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Abstract 

Endosomes constitute major sorting compartments within the cell. There, a myriad of 

transmembrane proteins (cargoes) are delivered to the lysosome for degradation or 

retrieved from this fate and recycled through tubulo-vesicular transport carriers to 

different cellular destinations. Retrieval and recycling are orchestrated by multi-

protein assemblies that include retromer and retriever, sorting nexins, and the Arp2/3 

activating WASH complex. Fine-tuned control of actin polymerization on endosomes 

is fundamental for the retrieval and recycling of cargoes. Recent advances in the 

field have highlighted several roles that actin plays in this process including the 

binding to cargoes, stabilization of endosomal subdomains, generation of the 

remodeling forces required for the biogenesis of cargo-enriched transport carriers 

and short-range motility of the transport carriers. 

 

Highlights 

Actin polymerization on endosomes is primarily controlled by the regulation of the 

WASH complex activity 

Endosomal actin restricts the lateral mobility of cargoes and associated cargo-

selective machineries to facilitate the process of cargo retrieval and recycling 

Branched actin networks support the formation and stabilization of endosomal 

tubular domains where cargoes are segregated and recycled 

Actin polymerization and actin-based motors facilitate the transport of cargo-enriched 

post endosomal carriers. 
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Introduction 

The endosomal network is a series of intracellular membrane bound compartments 

that comprise a central trafficking hub for the sorting of integral transmembrane 

proteins such as nutrient and iron transporters, adhesion molecules and signaling 

receptors (together termed ‘cargoes’). Cargoes chiefly enter the network from the 

biosynthetic pathway and following endocytosis from the cell surface, a process that 

is well known to be regulated by the actin cytoskeleton [1]. The endosomes that first 

receive cargo following endocytosis are termed early endosomes [2], which undergo 

transition into late endosomes through a complex alteration in endosomal 

characteristics that is termed ‘endosomal maturation’ [2]. Within early and late 

endosomes cargoes are sorted to one of two fates [3]: either they are sorted for 

degradation in the lysosome by the endosomal sorting complex required for transport 

(ESCRT) complex, or they are retrieved from this fate for subsequent recycling back 

to the cell surface [4], or to the trans Golgi network (TGN) [5] (Figure 1). The retrieval 

and recycling of cargoes can occur through a “bulk” flow, as in the case of the 

Transferrin receptor (TfnR) or through a regulated, sequence-dependent process [6]. 

The latter is thought to be a multistep process: I) the cargo is first recognised by a 

retrieval complex(es) and segregated away from the degradative pathway [3,7], and 

II) the retrieved cargo is then packaged into tubulo-vesicular transport carriers that 

pinch off from the endosome and couple to cytoskeletal motor proteins for transport 

to the target compartment [3,7].  

This retrieval and recycling process relies on precise sequence motifs in the 

cytosolic domain of cargo which are recognized by a series of evolutionarily 

conserved complexes, including the evolutionarily conserved retromer complex [3]. 

The retromer complex is a trimeric assembly consisting of the subunits VPS35, 

VPS29 and VPS26 that, directly or indirectly, through the association with sorting 

nexin proteins, interacts with the retrieval and recycling motifs of cargo proteins [3]. 

The retromer complex directly associates with sorting nexin 27 (SNX27) that binds 

the cytosolic domain of transmembrane proteins containing a carboxy-terminal class 

I PDZ-binding motif, such as the β2 adrenergic receptor (β2AR), via its PDZ domain 

[8-10]. Retromer can also directly interact with sorting nexin 3 (SNX3) [11,12] 

resulting in the presentation of a binding site for the recognition of a ØX(L/M/V) motif 

(where Ø is an aromatic residue) present in several receptors including the divalent 



   
 

   
 

metal transporter DMT1-II [13] (Figure 2). Two other multiprotein complexes, the 

COMMD/CCDC22/CCDC93 (CCC) complex and the retriever complex, are emerging 

as important regulators of cargo retrieval and recycling through their association with 

the sorting nexin 17 (SNX17) that recognizes a NPx(Y/F)/Nxx(Y/F) motif present in 

cargoes such as β1 integrin (ITGB1) [7,14-16] (Figure 2). Furthermore, it was 

recently shown that the heterodimers of the Bin/Amphiphysin/Rvs (BAR) domain-

containing sorting nexins SNX1/SNX2:SNX5/SNX6, which are responsible for the 

remodelling of endosomal membranes into tubular profiles, have cargo selective 

activity and bind a WLM motif in the cation-independent mannose-6-phosphate 

receptor CI-MPR [17,18] (Figure 2). 

