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When numerous treatments exist for a disease (Treatments 1, 2, 3, etc), net-
work meta-regression (NMR) examines whether each relative treatment effect
(eg, mean difference for 2 vs 1, 3 vs 1, and 3 vs 2) differs according to a covar-
iate (eg, disease severity). Two consistency assumptions underlie NMR: consis-
tency of the treatment effects at the covariate value 0 and consistency of the
regression coefficients for the treatment by covariate interaction. The NMR
results may be unreliable when the assumptions do not hold. Furthermore,
interactions may exist but are not found because inconsistency of the coeffi-
cients is masking them, for example, when the treatment effect increases as
the covariate increases using direct evidence but the effect decreases with the
increasing covariate using indirect evidence.

We outline existing NMR models that incorporate different types of treatment
by covariate interaction. We then introduce models that can be used to assess
the consistency assumptions underlying NMR for aggregate data. We extend
existing node-splitting models, the unrelated mean effects inconsistency model,
and the design by treatment inconsistency model to incorporate covariate
interactions. We propose models for assessing both consistency assumptions
simultaneously and models for assessing each of the assumptions in turn to
gain a more thorough understanding of consistency.

We apply the methods in a Bayesian framework to trial-level data comparing
antimalarial treatments using the covariate average age and to four fabricated
data sets to demonstrate key scenarios.

We discuss the pros and cons of the methods and important considerations
when applying models to aggregated data.
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1 | INTRODUCTION of heterogeneity or inconsistency or when known effect
modifiers exist and we wish to present results for
Reviews often compare multiple treatments for the same different patient groups. Covariates may be characteris-
condition. In such cases, network meta-analysis (NMA) tics of patients (eg, weight), treatments (eg, additional
can compare all treatments (eg, Treatments 1, 2, and 3) therapy), studies (eg, location), or methods (eg, alloca-
in a single analysis by estimating the relative treatment  tion concealment)."*"
effects (eg, log odds ratios) for all treatment pairings NMR results commonly consist of, for each compari-
(eg, 2 vs 1,3 vs 1, and 3 vs 2) using direct and indirect son, one relative treatment effect estimated at the covariate
evidence.'® The key assumption underlying NMA is  value O (or at the mean covariate value when the NMR
consistency of the treatments effects across direct and  model is centered) and one regression coefficient for the
indirect evidence.” Many methods have been proposed  treatment by covariate interaction. Consistency assump-
to assess the consistency assumption underlying NMA,*  tions are required for both of these parameters."”" For
including node-splitting models™® and inconsistency  instance, for a three-treatment NMR, where Treatment 1

models, such as the design by treatment (DBT) inconsis- is taken as the reference, the consistency equation for the
tency model’ ™ and the unrelated mean effects (URM)  relative treatment effects can be written as, d,; = dy3 — di»
inconsistency model.'? where, for example, d,; is the relative treatment effect for 3

Network meta-regression (NMR) is an extension of Vs 2, and the consistency equation for the regression coef-
NMA that examines whether a covariate modifies each ficients is §,3 = 13 — P12 Where, for example, (5,5 is the
of the relative treatment effects.'> A covariate may  coefficient for 3 vs 2.'*'7' It is possible for neither
modify each relative treatment effect differently; that assumption to hold (ie, inconsistent relative treatment
is, each treatment comparison may have a different  effects and inconsistent coefficients) or for only one of
covariate interaction. NMR is used to explore causes  the assumptions to hold (ie, either consistent relative
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FIGURE 1 Graphs showing how the relative treatment effect (eg, log odds ratio) for Treatment 3 vs Treatment 2 could change with a
covariate value with separate lines representing direct evidence (from trials that allocated Treatments 2 and 3), indirect evidence (from
the remaining trials), and all evidence in various scenarios: A, there is no treatment by covariate interaction based on all evidence, and the
relative treatment effects at 0 covariate are consistent, and the regression coefficients for the treatment by covariate interaction are consistent;
B, there is an interaction based on all evidence, and the relative treatment effects at 0 covariate are consistent, and the coefficients are
consistent; C, there is no interaction based on all evidence, and the relative treatment effects at 0 covariate are consistent, and the coefficients
are inconsistent; D, there is an interaction based on all evidence, and the relative treatment effects at 0 covariate are consistent, and the
coefficients are inconsistent; E, there is no interaction based on all evidence, and the relative treatment effects at 0 covariate are inconsistent,
and the coefficients are consistent; F, there is an interaction based on all evidence, and the relative treatment effects at 0 covariate are
inconsistent, and the coefficients are consistent; G, there is no interaction based on all evidence, and the relative treatment effects at 0
covariate are inconsistent, and the coefficients are inconsistent; and H, there is an interaction based on all evidence, and the relative
treatment effects at 0 covariate are inconsistent, and the coefficients are inconsistent. Direct, indirect, and all evidence is overlapping in plots
(A) and (B)
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treatment effects or consistent coefficients), which would
make the results of the NMR unreliable.

