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Abstract 

Background: The response of stem cells to paracrine factors within the host’s body plays an important 

role in the regeneration process after transplantation. The aim of this study was to determine the viability 

and paracrine factor profile of stem cells from human extracted deciduous teeth (SHED) pre-cultivated 

in media supplemented with either foetal bovine serum (FBS) or pooled human serum (pHS) in the 

presence of individual human sera (iHS).  

Methods: SHED (n=3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) 

supplemented media until passage 7. During expansion, the proliferation of SHED was determined. 

Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 

hours followed by assessment of cell viability and profiling of the secreted paracrine factors.  

Results: Proliferation of SHED was significantly higher (p<0.05) in pHS supplemented media 

compared to FBS supplemented media. pHS-SHED also maintained their higher proliferation rate 

compared to FBS-SHED in the presence of iHS. In iHS supplemented media, FBS-SHED expressed 

significantly higher levels of SDF-1A (p<0.05) after 24 hours compared to pHS-SHED. Similar results 

were found for HGF (p<0.01), LIF (p<0.05), PDGF-BB (p<0.05), SDF-1A (p<0.01), and IL-10 

(p<0.05) when cell culture supernatants from FBS-SHED was profiled 120 hours post-incubation.  

Conclusion: SHED expanded in pHS instead of FBS have higher proliferative capacity and show an 

altered secretion profile. Further studies are needed to determine whether these differences could result 

in better engraftment and regeneration following transplantation. 

 

Keywords: mesenchymal stem cells; paracrine factors; proliferation; regenerative medicine; SDF-1. 
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1 Introduction  

In the last few decades, cell based regenerative therapies have received considerable attention in the 

field. Multipotent mesenchymal stem cells (MSCs) are considered one of the best sources of stem cells 

for regenerative therapy. Several in vitro and in vivo studies have shown promising regenerative 

outcomes after transplantation of MSCs in different pathological scenarios (Gnanasegaran et al. 2017; 

Williams et al. 2013; Miyahara et al. 2006). However, most of the clinical trials using MSCs reported 

only short-term regenerative benefits that were linked to their low retention following transplantation 

(Haque et al. 2015; Trounson and McDonald 2015).   

MSCs reside in the perivascular region of almost all tissues and organs of the human body (Kalinina et 

al. 2011; da Silva Meirelles et al. 2006). The number of MSCs within the tissues is relatively low; hence 

in vitro expansion prior to transplantation is needed to acquire therapeutically relevant cell numbers 

(Haque and Abu Kasim 2017). MSCs are often expanded in media supplemented with foetal bovine 

serum (FBS) that contains xenoantigens and could potentially impair the regenerative potential of MSCs 

(Haque et al. 2015). Recently, human platelet lysates, human cord blood serum, and allogenic pooled 

human serum (pHS) have been used as media supplements for MSCs expansion. Moreover, it has been 

suggested that these supplements are suitable for in vitro expansion of MSCs (Haque and Abu Kasim 

2017; Bieback et al. 2012; Blazquez-Prunera et al. 2017b). Several recent studies suggested that the 

immunomodulatory properties of MSCs are dependent on the type of supplements such as FBS, pHS 

and commercially produced cell culture supplement that used for their expansion (Blazquez-Prunera et 

al. 2017a; Komoda et al. 2010). However, no major complications have been reported in clinical trials 

using MSCs expanded with different supplements (Yubo et al. 2017; Yim et al. 2016). Thus, we 

hypothesized that xeno-contamination might not be the only factor affecting engraftment and 

regenerative outcomes after MSC transplantation. Notably, regeneration represents a highly complex 

process and involves a large number of factors including paracrine signalling molecules, extracellular 

vesicles, and the extracellular matrix (Vunjak-Novakovic and Scadden 2011; Wagers 2012; Bassat et 

al. 2017). Moreover, endogenous cytokine gradient have been reported to play a vital role in the 

directional migration and engraftment of transplanted MSCs (Youn et al. 2011; Park et al. 2017). Hence, 
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following transplantation, appropriate response of the transplanted cells to the host`s microenvironment 

is important for successful engraftment of the cells and the subsequent regeneration of the targeted 

organ or tissue. Furthermore, secretion of paracrine factors by the graft cells could negatively impact 

the host’s cytokine homeostasis. 

