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The introduction of first-class type classes in the Coq system calls for a re-examination of

the basic interfaces used for mathematical formalisation in type theory. We present a new set

of type classes for mathematics and take full advantage of their unique features to make

practical a particularly flexible approach that was formerly thought to be unfeasible. Thus,

we address traditional proof engineering challenges as well as new ones resulting from our

ambition to build upon this development a library of constructive analysis in which any

abstraction penalties inhibiting efficient computation are reduced to a minimum.

The basis of our development consists of type classes representing a standard algebraic

hierarchy, as well as portions of category theory and universal algebra. On this foundation,

we build a set of mathematically sound abstract interfaces for different kinds of numbers,

succinctly expressed using categorical language and universal algebra constructions.

Strategic use of type classes lets us support these high-level theory-friendly definitions, while

still enabling efficient implementations unhindered by gratuitous indirection, conversion or

projection.

Algebra thrives on the interplay between syntax and semantics. The Prolog-like abilities of

type class instance resolution allow us to conveniently define a quote function, thus

facilitating the use of reflective techniques.

1. Introduction

The development of libraries for formalised mathematics presents many software en-

gineering challenges (Cruz-Filipe et al. 2004; Haftmann and Wenzel 2008) because it is

far from obvious how the clean, idealised concepts of everyday mathematics should be

represented using the facilities provided by concrete theorem provers and their formalisms

in a way that is both mathematically faithful and convenient to work with.

For the algebraic hierarchy, which is a critical component in any library of formalised

mathematics, these challenges include: structure inference; the handling of multiple

inheritance; the equality of axiomatically posited and derived structure; the idiomatic

use of notations; support for models based on quotient representations; and convenient

algebraic manipulation (for example, rewriting). Several solutions have been proposed for

the Coq theorem prover: dependent records (Geuvers et al. 2002), which are also known

as telescopes; packed classes (Garillot et al. 2009); and, occasionally, modules. We present

† This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the

7th Framework program of the European Commission.
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a new solution based entirely on the use of Coq’s new type class facility to make fully

‘unbundled’ predicate representations of algebraic structures practical to work with.

Our development is not merely aimed at the formalisation of theory, and our choice of

a system based on type theory is no accident. It is our explicit ambition that the interfaces

and theory we develop be employed directly for the specification and parameterisation

of efficiently executable procedures and data structures, implemented using type theory’s

native term reduction as a programming language. Thus, our work belongs in the long

tradition of realising the promise of type theory to truly unite mathematical formalisation

and certified (functional) programming, without making painful sacrifices on either side.

Because our ‘ultimate’ goal is to use this development as a basis for constructive analysis

with practical certified exact real arithmetic, and because numerical structures are ideal

test subjects for our algebraic hierarchy, we shall use these to motivate and demonstrate

the key parts of our development. Since we are concerned with efficient computation, we

want to be able to swap effortlessly between implementations of number representations.

Doing this requires that we have clean abstract interfaces, and mathematics tells us what

these should look like: we represent �, �, and � as interfaces specifying an initial

semiring, an initial ring and a field of integral fractions, respectively. To express these

interfaces elegantly and without duplication, our development† includes an integrated

formalisation of parts of category theory and multi-sorted universal algebra, all expressed

using type classes for optimum effect.

In this paper we focus on the Coq proof assistant. We conjecture that the methods can

be transferred to any type theory based proof assistant supporting type classes, such as

Matita (Asperti et al. 2007).

Outline of the paper

In Section 2, we briefly describe the Coq system and its implementation of type classes.

Then, in Section 3, we give a very concrete introduction to the issue of bundling, arguably

the biggest design dimension when building interfaces for abstract structures. In Section 4,

we show how type classes can make practical the use of ‘unbundled’ purely predicate based

interfaces for abstract structures.

In the rest of the paper, we make a tour through the key components in our development,

leading up to the numerical interfaces. This will not only show the pleasant style of

formalisation that rigorous use of type classes enables, but will also show that an

eager adoption and incorporation of more abstract mathematical perspectives (which

are traditionally often ignored when doing dependently typed programming on concrete

data structures in type theory) is not only feasible but actually practical and beneficial.

In Section 5, we discuss our algebraic hierarchy implemented with type classes. In

Sections 6 and 7 we give a taste of what category theory and universal algebra look like

in our development, and in Section 8 we use these facilities to build abstract interfaces

for numbers. In order to illustrate a very different use of type classes, in Section 9, we

† The sources are available at http://www.eelis.net/research/math-classes/.
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discuss the implementation of a quoting function for algebraic terms in terms of type

classes. In Section 10, we hint at an interface for sequences, but describe how a limitation

in the current implementation of Coq makes its use problematic. Finally, we present our

conclusions in Section 11.

2. Preliminaries

The Coq proof assistant is based on the calculus of inductive constructions (Coquand

and Huet 1988; Coquand and Paulin 1990), which is a dependent type theory with

(co)inductive types (Bertot and Castéran 2004 and Coq Development Team 2008). In true

Curry–Howard fashion, it is both an excessively pure, if somewhat pedantic, functional

programming language with an extremely expressive type system, and a language for

mathematical statements and proofs. In the following sections we highlight some aspects

of Coq that are of particular relevance to our development.

