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Abstract: A series of commercial difunctional benzoxazine monomers are characterized using thermal
and thermo-mechanical techniques before constructing representative polymer networks using
molecular simulation techniques. Good agreement is obtained between replicate analyses and for
the kinetic parameters obtained from differential scanning calorimetry data (and determined using
the methods of Kissinger and Ozawa). Activation energies range from 85 to 108 kJ/mol (Kissinger)
and 89 to 110 kJ/mol (Ozawa) for the uncatalyzed thermal polymerization reactions, which achieve
conversions of between 85% and 97%. Glass transition temperatures determined from differential
scanning calorimetry and dynamic mechanical thermal analysis are comparable, ranging from BA-a
(151 ◦C, crosslink density 3.6 × 10−3 mol cm−3) containing the bisphenol A moiety to BP-a, based on
a phenolphthalein bridge (239 to 256 ◦C, crosslink density 5.5 to 18.4 × 10−3 mol cm−3, depending on
formulation). Molecular dynamics simulations of the polybenzoxazines generally agree well with
empirical data, indicating that representative networks have been modelled.

Keywords: polybenzoxazines; polymerization kinetics; thermal stability; molecular dynamics simulation

1. Introduction

Polybenzoxazines (PBZs) are modern thermosetting resins that are being explored [1] as possible
replacements for common resins systems such as phenolic [2] and epoxy resins [3] in aerospace
applications. When fully cured, PBZs offer a combination of favourable thermal and mechanical
performance (e.g., dry Tg values of 246 ◦C, hot/wet Tg = 207 ◦C are possible [4], coupled with
low moisture uptake), that gives an attractive property profile. Although requiring toughening
for some engineering applications, PBZs can be combined with epoxy resins [5] or inherently
engineering thermoplastics (e.g., oligomeric polyethersulphone, KIC = 0.99 MPa m1/2) [6] to yield
impressive enhancements. PBZs are formed through step-growth ring-opening polyaddition from
bis-benzoxazine monomers (Scheme 1), which are in turn the products of the Mannich reaction between
a bis-phenol, formaldehyde and a primary amine [7]. Unlike many other commercial thermosetting
resins, which evolve condensation products such as water or ammonia, benzoxazine monomers react
relatively cleanly to form a polymer with few reaction by-products [8], although the exact mechanism
of the polymerization reaction to form a network has not been fully elucidated. Recent work in
our group has examined the influence of additives on the nature of the polymerization mechanism,
the formation of the polymer network structure and the resulting final properties [9].
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Scheme 1. Bisbenzoxazines homopolymerization reaction showing ring opening and crosslinking.

The aim of the present paper is to use thermal, mechanical and computational techniques to
explore structure-property relationships in a series of well-characterized commercial benzoxazine
monomers and to use these data to inform the construction of representative networks using
molecular simulation.

2. Experimental Section

2.1. Materials

All monomers were supplied by Huntsman (Basel, Switzerland) and used as received. The relevant
product names are Araldite MT35600 (based on the benzoxazine of bisphenol A and aniline, BA-a),
MT35700 (based on the benzoxazine of a mixture of three isomers of bisphenol F and aniline, BF-a),
MT35800 (based on the benzoxazine of phenolphthalein and aniline, BP-a, blended with BF-a), MT35900
(based on the benzoxazine of thiodiphenol and aniline, BT-a), LME10140 (based on the benzoxazine of
tricyclo[5.2.1.02,6]decane-4,8-diol and aniline, BD-a), and LMB6490 (batch 2 representing BP-a, blended
with butan-1-ol). All monomers (see Figure 1 for structures), except BP-a, were placed in a domestic
baking silicone mould, degassed at approximately 90 ◦C for 1 hour using a vacuum oven to reduce void
formation during the subsequent curing process. BP-a was found to be very difficult to control under
degassing conditions (excessive void formation) and so was simply melted and held at 120 ◦C over the
same time period that the other samples were degassed. Following degassing, all samples were placed
in an air circulating oven at 120 ◦C and the following cure schedule was applied: heating 2 K min−1 to
180 ◦C (isothermal 2 hours) followed by heating at 2 K min−1 to 200 ◦C (isothermal 2 h).