SHED are neural crest-derived ectomesenchymal stem cells that, if cultivated in presence of FBS, 

exhibit all crucial properties of MSCs including the expression pattern, differentiation capacity, and 

immunotolerance after transplantation (Kaltschmidt et al. 2012; Sloan and Waddington 2009). In 

addition, it has been suggested that SHED are well tolerable and might have a proliferation and 

differentiation potential superior to MSCs from other sources (Wang et al. 2012; Nakamura et al. 2009).  

As the paracrine factors play a vital role in the processes of proliferation, migration, and homing of 

transplanted stem cells including SHED, we to analyse the cell viability and expression of paracrine 

factors in SHED expanded in FBS and pHS supplemented media that have been exposed to freshly 

prepared human serum in an attempt to simulate the graft microenvironment. In this study we report 

that SHED expanded in the FBS have lower proliferative capacity and secrete higher level of paracrine 

factors in the presence of iHS compared to SHED expanded in pHS.  

2 Materials and Methods 

2.1 Ethics Approval 

All the samples were obtained following an informed written consent. Sample collection procedures 

were approved by the Medical Ethics Committee, Faculty of Dentistry, University of Malaya (Reference 

#DF RD1301/0012[L] for blood collection; DFCD0907/0042[L] for teeth collection). An overview of 

the experimental strategy study is shown in the Figure 1. 
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Figure 1 Schematic overview of the experimental strategy. (SHED, Stem cells from human extracted 

deciduous teeth; FBS, foetal bovine serum; pHS, pooled human serum; P, Passage; FBS-SHED, SHED 

expanded in FBS supplemented medium; pHS-SHED, SHED expanded in pHS supplemented medium). 

 

2.2 Isolation and Expansion of SHED 

SHED were isolated as described earlier (Govindasamy et al. 2010; Haque and Abu Kasim 2017). 

2.3 Assessment of MSC Characteristics in SHED 

According to the guidelines by the International Society for Cellular Therapy (ISCT) MSCs should 

fulfil the following criteria: they must adhere to plastic, express specific surface markers, and be capable 

of tri-lineage differentiation in vitro (Dominici et al. 2006).  

Plastic adherence of SHED was confirmed by using an inverted microscope (Primo Vert, Carl Zeiss, 

Germany). Expression of specific surface antigens on SHED and tri-lineage differentiation potential 

were determined as described earlier (Haque and Abu Kasim 2017).  
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2.4 Preparation of Human Serum 

Blood was collected from healthy male donors aged 21-35 years. Exclusion criteria were as follows: 

smoking, alcohol consumption, drug and/narcotics addiction, chronic diseases and diseases diagnosed 

within four weeks prior to the blood collection, major surgical treatment in the last 24 months, and 

immunotherapy. Blood was collected by trained health nurses at the Oro-Maxillofacial Surgical and 

Medical Sciences Department, Faculty of Dentistry, University of Malaya. Serum was prepared as 

described before (Haque and Abu Kasim 2017). 

Briefly, 20 ml of blood was collected from each donor (n=6), transferred into a 50 ml sterile centrifuge 

tube (Falcon®, Corning, NY, USA) containing no anticoagulant and allowed to stand at room 

temperature for an hour to facilitate coagulation. The coagulated blood was centrifuged at 400×g for 15 

minutes. After subsequent centrifugation at 1800×g for 15 minutes, the final serum supernatant was 

incubated at 57±2 °C for 30 minutes to obtain a complement inactivated human serum. Six heat 

inactivated sera (n=6) were combined to prepare the pHS.  

iHS from four donors was prepared according to the procedure mentioned above with the minor 

modification. In particular, after the final round of centrifugation, the serum supernatant was left 

untreated to retain complement activity. pHS and non-inactivated iHS were sterilized by filtration 

through a 0.2 μm membrane filter (Nalgene™, Thermo Fisher Scientific, NY, USA).  

