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Abstract 

Several models exist for the study of chronic wound infection, but few combine all of the necessary 

elements to allow high throughput, reproducible biofilm culture with the possibility of applying 

topical antimicrobial treatments. Furthermore, few take into account the appropriate means of 

providing nutrients combined with biofilm growth at the air-liquid interface. In this manuscript, a 

new biofilm flow device for study of wound biofilms is reported. The device is 3D printed, 

straightforward to operate, and can be used to investigate single and mixed species biofilms, as well 

as the efficacy of antimicrobial dressings.  Single species biofilms of Staphylococcus aureus or 

Pseudomonas aeruginosa were reproducibly cultured over 72 h giving consistent log counts of 8-10 

colony forming units (CFU).  There was a 3-4 log reduction in recoverable bacteria when 

antimicrobial dressings were applied to biofilms cultured for 48 h, and left in situ for a further 24h.  

Two-species biofilms of S. aureus and P. aeruginosa  inoculated at a 1:1 ratio, were also reproducibly 

cultured at both 20oC and 37oC; of particular note was a definitive Gram-negative shift within the 

population that occurred only at 37oC. 
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Introduction 

Chronic wounds exhibit a perpetual state of non-healing with inevitable recalcitrant infection. 

Biopsies of a variety of wounds have found that over 78% of chronic wounds contain biofilm, which 

is associated with unsuccessful anti-infective treatment (James et al., 2008; Kirker and James, 2017, 

Malone et al., 2017). Consequently, persons with chronic infected wounds are often afflicted for 

many months or years, with the most severe cases necessitating physical debridement of tissues and 

eventual amputation. Numerous antimicrobial wound dressings are commercially available and form 

a part of chronic wound management strategies. To date there are no universally accepted, robust 

means of testing new antimicrobial dressings for their efficacy, particularly against biofilms. 

A number of in vitro biofilm models are available and utilised with varying success to study 

wound biofilms. These include the Lubbock system (Sun et al., 2008), the Modified Robbin’s Device 

(Kharazmi et al., 1999; Miller et al., 2001), the Calgary Device (Ceri et al., 1999; Harrison et al., 2006), 

Constant Depth Film Fermenters (CDFF) (Hill et al., 2010), drip-flow reactors (Goeres et al., 2009), 

flow chamber and bubble traps (Tolker-Nielsen and Sternberg, 2014), and more recently, 

microfluidic systems (Wright et al., 2015). The Lubbock system and Calgary Device are static biofilm 

models; the former is most representative of the wound environment as biofilms are grown on 

filters on top of plugs of agar that are placed onto an agar-filled Petri dish which allows for the 

application of wound dressings. The Calgary Device allows for the culture of up to 96 biofilms in a 

static system, with the biofilm submerged in media, which is not truly representative of the wound 

environment. 

Chronic infected wounds commonly produce exudate, which further complicates accurate 

modelling of wound infection in vitro (Junka et al., 2017). The Modified Robbin’s Device, CDFF, drip 

flow reactors, flow chamber/bubble-trap systems and microfluidic devices have tried to address the 

requirement for flow within biofilm models and are sufficiently versatile to allow for the modelling 

of diverse biofilms including oral, wound, genitourinary tract and respiratory tract biofilm (Pratten, 
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2007; Hope et al., 2012; Diez-Aguila et al., 2017; Melvin et al., 2017). The Modified Robbins Device, 

CDFF and microfluidic systems are available commercially but the initial cost of purchasing these 

devices and/or equipment can be prohibitive. Detailed descriptions for in-house construction of flow 

chamber/bubble-trap biofilm models and drip-flow reactors are available; this makes them cheaper 

options but requires a degree of technical expertise. Furthermore, the “home-made” nature of such 

devices can affect reproducibility.  

The design of several of the biofilm models, described above, are such that cultured biofilms 

remain submerged in media throughout experiments. This is a disadvantage for the study of wound 

biofilms, which are typically not submerged but grow at the air-liquid interface of the wound bed, 

being “fed” from beneath by wound exudate. CDFFs and drip flow reactors allow for the growth of a 

biofilm that is more representative of a wound and it is possible to apply wound dressings to the 

former. CDFFs also allow for high-throughput, reproducible biofilm growth. However, with the CDFF, 

all cultured biofilms are duplicates and fed through one inlet, meaning that it is only possible to 

study biofilms comprised of the same microorganism(s), simultaneously. Drip-flow reactors have 

tried to address the problem: several biofilms are cultured concurrently, but fed independently; 

however, cross-contamination is common (Azeredo et al., 2016).  

