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Abstract 

Excretion of albumin in urine, or albuminuria, is associated with the development of multiple cardiovascular 

and metabolic diseases. However, whether pathways leading to albuminuria are causal for cardiometabolic 

diseases is unclear. We addressed this question using a Mendelian randomization framework in the UK 

Biobank, a large population-based cohort. We first performed a genome-wide association study for 

albuminuria in 382,500 individuals and identified 32 new albuminuria loci. We constructed albuminuria 

genetic risk scores and tested for association with cardiometabolic diseases. Genetically-elevated 

albuminuria was strongly associated with increased risk of hypertension (1.38 OR; 95%CI, 1.27-1.50 per 

1-SD predicted increase in albuminuria, p = 7.01 x 10-14). We then examined bidirectional associations of 

albuminuria with blood pressure which suggested that genetically-elevated albuminuria led to higher blood 

pressure (2.16 mmHg systolic blood pressure; 95%CI, 1.51-2.82 per 1-SD predicted increase in 

albuminuria, p = 1.22 x 10-10), and that genetically-elevated blood pressure led to more albuminuria (0.005 

SD; 95%CI 0.004-0.006 per 1-mmHg predicted increase in systolic blood pressure, p = 2.45 x 10-13). These 

results support the existence of a feed-forward loop between albuminuria and blood pressure, and imply 

that albuminuria could increase risk of cardiovascular disease through blood pressure. Moreover, they 

suggest therapies that target albuminuria-increasing processes could have antihypertensive effects which 

are amplified through inhibition of this feed-forward loop. 

 

Introduction 

In observational epidemiologic studies, albuminuria, or the concentration of albumin excreted in urine, is 

associated with risk for multiple cardiometabolic diseases: elevations in albuminuria predict development 

of coronary artery disease, stroke, heart failure, type 2 diabetes, hypertension and all-cause mortality.1-9 

However, whether pathways leading to albuminuria are causally associated with cardiometabolic disease 

is unclear. Therapies lowering albuminuria are generally associated with reduced cardiovascular disease, 

for example. However, whether such effects are independent of concomitant reductions in blood pressure 

is ambiguous.10-14 Understanding whether associations of albuminuria pathways with disease reflect a 



 

 

causal relationship or mere correlation may inform whether targeting novel albuminuria-increasing 

processes could reduce risk for cardiometabolic diseases. 

 

‘Mendelian randomization’ can provide evidence regarding the hypothesis that a given biomarker-disease 

relationship is causal.15 The strengths and limitations of Mendelian randomization can be considered via 

analogy with a randomized clinical trial. Individuals are assigned to lifelong increase or decrease in a 

disease risk factor due to the random segregation and independent assortment of genetic polymorphisms 

at conception, thus minimizing two key limitations of observational epidemiology - reverse causation and 

confounding. The effect of genetically modifying an exposure (here, albuminuria) can then be tested against 

increasing or decreasing risk of an outcome (here, cardiometabolic disease). Three assumptions must be 

met in order for a genetic variant to be a potentially valid instrumental variable in Mendelian randomization: 

1) the variant must be strongly associated with the exposure; 2) the variant must not be associated with 

confounders; and 3) the variant must not be horizontally pleiotropic, i.e., cannot be associated with the 

outcome independent of the exposure pathway.16 While the second and third assumptions are hard to 

prove, many sensitivity analyses have been developed to improve the reliability of Mendelian randomization 

estimates.17 

 

Here, we first identify new genetic variants for albuminuria by conducting a genome-wide association study 

of albuminuria in 382,500 individuals in the UK Biobank. We subsequently utilized the identified genetic 

variants as instruments in a Mendelian randomization analysis to test the hypothesis that pathways 

increasing albuminuria are causal for cardiometabolic diseases.  

 

Subjects and Methods 

Study Design 

This study had three main components: first, we examined epidemiological associations of baseline 

albuminuria with incident cardiometabolic disease in UK Biobank. Second, we conducted a genome-wide 

association study of baseline albuminuria and constructed a polygenic risk score. Finally, we performed a 



 

 

Mendelian randomization study to test the hypothesis that the associations between processes leading to 

albuminuria and cardiometabolic diseases are causal.  

 

Study Participants 

UK Biobank 

Data from 382,500 unrelated individuals of European ancestry with albuminuria measurement in the UK 

Biobank were used. Samples were excluded for the following reasons: inferred sex did not match reported 

sex, kinship was not inferred, putative sex chromosome aneuploidy, consent withdrawn, or excessive 

heterozygosity or missingness, based on centralized sample quality control performed by UK Biobank.18 

Excluded related individuals were defined as one individual in each pair with KING coefficient > 0.0884, 

indicating 2nd degree or closer relatedness. European ancestry was determined by self-reported ancestry 

of British, Irish or Other White, followed by outlier detection using the R package aberrant with lambda = 40 

on genetic principal component (PC)1 and PC2, PC3 and PC4, and PC5 and PC6. Individuals who were 

outliers for any of the three pairs of PCs were removed from the European ancestry group. Kinship inference 

and genetic PCs were centrally calculated by UK Biobank.18  

 

Albuminuria and Blood Pressure 

Albuminuria was measured at the initial assessment visit (2006-2010); a Beckman Coulter AU5400 clinical 

chemistry analyzer was used to quantify urine albumin (df-30500, Randox Bioscience, UK; 

immunoturbidimetric assay, detection range 6.7 – 200 mg/L) and urine creatinine (df-30510, Beckman 

Coulter (UK), Ltd; enzymatic assay, detection range 88 – 44200 μmol/L) concentrations. Urine albumin 

concentrations below the lower limit of detection (df-30505, n=263654) were set to the lower limit of 

detection (6.7 mg/L). The resulting urine albumin:creatinine ratio (ACR, mg/g) was natural log-transformed 

to adjust for right skewedness. Microalbuminuria was defined as urine ACR of 25-355 mg/g in females and 

17- 250 mg/g in males; macroalbuminuria >355 mg/g in females and > 250 mg/g in males.19 Baseline blood 

pressure was averaged from two measurements taken a few moments apart using an Omron 705 IT 

electronic blood pressure monitor (df-4079 and df-4080). A sphygmomanometer (df-93 and df-94) was used 



 

 

if a measurement could not be obtained with the electronic monitor. 381,833 individuals had both blood 

pressure and albuminuria measurements. Albuminuria and blood pressure can both be decreased by 

hypertensive medication, but there is no consensus about the magnitude of such effects on albuminuria. 