2.1. Types and propositions

Propositions in Coq are types (Martin-Löf 1982; Martin-Löf 1998), which themselves

have types called sorts. Coq features a distinguished sort called Prop, which one may

choose to use as the sort for types representing propositions. The distinguishing feature of

the Prop sort is that terms of non-Prop type may not depend on the values of inhabitants

of Prop types (that is, proof terms). This regime of discrimination establishes a weak

form of proof irrelevance, in that changing a proof can never affect the result of value

computations. At a very practical level, this lets Coq safely erase all Prop components

when extracting certified programs to OCaml or Haskell.

Occasionally, there is some ambiguity as to whether a certain piece of information

(such as a witness to an existential statement) is strictly ‘proof matter’ (and thus belongs

in the Prop sort) or actually of further computational interest (and thus does not belong

to the Prop sort). We will see one such case when we discuss the first homomorphism

theorem in Section 7.3. Coq provides a modest level of universe-polymorphism so that we

may avoid duplication when trying to support Prop-sorted and non-Prop-sorted content

with a single set of definitions.

2.2. Equality, setoids and rewriting

The ‘native’ notion of equality in Coq is that of term convertibility, naturally reified as

a proposition by the inductive type family eq: ∀ (T: Type), T → T → Prop with single

constructor eq refl:

eq refl : ∀ (T: Type) (x: T), x ≡ x,

where ‘a ≡ b’ is notation for eq T a b. Here we diverge from Coq tradition and reserve

the ‘a = b’ notation for setoid equality (to be discussed below), as this is the equality we

will be working with most of the time.

Importantly, since convertibility is a congruence, a proof of a ≡ b lets us substitute b

for a anywhere inside a term without further conditions. We mention this explicitly only

http://journals.cambridge.org
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because such rewriting does give rise to conditions when we depart from raw convertibility

and introduce equivalence relations that express how possibly distinct (unconvertible)

terms may represent the same conceptual object. Rational numbers represented by (non-

reduced) formal integer fractions are a typical example. Rewriting a subterm using a proof

of such an equality is permitted only if the subterm is argument to a function that has

been proved to respect the equality. Such a function is called proper with respect to the

equality in question, and propriety must be proved for each function in whose arguments

we wish to enable rewriting.

Because the Coq type theory lacks quotient types (as it would make type checking

undecidable), one usually bases abstract structures on a setoid (‘Bishop set’): a type

equipped with an equivalence relation (Bishop 1967; Hofmann 1997; Barthe et al. 2003).

Palmgren (2009) shows that Bishop sets have pleasant categorical properties, which

translate to a powerful implicit type structure. It would be of interest to actually provide

machine support for this type structure. As we will see in Section 7, working with setoids

pays off when working with notions such as quotient algebras.

Effectively keeping track of, resolving and combining proofs of equivalence-ness and

propriety when the user attempts to substitute a given (sub)term using a given equality,

is known as ‘setoid rewriting’, and requires non-trivial infrastructure and support from

the system. The Coq implementation of these mechanisms was largely rewritten by

Matthieu Sozeau in order to make it more flexible and to replace the old special-

purpose setoid/morphism registration command with a clean type class based interface

(Sozeau 2009).

The algebraic hierarchy of the Ssreflect libraries (Garillot et al. 2009) uses an

alternative approach. It simply requires canonical representation of all objects, so that

setoid equality is not needed. Of course, this policy severely restricts the freedom one

has when implementing models of abstract structures. Indeed, for some sets, there are no

canonical representation schemes. The constructive reals, which are of particular interest

to us, are an example of such a set.

2.3. Type classes

Type classes (Wadler and Blott 1989) have been a great success story in the Haskell func-

tional programming language as a means of organising interfaces of abstract structures.

Coq’s type classes provide a superset of their functionality, but implemented in a different

way.

In Haskell and Isabelle, type classes and their instances are second class. They are

handled as specialised syntactic constructs whose semantics are given specifically by the

type class apparatus. By contrast, the expressivity of dependent types and inductive

families, as supported in Coq, combined with the use of pre-existing technology in

the system (namely proof search and implicit arguments) enable a first class type class

implementation (Sozeau and Oury 2008): classes are ordinary record types (‘dictionaries’);

instances are ordinary constants of these record types (registered as hints with the

proof search machinery); class constraints are ordinary implicit parameters; and instance

resolution is achieved by augmenting the unification algorithm to invoke ordinary proof
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search for implicit arguments of class type. Thus, type classes in Coq are realised using

relatively minor syntactic aids that bring together existing facilities of the theory and

the system into a coherent idiom, rather than by the introduction of a new category of

qualitatively different definitions with their own dedicated semantics.