A new biofilm flow system is presented here (Duckworth Biofilm Device; DBD), that has a 

series of “wells” for the growth of 12 biofilms across four separate channels. This allows triplicate 

biofilms to be cultured so as to prevent cross contamination between individual channels. 

Furthermore, the device allows ease of sampling during experiments without disrupting continuing 

biofilm growth. Biofilms are cultured on a semi-permeable substratum that is fed with media from 

beneath. Biofilms can be cultured on cellulose (MF-Millipore; cellulose acetate/cellulose nitrate) 

disks for recovery and enumeration, or on glass coverslips for microscopic analysis; this approach 

also allows for the application of wound dressings. The DBD can be produced by additive layer 

manufacturing and is re-usable (sterilisable by autoclave or disinfection, depending on the material; 
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see methods). It is a single part instrument with a lid and does not require technical expertise to 

utilise i.e. does not need to be constructed by the user.  

Herein we describe the design and preliminary testing of the DBD, which is proposed as a 

new biofilm flow system for the study of wound biofilms and for the testing of antimicrobial 

dressings. 
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Materials and Methods 

Device design and manufacture 

Computer aided design (CAD) was undertaken using Autodesk Inventor (Autodesk Inc., California, 

USA). Electronic CAD files are available as both .ipt (openable using CAD software) and .stl (openable 

by 3D printing software). To request a copy please contact the corresponding author. Manufacture 

of the flow cell used in these experiments used a Renishaw RenAM 500M (Renishaw, Wotton-under-

Edge, UK) and was in aluminium alloy (AlSi10Mg). This device was sterilisable by autoclave. Some 

surface tarnishing was visible following repeated sterilisation; however, there was no apparent 

functional loss over 50 sterilisation cycles.  

The DBD has since been printed using Accura ClearVue Resin at 0.1 layers (PDR, Cardiff 

Metropolitan University; http://pdronline.co.uk/). This can be sterilised without affecting the 

dimensional accuracy of the device by formaldehyde at 80oC, low temperature steam at 75oC, or 

gamma irradiation.  Decontamination of Accura ClearVue Resin devices in this study used Gerrard 

Ampholytic Surface Active Biocide (GASAB) disinfectant, prepared at a 1:100 concentration, as per 

the manufacturer’s instructions (Fisher Scientific, UK). GASAB was flowed through the device at a 

rate of 5 mL min-1 for 30 min, followed by submersion in GASAB for 16 h. Following disinfection, the 

device was washed with sterile distilled water, at a flow rate of 5 mL min-1 for 30 min.  

 

Setting up and running the Duckworth Biofilm Device 

The DBD has one input portal, connected to a flask of fresh media; from the entry reservoirs, the 

flow splits into four separate channels (Figure 1A and 1B). Spent media exits via a single portal, by 

peristaltic pump (MasterFlex L/S Digital Pump System with EASY-LOAD II Pump Head, Cole-Palmer) 

(Figure 1C). Silicone tubing was from Cole-Palmer (13 mm, MasterFlex; London, UK) and held into 

the device using sterile plastic 1 mL pipette tips (Figure 1C). Each of the four channels of the device 

http://pdronline.co.uk/
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have three biofilm support wells (Figure 2A); these are comprised of a 1 mm “ledge” that is open to 

the media flowing beneath. It is necessary to fill the device with media by either pipetting into each 

well or by flowing the media through at a rate of 1 mL min-1.   

A disk of noble agar measuring 10 mm in diameter (cut from a 15 mL agar plate in a standard 

sized Petri dish using a sterilised steel, leather press punch) inserted into the well, rests on the 

support ledge, and acts as a porous matrix support for biofilm growth (Figure 1A and 2A). Critically, 

the dimensions of each well constrain the size of the agar disk meaning that the spatial position of 

each biofilm relative to the nutrient flow is identical. A cellulose membrane (diameter = 13 mm, pore 

size = 0.22 µm) on top of the disk of noble agar provides a surface for biofilm growth (Millipore, UK) 

(Figure 2A). Bacterial suspension (20 µL) equilibrated to an appropriate optical density was used to 

inoculate the surface of the cellulose membrane. The device ran at a flow rate of 0.322 mL min-1 

(equivalent to 0.083 mL min-1 per channel).  

