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Abstract
Genome-wide association studies have identified geneticBackground: 

variants associated with coronary artery disease (CAD) in adults – the leading
cause of death worldwide. It often occurs later in life, but variants may impact
CAD-relevant phenotypes early and throughout the life-course. Cohorts with
longitudinal and genetic data on thousands of individuals are letting us explore
the antecedents of this adult disease.

149 metabolites, with a focus on the lipidome, measured usingMethods: 
nuclear magnetic resonance ( H-NMR) spectroscopy, and genotype data were
available from 5,905 individuals at ages 7, 15, and 17 years from the Avon
Longitudinal Study of Parents and Children (ALSPAC) cohort. Linear
regression was used to assess the association between the metabolites and an
adult-derived genetic risk score (GRS) of CAD comprising 146 variants.
Individual variant-metabolite associations were also examined.

The CAD-GRS associated with 118 of 149 metabolites (falseResults: 
discovery rate [FDR] < 0.05), the strongest associations being with low-density
lipoprotein (LDL) and atherogenic non-LDL subgroups. Nine of 146 variants in
the GRS associated with one or more metabolites (FDR < 0.05). Seven of
these are within lipid loci: rs11591147  rs12149545 PCSK9, HERPUD1-CETP, 
rs17091891  rs515135  rs602633  rs651821 LPL, APOB, CELSR2-PSRC1, 

rs7412  All associated with metabolites in the LDL orAPOA5, APOE-APOC1. 
atherogenic non-LDL subgroups or both including aggregate cholesterol
measures. The other two variants identified were rs112635299  andSERPINA1 
rs2519093 ABO. 

Genetic variants that influence CAD risk in adults are associatedConclusions: 
with large perturbations in metabolite levels in individuals as young as seven.
The variants identified are mostly within lipid-related loci and the metabolites
they associated with are primarily linked to lipoproteins. This knowledge could
allow for preventative measures, such as increased monitoring of at-risk
individuals and perhaps treatment earlier in life, to be taken years before any
symptoms of the disease arise.
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Introduction
Coronary artery disease (CAD) is the leading cause of adult 
death worldwide and is a gross contributor to global morbidity1. 
Many of the risk factors have long been established to be  
modifiable exposures such as low-density lipoprotein (LDL) 
cholesterol levels, smoking and hypertension2. In the developed 
world, the average age of developing Angina Pectoris, often the  
first clinical sign of CAD, is typically over 603. However, 
there is evidence that “fatty streaks”, the precursors to athero-
sclerosis and thus CAD, form in almost all adolescents from 
developed countries4. Furthermore, there is evidence that the  
development of atherosclerotic plaques in coronary arteries is  
prolonged over the life course5. Thus, it is unsurprising that risk  
factors for CAD, including obesity and serum low-density lipo-
protein levels, have been associated with an increased rate of  
plaque formation in children6. Also, a recent study suggested that 
higher BMI early in life was causally associated with adverse  
cardiovascular health7. These observations strongly suggest that 
at least some CAD risk factors may be contributing to disease  
development within children and there is potential for early life 
intervention, even if it involves nothing other than heightened  
clinical surveillance (not screening) by measured genetic burden.

Genome-wide association studies (GWAS) have been conducted 
to explore common forms of heritable contributions to this  
complex disease8,9. Over 100 genetic variants have been identi-
fied as being reliably associated with an increased risk of CAD 
in adults8,9. These variants, which are likely to be exerting their 
influence through a diverse collection of mechanisms, are com-
mon and exert relatively small effects on disease outcome  
singularly, but together these variants explain over 10% of CAD  
heritability8,9.

It is unclear what effect these variants are having on CAD- 
relevant phenotypes at an earlier age (i.e. latent disease) or 
the longitudinal nature of the associations. Elsewhere, work 
analysing variation near the FTO locus and BMI has shown 
that risk alleles don’t always have fixed effects on outcomes 
throughout life10. This may also be the case for other traits, like 
CAD. This has clinical importance because at risk individuals 
may gain from treatment or monitoring at various time-points 
across their life course. There are also implications for applied  
epidemiology using genetics. Currently, it is often assumed 
the effect of a genetic variant is fixed across the life course, but 
whilst the nature of the code itself may be static, the penetrance 
may be variable, which could be a result of gene-environment  
interactions.