Therefore, neither variable was corrected for hypertensive medication use so as not to selectively skew one 

variable but not the other.  

 

Disease Definitions 

Prevalent cardiometabolic diseases were defined at study entry through the electronic health record and/or 

self-report with confirmation via verbal interview by a trained nurse. Detailed definitions for all disease 

classifications can be found in Table S2. Incident cardiometabolic diseases were ascertained among those 

not meeting disease criteria at baseline by applying phenotype definitions to longitudinal, in-patient hospital 

and death registry data linked to the UK Biobank. Participants were censored at the time of disease 

diagnosis, date of death, or date of last follow-up (i.e., February 9, 2016 for participants enrolled in Wales, 

February 16, 2016 for participants enrolled in England, and October 31, 2015 for participants enrolled in 

Scotland), whichever occurred first. Participants were presumed alive at last follow-up if there was no 

preceding report of death in the death register. UK Biobank was approved by the Research Ethics 

Committee (reference 16/NW/0274) and informed consent was obtained from all participants. Analysis of 

UK Biobank data was approved by the Partners HealthCare institutional review board (protocol 

2013P001840). 

 

Atherosclerosis Risk in Communities (ARIC) 

10235 unrelated individuals in the Atherosclerosis Risk in Communities study, genotyped using the 

Affymetrix Genome-wide Human SNP Array 5.0, were imputed to the Haplotype Reference Consortium 

using the Michigan Imputation Server. Phasing was performed using the Eagle2 algorithm. 4954 variants 

were removed prior to imputation due to duplication, monomorphism or allele mismatch. Imputation was 

then performed on 799246 variants using the minimac3 algorithm. 39,235,157 variants in the Haplotype 



 

 

Reference Consortium were imputed. 6398 individuals were of European ancestry as confirmed by 

centrally-calculated, European-specific PC analysis and had albuminuria data.  

 

An untimed urine sample was collected during the visit 4 clinical examination. Aliquots were frozen within 

12 hours and stored at -70oC. Albumin and creatinine levels were measured in the University of Minnesota 

Physicians Outreach Laboratories, Minneapolis, Minnesota, with albumin by a nephelometric method either 

on the Dade Behring BN100 (assay sensitivity, 2.0 mg/L) or on the Beckman Image Nephelometer, and 

creatinine using the Jaffe method in order to determine the albumin-to-creatinine ratio (ACR; µg/mg) for 

participants. Blinded samples (n=516) analyzed for quality assurance showed a correlation coefficient (r) 

of the loge-transformed ACR as r=0.95. ACR was natural log-transformed for association analysis. 

Genotype and phenotype data were retrieved for analysis from NCBI dbGAP (phs000280.v3.p1) under 

procedures approved by the Partners HealthCare institutional review board (protocol 2016P002395). 

 

Framingham Heart Study 

8825 individuals from the Offspring and Third Generation cohorts of the Framingham Heart Study, 

genotyped using the Affymetrix GeneChip Human Mapping 500K Array, were imputed to the Haplotype 

Reference Consortium using the Michigan Imputation Server. Genetic PCs were calculated on directly-

genotyped data using EIGENSOFT v7.2.1 after removing variants with MAF < 0.01, genotype call rate < 

0.99 and samples with sample call rate < 0.97 using PLINK-1.9. PCs were calculated in unrelated 

individuals only based on self-reported pedigree, and projected onto related individuals. 6534 individuals 

were of self-reported white ancestry confirmed by PC analysis. PCs used as covariates for association tests 

were recalculated in the white subgroup, and 21 individuals were removed as outliers on the basis of this 

analysis. 6387 of the remaining individuals had albuminuria data available.  

 

Albuminuria was measured at Offspring Exam 8 and Third Generation Exam 1 visits at the Framingham 

Heart Study Laboratory using a Roche Hitachi 911 Chemistry Analyzer. Urine albumin was quantified by 

the immunoturbidometric Tina-quant Albumin test (assay sensitivity, 3.0 mg/L); urine creatinine by 



 

 

colorimetric, modified Jaffe (rate blanked) creatinine test (assay sensitivity, 0.2 mg/100ml). Urine albumin 

concentrations below the lower limit of detection (n=1682) were set to the lower limit of detection (3.0 mg/L). 

The resulting urine albumin:creatinine ratio (ACR, mg/g) was natural log-transformed for association 

analysis. Genotype and phenotype data were retrieved for analysis from NCBI dbGAP 

(phs000007.v26.p10) under procedures approved by the Partners HealthCare institutional review board 

(protocol 2016P002395). 

 

International Consortium for Blood Pressure 

The International Consortium for Blood Pressure is a large meta-analysis of study-specific results 

associating blood pressure with genotypes from the Cardio-MetaboChip SNP Array (nmax=201529)20 or 

imputed to 1000 Genomes Project Phase 1 haplotypes (nmax=150134).21 Summary statistics for SNP effects 

on systolic and diastolic blood pressure were corrected for anti-hypertensive medication use (+15 mmHg 

and +10 mmHg for systolic and diastolic blood pressure, respectively) and included body mass index, sex, 

age, age2 as covariates, as previously described.20,21 One limitation of this data set is that adjustment for 

body mass index and anti-hypertensive medication may lead to associations between genetic variants and 

adjusted blood pressure being confounded with other factors that influence the adjustment variables 

(“collider effects”). This could bias Mendelian randomization analyses with albuminuria, which is not 

adjusted for these factors.22 SNPs from the Cardio-MetaboChip study20 were used to construct blood 

pressure genetic risk scores, whereas association of albuminuria variants with blood pressure was 

examined using blood pressure effects measured in the 1000G-based study.21 

 

Statistical Analyses 

Observational Epidemiology 

In UK Biobank, Cox proportional hazards regression was used to determine the association of baseline 

albuminuria with incident cardiometabolic disease (average median follow-up time 7.0 years across 

diseases). Potential confounding variables were selected per prior epidemiological analyses of albuminuria 

and cardiometabolic disease,2,5,6,9,23-25 and a subsequent univariate screen of the selected traits in the UK 



 

 

Biobank was performed; these criteria yielded age at baseline, sex, current smoking status, body mass 

index, systolic blood pressure, diastolic blood pressure, baseline diabetes and baseline hyperlipidemia as 

covariates for inclusion in most Cox proportional hazard models. 

