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AGE AND BINDING 2 

Abstract 

Past research has consistently shown that episodic memory (EM) declines with adult age 

and, according to the associative-deficit hypothesis, the locus of this decline is binding 

difficulties. We investigated the importance of establishing and maintaining bindings in working 

memory (WM) for age differences in associative EM. In Experiment 1 we adapted the 

presentation rate of word pairs for each participant to achieve 67% correct responses during a 

WM test of bindings in young and older adults. EM for the pairs was tested thereafter in the 

same way as WM. Equating WM for bindings between young and older adults reduced, but did 

not fully eliminate, the associative EM deficit in the older adults. In Experiment 2 we varied the 

set size of word pairs in a WM test, retaining the mean presentation rates for each age group 

from Experiment 1. If a WM deficit at encoding causes the EM deficit in older adults, both WM 

and EM performance should decrease with increasing set size. Against this prediction, increasing 

set size did not affect EM. We conclude that reduced WM capacity does not cause the EM deficit 

of older adults. Rather, both WM and EM deficits are reflections of a common cause, which can 

be compensated for by longer encoding time.  

 

Keywords:  Episodic long-term Memory, Working Memory, Associative Memory, 

Bindings, Aging 
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Introduction 

The long-term retention of episodes and events in episodic memory (EM) declines in 

older age (e.g., Hoyer & Verhaeghen, 2006; Naveh-Benjamin & Old, 2008; Zacks, Hasher, & Li, 

2000). So far, the cause of this decline is still under debate. The proposed explanations include 

reduced speed of processing (Salthouse, 1996), reduced processing resources such us a limited 

working memory (WM) capacity (Craik & Byrd, 1982), and reduced inhibition (Zacks & Hasher, 

1994). The age-related deficit in EM has been characterized as primarily a deficit of old adults in 

building and retrieving relations (the associative deficit hypothesis, ADH, Naveh-Benjamin, 

2000), whereas memory for individual components – referred to as item memory – is relatively 

intact in older age. The specific age-related decline in associative memory has been shown for 

various materials including word pairs, picture pairs, and face-name pairs (Bastin & Van Der 

Linden, 2005; Buchler, et al., 2011; Hara & Naveh-Benjamin, 2015). A meta-analysis evaluating 

90 studies on the age-related associative deficit reports large effects sizes of age (dA ≥ 0.80) for 

verbal materials tested with a recognition test (Old & Naveh-Benjamin, 2008). Further, the meta-

analysis showed larger age effects on associative than on item memory. Further, it provided 

evidence that the size of the age-related associative deficit depends, among other variables, on 

the type of binding formed, with larger deficits for item-item compared to item-context bindings. 

Furthermore, the age-related associative deficit is larger for recall than recognition test formats 

(Old & Naveh-Benjamin, 2008). To have a clear characterization of EM decline in older age, it is 

a priority of cognitive aging researchers to isolate the causes for this disproportionate impairment 

in associative memory. 
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Age-related decline may be caused by a working memory deficit 

Here we investigated whether WM plays a key role in causing associative deficits of EM 

in older adults (i.e., the WM binding deficit hypothesis). As an alternative, we consider the 

possibility that age-related deficits in WM and in EM are related through a common cause that 

impairs WM and EM alike (i.e., the common cause hypothesis). We will discuss possible 

common causes in the General Discussion.  

It should be noted that the terminology for relational information varies depending on the 

memory system. To clarify, for WM relational information is typically referred to as “bindings” 

whereas for EM the term “associations” is used. We will refer to "bindings" as the general term, 

encompassing both bindings and associations, but we will continue using the term ‘associative 

memory deficit’ when referring to the hypothesis introduced under this name.  

The WM binding deficit hypothesis starts from the assumption that WM is needed to 

build and temporarily maintain new bindings, and that WM capacity is a limit on the 

maintenance of bindings (Oberauer, 2005). According to the WM binding deficit hypothesis, the 

capacity limit of WM could constrain the bindings formed in EM, and the age-related 

associative-memory deficit could be a consequence of older adults' reduced WM capacity (e.g., 

Chalfonte & Johnson, 1996; Hara & Naveh-Benjamin, 2015; Mitchell, Johnson, Raye, Mather, & 

Esposito, 2000; Park et al., 2002).  

To justify the WM binding deficit hypothesis in the first instance, there should be 

evidence for an age-related deficit for maintaining bindings in WM that is similar to the one 

shown in EM. The evidence for this assumption is ambiguous. Some studies have provided 

evidence for an age-related binding deficit in WM (Borg, Leroy, Favre, Laurent, & Thomas-

Antérion, 2011; Brown & Brockmole, 2010; Chalfonte & Johnson, 1996; Chen & Naveh-
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Benjamin, 2012; Cowan, Naveh-Benjamin, Kilb, & Saults, 2006; Fandakova, Shing, & 

Lindenberger, 2013; Mitchell et al., 2000; Oberauer, 2005) whereas others have found no 

evidence for it (Brockmole, Parra, Della Sala, & Logie, 2008; Brown, Niven, Logie, Rhodes, & 

Allen, 2017; Parra, Abrahams, Logie, & Della Sala, 2009; Peterson, Schmidt, & Naveh-

Benjamin, 2017; Read, Rogers, & Wilson, 2016; Rhodes, Parra, & Logie, 2016).  