The basic idea of using type-class-like facilities for structuring computerised mathem-

atics dates back to the AXIOM computer algebra system (Jenks et al. 1992). Weber

and Klaeren (1993) pursued the analogy between AXIOM’s so-called categories and

type classes in Haskell. Santas (1995) pursued analogies between type classes, AXIOM

categories and existential types. Existential types are present in Haskell, but absent from

Coq.

3. Bundling is bad

Algebraic structures are expressed in terms of a number of carrier sets, a number of

operations and relations on these carriers, together with a number of laws that the

operations and relations satisfy. In a system like Coq, we have different options when it

comes to representing the grouping of these components. At one end of the spectrum,

we can simply define the (conjunction of) laws as an n-ary predicate over n components,

forgoing explicit grouping altogether. For instance, for the mundane example of a reflexive

relation, we could use

Definition reflexive {A: Type} (R: relation A): Prop := ∀ a, R a a.

The curly brackets used for A mark it as an implicit argument.

More elaborate structures can also be expressed as predicates (expressing laws) over

a number of carriers, relations and operations. While optimally flexible in principle, in

practice, a naive adoption of this approach (that is, without using type classes) leads to

substantial inconveniences in actual use: when stating theorems about abstract instances of

such structures, one must enumerate all components along with the structure (predicate) of

interest. And when applying such theorems, one must either enumerate any non-inferrable

components, or let the system spawn awkward metavariables to be resolved at a later time.

Importantly, this also hinders proof search for proofs of the structure predicates, making

any non-trivial use of theorems a laborious experience. Finally, the lack of canonical names

for particular components of abstract structures makes it impossible for us to provide

them with idiomatic notations.

In the absence of type classes, these are all very real problems, and for this reason the

two largest formalisations of abstract algebraic structures in Coq today, CoRN (Cruz-

Filipe et al. 2004) and Ssreflect (Garillot et al. 2009), both use bundled representation

schemes, using records with one or more of the components as fields instead of parameters.

For reflexive relations, the following is a fully bundled representation, which represents

the other end of the spectrum:

Record ReflexiveRelation: Type :=

{ rr carrier: Type

; rr rel: relation rr carrier

; rr proof: ∀ x, rr rel x x }.
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Superficially, this instantly solves the problems described above: reflexive relations can

now be declared and passed as self-contained packages, and the rr rel projection now

constitutes a canonical name for relations that are known to be reflexive, and we could

bind a notation to it. While there is no conventional notation for reflexive relations, the

situation is the same in the context of, say, a semiring, where we would bind + and ∗
notations to the record field projections for the addition and multiplication operations,

respectively.

Unfortunately, despite its apparent virtues, the bundled representation introduces serious

problems of its own, the most immediate and prominent being a lack of support for

sharing components between structures, which is needed to cope with overlapping multiple

inheritance.

In our example, the lack of sharing support rears its head as soon as we try to

define EquivalenceRelation in terms of ReflexiveRelation and its hypothetical siblings

bundling symmetric and transitive relations. For this, we would need some way to make

sure that when we ‘inherit’ ReflexiveRelation, SymmetricRelation and TransitiveRelation

by adding them as fields in our bundled record, they all refer to the same carrier and

relation. Adding additional fields stating equalities between the three bundled carriers

and relations is neither easily accomplished (because one would need to work with

heterogenous equality) nor would it permit a natural use of the resulting structure

(because one would constantly have to rewrite things back and forth).

Manifest fields (Pollack 2002) have been proposed to address exactly this problem. In

fact, a semblance of this has been implemented in the Matita system (Sacerdoti Coen and

Tassi 2008). We hope to convince the reader that type system extensions like this, which

have been designed to mitigate particular symptoms of the bundled approach, are less

elegant than a solution (described in the next section) that avoids the problem altogether

by using predicate-like type classes in place of bundled records.

If we were to revert back to the predicate formulation of relations, we could still define

EquivalenceRelation in a bundled fashion without the need for equalities:

Record EquivalenceRelation: Type :=

{ er carrier: Type

; er rel: relation er carrier

; er refl: ReflexiveRelation er carrier er rel

; er sym: SymmetricRelation er carrier er rel

; er trans: TransitiveRelation er trans er rel }.

However, as before, we conclude that EquivalenceRelation, should also be a predicate.

Indeed, it would be rather strange for the interface of equivalence relations to differ

qualitatively from the interface of reflexive relations.

Another attempt to recover some grouping might be to bundle the carrier with the

relation into a (lawless) record, but this also hinders sharing. As soon as we try to

define an algebraic structure with two reflexive relations on the same carrier, we need

awkward hacks to establish equality between the carrier projections of two different

(carrier, relation) bundles.
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Even bundling just the operations of an algebraic structure together in a record (with

the carrier as a parameter) leads to the same problem when, for example, one attempts

to define a hypothetical algebraic structure with two binary relations and a constant such

that both binary relations form a monoid with the constant.

A second problem with bundling is that as the bundled records are stacked to represent

higher and higher structures, the projection paths for their components grow longer and

longer, resulting in ever more unwieldy terms (though coercions and notations can make

this less painful). Furthermore, if one tries to implement some semblance of sharing in

a bundled representation, these projection paths additionally become non-canonical, and

still more extensions have been proposed to address this symptom, for example, coercion

pullbacks (Asperti et al. 2009).