Actin has long been observed on endosomes [19-24]. In recent years it has become 

evident that actin regulates several aspects of endosomal biology [25,26], including 

regulation of endosomal biogenesis and maturation [27-29], endosome morphology 

[30-32], endosome motility and positioning [33], and sorting of cargo proteins at 

endosomes [34]. Consistent with this plethora of functions, perturbation of actin 

dynamics with actin depolymerizing drugs leads to a variety of effects on the 

endosomal network that include the formation of enlarged and dysfunctional 

endosomes that are unable to properly sort cargo molecules [32,35-37]. Here, we 

will review our recent understanding of the pivotal role that actin polymerization and 

turnover plays in the process of endosomal retrieval and recycling of transmembrane 

cargoes. 

 

Actin polymerization on endosomes: WASH and cortactin 

One of the major actin nucleators on the surface of endosomes is the evolutionarily 

conserved Wiskott-Aldrich Syndrome protein and SCAR Homolog (WASH) complex 

[30,31,38]. This is a multimeric assembly of five proteins: WASH1 (WASHC1); 

Strumpellin (WASHC5); family with sequence similarity 21A and C, FAM21A/C 

(WASHC2A/C); coiled coil domain containing protein 53, CCDC53 (WASHC3); and 

the Strumpellin and WASH interacting protein, SWIP (WASHC4) [30,31,39-41]. 

FAM21 is a critical structural component of the complex that acts as a protein-protein 

interaction hub while WASH1 is a class I nucleation-promoting factor (NPF), which 

are activators of Arp2/3-dependent actin polymerization [30,31,39-42] (Figure 3).  



   
 

   
 

FAM21 consists of two regions: a “head” domain that assembles with the other 

components of the WASH complex and an extended (approximately 1110 residues) 

protruding “tail” domain [43-45]. The FAM21 tail domain contains 21 copies of an 

LFa motif (consisting of a leucine followed by a phenylalanine and several acidic 

residues) that can interact with multiple retromer VPS35 subunits [43-45]. The 

association of WASH to endosomes is partially dependent on its interaction with 

retromer [43,45,46], with the ESCRT-0 component HRS via a yet to be defined 

mechanism [47], and possibly, on its inherent ability to bind a broad range of 

negatively charged lipids [30,40] (Figure 3). 

The activity of WASH on endosomes is tightly regulated via a process of 

ubiquitylation and deubiquitylation that precisely tunes actin nucleation. K63-linked 

polyubiquitylation of WASH1 on its lysine 220 (K220) by the ubiquitin ligase TRIM27 

results in its activation leading to enhanced actin-nucleation [48]. TRIM27 is recruited 

on endosomes through the protein MAGE-L2, which interacts with the retromer 

subunit VPS35 [48]. At the same time, the complex can “sense” the activation state 

of WASH and fine tune its activation through a molecular rheostat mechanism which 

involves the deubiquitylation enzyme USP7 [49]. USP7 interacts with the MAGE-L2-

TRIM27 complex to: 1) reduce WASH activity by direct deubiquitylation of the K220 

lysine and 2) promote WASH activity by preventing the ubiquitylation of TRIM27 and 

its degradation [49]. The precise regulation of F-actin deposition is critical for the 

process of cargo recycling from endosomes as both the overactivation and the 

inactivation of WASH lead to defects in cargo trafficking [48,49]. 

A second activator of the Arp2/3 complex that has been described to localise on 

endosomes is cortactin [35,50-54]. cortactin is a class II NPF that promotes actin 

assembly by both enhancing Arp2/3-mediated actin polymerisation and by binding 

and stabilising existing F-actin branches [55]. The targeting of cortactin to endosomal 

membranes depends on its ability to bind branched actin networks, primarily 

generated by the WASH complex [30,35], and phosphoinositides, which are an 

important element of cortactin regulation [54]. In fact phosphatidylinositol 3,5-

bisphosphate (PI(3,5)P2), a phosphoinositide enriched on the cytosolic facing leaflet 

of the late endosome [56], directly interacts with cortactin via its actin filament-

binding region and competes with actin filaments for the binding to cortactin. This 

suggests that the generation of PI(3,5)P2 may antagonise cortactin association with 



   
 

   
 

branched actin leading to an inhibition of cortactin-mediated branched actin 

nucleation and stabilization at the late endosome [54] (Figure 3). 