2.5 Cultivation of SHED  

SHED (n=3) were maintained in 10% FBS supplemented KnockoutTM-DMEM (Gibco®,Thermo Fisher 

Scientific) until passage 3. Subsequently (from passage 4-7), cultures were maintained in KnockoutTM-

DMEM supplemented with either 10% FBS (Gibco®, Thermo Fisher Scientific, Lot No. 10270) or 10% 

pHS. Animal derived component free TrypLETM express (Gibco®, Thermo Fisher Scientific) was used 

as cell dissociation reagent. 

2.6 Effects of FBS and pHS on Proliferation of SHED 

Cells from passage 5 to passage 7 were counted by using Trypan Blue (Gibco®, Thermo Fisher 

Scientific) dye exclusion method. Three technical replications for each biological samples (n=3) were 
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performed and the average number of cells were used to determine the population doubling time (PD) 

of SHED from each donor. Data were analysed and plotted using Microsoft Excel. PD at each passage 

was calculated by using the following equation: 

 

where X = population doublings, NI = inoculum number, and NH = cell harvest number. To obtain the 

cumulative population doubling time (CPD), the PD increase at the given passage was added to the PD 

of previous passages (Cristofalo et al. 1998; Li et al. 2015). 

2.7 Viability of FBS-SHED and pHS-SHED in Individual Human Serum 

SHED maintained in FBS and pHS supplemented medium (FBS-SHED and pHS-SHED respectively) 

were seeded (passage 7) at a density of 100000, 50000, 25000, 12500 and 6255 cells/well in 96 well 

plates containing KnockoutTM-DMEM supplemented with 10% iHS (n=4). After 24 hours of incubation 

at 37 °C in 95% humidified air, and 5% CO2, the viability of SHED was analysed using PrestoBlueTM 

Cell Viability Reagent (InvitrogenTM, Thermo Fisher Scientific). In brief, all the media were discarded 

after 24 hours of incubation and the wells were washed twice with DPBS. KnockoutTM-DMEM with 

10% PrestoBlueTM reagent (v/v) was added to each well and the plates were further incubated for 2 

hours. Absorbance was measured at 570 nm with reference wavelength set to 600 nm using a microplate 

reader (Infinite 200 PRO, Tecan, Switzerland). The absorbance values were converted to the corrected 

absorbance of PrestoBlueTM reagent.  

2.8 Immunoassay 

At passage 7, FBS-SHED and pHS-SHED were seeded in KnockoutTM-DMEM supplemented 10% iHS 

and supernatants were collected after 24 and 120 hours post-incubation. Supernatants were used to 

measure the amount of selected paracrine factors by using Luminex-based ProcartaPlex human 

cytokine/chemokine 11plex immunoassay kit (affymetrix, e-Bioscience, Vienna, Austria).  The 

analysed paracrine factors were selected based on their involvement in cell survival and regulation of 

regeneration (Table 1) 



8 

 

Table 1: Selected paracrine factors analysed in the current research 

Name of the paracrine 

factor 

Function (References) 

Fibroblast growth factor 

2 (FGF-2) 

Shows mitogenic effect (Salcedo et al. 1999; Werner and Grose 2003); 

enhances proliferation of human BM-MSCs by activation of JNK signalling 

(Ahn et al. 2009); slows down telomere shortening and the ageing process 

of MSCs (Yanada et al. 2006; Bianchi et al. 2003); provides cytoprotection 

(Werner and Grose 2003); induces CXCR4 expression on cells and helps 

angiogenesis (Salcedo et al. 1999) 

Granulocyte colony 

stimulating factor (G-

CSF) 

Enhances cellular proliferation, migration, chemotactic properties 

(Murakami et al. 2013); prevents apoptosis (Murakami et al. 2013); induces 

HSCs and MSCs mobilization from bone marrow (Kawada et al. 2004)  

Hepatocyte growth 

factor (HGF) 

Induces proliferation, survival, migration and site-specific homing of 

various cell types including MSCs (Forte et al. 2006; Son et al. 2006). 

