2002 (7

singers), just before a revolution event, and 2003 (8 sing-

ers), just after. We use these empirical values as a reference

to interpret how realistic our models’ results are, and not as

a direct comparison. The realised song sequences produced

by the agents were analysed using the Levenshtein distance

metric (Garland et al., 2012) to illustrate the variation in

songs produced by agents across the modelled populations

in a way that is directly comparable to how actual songs are

analysed from empirical recordings.

Model parameters

A parameter space exploration was carried out to evaluate

the potential effect of the different parameters (and their

interactions) on the degree of conformity within the agent’s

population (mean SR dissimilarity). A total of 96 modelling

experiments were run, in each experiment a different com-

bination of the parameters indicated in Table 1 was used.

These model runs consisted of a single population perform-

ing a single migration cycle of 12,000 iterations between

one breeding ground and one feeding ground; song learning

occurred according to the distance-only learning rule of

Model 1 – as we consider this the baseline of the models

designed – and agents were all initialised with random SRs.

The parameter space for the model was large due to the

complexity of the system. The complexity arises from the

requirement to allow the creation of specific scenarios that

may have a significant impact on cultural transmission in a

population of agents.

The results of the parameter space exploration are sum-

marised in Figure 3. In this figure, large ZOR size (10;

Figure 3, black contour symbols) results in lower DMSR

across multiple parameter generations when compared to

a low ZOR size (0.1; Figure 3, grey contour symbols).

This implies that large ZOR size results in low levels of

song convergence. This is mitigated by increasing the

population size, resulting in DMSR values going above

zero in almost all parameter combinations. This is attrib-

uted to a higher density of agents on the feeding and

breeding grounds. The only exception to this overall den-

sity related trend is represented by models with a large

Figure 3. Results of the parameter exploration analysis using the distance-only learning bias (Model 1). A total of 96 modelling
experiments are grouped into four quadrants; each quadrant representing different combinations of matrix size and population size. For
each experiment, the D mean SR dissimilarity is plotted (y axis) against different zone of attraction (ZOA) sizes (x axis). Grey and black
contour symbols represent models with a zone of repulsion of 0.1 and 10 respectively. Each combination of feeding (FGS) and breeding
(MGS) ground sizes is represented with a different symbol according to the legend on the right-hand side of the plot.
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population size (100), large ZOR (10; Figure 3, black

contour symbols), medium ZOA (10) and large breeding

ground size (MGS)/feeding ground size (FGS) (500), in

which the DMSR decreases to just below zero, indicating

they have diverged slightly from the beginning of the

experiment. A small ZOA (0.1) combined with a small

ZOR (0.1; Figure 3, grey contour symbols), small popu-

lation size (10) and large breeding and feeding grounds

(MGS and FGS ¼ 500) produced the lowest levels of song

convergence (lowest DMSR in Figure 3).

Results

In the model experiments presented here, all the para-

meters listed in Table 2 were fixed with the exception of

feeding ground size (FGS), and, when song production

errors were introduced the production error rate (Pe). We

ran all models (1–4) with three FGS values (50, 100 and

500) and two breeding grounds in order to create three

scenarios in which agents belonging to the two separate

breeding ground populations either mixed well (FGS50),

partially (FGS100), or remained largely separate

(FGS500) while on the feeding grounds (Figure 4). These

scenarios were chosen to explore the effect of feeding

ground size, because acoustic contact on feeding grounds

may be an important mechanism to allow song transmis-

sion between populations (Garland et al., 2013). For each

of the following feeding ground modelling scenarios, 50

model experiments were run to get a representative view of

the model’s behaviour.

Model 1: Distance-only

In all runs the mean within-population SR dissimilarity

decreased rapidly during the first breeding season (Figure 5).

With the smallest feeding grounds (FGS ¼ 50), once mean

SR dissimilarity reached 0 it remained generally low across

the remainder of the experiments with the exception of the

first feeding season, in which a slight increase was observed

due to the mix of agents from the two breeding populations

(with different SRs). Mean between-population SR dissim-

ilarity decreased during the first feeding season as agents

returned to a small feeding ground until the degree of dis-

similarity between the two populations was equal to zero

(Figure 5, thick orange line, upper panel). If the feeding

ground was large enough that the two breeding populations

never met (FGS ¼ 500), the mean SR dissimilarity between

them remained constant across the two migration cycles

(Figure 5, lower panel), indicating divergence between

populations at the same time as convergence within each.