Theoretically, there are eight possible scenarios that
can occur when assessing whether treatment by covariate
interactions exist and the consistency assumptions.
Examples of the scenarios are shown in Figure 1A-H.
Each figure shows how the relative treatment effect for
3 vs 2 changes with an increasing covariate value; sepa-
rate lines are displayed for direct, indirect, and all evi-
dence. For a three-treatment network, the direct
evidence for 3 vs 2 would be from trials that allocated
Treatments 2 and 3 and the indirect evidence for 3 vs 2
would be from the remaining trials. Note that the lines
have the same intercept when the relative treatment
effects at the covariate value 0 are consistent (Figure 1
A-D) and the lines have the same slope when the coeffi-
cients are consistent (Figure 1A, B, E, and F). In
Figure 1A, no interaction is detected using NMR, and
both consistency assumptions are satisfied; therefore,
the NMR results are valid but would not be clinically use-
ful. On the other hand, in Figure 1B, NMR shows an
interaction and both assumptions hold; therefore, the
NMR is reliable and could be used to draw clinical infer-
ences. Figure 1C, E, and G show scenarios where no
interaction is detected using NMR, but one or more of
the assumptions are not satisfied; consequently, the
NMR results are invalid; notably, in Figure 1C,G, an
interaction exists when direct evidence, and indirect evi-
dence are considered separately, but it is not seen when
applying NMR because it is masked by the inconsistency.
Lastly, in Figure 1D, F, and H, an interaction is found
using NMR, but one or more of the assumptions do not
hold, so the NMR results are unreliable. The cause of
inconsistency should be considered when inconsistency
is found (Figures 1C-H).

Although many methodological publications have
proposed NMR analyses,'>!”* to the authors' knowl-
edge, no methods have been introduced for assessing
the consistency assumptions underlying NMR.

In this paper, we introduce methods for assessing the
consistency assumptions underlying NMR. We extend
existing node-splitting models,>® the DBT inconsistency
model,” " and the URM inconsistency model'? to incor-
porate treatment by covariate interactions. In Section 2,
we specify the NMR model and propose assessment
methods that can be applied to aggregate trial-level data
(ie, trial specific relative treatment effects relative to refer-
ence Arm 1 and their variances) with either continuous
or categorical covariates. In Section 3, we apply the
methods to a real data set and fabricated data sets illus-
trating key scenarios under a Bayesian framework. In
Section 4, we discuss the proposed methods and highlight
their pros and cons.

WILEY=Synthesis Methods
2 | METHODS

We outline NMR models and then introduce methods for
assessing consistency using the node-splitting models and
one type of inconsistency model (ie, URM model). New
methods based on the alternative DBT inconsistency
model are also presented in the supplementary material.
All models are summarized in Table 1.

To set notation, let i denote the trial wherei =1, ..., S
and S is the number of independent trials and let k be the
trial arm where k = 1, ..., A; and A; is the number of arms
in trial i. Let f; denote the treatment given in trial i in
arm k where t; € {1, ......, T} and T is the number of treat-
ments in the network. Note that Treatment 1 is taken to
be the reference treatment.

Suppose we have trial-level outcome data, where yy is
the observed relative treatment effect (eg, log odds ratio
or mean difference) for arm k vs Arm 1 (with k > 2) in
trial i and vy, is the corresponding variance. As the rela-
tive treatment effect is a continuous measure, we assume
a normal likelihood yu~N(6y vy) where 6;, is the mean
relative treatment effect in trial i (with k > 2). Also, the
data set would include a study-level covariate x; for each
trial i that can be a continuous variable or an indicator
variable to represent dichotomous data.

2.1 | Network meta-regression models

NMR models estimate the basic regression coefficients,
which are the coefficients for each treatment vs Treat-
ment 1 (ie, B2, P13, ---» P17), and then the remaining func-
tional coefficients (ie, 3,3, B4, -...) are calculated as linear
combinations of the basic coefficients using the consis-
tency equations. Three NMR models have been proposed
previously, each making different assumptions regarding
the basic coefficients,"*>'”*° that is, independent (model
la), exchangeable (model 1b), and common coefficients
(model 1c). The decision regarding which assumption to
make can be based on model fit statistics and the esti-
mated coefficients of the models but in practice is often
determined by data availability.
Model 1a can be written as follows:

O = i1k + Bryy 1y i

Where B, ;. =B11,Piys P 18 the difference in the
relative treatment effect of f; vs t;; per unit increase in
the covariate x;, or in other words, the regression coeffi-
cient for the treatment by covariate interaction. In a
random-effects model, J; 1, (with k > 2) represents the
trial-specific relative treatment effect of t; vs t; when
the covariate is 0 (x; = 0) and is assumed to be a
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realization from a normal distribution &;y~N (dy, 1, 0?)
with d;, s, = d1, — d1s, Where d;, 4, is the mean relative
treatment effect of t;; vs t;; when the covariate is 0. In a
fixed-effect model, we set o> = 0 to obtain ;= d,
—diy,-

Model 1b is the same as model 1a, but now, /31,%
~Norm(B,v*). Model 1c is formulated by setting g, ,,
= f in model 1a; note that in this model, the functional
coefficients are 0 because of the consistency equations

(eg, Pz =Pz — P2 =B —B=0)."

2.2 | Assessing consistency by node
splitting

The principle aim of node-splitting models is to assess
whether there is evidence of “loop inconsistency,” where
loop inconsistency is defined as a difference between a
result from direct and indirect evidence. Node-splitting
models estimate relative treatment effects and/or regres-
sion coefficients for the interaction based on direct evi-
dence and separate estimates from indirect evidence to
explore whether they agree. Multiple node-splitting
models need to be applied, one model for each compari-
son of interest.

To specify the node-splitting models, we extend the
notation, such that the node being split is (t, t) where
T#t and t <t .For example, if one wants to split the
node (3, 4), thent =3 and f = 4.