Proton nuclear magnetic resonance (1H-NMR) spectroscopy 
offers a cost effective, high throughput technology to analyse 
multiple metabolic measures from a single sample, providing 
quantitative information on 149 metabolites11–13. The platform 
focuses largely on lipoproteins and fatty acids and provides the 
opportunity to examine individual components of lipoproteins 
in addition to aggregate measures. With such detailed measures 
of both genotypes and phenotypes, studies have already begun  
to successfully associate genotypic and metabolic profiles to  
disease phenotype, such as Type 2 diabetes14.

Furthermore, single nucleotide polymorphisms (SNPs) have been 
used as instrumental variables (in a technique called Mendelian 
randomisation15) to begin to appraise the causal relationship 
between metabolites and CAD in adults16. This technique, 
along with new methods to quantify metabolites are starting to 
build evidence for the causal associations between metabolites  
and CAD that are beyond the well-known LDL-C and CAD  
relationship.

There is a clear need to explore the nature of established adult 
genetic associations at earlier ages. Thus, this study set out 
to use a detailed collection of genetic and metabolomic data 
to assess how genetic risk of CAD is associated with estab-
lished and potential risk factors for CAD in young individuals  
(aged 7, 15, 17).

Methods
Study sample
The study used a single cohort: the Avon Longitudinal Study of 
Parents and Children (ALSPAC). ALSPAC recruited pregnant 
women in the Bristol and Avon area, United Kingdom, with 
an expected delivery date between April 1991 and December 
1992. Over 14,000 pregnancies have been followed up (both 
children and parents) throughout the life-course. Full details of 
the cohort has been published previously17. This study focuses  
on the children of these pregnancies. EDTA plasma samples 
were collected for metabolite extraction at ages 7, 15 and 17. 
Individuals at ages 15 and 17 were fasted prior to sample collec-
tion, but individuals at age 7 were not. Samples were aliquoted 
at 200μl or 500μl and stored below -70°C. Of the 7,176 par-
ticipants available, 1,271 were removed due to incomplete data,  
leaving 5,905 for the analysis. Data at the three ages were 
combined in order to maximise the power of the study  
(N = 5,905). This was achieved by taking an individual’s metab-
olite data at the earliest time point possible. Full details of  
their characteristics are in Table 1.

Ethical approval for the study was obtained from the ALSPAC 
Ethics and Law Committee and from the UK National Health 
Service Local Research Ethics Committees. Full references 
of committee approval can be found on the ALSPAC website. 
Written informed consent was obtained from both the parent/ 
guardian and, after the age of 16, children provided written 
assent. Please note that the study website contains details of all  
the data that is available through a fully searchable data dictionary.

Genotyping
Children were genotyped using the Illumina HumanHap550 
quad genome-wide SNP genotyping platform (Illumina Inc., San 
Diego, CA, USA) by the Wellcome Trust Sanger Institute 
(WTSI; Cambridge, UK) and the Laboratory Corporation of 
America (LCA, Burlington, NC, USA). Participants were 
excluded due to having at least one of: incorrectly recorded sex, 
minimal or excessive heterozygosity, disproportionate levels of  
individual missingness (>3%), evidence of cryptic relatedness 
or non-European ancestry. SNPs with a minor allele frequency 
(MAF) <1%, a genotype missingness >1% and a call rate <95%  
were removed and only SNPs that passed an exact test of  
Hardy-Weinberg equilibrium (P<5x10-7) were included.
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For imputation, genotypes of ALSPAC mothers and children 
were combined. Haplotypes were estimated using ShapeIT (v2.
r644), which utilises relatedness during phasing. A phased  
version of the 1000 genomes reference panel (Phase 1, Version 3) 
was obtained from the Impute2 reference data repository.  
Imputation was performed using Impute V2.2.2 against the  
reference panel (all polymorphic SNPs excluding singletons),  
using all 2186 reference haplotypes (including non-Europeans).