Thus, bundled representations come at a substantial cost in flexibility. Historically,

using bundled representations has, nevertheless, been an acceptable trade off, because:

(1) the unbundled alternative was such a pain; and

(2) the standard algebraic hierarchy (up to, say, fields and modules) is not all that wild.

In the next section, we show that type-classification of structure predicates and their

component parameters has the potential to remedy the problems associated with the naive

unbundled predicate approach.

One may wonder whether it might be beneficial to go one step further and unbundle

proofs of laws and inherited substructures as well. This is not the case, because there is no

point in sharing them. After all, by (weak) proof irrelevance, the ‘value’ of such proofs can

be of no consequence anyway. Indeed, parameterising on proofs would be actively harmful

because instantiations differing only in the proof argument would express the same thing

yet be non-convertible, requiring awkward conversions and hindering automation.

4. Predicate classes and operational classes

To show that the fully unbundled approach with structures represented by predicates

can be made feasible using type classes, we will tackle each of the problems traditionally

associated with their use, starting with those encountered during theorem application.

Suppose we have defined SemiGroup as a structure predicate as follows†:

Record SemiGroup (G: Type) (e: relation G) (op: G → G → G): Prop :=

{ sg setoid: Equivalence e

; sg ass: Associative op

; sg proper: Proper (e ⇒ e ⇒ e) op }.

Then by

(1) making SemiGroup a class (by replacing the Record keyword with the Class keyword),

† Note that defining SemiGroup as a record instead of as a straight conjunction does not make it any less of

a predicate. The record form is simply more convenient in that it immediately gives us named projections for

laws and substructures.
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(2) marking its proofs as instances (by replacing the Lemma keyword with the Instance

keyword), and

(3) marking the SemiGroup parameter of semigroup theorems as implicit (by using curly

instead of round brackets),

we no longer have to pass SemiGroup proofs around manually ourselves, letting instance

resolution do it for us instead. Because instance resolution is part of the unifier, this also

works when the statement of the theorem we wish to apply only mentions some of the

components (which admittedly does not make much sense for semigroups).

Next, we turn to problems concerning theorem declaration. Our ideal would be the

common mathematical vernacular, where one simply says:

Theorem: For x, y, z in a semigroup G, x ∗ y ∗ z = z ∗ y ∗ x.

(This silly statement allows us to present the syntax clearly.)

Without further support from the system, this would have to be written as

Theorem example G e op {P: SemiGroup G e op}:
∀ x y z, e (op (op x y) z) (op (op z y) x).

Because e and op are freshly introduced local names, we cannot bind notations to them

prior to this theorem. Hence, if we want notations, what we really need are canonical

names for these components. This is easily accomplished with single-field type classes

containing one component each, which we will call operational type classes‡:

Class Equiv A := equiv: relation A.

Class SemiGroupOp A := sg op: A → A → A.

Infix ”=” := equiv: type scope.

Infix ”&” := sg op (at level 50, left associativity).

We use & here, and reserve the notation ∗ for (semi)ring multiplication.

As an aside, note that the distinction between the class field name and the infix

operator notation bound to it is really just a mildly awkward Coq artifact. In Haskell,

where operators can themselves be used as names, there would be no need to have the

equiv and sg op names in addition to the operator ‘names’.

If we now retype SemiGroup as

∀ (G: Type) (e: Equiv G) (op: SemiGroupOp G), Prop

we can declare the theorem with

Theorem example G e op {P: SemiGroup G e op}:
∀ x y z, x & y & z = z & y & x.

This works because instance resolution, invoked by the use of = and &, will find e and

op, respectively. Hence, the above is really

‡ These single-field type classes are used in the same way in the Clean standard library (Brus et al. 1987).
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Theorem example G e op {P: SemiGroup G e op}:
∀ x y z, equiv e (sg op op (sg op op x y) z) (sg op op (sg op op z y) x).

where e and the ops are filled in by instance resolution.

At this point, a legitimate worry might be that the Equiv/SemiGroup classes and

their equiv/sg op projections imply constant construction and deconstruction of records,

harming the simplicity and flexibility of the predicate approach that we are trying so

hard to preserve. However, no such construction and destruction takes place because

type classes with only a single field are not desugared into an actual record with field

projections in the same way as classes with any other number of fields are. Instead,

both class itself and its field projection are defined as the identity function with a fancy

type. Thus, the introduction of these canonical names is essentially free; the structure

predicate’s new type reduces straight back to what it was before.

A remaining eyesore in the theorem declaration is the enumeration of e and op. To

remove these, we use a new parameter declaration feature called implicit generalisation,

which was introduced in Coq specifically to support type classes. Using implicit general-

isation, we can write

Theorem example ‘{SemiGroup G}: ∀ x y z: G, x & y & z = z & y & x.

The backtick tells Coq to insert implicit declarations of further parameters to SemiGroup

G, namely those declared as e and op above. It also lets us omit a name for the

SemiGroup G parameter itself. All of these will be given automatically generated names,

which we will never refer to.