Leukaemia inhibitory 

factor (LIF) 

Supports self-renewal and maintains multi-differentiation potential of 

MSCs and other stem or progenitor cells (Metcalf 2003; Kolf et al. 2007). 

Platelet derived growth 

factor BB (PDGF-BB) 

Enhances expansion, migration and survival of MSCs (Fierro et al. 2007; 

Tamama et al. 2006; Krausgrill et al. 2009). 

Stem cell factor (SCF), 

KIT ligand 

Regulates proliferation, differentiation, migration and homing of several cell 

types including HSCs and MSCs (Lennartsson and Ronnstrand 2012; Pan et 

al. 2013). 

Stromal cell-derived 

factor-1a (SDF-1A) 

Enhances site specific migration and homing of MSCs by regulating 

SDF1/CXCR4 pathway (He et al. 2010; Yu et al. 2015). 

Vascular endothelial 

growth factor A 

(VEGF-A) 

Enhances proliferation and survival MSCs (Pons et al. 2008); promotes 

angiogenesis, anti-apoptotic and immunomodulatory properties 

(Sulpice et al. 2009; Wang et al. 2006) 

Interleukin 4 (IL-4) Induces activation of B cells; stimulates proliferation of T cells; regulates 

differentiation of T-lymphocytes to T helper cell 2 (TH2) (Choi and Reiser 

1998). 

Interleukin 6 (IL-6) Stimulates acute phase proteins production (Fattori et al. 1994); induces 

chronic inflammatory responses by stimulating T- and B- lymphocytes 

(Gabay 2006).  

Interleukin 10 (IL-10) Promotes immunosuppressive functions by inhibiting activities of TH1 cells, 

natural killer cells, and macrophages (Couper et al. 2008; Pierson and 

Liston 2010);.induces antibody production from activated B cells and 

amplifies humoral responses (Rousset et al. 1992). 

 

2.9 Data Analysis 

Data were analysed using independent sample t-test (SPSS version 22) and p <0.05 was considered 

significant.  
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3 Results  

3.1 SHED Exhibit MSC Characteristics 

Morphological analysis using an inverted microscope revealed a homogenous monolayer soft plastic 

adherent cells, typical for MSCs (Figure 2 A, B). Using flow cytometry, we validated the expression of 

MSC positive markers (CD73, CD90, CD105) on the 95% SHED. Moreover, absence of CD14, CD20, 

CD34, and CD45 in majority of SHED was confirmed (Figure 2 C). The tri-lineage differentiation 

potential (adipogenic, chondrogenic and osteogenic) of SHED was confirmed following directed 

differentiation (Figure 2 D-F). Notably, osteogenic, adipogenic and chondrogenic cells were detected 

only in cells subjected to differentiation conditions while no differentiation was seen in control culture. 

These properties confirm that the isolated cells were SHED that have the MSCs like properties.  

 

Figure 2 MSCs like properties of SHED. (A,B) SHED adhere to plastic surfaces. (C) Cells were 

immuno-labelled with a cocktail of fluorochrome-conjugated monoclonal antibodies: allophycocyanin 

(APC)-conjugated CD73, fluorescein isothiocyanate (FITC)-conjugated CD90, phycoerythrin (PE)-

conjugated CD105, and peridinin-chlorophyll-protein complex (PerCP)-conjugated CD14, CD20, 
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CD34 and CD45. FACS analysis reveals that SHED are positive for CD90, CD105 and CD73 and do 

not express CD14, CD20, CD34 and CD45. (D) Oil Red O positive lipid droplets reveal adipogenic 

differentiation potential of SHED. (E) Safranin O positive staining confirms chondrogenic 

differentiation potential of SHED and (F) Alizarin red positive extracellular calcium deposition 

indicates osteogenic differentiation potential of SHED. 