 

Actin in sorting cargoes by restricting their lateral mobility 

Intracellular membranes extensively interact, directly or indirectly, with cytoskeletal 

elements [57]. It is well established that the plasma membrane is pinned by a 

meshwork of F-actin cortex leading to the formation of membrane nanodomains that 

exhibit restricted lateral diffusion of their components [57]. The polymerization of 

branched actin on the surface of peripheral endosomal membrane could stabilize 

membrane microdomains where newly delivered cargoes are captured in order to 

prevent their lateral diffusion into the degradative domain [34]. Experimental 

evidence for this model is largely missing, however there are few observations that 

point in this direction. First, it was shown that replacement of the retrieval and 

recycling signal in cytosolic tail region of the β2AR with an actin-binding domain is 

sufficient to rescue endosome-to-plasma membrane recycling of the receptor [58]. 

Furthermore, the analysis of the endosomal sorting of a chimeric TfnR harboring 

both a non-cleavable ubiquitin moiety and an actin-binding region showed that direct 

actin binding can overcome ubiquitin-mediated sorting in the ESCRT subdomain 

[47]. Finally, work in Dictyostelium discoideum established that the vacuolar 

adenosine triphosphatase (V-ATPase) binds with strong avidity to the F-actin 

network on the maturing lysosomes and that this interaction is necessary and 

sufficient for the retrieval of the V-ATPase [59]. Taken together these observations 

suggest that cargo proteins in the endosome membrane can be captured through 

direct association with the actin meshwork and that this interaction could facilitate 

their retrieval and recycling. 

 

Actin and WASH in the organization of the retrieval subdomains 

The limiting membrane of endosomes is considered to comprise a patchwork of 

different functional protein-based and lipid-based domains. These include the afore-

mentioned degradative subdomain, enriched with the components of the ESCRT 

machinery, and the retrieval subdomain, enriched with retromer and other cargo-

retrieval complexes [60-62]. The WASH complex is thought to contribute to the 



   
 

   
 

segregation between these two functional opposing subdomains by: i) structuring the 

retrieval subdomain through interaction with multiple cargo-selective elements and, 

ii) assembling a meshwork of branched filamentous actin to restrict the lateral 

mobility of these components and associated cargoes [3] (Figure 2). The WASH 

complex sustains the architecture of the retrieval subdomain by concentrating 

multiple retromer molecules along the same FAM21 molecule [43,44]. Moreover, the 

WASH complex interacts with the retromer-associated cargo adaptor SNX27 [8], the 

retromer-linked SNX-BAR protein SNX1 via RME-8 [63-65], and the retriever 

complex via the CCC complex [14,66] (Figure 2). Recent work suggests that the 

ESCRT-0 component HRS, which occupies the degradative subdomain, contributes 

to the recruitment of the WASH complex to the retrieval subdomain to facilitate the 

recycling of transmembrane proteins [47]. It is likely that this series of interactions 

contribute to the membrane association of the WASH complex in a cooperative 

fashion that reflects the density of cargo captured by different retrieval complexes. 

Concomitantly, the localized nucleation of branched actin could further promote the 

cohesion of the retrieval domain by restricting the lateral mobility of the cargoes and 

their associated machineries (see “Actin in sorting cargoes by restricting their lateral 

mobility”). Consistently, the depolymerization of actin or the depletion of Arp2/3 

causes the coalescence of WASH and retromer-positive domains suggesting that the 

actin branched network is involved in the partition of the discrete retrieval domains 

[36].  

Finally, also actin has a fundamental function in the maturation of the vacuolar 

domain of the early endosome where the intraluminal vesicles (ILV) are generated, 

via a process that relies on branched F-actin networks nucleated by Annexin A2, 

Spire1 and Arp2/3, and containing cortactin and moesin [28,29]. Here, the Annexin 

A2-dependent regulation of branched actin deposition may contribute to further 

segregate the degradative domain by separating the recycling tubules away from the 

maturing multivesicular endosomes [28,29]. 