 Assuming that there is an age-related deficit in both maintaining WM bindings and 

remembering EM bindings, the question remains regarding how they are related: Does the WM 

binding deficit contribute causally to the associative EM deficit in old age? Support for this 

notion comes from work varying the study-test retention interval in a continuous recognition task, 

revealing older adults' binding memory deficit over the short and long term (Chen & Naveh-

Benjamin, 2012). However, this result is also consistent with the common cause hypothesis 

according to which binding deficits in WM and more long-term associative-memory deficits are 

both due to a more general age-related decline in processes that affect memory over the short and 

the long term. Conclusive evidence for a causal role of impaired WM binding for the age-related 

associative deficits in EM has not yet been provided. The most convincing evidence for such a 

role would indicate that experimentally varying any potential age-related binding deficit in WM 

has strong consequences for the associative deficit in EM. More precisely, if the age-related 

binding deficit in WM were eliminated, then the corresponding associative deficit in EM should 

likewise disappear; similarly, if WM bindings were further impaired, then the associative deficit 

in EM should become larger.  

Hara and Naveh-Benjamin (2015) indirectly tested this prediction by simulating older 

adults’ EM associative deficit in young adults that had to perform a math task with varying 

difficulty while encoding name–face pairs. Their results showed that young adults’ associative 
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memory declined more than their item memory when engaging in a secondary task during 

encoding compared to full attention at encoding. This performance pattern mimics the older 

adults’ associative memory deficit. The researchers concluded that the associative deficit in older 

age is caused by a reduction of their WM resources that may already be exhausted after the 

individual components are stored but before they are bound together.  

One limitation of the study of Hara and Naveh-Benjamin (2015) is that their 

interpretation relies on an ordinal interaction: Binding memory of the young adults was already 

worse than their item memory at full attention; under divided attention, this difference increased. 

This interaction could simply arise because overall performance declines, thereby shifting 

performance into a more sensitive part of the measurement scale (i.e., further away from ceiling) 

and consequently amplifying the contrast between item memory and binding memory. This 

ambiguity in ordinal interactions (Loftus, 1978) prevents any strong interpretation of the study of 

Hara and Naveh-Benjamin.   

Here we take a different approach and test two predictions from the WM binding deficit 

hypothesis: First, if older adults' WM binding deficit is compensated by giving them more time 

for encoding the given bindings, this should also compensate the age difference in a subsequent 

test of EM for the same bindings. This prediction, however, also follows from the assumption 

that age-related encoding deficits are a common cause of older adults' impaired WM for bindings 

and their impaired EM for bindings, when the effect of that common cause is compensated for by 

longer encoding time. The second prediction can adjudicate between these two hypotheses: If 

increasing the number of items to remember (i.e., the memory set size) impairs the quality of 

bindings in WM, then increasing set size should likewise impair subsequent EM for the same 
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information in both young and old adults alike. The two experiments of our study tested these 

two predictions.  

 

Present Study 

The goal of the present study was to investigate the importance of establishing and 

holding bindings in WM to age differences in retention of those bindings in EM. Accordingly, 

the two reported experiments investigated whether a WM deficit causes the age-related decline in 

EM. In Experiment 1 we investigated how equating memory for bindings in WM between young 

and older adults influences older adults’ EM for the same bindings. We aimed to equate WM for 

bindings by adapting the presentation rate of the memoranda according to the subjects’ ongoing 

performance on the WM task, particularly their retention of the bindings, as detailed below. If 

age-related differences in WM capacity cause the associative-memory deficit in EM, then 

equating WM binding performance between young and older adults should eliminate the age-

related deficit in EM binding. Experiment 2 aimed to test the same hypothesis through a second 

approach: If WM capacity limits the acquisition of bindings in EM, then increasing the load on 

WM (i.e., the memory set size) should impair binding memory in a WM test and also in a 

subsequent EM test for the same bindings. 

Measuring Binding and Item Memory 

In general, short-term relational recognition tasks require participants to retain bindings 

between each item (e.g., a word or an object) and another element, such as the item’s context 

(e.g., locations on the screen in which they were presented) or another item (e.g., pairings of 

words with other words). During the test phase, participants are required to distinguish between 

the original pairings, recombined pairings, and pairs of new items. Older adults have exhibited 
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more errors on such tasks requiring temporary bindings in WM compared to younger adults, and 

compared to tasks wherein only an item recognition decision, regardless of the item’s bindings to 

other elements, is required (Fandakova, Shing, & Lindenberger, 2013; Oberauer, 2005). 

Researchers have subsequently varied these binding tasks to include more types of pairings and 

stimuli, and modified some details of the test format (De Simoni & von Bastian, 2018; Wilhelm, 

Hildebrandt, & Oberauer, 2013). For example, Wilhelm and colleagues (2013) presented pairings 

between two stimuli, such as words and digits, and randomly probed memory for the pairs, with 

one of the items of the pairing serving as a cue for either its correct match, a completely new 

item, or an intrusion of an item presented within the trial but not in its correct pairing. This work 

has provided evidence that a general binding factor represents a common source of variance in 

typical WM tasks (e.g. complex span, Updating, Recall-1-back; Wilhelm et al., 2013).  

Building on the WM binding task of Wilhelm et al. (2013), the WM task in the present 

study was an immediate memory test in which participants remembered arbitrary word pairs (e.g., 

dog – tooth, tree – bottle) and were tested with a three-alternative forced choice procedure. The 

test was designed to obtain separate measures of item and binding memory. Specifically, one 

item from each pair (e.g., tooth) was presented with options that included the original correct 

pairing (e.g., dog), a never-presented incorrect item (i.e., a new item; e.g., book), or an incorrect 

lure item that was presented in the trial but not in that pair (e.g., tree; see Figure 1). EM for the 

pairs was later tested with the same method used during the WM task. This paradigm allowed 

separate estimates of binding and item memory for both WM and EM in the same paradigm so 

that age differences could be investigated without confounding test differences with time of test.  