This SR dissimilarity between the two populations was also

reflected in the song sequences produced by the agents

(Figure 6, i ¼ 6,000); although within-population song

Table 2. Parameters used in the model experiments presented in
this article.

Parameter name Parameter value

Number of iterations (i) 2,4000
12,000 for each migration

cycle
Number of migration cycles 2
Population size 30 agents total

Breeding ground 1: agents
1–15

Breeding ground 2: agents
15–30

Breeding ground size (MGS) 100
Feeding ground size (FGS) 50, 100, 500
Zone of repulsion (ZOR) 0.1
Zone of attraction (ZOA) 10
Maximum song length 100 themes
Song representation (SR) matrix size 11 by 11
Probability of a song production

error (Pe)
0.1, 0.01, 0.001

Singing probability depending on
iteration number (i) (Ps)

i0–i2,000 ¼ 0.5
(migration)

i2,000–i6,000 ¼ 0.8
(breeding grounds)

i6,000–i8,000 ¼ 0.5
(migration)

i8,000–i12,000 ¼ 0.08
(feeding grounds)

Note. the “size” of each circular area mentioned in the table and in the text
(MGS, FGS, ZOR, ZOA) refers to the area’s radius.

Figure 4. Agents’ tracks plotted in the two scenarios in which feeding ground size varies from 50 (left panel) to 500 (right panel). Red
circles represent the two breeding grounds, blue circles represent feeding grounds.
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convergence during each breeding season was complete

(song dissimilarity ¼ 0), the different breeding ground

populations maintained two different songs. Depending how

much the two breeding populations mixed during the feed-

ing season, different degrees of song conformity emerged

(Figures 6 and 7, i ¼ 12,000). Generally, song sequences

produced in all scenarios using Model 1 were short. This

was due to the agents’ convergence on sparse SR matrices

with transition probabilities made of 0 s and 1 s (Figure S1,

see supplementary material online). If two breeding

populations have limited contact during the feeding season

and/or migration their songs will evolve independently –

and likely diverge. However, if the two breeding popula-

tions mix enough across a common feeding ground, their

original songs will be much similar (or exactly the same) at

the end of the feeding season/migration (Cerchio et al.,

2001; Darling et al., 2014). The mean SR dissimilarity

results for Model 1 experiments with FGS ¼ 100 can be

found in the online supplementary material (Figure S2,

upper panel).

Figure 5. Mean song representation (SR) dissimilarity calculated every 100th iteration (total number of iterations: 24,000) across
the population of agents of Model 1. The upper panel shows the results for feeding ground size (FGS) ¼ 50 while the bottom panel
shows the results for FGS ¼ 500. The blue and orange coloured lines represent respectively within and between-population mean
SR dissimilarity. The median value for all the 50 modelling experiments (represented with thin lines) is shown with thick blue and
orange lines. The light and dark grey areas represent breeding and feeding seasons respectively. The horizontal dashed and dotted
lines are the mean SR dissimilarity estimates calculated respectively in 2002 and 2003, at the end of the breeding season in eastern
Australia.

Figure 6. Song dissimilarities measured using the Levenshtein distance for Model 1. Shows song dissimilarities at the beginning of the
experiment (i ¼ 1), the end of the breeding season (i ¼ 6,000) and at the end of the feeding season (i ¼ 12,000). Agents 1–15 belonged
to one breeding population, and 16–30 to the second. Here, FGS ¼ 50.
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Model 2: Distance þ novelty bias

When novelty bias was added to song learning, the mean

SR dissimilarity generally increased both within and

between populations during model runs. The within-

population mean SR dissimilarity showed a steady

decrease during the first migration cycle following a

sudden increase during the second breeding season

(Figure 8). This increase in dissimilarity was steeper

when using a small feeding ground (FGS ¼ 50, Figure

8, upper panel) compared to a larger feeding ground

(FGS ¼ 500, Figure 8, lower panel). Moreover, with

larger feeding grounds, the between-population mean

SR dissimilarity generally increased across all the

experiments. Although the general pattern of mean SR

dissimilarity fluctuation was completely different than

for Model 1, divergence between the two breeding popu-

lations still emerged.

The geographical clustering in songs observed in Model

1 was absent when novelty bias was present. The introduc-

tion of the novelty algorithm also produced more variable

Figure 7. Song dissimilarities measured using the Levenshtein distance for Model 1. Shows song dissimilarities at the beginning of the
experiment (i ¼ 1), the end of the breeding season (i ¼ 6,000) and at the end of the feeding season (i ¼ 12,000). Agents 1–15 belonged
to one breeding population, and 16–30 to the second. Here, FGS ¼ 100.