 

Genome-Wide Association Study 

UK Biobank samples were genotyped by Affymetrix using either the UK BiLEVE or UK Biobank Axiom 

arrays. Genotyped variants were then imputed by the UK Biobank central analysis team onto the Haplotype 

Reference Consortium reference panel.18 Variant exclusion criteria were Hardy-Weinberg equilibrium p ≤ 1 

x 10-20, QCTOOL INFOscore < 0.3, variant call rate ≤ 0.95 and MAF ≤ 0.001 yielding 11,709,857 variants 

in the analysis. Sex-specific residuals of natural log-transformed urine ACR were analyzed as a continuous 

trait with age, genotyping array, and the first 10 genetic PCs as covariates via least-squares linear 

regression under an additive effects model using Hail v0.1 statistical software (Web Resources).26 The 

threshold for statistical significance was empirically determined using permutation testing according to a 

previous approach.27 Association of chromosome 21 variants with 1000 random simulated continuous 

phenotypes were determined using Hail v0.1. The necessary significance threshold for a 5% family-wise 

error rate (FWER) was empirically estimated as the 5th percentile of the collection of the minimum variant 

p-value from each simulated phenotype. The corresponding number of independent tests on chromosome 

21 was calculated as p = 0.05/threshold5%FWER, and was scaled to genome-wide using the proportion of the 

11,709,857 genome-wide variants located on chromosome 21. This resulted in a genome-wide significance 

threshold of p < 9 x 10-9. Genomic inflation was calculated using the median estimator in the GenABEL 

package in R; LD score regression and common (MAF > 5%) SNP genetic correlation and heritability were 

calculated via LDSC v1.0.0 using standard variant filtering (MAF > 0.01 & INFOscore > 0.9), HapMap3 

SNPs and LD scores precomputed from European 1000 Genomes data.28 Variants were clumped into 

independent loci using PLINK-1.9 with R2 > 0.01 and <1 MB from the index variant (smallest p-value). 

 

Albuminuria Genetic Risk Score 



 

 

Up to forty-six SNPs independently associated with albuminuria at a conventional p < 5 x 10-8 threshold in 

the genome-wide association study (Table S4) were used to construct weighted polygenic risk scores using 

PLINK 2.00a2LM. Each imputed genotype dosage was multiplied by the effect of the SNP on natural log-

transformed urine ACR normalized to 1-SD albuminuria in UK Biobank (0.755 log(mg/g) urine ACR). The 

resulting weighted dosages were summed to create genetic risk scores. Association of the 46-SNP 

albuminuria genetic risk score with albuminuria in ARIC and Framingham Heart Study was determined 

using linear regression with age, sex and the first 10 genetic PCs as covariates. Sensitivity analysis 

excluding 1 and 10 poorly-imputed variants in ARIC and Framingham Heart Study, respectively, did not 

substantially affect association results. Variance explained by each score was calculated as the adjusted 

R2 from the association of albuminuria with the albuminuria genetic risk score, age, sex and 10 genetic PCs 

minus the adjusted R2 from the association of albuminuria with age, sex, and 10 genetic PCs.  

 

Blood Pressure Genetic Risk Scores 

Lead variants of genome-wide significant loci from Cardio-MetaboChip-based ICBP stage 4 meta-analysis20 

were used to construct systolic blood pressure and diastolic blood pressure genetic risk scores. These 

results did not include UK Biobank. Only variants significantly (p < 5 x 10-8) associated with a specific blood 

pressure trait were included in that trait’s score. rs10164833 was excluded from the systolic blood pressure 

risk score as it did not replicate in further ICBP meta-analysis. In UK Biobank, each imputed genotype 

dosage was multiplied by the effect of the SNP on mmHg systolic or diastolic blood pressures from ICBP 

stage 4 meta-analysis, which were corrected for hypertensive medication use and body mass index,20 and 

the resulting weighted dosages were summed. Variance explained by each score in UK Biobank was 

calculated as the adjusted R2 from the association of blood pressure corrected for hypertensive medication 

use with the blood pressure genetic risk score, age, sex and 10 genetic PCs minus the adjusted R2 from 

the association of blood pressure corrected for hypertensive medication use with age, sex, and 10 genetic 

PCs. 

 

Mendelian Randomization 



 

 

For individual-level data, association of the albuminuria or blood pressure genetic risk scores with outcomes 

were assessed using logistic (combined prevalent plus incident disease) or linear (continuous outcomes) 

two-stage least-squares regression in Stata v15. Age at baseline, sex, genotyping array and the first 10 

genetic PCs to control for population structure were included as covariates. For summary-level data, the 

analogous approach is an inverse-variance-weighted (IVW) fixed-effects meta-analysis of the effect of each 

SNP on the outcome divided by the effect of this SNP on albuminuria.29,30 Meta-analysis was conducted 

using the MendelianRandomization package31 in R. Effect estimates were normalized to 1-SD albuminuria 

in UK Biobank (0.755 log(mg/g) urine ACR). Power to detect associations with cardiometabolic disease in 

UK Biobank were calculated using an online tool (Web Resources, Table S13).  

 

Sensitivity Analyses 

We performed the following sensitivity analyses to address several limitations of Mendelian randomization: 

MR Steiger filtering to remove variants potentially acting through reverse causation,32,33 calculation of 

heterogeneity and random-effects IVW meta-analysis to allow for variant effect size heterogeneity (Tables 

S6-S10, S12),34,35 median regressions which allow up to 50% of information from variants to violate 

Mendelian randomization assumptions,36 MR-Egger regression to detect directional pleiotropy,37 Cook’s 

distance to detect extreme outliers,38 and unweighted allele scores to minimize bias from internally-derived 

weights in individual-level analyses.39  

 

MR Steiger Filtering 

The third assumption of Mendelian randomization (‘no association independent of the exposure’) requires 

that a variant acts first through the exposure and not the outcome. Observational studies suggest that 

diseases such as diabetes and hypertension can increase albuminuria.40,41 Some variants may therefore 

be associated with albuminuria via first increasing risk of such diseases and secondarily increasing 

albuminuria. These variants should not be included as instruments for testing the influence of albuminuria 

on those disease outcomes. 