Under these conditions 500 mL of media is sufficient to complete one 24 h run. The device 

has a lid, which was kept in place whilst the flow cell was running. A 0.22 µm syringe filter was 

inserted into the aperture at the centre of the lid (Figure 2B). Setting up and running the device as 

described above (Figure 2C) allowed for the culture of 12 biofilms simultaneously without 

contamination of the nutrient flow. The design of the device enabled the removal and recovery of 

bacteria from biofilms, either simultaneously or at specific time points, without disturbing the 

continuing experiment. 

Optimising biofilm growth  

Preparation of the DBD took place in a class 2 laminar flow cabinet. Twelve agar disks were cut from 

a Petri dish filled with 15 mL noble agar at a concentration of 1.5% (w/v), using a 10 mm leather 

press punch, sterilised prior to use, by autoclave, and transferred to the device using a sterile 

scalpel. One cellulose disk was placed on top of the agar disks using sterile forceps; each disk was 
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inoculated with 20 µL bacterial suspension (either Pseudomonas aeruginosa or Staphylococcus 

aureus individually, or a 1:1 ratio of both bacteria) equilibrated to 1x105 CFU. Once the lid was in 

place, a sterile 0.22 µm syringe filter was inserted into the aperture. The device was re-located to 

the bench top (20oC) or incubator (37oC) where the peristaltic flow rate was set to 0.332 mL min-1 

(equivalent of 0.083 mL min-1 per channel). At appropriate times, the cellulose disks were removed 

from the top of the agar disks, using sterile forceps, and transferred into 10 mL sterile PBS. These 

were vortexed (2200 rpm, 20 s) to dislodge and homogenise the biofilm. Serial dilutions (10-1 to 10-

12) were prepared using PBS, and were enumerated using the total viable count method of Miles and 

Misra (Miles et al., 1938). At the end of each experiment, the AlSi10Mg device underwent 

decontamination by autoclaving (135oC, 1 atm, 5 min), it was subsequently washed with GASAB and 

sterilised for use by autoclaving (121oC, 1 atm, 20 min). The Accura ClearVue Resin device was 

decontaminated using GASAB as previously described.  

Manufacture of alginate film dressings containing chlorhexidine hexametaphophate 

Alginate (PROTANAL LF10/60FT (FMC Health and Nutrition, Philadelphia, USA)) (2 wt% aq.) was 

prepared containing chlorhexidine hexametaphosphate nanoparticles (CHX-HMP) (manufactured as 

previously described (Barbour et al., 2013)) equivalent to 0, 3 or 6 wt% cf. alginate. These were 

poured (17.5 g) into standard size Petri dishes and the water evaporated at r.t. over 3 days. These 

were crosslinked with the addition of CaCl2 (30 mL, 0.18 M, 2 wt% aq., 25 min). The crosslinked 

alginate films were removed, washed with deionised water and disks (diameter = 13 mm) cut for 

immediate use in this work. These dressings are denoted as “wt% CHX-HMP in alginate films’-CHX-

HMP” e.g. 6-CHX-HMP dressings contained 6wt% CHX-HMP. 

Testing of antimicrobial dressings 

Single-species biofilms were prepared as described above. After 48 h growth, the flow to the device 

was stopped, and working in close proximity to a Bunsen flame, the lid removed and disks of 
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dressings (commercially available alginate dressings containing antimicrobial silver (TegadermTM, 

3M, Minnesota, USA) (denoted ‘Ag-Alg’) or alginate films containing CHX-HMP at 0, 3 and 6% w/v) 

(cut to 13 mm diameter) were applied to the biofilm. With the lid in place, the device was run for a 

further 24 h. Following completion of the run and the removal and disposal of dressings, 

enumeration of biofilms occurred as described above. 

Statistical analysis 

Statistical analysis was performed in GraphPad Prism 7 (GraphPad Software Inc., California, USA) 

using one-way analysis of variance (ANOVA) to test for significance.  
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Results 

Culturing single- and two- species biofilms  

Two-species biofilms were achieved with S. aureus and P. aeruginosa as representative 

wound pathogens. Experiments conducted at 20oC and 37oC over 72 h indicated uniform growth and 

recovery of each microorganism from each well and/or channel of the device (Figure 3A). 

Comparably reproducible results were also observed for the Accura ClearVue Resin device (Table 

S1). Throughout the experiments, it was observed to be important to keep the lid in place to avoid 

contamination. 

