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Abstract

Information needs to be appropriately encoded to be reliably transmitted over a physical
media. Similarly, neurons have their own codes to convey information in the brain. Even
though it is well-know that neurons exchange information using a pool of several protocols of
spatial-temporal encodings, the suitability of each code and their performance as a function
of the network parameters and external stimuli is still one of the great mysteries in Neuro-
science. This paper sheds light into this problem considering small networks of chemically
and electrically coupled Hindmarsh-Rose spiking neurons. We focus on the mathematical fun-
damental aspects of a class of temporal and firing-rate codes that result from the neurons’
action-potentials and phases, and quantify their performance by measuring the Mutual Infor-
mation Rate, aka the rate of information exchange. A particularly interesting result regards
the performance of the codes with respect to the way neurons are connected. We show that
pairs of neurons that have the largest rate of information exchange using the interspike in-
terval and firing-rate codes are not adjacent in the network, whereas the spiking-time and
phase codes promote large exchange of information rate from adjacent neurons. This result,
if possible to extend to larger neural networks, would suggest that small microcircuits of fully
connected neurons, also known as cliques, would preferably exchange information using tem-
poral codes (spiking-time and phase codes), whereas on the macroscopic scale, where typically
there will be pairs of neurons that are not directly connected due to the brain’s sparsity, the
most efficient codes would be the firing rate and interspike interval codes, with the latter being
closely related to the firing rate code.

1 Introduction

The main function of the brain is to process and represent information, and mediate decisions,
behaviors and cognitive functions. The cerebral cortex is responsible for internal representations,
maintained and used in decision making, memory, motor control, perception, and subjective expe-
rience. Recent studies have shown that the adult human brain has about 86 × 109 neurons [13],
which are connected to other neurons via as many as 1015 synaptic connections. Neurophysiol-
ogy has shown that single neurons make small and understandable contributions to behavior [24].
However, most behaviors involve large numbers of neurons, which are often organized into brain
regions, with nearby neurons having similar response properties, and are spread over a number of
anatomically different structures, such as the brain-stem, cerebellum, and cortex. Within each of
these regions, there are different types of neurons with different connectivity-patterns and typical
responses to inputs.

The coexistence of segregation and integration in the brain is the origin of neural complexity [27].
Connectivity is essential for integrating the actions of individual neurons and for enabling cognitive
processes, such as memory, attention, and perception. Neurons form a network of connections and
communicate with each other mainly by transmitting action potentials, or spikes. To this end,
the mechanism of spike-generation is well understood: spikes generate a change in the membrane
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potential of the target neuron, and when this potential surpasses some threshold, a spike (in the
probabilistic sense) can be generated [17]. Brain regions show significant specialization with higher
functions such as integration, abstract reasoning and consciousness all emerging from interactions
across distributed functional networks of neurons in the brain.

At the local level, the workings of individual neurons is relatively well understood. However,
the full understanding of the information processing in networks of spiking neurons is still elusive,
i.e. the so-called “neural code”. A neural code is a system of rules and mechanisms by which a
signal carries information, with coding involving various brain structures. It is clear that neurons
do not communicate just by the frequency of their spikes (by a rate code) [12], as part of the
information can also be transmitted in the precise timing of individual spikes [9]. These findings
are still quite controversial, and whether the precise timing of spikes is important for neuronal
information processing is still debatable as also is the crucial question of whether temporal structure
and oscillations are relevant within the spike trains of single neurons [8]. Interactions at different
timescales might be related to different types of processing, and thus, understanding information
processing requires examining the temporal dynamics among neurons and in their networks. Precise
spiking-time would allow neurons to communicate more information than with random spikes.
However, keeping aside the question whether there is precise spiking, ideas on how such precisely
timed spikes can be used are diverse as well. Different types of neural coding, including temporal
and spatial coding, may also coexist on different time scales [19]. The scientific evidence collected
so far supports the argument that we are still lacking a full understanding of the codes used by
neurons in the brain to carry and process information.

What emerges from the scientific evidence so far suggests that fast systems and responses use
fast spiking-time coding. For example, the human visual system has been shown to be capable of
performing very fast classification [30], where a participating neuron can fire at most one spike! The
speed involved in decoding auditory information, and even the generation of speech also suggest
that most crucial neural systems of the human brain operate quite fast. For example, human
fingertip sensory neurons were found to support this by demonstrating a remarkable precision in
the time-to-first spikes from primary sensory neurons [16].

The debate about how information is coded and transmitted in the cortex is quite old [22] and
remains highly active [28, 11, 10]. Most studies on how the brain codes information and which vari-
ables are processed within particular cortical areas make assumptions about which features of the
neural responses carry information. Although most studies on sensory or motor neurophysiology
assume that the spike counts of single neurons within an arbitrary time window are the relevant
features of neural coding, it is still not clear. Information is also represented by spatial patterns
of activity occurring over neural populations. Understanding how information is encoded in the
activity of such populations is crucial for understanding the computations underlying brain func-
tions. In vertebrates, information is often encoded by patterns of activity within neural populations
responsible for similar functions. Although population representations appear to be ubiquitous in
neural systems, different brain regions that perform different specific tasks, increase the difficulty
of understanding the neural code. Thus, investigating the fundamental properties of neural coding
in spiking neurons may allow for the interpretation of population activity and, for understanding
better the limitations and abilities of neural computations.