2.2. Instrumentation

Differential scanning calorimetry (DSC) was performed on a TA Q1000 (TA Instruments, Crawley,
West Sussex) with TA Q Series Advantage software on samples (4.0 ± 0.5 mg) in hermetically sealed
aluminium pans. Samples were heated at 5, 8, 10, 12, and 15 K/min. from 25 to 300 ◦C (heat/cool/heat)
in a nitrogen atmosphere (50 cm3/min.). Dynamic mechanical thermal analysis (DMTA) was performed
on a TA Q800 in static air in single cantilever mode at a frequency of 1 Hz. Cured polymer samples
(2 × 10 × 17 mm3) were scanned between −50 and 260 ◦C at 10 K/min.
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Figure 1. Structures of the monomers. N.B., BF-a is a mixture of isomers: typically 4,4′-,
2,4′-, and 2,2′-BF-a in the approximate ratio 5:4:1 [10]). Monomer spectral data are deposited as
supplementary data.

2.3. Molecular Simulation

Molecular modelling was carried out using Materials Studio [11] (version 6.0, Accelrys,
Cambridge, UK) on a PC. The potential energy for all models was calculated using the
Condensed-phase Optimized Molecular Potential for Atomistic Simulation Studies (COMPASS) [12],
a forcefield specifically designed for polymer calculations. Molecular models were all created using a
combination of the Materials Studio modules and in-house programs to simulate a cure.

2.4. Construction of the Benzoxazines Using Molecular Mechanics

Initially, the structures of the benzoxazine monomers were simulated at zero Kelvin using
molecular mechanics. Molecular mechanics (MM) [13] treats the molecule as an array of atoms
governed by a set of classical-mechanical potential functions while the force field defines the
mechanical model to represent the molecule. In order to optimize the structure of the molecule,
the steepest-descents, conjugate gradients, and Newtonian [14] methods were performed to minimize
the energy of the molecule. This yielded bond lengths that agreed well with published crystallographic
data (Table 1) for similar monomers or compounds [15]. The Materials Studio Visualizer was used
to create 3D models of the monomers, we then used 40 monomer models which were then packed
into a periodic cell and repeated in a 3D space with voidless packing; the Ewald summation [16] was
performed to neutralize the charges across the periodic boundaries.

Table 1. DSC First Heat Data of Monomers (20 to 300 ◦C at 10 K/min).

Monomer Tm (◦C) ∆Hm (J/g) Tmax (◦C)
∆Hp

Tg (◦C)
(J/g) kJ/mol Bz

BA-a 36 3 241 309 70 151
BF-a - - 240 298 65 174
BP-a 70 12 228 266 74 239

BP-a batch 2 80 7 234 239 66 256
BT-a - - 220 326 74 172
BD-a 57 14 234 184 51 187

Key: Tm = Peak Melt Temperature, ∆Hm = Enthalpy of Melt, Tmax = Exothermic Peak Temperature, ∆Hp = Enthalpy
of Polymerization.



Polymers 2018, 10, 1250 4 of 15

2.5. Construction of the Cured Polybenzoxazines Using the Automated Cure Program

With the virtual space filled with the monomer mixture, control of the model was passed over to
an in-house program to proceed with cure. A full discussion of the development of the automatic model
building software falls beyond the scope of this paper, but it is outlined in more detail elsewhere [17].
The program selects and controls the reactions between benzoxazine groups to produce a realistic
cured thermoset model. To model e.g., the polybenzoxazine based on BA-a the target density for the
cell was set (within the automated program) at 1.15 g cm−3, consistent with the density found for
the polymer (1.195 g cm−3) in the literature [18] and the monomers were packed to this value by the
automated routine.

To form the cross-linked polymer network to different selected degrees of conversion,
the automated curing program was employed with the polymer-consistent force field (PCFF) [19].
For the construction of the network, the automated program requires that a series of parameters
be entered to determine the nature of the network formed. Thus, the cut-off distance (determining
whether atoms were sufficiently close to undergo reaction) was set at between 5.5 and 7.5 Å depending
on the experiment being formed; the dynamics duration was set at between 1000 and 10,000 fs and the
simulated cure temperature was 453 K, reflecting the cure reaction.