 

3.2 SHED Expanded in pHS Maintain a Highly Proliferative Phenotype in iHS 

Significantly higher proliferation of SHED was observed in pHS compared to FBS supplemented media 

(Figure 3 A, B). SHED seeded at density of 25000cells/well or lower showed significantly higher 

viability in pHS supplemented medium after 24 hours of incubation (Figure 3 C). In the presence of 

iHS, significantly higher viability of pHS-SHED was also observed (Figure 3 D).  

 

Figure 3 Proliferation of SHED. A) Comparative growth of SHED (n=3) in pooled human serum 

(pHS) and foetal bovine serum (FBS) supplemented media. B) Cumulative population doubling (CPD) 

of SHED in pHS and FBS supplemented media. C) Viability of SHED in the pHS and FBS 

supplemented media after 24 hours of incubation. D) Viability of SHED yielded from pHS and FBS 

supplemented media (pHS-SHED and FBS-SHED respectively) in the presence of iHS (n=4) after 24 

hours of incubation. (* = p<0.05, ** = p<0.01) 
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3.3 SHED Expanded in FBS Express Higher Levels of Paracrine Factors in iHS 

After 24 hours of incubation in the presence of iHS, significantly higher expression of SDF-1a was 

detected in FBS-SHED cell culture supernatants compared to that in pHS-SHED. The expression levels 

of FGF-2, HGF, LIF, PDGF-BB, VEGF, and IL-6 were higher in FBS-SHED supernatants. In contrast, 

marginally higher expression levels of SCF, G-CSF and IL-10 were observed in the cell culture 

supernatants of pHS-SHED (Figure 4). 

After 120 hours of incubation, significantly higher expression levels of HGF, LIF, PDGF-BB, SDF-1 

and IL-10 were detected in the FBS-SHED supernatants. Moreover, we detected higher expression of 

FGF-2 and IL-6. Higher expression of SCF, VEGF-A and IL-4 were detected in pHS-SHED 

supernatants (Figure 4). 

 

Figure 4 Comparative expression of paracrine factors in the cell culture supernatants collected from 

FBS-SHED and pHS-SHED in the presence of freshly prepared individual human serum (iHS) at 24 

and 120 hours of incubation. (* = p<0.05, ** = p<0.01). 
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4 Discussion 

Pulp tissue extracted from a deciduous teeth is very small in volume and not suitable to attempt to 

isolate and expand them in different media. Moreover, isolation of dental pulp derived stem cells 

(DPSC) was not successful at lower human serum concentration (20%<) (Khanna-Jain et al. 2012). The 

concern regarding xeno-contamination due to isolation and expansion of SHED in xenogeneic serum 

supplemented media can be minimized by culturing them in human serum supplemented media for two 

weeks only (Komoda et al. 2010). Hence, in this study SHED were isolated and expanded in FBS 

supplemented medium until passage 3 to get enough cells to use them for different experimental 

purposes.  

Prior to conduct researches using MSCs from any sources, their minimum criteria set by the ISCT 

needed to be studied (Dominici et al. 2006). Usually, the differentiation potential and phenotypic 

markers expression on MSCs are not affected by the supplements (Blazquez-Prunera et al. 2017b; 

Oikonomopoulos et al. 2015). Hence, MSCs like properties of SHED was also studied using the cells 

expanded in FBS only. SHED with having fibroblast like morphology, plastic adhering capacity, tri-

lineage differentiation potential, highly expressed (>95%) MSCs positive markers and negligibly 

expressed (4%<) MSCs negative markers further confirmed their MSCs like properties (Figure 2).    