Figure 8. Mean song representation (SR) dissimilarity calculated every 100th iteration (total number of iterations: 24,000) across the
population of agents of Model 2. The upper panel shows the results for FGS ¼ 50 while the bottom panel shows the results for FGS ¼
500. The blue and orange coloured lines represent respectively within and between-population mean SR dissimilarity. The median value
for all the 50 modelling experiments (represented with thin lines) is shown with thick blue and orange lines. The light and dark grey
areas represent breeding and feeding seasons respectively. The horizontal dashed and dotted lines are the mean SR dissimilarity
estimates calculated respectively in 2002 and 2003, at the end of the breeding season in eastern Australia.
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and longer songs compared to Model 1 (Figure 9). This was

due to the fact that SR matrices showed lower and more

uniform transition probabilities across themes compared to

Model 1, leading to a more variable song output (Figure S3).

The mean SR dissimilarity results for Model 1 experiments

with FGS ¼ 100 can be found in the online supplementary

material (Figure S2, lower panel).

Model 3: Distance þ production error

In this scenario the distance-only algorithm from Model 1

was coupled with weighted-edit production errors.

Although these models were run with the usual three feed-

ing ground sizes (FGS ¼ 50, 100 and 500), we present here

only the results relative to FGS ¼ 50 with Pe ¼ 0.01 and

0.001 (Pe ¼ 0.1; Figure S4, upper panel) in order to sim-

plify the presentation of results under the three different

edit probabilities. The full results of experiments with FGS

¼ 100 and 500 can be found in the online supplementary

material (Figures S5 and S6), but to summarise, small feed-

ing grounds led to partial (but never complete) song con-

vergence during the feeding season, while larger feeding

grounds led to more song divergence between populations,

across all production error rates.

The introduction of song production errors triggered

more abrupt fluctuations in the mean SR dissimilarity com-

pared to previous results (Figure 10). Despite different

error probabilities, during each feeding season any diver-

gence accumulated between the two populations during the

breeding season disappeared: within and between-

population mean SR dissimilarity reached equal levels with

all three edit probabilities. The lowest error probability (Pe

¼ 0.001) still allows complete convergence (within-

population median SR dissimilarity reaching 0) during the

first and second breeding seasons (Figure 10, upper panel),

similar to the outcome in Model 1. A higher error prob-

ability (Pe ¼ 0.01, Figure 10, lower panel) increased the

overall mean SR dissimilarity levels across the entire

experiment. The introduction of error probabilities is also

visible on the individual SRs, which show between-

population divergence as well as more variable transition

probabilities compared to Model 1 (Figure S7). To test

whether this model scenario gave a genuinely different

outcome, as opposed to simply slowing down the trends

seen in Model 1, we ran a model for 10 migration cycles

(FGS ¼ 50, Pe ¼ 0.001), and confirmed that production

errors kept the populations from achieving complete

within-population convergence (mean SR dissimilarity ¼
0) over these timescales (Figure S8). This model is impor-

tant as it shows that simple production errors may be one of

the mechanisms driving song evolution.

Model 4: Distance þ novelty bias þ production error

In Model 4, the design of Model 2 was coupled with the

weighted-edits algorithm to test how song production

errors might alter the effect of novelty bias on the cultural

evolution of song. Similarly to Model 3, only results from

the experiment with a small feeding ground (FGS ¼ 50,

Pe ¼ 0.01, 0.001) are presented here (experiments with

FGS ¼ 100 and 500 are shown in Figures S9 and S10).

The introduction of song production error did not qualita-

tively change the impact of novelty bias, as the results

obtained were similar to those for Model 2 (Figure 11, cf.

Figure 8). There was a slight increase in mean SR dissim-

ilarity during the first breeding season of the simulations

when Pe was 0.001 (Figure 11, upper panel) compared to

0.01 (Figure 11, lower panel). This increase is even more

Figure 9. Song dissimilarities measured using the Levenshtein distance at the beginning of the experiment (i ¼ 1), and the end of the
breeding season (i ¼ 6,000) and at the end of the feeding season (i ¼ 12,000). Agents 1–15 belonged to one breeding population, and
16–30 to the second. Here, FGS ¼ 100.
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pronounced when Pe ¼ 0.1 (Figure S4, lower panel). The

peaks of divergence between the populations encountered

during the breeding seasons of Model 2 were reproduced in

this model, and stabilised around the same values (between

6 and 10), irrespective of the production error probability.