In this paper, we study neural coding from the mathematical-modeling point of view and intro-
duce four neural codes and their mathematical methodologies to quantify the rate of information
exchanged for each code, in small networks of chemically and electrically coupled Hindmarsh-Rose
(HR) spiking neurons [3, 2]. We focus on the mathematical fundamental aspects of how neurons
communicate, and for this reason we do not deal with spatial codes, but only with temporal and
firing-rate codes which are responsible for the exchange of information in small networks of HR neu-
rons. For each node in the network, we record the activity in time of the action-potential variable
p and its phase φ. We then construct a suitable map representation of these variables for which we
then compute the rate of information exchanged for pair-wise neurons, aka the Mutual Information
Rate (MIR) [7], as a function of the way neurons are connected and of the synaptic intensities. We
consider as a neural code the precise spiking-times of the neural activity (i.e. a temporal code),
the maximum points of the phase of neural activities (i.e. neural phase, giving an estimation of
the number of cycles of the neuron potential, considering all oscillatory behaviors with arbitrary
amplitude, including the spiking high-frequency and the bursting low-frequency oscillations), the
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interspike intervals (measuring only the spiking large amplitude “extreme” events), and finally the
firing rate (i.e. ratio of spiking activity over a specific time interval). For the first three codes, we
require that all measurements are performed with respect to the ticks of a local master “clock” [15],
relative to the activity produced by one of the participating neurons in the network. The choice
of the clock can be arbitrary in the sense that the activity of any single neuron in the network can
be used, and that that does not alter the conclusions drawn. This is a requirement that allows for
the determination of which neurons cause an effect to which other neurons in the network.

Our main findings are summarized as following: in the simplest case of a single pair of coupled
spiking neurons, we find that they exchange the largest possible amount of information per unit of
time when the neural code is based on the precise spiking-time. If observable noise is present in the
communication, firing rates are able to exchange larger rates of information as compared to those
based on temporal codes. In the case of four chemically and electrically coupled neurons, the largest
rate of information exchanged can be attributed to the neural codes based on the maximum points
of the phases (mod 2π, thus a code dependent on the period of the neuron’s oscillatory behavior) and
of that based on the interspike intervals. On the other hand, when neurons form a multiplex network
of 20 neurons arranged in two equally-sized modules in a bottleneck configuration, communication
between pair of neurons in different modules is mostly efficient when using either the spiking-
time code or the maximum points of their phases. Surprisingly, pairs of neurons that exchange the
largest amount of information per unit of time using the interspike interval and the firing-rate codes
are not adjacent in the network, whereas the spike timing and phase codes promote large exchange
of information rate from adjacent neurons in the network. The latter results provide evidence for
the non-local character of firing-rate codes and the local character of precise spiking-time codes in
modular dynamical networks of spiking neurons. Knowing that neurons in the brain are actually
only sparsely connected, since each neuron has less than about 10000 synapses, whereas the adult
human brain has on average about 86 billion neurons [13], and assuming our results can be extended
to large neural networks, the interspike and firing-rate codes responsible for exchanging information
between non-adjacent neurons in the neural network, should be the dominant “language” in the
brain. However, knowing also that the brain has a multitude of cliques [23], i.e. small clusters
of fully connected neurons, the microcircuits’ dominant neural “language” would be based on the
precise spiking-time and phase codes.

2 Materials and Methods

2.1 The Hindmarsh-Rose Neural Model

We simulate the dynamics of each “neuron” by a single Hindmarsh-Rose neuron system. Namely,
following Refs. [3, 2], we endow the nodes (i.e. neurons) of the networks with the dynamics
characterized by [14]:

ṗ = q − ap3 + bp2 − n+ Iext,

q̇ = c− dp2 − q,
ṅ = r[s(p− p0)− n], (1)

where p is the membrane potential, q the fast ion current, either Na+ or K+, and n the slow ion
current, for example Ca2+. The parameters a, b, c, d, which model the function of the fast ion
channels, and s, p0 are given by a = 1, b = 3, c = 1, d = 5, s = 4 and p0 = −8/5. The parameter
r, which modulates the slow ion channels of the system, is set to 0.005, and the current that enters
each neuron Iext is fixed to Iext = 3.25. All neurons are submitted to the same external current
Iext for simplicity. For these values, each neuron can exhibit chaotic behavior and the solution to
p(t) exhibits typical multi-scale chaos characterized by spiking and bursting, which is consistent
with the membrane potential observed in experiments made on single neurons in vitro [14].