To assess both the consistency assumptions simulta-
neously, node-splitting models can split the relative
treatment effect and coefficient to provide, for each
comparison with both direct and indirect evidence, a rel-
ative treatment effect, and a coefficient estimated from
direct evidence and an effect and coefficient based on
indirect evidence. The model that splits the relative treat-
ment effect and coefficient and includes independent
interactions (model 2.1a) is an extension of model 1a as
follows:

Stk + B, 1, Xi if t; #tand/or i #1,

Oik = .
8iak + B

if ty =tandty =t
Where g, . =B 1, P11, By 1, TEPTEsents the difference
in the relative treatment effect of f; vs t; per unit
increase in the covariate estimated using indirect evi-
dence, and %" represents the difference in the relative
treatment effect of £ vs per unit increase in the covariate
estimated using direct evidence. In a random-effects
model, if trial i allocated t'and 7, that is, tﬂ:?and tix = £,
then &;1,~N(d"",c*) where d*" represents the mean

WILEY=Synthesis Methods

relative treatment effect of ¢ vs f when the covariate
value is 0 estimated using direct evidence; whereas if trial
i did not allocate ¢ 'and t, that is, t;# f and/or t # t, then

8i1k~N (dy, 1., 0*) where d,, ,, represents the mean rela-

tive treatment effect of t;, vs t;; when the covariate value
is 0 estimated using indirect evidence and dj, s,
= dy — dig,-

To assess only the consistency of the relative treat-
ment effects, node-splitting models can split the relative
treatment effect alone to produce a single coefficient that
is estimated using all evidence and two relative treatment
effects (ie, one estimated using direct evidence and the
other estimated using the indirect evidence). The model
that splits the relative treatment effect alone and includes
independent interactions (model 2.2a) is

Oik = Si1k + By, 1, Xis

where 3, , represents the difference in the relative treat-
ment effect of £; vs. t;; per unit increase in the covariate
estimated using all evidence. In this model, the trial-
specific relative treatment effects, &; 1 are distributed in
the same way as in model 2.1a.

Likewise, to assess the consistency of the coefficients
alone, a node-splitting model can split only the coefficient
to estimate a single relative treatment effect using all evi-
dence and two coefficients (e, one estimated from direct
evidence and the other from indirect evidence). The
model that splits only the coefficient and includes inde-
pendent interactions (model 2.3a) is the same as model
2.1a except the trial-specific relative treatment effects;
8,1k are distributed as & 1~N (d;, 1, 0%) where dy, 4,
represents the mean relative treatment effect of ¢ vs t;;
when the covariate value is 0 estimated using all evidence.

Node-splitting models can be adapted to include
exchangeable (models 2.1b, 2.2b, and 2.3b) or common
(models 2.1c, 2.2¢, and 2.3c) interactions as described in
Section 2.1. Note that model 2.1c and 2.3c fix each func-
tional coefficient based on indirect evidence (ie, B, ,,
when t; # 1) to be 0 whereas the corresponding result
from direct evidence (%) is not.

The level of consistency can be assessed, by compar-
ing the model fit of the NMR (model 1[a, b, or c]) with
that of the node-splitting models (models 2.1[a, b, or c],
2.2[a, b, or c]|, and 2.3[a, b, or c]); inconsistency is
indicated if a node-splitting model is an improved fit.
Moreover, if the between trial variance is lower in the
node-splitting models as compared with the NMR, incon-
sistency may exist. Also, for each treatment comparison,
the size, direction, and precision of the relative treatment
effect estimated using direct evidence can be compared
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with that estimated using indirect evidence. Such com-
parisons are subjective and when results are presented
graphically and compared, care must be taken because
the scale and shape of the plots can affect how different
the results appear to be. Furthermore, when using Bayes-
ian methods, for each comparison, the probability (prob)
that the direct and indirect evidence differs can be calcu-
lated. For each treatment pairing, the inconsistency esti-
mate (IE); that is, the difference between the relative
treatment effect from direct evidence and indirect evi-
dence can be calculated at each iteration of the chain,
and the number of iterations for which IE > 0 is counted.
It is then possible to calculate the prob that the relative
treatment effect from direct evidence exceeds the relative
treatment effect from indirect evidence, by dividing the
number of counted iterations by the total number of iter-
ations of the chain. Lastly, assuming that the posterior
distribution of the difference (IE) is symmetric and
unimodal, the prob that the direct and indirect evidence
agree is given by P = 2 X minimum(prob,1 — prob).>*°
Likewise, the regression coefficients from direct and indi-
rect evidence can be compared in the same way.

2.3 | Assessing consistency using URM
models

URM models assess global consistency that is inconsis-
tency somewhere in the treatment network, by compar-
ing the results from an NMR model with those from an
URM model.*

The URM model that assesses the consistency of the
relative treatment effects and coefficients and includes
independent interactions (model 3.1a) is the same as the
NMR model (model 1a), but it does not incorporate the
consistency equations (i.e. dy, s, =dis —diy, and
By 1 =P1.4,-P1.,)» and as such, the model parameters are
estimated using direct evidence only. Model 3.1a is equiv-
alent to fitting separate pair-wise meta-regressions,
except, model 3.1a assumes the between trial variance
(0%) is equal across comparisons but the pair-wise meta-
regressions would not.

The URM model that assesses only consistency of the
relative treatment effects and includes independent inter-
actions (model 3.2a) is the same as model 3.1a but incor-
porates the consistency equation for the coefficients.
Likewise, the UMR model that assesses only consistency
of the coefficients with independent interactions (model
3.3a) is same as model 3.1a but includes the consistency
equation for the relative treatment effects.