The mean SR dissimilarity trends shown in Figure 11

are also consistent when models are run for 10 migration

cycles (Figure S11). There is a pronounced cyclical pattern

of increasing variation (i.e., increasing dissimilarity)

between populations during breeding seasons when popu-

lations are segregated, which is then erased by the rapid

learning of any new variations by the wider meta-

population once they are reunited on the feeding grounds.

Discussion

The spatially explicit agent-based models we analysed

broadly show that the spatial relationships between

Figure 10. Mean song representation (SR) dissimilarity calculated every 100th iteration (total number of iterations: 24,000) across the
population of agents of model 3. The upper panel shows the results for FGS ¼ 50 and Pe ¼ 0.001 while the bottom panel shows the
results for FGS¼ 50 and Pe¼ 0.01. The blue and orange coloured lines represent respectively within and between-population mean SR
dissimilarity. The median value for all the 50 modelling experiments (represented with thin lines) is shown with thick blue and orange
lines. The light and dark grey areas represent breeding and feeding seasons respectively. The horizontal dashed and dotted lines
represent the mean SR dissimilarity estimates calculated respectively in 2002 and 2003, at the end of the breeding season in eastern
Australia.

Figure 11. Mean song representation (SR) dissimilarity calculated every 100th iteration (total number of iterations: 24,000) across the
population of agents of Model 4. The upper panel shows the results for FGS ¼ 50 and Pe ¼ 0.001 while the bottom panel shows the
results for FGS¼ 50 and Pe¼ 0.01. The blue and orange coloured lines represent respectively within and between-population mean SR
dissimilarity. The median value for all the 50 modelling experiments (represented with thin lines) is showed with thick blue and orange
lines. The light and dark grey areas represent breeding and feeding seasons respectively. The horizontal dashed and dotted lines
represent the mean SR dissimilarity estimates calculated respectively in 2002 and 2003, at the end of the breeding season in eastern
Australia.
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breeding and feeding grounds play an important role in

determining song convergence at the population level.

However, without some form of variation being introduced,

for example by production error, it is very hard to sustain

continual evolutionary change. The design of these models

was motivated by the desire to understand more thoroughly

one of the most striking examples of animal cultural trans-

mission, the patterns of change in humpback whale song.

Given the current impossibility of following individual

singers in the wild to evaluate how they learn and produce

songs, we developed a spatially explicit agent-based model

to study how song learning by individuals might produce

observed population-level patterns.

Our first model, in which the only factor controlling

song learning was distance from the singer, produced total

convergence within breeding populations, an unrealisti-

cally extreme result when compared to empirical measures

of convergence from the eastern Australian humpback pop-

ulation. Varying the feeding ground size, and thus the

extent to which members of the two populations were

exposed to each other’s song during the feeding season,

dramatically altered the extent of between-population

divergence, even though singing probability was decreased

by an order of magnitude between breeding and feeding

grounds (0.8 vs. 0.08). Small feeding grounds, on which

the populations were forced to mix, minimised divergence

between populations, while large feeding grounds, where

mixing was much more rare, resulted in high divergence

between populations. Thus the simplest of our models

demonstrates how the spatial arrangement of feeding and

breeding grounds can produce quite different cultural evo-

lution outcomes even when the underlying learning

mechanisms are the same. This result supports published

predictions that feeding grounds and migratory routes are

key locations for song transmission (Garland et al., 2013;

Garland et al., 2011). Contrary to observations in the wild,

however, the length of songs produced by this model

decreased drastically during model runs, and by the end

of the model runs agents showed a high degree of song

conformity on very short songs. It is not necessarily unrea-

listic for culturally evolving signals to decrease in length –

for example, the range of movement in an invented sign

language decreased over multiple generations of an iterated

learning model (Motamedi, Schouwstra, Smith, & Kirby,

2016) – but the decrease in song length in this model is an

artefact of the learning algorithm used here. Songs do not

evolve within this scenario, because when complete song

convergence is reached, the population’s song representa-

tions become fixed on purely 1/0 transition matrices, unless

a new song is introduced (which can happen when two

breeding populations with different songs mix on the feed-

ing ground).