We couple the HR system and create an undirected dynamical network (DN) of Nn neurons
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connected by electrical (linear diffusive coupling) and chemical (nonlinear coupling) synapses:

ṗi = qi − ap3i + bp2i − ni + Iext − gn(pi − Vsyn)

Nn∑
j=1

BijS(pj)− gl
Nn∑
j=1

GijH(pj),

q̇i = c− dp2i − qi,
ṅi = r[s(pi − p0)− ni],

φ̇i =
q̇ipi − ṗiqi
p2i + q2i

, i = 1, . . . , Nn, (2)

where φ̇i is the instantaneous angular frequency of the i-th neuron [21, 20], φi is the phase defined by

the fast variables (pi, qi) of the i-th neuron, H(p) = p and S(p) = [1+e−λ(p−θsyn]−1. The remaining
parameters θsyn = −0.25, λ = 10, and Vsyn = 2 are chosen so as to yield an excitatory DN. The
parameters gn and gl denote the coupling strength associated with the chemical and electrical
synapses, respectively. The chemical coupling is nonlinear and its functionality is described by the
sigmoidal function S(p), which acts as a continuous mechanism for the activation and deactivation
of the chemical synapses. For the chosen parameters, we have |pi| < 2, and (pi − Vsyn) is always
negative for excitatory networks. If two neurons are connected via an excitatory synapse, then if the
presynaptic neuron spikes, it induces the postsynaptic neuron to spike. We adopt only excitatory
chemical synapses in our analysis. Gij accounts for the way neurons are electrically (diffusively)
coupled and is represented by a Laplacian matrix

Gij = Kij −Aij , (3)

where A is the binary adjacency matrix of the electrical connections and K is the degree identity
matrix based on A, leading thus to

∑Nn

j=1 Gij = 0. By binary we mean that if there is a connection
between two neurons, then the entry of the matrix is 1, otherwise it is 0. Bij is a binary adjacency
matrix and describes how neurons are chemically connected and, therefore, its diagonal elements
are equal to 0, thus

∑Nn

j=1 Bij = ki, where ki is the degree of the i-th neuron. ki represents the
number of chemical links that neuron i receives from all other j neurons in the network. A positive
off-diagonal value of both matrices in row i and column j means that neuron i perturbs neuron
j with an intensity given by glGij (electrical diffusive coupling) or by gnBij (chemical excitatory
coupling). Therefore, the adjacency matrices C of the DNs are given by

C = A + B. (4)

For each neuron i , we use the following initial conditions: pi = −1.30784489+ηri , qi = −7.32183132+
ηri , ni = 3.35299859+ηri and φi = 0, where ηri is a uniformly distributed random number in [0, 0.5]
for all i = 1, . . . , Nn (see Ref. [2] for details). These initial conditions place the trajectory quickly
on the attractor of the dynamics, eliminating thus the need for time-consuming calculations.

2.2 Numerical Simulations and Upper Bound for MIR

We have numerically integrated Eqs. (2) using Euler’s first order method with time-step δt = 0.01
to reduce the numerical complexity and CPU time to feasible levels as a preliminary comparison for
trajectories computed for the same parameters (i.e. δt, initial conditions, etc.) using integration
methods of order 2, 3 and 4 (e.g. the Runge-Kutta method) produced similar results. The numerical
integration of the HR system of Eqs. (2) was performed for a total integration time of tf = 107

units and the computation of the various quantities needed in our analysis were computed after a
transient time tt = 300 to make sure that orbits have converged to an attractor of the dynamics.

After Shannon’s pioneering work [26] on information, it became clear that it is a very useful and
important concept as it can measure the amount of uncertainty an observer has about a random
event and thus provides a measure of how unpredictable it is. Another concept related to Shannon
entropy that can characterize random complex systems is Mutual Information (MI) [26], a measure
of how much uncertainty one has about a state variable after observing another state variable in
the system. In Ref. [4], the authors have derived an upper bound for the MIR between two nodes
or two groups of nodes of a complex dynamical network that depends on the two largest Lyapunov
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exponents l1 and l2 of the subspace of the network formed by these nodes. Particularly, they have
shown that:

MIR ≤ Ic = l1 − l2, l1 ≥ l2, (5)

where l1, l2 are the two finite-time and -size Lyapunov exponents calculated in the bi-dimensional
observation space of the two considered nodes [4, 1], which typically should approach the two
largest Lyapunov exponents λ1, λ2 of the dynamics if the network is connected and the time to
calculate l1, l2 is sufficiently small. We have used the well-known method of Ref. [5] to compute
the Lyapunov exponents λ1, λ2 needed for the estimation of the upper bound Ic for MIR. In our
study, the upper bound Ic for the MIR is effectively estimated by Ic = λ1 − λ2 (i.e. l1 = λ1 and
l2 = λ2) and will stand for the upper bound for the information transferred per unit of time in
the DN (i.e. among the neurons). The phase spaces of the dynamical systems associated to the
DNs are multi-dimensional and thus, estimating an upper bound for the MIR using λ1 and λ2
calculated by the method of Ref. [4] instead of the MIR itself, reduces considerably the complexity
of the numerical calculations. Besides, parameter changes that cause positive or negative changes
in the MIR are reflected in the upper bound Ic with the same proportion [4].

2.3 Computation of MIR for Maps

Following [6], the MIR between a pair of time-series X(t) and Y (t) (representing a mapping of
any two variables in the neural codes in the next subsections), was estimated by considering
binary symbolic dynamics that encode each time-series X(t) and Y (t) into the symbolic trajectory
represented by (α, β). N sequentially mapped points ofX(t) and Y (t) are encoded into the symbolic
sequences α = α1, α2, α3, . . . , αN and β = β1, β2, β3, . . . , βN , each composed by N elements. The
encoding is done by firstly normalising the time-series X(t) and Y (t) to fit the unit interval [0, 1].
Both αi and βi can assume only 2 values, either “0”, if the time-series value is smaller than 0.5 ,
or “1”, otherwise.