Preliminary experiments using two-species biofilms enabled investigation of consistent 

population changes within the two-species biofilm over time, from which relative competitive 

indices for S. aureus and P. aeruginosa were determined (Figures 3B and 3C; Table 1). Biofilms 

cultured for less than 10 h at 37oC showed a predominance of S. aureus, with P. aeruginosa 

becoming the most numerous after 10 h and remaining so for the duration of the experiment 

(Figures 3B, 3C and 3D). This aligns with the Gram-negative shift, reported by clinicians treating 

chronic infected wounds (Altoparlak et al., 2004; Dalton et al., 2011; Guggenheim et al., 2011; Pastar 

et al., 2013). Interestingly at 20oC, over 24 h the Gram-negative shift did not occur, and S. aureus 

remained the most numerous species (Figure 3A).  

Testing wound dressings  

Experiments at 20oC showed a 3-4 log reduction in bacterial number of both species when 3- 

and 6-CHX-HMP dressings were applied for 24 h compared with controls of: 0-CHX-HMP and no 

treatment (P<0.05 for both conditions) (Figure 4A). Experiments conducted at 37oC indicated that 

the dressings were less effective at reducing the microbial load, with log reductions of 1 following 24 

h treatment with 6-CHX-HMP (P<0.05) (Figure 4B). Furthermore, under conditions of flow at 37oC, a 

commercially available alginate dressing containing antimicrobial silver (Ag-Alg) did not reduce the 
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microbial load (P>0.05) compared to the untreated control; previous static biofilm models indicate 

that silver dressings can reduce biofilm biomass (Paladini et al., 2016). 
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Discussion 

The DBD was designed with the aim of better representing a chronic infected, exuding wound. It has 

been demonstrated here that the device permitted culture of 12 biofilms simultaneously, on top of 

semi-permeable substratum fed from beneath with a flow of nutrients. The data obtained were 

reproducible, with control over a range of variables including bacterial species and comparative 

analysis of population changes, culture time and/or temperature, nutrient type and nutrient supply 

rate.  

Initial validation experiments at 20oC allowed for ease of set-up and monitoring of the 

device; this was relevant not only to the optimisation for the device, but also to the wound infection 

model. The temperature at the skin or wound surface can range between 21-35oC (depending on an 

individual’s physiology and the location of the wound). However, infection often results in a rise in 

temperature within the wound, this being one of the clinical signs of infection. Thus, to mimic an 

infection state, experiments were also conducted at 37oC. The DBD was found to give reproducible 

results at both temperatures, across all four channels and all 12 wells indicating the robustness of 

the model for biofilm study.  

The flow rate chosen for this study was 0.083 mL min-1 based on a similar experimental 

design involving in situ testing of wound dressings (Lipp et al., 2010). This is towards the higher end 

of flow rates observed from studies to quantify wound fluid and therefore best replicates a heavily 

exuding wound (Mulder, 1994). Chronic wounds produce high levels of exudate, and there is a 

literature precedent for using much higher flow rates, of up to 0.5 mL min-1, which are less 

physiologically relevant (Hill et al., 2010). The flow rate was constant throughout the experiments 

described here, irrespective of the temperature and presence/absence of a wound dressing. 

Nutrient broth was the nutrient supply for optimisation of the DBD; this flowed beneath 

plugs of noble agar. The use of nutrient broth was convenient for these experiments but alternative 
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media, such a simulated wound fluid, could be utilised in this system to represent the wound 

environment. One 24 h run of the DBD at the flow rate specified here, used approximately 500 mL of 

media making it possible to use the device with chemically defined and therefore often more 

expensive media. Minimal media could also be utilised to allow for the study of specific nutrients on 

biofilm growth, such as iron, or media could be pH adjusted to mimic the wound bed. The versatility 

of the DBD in this respect enhances its potential as a tool to study wound biofilms. 

Typically, a wound will be colonised initially by Gram-positive species, with the bioburden 

shifting towards Gram-negative species over time, and in mature biofilms the latter are the most 

common type of organism. This so-called “Gram-negative shift” is a well-known phenomenon in 

wound infections, both in vivo and clinically, with several other biofilm models reporting a similar 

pattern of growth (Altoparlak et al., 2004; Dalton et al., 2011; Guggenheim et al., 2011; Pastar et al., 

2013). When cultured at 37oC we observed this shift in biofilm composition over 72 h, with the 

critical shift occurring at 10 h. Visual inspection of membranes prior to disruption and recovery of 

bacteria were concordant with these observations; blue pigment (pyocyanin) produced by P. 

aeruginosa was first evident at 8 h and persisted for the remainder of the experiment (Figure 3D). A 

yellow pigment, likely to be pyoverdin produced by P. aeruginosa, was visible from 24-72 h. The 

secretion of pyoverdin is associated with iron chelation and virulence.  