Genetic risk scores
A GWAS meta-analysis conducted using data from UK biobank 
and CARDIoGRAMplusC4D identified 148 variants associ-
ated with CAD at genome-wide significance (P < 5×10-8)9. 146 
of these variants were present in the genotype data after qual-
ity control (see above) and were included in the genetic risk 
score. The effect size of each variant in relation to CAD was 
used to weight the variants – specifically the natural log of the  
odds ratio (OR) was used. These weightings were multiplied 
by the variant dosage and a CAD-GRS was produced for each 
individual by summing all the weighted variant values. All the  
loci are outlined in Supplementary Table 1.

Metabolite measures
NMR analyses of the metabolic measures was carried out at 
the University of Eastern Finland quantifying 149 metabolites 
from serum samples of the participants. The process has 
been described elsewhere12. Briefly, the samples are prepared 
automatically with a Gilson Liquid Handler 215, whereby  
300μl of sodium phosphate NMR buffer are mixed with 300μl 
of serum sample. Once prepared the samples are inserted into 
the SampleJet™ (Bruker BioSpin GmbH, Germany) sample 
changer. Finally, the data are measured using a Bruker 
AVANCE III spectrometer. Metabolite data contains known risk  
factors for CAD, such as LDL-cholesterol, but also many other  
metabolites, as well as multiple lipoprotein subclasses. All  
abbreviations of metabolites used can be found in Supplementary 
Table 2.

Lipoprotein groupings
To examine the association between GRS and different classes 
of lipoproteins, lipoproteins were split into six groups based 

on their size and density. The groups are labelled LDL, athero-
genic non-LDL, large very low-density lipoproteins (VLDL), 
small high-density lipoproteins (HDL), large HDL, and very 
large HDL (Supplementary Table 3). Groups were split in this  
way as it is hypothesised that: 1. The roles of lipoproteins of 
different sizes and densities differ 2. Only certain lipoprotein 
particles (here LDL and atherogenic non-LDL particles) cross 
into the intima, or inner most layer of a blood vessel18,19, which  
is required for atherosclerosis.

HMGCR variant analysis
We sought to gauge whether a lipid lowering therapy may 
impact the metabolome similarly in young individuals and 
adults, and thus potentially reduce risk of CAD in later life. Two  
additional variants, external to the GRS, within the HMGCR 
locus, rs17238484 and rs12916, were chosen as proxies for  
statin use, as has been done previously20. As these were 
separate from the GRS, the variants were not weighted by 
their association with CAD and their impact on metabolite  
concentrations was assessed separately to all the other variants.

Statistical analyses
Metabolites were rank normalised prior to analyses to approx-
imate normal distributions and to remove the impact of  
outliers. Linear regression models were used to estimate the 
association between metabolites in adolescence and genotype. 
Separately, metabolite concentrations were fitted against the 
CAD-GRS and each of the individual variants. Age was the only  
covariate in the models. An FDR-corrected P value < 0.05 was  
calculated using the Benjamini and Hochberg method21.

The metabolites measured here do not necessarily represent 
independent phenotypes, as many are the product of the same 
biological event or pathway. As such, to estimate the number 
of independent metabolites or features present in our dataset 
we performed a hierarchical clustering and tree cutting  
analysis on the metabolite abundance data, in R22. Specifically,  
distances among metabolites was estimated by 1. subtract-
ing the absolute Pearson’s correlation coefficient from one, 
2. performing hierarchal clustering on a matrix of those  
distance with the hclust() function and the method “complete”, 

Table 1. Cohort characteristics.

f7 tf3 tf4 P

N 4685 856 364

mean age (sd) 7.54 (0.33) 15.48 (0.36) 17.86 (0.41)

N female (%) 2265 (48.3) 461 (53.9) 200 (54.9)

mean CAD score (sd) 0.36 (0.39) 0.37 (0.39) 0.35 (0.40) 0.501

Genotype and metabolite data were available from individuals that attended  
3 clinics at different ages. N = sample size and is naturally smaller by age as 
the largest sample (youngest age) was used as a core collection to which non-
overlapping participants from later clinics with 1H-NMR data were added. f7, tf3 
and tf4 are all clinics where individuals aged 7, 15 and 17 respectively were invited 
in to have various measurements taken. CAD (coronary artery disease) score 
refers to a genetic risk score comprised of 146 coronary artery disease associated 
genetic variants weighted by their association with the disease. The P value 
represents a group-wise comparison between the different CAD score values of 
the clinics.
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3. followed by a tree cutting step at the height of 0.2 with the  
function cutree(). The functions hclust() and cutree() are both  
available in the ‘stats’ package22.