The Mutual Information, MI(L), between X(t) and Y (t) is thus estimated by measuring the
MI between the two symbolic sequences α and β by

MIXY (L) =
∑
k

∑
l

P (X(L)αk , Y (L)βl ) log
P (X(L)αk , Y (L)βl )

P (X(L)αk )P (Y (L)βl )
, (6)

where P (X(L)αk , Y (L)βl ) is the joint probability between symbolic sequences of length L observed

simultaneously in α and β, and P (X(L)αk ) and P (X(L)βl ) are the marginal probabilities of symbolic
sequences of length L in the sequences α and β, respectively. The subindices k and l vary from 1
up to the number of symbolic sequences of different lengths L observed in α and β, respectively.

MIR is then estimated by the slope of the curve of the MI for symbolic sequences of length
L ∈ [2, 5] with respect to L, which is an estimation of the increase of MI per time interval. More
details can be found in [6].

2.4 Neural Codes

Below, we introduce four neural codes and their corresponding methodologies to quantify the rate
of information exchanged between pairs of neurons.

The first uses the spiking-times of neural activity (temporal code), the second the maximum
points of the phase of neural activities (neural phase), the third the interspike intervals and the
last, the firing rates (ratio of spiking activity over a specific time interval). The first three require
that all recordings are done with respect to the ticks of a local master “clock” [15], relative to
the activity produced by a single neuron. The choice of the clock can be arbitrary in the sense
that the activity of any single neuron can serve as the clock, and that that does not alter the final
conclusions drawn whatsoever.

2.4.1 Neural Code Based on spiking-times: MIRst

Here, we describe how we compute the amount of information exchanged per unit of time between
neurons i, j based on the spiking-times of the first neuron, MIRst. Particularly, we assume that
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the first neuron plays the role of the clock and record in time the p values from Eq. (2) of both
neurons i, j at times when the p variable of the first neuron attains its local maxima. This allows us
to construct a time-series of spike events Xi, Yj by transforming the continuous dynamics of the p
variables of both neurons i, j into a time-series of discrete-time spike events. We then use the time-
series Xi, Yj to compute the rate of information exchanged between neurons i and j as explained
in Subsec. 2.3. We divide the rate of information exchanged by the mean of the interspike times
of the spike activity of the first neuron (i.e. the “clock”). We call this quantity the MIRst of pair
of neurons i, j.

2.4.2 Neural Code Based on the Phase: MIRmφ

Next, we explain how we compute the amount of information exchanged per unit of time between
two neurons i, j based on the maximum points of the time evolution of the phase variable φ,
what we denote by MIRmφ. We assume again that the first neuron plays the role of the “clock”
and record in time Φ ≡ mod (φ, 2π) from Eq. (2) of both neurons i, j at times when Φ of the
first neuron attains local maxima. This allows us to construct a time-series of events Xi, Yj by
transforming the continuous dynamics of the phase variables of both neurons into a time-series of
discrete time events. We then use Xi, Yj to compute the rate of information exchanged between
neurons i, j. We divide the rate of information exchanged by the mean of the time intervals for Φ
of the first neuron (i.e. the “clock”) to attain its local maxima. We call this quantity the MIRmφ

of pair i, j.

2.4.3 Neural Code Based on the Interspike Intervals: MIRii

Here we discuss about the computation of the amount of information exchanged per unit of time
between two neurons i, j based on the interspike intervals of their p variables, denoted by MIRii.
Similarly, we assume that neuron i plays the role of the “clock” and record in time the interspike
intervals of both neurons i, j whenever the spike of neuron j occurs after that of neuron i. This
allows us to construct a time-series of interspike events Xi, Yj from the continuous trajectories of
both neurons. We then use Xi, Yj to compute the rate of information exchanged between neurons i
and j, dividing this amount by the mean of the time intervals constructed as the difference between
the spiking-times of neuron j and those of neuron i, given that the spike of neuron j occurred after
that of neuron i. We call this quantity the MIRii of pair i, j, where the subscript ii stands for
interspike intervals.

2.4.4 Neural Code Based on the Firing Rates: MIRfr

Finally, we show how we compute the amount of information exchanged per unit of time between
neurons i, j based on the firing rates of their p variables, MIRfr. Here, we divide the time window
between the first and last recorded spiking-time of neuron i into 1.5 × 106 equally sized time
windows, and compute the firing rates for both neurons in these time windows. By firing rate, we
mean the ratio between the number of spikes in a given time interval divided by the length of the
time interval. This allows us to construct a time-series of firing rate events Xi, Yj . We then use
these time-series to compute the rate of information exchanged between neurons i, j, dividing it
by the length of the equally-sized time windows. We call this quantity the MIRfr of pair i, j.