Since our simplest model produced unrealistic results,

we added a new component to the model to try and under-

stand how a population of agents could show song evolu-

tion by the simplest mechanisms possible. Song revolutions

recorded in eastern Australia (Noad et al., 2000) indicate

that males might be preferentially attracted to novel song

introduced by conspecifics from western Australia, so we

introduced a novelty bias in song learning. This novelty

bias prevented the song fixation observed in Model 1;

moreover, the mean SR dissimilarity values obtained were

on average higher than our real song reference from eastern

Australia. However, similarly to Model 1, large feeding

grounds still led to a high degree of song divergence

between the populations. This is consistent with what is

observed in the South Pacific, where there is clear diver-

gence between breeding populations (Garland et al., 2011).

However, other aspects of the results were less realistic.

While songs converged (i.e., mean SR dissimilarity

decreased) during the feeding season as in Model 1 (albeit

to a lesser degree), the transition probabilities within

agents’ song representations decreased such that the pro-

duced song sequences became relatively unpredictable

(Figure S3). This meant it was no longer possible for any

agent in the population to have a “novel” song with respect

to the song representation matrix, as each transition was

equally as likely as any other and so there was no expecta-

tion to be violated. The increased song variability com-

pared to the distance-only model also meant that while

song representations partially converged, agents could pro-

duce many different song sequences from those matrices,

and so the population did not show true vocal convergence

in realised songs. Moreover, this increased song variability

did not produce any quantifiable song evolution over time.

This was also true for the model that combined novelty bias

with production errors (Model 4) – the novelty bias had

such a strong effect that it negated the effect of the produc-

tion errors and resulted again in unrealistically variable

song sequences. In future work, it will be important to

investigate non-linear novelty effects in the model by

allowing agents to have different degrees of novelty pre-

ference for songs, and to have increased preferences for

songs of intermediate novelty.

Neither Model 1 (distance-only) nor Model 2 (distance

þ novelty bias) produced gradually evolving songs, so

were not sufficient to explain observed song variation. To

produce continued evolutionary song change after conver-

gence, some mechanism was required to prevent popula-

tions “fixing” on purely 1/0 SR matrices from which no

variation could occur. In order to address this we intro-

duced the assumption of song production errors in Model

3, based on a weighted-edits algorithm. Informed by hump-

back whale song literature describing within-population

song variation (Cerchio et al., 2001; Payne et al., 1983)

we assigned a high probability of theme addition, with

theme substitution and deletion being possible, but signif-

icantly less likely. The addition of production errors signif-

icantly changed the song evolution dynamics in the model.

Rather than agents converging on identical transition

matrices, they instead maintained a level of dissimilarity

which oscillated to varying degrees depending on the
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probability of production errors. The mean SR dissimilarity

calculated at the end of the breeding season in model runs

with an error probability of Pe ¼ 0.01 matched the empiri-

cal range of theme sequence dissimilarities measured from

seven and eight singers respectively recorded in 2002 and

2003 off eastern Australia (Figure 10, lower panel). In

contrast, the most complex model, Model 4, showed that

novelty bias negated the impact of production errors with

respect to cultural evolution, irrespective of their probabil-

ity, producing results very similar to Model 2, and equally

unrealistic. Theme sequence dissimilarities from popula-

tions other than the eastern Australian one were not avail-

able for this study and therefore caution should be taken in

extrapolating these modelling results to other geographical

areas. When analysing model results we did not use statis-

tical hypothesis tests as suggested by White, Rassweiler,

Samhouri, Stier, and White (2014). However, we fitted a

linear model to the SR dissimilarity results to check how

the SR dissimilarity variance was affected by feeding

ground size and learning biases. This analysis confirmed

that feeding ground size and its interaction with the differ-

ent learning biases had a strong effect on SR dissimilarity,

explaining 81% of variance between model runs (the linear

model specifics can be found in the online supplementary

material).