In order to obtain estimates of binding and item memory from the responses in the above 

task, we applied multinomial process tree (MPT) models to the response frequencies (e.g., 
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Buchner, Erdfelder, & Vaterrodt-Plünnecke, 1995). The structure of the MPT model is shown in 

Figure 2, and is equivalent to a measurement model reported in earlier work (i.e. the 

independence model, Jacoby, 1999; Jacoby, Debner, & Hay, 2001; see Cooper, Greve, & Henson, 

2017 for recent evidence for this approach): The first branch represents whether or not the person 

correctly remembers the binding of the tested pair. If they remember the binding (with 

probability Pb), they can recollect the correct element previously paired with the cue. If they fail 

to remember the binding (with probability 1-Pb), they can still remember which items have been 

presented in the current trial (with probability Pi), In that case, they can guess between the two 

items that were in the current trial, leading to a correct response or to a lure response with equal 

probability (gb = 0.5). If they fail to recall the items in the trial (with probability 1-Pi), they guess 

among all three response options (correct, lure, new) with equal probability (gi = 0.333). 

The present implementation of the binding task, including the 3-alternative forced-choice 

set-up together with the MPT measurement model, allows purer estimates of binding and item 

memory compared to previous paradigms. More precisely, a pure measure of item memory is not 

achieved by instructing participants to only retain and report on single items – which were 

nevertheless presented in some context – because incidental encoding of bindings still affects 

performance (Jaswal & Logie, 2011; Prabhakaran, Narayanan, Zhao, & Gabriel, 2000; Postle, 

Awh, Serences, Sutterer, & D’Esposito, 2013; Reinitz & Hannigan, 2004; Treisman & Zhang, 

2006). This evidence showing that binding memory contaminates many measures of item 

memory suggests that the aforementioned divergence regarding whether there is a specific age 

deficit for bindings may at least be partly due to an overestimation of the magnitude of an age 

difference in item memory. That is, if older adults have a true binding deficit and item memory 

may be affected by incidental encoding of bindings, then any age difference in item memory may 
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be partly due to the binding deficit even though these are intended to be separate measures. 

Consequently, this could appear as a more symmetrical age difference between binding and item 

memory that does not accurately capture the true state of affairs. Thus, our relational recognition 

binding tasks, together with the MPT measurement model, may better identify the contributions 

of binding and item memory to performance, which is especially important given the mixed 

findings of the literature regarding an age-related binding deficit in WM.   

In summary, the nature of the relational recognition task and the application of the MPT 

model allowed us to estimate relatively pure measures of binding and item memory for both WM 

and EM. Furthermore, the individual and ongoing adaptation of presentation rate of the pairs 

based on a criterion of correct recollection of bindings in Experiment 1 allowed us to equate WM 

binding memory between age groups, and to use the resulting presentation rate for Experiment 2. 

These advantages of the study’s design allowed us to distinguish whether equating binding 

memory in WM between age groups compensates for the age-related associative deficit in EM. 

Furthermore, if older adults' WM for bindings is impaired more than their WM for items, we 

expected that equating both age groups with regard to WM for bindings should lead to an age-

related benefit for item memory (Old & Naveh-Benjamin, 2008). Finally, Experiment 2 utilized 

the presentation rates approximated in Experiment 1 to assess whether set size similarly impairs 

binding memory in WM and EM. 

 

Analytic Approach  

We used Bayesian statistical analyses, which have been recommended repeatedly for 

psychological research (e.g., Gallistel, 2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009; 

Wagenmakers, 2007). Specifically, we implemented hierarchical Bayesian multinomial 
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processing tree (MPT) models.  MPT models estimate the probability of latent cognitive states 

on the basis of categorical data (Batchelder & Riefer, 1999). The hierarchical modeling 

framework accounts for participant heterogeneity by assuming that the individual parameters are 

drawn from a distribution describing the population. In this way, the model estimates parameters 

for each individual, as well as the mean and the dispersion of parameter values in the population. 

We fit hierarchical MPT models for each age group separately within the TreeBUGS Package 

(Heck, Arnold, & Arnold, 2018) for R (R Core Team, 2017), using the default uniform priors of 

the package, which are justified in the article by Heck and colleagues (2018). The MPT model of 

Figure 2 was applied separately to the responses of each age group in the WM task, and to those 

of the EM task. 

The TreeBUGS package yields Markov-Chain Monte-Carlo (MCMC) samples from the 

posterior probability distribution of the population mean of the MPT parameters (i.e., estimates 

of the mean Pb and Pi for each age group). By subtracting the posterior samples of the young 

from those of the old adults, we obtained a posterior distribution of the age difference in these 

parameters. We computed the means and the 95% credibility interval of these differences to 

assess the effect of age on the MPT parameters (Smith & Batchelder, 2010). The mean of the 

posterior provides a point-estimate of the effect size (i.e., the central tendency of the posterior 

difference). The 95% credibility interval gives the smallest range of parameter values over which 

95% of the posterior probability is concentrated, and as such provides an assessment of the 

uncertainty of estimation (i.e., the dispersion of the posterior difference). For inference, we 

consult the proportion of the posterior probability density of a parameter difference that is larger 

or smaller than zero; this proportion provides an estimate of the posterior probability that the true 

effect is positive or negative, respectively.  
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Experiment 1 

Method 

Participants 

We recruited 30 students (15 female) from the University of Zurich and 30 healthy older 

adults (15 female) from the Zurich community as participants1. They were compensated with 

either 15 Swiss Francs (about 15 USD) or partial course credit for the one-hour experiment. The 

study is in line with the rules of the ethics committee of the University of Zurich. Cognitive 

functioning was screened with the MMSE (Mini-Mental Status Examination; Folstein, Folstein, 

& McHugh, 1975), indicating age-typical cognitive abilities in our sample of older adults (M = 

28.92, SD = 1.07, range = 27 - 30). Table 1 shows the descriptive statistics and posterior 

distributions of the age effects of our sample. The evidence indicates fewer years of formal 

education in the older compared with the young adults. The older adults showed better 

performance than the young adults in a computerized vocabulary test (Mehrfachwahl-Wortschatz 

Test version B, Lehrl, 2005), consisting of 37 items in which participants are supposed to find an 

existing word between four similarly sounding non-words. The MWT-B is a marker test for 

crystallized intelligence. Hence, our sample of young and old adults show typical differences in 

education and measures of crystallized intelligence (Li et al., 2004). 