 



 

 

The MR Steiger method strengthens evidence regarding whether a variant acts first through the exposure 

or outcome under a model of vertical pleiotropy, where the SNP associates with two traits because one trait 

influences the other. The correlation of a variant with an outcome is a product of both the variant-exposure 

correlation and the exposure-outcome correlation. The variant-exposure correlation should therefore be 

greater than the variant-outcome correlation.33 The MR Steiger method determines the variant-exposure 

and variant-outcome correlations, and removes variants where the variant-outcome correlation is greater 

than the variant-exposure correlation. The aim of this approach is to reduce the proportion of variants 

erroneously included in a Mendelian randomization analysis due to confounding or acting first through the 

outcome.32,33 We note that MR Steiger is not designed to distinguish between vertical pleiotropy and 

horizontal pleiotropy, wherein a SNP influences both traits through independent pathways.   

 

To perform MR Steiger filtering, the correlation of a variant with each exposure and outcome was first 

determined. For continuous traits from studies with individual-level data, the squared correlation of each 

variant with a continuous exposure or outcome was calculated as the R2 from association of the trait with 

the variant and covariates minus the R2 from association of the trait with covariates. For continuous traits 

from studies with summary statistics, the correlation R was estimated using get_r_from_pn in the 

TwoSampleMR package42 in R. Correlation R of each variant with binary traits was estimated on the logit 

liability scale33,43 using get_r_from_lor in TwoSampleMR modified to use allele frequency measured in UK 

Biobank. To apply directional MR Steiger filtering, variants with R2exposure < R2outcome were removed.  

 

As an additional sensitivity analysis for one-sample Mendelian randomizations with individual-level data, 

the Steiger test of correlated correlations was used to calculate the probability that the variant-exposure 

and variant-outcome correlations were different. Variants whose correlation with the exposure was not 

significantly different from correlation with the outcome, defined as Steiger p-value > 0.05, were removed. 

Steiger tests were calculated using the r.test in the psych package in R. This analysis was not performed 

for two-sample Mendelian randomizations, as correlations of a variant with an exposure or outcome from 



 

 

summary statistics are only estimated in separate cohorts and therefore may be less appropriate for 

detecting significant differences between the two measurements.  

 

Other Sensitivity Analyses 

IVW random-effects, simple median, weighted median and MR-Egger random-effects regression were 

calculated with normal distributions using the MendelianRandomization v0.2.0 package in R. For these 

analyses of individual-level data, associations of score SNPs with each outcome were determined via linear 

or logistic (Wald) regression using age at baseline, sex, genotyping array and the first 10 genetic PCs using 

Hail v0.1 statistical software. While MR-Egger can be particularly biased by weak instruments in individual-

level or one-sample Mendelian randomization analyses,44 the fact that MR-Egger regression results were 

roughly similar between one-sample and two-sample analyses (Tables S8 and S10) suggests that weak 

instrument bias is not disproportionately affecting these results. Graphs of each variant’s effect on exposure 

vs outcome and IVW-based leave-one-out analyses (Figures S2-S4, S6-S7) were created using the 

TwoSampleMR package in R. Variant effect heterogeneity was assessed via Cochran’s Q and MR-

PRESSO residual sum of squares (RSS), which shows improved false-positive rates.34 These were 

calculated using the MendelianRandomization and MRPRESSO34 v1.0 packages, respectively, in R. For 

outlier detection, Cook’s distance was calculated on IVW meta-analysis; SNPs with a Cook’s distance 

greater than twice the nominal outlier cutoff 4/nSNPs were considered for outlier exclusion. Unweighted allele 

scores were constructed by summing the number of albuminuria- or blood pressure-increasing alleles per 

individual. Two-stage least-squares regression was used to determine the association of the unweighted 

allele score with cardiometabolic outcomes as described above. Linkage disequilibrium between variants 

in albuminuria genetic risk scores and blood pressure genetic risk scores was defined as R2 > 0.2 and <1 

MB using linkage disequilibrium calculated in the UK Biobank study population via PLINK-1.9. 

 

Anti-hypertensive medications reduce albuminuria in addition to lowering blood pressure.45 We wanted to 

determine whether not correcting blood pressure and albuminuria for hypertensive medication use 

confounded albuminuria-blood pressure association results. As a sensitivity analysis, we therefore 



 

 

excluded individuals on hypertensive medication and re-tested association of an albuminuria genetic risk 

score with blood pressure. Hypertensive medication use was defined by self-report with confirmation via 

verbal interview by a trained nurse (df-6177 and df-6153). A genome-wide association study for albuminuria 

was performed in 302,687 individuals in UK Biobank not on hypertensive medication and who had blood 

pressure and albuminuria measurements. This yielded 23 independent loci (p < 5 x 10-8, R2 > 0.01 and <1 

MB from the index variant, Table S11). Effects of the 23 SNPs were used to construct an albuminuria risk 

score normalized to 1-SD albuminuria in this population (0.713 log (mg/g)). Associations of this albuminuria 

risk score with blood pressure were determined as above. Directional MR Steiger filtering removed one 

variant from the risk score for association with both systolic and diastolic blood pressure. 

 

Results 

382,500 unrelated individuals of European ancestry in the UK Biobank, a population-based cohort, were 

used in this study. 54% of participants were female, and the mean age was 56.9 (SD 7.9) years at baseline. 

Mean baseline systolic blood pressure and diastolic blood pressures were 138.3 (SD 18.6) and 82.3 (SD 

10.1) mmHg, respectively; 18940 (5.0%) individuals had diabetes at baseline and 53004 (13.9%) had 

hyperlipidemia at baseline. The median baseline urine albumin:creatinine ratio (ACR) was 9.8 mg/g (IQR 

6.1-16.5). 14.3% had microalbuminuria and 0.4% macroalbuminuria (Tables S1-S2). Baseline urine ACR 

was natural log-transformed and is referred to as albuminuria (mean 2.3, SD 0.755 log(mg/g)) in 

subsequent analyses.  