Exchangeable (models 3.1b, 3.2b, and 3.3b) or com-
mon (models 3.1c, 3.2c, and 3.3c) interactions can be
included. However, it is worth noting that the

independent, exchangeable, or common assumptions are
slightly different to those specified for the NMR models
(models 1a, 1b, and 1c). In the NMR models, we assume
the basic regression coefficients (ie, 812, B13, .-, P17) are
independent, exchangeable, or common. However, when
the consistency equation for the coefficients is not used in
the URM model (ie, models 3.1[a, b, or c] and 3.3[a, b, or
c) we can assume that all regression coefficients, that is
basic and functional coefficients, are independent,
exchangeable (ie, g, , ~Norm(B,v*)) or common (ie,
ﬁ Lin Lik
common interactions, the functional coefficients in the
NMR model (model 1c) are forced to be 0, but this is
not so in the URM model (models 3.1c and 3.3c).

To determine consistency, the model fit of the NMR
model (model 1[a, b, or c]) and the fit of the URM models
(models 3.1(a, b, or c), 3.2(a, b, or ¢), and 3.3[(a, b, or c])
can be compared; when an URM model is an improved
fit, inconsistency may be present. Also, differences
between the relative treatment effects and regression
coefficients produced from the NMR model and those
from the URM models may suggest inconsistency.

= ). In particular, this means that when including

2.4 | Including multi-arm trials

The models can be applied to data sets including multi-
arm trials providing that the correlation between the
observed relative treatment effect (y;) and the trial-
specific relative treatment effects (;14) is taken into
account. For each multi-arm trial i with m arms, the
observed relative treatment effects and the trial-specific
relative treatment effects are assumed to follow multivar-
iate normal distributions

Yiz O Viz coV(Yizs Yim)
i |~N N :
Yim eim COV(Yin Yim) Vim
and
Si12 dis, — dig, 7 . T2/2
: ~N : ; : . :
Siim di s, — dity T2/2 72

Furthermore, there is an extra consideration when
fitting node-splitting models.>® If one wants to split node
(t1, ti), then a multi-arm trial will contribute direct evi-
dence to the relative treatment effect (d*") as required
because { = ti1. However, the multi-arm trial would not
contribute direct evidence to the estimation of the relative
treatment effect, dd", if one splits another node (eg, t;,
t;3) because t # t;;. Therefore, to overcome this problem,
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when a multi-arm trial compared the two treatments, £
and 7, in addition to other treatments, treatment ¢ is taken
to be the baseline treatment ¢;; for that study.

Note that for URM models including multi-arm trial
data, the URM model is not the same as fitting separate
pair-wise meta-regressions because the correlation in
multi-arm trials is taken into account but would not be
in pair-wise analyses; also, the URM model only uses ¢;
as the baseline treatment so direct evidence for some
pairwise comparisons would not be used whereas
pairwise meta-regression could utilize all direct evidence.

3 | APPLICATION TO DATA SETS

3.1 | Data sets

Here, the methods proposed in Section 2 are applied to a
real data set and four fabricated data sets that have been
manipulated to demonstrate specific scenarios.

3.1.1 | Malaria data set

Two Cochrane reviews and the corresponding trials were
used to construct the malaria data set; reviews compared
artemether (AR), quinine (QU), and artesunate (AS).*”*®
Randomised controlled trials including patients with
severe malaria were eligible. Age was considered to be
an effect modifier because the clinical features of malaria
differ by age and thus, all treatment recommendations
are stratified by age in the reviews and World Health
Organization treatment guidelines.® Event rates for the
primary outcome, death, and the covariate, average age
of patients in each trial were extracted. Two studies with
missing covariate data were deleted from the data set.
Using the event rates, trial-specific log odds ratios and
their standard deviations were calculated in R. Table S1
displays the data. Figure 2 shows the network diagram.

14(2,053) 8(7,429)

2(494)

FIGURE 2 Network diagram for the malaria data set. Number of
trials (number of patients) displayed. AR, artemether; AS,
artesunate; QU, quinine
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3.1.2 | Fabricated data sets

Four fabricated data sets were constructed by manipulat-
ing the malaria data set to illustrate key scenarios: (a) no
interaction is present and the relative treatment effects
and regression coefficients are consistent (Figure 1A);
(b) interaction exists and the relative treatment effects
and coefficients are consistent (Figure 1B); (c) interaction
exists, and the relative treatment effects are consistent,
but the coefficients are inconsistent (Figure 1D); (4) no
interaction is present, and the relative treatment effects
are consistent, but the coefficients are inconsistent
(Figure 1G). Example R code to generate the data sets is
given in the supplementary material.

Analogous to the malaria data set, each data set com-
pared three treatments (AS, AR, QU): there was direct
evidence for each possible comparison; no multi-arm tri-
als contributed; and a dichotomous outcome and contin-
uous covariate was of interest. Ten trials contributed
direct evidence to each comparison. For each study, a
continuous covariate was taken to be a realization from
normal distribution (ie, N(17,10%) truncated at O to
ensure the covariate values were similar to those
observed in the malaria data set.

The log odds ratios and regression coefficients were
chosen to be similar to those estimated in the original data
set. For each data set, the log odd ratio at 0 covariate of tri-
als comparing treatments AR and AS was 0.2, trials com-
paring treatments QU and AS was 0.23, and trials of
treatments QU and AR was 0.03. For data set one, the coef-
ficient for each comparison was 0. For data set two, the
coefficient for trials comparing treatments AR and AS
was 0.02, trials comparing treatments QU and AS was
0.02, and trials of treatments QU and AR was 0. For data
set three, the coefficient for trials comparing treatments
AR and AS was 0.01, trials of treatments QU and AS was
0.04, and trials comparing treatments QU and AR was 0.
For data set four, the coefficient for trials comparing treat-
ments AR and AS was —0.04, trials of treatments QU and
AS was 0.04, and trials of treatments QU and AR was 0.