 

                                                
 

1 We extended our initial sample of 20 young and 24 older adults during the revision of the 
manuscript. The use of Bayesian statistics allows for the continuation of sampling (Rouder, 2014; 
Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017). 
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Materials and Procedure 

The stimuli were randomly drawn from a pool of 589 German concrete nouns for each 

participant. The nouns were between three and nine letters long and had a mean normalized 

lemma frequency of 24.76/million (drawn from the dlexdb.de lexical database). Pairs of nouns 

were created randomly for each participant to serve as the memoranda.  

The sequence of an experimental trial is illustrated in Figure 1. After the sequential 

presentation of three word pairs, participants were tested on each pair in random order. Memory 

was tested with a three-alternative forced-choice task, also illustrated in Figure 1: For each probe 

word, participants selected the word paired with it from three response options: correct, new, and 

lure (word from another pair). The position of the options on the screen was random, and 

participants used the mouse to select among them at their own pace. In order to estimate the 

latent cognitive states of remembering the bindings and items we calculated the number of 

responses for each of the three response options (correct, lure, and new) for each individual. 

The three to-be-remembered word pairs in each trial were sequentially presented from the 

top to the bottom of the screen. The presentation rate depended on the participants’ current 

cumulative percent of correct binding responses: The adaptive algorithm was a variant of 

Kaernbach’s (1991) weighted up-down algorithm that adjusted the presentation time per pair to 

achieve performance at 67% correct responses (i.e., choice of the correct pairing) for each 

participant. The algorithm continuously monitored average proportion correct over a moving 

window of the previous 10 trials. The presentation time for each pair to begin the experiment was 

set to 1000 ms and 1500 ms for the young and older adults, respectively. For older adults, the 

presentation rate increased by 200 ms if their moving average performance dropped below 67% 

correct, and decreased by 100 ms if performance exceeded the criterion. We initially tested 24 
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young adults with the exact same adaptation method, which unfortunately led to a mean accuracy 

level higher than we aimed for. We therefore decided to test a new group of young adults, 

reported here, with stricter adaptation parameters, which theoretically aimed for a 60% criterion, 

but in practice reached the 67% criterion more closely. More specifically, the presentation rate 

increased by 180 ms if their moving average dropped below 60% correct responses, and 

decreased by 120 ms if performance exceeded the criterion. For both age groups, the maximum 

and minimum presentation rates were 5000 ms and 200 ms, respectively. 

There were five trials of the WM task in each block. An unrelated distracter task followed 

each block, in which the participants had to indicate the correctness of presented math equations 

(e.g. 9 x 8 = 72) for 1 minute. After that followed a delayed cued recognition test in the same 

format as the immediate test, wherein the participants were probed again with one of the words 

from each of the 15 pairs from the previous block. The probes were presented in random order, 

and the probe word as well as the correct response option (i.e., the word actually paired with the 

probe) were the same as during the WM test. However, the new word among the response 

options was a completely new word to the experiment (i.e., not the same new word as in the WM 

test) and the lure word was a word from another pair (i.e., not the same lure word as in the WM 

test). As during the WM test, the position of the options on the screen was random, and 

participants used the mouse to select among them at their own pace. This method allowed us to 

measure binding memory in WM and EM in the exact same format. The experiment comprised 

five blocks in total. 
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Results 

One older participant’s presentation rate had reached the maximum (5000 ms) in the last 

block; this person was therefore excluded from further analysis, leaving data from 29 older and 

30 young adults. For the analysis of the presentation rates as well as the performance during the 

WM and EM tasks, we also excluded the first block, as we considered it as time for adaptation of 

the algorithm.  

The Bayesian t-test to assess the evidence for the difference of the mean presentation 

rates per pair revealed decisive evidence for a difference between young (M = 657 ms, SD = 

398) and older adults (M = 1724 ms, SD = 932), as the posterior density (PD) of the age effect 

lies entirely to the left of zero (PD: 0% < 0 < 100%).  

The proportion of responses in each of the three response categories (correct, lure, and 

new items) can be found in Table 2. The critical analysis concerned whether adapting the 

presentation rate of the word pairs resulted in equated WM for bindings between young and older 

adults. For this analysis, we compared the age groups with respect to the item-memory and 

binding-memory parameters derived from the MPT model in Figure 2. Figure 3 shows that the 

adaptation of presentation rates virtually eliminated the age difference in WM binding, as the 

posterior densities of the WM binding parameter of the young and older adults are overlapping. 