2.6. Simulation of the Cured Polybenzoxazine Properties Using Molecular Dynamics

Temperature ramped MD simulations were carried out in the Temperature Cycle option
in the Amorphous Cell Protocols. A constant-temperature, constant-pressure (NPT) ensemble
(0.0001 GPa) was used at each experimental temperature, with a time step of 1 fs, employing
the Anderson thermostat and Barendsen barostat [20]. COMPASS was used with the atomic van
der Waals summation, a cut-off at 9.50 Å, a spline width of 1.00 Å and a buffer width of 0.50 Å.
The Ewald summation [16] was performed to neutralize the charges across the periodic boundaries.
MD simulations were carried out at different temperatures, with decrements of 10 K from the starting
temperature (set at between 573 and 773 K), a total of 31 to 51 MD simulations were carried out,
between 773 and 273 K. At each temperature stage the structure was minimized before the MD
simulation to allow equilibration; the energies have practically reduced to a minimum after 25 ps and
the simulation time was 200 ps.

3. Results and Discussion

3.1. Thermal Analysis of the Homopolymerization Reactions

The monomers were each analyzed using DSC to determine (a) the degree of cure and (b) the
glass transition temperature (Tg) for later use in the simulation study. In each case, the temperature
program applied involved ‘heat-cool-heat’ with the sample being heated from room temperature to
300 ◦C at 10 K/min during each heat cycle. The DSC data produced from the first step of the heat, cool,
heat cycle are presented in Table 1 (average of three measurements) with examples shown in Figure 2.

During the first heating cycle it was apparent that two of the five monomers (BP-a) and (BD-a)
underwent very visible endothermic melting transitions. All of the monomers used in this work
are solid at room temperature and one might expect to see these endotherms in all of the samples.
What these data demonstrate is that it takes more energy for the BP-a and BD-a samples to melt, which
may be due to a higher degree of crystallinity in these monomers. These benzoxazines, containing
phenolphthalein and dicyclopentadiene moieties, respectively, have much bulkier bridging groups
than those of the other three monomers, this may be the cause for this greater requirement of energy.

The exotherms, showing the polymerization reaction for all six monomers, display peak maxima
within a narrow range of 218–242 ◦C. The monomers that display melting also show broad exotherms;
the remaining monomers display much more pronounced peaks whilst curing. If a single exothermic
peak is observed, then it is assumed that the curing results represent a single chemical process as a first
approximation, although two or more simultaneous or very close chemical reactions cannot be ruled
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out [21] and previously we have used mathematical modelling to deconvolute the thermal data [9] to
reveal contributions from several processes to the reaction exotherm. In addition, it has to be assumed
that all of the heat generated is a result of the curing reaction, which is irreversible ring-opening
and formation of the methylene bridge in the case of benzoxazines. The most symmetrical, Gaussian
curve appears to be produced by the BF-a monomer with BA-a and BT-a appearing quite symmetrical,
although there does appear to be slight trailing on the curve, perhaps suggesting that there is a small
change in viscosity occurring in the system which has resulted in the reaction becoming more diffusion
controlled. Both BP-a batches and BD-a form especially broad peaks representing a slower reaction
and perhaps a combination of more than one reaction process occurring.Polymers 2018, 10, x FOR PEER REVIEW  5 of 15 
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The lowest energy transition occurs for the BD-a sample at 183.5 J/g (50.9 kJ/mol Bz ring) and
the highest, almost double, occurs at 326.0 J/g (73.8 kJ/mol Bz ring) for BT-a, based on the sulphur
containing benzoxazine. The exotherm for BA-a (Tmax ca. 240 ◦C and ∆Hp = 309.3 J/g) agrees
reasonably closely with a literature value of Tmax = 243 ◦C, although the enthalpy is significantly
higher, ∆Hp = 240 J/g [22]. Pure benzoxazines typically show symmetrical exotherms between 200
and 250 ◦C, with ∆Hp = 150–600 J/g, although the exotherm may be skewed and reduced to lower
temperatures in the presence of phenolic and amino impurities, arising from the synthesis of the
monomer. In an extreme case, there will be multiple peaks, although none of the exotherms recorded
here are truly multimodal.