3 Results

3.1 Neural Codes for the Communication of Two Neurons

We study the four neural codes introduced in Subsec. 2.4, in the simplest case of a pair of chemically
and bidirectionally connected HR neurons (see Fig. 1a)), in the absence of noise. We consider
the effect of noise in the performance of the neural codes in the next section. Our goal is to
understand which neural code can maximize the rate of information-exchange between the two
neurons, considering them as a communication system and for which chemical coupling strengths
gn this happens. We note that we are not interested in the directionality of the information flow
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but only on the rate of information exchanged pair-wise. Particularly, in Fig. 1 we calculate the
amount of MI per unit of time exchanged between the two neurons, aka their MIR, for different
chemical coupling strengths gn, for the four neural codes.

We first see in Fig. 1b) that MIRst and MIRmφ are bigger than MIRii and MIRfr in certain
regions of intermediate and large enough chemical coupling strengths gn. However, almost all MIR
quantities are smaller than the upper bound for MIR, Ic, for five chemical coupling strengths,
ranging from small to large values. We note that for gn values larger than about 1.3, the dynamics
becomes quasi-periodic and thus, there is no production of information.

In Fig. 1b), we present the MIR based on the spiking-times of both neurons (MIRst), the MIR
for the maximum values of the phase (MIRmφ), the MIR of the interspike intervals (MIRii) and
the MIR of the firing rates (MIRfr). We also plot the upper bound for MIR, i.e. Ic = λ1 − λ2,
an upper bound for MIR [4]. We focus on three characteristic cases: the first corresponds to the
case where MIRmφ >MIRst for chemical coupling strength gn = 0.1. The second, to a case where
MIRii > Ic, MIRmφ and MIRst for gn = 0.48 (one of the five distinct cases where the computed
MIR is bigger than the upper bound Ic), and the last one to a case where MIRst >MIRmφ for
gn = 1. In the first case, the two neurons communicate more efficiently by exchanging larger
amounts of information per unit of time using their phases whereas the third one to the case where
they communicate more efficiently by exchanging information by the precise spiking-times. In the
second case, the two neurons communicate more efficiently by encoding their information in their
interspike activity.

To appreciate the performance of the different neural codes used by the two neurons for optimal
communication, we first focus on the case of gn = 0.1 for which MIRmφ >MIRst, and plot in panel
c) of Fig. 1, the time evolution of p variables of both neurons, the data used to compute MIRst

in panel d), the plane of the phase variables of both neurons (Φ1,Φ2) in panel e), in which the
computation of MIRmφ is based, and in panel f) the data used to compute MIRii, where τi, i = 1, 2
are the interspike intervals of both neurons. We observe in panel c) that the spike times of both
neurons are different and particularly, from panel d) one realizes that when the first neuron spikes,
the second usually does not spike as there is a high density of p2 values around -1, with spikes
occuring around p2 ≈ 1.9. This behavior is due to the second neuron which is actually in its
quiescent period when the first is spiking. In contrast, when observing the plane of phases in panel
e), it becomes apparent that there are two regions of high phase-synchronicity (i.e. stripes of high
concentration) and the rest of the region with considerably smaller concentration of phase points.
This behavior indicates that the two neurons communicate in time by chaotically adapting their
phase activity. For the same gn, panel f) indicates that the interspike activity of both neurons is
well spread in the plane with a high concentration of points occurring close to the origin. Moreover,
MIRfr is seen to attain the smaller value with respect to all other quantities considered in this
work. These results justify why MIRmφ >MIRst for this coupling strength.

In panels g) to j) we study the second case, for gn = 0.48, for which MIRii > Ic. We remark
however that this apparent violation comes about because we estimate Ic by the Lyapunov expo-
nents and not by the expansion rates. Since MIR is estimated by a mesh grid of finite resolution,
an upper bound for MIR calculated for this grid would require the calculation of expansion rates
using the very same grid resolution. Ic estimated by Lyapunov exponents is smaller than the
bound estimated by expansion rates (see Supplementary material in [4]). Therefore, Ic in this
case could not be a true upper bound for MIR and we want to understand why this is so. Here,
we also observe that MIRst >MIRmφ (see panel b)), a result that indicates that the two neurons
communicate mostly by exchanging information by their precise spiking-times and less by their
phases. This can be appreciated in panel g) where both p variables attain approximately similar
amplitudes during their time evolution and, becomes evident in panel h) where the second neuron
spikes when the first neuron spikes and that both attain approximately the same amplitudes in
their p time evolution. This behavior is highly localized. In contrast, panel i) shows that their
phases actually spread all over the [0, 2π]× [0, 2π] region and that there is no localization of points
as it happened in the case of gn = 0.1 in which the two neurons communicate by exchanging the
largest amount of information per unit of time by their phases. Here, panel j) indicates that the
interspike activity of both neurons is well localized in two regions with high concentration closer to
the origin and on the right upper part of the plot. Moreover, MIRfr is seen to attain the smaller
value with respect to all other quantities for this particular chemical coupling strength. These
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Figure 1: Results for the neural communication channel and the code used between
two chemically, bidirectionally, connected non-noisy HR neurons. Panel a) The pair of
chemically connected neurons, where gn is the strength of the chemical coupling. Panel b) Ic, the
MIR of spiking-times MIRst, MIR of the maxima of the phases MIRmφ, MIR of the interspike
intervals MIRii and MIR of the firing rates MIRfr, respectively. Panels c) to f) p1, p2 as a function
of time (c)), the plane of phase variables (Φ1,Φ2) (d)) and, the data used to compute MIRii