Figure 4 depicts the posterior of the age-group difference, showing that the age effect in the 

mean WM binding parameter is concentrated around zero. We predicted greater item memory in 

the older adults than the young adults, as their item memory deficit is assumed to be less 

pronounced than their binding deficit (Mitchell et al., 2000). The difference in the mean WM 

item parameter supports this hypothesis, as the posterior density lies entirely to the left of zero.  
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After having ensured equated WM for bindings between age groups, we next examined 

whether the EM binding deficit was also eliminated. The lower panels of Figure 3 and Figure 4 

show that the age difference in EM binding parameter still persisted (posterior mean of the age 

difference = 0.12, highest density interval (HDI) = [0.03, 0.21]). For item memory in EM, the 

difference in the mean parameter reflects an approximately zero age difference. To ensure that 

this pattern of results cannot be explained by a mere testing effect (i.e., an advantage of retrieved 

over non-retrieved information; Rowling, 2014), we also conducted this analysis using EM 

performance conditionalized on correct WM binding memory. If the pattern is consistent 

between the former and the conditionalized analyses, then the age deficit in EM bindings is 

unlikely to be attributable to any differential retrieval practice that the pairs received in WM. The 

evidence for a remaining age difference in the EM binding parameter persisted in this analysis 

(see Figure 5). In order to quantify the remaining EM binding deficit, we calculated the effect 

sizes the same way as in the meta-analysis (Old & Naveh-Benjamin, 2008), from our group-

mean posterior parameter estimates and the respective sigma’s. The resulting distribution of 

effect sizes had a mean of d = 0.041 (HDI = [0.01, 0.08]), with 99.6% of the posterior density 

above zero. 

Discussion 

The goal of Experiment 1 was to investigate the importance of establishing and holding 

bindings in WM to age differences in EM bindings. We successfully equated WM for bindings 

between age groups by adapting the presentation rate of to-be-remembered word pairs. Our 

results show that this did not eliminate the EM deficit in old age. This implies that older adults' 

EM deficit is not entirely caused by a WM deficit at encoding. Nevertheless, by compensating 

the WM deficit, we substantially reduced the age-related EM deficit in comparison to previous 
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studies (d = 0.04 compared to the meta-analysis of age differences in EM with effect sizes of d 

>.80 for verbal material and recognition tests, Old & Naveh-Benjamin, 2008). Therefore, the EM 

deficit could still be in part due to a binding deficit in WM, as the remaining binding deficit in 

EM was rather small. Alternatively, the results of Experiment 1 could be explained by the 

common cause hypothesis: Age-related deficits in WM and EM could be reflections of a 

common cause, which is partly compensated for by longer encoding time, leading to the 

reduction in EM binding deficits. For instance, both forms of memory might suffer from a 

similar age-related slowing of consolidation, the hypothetical process converting fragile, 

transient representations into more stable memory representations (Chun & Potter, 1995; 

Jolicœur & Dell’Acqua, 1998; Wixted, 2004). 

The goals of Experiment 2 were to test whether the EM associative deficit is in part 

caused by a binding deficit in WM, and to distinguish that hypothesis from the common cause 

hypothesis. According to the WM deficit hypothesis, interference between the word pairs in WM 

causes them to be represented less precisely or less robustly in older adults than in young adults, 

thereby leading to impaired EM representations. Accordingly, increasing the number of word 

pairs (i.e., set size) in WM should have a corresponding detrimental effect on EM. We would 

therefore predict that increasing memory set size leads to poorer performance not only in an 

immediate WM test but also in a subsequent test of EM. Moreover, because WM capacity 

declines in older age (Hale et al., 2011), we would predict an interaction between set size and age 

group on EM, such that older adults should show worse EM performance than young adults, 

especially as set size increases from a low value (at which both age groups' WM capacity is still 

sufficient to maintain all bindings well) to a value at which the WM of an average young person 

can still accommodate all bindings whereas the WM of older adults begins to struggle. The 
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common cause account of the findings of Experiment 1, by contrast, predicts that the critical 

factor for EM performance is the time given to attend to and process the individual pairs, 

independent of how many other pairs are held in WM concurrently. In this case, increasing set 

size while keeping the presentation rate per pair constant should have no effect on EM binding. 

In order to adjudicate between these accounts, in Experiment 2 we varied set size of the tested 

pairs in WM while holding constant the presentation rate of the pairs at that for which WM for 

bindings of three pairs was equal between young and older adults in Experiment 1.  

 

Experiment 2 

Method 

Participants 

We recruited a new sample of 30 students (15 female) from the University of Zurich and 

30 healthy older (15 female) adults from the community as participants. They were compensated 

with either 15 Swiss Francs (about 15 USD) or partial course credit for the one-hour experiment. 

The study is in line with the rules of the ethics committee of the University of Zurich. Cognitive 

functioning was screened with the MMSE (Folstein et al., 1975), indicating normal cognitive 

abilities in the sample of older adults (M = 28.82, SD = 1.47, range = 27 – 30). As evident by the 

posterior densities of the age differences in Table 1, the older adults had completed fewer years 

of formal education than the young adult and showed better performance in a computerized 

version of the MWT-B vocabulary test (Lehrl, 2005) than the young adults.  

Materials and Procedure 

The materials and procedure for Experiment 2 were very similar to Experiment 1. The 

principal differences were the following: Set size was varied across trials by presenting between 
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2 and 6 word pairs per trial. As in Experiment 1, the word pairs were sequentially presented from 

the top to the bottom of the screen. Furthermore, presentation rate was held constant within each 

age group at the mean presentation rates of the first 20 young and 24 older adults from 

Experiment 1, at which young and older adults showed equated WM for bindings for a set of 

three pairs (young = 710 ms and older adults = 1760 ms)2. As in Experiment 1, memory for each 

pair was probed immediately and after a delay. There was one trial of each set size per block, and 

seven blocks in the experiment. 

 

Results 

We analyzed the number of correct, lure, and new item responses with the same 

hierarchical MPT model as in Experiment 1 using the TreeBUGS package in the R environment. 