Thus, we have reached the mathematical ideal we aimed for.

While we are on the topic of implicit generalisation, we should mention one inadequacy

concerning their current implementation that we feel should be addressed for the facility

to be a completely satisfying solution. While the syntax already supports variants (not

shown above) that differ in how exactly different kinds of arguments are inferred and/or

generalised, there is no support for an argument to be ‘inferred if possible, and generalised

otherwise’. The need for such a policy arises naturally when declaring a parameter of class

type in a context where some of its components are already available, while others are

to be newly introduced. The current workaround in these cases involves providing names

for components that are then never referred to, which is a bit awkward.

One aspect of the predicate approach we have not mentioned thus far is that in proofs

parameterised by abstract structures, all components become hypotheses in the context.

For the theorem above, the context looks like

G: Type

e: Equiv G

op: SemiGroupOp G

P: SemiGroup G e op

We are not particularly worried about overly large contexts, especially because most of

the ‘extra’ hypotheses we have compared with bundled approaches are declarations of

relations, operators and constants, which are all in some sense inert with respect to proof
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search. Hence, we do not foresee problems with large contexts for any but the most

complex formalisations.

4.1. Implicit syntax-directed algorithm composition

Before we proceed to discuss the algebraic hierarchy based on predicate classes and

operational classes, in this section we will briefly highlight one specific operational type

class because we will use it later, and because it is a particularly nice illustration of

another neat application of operational type classes. The operation in question is that of

deciding a proposition:

Class Decision (P: Prop): Type := decide: sumbool P (¬ P).

Here, sumbool is just the (informative) sum of proofs.

Decision is a very general-purpose type class, which also works for predicates. For

instance, to declare a parameter expressing decidability of, say, (setoid) equality on a type

X, we write ‘{∀ a b: X, Decision (a = b)}. To then use this (unnamed) decider to decide

a particular equality, we simply say decide (x = y), and instance resolution will resolve

the decider we declared.

With Decision as a type class, we can very easily define composite deciders for things

like conjunctions and quantifications over (finite) domains:

Instance decide conj ‘{Decision P} ‘{Decision Q}: Decision (P ∧ Q).

With these in place, we can just say decide (x = y ∧ p = q) and let instance resolution

automatically compose a decision procedure that can decide the specified proposition.

This style of syntax-directed implicit composition of algorithms is very convenient and

highly expressive.

5. The algebraic hierarchy

We have developed an algebraic hierarchy composed entirely out of predicate classes

and operational classes as described in the previous section. For instance, our semiring

interface looks as follows:

Class SemiRing A {e: Equiv A}
{plus: RingPlus A} {mult: RingMult A}
{zero: RingZero A} {one: RingOne A}: Prop :=

{ semiring mult monoid:> CommutativeMonoid A (op:=mult)(unit:=one)

; semiring plus monoid:> CommutativeMonoid A (op:=plus)(unit:=zero)

; semiring distr:> Distribute mult plus

; semiring left absorb:> LeftAbsorb mult zero }.

All of Equiv, RingPlus, RingMult, RingZero and RingOne are operational (single-field)

classes, with bound notations =, +, ∗, 0 and 1, respectively. We will now briefly highlight

some additional aspects of this style of structure definition in more detail.
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Integral Domain Field

Group

Monoid

Setoid

Semi Group

Ring

Commutative Monoid AbGroup

SemiRing

Fig. 1. Inheritance diagram

Fields declared with :> are registered as hints for instance resolution, so that in any

context where (A, =, +, 0, ∗, 1) is known to be a SemiRing, (A, =, +, 0) and (A, =, ∗, 1)

are automatically known to be CommutativeMonoids (and so on, transitively, because

instance resolution is recursive). In our hierarchy, these substructures by themselves

establish the inheritance diagram in Figure 1.

However, we can easily add additional inheritance relations by declaring corresponding

class instances. For instance, while our Ring class does not have a SemiRing field, the

following instance declaration has the exact same effect for the purposes of instance

resolution (at least once proved, which is trivial):

Instance ring as semiring ‘{Ring R}: SemiRing R.

Thus, axiomatic structural properties and inheritance have precisely the same status as

separately proved structural properties and inheritance, reflecting natural mathematical

ideology. Again, contrast this with bundled approaches, where axiomatic inheritance

relations determine projection paths, and where additional inheritance relations re-

quire rebundling and lead to additional and ambiguous projection paths for the same

operations.

The declarations of the two inherited CommutativeMonoid structures in SemiRing

nicely illustrate how predicate classes naturally support not just multiple inheritance, but

overlapping multiple inheritance, where the inherited structures may share components

(in this case carrier and equivalence relation). The carrier A, being an explicit argument,

is specified as normal. The equivalence relation, being an implicit argument of class type,

is resolved automatically to e. The binary operation and constant would normally be

automatically resolved as well, but we override the inference mechanism locally using Coq’s

existing named argument facility (which is only syntactic sugar of the most superficial
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kind) in order to explicitly pair multiplication with 1 for the first CommutativeMonoid

substructure, and addition with 0 for the second CommutativeMonoid substructure. Again,

contrast this with type system extensions such as Matita’s manifest records, which are

required to make this work when the records bundle components such as op and unit as

fields instead of parameters.