 

Actin in the formation and stabilisation of tubular domains for the recycling of 

cargoes 



   
 

   
 

The polymerization of F-actin on endosomes is also required for the formation and 

the stabilization of a subset of tubular profiles, distinct from those mediating bulk 

flow, that mediate the recycling of the retrieved cargoes to the plasma membrane 

[52,67]. It has been established that recycled cargo, such as the β2AR, are recycled 

via tubular profiles that are characterised by the presence of actin and actin related 

machineries that include coronin, filamin A, Arp2/3, cortactin and the WASH complex 

[52,67-70]. The proposed role of F-actin is to stabilise these tubular profiles to allow 

the entry of cargoes, such as β2AR, that diffuse more slowly on the endosomal 

membrane, due to the nature of the retrieval mechanism, and would be therefore 

excluded from the short-lived sub-set of bulk recycling tubules [52,69]. This actin-

based mechanism for the partition of cargoes between the bulk flow pathway and the 

regulated recycling pathway could conceptually be extended to a multitude of 

cargoes undergoing sequence-based recycling, including SNX27 cargoes [8,10,71], 

SNX17 cargoes [14], and SNX1/2:SNX5/6 cargoes [17,18]. Importantly, the Wnt 

ligand transport protein Wntless (Wls), which undergoes SNX3 and retromer-

dependent endosome-to-TGN retrograde transport, was observed to transit thought 

the same tubular domains of β2AR, implying that actin-rich tubular profiles might act 

as platform for the recycling of receptors to different cellular destinations [72] (Figure 

4). 

The kinetics of the actin-rich recycling tubular microdomains can be modulated by 

the phosphorylation of cortactin on the residue Y466 by Src family kinases allowing 

for signaling-based regulation of the sequence-dependent recycling [73]. Since 

cortactin can be phosphorylated by a myriad of kinases, such as ACK, FAK, Abl 

kinase and MEK/ERK [73], it is possible that many signaling pathways might 

converge to finely regulate the kinetics of receptor recycling under different stimuli. 

Moreover, filamin A (FLNa), which is an actin-cross-linking protein, localises on the 

actin-enriched endosomal microdomains where it facilitates the entry of the β2AR 

and the chemokine receptor CCR2B into the tubular recycling domains [70]. 

Importantly, CCR2B and β2AR signaling induces the phosphorylation of FLNa that 

promotes receptor recycling [70]. Several other actin regulators play a role in the 

biogenesis of tubular membrane carriers by regulating actin assembly, disassembly 

and/or bundling; these include the Cdc42-guanine nucleotide exchange factor FGD6 

[74], the regulator of endocytic recycling EHBP-1 [75], and formins [76,77].  



   
 

   
 

Finally, it is emerging that G protein coupled receptors (GPCRs), like β2AR, can 

generate sustained signaling from endosomes [78]. This second wave of signaling 

was shown to be confined to the actin-rich recycling tubular domains and is 

dependent on the polymerization of an actin network [69], hinting that the regulation 

of actin-dynamics on endosomal tubular profiles could contribute to the modulation of 

the signaling cascades. 

 

Actin in regulating the fission of cargo-enriched post-endosomal carriers 

The WASH-dependent nucleation of actin also has a primary role in controlling the 

fission of endosome derived tubules [30,31], including the SNX1/2:SNX5/6-

decorated tubules which are responsible for the retrograde transport of the CI-MPR 

to the TGN [17,18] and several other receptors to the plasma membrane [8,18]. The 

WASH complex is thought to be recruited on the SNX1/SNX2:SNX5/SNX6 tubular 

domains via the association with the SNX1 interactor RME-8, also known as 

DNAJC13 [63-65]. This association provides a means to coordinate the activity of the 