We applied separate MPT models for WM and EM, as well as for each set size level and age 

group. The proportions of responses in the three response categories (correct, lure, and new 

items) are shown in Figure 6. The critical analysis concerned whether increasing interference in 

WM through increased set size decreases EM for bindings, and if so, whether that decrease was 

more pronounced in older than young adults even when using the presentation rates for which 

young and older adults showed equivalent WM binding at one of the lower set sizes (3 pairs) in 

Experiment 1. Figure 7 shows the posterior estimates for the main effect of set size, as well as 

the interaction effect of set size by age, for the parameters of the MPT models.  

Unsurprisingly, increasing the number of to-be-remembered pairs in a trial reduced the 

WM binding performance for those pairs, represented by the change in parameter Pb (PD = 0% < 

                                                
 

2 These presentation times were derived from the average presentation time per age group from 
the initial sample of 20 younger and 24 older adults. The mean presentation times reported for 
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0 < 100%). Furthermore, as indicated by the interaction effect, the age-related difference varied 

with set size: young adults showed worse WM binding performance than older adults at set size 

4, 5 and 6 (PD: 98.7% < 0 < 1.3%, PD = 89.6% < 0 < 10.4%, PD: 99% < 0 < 1%, respectively), 

but better WM binding performance than older adults at set size 2 (PD: 5.3% < 0 < 94.7%).  For 

set size 3, the posterior for the age difference was centered on zero (PD: 41.3% < 0 < 58.7%), 

replicating the finding from Experiment 1 of approximately equivalent WM binding performance 

in both age groups at this set size with the given presentation rates.  

The analysis of the parameters for item memory in WM revealed no effect of set size, 

neither for young (PD = 29.2% < 0 < 70.8%) nor for older adults (PD = 36.3% < 0 < 63.7%). For 

the main effect of age, 99.7% of the posterior density lay to the left side of zero, implying – as in 

Experiment 1 – an age-related benefit for item memory in WM. This means that, after 

compensating for older adults' difficulty with maintaining bindings in WM, their item memory 

was better than that of young adults.  

The analysis of the binding parameter for EM revealed evidence that the age difference 

was rather small, as the posterior density included considerable proportions on both sides of zero 

(PD: 16.5% < 0 < 83.5%). The critical analysis concerned whether set size affected EM in a 

similar way as it affected WM performance of young and old adults. There was, if anything, a 

very small main effect of set size, as the posterior density included considerable proportions on 

both sides of zero (PD:  86.2% < 0 < 13.8%). The difference in parameters between the age 

groups at each set size are shown in Figure 7C. There was evidence for an interaction between 

set size and age (PD: 2.1% < 0 < 97.9%), driven by better EM for bindings of young adults at set 

size 2 & 3 (PD setsize2: 6.5% < 0 < 93.5%, PD setsize3: 7.8% < 0 < 92.2%), whereas EM for bindings 

                                                                                                                                                       
 

Experiment 1, include additional subjects and are therefore slightly different.  
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was equivalent between age groups at larger set sizes (PD setsize4: 47.8% < 0 < 52.2%, PD setsize5 = 

36% < 0 < 64%, PD setsize6: 64.8% < 0 < 35.2%). As for Experiment 1 we calculated the 

distribution of effect sizes from the estimates of the group-mean differences for the binding 

parameter at each set size. The analysis revealed small effect sizes for the age differences of the 

binding parameter at set sizes 2 and 3 (mean PD of dsetsize2= 0.02, HDR = [-0.01, 0.05]; mean PD 

of dsetsize3 = 0.02 HDR = [-0.01, 0.05]. For set sizes 4, 5, and 6 the posterior densities of the effect 

sizes were distributed around zero (mean PD of dsetsize3= 0, HDR = [-0.03, 0.03]; mean PD of 

dsetsize4= 0.01, HDR = [-0.02, 0.03]; mean PD of dsetsize5= -0.01, HDR = [-0.03, 0.02]).  

For the parameter of item memory in EM, the analysis revealed no evidence for a main 

effect of set size (PD: 62.6% < 0 < 37.4%), nor a main effect of age (PD: 26.8% < 0 < 73.2%), 

and no evidence for an interaction between them (PD: 64% < 0 < 36%).  

As in Experiment 1, we further ensured that the pattern of results of Experiment 2 was 

not attributable to a mere testing effect. To this end, we analyzed the EM performance also 

conditionalized on whether or not the pairs were correctly remembered during the WM test. The 

analysis confirmed the negligible age deficit in EM binding and item memory when performance 

was conditionalized on accurate WM binding (binding memory: PD: 62.6% < 0 < 37.4%, item 

memory: PD: 58.7% < 0 < 41.3%). Furthermore, the conditionalized analysis similarly showed 

negligible set-size effects for item memory (PD: 64% < 0 < 36%) and evidence for a set size 

effect for binding memory (PD: 2.1% < 0 < 97.9%).    

 

Discussion 

To summarize, as a successful manipulation check, in Experiment 2 we replicated the 

equated binding performance in WM between young and older adults at set size three with the 
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presentation rates from Experiment 1. Also, we replicated the substantive finding of Experiment 

1, namely, that the retention of the bindings in EM was better in young than in older adults at set 

size three, despite the age-related compensation in WM. Furthermore, set size had the expected 

detrimental effect on WM bindings in young and older adults.  

Despite its detrimental effect on both age groups’ WM for bindings, increases in set size 

had no such effect on EM for either age group. Instead, the findings showed that the small age-

related differences of EM bindings at set sizes 2 and 3 disappeared at the larger set sizes, as older 

adults’ EM for bindings slightly increased at higher set sizes, leaving no evidence for an impact 

of age on bindings in EM. 