All models are thought experiments that force scientists

to abstract out many real-world details, but the models we

have presented here, while no different, have been closely

informed where possible by empirical observations to help

understand how the cultural evolution of humpback whale

song might emerge from spatial structure and simple learn-

ing and production rules. Modelling for the purpose of

studying vocal convergence is not a new idea. It has been

used in several fields such as biology, linguistics and music

(de Boer, 2002; Goodfellow & Slater, 1986; Kirby, 2001;

Lachlan et al., 2004; Miranda et al., 2010; Slater, 1986;

Todd & Werner, 1999; Williams & Slater, 1990). While

these models study vocal conformity, they do so in strictly

defined systems. This simplicity informed our choice of

first-order Markov models as a song learning/production

substrate in our model, leading to a simple song production

and learning system that makes minimal assumptions about

the cognitive capabilities of humpback whales whilst also

allowing us to incorporate other influential factors that may

impact song learning. Moreover, Markov models have been

recently and successfully used to describe the structural

characteristics of hybrid humpback whale songs at the

theme level (Garland et al., 2017). However, there are a

number of problems in using a first-order Markov model

for song learning and production. Such models will never

achieve the level of complexity observed in humpback

whale song when songs are examined as a long string of

individual units, due to its hierarchal and repetitive struc-

ture (Suzuki et al., 2006). Despite these shortcomings, our

focus here was not on whether or not these models can

recreate the syntactical fine-scale structures observed in

humpback whale song. Instead, we aimed to model one

commonly quantified, reported and representative hierar-

chal level within the complex song structure: the sequence

of themes comprising a song (Cholewiak, Sousa-Lima, &

Cerchio, 2012; Garland et al., 2017). By using a simple

method of song learning and production, we could easily

highlight the effect of environmental factors on the songs of

our agents. We consider these Markov models as place-

holders that should ultimately be replaced by a way of

modelling fine-scale song production that is more closely

informed by data from real humpback songs, once they

become available (for example, the syntax modelling

approach of Jin & Kozhevnikov, 2011, shows some prom-

ise in this regard). Humpback whale song learning is, of

course, a biological system and will be subject to variance

in many ways that have not been captured in the current

model. For instance, variance among listeners in the rate of

song learning in general (Mesoudi, Chang, Dall, & Thorn-

ton, 2016), and uptake of novelties in particular could

potentially generate asymmetries that may be important

in preventing complete song conformity among popula-

tions. Nonetheless, our model produces a number of inter-

esting suggestions by modelling the interaction between

humpback whales on the breeding ground, how migratory

movements influence song learning, how the size of feed-

ing grounds may impact transmission, and how the acoustic

loss in transmission of song over distance, among other

factors, might influence song learning.

The role of female humpback whales has purposely been

excluded from the current implementation of the model,

despite their obviously central role in real populations. This

is partly motivated by the need to keep models simple and

tractable, but partly also due to uncertainty over the role of

females in song evolution. Songs are hypothesised to have a

role in the mating system of humpback whales, but whether

they function in mate attraction or to mediate male–male

interactions is still debated (Herman, 2016). While it will

be important to implement female agents in future model-

ling architectures, caution is warranted given our lack of

understanding of how females may shape song evolution

(and revolution). Given the notion that males’ drive for

novelty is driven by female choice, one possible implemen-

tation comes from evolutionary musicology, where the role

of females as “critics” has been investigated (Todd &

Werner, 1999). The novelty algorithm that was implemen-

ted in the current study takes direct inspiration from this

work, which used a similar algorithm to allow female

judges in a population of agents to decide which male agent

they will mate with. However, in this model, musical pre-

ferences are genetically inherited, and this process is not

relevant to what seems to happen within humpback whale

populations. Songs are not genetically inherited but rather

they are learned horizontally from their conspecifics via

cultural transmission (Garland et al., 2011). In future, the

introduction of female agents as “critics” would potentially
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allow us to generate new theories on how female prefer-

ences may influence the evolution of song learning.

In summary, by using methods inspired by computa-

tional research into the origin of music and music composi-

tion, we have developed a multi-agent model that simulates

the migratory movements, interactions and singing beha-

viour of humpback whales. Incorporating a sound transmis-

sion loss factor into our model allowed the simulation of

song convergence within separate breeding populations and

simultaneous divergence between populations. It also high-

lighted the potential importance of feeding grounds as

being a key location for song cultural transmission for

humpback whale songs, as hypothesised in the empirical

literature (Garland et al., 2013; Garland et al., 2011). A

novelty bias was found to increase the overall song dissim-

ilarity among agents, and to produce high levels of song

divergence when the agents were geographically separated

in the two breeding grounds. Finally, introducing song pro-

duction errors resulted in songs that gradually evolved,

with song variation approaching that seen in the wild at the

end of the breeding season. We were able to mirror the

gradual cultural evolution of song, but none of our learning

scenarios triggered a process comparable with what we

observed during a song revolution, indicating that other

learning biases might be necessary in order to produce such

a dramatic population-level song replacement and

suggesting an obvious next step in this line of research.
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