 

Association of Albuminuria with Development of Cardiometabolic Diseases 

In UK Biobank, we first examined the association of baseline albuminuria with risk of incident 

cardiometabolic diseases using Cox proportional hazard regression (average median follow-up time across 

all diseases, 7.0 years). Baseline albuminuria was strongly associated with subsequent development of 

cardiometabolic disease (Figure 1): a 1-SD increase in albuminuria was associated with higher hazard of 

all-cause mortality (1.22 HR; 95%CI 1.20-1.23), coronary artery disease (1.09 HR; 95%CI 1.07-1.11), stroke 

(1.16 HR; 95%CI 1.12-1.20), peripheral vascular disease (1.23 HR; 95%CI 1.19-1.27), heart failure (1.29 



 

 

HR; 95%CI 1.26-1.32), type 2 diabetes (1.20 HR; 95%CI 1.18-1.22), chronic kidney disease (1.51 HR; 

95%CI 1.48-1.54) and hypertension (1.22 HR; 95%CI 1.20-1.24) but not with other diseases such as skin 

cancer (1.00 HR; 95%CI 0.98-1.03), even after adjustment for standard metabolic risk factors. Thus, 

albuminuria measured in UK Biobank is associated with cardiometabolic disease in a manner consistent 

with previous observational studies.1,6,7,9,23  

 

Genome-wide Association Study for Albuminuria 

To identify variants to be used as genetic instruments for albuminuria, we conducted a discovery genome-

wide association study of albuminuria in the 382,500 UK Biobank participants. Minimal genomic inflation 

was observed (lambdaGC = 1.17, LD score regression intercept28 = 1.02, Figure S1). The common SNP 

heritability of albuminuria was 0.045 (SE 0.002). In addition to replicating the previously-reported46 

association at the CUBN locus (rs10795433: beta -0.024 log(mg/g) for C allele; p = 1.37 x 10-24), we 

discovered an additional 1247 genome-wide significant (p < 9 x 10-9) associations representing 32 novel 

independent loci, for a total of 33 genome-wide significant loci (Figure 2, Table 1). Novel associations of 

potential clinical interest include the NR3C2 and COL4A4 loci. NR3C2 encodes the mineralocorticoid 

receptor, and mineralocorticoid receptor antagonists such as spironolactone and eplerenone reduce 

albuminuria when added to other anti-hypertensive medications.47,48 Mutations in COL4A4 and neighboring 

gene COL4A3 can cause autosomal Alport Syndrome, which is characterized by kidney disease that can 

include proteinuria.49 22 of the 33 loci (or their proxies R2 > 0.8), were available in a smaller previously 

published genome-wide association study;46 of these, 20 had a consistent direction of effect and 7 were 

nominally significant (p < 0.05, Table S3).  

 

Albuminuria Genetic Instrument Strength 

A 46-SNP genetic risk score constructed from the 33 genome-wide significant loci plus an additional 13 loci 

meeting a conventional significance level of p < 5 x 10-8 (Table S4) explained 0.7% of the variance in 

albuminuria in UK Biobank (F-statistic, 2871). The genetic risk score was validated in two additional North 

American cohorts of European ancestry and non-inflated estimates were obtained. The 46-SNP score was 



 

 

associated with albuminuria in both the Atherosclerosis Risk in Communities study (n=6398, p = 6.7 x 10-

5, 0.2% variance in albuminuria explained) and the Framingham Heart Study (n=6387, p = 4.4 x 10-4, 0.2% 

variance in albuminuria explained; Table S5). 

 

Association of Albuminuria Genetic Risk Score with Cardiometabolic Disease 

We examined whether genetically-elevated albuminuria due to the 46-SNP risk score associated with 

increased risk of cardiometabolic disease in UK Biobank. Genetic predisposition to elevated albuminuria 

was associated with increased risk of hypertension (1.51 OR; 95%CI, 1.39-1.64 per 1-SD predicted 

increase in albuminuria due to the 46-SNP score, p = 2.68 x 10-22). However, no significant associations 

were observed between the albuminuria genetic risk score and risk of all-cause mortality, coronary artery 

disease, stroke, heart failure, type 2 diabetes, chronic kidney disease or skin cancer (Figure 3). 

 

To remove variants that may act through reverse causation – that is, influence albuminuria through 

hypertension – from the albuminuria score, we applied MR Steiger filtering.32,33 This approach removed 

three variants more directly associated with hypertension. After filtering, the 43-SNP score was still 

associated with increased risk of hypertension (1.38 OR; 95%CI, 1.27-1.50 per 1-SD predicted increase in 

albuminuria, p = 7.01 x 10-14, Figure 3). 

 

Bidirectional Mendelian Randomization of Albuminuria and Blood Pressure 

To further examine the association of albuminuria with hypertension, we investigated the genetic 

correlations between albuminuria, blood pressure and hypertension. We found significant common SNP 

genetic correlations between albuminuria and hypertension (rg = 0.16; SE 0.03, p = 2.06 x 10-8), systolic 

blood pressure (rg = 0.20; SE 0.03, p = 3.6 x 10-15) or diastolic blood pressure (rg = 0.10; SE 0.03, p = 3.2 

x 10-4). We performed bidirectional Mendelian randomization between albuminuria and blood pressure to 

understand the determinants of these correlations. First, we examined association of the albuminuria 

genetic risk score with blood pressure outcomes. After MR Steiger filtering, albuminuria genetic risk scores 

remained associated with increased systolic blood pressure (2.16 mmHg; 95%CI, 1.51-2.82 per 1-SD 



 

 

predicted increase in albuminuria, p = 1.22 x 10-10) and diastolic blood pressure (0.99 mmHg; 0.61-1.36 per 

1-SD predicted increase in albuminuria, p = 3.40 x 10-7, Figure 4). Next, we investigated the reverse 

association – blood pressure affecting albuminuria – using a blood pressure risk score as the exposure and 

albuminuria as the outcome. 47 and 52 variants significantly associated with blood pressure in ICBP,20 

which did not include UK Biobank, explained 1.2% and 1.4% of the variance in systolic and diastolic blood 

pressure, respectively, in UK Biobank. Both blood pressure risk scores were associated with elevated 

albuminuria (0.005 SD albuminuria; 95%CI 0.004-0.006 per 1 mmHg predicted increase in systolic blood 

pressure, p = 2.45 x 10-13 and 0.007 SD albuminuria; 95%CI 0.005-0.009 per 1 mmHg predicted increase 

in diastolic blood pressure, p = 1.83 x 10-9, Figure 4), validating a previous suggestive report.20 