From the WM deficit hypothesis, we predicted a set-size effect not only on WM but also 

on EM. In addition, we predicted an interaction between set size and age group in EM, such that 

older adults should show worse performance than young adults particularly at higher set sizes 

The above findings refute both predictions, decisively ruling out the WM deficit hypothesis.  Our 

finding that old adults' WM deficit can be compensated for by giving them longer time for 

encoding and consolidating the memory pairs, and that this largely (Experiment 1) or entirely 

(Experiment 2) compensated for their EM deficit, is better explained by the common cause 

hypothesis. Specifically, older adults might be slower in consolidating information in both WM 

and EM, and this slowing is partially responsible for their reduced binding ability in tests of WM 

as well as EM.  

Experiment 2 yielded one unexpected effect: The set-size effect on WM bindings was 

larger for young adults, resulting in worse WM performance relative to older adults at larger set 

sizes, and somewhat better performance at the smallest set size. This result is surprising in light 

of a recent study by Read (2016) showing that increases in set size similarly impaired feature-
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location and feature-feature bindings in younger and older adults. That said, our results are in 

line with findings from Boujut & Clarys (2016). We can only offer a speculative post-hoc 

explanation for this interaction of set size with age: We compensated the age-related WM 

binding deficit by giving older adults substantially more time for encoding each pair. We 

tentatively concluded that this time is used to consolidate bindings better in both WM and EM. 

Perhaps the longer presentation time is used primarily for establishing better memory 

representations in EM, with relatively little effect on WM. In addition to improving delayed 

memory, better EM representations could also assist performance in the immediate test (intended 

to measure WM). As a consequence, older adults' performance on the WM test would rely more 

strongly on EM than that of younger adults. As EM is not affected by set size, this would result 

in a flatter set-size effect in the WM-test performance of older compared to younger adults.  

General Discussion 

The goal of the present study was to investigate the importance of maintaining bindings 

in WM for age-related EM deficits, especially the disproportionate associative deficit in older 

age. Using a novel paradigm that adapted the presentation rate of word pairs for young and older 

adults, we equated WM for bindings and subsequently observed a small but persistent EM 

binding deficit in older adults in Experiment 1. Further, the results of Experiment 2 were 

incompatible with the WM deficit hypothesis, suggesting instead that inefficiency at encoding or 

during consolidation of memory traces may cause a more general age-related deficit in retaining 

bindings in WM and EM alike, in line with the common cause hypothesis.  

The finding that memory set size, although strongly affecting WM performance, had no 

effect on subsequent EM for the same information for either age group contradicts the WM 

deficit hypothesis that has been advanced in previous work. For example, Hara & Naveh-
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Benjamin (2015) simulated the age-related associative deficit in EM by having young adults 

encode materials under divided attention, and they interpreted their result as consistent with the 

WM deficit hypothesis, such that an associative deficit in WM causes EM associative deficits in 

older adults. The present investigation questions this claim and suggests an alternative 

explanation: Instead of simulating a WM deficit, the divided attention manipulation reduced the 

time available for encoding, and therefore impaired young adults’ EM to a similar extent as a 

naturally occurring encoding deficit of old adults.  

Although the current results rule out the hypothesis that WM binding deficits cause EM 

deficits in older adults, they leave us with a new question: Which process did older adults in our 

experiments engage during their longer encoding time to reduce their deficit in both the WM and 

the EM tests? One possibility could be that older adults invested the increased encoding time to 

use (more) normatively effective strategies, such as elaboration. Findings from Bailey, Dunlosky, 

and Hertzog (2009) speak against this notion: These researchers showed that young and older 

adults report a similar prevalence of normatively effective strategies during WM tasks. In 

contrast, measures of processing speed accounted for a substantial proportion of the age-related 

variance in WM performance.  

Our findings are consistent with the general slowing hypothesis (Salthouse, 1996; for an 

overview see Hartley, 2006), which proposes reduced processing speed to account for age-related 

differences in cognitive functions. The general slowing hypothesis emerged from consistent 

observations that older participants show longer reaction times to respond to stimuli, which 

supposedly represents slowing of perceptual, motor, and cognitive processes. Although slowing 

as common cause for age-related deficits in many tasks is attractive for its parsimony, it has long 

been debated what actually causes the phenomenon. For example, one could interpret the present 
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results as consistent with the slowing of consolidation, such that older adults differentially 

struggle to create stable memory representations and require more time to do so compared to 

younger adults, thereby causing binding deficits in WM and EM. However, the current study 

cannot dissociate whether general cognitive slowing or a more specific slowing of processes 

such as consolidation cause the age-related binding deficit.  

Furthermore, although our results are in line with the general slowing hypothesis, they do 

not strongly support this interpretation because other interpretations are just as plausible. For 

instance, it has been shown that older adults suffer from more neural noise, and therefore create 

less distinctive representations between successively presented pairs (Noack, Lövdén, & 

Lindenberger, 2012). As a result, the pairs are encoded with more overlapping representations, 

and at retrieval, the probe cues other words in the trial in addition to the actual target. This would 

cause binding memory impairments while leaving intact memory for items. For the current study, 

longer processing time could have led to more distinct, less noisy representations given the 

greater temporal separation of the pairs. This would result in better distinctiveness of the material, 

thereby reducing the binding deficit of the older adults. At larger set sizes the additional time 

may be particularly useful to engage in differential encoding (i.e., forming representations of the 

word pairs in the memory set that emphasize the differences between them). Accordingly, what 

may appear at first glance as a general slowing deficit could instead reflect more time to engage 

in specific processes that may be deficient in older age, such as greater use of normatively 

effective strategies, consolidation of traces into stable representations, and reduction of 

representational overlap. 