The trial-specific observed log odds ratios were esti-
mated from the values of log odds ratio at 0 covariate,
the coefficients, and the covariates. The between-trial var-
iance was 0. The standard error of the observed log odds
ratio was 0.2 for each trial.

3.2 | Implementation

All models were fitted to the data sets using WinBUGS
1.4.3 and the R2WinBUGS package in R. Example code is
provided as supplementary material. For the malaria data
set, all models in Table 1 were fitted. For the fabricated
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data sets, only fixed-effect versions of models 1a, 2.1a, 3.1a,
and 4.1a were applied because the between trial variance
was 0 and the coefficients differed across comparisons.
See Table S2 for the parameterization of the DBT models.
The covariates were centered at their mean. All parameters
were given noninformative normal prior distributions (ie,
N(0,100000)) except the between-trial standard deviation
that was assumed to follow a noninformative uniform dis-
tribution (ie, Uni(0,10)) and a weakly informative prior
distribution (ie, uniform (0, 2)) was specified for the stan-
dard deviation of the exchangeable regression coefficients.
Three chains with different initial values were run for
300 000 iterations. The initial 100 000 draws were
discarded and chains were thinned such that every fifth
iteration was retained. Convergence of the chains was
assessed by inspecting trace plots of the draws.

Model fit and complexity of models was assessed using
the deviance information criterion (DIC) defined as
DIC = D + p,, where D is the posterior mean of the resid-
ual deviance and pp, is the effective number of parame-
ters.® A model with a smaller DIC was preferable to a
model with a larger DIC, but differences of less than three
units were not considered meaningful. When models had
little difference in DIC, the simplest model was chosen.

3.3 | Results

Results from NMR, node-splitting and URM models are
presented here. The results from DBT models are pre-
sented in supplementary material.

3.3.1 | Malaria data set

NMR models
Comparing fixed-effect and random-effect NMR models
(models 1a, 1b, 1c), the DICs from all NMR models vari-
ations are similar (DICs 24.93-26.76 in Table S3). Also,
the estimated regression coefficients for the treatment
by average age interactions were quite similar for each
model variation (Table S4). Therefore, results from the
simplest model to the fixed-effect NMR with common
interactions (model 1c) are presented.

The results of model 1c show that there is evidence of
a small interaction between relative treatment effect and
average age for AR vs AS and QU vs AS; the posterior
median of the common regression coefficient for AR vs
AS and QU vs. AS is 0.0132 with 95% credibility interval
(CrI), 0.0018-0.0244, (Table S4). There is no interaction
for QU vs AR because the model fixes the coefficient to
be 0. However, before using these results to draw clinical
inferences, the underlying consistency assumptions must
be assessed.

Node-splitting models

Table 2 shows model fit assessment results for fixed-effect
node-splitting models with common interactions (models
2.1c, 2.2¢, 2.3c). The DIC of the NMR model (DIC = 25.29)
is similar to those of the node-splitting models (DICs
23.75-27.95) indicating that the model is not improved
by splitting each node, lending support to the consistency
assumptions.

TABLE 2 Model fit assessment results for fixed-effect models with common treatment by average age interactions for the malaria data set

Mean

Residual
Model Deviance pp DIC
NMR model (model 1c) 22.29 3.00 25.29
Node-splitting model splitting the log odds ratio and regression coefficient: AR vs AS (model 2.1c) 22.97 499 2795
Node-splitting model splitting the log odds ratio and regression coefficient: QU vs AS (model 2.1c)  22.96 498 2793
Node-splitting model splitting the log odds ratio and regression coefficient: QU vs AR (model 2.1c) 20.65 5.00 25.65
Node-splitting model splitting the log odds ratio only: AR vs AS (model 2.2¢c) 23.27 4.01 27.27
Node-splitting model splitting the log odds ratio only: QU vs AS (model 2.2¢c) 23.27 401 27.29
Node-splitting model splitting the log odds ratio only: QU vs AR (model 2.2¢c) 23.27 401 27.27
Node-splitting model splitting the regression coefficient only: AR vs AS (model 2.3c) 23.19 4.01 2719
Node-splitting model splitting the regression coefficient only: QU vs AS (model 2.3c) 23.19 4.01 2719
Node-splitting model splitting the regression coefficient only: QU vs AR (model 2.3c) 19.74 4.01 23.75
URM model assessing consistency of the log odds ratio and regression coefficient (model 3.1c) 19.93 4.01 2394
URM model assessing consistency of the log odds ratio only (model 3.2c) 23.27 4.01 27.27
URM model assessing consistency of the regression coefficient only (model 3.3c) 18.96 3.00 21.96

Abbreviations: AR, artemether; AS, artesunate; DIC, deviance information criterion; QU, quinine; NMR, network meta-regression; URM, unrelated mean

effects. Number of data points: 24
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The results from node splitting are displayed in
Table 3. In the model that assesses consistency of both
the log odds ratio and the coefficient (model 2.1c), the
log odds ratios for AR vs AS (—2.3540, 95% Crl, —6.7650
to 2.0530) and QU vs AS (0.4316, 95% Crl, 0.2833-
0.5797) based on direct evidence differs with those from
indirect evidence (ie, 0.1985, 95% CrI, —0.0815 to 0.4782,
and —2.1000, 95% Crl, —6.4180 to 2.4430, respectively)
because only two trials contribute direct evidence for