 

Sensitivity Analyses 

Seven sets of sensitivity analyses were used to verify the robustness of the associations between 

albuminuria and hypertension or blood pressure. First, Mendelian randomization results were consistent for 

a restricted score at the genome-wide significance level of p < 9 x 10-9 (Table S6). Second, we used several 

methods to detect and mitigate the effects of pleiotropic variants: 1) MR Egger regression to detect the 

presence of directional pleiotropy;37 2) Cook’s distance to detect outlier variants, which can also indicate 

pleiotropy;38,50 3) leave-one-out analyses to determine if associations are biased by a single, potentially-

pleiotropic SNP;42 4) median-based regressions, which are robust when up to 50% of information comes 

from invalid variant instruments, including due to pleiotropy.36 Some directional pleiotropy was observed in 

the associations between albuminuria and blood pressure but not other associations (Tables S7-S9). MR-

Egger regression is especially sensitive to influential points,51,52 so the observed directional pleiotropy could 

be due in part to a potential outlier, rs141640975 in the CUBN locus (Cook’s distance = 0.6-0.7, Figures 

S2-S3). This variant was the top SNP in the albuminuria GWAS, raising the possibility that it could derive 

its large effect via aggregating potentially pleiotropic effects of multiple pathways. Excluding this variant 

reduced directional pleiotropy while maintaining associations between the albuminuria risk score and blood 

pressure or hypertension (Tables S7-9). Leave-one-out analyses suggested the observed associations 

were not biased by other single variants (Figures S2-S4, S6-S7). Notably, albuminuria risk scores also 



 

 

remained associated with hypertension and blood pressure, and blood pressure risk scores with 

albuminuria, using one or more forms of median regression that allow for many pleiotropic variants (Tables 

S7-S9).  

 

Third, to be more confident variants were not acting through reverse causation, we used a more stringent 

MR Steiger filter. This removed variants that were not significantly more associated with albuminuria than 

outcomes. While effect estimates were slightly attenuated, the associations of albuminuria with blood 

pressure and hypertension persisted even after this additional filtering (Tables S7-S8).  

 

Fourth, for bidirectional Mendelian randomization it is important that variants in the albuminuria score are 

not in linkage disequilibrium with variants in the blood pressure score.22 One pair of variants at the HOTTIP 

locus was in linkage disequilibrium (rs2023844-rs3735533 R2 = 0.99). MR Steiger analysis suggests this 

variant is more directly associated with blood pressure. It was therefore removed from all albuminuria risk 

scores by directional MR Steiger filtering. Additionally, sensitivity analyses excluding this variant from blood 

pressure risk scores did not affect association of blood pressure risk scores with albuminuria (Table S9).   

 

Fifth, using the same samples for both discovery of a genetic risk score and analysis of score effects can 

bias association results towards the observational estimate.53 Unweighted genetic risk scores can reduce 

this bias.39 Unweighted albuminuria risk scores were also associated with increased risk of hypertension 

and elevated systolic and diastolic blood pressure in UK Biobank (Tables S7-S8). 

 

Sixth, to further mitigate bias from score discovery-analysis overlap in UK Biobank, we examined the effects 

of albuminuria-associated variants on blood pressure measured in a separate cohort. Blood pressure 

effects in ICBP were corrected for hypertensive medication use.21 In this cohort, albuminuria variants were 

associated with increased systolic blood pressure (2.69 mmHg; 95%CI, 1.18-4.19 per 1-SD predicted 

increase in albuminuria, p = 4.64 x 10-4) and nominally with increased diastolic blood pressure (1.03 mmHg; 

0.10-1.97 per 1-SD predicted increase in albuminuria, p = 0.030, Figures S5-S6, Table S10).  



 

 

 

Finally, hypertensive medications lower both albuminuria and blood pressure. To investigate this source of 

potential bias, we excluded any individuals in UK Biobank taking hypertensive medication. The effects of 

the resulting albuminuria genetic risk score on increased blood pressure were largely consistent (Figures 

S5 & S7, Tables S11-S12) albeit with reduced power in this n=302,687 subset.     

 

Discussion 

We used Mendelian randomization to examine if processes leading to elevated albuminuria lead to 

increased risk of cardiometabolic disease. A genome-wide association study of albuminuria in UK Biobank 

identified 32 new albuminuria loci. A genetic risk score of up to 46 albuminuria variants was strongly 

associated with increased risk of hypertension and elevated blood pressure, but showed only weak 

associations with other cardiometabolic diseases.  

 

These results permit several conclusions. First, processes that increase albuminuria appear to increase 

risk of hypertension and blood pressure. Although hypertension is commonly thought to increase 

albuminuria, previous epidemiological studies also suggest that albuminuria predicts development of 

hypertension.7,8 Our data add genetic and observational evidence supporting this association. Multiple 

pathways leading to albuminuria may contribute to hypertension. Albuminuria may arise as a result of 

generalized endothelial dysfunction,54-56 which can contribute to development of hypertension.57,58 

Albuminuria can also result from kidney damage. In damaged kidneys, increased blood pressure is thought 

to help the subfunctional kidney excrete sufficient sodium to maintain sodium homeostasis.59,60 Consistent 

with this, severe kidney injury leads to experimental hypertension61 and mild kidney damage precedes the 

development of hypertension in multiple experimental models.59,62 The intrinsic role of the kidney in blood 

pressure regulation is also supported by the observation that kidney transplantation from hypertensive 

donors can cause hypertension in previously normotensive recipients.63,64 Further work is needed to 

determine the mechanisms via which risk score variants contribute to elevated albuminuria.  