Research has shown that pyocyanin also serves as a signalling molecule during biofilm 

formation, specifically detecting changes in iron concentration that serve as a trigger for biofilm 

maturation (Banin et al., 2005). It is therefore hypothesised that biofilm maturation occurs within 

the model presented here at 24 h and beyond. Significantly, the observed pigments are known to 

have a bactericidal effect on S. aureus, which might also contribute to the apparent Gram-negative 

shift (Baron and Rowe, 1981). Notably, the Gram-negative shift or “target-pattern” of pigment 

production was not observed at 20oC, suggesting that S. aureus might be better able to compete at 
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lower temperatures, which might be relevant to wounds at sites of lower temperature, such as the 

extremities.  

Using a static biofilm model, it has previously been demonstrated that S. aureus 

predominates in mixed-species biofilms with P. aeruginosa up to 72 h (at 37oC) with no indication of 

a Gram-negative shift (Alves et al., 2018). It is interesting to note that the Gram-negative shift occurs 

only when these two organisms are cultured under conditions of flow. Comparative analysis of 

biofilms statically or under flow, demonstrate that “linking-film” organisms are crucial for biofilm 

formation. These linking or pioneer organisms attach to almost any substratum, and are necessary 

for the establishment of biofilm under physiologically relevant flow rates, however, do not always 

maintain their position as the biofilm develops (Bos et al., 1999). This might in part explain the 

differences observed between static and flow models of S. aureus and P. aeruginosa biofilms, 

especially given the role of S. aureus as a linking organism for the attachment of P. aeruginosa (Alves 

et al., 2018). Flow is also known to promote distinct spatial arrangements and colonisation patterns 

in mixed-species biofilms, possibly attributed to differential diffusion of nutrients and waste 

products that is absent in a static model (Bos et al., 1999). 

Another aim of the DBD was the capacity to use it to test topical antimicrobial wound 

dressings. Wound dressings applied after 48 h culture of biofilm, remained in situ for a further 24 h. 

The data from these experiments was highly reproducible and indicated that antimicrobial 

treatment was most efficacious at 20oC when biofilm microorganisms are presumably growing 

and/or metabolising more slowly. This validates the DBD as a robust means of assessing the efficacy 

of antimicrobial wound dressings where the parameters for biofilm growth and composition could 

be controlled by the user. Furthermore, it indicates that temperature, and therefore possibly the 

location of a wound, could be a critical factor for the effective use of topical antimicrobial treatment. 

This is particularly important given that most models assess the effectiveness of dressings in a static 

system, when it is evident from our data that flow, such as that produced by exudate can diminish 
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the antimicrobial activity of dressings that have proven efficacy in static models (Bjarnsholt et al., 

2007; Kostenko et al., 2010).  

The design of the DBD aimed to provide scope for use to study different types of chronic 

wound and to simulate specific wound environments. This can be made possible through 

adjustments to experimental parameters including, for example: bacterial species and their relative 

abundance, growth time and temperature, nutrient type, nutrient supply rate or incorporation of 

human serum proteins to the substratum. Additionally, the DBD could be adapted to test other 

topical treatments such as antimicrobial creams or gels in vitro. Complex biofilms comprising more 

than two species could feasibly be cultured using the DBD and the use of cellulose membranes as a 

substratum could allow for transfer of biofilm to animal model injuries.  

Compared to other well-utilised biofilm models and flow systems, the DBD offers several 

advantages: it is simple to manufacture, has a small size footprint, is a one-part sterilisable device 

and allows for high throughput, multi-sample analysis. Importantly, the device can be 3D printed in a 

variety of materials.  

Conclusions 

 The DBD provides a useful new tool for the study of chronic wound infection and the efficacy 

of topical antimicrobials.  It is straightforward to use and gives reproducible data for both single and 

two-species biofilms.   It provides a more representative model of wound biofilms than the majority 

of current biofilm models and has the capacity to incorporate the study of additional factors such as 

environment in addition to those described here. 
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Figure 1. (A) The Duckworth Biofilm Device with all wells in use. (B) Schematic showing a cross-

section design the Duckworth Biofilm Device (one channel shown). The nutrient solution is split into 

four separate, enclosed channels which open into a well. (C) Attachment of tubing to the inlet/outlet 

port of the Duckworth Biofilm Device uses a 1 mL pipette tip to provide rigidity, secured in place 

with ParafilmTM. 