WASH complex with the membrane remodelling ability of the 

SNX1/SNX2:SNX5/SNX6 [65]. The WASH-dependent formation of branched F-actin 

may contribute to the fission of the tubular profiles by providing a pushing force to 

induce membrane tension [79] (Figure 4). Accordingly, depletion of RME-8 or the 

WASH complex gives rise to long membrane tubules extending from endosomes 

and prevents the correct retrograde trafficking of the CI-MPR to the TGN 

[30,31,38,65]. Interestingly, evidence suggests that endoplasmic reticulum (ER)-

endosome contact sites regulate WASH-dependent and actin-based severing of 

tubular elements [80-82] (Figure 4). It was shown that a complex between the 

endosome-localised SNX2 and the ER-localised VAP-A/B mediates the formation of 

membrane contact sites to regulate endosomal phosphatidylinositol 4-

monophosphate (PI4P) microdomains, the perturbation of which leads to 

exaggerated WASH-dependent actin polymerisation and impairment of retrograde 

transport [81] (Figure 3). 

Moreover, the BLOC-1 complex was shown to be required for the elongation and 

scission of recycling tubules transporting cargoes to the plasma membrane or to 

melanosomes, which are pigment containing lysosome-related organelles, through 



   
 

   
 

the association with KIF13A and AnnexinA2 [83]. First, BLOC-1 promotes the 

extension of a nascent tubule along microtubules by interacting with KIF13A, and 

then it orchestrates the tubule release via Annexin A2-dependent actin 

polymerization, a process which is WASH-independent [83]. Recently, it was 

reported that on melanosomes the motor myosin VI couples to the branched actin 

networks to promote the scission of tubular carriers transporting the SNARE protein 

VAMP7 [84]. 

 

Actin in regulating the transport of cargo-enriched post endosomal carriers 

Following the detachment of cargo-ladened tubular carriers, actin could also regulate 

the short-distance motility of cargo-enriched endosomal carriers via two different 

mechanisms: I) myosin-based transport along existing actin filaments and II) 

propulsion of endosomes via local polymerization of actin (Figure 4). In fact, the 

class I NPFs N-WASP, which has an established role in regulating actin dynamics 

during endocytosis, might also localise to early endosomes [26]. N-WASP doesn’t 

seem to play a role in cargo sorting on endosomes as its siRNA depletion had no 

effect on cargo transport [26]. However, it has been suggested that it could generate 

an actin comet tail to facilitate the propulsion of endocytic organelles through the 

cytoplasm [21,52,85]. The WASH complex has been shown to remain on the 

endosome derived carriers and to participate to the tethering of a sub-population of 

carriers at the TGN [86]. It remains to be established whether the WASH complex 

contributes to the short-range motility of endosome derived carriers through a similar 

mechanism to that of N-WASP. 

Moreover, several actin motors play a role in the process of cargo recycling by 

contributing to the motility of the carriers or by tethering the endosome-to-plasma 

membrane carriers in to the cortical actin network at the cell periphery [87]. These 

include myosin-VI, which regulate the tubule formation and the transport of cargo to 

the endocytic recycling compartment (ERC) [88]; the unconventional myosin-VI 

MYO6 [89], Myosin-Ib [90], Myosin V, which aids the transport of RAB11-positive 

vesicles to the cell periphery [91], and Myosin Vb, which is likely to contribute to 

efficient receptor recycling by capturing and trafficking RAB11-positive vesicles at 

the cell cortex [92,93]. 



   
 

   
 

 

Conclusions 

It is emerging that control of actin dynamics on endosomes is fundamental for the 

recycling of transmembrane receptors. Actin orchestrates several steps of this 

process, from the direct capture of cargo which has been delivered to the 

endosomes, to the generation of the remodeling forces required for the biogenesis of 

cargo-enriched transport carriers. It has become increasingly clear that the WASH 

complex and its ability to remodel branched actin networks on endosomes is a key 

regulator of transmembrane cargo retrieval and recycling. A main challenge in the 

future will be to distinguish between WASH functions that are the result of its 

convoluted set of protein-protein interactions and those that depend on its ability to 

promote actin nucleation. It will also be important to investigate the contribution of 

the different subunits of WASH complex in the process of cargo retrieval and 

recycling as growing evidence hints that FAM21 might have functions which are 

distinct from the other components of the WASH complex in the sorting of endocytic 

cargo [42]. Moreover, further studies will be required to understand how the 

spatiotemporal control of actin polymerisation and turnover orchestrates the complex 

heterogeneity of receptor sorting pathways. Recent evidence seems to suggest that 

the localised turnover of phospholipids on restricted endosomal subdomains could 

lead to a localised regulation of the deposition and turnover of actin on endosomes 