 



 

 

Second, application of MR Steiger filtering32,33 enabled the discovery of evidence for bidirectional effects 

between albuminuria and blood pressure. The associations of genetically-elevated albuminuria with 

increased blood pressure, and of genetically-elevated blood pressure with increased albuminuria, suggest 

that the relationship between albuminuria and blood pressure is bidirectional. This would imply the 

existence of a feed-forward loop, in which elevated blood pressure leads to increased albuminuria, which 

in turn would further increase blood pressure. It is important to note that because each Mendelian 

randomization analysis estimates the effects in one direction, this feedback loop is not formally modelled 

by such analyses.53 These results suggest that therapies targeting processes that lower albuminuria could 

have antihypertensive effects that are further amplified by inhibiting this feed-forward loop. Determining the 

specific genes and pathways affected by albuminuria variants could assist in rational design of such 

therapies. 

 

Third, these results imply that processes leading to albuminuria can influence cardiovascular disease 

through blood pressure. Observational and genetic evidence establishes blood pressure as an important 

causal risk factor for multiple cardiovascular diseases.20,65-67 By the principal of two-step Mendelian 

randomization,16,68 significant associations between an albuminuria risk score and blood pressure, and 

between blood pressure risk scores and diseases such as stroke or coronary artery disease,20 imply that 

the albuminuria risk score is associated with these diseases at least via blood pressure. This raises the 

question of why we did not observe significant associations between albuminuria and such diseases. 

Stronger genetic risk scores may be necessary to detect downstream consequences of a causal 

relationship between albuminuria and blood pressure: since blood pressure explains only some of the 

variance in cardiovascular outcomes,69 albuminuria should have a smaller effect size on cardiovascular 

disease than on blood pressure. We therefore may have been underpowered to detect such downstream 

effects of albuminuria-induced hypertension on cardiovascular diseases (Table S13). Larger data sets that 

generate stronger albuminuria genetic risk scores should help clarify this issue. 

 



 

 

A key strength of this study is that albuminuria and genotypes were measured in 382,500 individuals, seven 

times more than the next largest genome-wide association study,46 enabling construction of a polygenic 

risk score that explained 0.2% of the variance in albuminuria in two validation cohorts. We were also able 

to validate the associations between albuminuria and blood pressure in an outside cohort. Access to 

individual-level data in UK Biobank allowed us to interrogate whether these associations were confounded 

by hypertensive medication use. Finally, we used MR Steiger filtering to remove variants that potentially 

acted through reverse causation, and multiple sensitivity analyses to detect and mitigate pleiotropic 

variants.  

 

Several limitations should be acknowledged. First, reliance on internally-derived weights in our albuminuria 

genetic risk score may have biased our results towards the observational associations.44 To address this, 

we replicated significant associations using unweighted allele scores and/or in two-sample analyses. 

Second, an alternate explanation for the bidirectional associations observed is that a shared genetic basis 

underlies the two traits. If so, SNPs that influence both traits through a shared mechanism could violate the 

instrument strength independent of direct effect (InSIDE) assumption of standard Mendelian randomization 

and MR-Egger analyses.70 Although the associations were consistent using median-based regressions, 

which do not require the InSIDE assumption,36,42 we cannot rule out the possibility that associations 

between albuminuria and blood pressure are due to a shared genetic basis of the two traits rather than 

causal effects. Third, there was substantial heterogeneity in the causal effect estimates from different 

variants (Tables S6-S10, S12); i.e., for association of albuminuria variants with hypertension, Cochran’s Q 

= 160 (p = 9.5 x 10-16). This is perhaps not surprising considering the hypothesis under investigation was 

whether pathways that lead to albuminuria can increase blood pressure and hypertension risk. It is plausible 

– and quite likely – that multiple albuminuria-inducing pathways exist which could elevate blood pressure 

to different degrees (i.e., endothelial dysfunction and kidney damage), or not at all (i.e., pathways involved 

in albumin metabolism or post-renal urine regulation).51 However, other sources of heterogeneity could 

nevertheless be present, although these do not necessarily lead to bias.17,51 Fourth, UK Biobank is a 

population-based longitudinal cohort. Our study was likely underpowered to detect associations in diseases 



 

 

less common than hypertension (Table S13); therefore, lack of association of albuminuria with other 

diseases should not be over-interpreted. Finally, it is important to note that UK Biobank is an older cohort 

of European ancestry; therefore, results may differ in younger populations or in other ethnic backgrounds.  

 

In conclusion, an albuminuria genetic risk score of up to 46 SNPs was associated with increased risk of 

hypertension and elevated blood pressure. Application of recently-developed Mendelian randomization 

methods identified evidence of bidirectional effects from albuminuria-increasing pathways to blood 

pressure, and from blood pressure to albuminuria. These results provide genetic data to refine and highlight 

the complex interplay between albuminuria and hypertension. 

 

Description of Supplemental Data 

Supplemental Data include seven figures and thirteen tables. 
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Figure Titles and Legends 

Figure 1. Association of albuminuria with incident disease endpoints in UK Biobank.  

Incident disease aadjusted for age, sex, current smoking status, body mass index, systolic blood pressure, 

diastolic blood pressure, baseline diabetes and baseline hyperlipidemia unless otherwise specified. 

badjusted for age, sex, current smoking status, body mass index, systolic blood pressure, diastolic blood 

pressure, waist-to-hip ratio and baseline hyperlipidemia. cadjusted for age, age2, current smoking status, 

body mass index, baseline diabetes and baseline hyperlipidemia. Bars indicate 95% confidence interval for 

hazard ratio.   

 

Figure 2. Genome-wide association study of albuminuria in UK Biobank identifies 32 new loci.  

33 genome-wide significant loci are indicated by red points. Red line indicates genome-wide significance 

threshold (p = 9 x 10-9); blue line indicates conventional significance threshold (p = 5 x 10-8).  

 

Figure 3. Association of genetic predisposition to increased albuminuria with risk of 

cardiometabolic disease in UK Biobank.  

Two-stage least-squares regression using albuminuria genetic risk score as instrumental variable; age, sex, 

genotyping array and 1st 10 genetic PCs as covariates. Results are standardized to 1-SD increase in 

albuminuria due to the genetic risk score. A, genetic risk score composed of all 46 albuminuria variants. B, 

genetic risk score composed of 43 albuminuria variants after applying directional MR Steiger filtering to 

remove variants potentially acting in the incorrect direction. Bars indicate 95% confidence interval for odds 

ratio. 

 

Figure 4. Bidirectional Mendelian randomization identifies suggestive causal effects of albuminuria 

on blood pressure, and of blood pressure on albuminuria.  