AR vs.AS and, therefore, the results are influenced by
the vague prior distribution. A similar but less pro-
nounced inconsistency is also seen for the corresponding
coefficients. Yet the prob of agreement between direct
and indirect evidence is low for the coefficient for QU
vs AR (P = 0.06) but not remarkably low for other com-
parisons or the log odds ratios (Ps 0.24-0.77). Similar con-
clusions are drawn from models that split either the log
odds ratio or the regression coefficient only (models 2.2¢

A.) Split both: log odds ratio of AR vs. AS B.)split both: log odds ratio of QU vs. AS C.) split both: log odds ratio of QU vs. AR
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FIGURE 3 Posterior distributions for the log odds ratios (centered) and regression coefficients for the interaction from fixed-effect node-
splitting models with common treatment by average age interactions for the malaria data set. Results in Figure A-F are from models 2.1c and
1c. Results in Figures G-I are from models 2.2c and 1c. Results in Figures J-L are from models 2.3c and 1c. In Figures F and I, the coefficient
from indirect evidence and from all evidence is forced to be 0. AR, artemether; AS, artesunate; QU, quinine
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FIGURE 4 Log odds ratio versus average age for direct and indirect from fixed-effect node-splitting models and for all evidence from the
fixed-effect network meta-regression model with common treatment by average age interactions for the malaria data set. Results in Figures
A-C are from models 2.1c and 1c. Results in Figures D-F are from models 2.2c and 1c. Results in Figures G-I are from models 2.3c and 1c. AR,
artemether; AS, artesunate; QU, quinine [Colour figure can be viewed at wileyonlinelibrary.com]
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and 2.3c). The consistency of the direct and indirect evi-
dence is also supported graphically in Figure 3, which
displays the posterior distributions of the centered log
odds ratios and regression coefficients and in Figure 4,
where the log odds ratio versus average age is plotted.

URM models

Table 2 also displays model fit assessment results for
fixed-effect URM models with common interactions
(models 3.1c, 3.2c, 3.3c). The DIC of the NMR model
(DIC = 25.29) is similar to those from the URM models
the assess consistency of both the log odds ratio and coef-
ficient (DIC = 23.94) or the log odds ratio alone
(DIC = 27.27) (models 3.1c and 3.2c) but is slightly higher
than that from the model that assesses the coefficient
alone (DIC = 21.96) (model 3.3c) indicating a possible
inconsistency on a coefficient.

See Table 4 for the results from the NMR model and
URM models. The results from the URM models are quite
similar to those from the NMR model with the exception
of the regression coefficient for QU vs AR. This difference
in the coefficient for QU vs AR is because of the different
assumptions underlying the two models; the NMR model
sets the regression coefficients for AR vs AS and QU vs
AS to be identical (ie, 0.0132, 95% CrI, 0.0018-0.0244)
and the coefficient for QU vs AR to be 0, whereas all
three coefficients are set to be identical in the URM
model (ie, 0.0145, 95% CrI, 0.0044-0.0247).

Overall, there is not only evidence of an interaction
from the NMR but also evidence of inconsistency; the
node-splitting models show evidence of loop inconsis-
tency for the coefficient of QU vs AR, and the URM
models support this showing a possible inconsistency of
the coefficients.

3.3.2 | Fabricated data sets

Data set 1: No interaction and consistency

The DICs from each model (models 1a, 2.1a, and 3.1a) are
similar (8.01-12.00); therefore, there is no obvious sign of
inconsistency (Table 5). Using the results from node split-
ting (model 2.1a), the log odds ratios and coefficients
based on direct and indirect evidence are very similar,
and the probabilities of agreement between direct and
indirect evidence are practically one (Table 6). The results
from the NMR model are also similar to those from the
URM model (model 3.1a) (Table 7) indicating consis-
tency. Overall, the NMR model does not show that a
treatment by average age interaction exists (Table 7)
and there is no evidence of loop inconsistency using node
splitting or global inconsistency using the URM model.
Figure 5, which shows the results from the NMR model
and node-splitting models, supports this conclusion.

TABLE 4 Results from fixed-effect network meta-regression and unrelated mean effects models with common treatment by average age interactions for the malaria data set
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Abbreviations: AR, artemether; AS, artesunate; NMR, network meta-regression; QU, quinine; URM, unrelated mean effects.



12 Wi LEY_Research

DONEGAN ET AL.

Synthesis Methods

TABLE 5 Model fit assessment results for fixed-effect models assessing consistency of both the log odds ratio and regression coefficient

with independent treatment by average age interactions for the fabricated data sets