Since CommutativeMonoid indirectly includes a SemiGroup field, which in turn includes

an Equivalence field, having a SemiRing proof means having two distinct proofs

that the equality relation is an equivalence. This kind of redundant knowledge (which

arises naturally) is never a problem in our setup, because the use of operational type

classes ensures that terms composed of algebraic operations and relations never refer

to structure proofs. We find this to be a tremendous relief compared with approaches

that do intermix the two and where one must be careful to ensure that such terms

refer to the right proofs of properties. There, even strong proof irrelevance (which would

make terms convertible that differ only in what proofs they refer to) would not make

these difficulties go away entirely, because high-level tactics that rely on quotation of

terms require syntactic identity (rather than ‘mere’ convertibility) to recognise identical

subterms.

Because predicate classes only provide contextual information and are insulated from

the actual algebraic expressions, their instances can always be kept entirely opaque – only

their existence matters. Together, these properties largely defuse an argument occasionally

voiced against type classes concerning a perceived unpredictability of instance resolution.

While it is certainly true that in contexts with redundant information it can become hard

to predict which instance of a predicate class will be found by proof search, it simply

does not matter which one is found. Moreover, for operational type classes, the issue

rarely arises because their instances are not nearly as abundant, and are systematically

shared.

We use names for properties like distributivity and absorption, because these are

type classes as well (which is why we declare their instances with :>). It has been our

experience that almost any generic predicate worth naming is worth representing as a

predicate type class so that its proofs will be resolved as instances behind the scenes

whenever possible. Doing this consistently minimises administrative noise in the code,

bringing us closer to ordinary mathematical vernacular. Indeed, we believe that type

classes provide an elegant and apt formalisation of the seemingly casual manner in

which ordinary mathematical presentation assumes implicit administration and use of a

‘database’ of properties previously proved.

The operational type classes used in SemiRing for zero, one, multiplication and addition,

are the same ones used by Ring and Field (not shown). Thus, the realisation that a

particular semiring is in fact a ring or field has no bearing on how one refers to the

operations in question, which is as it should be. However, the realisation that a particular

semigroup is part of a semiring does call for a new (canonical) name, simply because of

the need for disambiguation. The introduction of these additional names for the same

operation is quite harmless in practice, because canonical names established by operational

type class fields are identity functions, so in most contexts the distinction reduces away

instantly.
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The hierarchy of predicate classes for the abstract structures themselves is mirrored by

a hierarchy of predicate classes for morphisms. For instance

Context ‘{Monoid A} ‘{Monoid B}.

Class Monoid Morphism (f: A → B) :=

{ monmor from: Monoid A

; monmor to: Monoid B

; monmor sgmor:> SemiGroup Morphism f

; preserves mon unit: f mon unit = mon unit }.

Some clarification is in order to explain the role of the Context declaration of the

two monoids. While Monoid Morphism appears to depend on monoid-ness proofs (which

would be a gross violation of our idiom), in fact, it is only parameterised on the monoid

components declared through implicit generalisation of the Monoid declarations, because

it only refers to those. Here, we use declarations of predicate class parameters merely as

convenient shorthands to declare their components.

Notice that f is not made into an operational type class. The reason for this is that

the role of f is analogous to the carrier type in the previous predicate class definitions in

that it serves as the primary identification for the structure, and should therefore not be

inferred.

We include the monmor to and monmor from fields because it does not make much

sense to talk about monoid morphisms between non-monoids, and having these fields

removes the need for Monoid class constraints when we are already parameterising

definitions or theory on a Monoid Morphism. On the other hand, we will also wish to

talk about monoid morphisms between known monoids, and in these cases the fields

will be strictly redundant. As mentioned earlier, it is a strength of our approach that

such redundant knowledge is entirely harmless, so we may freely posit these structural

properties whenever they make sense and provide convenience, and without risking

rebundling tar-pits or projection path ambiguities down the line.

Unfortunately, there is actually an annoying wrinkle here, which also explains why we

do not register these two fields as instance resolution hints (by declaring them with :>).

What we really want these fields to express is ‘if in a certain context we know something

to be a Monoid Morphism, then realise that the source and target are Monoids’. However,

the current instance resolution implementation has little support for this style of forward

reasoning, and is really primarily oriented towards backward reasoning: had we registered

monmor to and monmor from as instance resolution hints, we would in fact be saying

‘if trying to establish that something is a Monoid, then try finding a Monoid Morphism

to or from it’, which quickly degenerates into a wild goose chase. We will return to this

point in Section 11.

Having described the basic principles of our approach, in the remainder of this paper

we present a tour around other parts of our development, further illustrating what a state

of the art formal development of foundational mathematical structures can look like with

a modern proof assistant based on type theory.
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These parts were originally motivated by our desire to express cleanly the interfaces for

basic numeric data types such as � and � in terms of their categorical characterisation as

initial objects in the categories of semirings and rings, respectively. We will start, therefore,

with basic category theory.