The current research is also relevant to previous work that has considered variation of 

presentation time to examine age deficits in WM. For example, Oberauer and Kliegl (2001) 
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applied an adaptive algorithm (Kaernbach, 1991) similar to our Experiment 1 to vary 

presentation rates for young and older subjects in a WM updating task. They showed that WM 

capacity limits of the old adults could not be fully compensated by increasing encoding and 

updating times, as the young adults benefited from longer times too, and reached a higher 

asymptotic performance level with increasing time for each updating step. These findings 

indicate that age deficits in binding cannot be solely attributed to slower encoding or 

consolidation. Other work has similarly tried to compensate for the age-related memory deficit 

by increasing encoding time but has not managed to fully do so. A study by Sander and 

colleagues (Sander, Werkle-Bergner, & Lindenberger, 2011) showed WM performance of older 

adults increased with longer presentation rates; nevertheless, the older adults did not reach the 

level of the young adults’ performance. The failure to fully compensate the age-related WM 

deficit could have occurred because they chose fixed longer presentation rates for older 

compared to younger adults, rather than adaptively varying presentation rates as in the current 

study. The choice of the presentation rate for older adults might just not have been slow enough 

to fully compensate their WM deficit. Two further recent studies investigated the effects of 

encoding time on WM bindings in young and old adults: Rhodes et al. (2016) found no 

differential effect of longer (2500ms) compared to shorter (900ms) encoding time on WM 

binding performance of older adults. Similarly, Brown et al. (2017) found that although older 

adults profited more than young adults from a longer (1500ms vs. 900ms) encoding time overall, 

this did not differentially effect binding over item memory. The findings of these studies do not 

conflict with our results as these studies’ procedures allowed both age groups a fixed amount of 

additional time at encoding, which also permits the young adults to improve their bindings in 

WM. This is different to our approach here, where we calibrated the encoding time to 
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compensate the older adults’ lower performance. Another difference between the present study 

and that of Brown et al. (2017) could be the use of different stimuli (i.e., binding of shape and 

color vs. pairs of unrelated words): meta-analytic evidence suggests the age-related associative 

deficit is smaller for verbal compared with visuospatial materials (Old & Naveh-Benjamin, 

2008). Accordingly, visuospatial memoranda may require an even larger adjustment of encoding 

time for older adults to compensate for their relatively larger binding deficit. 

 In summary, the present study tested the causal role of WM for the age-related binding 

deficit in EM. The results ruled out the WM deficit hypothesis that asserts that the binding deficit 

is due to a deficit to establish and maintain bindings in WM. Instead, the evidence was congruent 

with a common cause of both deficits. One plausible candidate for this common cause lies in less 

efficient encoding and consolidation processes in older age. 
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 Table 1 Sample Description (means (and standard deviations)) of Experiment 1 and 2 

Experiment Age Group Age years of education vocabulary 

1 Younger 24.06 (3.77) 14.70 (3.07) 77.07 (13.22) 

 
Older 71.26 (3.99) 13.81 (3.40) 86.29 (3.43) 

 
PDage-effect - 16.9% < 0 < 83.1%  99.9% < 0 < 0.1% 

          

2 Younger 24.84 (2.94) 15.84 (3.08) 77.90 (14.26) 

 
Older 71.07 (4.08) 13.66 (4.54) 85.27 (6.95) 

 
PDage-effect - 3.1% < 0 < 96.9%  98.7 % < 0 < 1.3% 

        

Note. The posterior density (PD) of the age effects. Zero represents the point of no age 
differences, and the percentages indicate how much of the estimated effect's posterior 
distribution lies below and above 0. Values below 0 reflect an advantage of older adults whereas 
positive values indicate a younger adults advantage.  
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Table 2 Percent of responses per category in Experiment 1.  

Memory test Age Group Correct Lure New 

WM Younger 66.47 (4.36) 20.97 (4.11) 12.56 (2.88) 

Older 69.14 (7.04) 23.71 (7.4) 7.14 (4.41) 

EM Younger 61.81 (9.7) 25.61 (7.18) 12.58 (4.33) 

 Older 55.43 (8.94) 31.71 (8.57) 12.86 (7.13) 

Note. The standard deviation is marked in parentheses. 
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Figure 1 A representation of the paradigm used in Experiments 1 and 2. 
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Figure 2 Multinomial-process tree (MPT) model for memory of bindings in Experiments 1 and 2. See 
section Measuring Binding and Item Memory for details.  
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Figure 3 Posterior distributions of the parameters of the MPTs for young and older adults of Experiment 1. The 
horizontal lines represent the 95% highest density intervals. 
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Figure 4 Posterior distributions of differences of mean the parameters between the age groups of 
Experiment 1. The mode with its respective highest density intervals reflect the effect size of any 
age difference. The dotted line indicates the point of no age differences, and the percentages 
indicates the credibility interval of the difference. Values below 0 reflect an advantage for the older 
adults. 
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Figure 5 Posterior distributions of differences of mean the parameters between the age groups 
conditionalized on correct binding memory in WM of Experiment 1. The dotted line indicates the 
point of no age differences, and the percentages indicates the credibility interval of the difference. 
Values below 0 reflect an advantage for the older adults. 
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Figure 6 Proportion of responses per category in WM and EM of young and older adults in Experiment 2. 
The error bars represent the standard deviation. 
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Figure 7 (A) Posterior estimates of the main effects of Set Size and (B) Posterior estimates of the 
interaction effects of set size with age-group of Experiment 2. Values above zero represent a stronger 
effect for young than for old adults. (C) Difference in posterior estimates of the parameter for binding 
memory in EM between the age groups per set size. Values above zero reflect an advantage for young 
adults. The red horizontal line characterizes the point of no evidence for an effect. The error bars 
represent the highest density regions.  
 