3.2. Determination of Glass Transition Temperature Using DSC

The second heating cycles of the DSC experiments were interpreted to yield the Tg of the
monomers in their now cured resin form (Table 1). All the cured resins demonstrated a single Tg,
which strongly implies that the samples are homogeneous. The Tg values given here experimentally
have been interpreted using the inflexion as exemplified by Figure 3.
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The trend of the average glass transition temperature is: PBA-a < PBT-a < PBF-a < PBD-a < PBP-a,
with PBP-a Batch 2 having the highest average Tg of all. This fits well with the knowledge that PBP-a
Batch 2 and PBP-a have the same polybenzoxazine backbone. It is interesting to note that increasing
the butanol content and decreasing the BF-a content of the BP-a formulation to create BP-a Batch 2 has
resulted in a higher glass transition temperature by 17 K, presumably reflecting the increased reactivity
(and higher crosslink density) of the system through a hydroxyl-initiated ring opening. The greatest Tg

values found in this set of materials belong to the structures that contain the largest bisphenol linkages.
The bulk of the dicyclopentadiene and phenolphthalein moieties no doubt restricts the molecular
mobility of the chains with the ring structures limiting rotation. This will particularly be the case for
the phenolphthalein group of PBP-a, which contains both a rigid aromatic ring and an oxygen atom,
which may result in extra interactions with neighbouring chains (e.g., hydrogen bonding), which
would also hinder chain motion and increase Tg. When comparing the measured values to those
available in the literature for the same monomer there is good agreement for PBA-a (151 ◦C measured,
150 ◦C literature [23]) and PBD-a (187 ◦C measured, 183 ◦C literature [24]).

3.3. Determination of Degree of Cure

DSC was also used to ascertain the degree of cure of the monomers by comparing the curing
exotherm (first heat) with the corresponding polybenzoxazine sample that had been produced using a
specific cure program. So, for instance: BA-a gave a cure exotherm of 309 J/g when cured to completion
via DSC and was compared to the residual cure exotherm (31 J/g) of a sample cure in the laboratory
using the cure program specified in the Experimental section, which was used throughout this work.
Table 2 presents the resulting data, which demonstrate that in general the polybenzoxazines cure to a
degree of approximately 90%.
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Table 2. Degree of cure of polybenzoxazines.

PBZ
Cure exotherm (J/g)

Degree of Cure (%)
Monomer Cured Sample (rescan)

PBA-a 309.30 31.11 89.9
PBF-a 298.30 23.24 92.2
PBP-a 265.37 24.08 90.9

PBP-a (Batch 2) 238.83 36.63 84.7
PBT-a 326.97 20.23 93.8
PBD-a 183.50 4.84 97.4

3.4. Determination of Cure Kinetics Using DSC

Two different methods of kinetic analysis, proposed independently by Kissinger and Ozawa,
were used in this work, which use variations of the Arrhenius equation [25]. The Kissinger method is
depicted in Equation (1):

ln
(

β

T2
max

)
= ln

(
AR
Ea

)
− Ea

RT2
max

(1)

where β = heating rate, Tmax = temperature of DSC peak maxium, Ea = activation energy,
A = pre-exponential (collision) factor, R = gas constant. and employs thermal data determined using
DSC. When lnβ is plotted against reciprocal temperature (Figure 4) the determination of activation
energy is derived from the gradient and the pre-exponential factor from the intercept (Table 3).
The Ozawa method is similar to the Kissinger method, where the inverse relationship between the
logarithm of heating rate to exothermic peak temperature in Equation (2) (also Figure 4) allows
graphical determination of activation from the slope of the plot of lnβ/T2

max versus reciprocal
temperature. The results are also presented in Table 3.

lnβ = ln
(

AEa

R

)
− lnF(α)− 5.331− 1.052

(
Ea

RTmax

)
(2)

where β = heating rate, Tmax = temperature of DSC peak maxium, Ea = activation energy,
A = pre-exponential (collision) factor, R = gas constant, and F(α) is a constant function.
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Table 3. Kinetic parameters for the polymerization of bis-benzoxazine monomers.

Monomer
Kissinger Method Ozawa Method

Ea (kJ mol−1) k × 10−2 (s−1) A × 108 (s−1) R2 Value Ea (kJ mol−1) R2 Value

BA-a 85 21 1.53 0.9998 89 0.9999
BF-a 86 22 1.99 0.9995 90 0.9995
BP-a 135 50 559,425.15 0.9920 136 0.9929
BT-a 86 55 5.76 0.9998 90 0.9999
BD-a 108 34 602.97 0.9997 110 0.9997

Key: k = rate constant (s−1), A = pre-exponential factor (s−1).

All analyses using both of the aforementioned methods showed a good linear relationship between
heating rate and exothermic peak temperature with R2 values no lower than 0.99 throughout.