6. Category theory

Following our idiom, we introduce operational type classes for the components of a

category:

Class Arrows (O: Type): Type := Arrow: O → O → Type.

Class CatId O ‘{Arrows O} := cat id: ‘(x −→ x).

Class CatComp O ‘{Arrows O} :=

comp: ∀ {x y z}, (y −→ z) → (x −→ y) → (x −→ z).

Infix ”−→ ” := Arrow (at level 90, right associativity).

Infix ”�” := comp (at level 40, left associativity).

(The categorical arrow is distinguished from the primitive function space arrow by its

length.)

With these in place, our type class for categories follows the usual type-theoretical

definition of a category (Huet and Saibi 1995):

Class Category (O: Type) ‘{Arrows O} ‘{∀ x y: O, Equiv (x −→ y)}
‘{CatId O} ‘{CatComp O}: Prop :=

{ arrow equiv:> ∀ x y, Setoid (x −→ y)

; comp proper:> ∀ x y z, Proper (equiv ⇒ equiv ⇒ equiv) comp

; comp assoc w x y z (a: w −→ x) (b: x −→ y) (c: y −→ z):

c � (b � a) = (c � b) � a

; id l ‘(a: x −→ y): cat id � a = a

; id r ‘(a: x −→ y): a � cat id = a }.

This definition is based on the 2-categorical idea of having equality only on arrows, and

not on objects.

Initiality, too, is defined by a combination of an operational and a predicate class:

Context ‘{Category X}.
Class InitialArrows (x: X): Type := initial arrow: ∀ y, x −→ y.

Class Initial (x: X) ‘{InitialArrows x}: Prop :=

initial arrow unique: ∀ y (a: x −→ y), a = initial arrow y.

The operational class InitialArrows designates the arrows that originate from an initial

object x by virtue of it being initial. The Initial class itself further requires these ‘initial

arrows’ to be unique. Having InitialArrows as an operational type class means that we

can always simply say initial arrow y whenever y is known to be an object in a category

known to have an initial object (where ‘known’ should be read as ‘can be determined by

instance resolution’).
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Strictly speaking, the above is all we need in order to continue with the story line

leading up to the numerical interfaces, but just to give a further taste of what category

theory with this setup looks like in practice, we briefly mention a few more definitions

and theorems.

6.1. Functors

In our definition of functors, we again see the by now familiar refrain:

Context ‘{Category C} ‘{Category D} (map obj: C → D).

Class Fmap: Type :=

fmap: ∀ {v w: C}, (v −→ w) → (map obj v −→ map obj w).

Class Functor ‘{Fmap}: Prop :=

{ functor from: Category C

; functor to: Category D

; functor morphism:> ∀ a b: C, Setoid Morphism (@fmap a b)

; preserves id: ‘(fmap (cat id: a −→ a) = cat id)

; preserves comp ‘(f: y −→ z) ‘(g: x −→ y):

fmap (f � g) = fmap f � fmap g }.

We ought to say a few words about our use of fmap. The usual mathematical notational

convention for functor application is to use the name of the functor to refer to both its

object map and its arrow map, relying on additional conventions regarding object/arrow

names for disambiguation: F x and F f map an object and an arrow, respectively, because

x and f are conventional names for objects and arrows, respectively.

In Coq, for a term F to function as though it has two different types simultaneously

(namely, the object map and the arrow map), either:

(1) there must be coercions from the type of F to either function, or

(2) F must be (coercible to) a single function that is able to consume both object and

arrow arguments.

In addition to not being supported by Coq, option (1) would violate our policy of

leaving components unbundled.

For (2), if it could be made to work at all, F would need a pretty egregious type

considering that arrow types are indexed by objects, and that the type of the arrow map

∀ x y, (x −→ y) → (F x −→ F y)

must refer to the object map.

We feel that these issues are not limitations of the Coq system, but merely reflect

the fact that notationally identifying these two distinct and interdependent maps is an

abuse of notation of sufficient severity to make it ill-suited to a formal development

where software engineering concerns apply. Hence, we do not adopt this practice, and use

fmap F (which is a name taken from the Haskell standard library) to refer to the arrow

map of a functor F.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Jul 2012 IP address: 131.174.17.23

B. Spitters and E. van der Weegen 810

6.2. Natural transformations and adjunctions

We introduce a convenient notation for the type of the computational content of a natural

transformation between two functors:

Notation ”F =⇒ G” := (∀ x, F x −→ G x).

We now assume the following context:

Context ‘{Category C} ‘{Category D}
‘{Functor (F: C → D)} ‘{Functor (G: D → C)}.

The naturality property is easy to write:

Class NaturalTransformation (η: F =⇒ G): Prop :=

{ naturaltrans from: Functor F

; naturaltrans to: Functor G

; natural: ∀ ‘(f: x −→ y), η y � fmap F f = fmap G f � η x }.