A, Mendelian randomization of albuminuria genetic risk scores on blood pressure in UK Biobank 

(n=381833). Two-stage least-squares regression using albuminuria genetic risk score as instrumental 

variable on blood pressure outcome; age, sex, genotyping array and 1st 10 genetic PCs as covariates. 



 

 

Results are standardized to 1-SD increase in albuminuria due to the genetic risk score. Genetic risk scores 

were composed of 44 albuminuria variants after applying directional MR Steiger filtering to remove variants 

potentially acting in the incorrect direction.  

B, Mendelian randomization of blood pressure genetic risk scores on albuminuria. Effects of variants on 

systolic or diastolic blood pressure were determined in ICBP20 (nmax=201529) and thus corrected for 

hypertensive medication use and adjusted for body mass index. Two-stage least-squares regression using 

blood pressure genetic risk score as instrumental variable on albuminuria outcome in UK Biobank 

(n=381833); age, sex, genotyping array and 1st 10 genetic PCs as covariates. Results are standardized to 

1-mmHg increase in blood pressure due to the genetic risk score. 47 or 52 variants were used to construct 

scores specific for systolic or diastolic blood pressure, respectively. Directional MR Steiger filtering removed 

no variants.  

SNPs in score, number of SNPs remaining after directional MR Steiger filtering applied. Bars indicate 

95% confidence interval for effect on blood pressure (top) or albuminuria (bottom).  



 

 

Tables 

 
Lead variant Nearest Gene(s) Description Chr 

Position 
(hg19) 

Effect 
Allele 

Noneffect 
Allele EAF 

Beta 
(log(mg/g)) 

SE 
(log 

(mg/g)) P value 
rs12032996 PHC2-ZSCAN20 Intergenic 1 33920586 G A 0.838 0.01463 0.00226 9.33E-11 
rs10157710 FOXD2-TRABD2B Intergenic 1 47961691 T C 0.802 0.01900 0.00209 9.69E-20 
rs11264327 EFNA3-EFNA1 Intergenic 1 155095107 A G 0.399 0.00987 0.00171 7.03E-09 
rs4665972 SNX17 Intronic 2 27598097 T C 0.393 0.01176 0.00172 6.96E-12 
rs13394343 SH2D6-

MAT2A/PARTICL 
Intergenic 2 85754342 C A 0.570 0.01053 0.00168 3.86E-10 

rs10207567 ICA1L Intronic 2 203714973 C G 0.813 0.01455 0.00214 1.00E-11 
rs1047891 CPS1 Missense 2 211540507 C A 0.684 0.01205 0.00179 1.71E-11 

rs183131780 MIR548AR-LOC646736 Intergenic 2 226684886 T C 0.002 0.19055 0.01959 2.33E-22 
rs35483183 COL4A4 Intronic 2 227876687 A G 0.123 0.01490 0.00255 5.19E-09 
rs35924503 SPHKAP-PID1 Intergenic 2 229131286 C T 0.001 0.24742 0.02518 8.68E-23 

rs112607182 PRKCI Downstream 
Variant 

3 170027407 T C 0.077 0.02279 0.00327 3.39E-12 

rs7654754 SHROOM3 Intronic 4 77409795 G A 0.462 0.01020 0.00167 9.96E-10 
rs6535594 NR3C2 Intronic 4 149132756 A G 0.496 0.01146 0.00167 7.12E-12 

rs189107782 LINC01262-FRG1 Intergenic 4 190729009 T C 0.002 0.24502 0.02026 1.12E-33 
rs702634 ARL15 Intronic 5 53271420 A G 0.692 0.01042 0.00181 8.03E-09 
rs7731168 CWC27 Intronic 5 64296471 C G 0.233 0.01253 0.00197 2.19E-10 
rs4410790 AGR3-AHR Intergenic 7 17284577 C T 0.634 0.01798 0.00173 2.63E-25 
rs2023844 HOTTIP Intronic 7 27243238 A G 0.926 0.01934 0.00318 1.18E-09 
rs17158386 WIPF3-DPY19L2P3 Intergenic 7 29805361 A G 0.262 0.01330 0.00191 3.65E-12 
rs28601761 TRIB1-LINC00861 Intergenic 8 126500031 C G 0.579 0.01136 0.00171 2.81E-11 
rs45551835 CUBN Missense 10 16932384 A G 0.014 0.14237 0.00698 2.28E-92 

rs144360241 CUBN Missense 10 16967417 C T 0.005 0.08186 0.01234 3.31E-11 
rs1276720 CUBN Intronic 10 16971426 T C 0.745 0.01109 0.00193 8.98E-09 

rs141640975 CUBN Missense 10 16992011 A G 0.003 0.35876 0.01629 1.75E-107 
rs67339103 C10orf11 Intronic 10 77893686 A G 0.212 0.01522 0.00205 1.07E-13 
rs17368443 SBF2 Intronic 11 10296836 C G 0.061 0.02071 0.00348 2.58E-09 
rs2601006 CCT2 5' UTR Variant 12 69979517 C T 0.657 0.01176 0.00176 2.13E-11 
rs4288924 ZFP36L1-ACTN1 Intergenic 14 69302399 G A 0.480 0.00980 0.00168 5.66E-09 
rs8035855 MAPKBP1 Intronic 15 42077961 A G 0.644 0.01227 0.00174 1.91E-12 
rs1145074 SPATA5L1 Intronic 15 45703824 T A 0.745 0.01140 0.00191 2.41E-09 
rs2472297 CYP1A2-CYP1A1 Intergenic 15 75027880 T C 0.267 0.01812 0.00188 5.31E-22 
rs35572189 BAHCC1 Missense 17 79419025 G A 0.638 0.01051 0.00174 1.44E-09 
rs838142 FUT1 3' UTR Variant 19 49252151 A G 0.723 0.01174 0.00187 3.13E-10 

Table 1. Albuminuria loci from GWAS of 382,500 individuals in UK Biobank.  

Chr, chromosome; EAF, effect allele frequency. For intergenic loci, nearest upstream and downstream 

RefSeq genes are indicated. Nearest gene should not be taken as evidence of causal gene. Description, 

most-severe consequence of nearest RefSeq gene. 