Mean Residual

Data Set Model Deviance pp DIC
Data set 1: No interaction and consistency NMR model (model 1a) 4.00 4.00 8.01
Node-splitting model: AR vs AS (model 2.1a) 6.00 6.00 12.00
Node-splitting model: QU vs AS (model 2.1a) 5.99 5.99 11.98
Node-splitting model: QU vs AR (model 2.1a) 5.99 5.99 11.98
URM model (model 3.1a) 5.99 5.99 11.97
Data set 2: Interaction and consistency NMR model (model 1a) 4.00 4.00 8.00
Node-splitting model: AR vs AS (model 2.1a) 6.00 6.00 11.99
Node-splitting model: QU vs AS (model 2.1a) 5.99 5.99 11.99
Node-splitting model: QU vs AR (model 2.1a) 5.99 5.99 11.97
URM model (model 3.1a) 5.98 5.98 11.97
Data set 3: Interaction and inconsistency NMR model (model 1a) 43.14 399 47.14
Node-splitting model: AR vs AS (model 2.1a) 5.99 5.99 11.99
Node-splitting model: QU vs AS (model 2.1a) 6.00 6.00 11.99
Node-splitting model: QU vs AR (model 2.1a) 5.98 5.98 11.97
URM model (model 3.1a) 5.99 5.99 11.97
Data set 4: No interaction and inconsistency NMR model (model 1a) 184.36 4.00 188.36
Node-splitting model: AR vs AS (model 2.1a) 6.00 6.00 12.00
Node-splitting model: QU vs AS (model 2.1a) 5.99 5.99 11.99
Node-splitting model: QU vs AR (model 2.1a) 6.00 6.00 11.99
URM model (model 3.1a) 5.99 599  11.98

Abbreviations: AR, artemether; AS, artesunate; DIC, deviance information criterion; QU, quinine; NMR, network meta-regression; URM, unrelated mean

effects. Number of data points: 30.

Data set 2: Interaction and consistency

The DICs from the models (models 1a, 2.1a, and 3.1a) are
again similar (8.00-11.99) indicating consistent evidence
(Table 5). From node splitting (model 2.1a), the log odds
ratios and the coefficients based on direct and indirect
evidence are almost identical, and the probabilities of
agreement of direct and indirect evidence are practically
one (Table 6); Figure 5 shows the results graphically.
The URM model (model 3.1a) also gives comparable
results to the NMR model (Table 7). In conclusion, the
NMR model shows that an interaction exists for AR vs
AS (0.0200, 95% Crl, 0.0074-0.0327) and QU vs AS
(0.0200, 95% CrI, 0.0080-0.0321) (Table 7) and there is
no loop inconsistency using node splitting, or global
inconsistency using the URM model.

Data set 3: Interaction and inconsistency

The DIC from the NMR model (model 1a) (DIC = 47.14)
is much higher than those from node splitting (model
2.1a) and the URM model (model 3.1a) (11.97-11.99) sug-
gesting inconsistency (Table 5). From node splitting, the
log odds ratios based on direct and indirect evidence are
comparable, but the coefficients for AR vs AS (0.0100,
95% CrlI, —0.0039 to 0.0241) and QU vs AS (0.0400, 95%
Crl, 0.0298 to 0.0503) and QU vs AR (0.0000, 95% CrI,
—0.0125 to 0.0126) from direct evidence differ from those

from indirect evidence (ie, 0.0400, 95% CrI, 0.0237-0.0562,
0.0099, 95% CrI, —0.0088 to 0.0289, and 0.0300, 95% CrlI,
0.0127-0.0474, respectively); the probabilities of agree-
ment of direct and indirect evidence are very high (Ps
0.9982-0.9990) for the log odds ratios and very low for
the coefficients (Ps 0.0057-0.0062) (Table 6). The URM
model also gives results that differ somewhat from those
of the NMR model (see Table 7). To summarise, the
NMR model shows that an interaction exists for AR vs
AS (0.0187, 95% Crl, 0.0082-0.0292), QU vs AS (0.0335,
95% Crl, 0.0244-0.0425), and QU vs AR (0.0147, 95%
Crl, 0.0047-0.0248) (Table 7) but there is also loop incon-
sistency in the size of the underlying coefficients based on
direct and indirect evidence that is seen using node split-
ting (Figure 5); the URM model identifies global
inconsistency.

Data set 4: No interaction and inconsistency

The DIC from the NMR model (model 1a) (DIC = 188.36)
is much higher than those from node splitting (model
2.1a) and the URM model (model 3.1a) (11.99-12.00) indi-
cating inconsistency (Table 5). Similar to data set 3, in
node-splitting models, the log odds ratios based on direct
and indirect evidence are comparable, but the coefficients
for AR vs. AS (—0.0400, 95% CrI, —0.0553 to —0.0246) and
QU vs. AS (0.0400, 95% Cr1, 0.0273-0.0529) and QU vs AR
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FIGURE 5 Log odds ratio versus average age for direct and indirect from fixed-effect node-splitting models (model 2.1a) and for all
evidence from the fixed-effect network meta-regression model (model 1a) with independent treatment by average age interactions for the
fabricated data sets. AR, artemether; AS, artesunate; QU, quinine [Colour figure can be viewed at wileyonlinelibrary.com]|

(0.0000, 95% Crl, —0.0115 to 0.0116) from direct evi-
dence differ from those from indirect evidence (ie,
0.0399, 95% Crl, 0.0227-0.0574, —0.0400, 95% Crl,
—0.0591 to —0.0208, and 0.0800, 95% CrI, 0.0600-
0.1000, respectively); the probabilities of agreement of
direct and indirect evidence are very high for log odds
ratios (Ps 0.9976-1.000) and O for the -coefficients
(Table 6). Also, results from the URM model are differ-
ent from those of the NMR model (see Table 7). Over-
all, the NMR model shows that no interaction exists
(Table 7) but there is inconsistency in the direction of
the underlying coefficients based on direct and indirect
evidence and this trend can be seen using node split-
ting (Figure 5); the URM model suggests global incon-
sistency respectively, but these models cannot show the
underlying trend.