[54,81]. Hence, the interplay between lipid microenvironment and the regulation of 

actin on endosomes will need to be explored in the future. Finally, we are only now 

starting to appreciate the role that actin plays in the events that follow the fission of 

cargo enriched-carriers. Future work will have to address the pending questions 

about the interplay between actin-based motility and microtubule-based transport in 

the delivery of cargo-enriched transport carriers to the plasma membrane and the 

TGN.  
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Annotated references: 

[7] * A recent review of the recently identified cargo selective complexes that localise on endosomes 

and interact with the WASH complex to coordinate the retrieval and recycling of cargoes. 

[14] ** This elegant paper not only identifies retriever, a novel retrieving complex, but also shows 

that the recruitment of WASH complex is not solely dependent on the association with the retromer 

complex. 

[29] * This paper explores the role of actin in the maturation of the vacuolar domain of the early 

endosome where intraluminal vesicles are formed. 

[41] ** A recent review on the WASP family members with the most up-to date discussion of the 

WASH complex assembly and function. 



   
 

   
 

[42] * This paper implies that the different subunits of WASH complex might have specific functions 

in the process of cargo retrieval and recycling. 

[47] ** This study establishes that the actin network can directly bind to cargoes and that this 

interaction is sufficient to overcome ubiquitin-mediated sorting in the ESCRT subdomain. This 

observation points towards a model whereby the branched actin network on endosomes could, 

directly or indirectly, restrict the lateral mobility of cargos preventing their sorting into the 

degradative subdomain. 

[49] ** The work presented in this paper adds a novel layer to the complexity of the regulation of 

the WASH complex and establishes that the fine-tuned regulation of F-actin deposition is critical for 

the process of cargo recycling. 

[54] ** This study reports that PI(3,5)P2 controls the interaction between cortactin and actin and 

suggests an elegant model for the integration of the WASH and cortactin function based on the 

turnover of different phosphoinositides species on endosomes. 

[69] ** This study establishes that the β2 adrenergic receptor (β2AR) activates Gα stimulatory 

protein (Gαs) on the actin-rich endosomal tubules and not in the actin-depleted bulk recycling 

tubules. This suggest that regulation of actin dynamics on endosomes could tune downstream 

responses of GPCR signaling. 

[70] * This paper identifies filamin A as a novel factor that regulates the dynamics of actin for the 

tubular-based recycling of GPCRs.  

[75] * This work identifies the small GTPase RAB-10 and its effector EHBP-1 as novel factors that 

control endosomal recycling by bridging endosomal tubules to the actin cytoskeleton. 

[77] * This paper discusses a novel, CYK-1/formin-dependent, mechanism that regulates actin 

dynamics for the endocytic recycling 

[81] ** This study revealed that endosomal tubules create contact sites with the endoplasmic 

reticulum through a complex between the endosomal sorting nexin SNX2 and the ER tethered VAPs. 

The contact site functions as a platform for the turnover of endosomal PI4P whose levels are critical 

for the regulation of WASH-dependent actin nucleation.  

[83] * The paper identifies a mechanism that is required for the generation of recycling tubules and 

that requires the integration of the microtubule-dependent pulling force with the actin-dependent 

stabilization of membrane tubules. 

[84] * This work establishes that myosin VI couples to branched actin networks to promote the 

severing of the tubular carriers that are generated on melanosomes. 



   
 

   
 

[89] * The work presented in this paper shows that Myosin VI localize to APPL1- and RAB5-positive 

signalling endosomes and mediate association of these compartments with cortical actin filaments. 

Importantly, this positioning of endosomes at the cell periphery plays a crucial role in the activation 

of AKT in response to extracellular stimuli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

Figure captions 

Figure 1. Endosomal sorting of receptors 

Transmembrane proteins that are fated for degradation, such as the activated epidermal 

growth factor receptor (EGFR), are initially subjected to ubiquitylation. Ubiquitin serves 

as a signal to sort the ubiquitylated cargo from the limiting membrane of the endosome 

into regions that invaginate and pinch off into the lumen of the endosomal vacuole to 

form cargo-enriched intralumenal vesicles (ILVs) [94]. The most important players in the 

sorting of ubiquitylated cargo into the forming ILVs are the endosomal sorting complex 

required for transport (ESCRT): ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III. ESCRT-

0, -I and -II act to recognize the cohort of ubiquitylated cargoes while ESCRT-III is 

involved in the process of ILV biogenesis [94]. Through iterative rounds of cargo sorting 

and ILV biogenesis, the mature ILV ladened late endosome becomes competent to fuse 

with the lysosome, leading to the formation of a hybrid organelle termed the endo-

lysosome. Here the cargo present within the ILVs are degraded [95].  