The activation energies calculated by the two methods are very similar for each sample giving a
degree of confidence in the results and the results for BA-a also match very closely to literature values
(81 and 85 kJ mol−1 by Kissinger and Ozawa respectively. The similarity in activation energy of BA-a,
BF-a and BT-a where only 1 kJ mol−1 separates both Kissinger and Ozawa values suggests that very
similar cure processes occur in these materials. The values for BD-a are much greater at ~110 kJ mol−1

and greater still for BP-a at ~135 kJ mol−1, such a jump in activation energy suggests a change in
the manner of cure. An obvious pattern to note is that BA-a, BF-a and BT-a all have small bisphenol
linkages and have low activation energies, whereas the monomers with larger bisphenol linkages have
the greater activation energies with the bulkiest linkage of BP-a having the greatest energy barrier. It is
therefore easy to assume that the size of the bisphenol linkage has a significant effect on polymerization
with larger groups hindering cure. This seems counterintuitive when one attempts to relate the kinetic
information to degree of cure where PBD-a gives by far the greatest conversion value. It has therefore
been found that polymerization with a large activation energy does not necessarily lead to a lower
degree of cure when cured under standard conditions.

3.5. Determination of the Glass Transition Temperature Using Dynamic Mechanical Thermal Analysis

DMTA is the primary method for determining the glass transition temperature (Tg) of many
polymers and has been identified to be several times more sensitive than DSC [26]. For this work
a temperature range of −50 to 260 ◦C was used to allow identification of Tg and where possible
β-transitions whilst remaining within the calibration range of the instrument. Figure 5 shows the
DMTA plot produced for PBA-a from which a clear a clear Tg can be ascertained as the storage and
loss moduli and tan δ change dramatically in the region of 125 to 240 ◦C as the polybenzoxazine loses
its stiff, glassy nature, first becomes more plastic and ultimately more rubbery.Polymers 2018, 10, x FOR PEER REVIEW  9 of 15 
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Figure 6 shows the portion of the DMTA plots, which reveal the β-transitions, which occurs in
the range −25 to 120 ◦C with the PBT-a β-transition occurring at the highest temperature and PBP-a
(Batch 2) occurring at the lowest. The β-transition allows a much more limited degree of movement
and is usually localised to side-chains or branches from the main polymer backbone. In Figure 6
an even more restricted transition (γ-transition) can be seen at lower temperatures in some of the
materials e.g., in PBA-a centered around 0 ◦C, with the other materials all showing what might be the
end of this peak at −50 ◦C.
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Table 4 presents the DMTA data for all of the polybenzoxazine materials used in this work, from
which it is clear that the sulfur- and phenolphthalein-containing polybenzoxazine backbones give
rise to greater values of Tg than their counterparts. The phenolphthalein backbone in both of its
formulations gives the highest Tg, with the ‘purified’ batch 2 version proving slightly superior (+3 K).
This is to be expected as the Batch 1 sample contains a quantity of BF-a, which would depress Tg.
The order of Tg by DMTA then is: PBP-a > PBT-a > PBA-a > PBF-a > PBD-a with the PBD-a value being
20 K lower than the next lowest PBZ and PBP-a and PBT-a being 25 K higher than the next highest. It is
difficult to postulate why this trend is apparent. PBA-a and PBF-a which have very similar backbones
give close matching Tg values (within 7 K) of each other, whilst PBP-a and PBT-a match even more
closely (within 2 K) whilst having markedly different bridging groups. When analyzed via differential
scanning calorimetry (DSC) a similar trend in glass transition temperature was seen, however via
DSC PBD-a gave the second highest Tg after PBP-a. It was suggested that this result showed a clear
relationship between bisphenol linkage size and Tg, where the large linkages would restrict molecular
motion and increase Tg. The change in PBD-a value when analyzed via DMA opposes this hypothesis
as the materials with the two largest bisphenol linkages now give both the highest and lowest values
for Tg.
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Table 4. Glass transition temperature data produced via DMTA.

PBZ
Glass Transition Temperature (◦C)

Storage Modulus Loss Modulus Tan δ

PBA-a 173 174 191
PBA-a (Batch 2) 175 176 195

PBF-a 166 167 186
PBF-a (Batch 2) 161 161 179

PBP-a 196 201 225
PBP-a (Batch 2) 202 204 230

PBT-a 197 199 213
PBD-a 146 147 164

To gain a better understanding of these properties of the polybenzoxazines crosslink density has
been calculated from the DMTA analyses using Equation (3). In theory, higher crosslink density of
polymer networks can lead to increases in storage modulus and glass transition temperature (Tg)3.