All analyses were conducted in R22 (version 3.2.2).

Results
Biological and phenotypic grouping of metabolites
5,905 individuals aged 7, 15 and 17 had NMR-measured metab-
olite data and genotype data (Table 1). Many metabolites share 
similar metabolic pathways, thus we attempted to deduce the 
number of independent features. Using hierarchical clustering 
we observe 42 independent metabolite clusters (-0.2 < r < 0.2),  
23 of which are made up of a single metabolite.

When grouping lipoproteins based on their size and density 
we found a large overlap between the biological groupings 
and the clusters, with the lipoproteins within each group 
mostly mapping to a single cluster. This is with the excep-
tion of atherogenic non-LDL particles, where the metabolites 
overlap largely with clusters containing LDL and VLDL parti-
cles. Supplementary Table 3 shows the number of independent  
metabolite clusters represented by each grouping.

CAD-GRS metabolite associations
A GRS produced from 146 CAD-associated variants associated 
with 118 of the 149 metabolites tested (FDR < 0.05) (Figure 1).  
The 118 metabolites were observed in 20 independent metabo-
lite clusters (-0.2 < r < 0.2), seven of which contained single  
metabolites. The majority of the associated metabolites are 
either lipoproteins or fatty acids; the only ones not in these  
categories were citrate, acetate and glycoprotein acetyls. The  
full table of results can be found in Supplementary Table 4.

When considering our lipoprotein biological groupings, it was 
observed that the GRS associated most strongly with athero-
genic non-LDL particles and LDL (Figure 2). Furthermore, 
there was good evidence that the median effect size on the 
groups differed (Kruskal-Wallis test, P = 3.1 × 10-14) and the 
median effect size on LDL and atherogenic non-LDL are larger 
than those observed for the other four groups (post-hoc Dunn’s  
test, FDR < 0.05), but not among each other (P = 0.85).

Individual variant-metabolite analysis
To explore the variants driving the association between the 
GRS and various metabolites, all of the metabolites were 
regressed against each variant individually (Figure 3). In total 

Figure 1. Association between 149 metabolites and a coronary artery disease genetic risk score. QQ-plot where each dot represents 
an association between one of the 149 metabolites and the genetic risk score comprised of 146 common variants. 98 of the 149 metabolites 
were lipoproteins and put into six groups based on size and density (Supplementary Table 3). The “other” group contains the rest of the 51 
metabolites. LDL = low-density lipoprotein, VLDL = very low-density lipoprotein, HDL = high-density lipoprotein, Other = non-lipoprotein 
metabolites.
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Figure 2. The association between 98 lipoprotein measures split into six subgroups and a coronary artery disease genetic risk score. 
The lipoproteins were organised into six groups based on size and density (Supplementary Table 3). LDL = low-density lipoprotein, VLDL = 
very low-density lipoprotein, HDL = high-density lipoprotein.

there was good evidence that nine variants associated with at 
least one metabolite (FDR < 0.05). Seven of these are within 
lipid loci: rs11591147 PCSK9, rs12149545 HERPUD1-CETP, 
rs17091891 LPL, rs515135 APOB, rs602633 CELSR2-PSRC1,  
rs651821 APOA5, rs7412 APOE-APOC1. All associated with 
metabolites in the LDL or atherogenic non-LDL subgroups or 
both, including aggregate cholesterol measures LDL-C, VLDL-C 
and IDL-C. rs2519093 ABO associated with three VLDL  
cholesterol measures and rs112635299 SERPINA1 associated 
with glycoprotein acetyl and phenylalanine concentrations. Full  
tables of results for these nine variants found in Supplementary 
Table 5–Supplementary Table 13.