Alongside cargo sorting into ILVs, cargoes destined for recycling are sorted from the 

endosomal limiting membrane into branched tubular profiles, from where they are 

packaged in tubulo-vesicular carriers for transport to the cell surface or the biosynthetic 

pathway [2]. Cargo proteins that undergo endosome-to-trans Golgi network (TGN) 

recycling, this is given the specific term “retrograde transport”, include TGN-resident 

proteins that have reached the endosomal system through anterograde traffic including 

the sorting receptors that deliver the lysosomal hydrolases (such as the CI-MPR) [5]. 

Delivery of cargo back to the cell surface can occur directly, namely fast recycling, or 

indirectly, namely slow recycling, by means to transit through the endosomal recycling 

compartment (ERC) and possibly the TGN [6]. A subset of plasma membrane cargoes 

that include β1 integrin (ITGB1) can take multiple recycling routes and might also 

undergo recycling trough the TGN to be re-secreted in a controlled manner [96,97]. 

Historically, the mechanistic details of cargo recycling were considered to occur through 

sequence-independent “bulk” flow, as in the case of the Transferrin receptor (TfnR) [6]. 

However, more recent evidence is revealing that recycling of a multitude of cargos, 

including the β2 adrenergic receptor (β2AR), is a highly regulated and sequence-

dependent process that requires specialized endosomal sorting complexes that bind to 

retrieval and recycling motifs found in the cytosolic facing regions of functionally diverse 

cargoes [3]. It is now clear that several of these processes of cargo retrieval and 

recycling are regulated by actin. 



   
 

   
 

Figure 2. Basis of sequence-dependent retrieval of cargoes in the actin-

decorated subdomains. 

The top panel illustrates the different multiprotein complexes known to play a role in 

the retrieval and recycling of cargo proteins on endosomes, the precise sequence 

motifs in the cytosolic domain of cargoes are reported between brackets. Retromer is 

an heterotrimer of the subunits VPS35, VPS29 and VPS26, that, directly or indirectly 

(via association with SNX3 or SNX27) interacts with different retrieval and recycling 

motifs of cargo proteins [3]. Importantly, the membrane remodelling SNX1/2:SNX5/6 

complex, which was historically thought to be strictly connected to the retromer, has 

recently been shown to participate in the retromer-independent recycling of the 

receptors CI-MPR and IGF1R [17,18]. The multimeric CCC complex, which consist 

of the subunits CCDC22, CCDC93 and COMMD proteins, contributes to the process 

of cargo recycling [7,14,66]. The COMMD proteins are a family of ten highly 

conserved factors which seem to act as cargo adaptors with COMMD1 recently been 

shown to bind the receptor ATP7A [7,14,66]. Importantly the CCC complex is 

integrated into the retrieval subdomain via the interaction between CCDC22 and 

CCDC93 and the FAM21 tail [66]. Retriever is a stable retromer-like heterotrimer 

composed of the subunits: C16orf62, which is predicted to share structural 

similarities with VPS35 [14]; VPS29, which is shared with the retromer complex and 

DSCR3, which is a paralogue of VPS26. Like retromer coupling to the SNX27 cargo 

adaptor, retriever also binds to a cargo adaptor, in this case sorting nexin 17 

(SNX17) [14]. Retriever associates both with the CCC complex and the WASH 

complex [14]. 

The bottom panel illustrates how the WASH complex, the major Arp2/3 activator that 

localizes at the surface of endosomes, interacts with all the cargo selective 

complexes and contributes to the architecture of the retrieval subdomain [3,7]. 