Ge =
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is the front factor (unity for ideal rubbers), R is the
gas constant, v is the crosslink density (number of moles of network chains per unit volume of cured
polymer) and Te is Tg + 50 ◦C [27].

The Tg data (Table 5) yield three groups of values: PBD-a by far the lowest, PBA-a and PBF-a
intermediate and PBP-a and PBT-a the greatest, the same grouping can be seen in the crosslink density.
PBD-a gives a crosslink density of 1.4 × 10−3 mol cm−3, less than half the value of PBA-a and PBF-a
(3.6 and 3.8 × 10−3 mol cm−3 respectively) which are ca. 1.7 × 10−3 mol cm−3 below that of PBP-a
and PBT-a. This is consistent with the accepted view that crosslink density has an influence on Tg.
As crosslink density increases chain movement/molecular mobility is further reduced resulting in
more energy being required to overcome this obstacle. However, the results suggest that another factor
may be at work as PBT-a has a greater crosslink density than PBP-a by 20% yet their Tg values only
differed by 2 K. It has been suggested that free volume, hydrogen bonding, chain interaction and
intermolecular packing can also influence these properties [28]. It is interesting to note how in the
PBP-a, the crosslink density changes with removal of the BF-a (20%) in its formulation. The crosslink
density of the PBP-a Batch 1 is 5.5 × 10−3 mol cm−3 compared with the 18.4 × 10−3 mol cm−3 of
PBP-a Batch 2 has an increase of more than 300%. Particularly intriguing is that the large increase in
crosslink density only results in a 3 K (1.5%) increase in Tg, thus confirming that although crosslink
density does influence Tg it is not the only influence.

Table 5. Crosslink density calculated from DMTA data.

Sample Te (K) Ge (MPa) v (×10−3 mol cm−3)

PBA-a 497 15.0 3.6
PBA-a (Batch 2) 498 15.2 3.7

PBF-a 490 15.4 3.8
PBF-a (Batch 2) 484 19.8 4.9

PBP-a 525 24.2 5.5
PBP-a (Batch 2) 527 80.8 18.4

PBT-a 522 28.7 6.6
PBD-a 470 5.4 1.4

Key: Te is Tg + 50 ◦C, Ge is storage modulus at equilibrium, v is the crosslink density.
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3.6. Determination of the Glass Transition Temperature Using Molecular Dynamics Simulation

Molecular dynamics (MD) has been used to estimate Tg by simulating the location and velocity
vector for each atom within a molecular model over time at specified conditions of temperature and
pressure. The region representing the Tg is typically determined by performing simulation experiments
at different temperatures and calculating the density of the model at each simulation temperature;
Tg is estimated as the point of intersection between the thermal expansion gradients for higher and
lower temperature data. In this work, the method reported by Hall et al. [17] was used to find the best
point of gradient change (the ‘hinge point’) by finding when the fit quality of a line is at its maximum,
based on finding the best fit for a gradient change as a function of temperature. An in-house program,
written in Perl script, was used to analyze the raw data from the MD simulations, yielding a probability
trace for Tg, mapped against temperature. A peak position may represent the Tg and the breadth of
the peak also indicates the overall quality of the simulation data. The ‘quality of fit’ is determined
by centering an ellipse, of the same eccentricity as the standard deviation error bars and of sufficient
radius to make a tangent with the best fit line.

A Beckerman box refinement method was employed to fit the line and minimize the total of the
semi minor axis radii, which quantify the fit quality. Having calculated these parameters for a number
of simulation temperatures, they were superimposed on the original density vs. temperature data.
Examples of the calculations are shown on the simulated plots as the red line (the peak occurs where
the gradient changes i.e., the transition midpoint certainty, TMC). Thus, the Tg is determined by the
data rather than the experimentalist’s preconceived notion. A good example of this is shown for PBP-a
(Figure 7) where two clear transitions are apparent, one over the range 190–240 ◦C and another above
290 ◦C. For comparison, the DMTA data for this material reveal an empirical Tg of 190–225 ◦C (Table 6).Polymers 2018, 10, x FOR PEER REVIEW  12 of 15 
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Table 6. Comparison of empirical Tg values with molecular dynamics simulations.