Properties of AB-blood group specific pHS as an alternative to FBS are frequently being studied in the 

field of stem cell research (Patrikoski et al. 2013; Aldahmash et al. 2011; Bieback et al. 2012; dos Santos 

et al. 2017). To widen the donor pool, previously we attempted to prepare pHS from blood irrespective 

of donors’ blood group (Haque and Abu Kasim 2017). In that study, pHS was prepared by pooling 

serum from six donors to minimize donor to donor variation (Haque and Abu Kasim 2017). Another 

study also reported consistent results among different batches of pHS prepared by pooling sera from six 

donors (dos Santos et al. 2017). Therefore, in this study we used the pHS prepared by pooling sera from 

six donors irrespective to their blood groups to expand SHED prior analysing their proliferation and 

paracrine factor expression in the presence of iHS. However, to minimize batch to batch variations 

pooling of sera from a large number of donors could prove more useful (Diez et al. 2015). 
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Higher proliferation of MSCs in the media supplemented with pHS (prepared from AB blood group-

typed donors) has been reported earlier (Turnovcova et al. 2009; Bieback et al. 2012). Recently, we 

have shown that pHS prepared with sera, regardless of the donors’ blood group, maintain higher 

percentage of rapidly proliferating cells and significantly lower percentage of partially differentiated 

flat cells (Haque and Abu Kasim 2017). In the present study, pHS-SHED were found to maintain their 

proliferation potential in iHS supplemented media (Figure 3). Taken together, these results imply that 

pHS might represent a suitable supplement for the expansion of SHED prior to transplantation. 

Paracrine factors play a vital role in the processes of regeneration by regulating the proliferation, 

migration, and homing of transplanted cells. In addition to the cell viability, expression of paracrine 

factors from FBS-SHED and pHS-SHED following exposure to iHS were also studied. By using the 

same iHS as supplement for both FBS-SHED and pHS-SHED we have tried to minimize the variations 

in the composition of paracrine factors in the media. Furthermore, the in vitro and in vivo half-life of 

paracrine factors are not more than couple of hours (Beutler et al. 1985; Peters et al. 1996). As the 

supernatants were collected at 24 and 120 hours post-incubation it is expected that the contribution of 

the paracrine factors in the supernatants by the sera would be negligible or not at all (Haque et al. 2017). 

Induced chemotaxis of bone marrow derived MSCs towards IGF-1, PDGF-BB and SDF-1a indicates 

the importance of systemic and local inflammatory state on the migration and homing of cells to the 

site of injury (Ponte et al. 2007). The role of SDF-1a gradients on the directional migration of MSCs 

have also been reported earlier (Park et al. 2017). Significantly higher expression of SDF-1 in the 

supernatants of FBS-SHED collected at both 24 and 120 hours of incubation was observed. 

Significantly higher amount of HGF, LIF and PDGF-BB in the FBS-SHED supernatants at 120 hours 

of incubation was also measured (Figure 4). SDF-1, HGF and PDGF-BB are well-known 

chemoattractant and their role in the regenerative therapy has been acknowledged by several researchers 

(Li et al. 2017; van de Kamp et al. 2017; Ponte et al. 2007). Therefore, higher expression of paracrine 

factors from FBS-SHED could be a sign of disruption in the gradient of the paracrine factors following 

transplantation of MSCs expanded in FBS supplemented media that might lead to non-specific 

engraftment of the transplanted cells. 
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5 Conclusion 

It has been reported that the main shortcoming of MSC-based therapy is low number of engrafted cells 

affecting the attainment of the long-term functional benefits of this therapy. Gradient of paracrine 

factors play a vital role in the tissue specific migration of transplanted cells. The expression of paracrine 

factors by FBS-SHED in iHS after 24 and 120 hours was higher compared to pHS-SHED. Higher 

expression of paracrine factors could lead to disruption of body’s own paracrine factor gradient, non-

specific engraftment of transplanted and circulatory cells, and eventually affect the process of 

regeneration. Our results indicate that SHED cultivated in human serum instead of FBS have higher 

proliferative capacity and show an altered secretion profile. Future studies will assess if these 

differences result in better engraftment and regeneration following transplantation. 
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