  



   
 

   
 

Figure 3. Phosphoinositides role in the remodeling of branched actin networks 

by the WASH complex and cortactin  

The figure illustrates the possible interplay between phosphoinositides (PIs) together 

with the WASH complex and cortactin in regulating the dynamics of branched actin 

networks. PIs are lipids that are inserted in the membranes via their diacylglycerol 

“tail” while the inositol “head” group is exposed to the cytosol. The hydroxy residues 

present on the D3, D4 and D5 carbons of the inositol molecule can be 

phosphorylated, singularly or in combination, to generate one of seven 

phosphoinositides species found in vivo [98]. Different compartments of the cell are 

enriched with distinct PI species with early endosomes being enriched with PI3P 

whereas late endosomes are decorated with PI(3,5)P2, PI4P and PI(4,5)P2 [98]. PIs 

can be quickly generated, removed or inter-converted during specific cellular events 

and this flexibility is achieved via a number of PI kinases and PI phosphatases that 

can dynamically remove or conjugate the phosphate groups on the inositol head 

[98]. 

It is believed that: I) WASH associates on PI3P-positive endosomes through its 

interaction with retromer, which indirectly binds PI3P [43,45,46], with the ESCRT-0 

component HRS [47], and possibly, on its ability to bind PIs [30,40]. II) Subsequently, 

the WASH complex induces the activation of the Arp2/3 complex and the generation 

of branched actin networks on endosomes. III) Cortactin is then recruited to nascent 

branch points where it further contributes to the assembly and stabilization of the 

actin networks [54]. IV) As the endosome matures, the kinase PIKfyve converts 

PI(3)P to PI(3,5)P2 [56]. V) PI(3,5)P2 sequesters cortactin, preventing the binding for 

actin filaments, and possibly releases the WASH complex [54]. In the absence of 

cortactin at the branchpoint the Arp2/3 complex loses affinity for the actin filament 

resulting in an overall disassembly of the branched actin networks.  

It has recently been shown that VI) the ER-endosome contact sites regulate the 

endosomal levels of PI4P, the accumulation of which causes exaggerated WASH 

mediated activation of actin nucleation and formation of actin comets on endosomes 

[81]. 

 

 



   
 

   
 

Figure 4. Schematics of regulated recycling of receptors through actin-rich 

tubular domains.  

The Figure illustrates the central role of actin dynamics in the sequence-dependent 

recycling of cargoes, from membrane deformation to the movements of cargo-

enriched tubular profiles. The regulated sorting of receptors, contrary to the bulk 

flow, sequence-independent recycling pathway, is tightly regulated by actin dynamics 

at the surface of endosomes [52,67,69]. I) The retrieving machineries (see Figure 2) 

trap receptors with specific retrieval and recycling motifs in endosomal actin-enriched 

subdomains and allow the entry of the receptors in tubular profiles that are enriched 

with actin and actin-related proteins [52]. These tubular profiles are generated 

through a series of BAR (Bin/Amphiphysin/Rvs) domain-containing proteins including 

a number of BAR-domain containing sorting nexins (SNX-BARs) [99]. The SNX-

BARs associate with endosomal membrane via a co-incidence detection of 

phosphoinositides via their PX domains, together with the sensing of membrane 

curvature via their BAR domains [100,101]. Upon localisation to membranes, it is 

thought that the increased concentration of BAR domain-containing proteins serves 

to promote their oligomerisation into higher order spiral arrays, which result in 

vesicle-to-tubule membrane remodelling [101]. Of these, the SNX-BAR proteins 

SNX1, SNX2, SNX5, SNX6 and SNX6b (also SNX32) are linked to the retromer 

pathway and coordinate the tubular-based recycling of the retromer retrieved 

cargoes [8]. The pulling force exercised by the microtubule motor dynein/dynactin 

complex contributes to the extension of the nascent carrier [102,103]. Moreover, the 

WASH complex interacts directly with tubulin, and thus it may assist the 

extension/stabilisation of tubular profiles on microtubule tracks [31]. II) Subsequently, 

the localised WASH-dependent nucleation of branched F-actin may contribute to the 

destabilisation of the tubular profiles by providing a pushing force to destabilise the 

membrane and induce membrane fission [30,31,46,65]. III) Lastly, the detached 

tubular carrier might use actin polymerization and actin-based motors to facilitate the 

short-range motility toward the final destination. 
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