Potential for intervention
To assess the potential impact of early life intervention 
using agents that target lipoproteins, the association between  
rs17238484 and rs12916 HMGCR and the 149 metabolites was 
investigated. Neither of the SNPs associated with any metabolites 
at FDR < 0.05. At P < 0.05, rs17238484 and rs12916 associated 
with 12 and 42 metabolites respectively. These were mostly inverse 
associations with metabolites in the lipoprotein subclasses LDL 
and atherogenic non-LDL particles. (Supplementary Table 14,   
Supplementary Table 15). Supplementary Figure 1 shows the  
association between these variants and all metabolites alongside  
the other nine variants associated with one or more metabolites.

Age sensitivity analyses
In these analyses, we combined data at ages 7, 15 and 17. 
There were 4,685, 856 and 364 individuals from each age 
group respectively. To understand if grouping the individuals 
in this way impacted results we conducted sensitivity analyses 
using only individuals from each age group. We observed no 
difference between the median metabolite levels at different  
age groups (Kruskal-Wallis test, P = 0.823), and there was  
minimal evidence for a difference between the association of the  
CAD-GRS and metabolites between age groups (Kruskal-Wallis 
test, P = 0.024). The extent of these differences for each metabo-
lite is displayed in Supplementary Figure 2. The effect estimates 
for associations between the GRS and lipoprotein groups was 
largely consistent between those around age 7 and 17 but varied  
more for those around age 15 (Supplementary Figure 3).

Discussion
In this study a GRS of CAD, made from 146 variants identi-
fied in a previous GWAS9, associated with 118 metabolites in 
a sample of 5,905 individuals aged 7, 15 and 17. These metabo-
lites were mostly lipoproteins, with stronger associations  
occurring in LDL and atherogenic non-LDL particles subtypes. 
Nine of the variants were associated with one or more metabo-
lites. When these variants were removed from a CAD-GRS, 
the association between the residual GRS and the metabolites  
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attenuated to the null, strongly suggesting these nine variants 
were driving CAD-related metabolomic differences in young  
individuals.

The association between circulating metabolite levels and 
CAD has been demonstrated many times, especially with  
lipoproteins2,23,24. Therefore, it is potentially unsurprising that 
Figure 1 suggests that all metabolites measured were associated 
with CAD variants, especially as the NMR platform contains 
a greater proportion of lipoproteins and lipids than anything 
else. However, to see such a perturbation in metabolite profiles 
in young individuals (aged 7, 15 and 17) suggests that there are 
long term effects of metabolites on CAD risk and thus early-life 

intervention of abnormal metabolite levels could be useful in  
preventing or delaying onset of this highly heritable disease. 
Although further analysis on the relevance of many of these  
metabolites to CAD needs to be done before drawing any strong 
conclusions.

The accumulation of lipoprotein particles, particularly LDL,  
within the intima has long been observed in atherosclerotic 
plaques23. In vivo experiments suggest that not all lipoprotein 
particles can cross the intima18,19. Interestingly, the CAD-GRS  
associated most strongly with LDL and atherogenic non-LDL par-
ticles, both of which are hypothesised to be small enough to cross 
the intima. Furthermore, there is good evidence from randomised  

Figure 3. The association between all SNPs and all metabolites. Each metabolite was regressed against each SNP and the P values 
from these analyses are presented here. Grey indicates a high P value and red a low one. The lipoproteins were grouped as previously 
(Supplementary Table 3).
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controlled trials and Mendelian randomization studies that 
lowering LDL-C (a conglomerate of all the cholesterol found 
within all sizes of LDL and some atherogenic non-LDL  
particles) reduces risk of CAD16,25. Thus, our results suggest 
genetic variants associated with CAD can drive an increase in  
metabolites that have evidence for causally influencing the  
disease.

Only 9 of the 146 variants associated with CAD, showed good 
evidence they associated with NMR measured metabolites in 
young individuals in this study. A recent GWAS of metabolites 
that featured 112 of our 149 metabolites was conducted in 
adults (mean age = 44.6). All nine genetic variants identified 
in our study had good evidence for association with the same 
or similar metabolites in the adult GWAS. Interestingly, the  
GWAS identified five additional variants that were present in 
our study but had little evidence for association with metabo-
lites. As only five more genetic variants were identified, it  
suggests many variants associated with CAD are acting through 
pathways independent of the metabolites measured here. The 
discrepancy between the studies could be due to 1. chance  
differences, 2. a lack of power in our study; the GWAS con-
ducted  in adults had ~15,000 more individuals, 3. the effect of  
CAD-associated genetic variants on metabolites may vary tem-
porally. Thus, it could be preferential to target some pathways  
within critical windows of time.