(f)), where τi, i = 1, 2 are the interspike intervals of both neurons. Panels g) to j) similarly for
gn = 0.48 and panels k) to n) for gn = 1. In panel b), gn = 0.1 that corresponds to a case where
MIRmφ >MIRst, gn = 0.48 to a case where MIRii > Ic, MIRmφ and MIRst, and the case for
gn = 1 that corresponds to MIRst >MIRmφ.

results justify why MIRst >MIRmφ for gn = 0.48.
Finally, we focus on the third characteristic case in which MIRst >MIRmφ for gn = 1. The

situation here is quite different. Panel k) reveals a phenomenon in which the spike times and
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quiescent periods of both neurons are actually similar. Particularly, panel l) reveals that most of
the times, either when the first neuron spikes, the second spikes or when the first is in its quiescent
period, so is the second, showing a higher density of points in the upper right corner of the plot
(spike activity) and a smaller one in its lower left corner (quiescent period). In contrast, the plane
of phases in panel m) reveals there is no phase synchronization in their activity, as there are no
regions of high concentration as in the first case in which MIRmφ >MIRst. These results show
that the two neurons communicate by their spiking-times, i.e. they use a temporal neural code
in which the time of each spike conveys information that is transmitted to other neurons. Lastly,
panel n) exhibits an interspike activity mostly concentrated in the lower left corner of the plot and
less in the other three, a situation completely different to the behavior in panel j) of the second
case. MIRfr is seen here to attain the smaller value with respect to the other quantities, similarly
to the first case. These results justify why MIRmφ >MIRst for such coupling strengths.

3.2 Neural Codes for the Communication Between Two Noisy Neurons

We now study the same problem discussed in the previous section, in the presence of noise. We
consider the effect of additive Gaussian white noise in the performance of the neural codes intro-
duced in Subsec. 2.4. Our goal is to understand which neural code is more robust to the increase
of the noise strength σ, a case which is more close to realistic neural behavior [25, 29]. Particularly,
in the neural activity of variable p of each neuron, we add white Gaussian noise with standard
deviation σ to obtain its noisy signal p̄:

p̄ = p+ σN (0, 1), (7)

where N (0, 1) is the Gaussian distribution of zero mean and standard deviation equal to 1. We
then use such noisy data to compute the MIR of the different neural codes for different chemical
coupling strengths and noise strengths σ.

We plot the results of these computations in Fig. 2, in particular the MIR between the two
neurons in Fig. 1a), for different chemical coupling and three noise strengths. The first panel in Fig.
2 shows the same MIR quantities of Fig. 1b) but for σ = 0.4, the second for σ = 0.8 and the third
one for σ = 1.5. As the noise strength σ increases from zero, all MIR quantities start decreasing,
accept MIRfr, which remains practically unaffected by the increase of the noise strength! Figure 2
reveals also that even though for small noise strengths, MIRst, MIRmφ and MIRii are larger than
MIRfr, they are nevertheless considerably affected by the increase of the noise strength. On the
contrary, MIRfr proves to be consistently robust with respect to the increase of σ, even for values
as high as 1.5! This result underlines the importance of firing rates against temporal neural codes,
such as spiking-times or those based on the phase or interspike intervals, which all prove to be
more prone to noise contamination and to the transmission of smaller amounts of information per
unit of time with the increase of noise strength, leading thus to the decrease of their information
content.

3.3 Neural Codes in a Communication System of Four Neurons

Here, we extend the previous study in the case of a model of four bidirectionally connected non-
noisy HR neurons, which are chemically and electrically coupled as shown in Fig. 3a). The first
neuron is electrically connected with the third, whereas the first with the second and, the third
with the fourth are chemically connected. The strength of the electrical connection is given by
gl and of the chemical by gn. We aim to understanding which neural code is best suited for the
maximization of the rate of information-exchange for different coupling strengths and also, to which
pairs of neurons this can be attributed to. The first and third neurons are the intermediates for
the communication between the second and the fourth. We consider the setup of Fig. 3a) as a
communication system in which, information is transmitted through the connections and reaches
the different parts.

In the following, we study the four neural codes for the model of four non-noisy neurons in Fig.
3a). We plot in panels b) and c) the parameter spaces (gn, gl) for the MIRst of the spiking-times
and for the links that maximize the same quantity, respectively. The orange spots in panel b)
correspond to couplings that produce the largest amounts of MIRst whereas blue to regions with
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Figure 2: Results for the neural code used among two chemically connected noisy HR
neurons. Panel a) The MIR values of the different neural codes for noise strength σ = 0.4. Panel
b) is similar to a) but for noise strength σ = 0.8 and panel c) for σ = 1.5.

the smallest MIRst. The former occurs for relatively big chemical and electrical couplings whereas
the latter for very small electrical and, small to large chemical couplings. Panel c) reveals that,
depending on the coupling values, the largest amounts of MIRst are transmitted between different
pairs of neurons, giving rise to a complicated pattern in the parameter space (see Fig. 3). The
pattern however is characterized by mainly the pair of neurons 3,4 (red) for small chemical and
small to large electrical coupling strengths, by pair 1,2 (black) for comparatively small to large
chemical and small to large electrical coupling strengths, and by many smaller-sized regions of
different colours, such as blue, magenta, green and yellow that correspond to the other pairs of
neurons.