Figure 2. (A) Schematic cross-section view of biofilm support (agar plug, cellulose membrane and 

biofilm) in the Duckworth Biofilm Device. (B) The Duckworth Biofilm Device connected to fresh 

media and a waste container, via tubing at the inlet and outlet port, with lid and filter in place. Once 

the set-up is complete as shown above, the device is ready to use. (C) Schematic representation of 

the Duckworth Biofilm Device once set-up and ready to run. 

Figure 3. (A) Biofilm population of single-species biofilms grown in the Duckworth Biofilm Device at 

20°C after 24 h. Data points split by well position along channel and by channels of the reactor all 

show excellent consistency. (B) Biofilm growth for polymicrobial biofilms grown in the Duckworth 

Biofilm Device at 37°C. Error bars show standard deviation, experiment performed in triplicate (n = 

4). (C) Competitive relative index for S. aureus and P. aeruginosa in a biofilm cultured in a 

polymicrobial biofilm for 72 h in the Duckworth Biofilm Device, at 37oC. (D) Photographs of biofilms 

grown on (white) membrane over 72 h. At 4 h the characteristic blue pigment (pyocyanin) indicative 

of P. aeruginosa is not apparent, but becomes visible from 8 h and predominant from 24 h onwards. 

From 24 h onwards, a “target” formation of pigment production occurs with yellow pigment (likely 

pyoverdin) produced centrally within the biofilm.  

Figure 4. (A)Polymicrobial biofilm grown in the Duckworth Biofilm Device for 48 h then subject to 24 

h topical application of alginate thin film dressings containing some wt% chlorhexidine 

hexametaphosphate nanoparticles (CHX-HMP). Experiment performed at 20°C. Control is no 

treatment. * indicates a statistically significant reduction (P<0.05) in bacterial count for both 

microorganisms, between the two conditions indicated. (B) Polymicrobial biofilm grown in the 
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Duckworth Biofilm Device for 48 h then subject to 24 h topical application of alginate thin film 

dressings containing some weight % chlorhexidine hexametaphosphate nanoparticles (CHX-HMP), 

and a commercially available alginate dressing containing antimicrobial silver (Ag-Alg) (TegadermTM). 

Experiment performed at 37°C. Control is no treatment. * indicates a statistically significant 

reduction (P<0.05) in bacterial count for both microorganisms, between the two conditions 

indicated. 
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Table 1. Biofilm growth data of polymicrobial biofilms (experiment performed in triplicate, n = 4) grown in the Duckworth Biofilm Device at 37°C. 

 

 

 

 

 

 

 

 Bacteria counts / Log(CFU mL-1) 

Time (h) S. aureus P. aeruginosa 

0 5.48 ± 0.23 5.23 ± 0.10 

4 6.11 ± 0.09 4.41 ± 0.28 

8 7.94 ± 0.08 6.70 ± 0.06 

24 7.30 ± 0.34 8.55 ± 0.04 

48 6.31 ± 0.29 8.41 ± 0.36 

72 7.84 ± 0.48 10.04 ± 0.26 
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S. aureus  P. aeruginosa  

20oC / 24 h Time (h) 37oC CRI 20oC / 24 h Time (h) 37oC CRI 

Channel 1 Channel 2 Channel 3 Channel 4  (Log CFU mL-1)  Channel 1 Channel 2 Channel 3 Channel 4  (Log CFU mL-1)  

9.62±.0.26 9.84±0.53 9.76±0.66 9.56±0.26 0 5.23±0.12 N/A 8.52±0.56 8.84±0.26 8.23±0.86 8.64±0.53 0 5.19±0.26 N/A 

    4 6.35±0.36 1.36     4 5.11±0.32 0.73 

    8 7.68±0.26 1.88     8 6.89±0.36 0.52 

    24 7.56±0.46 0.60     24 8.57±0.14 1.00 

    48 7.35±0.56 0.20     48 8.72±0.52 2.8 

    72 7.94±0.32 0.39     72 9.86±0.46 2.5 

 

Table S1. Validation experiments undertaken with the Accura ClearVue Resin Duckworth Biofilm Device. At 20oC when cultured for 24 h, biofilm growth in 

all four channels showed excellent consistency. Time-point experiments conducted at 37oC showed similar results to the AlSi10Mg indicating that the 

material used to produce the Duckworth Biofilm Device does not affect results.
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