We assessed whether statin use might have a similar effect in 
young individuals as in adults in reducing LDL-C levels, to 
explore whether early-life drug-intervention may be a possibil-
ity for some individuals. A previous study by Swerdlow et al. 
showed that variants rs17238484 and rs12916 (HMGCR)  
inversely associate with LDL-C20. Here we observed weak  
evidence that these variants associate with LDL and intermediate- 
density lipoprotein (IDL) subtypes in young individuals. Along 
with the association between the PCSK9 variant and metabo-
lites, it suggests that treatments attempting to target metabolites 
to reduce risk of CAD or prevent other adverse CAD-related 
outcomes, may have similar influences within young indi-
viduals, even if the effect is reduced. These results agree with  
the current treatment of familial hypercholesterolemia, whereby 
statins are administered at young ages26. Nevertheless, the con-
sequences, negative and positive, of administering these agents 
early in life to “seemingly healthy” individuals need to be 
examined. However, there is the hypothetical potential that  
administering treatment early in life could delay onset of  
disease for at risk individuals.

Even though it is unlikely clinicians will prescribe pharma-
ceutical agents for CAD to very young people, the variants  
identified in this study could be used to select those who would 
benefit from a less dangerous lipoprotein lowering treatment. If  
no treatments became available, the identification of high-risk 
individuals could still be used to monitor them so that interven-
tion could begin before symptoms start to arise. Furthermore,  
notification of those at risk could increase caution amongst  
parents and individuals over environmental exposures such as  
diet, physical activity and smoking.

Limitations
The study combined metabolite data from young people aged 
7, 15 and 17. Even though age was used as a covariate in the 
main models, sensitivity analysis revealed a potential difference  
in CAD-GRS associations with metabolites at different ages.

These data also combine metabolite data that was collected 
after fasting and non-fasting. There is evidence that fasting and 
non-fasting metabolite data are similar27, but the study should  
be replicated using only fasting or only non-fasting data.

Rank-normalisation of the metabolite data removes the influ-
ence of outliers on the data but prevents true quantification of 
association between genotype and metabolite concentrations,  
i.e. with the addition of one risk allele the level of metabolite  
X increases by Y.

There is redundancy in the metabolite data, as many of the 
metabolites are highly correlated. This leads to an increase 
in false negatives when correcting for multiple testing. To 
reduce this, the Benjamini and Hochberg (FDR) method21 was 
used to correct for multiple tests, rather than a more stringent  
family-wise error rate correction method such as Bonferroni 
correction. Furthermore, the study investigated how the GRS 
of CAD influenced lipoproteins grouped based on previous  
biological knowledge.

Conclusion
A CAD-GRS associated with differential abundance of 118 
metabolites in young individuals. The majority of these metabo-
lites were lipoproteins and fatty acids, and it associated most 
strongly with lipoproteins that are hypothesised to causally 
influence CAD development. This suggests that increased 
monitoring and early life intervention for high-risk individuals  
identified by their genetic profile, either by pharmaceutical  
agents or by behavioural changes, could help prevent onset of  
disease.

Data availability
ALSPAC data access is through a system of managed open 
access. The steps below highlight how to apply for access to the 
data included in this data note and all other ALSPAC data. The 
datasets presented in this article are linked to ALSPAC project 
number B2714, please quote this project number during your 
application. The ALSPAC variable codes highlighted in the  
dataset descriptions can be used to specify required variables.

1.   �Please read the ALSPAC access policy (PDF, 627kB)  
which describes the process of accessing the data and 
samples in detail, and outlines the costs associated with  
doing so.

2.   �You may also find it useful to browse our fully search-
able research proposals database, which lists all research 
projects that have been approved since April 2011.

3.   �Please submit your research proposal for consideration 
by the ALSPAC Executive Committee. You will receive a 
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response within 10 working days to advise you whether 
your proposal has been approved.

If you have any questions about accessing data, please email  
alspac-data@bristol.ac.uk.