The parameter space for MIRmφ in panel d) is mainly dominated by red (that corresponds
to comparatively large values), a smaller blue region of moderately very low values and a smaller
orange region, for high chemical and electrical couplings, that corresponds to the highest observed
MIRmφ values in the parameter space. Similarly to panel c) (for MIRst), panel e) for the pairs of
neurons that maximize MIRmφ shows that, depending on the coupling values, the largest amounts
of MIRmφ are transmitted between different pairs of neurons, creating again a complicated pattern
in the parameter space, dominated mainly by the pair of neurons 3,4 (red) for small chemical and
small to large electrical coupling strengths, by pair 1,2 (black) for comparatively small to large
chemical and small to large electrical coupling strengths, and by many smaller-sized regions of
different colours, (i.e. blue, magenta, green and yellow) that correspond to the remaining pairs of
neurons.

The situation changes slightly in panel f) for MIRii of the interspike intervals where almost all
the parameter space is dominated by red (of moderately large MIRii values) with a few orange spots
(very large values) and blue spots (of very low MIRii values). The blue regions are considerably
smaller in size than the blue region of panel d). The case for the MIR of the interspike intervals,
MIRii, is also different with respect to the pairs of neurons for which MIRii is maximal. The
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Figure 3: Parameter spaces for the neural codes for four non-noisy HR neurons. Panel
a) The network of connections of the four neurons, where gn is the strength of the chemical and
gl of the electrical coupling. Panels b) and c) The parameter spaces for MIRst for the two nodes
that provide the largest MIR value and for the links that maximize the same quantity. Panels d)
and e) The parameter spaces for MIRmφ for the pair of nodes that exchange the largest amount of
MIR and for the links that maximize the same quantity. Panels f) and g) The parameter spaces
for MIRii between the two nodes that exchanges the largest value of MIR and for the links that
maximize the same quantity. Panels h) and i) The parameter spaces for MIRfr between the two
nodes that exchange the largest amount of MIR and for the links that maximize the same quantity.
In all cases, the notation i ↔ j in the legends indicates the bidirectional transfer of information
between neurons i and j.

parameter space of panel g) reveals completely different structural properties than those of panels
c) and e). Interestingly, the largest amounts of MIRii occur for all pairs accept 3,4 and, less
between 1 and 2, implying that the first and third neuron play mainly the role of the mediators in
the transmission of information in the system.

Finally, a similar situation is happening for MIRfr, with the parameter space in panel h) looking
more uniformly covered by red of moderately high MIRfr values and with a few quite small blue
spots of very low values. MIRfr seems to be much less depended on the coupling strengths though.
The parameter space for the links that maximize this quantity looks quite similar to the one for
MIRii, in the sense that the largest amounts of MIRfr are happening for all pairs accept 3,4 (red)
and, less between 1 and 2 (black), implying that the first and third neuron play again the role of
the mediators in the transmission of information in the system.

A comparison between the parameter spaces for the MIR quantities of Fig. 3 shows that
the highest amount of information exchanged per unit of time in the system can be attributed
to the neural codes of the maximum points of the phase MIRmφ and to the interspike inter-
vals, MIRii. This is occurring for chemical coupling strengths quite big and electrical moderately
smaller. Furthermore, the neural code based on the firing rates is practically unaffected by the
coupling strengths, even though its maximum values are smaller than the maximum values of the
neural codes based on the maximum points of the phase and interspike intervals. This result is in
agreement with the performance of the same neural code in the case of the two neurons of Sec.
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3.1, where it attained the lowest values of all other neural codes. Surprisingly, the pair of nodes
more likely to exchange the largest amount of information per unit of time using the interspike
interval and the frequency-rate codes are not adjacent in the network, whereas the spiking-time
and the phase-codes promote large exchange of information from adjacent nodes in the network.
This provides evidence for the non-local character of frequency-rate codes and local character of
precise spiking-time codes.

3.4 Neural Codes in a Network of Twenty Neurons in a Bottleneck
Configuration

In this section, we study the same neural codes in an extended model that comprises two identical
clusters of 10 HR, non-noisy, neurons each. For simplicity, the clusters have the same small-world
structure and their neurons are internally coupled with electrical connections of strength gl. This
construction is interesting as it resembles a bottleneck, in which the two clusters communicate with
themselves through the only link between the first and the eleventh neuron in the two clusters.
The bottleneck is represented by a single, chemical link with strength gn that connects the two
clusters. We used only one such inter-connection because this is the simplest case in which we know
that information travels from one cluster to the other through the only chemical link that forms
the bottleneck. Moreover, it allows us to draw interesting conclusions with regard to the neural
codes adopted by the neurons for different coupling strengths. Again, the network is undirected.
We present the structure of this model in Fig. 4a). Its construction is motivated by the modular
organization of the brain in which neurons are linked together to perform certain tasks and cognitive
functions, such as pattern recognition, function approximation, data processing, etc. Modular
processors have to be sufficiently isolated and dynamically differentiated to achieve independent
computations, but also globally connected to be integrated in coherent functions [31, 18]. The
structure in Fig. 4a) help us understand which neural code in modular neural networks is best
suited for the transmission of the largest amount of information per unit of time and for which
coupling strengths this occurs. Again, we treat the model in Fig. 4a) as a communication system
in which, information is transmitted through the links and reaches out to its different parts.