Sample
Glass transition temperature (◦C)

Storage Modulus Loss modulus Tan δ Simulation

PBA-a 173 174 191 160–190
PBF-a 166 167 186 170–190
PBP-a 196 201 225 190–220
PBT-a 197 199 213 180–220
PBD-a 146 147 164 150–160
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The second clear transition in the MD simulation for PBP-a is attributed to the onset of thermal
degradation. Whilst a discussion of this phenomenon falls outside the scope of the present paper, this
has been shown to correlate well with thermal stability data determined using thermogravimetric
analysis [27].

Generally, the MD data show good agreement with the Tg data produced using DMTA, but some
simulated transitions are more easily discerned than others (Figure 8). For instance, in the case of
PBA-a, the density starts to fall between 160 and 190 ◦C, which matches the empirical Tg for the same
polymer measured by DMT; the TMC trace reveals a slightly lower value (150 ◦C). PBP-a shows a
change in density between 190 and 220 ◦C (compared with a value of Tg of 200 ◦C determined using
DMTA). The data for PBD-a are presented (Figure 8), but it is significantly harder to discern changes in
the density plot, which is more uniform in the observed changes. A small change can be identified
between 150 and 160 ◦C, but the TMC trace shows a maximum at 170 ◦C. This may suggest that
the model for PBD-a is not a good representation (in terms of crosslink density and bulk density)
of the authentic network. It may be that our simplified model does not capture the complexity of
the isomeric mix. The parent benzoxazine would originally have been prepared commercially from
dicyclopentadiene and a phenolic derivative via reaction at the C=C double bonds on each ring (the
resulting bisphenyl molecule would have been subsequently reacted with aniline and formaldeyde
(or paraformaldehyde) to yield the benzoxazine monomer [29]. Consequently, not only may the
structural motif, which makes up the bridge of the monomer exists in both exo and endo forms [30]
(Figure 9), but the initial reaction of dicyclopentadiene with the phenol derivative at either ends of
the double bonds might have led to different isomers (or more likely different isomeric mixtures).
These structural differences would all potentially lead to polymers for which the free volume and Tg

values would vary, but further work is required to confirm this.Polymers 2018, 10, x FOR PEER REVIEW  13 of 15 
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4. Conclusions

The DSC analyses presented here have allowed determination of a number of properties of the
bis-benzoxazine monomers and their respective polybenzoxazines. The first heat of DSC analyses
has demonstrated that both BP-a batches, BD-a and BA-a undergo a visible melting stage when
heated suggesting that these materials are more crystalline than the other materials under study.
The exotherms representative of ring-opening for all the monomers present peak maxima within a
narrow range of 218–242 ◦C and that the polymerization enthalpy of the monomers is in the order BT-a
> BA-a > BF-a > BP-a > BD-a. The degree of cure of the materials studied here is around 90% however
PBD-a gives a value of 97% which is surprising given that BD-a contains a large bisphenol linking group
which one might imagine would lower cure degree, which is seen for PBP-a. The second heat of the
heat-cool-heat cycle has shown that the glass transition temperatures of the cured materials range from
150 to 256 ◦C in the order PBA-a < PBT-a < PBF-a < PBD-a < PBP-a. The nature of bisphenol linkage in
the polybenzoxazine structure has a dramatic effect on the structural properties of the material with
larger bisphenol linkages imparting greater Tgs. Using the Kissinger and Ozawa methods activation
energies of 80 kJ/mol−1 have been found for cure of BA-a, BF-a and BT-a with greater values of 110 and
135 kJ/mol−1 resulting for BD-a and BP-a respectively for the ring-opening polymerization process,
with the bulkier bisphenol moieties yielding the greatest activation energies. Dynamic mechanical
thermal analysis has revealed the glass transition temperature of the polybenzoxazines in this study to
be in the order PBP-a > PBT-a > PBA-a > PBF-a > PBD-a in the range 147–204 ◦C. This suggests that
the relationship between bisphenol linkage size and Tg is not as clear as had been seen via differential
scanning calorimetry which gave rise to a much greater range in Tg between those of PBT-a and
PBP-a. The crosslink density of the materials was also determined from DMTA data, with PBP-a
Batch 2 demonstrating a crosslink density of 18.4 × 10−3 mol cm−3, almost triple the value of the next
greatest polymer, PBT-a at 6.6× 10−3 mol cm−3. The trend in crosslink density data in general matches
well with the Tg data and molecular simulation has been used with some success to simulate these
thermal events.
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