The ALSPAC data management plan describes in detail the policy 
regarding data sharing, which is through a system of managed open 
access.

All code for the analysis is freely available on GitHub: https://
github.com/thomasbattram/CAD_analysis

Archived code at time of publication: http://doi.org/10.5281/zen-
odo.141026328

Licence: MIT

Consent
Written informed consent was obtained from both the parent/
guardian and, after the age of 16, children provided written assent. 
Children were invited to give assent where appropriate. Study 
members have the right to withdraw their consent for elements  
of the study or from the study entirely at any time. Full details of the 
ALSPAC consent procedures are available of the study website.
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Supplementary File 1: File containing the following supplementary figures –

Click here to access the data.

Supplementary Figure 1. SNPs associated with one or more metabolites at false discovery rate (FDR) < 0.05, along with the 2 SNPs within 
the HMGCR region (rs12916, rs17238484).

Supplementary Figure 2. A forest plot comparing the effect estimates for the association between the coronary artery disease (CAD) 
genetic risk score and 149 metabolites within each age.

Supplementary Figure 3. Comparison of effect estimates (transformed so all estimates are positive) for the association between the coro-
nary artery disease-genetic risk score (CAD-GRS) and the lipoprotein sub-groups stratified by age.

Supplementary File 2: File containing the following supplementary tables –

Click here to access the data.

Supplementary Table 1. Coronary artery disease (CAD)-associated loci

Supplementary Table 2. Nuclear magnetic resonance (NMR) measured metabolites

Supplementary Table 3. Biological grouping of lipoprotein subclasses

Supplementary Table 4. The effect estimates and P values for the associations between the coronary artery genetic risk score and 149 
metabolites.

Supplementary Table 5. All associations between rs112645299 SERPINA1 and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 6. All associations between rs11591147 PCSK9 and metabolites (false discovery rate (FDR) < 0.05)
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Supplementary Table 7. All associations between rs12149545 HERPUD1-CETP and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 8. All associations between rs17091891 LPL and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 9. All associations between rs515135 APOB and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 10. All associations between rs2519093 ABO and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 11. All associations between rs602633 CELSR2-PSRC1 and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 12. All associations between rs651821 APOA5 and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 13. All associations between rs7412 APOE-APOC1 and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 14. All associations between rs12916 HMGCR and metabolites (false discovery rate (FDR) < 0.05)

Supplementary Table 15. All associations between rs17238484 HMGCR and metabolites (false discovery rate (FDR) < 0.05)
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Minor points:

I found the penultimate sentence of the results hard to parse.
The final sentence of the conclusions gets a little too speculative in my opinion – suggest take out
or tone down – e.g. “further research needed to find out if useful, given marker in young children.
Introduction – penetrance of alleles can vary across the lifecourse but not sure why the need to
suggest gene x environment interactions one source – main source is simple biology – or I guess at
best an interaction with age – many monogenic diseases – e.g. Huntington’s don’t manifest until
later age. From age 7, after the adiposity peaks and troughs during early growth. FTO does have a
relatively stable effect on BMI – see the largest study on longitudinal data from the HUNT study.
I am sure you’ve thought of it but if you take the LDL C SNPs, do they have bigger effects in kids
compared to old adults? A separate paper and project I imagine, but could be indicative of survival
bias in older cohorts, as well as genuine differences in penetrance.
Results. Is it surprising that the most strongly associated metabolites in figure 1  - the top 9, are non
LDL based? Worth more of a mention in results or discussion (looks like 7 in figure 2)?
In the HMGCoR section – is the FDR calculation correct ? 42 / 149 at p<0.05 sounds like an
enrichment! Also clarify directions when talking about “inverse associations” – especially in the
context of the SNPs.
In the discussion you say you found little evidence of association for five SNPs found in adults, and
that that could indicate non lipid pathways but could it also be relative lack of power? What were
the sample sizes in the GWAS discovery? Presumably much bigger?
In the discussion about giving kids statins could mention the specific dangers – myopathy and
T2D. 
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If applicable, is the statistical analysis and its interpretation appropriate?
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Are all the source data underlying the results available to ensure full reproducibility?
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Are the conclusions drawn adequately supported by the results?
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