Figure 4: Parameter spaces for the neural codes between two chemically connected
non-noisy identical small-world electrically coupled clusters of 10 HR neurons each,
in a bottleneck configuration. Panel a) The two clusters of electrically connected neurons with
coupling strength gl and chemically interconnected with chemical intercluster strength gn. Panel
b) The parameter space for the MIR of spiking-times MIRst, Panel c) for the MIR of the maxima
of the phases MIRmφ, Panel d) for the MIR of the interspike intervals MIRii and Panel e) for the
MIR of the firing rates MIRfr, respectively. The colour indicates the maximal MIR value that any
two nodes exchange using a particular neural code.
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We study in Fig. 4 the four neural codes for the model in panel a). Panels b) and c) show the
parameter space (gn, gl) for the MIRst of the spiking-times and for the MIRmφ for the maximum
points of the phase, respectively. Orange corresponds to couplings that produce the largest amounts
of MIR values whereas blue or black to regions with the smallest MIR values. Red is for intermediate
MIR values. Panel b) for the MIR of the spiking-times, MIRst, reveals that the highest values can
be achieved for large chemical and intermediate electrical coupling strengths. For example, for
zero chemical coupling (i.e. gn = 0), MIRst is considerably smaller than that of much larger
gn around 1.4. This finding underlines the importance of the chemical connections among the
clusters that play the role of modular processors as they help the system transmit larger rates
of information when neurons exchange information by the precise spiking-times (temporal neural
code). In contrast to the behavior of MIRst, MIRmφ seems to perform more consistently in the
sense that the parameter space in panel c) is more uniformly red with a few orange hot spots of large
MIR values. Interestingly, this quantity becomes maximal again for large chemical and moderate
electrical coupling strengths, similarly to MIRst. The situation is similar for MIRii, where again it
becomes maximal for large chemical and moderate electrical coupling strengths. We note that the
maximum values of MIRii of the orange hot spots in panel d) are bigger by one order of magnitude
than the maximum MIR values in panels b) and c). Finally, the neural code based on the firing
rates, MIRfr, still shows the same dependence on the coupling strengths to achieve its maximum
values, even though these maximum values are smaller by one or two orders of magnitude with
respect to those of the other three neural codes. Lastly, for MIRfr, there are blue regions of very
small values, distributed evenly in all parts of the parameter space.

Comparing the behavior of the various neural codes, we conclude that the one based on the
firing rates seems to be less advantageous with respect to the maximum amounts of transmitted
information per unit of time of the rest. Our results suggest that it is more prominent for neurons
to use temporal codes or the maximum points of their phases to communicate the maximal rate
of information in modular neural networks, for chemical coupling strengths twice as that of the
electrical coupling.

4 Discussion

In this paper we have sought to study how information is encoded in neural activity as it is
crucial for understanding the computations underlying brain functions. Information is encoded by
patterns of activity within neural populations responsible for similar functions and the interest in
studying them is related to how the “neural code” can be read, mainly to understand how the
brain processes information to accomplish behavior and cognitive functions. Thus, investigating
the fundamental properties of neural coding in networks of spiking neurons may allow for the
interpretation of population activity and, for understanding better the limitations and abilities of
neural computations.

In line with this, we have studied neural coding in small networks of chemically and electrically
coupled Hindmarsh-Rose spiking neurons. We have introduced four such codes and their mathe-
matical methodologies to quantify the rate of information exchange for each code. We focused on
the mathematical fundamental aspects of the communication of neurons and based our study on
recorded action-potentials and phases to construct suitable map-representations to compute the
rate of information exchanged, quantities based on Mutual Information Rate. In the simplest case
of pairs of spiking neurons we have found that they exchange the largest amount of information
per unit of time by opting for a temporal code in which the time of each spike conveys information
which is transmitted to the other participating neuron. However, the case is different when noise
is present in the signals, in the sense that firing rates are those that can exchange large amounts
of information per unit of time with respect to temporal codes. We have also studied four chemi-
cally and electrically coupled neurons and found that the largest rates of information exchange are
attributed to the neural codes of maximum points of their phases and interspike intervals.

For a relatively larger network of 20 neurons arranged in two equally-sized small-world modules
forming a bottleneck, our work reveals that neurons choose a temporal code or the maximum
points of their phases to transmit the maximal rate of information for chemical coupling strengths
twice as that of the electrical coupling. Surprisingly, pairs of nodes that are likely to exchange
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the largest amount of information per unit of time using the interspike interval and frequency-rate
codes are not adjacent in the network, whereas the spiking-time and phase-codes promote large
exchange rate of information for adjacent neurons in the network. Our results provide evidence for
the non-local character of frequency-rate codes and local character of precise spiking-time codes in
modular dynamical networks of spiking neurons.

Finally, we have shown the importance of firing rates against temporal neural codes, such as
spiking-times or those based on the phase or interspike intervals, which all prove to be more prone
to noise contamination and to the transmission of smaller amounts of information per unit of time
with the increase of noise strength, leading thus to the loss of their information content.
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