4 | DISCUSSION

We have shown that node-splitting and inconsistency
models can be useful for assessing the underlying consis-
tency assumptions of NMR when using aggregate data.
Once consistency has been assessed, the analyst must
decide which results to present. If the direct and indirect
evidence are consistent, the results from the NMR should
be reliable. However, the level of heterogeneity (from the
NMR or standard pairwise analyses) and goodness of fit
of the NMR should be considered when drawing conclu-
sions from the results. If there is inconsistency, the results
from the NMR are questionable and the causes of incon-
sistency should be considered. In some scenarios, for
example, when inconsistency masks an interaction, as
shown in Figure 1C,G, the results would not be useable.
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If the original purpose of the NMR was to explore causes
of heterogeneity or inconsistency in an NMA and there is
no interaction and no inconsistency masking interactions
in the NMR, then analysts could proceed by exploring
other potentially relative treatment effect modifying
covariates or reconsidering the eligibility criteria.

Each of the proposed methods has different pros and
cons. DBT models assess design and loop consistency
and can assess global inconsistency, while node splitting
assesses loop consistency and URM models assess global
inconsistency; loop inconsistency is well recognized in
the methodological literature but design consistency is a
newer concept.”'" Furthermore, the DBT model requires
parameterization by the analyst; therefore, the analyst
needs to have a good understanding of the model and
parameters. Key advantages of the DBT model and node
splitting is that IEs and the prob that direct and indirect
evidence agree can be obtained; however, the URM
model does not provide such results. Moreover, concerns
regarding multiple testing may apply to node-splitting
and the DBT models where probabilities are calculated,
particularly when a Frequentist approach is taken; there-
fore, it is important to compare model fit statistics across
models, and also to be cautious in interpreting “P values”
making sure to allow for multiple testing. One disadvan-
tage of node splitting is that, as one model is fitted for
every comparison with contributing direct and indirect
evidence, many models may need to be fitted, which is
computationally demanding, whereas only one inconsis-
tency model would need to be applied.

Ideally, all three approaches (ie, node-splitting model,
DBT model, and URM model) would be applied to pro-
vide a thorough assessment of consistency. However, in
practice, the reviewer may select their preferred approach
depending on the ease of application in software etc. We
recommend that at least one of the global tests (ie, incon-
sistency models) and also node splitting are performed.
Our preference is node splitting because estimates from
direct and indirect evidence can be found.

We proposed and applied methods to trial-level
aggregated data in this article. However, it is straightfor-
ward to adapt the models to accommodate any type of
arm-level outcome data, that is, a summary of the out-
come data for each arm of each trial and a covariate
value for each trial. To adapt the models, a suitable link
function would be chosen and nuisance parameters are
included in the model to represent the effect of the base-
line treatment in Arm 1 of trial i. Further details regard-
ing arm-level NMA models are given by Dias, Sutton,
Ades, and Welton*!

Moreover, collection and use of individual patient
data is generally advantageous over aggregate data when
studying patient-level covariates because they avoid

ecological biases.*>** Yet it is more common to explore
patient-level covariates (eg, patient age) using study-level
covariate summaries (eg, average age of patients) in meta-
regression such as in the malaria data set. However,
when using aggregate data, the possibility of confounding
and ecological biases should be considered when patient-
level covariates are explored.

There are a number of issues that can arise when
applying the methods, particularly with aggregate data.
Parameter estimation can be a problem with limited data,
such that models cannot be fitted at all, interactions exist
but cannot be detected, or inconsistency exists but is not
found. For instance, when all the trials that contribute
to the estimation of a regression coefficient have the same
covariate value or when only one trial contributes to a
coefficient, this would preclude the use of models with
independent interactions, but analysts may be able to
apply a model with exchangeable or common interactions
providing studies that contribute to another basic coeffi-
cient that has different covariate values. For example,
when exploring an interaction between relative treatment
effect and study location (ie, continent), studies that con-
tribute to results for Comparison 2 vs 1 may all be carried
out on the same continent provided that studies that con-
tribute to Comparison 3 vs 1 are located on different con-
tinents. Parameter estimation may particularly be a
problem when fitting the DBT model because the IEs
would be imprecise when the number of trials in one or
more designs is limited; to overcome this one could
assume exchangeability of the inconsistency factors or
use informative prior distributions. Similarly, if direct evi-
dence is limited for some comparisons (ie, few trials or
covariate values), the URM model and node-splitting
models would produce imprecise results, and informative
prior distributions may need to be used. Ideally, any
informative prior distributions would be evidence based
by eliciting them from similar meta-analyses or experts'
beliefs. Finally, it is also worth emphasising that no evi-
dence of inconsistency does not automatically imply there
is consistency; inconsistency may exist but cannot be
detected when data are limited and results are imprecise,
and therefore, arguably the consistency assumptions and
the NMR results are questionable. In the same way, in
such cases, no evidence of a treatment by covariate inter-
action does not imply there is truly no interaction.

Conversely, with abundant data, additional model-
ling extensions may be feasible. For example, in node-
splitting models, we have assumed the between-trial var-
iance is the same for direct evidence and indirect evi-
dence, yet it is possible to incorporate two variances,
one of each type of evidence. Also, the models could
be adapted to include more than one covariate or other
variance structures.**
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In conclusion, consistency of the assumptions under-
lying NMR must be assessed when NMR is applied, even
when no treatment by covariate interactions are detected.
It is possible that inconsistency is masking an interaction.
Furthermore, results of an NMR should not be reported
without assessing the underlying assumptions to deter-
mine whether the results are valid and reliable.
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