Adjunctions can be defined in different ways – a nice symmetric definition is

Class Adjunction (φ: ∀ ‘(F c −→ d), (c −→ G d)): Prop :=

{ adjunction left functor: Functor F

; adjunction right functor: Functor G

; natural left ‘(f: d −→ d’) c: (fmap G f �) ◦ φ = φ(c:=c) ◦ (f �)

; natural right ‘(f: c’ −→ c) d: (� f) ◦ φ(d:=d) = φ ◦ (� fmap F f) }.

An alternative definition is

Class AltAdjunction (η: id =⇒ G ◦ F) (φ: ∀ ‘(f: c −→ G d), F c −→ d): Prop :=

{ alt adjunction natural unit: NaturalTransformation η

; alt adjunction factor: ∀ ‘(f: c −→ G d),

is sole ((f =) ◦ (� η c) ◦ fmap G) (φ f) }.

Formalising the (non-trivial) proof that these two definitions are equivalent provides a

nice test for our definitions. As a first step, we have constructed the unit and co-unit

of the adjunction, thereby proving Mac Lane’s Theorem 1 (Mac Lane 1998) – we have

followed his proof concisely and closely.

7. Universal algebra

To specify the natural numbers and the integers as initial objects in the categories of

semirings and rings, respectively, definitions of these categories are needed. While one

could define both of them manually, greater economy can be achieved by recognising that

both semirings and rings can be defined by equational theories, for which varieties can be

defined generically. Varieties are categories consisting of models for a fixed theory with

homomorphisms between them.

To this end, we have formalised some of the theory of multisorted universal algebra

and equational theories. We chose not to revive existing formalisations (Capretta 1999;

Domınguez 2008) of universal algebra, because an important aim for us has been to find
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out what level of elegance, convenience and integration can be achieved by leveraging the

state of the art in Coq facilities (of which type classes are the most important example).

7.1. Signatures and algebras

A multisorted signature enumerates sorts and operations, and specifies the ‘types’ of

the operations as non-empty lists of sorts, where the final element denotes the result

type:

Inductive Signature: Type :=

{ sorts: Set

; operation:> Set

; operation type:> operation → ne list sorts }.

Given an interpretation of the sorts (mapping each symbolic sort to a carrier type),

interpretations of the operations are easily represented by an operational type class:

Variables (σ: Signature) (carriers: sorts σ → Type).

Class AlgebraOps :=

algebra op: ∀ o: operation σ, fold (→) (map carriers (operation type σ o)).

Because our carriers will normally be equipped with a setoid equality, we further define

the predicate class Algebra, stating that each of the operations respects the setoid equality

on the carriers:

Class Algebra ‘{∀ a, Equiv (carriers a)} ‘{AlgebraOps}: Prop :=

{ algebra setoids:> ∀ a, Setoid (carriers a)

; algebra propers:> ∀ o: σ, Proper (=) (algebra op o) }.

The (=) referred to in algebra propers is an automatically derived Equiv instance

expressing setoid-respecting extensionality for the function types produced by the fold in

AlgebraOps.

We do not unbundle Signature because it represents a triple that will always be

specifically constructed for subsequent use with the universal algebra facilities. We have

no ambition to recognise signature triples ‘in the wild’, nor will we ever talk about multiple

signatures sharing sort- or operation enumerations.

7.2. Equational theories and varieties

In order to characterise such structures as semirings and rings adequately, we need not

just a signature that enumerates and gives the types of their operations, but also a

specification of the axioms (laws) that these operations must satisfy. For this, we define

EquationalTheory as a signature together with a set of laws, the latter represented by a

predicate over equality entailments:

Record EquationalTheory :=

{ eqt sig:> Signature

; eqt laws:> EqEntailment eqt sig → Prop }.
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An EqEntailment consists of premises and a conclusion represented by an inductively

defined statement grammar, which in turn uses an inductively defined term grammar.

However, a detailed discussion of these definitions and the theory developed for them is

beyond the scope of this paper.

We now introduce a predicate class designating algebras that satisfy the laws of an

equational theory:

Class InVariety

(et: EquationalTheory) (carriers: sorts et → Type)

{e: ∀ a, Equiv (carriers a)} ‘{AlgebraOps et carriers}: Prop :=

{ variety algebra:> Algebra et carriers

; variety laws: ∀ s, eqt laws et s → (∀ vars, eval stmt et vars s) }.

We still need to show that carrier sets together with Equivs and AlgebraOps satisfying

InVariety for a given EquationalTheory do indeed form a Category (the ‘variety’). Since

we need a type for the objects in the Category, at this point we have no choice but to

bundle components and proof together in a record:

Variable et: EquationalTheory.

Record ObjectInVariety: Type := object in variety

{ variety carriers:> sorts et → Type

; variety equiv: ∀ a, Equiv (variety carriers a)

; variety op: AlgebraOps et variety carriers

; variety proof: InVariety et variety carriers }.

The arrows will be homomorphisms, which are also defined generically for any equational

theory:

Instance: Arrows Object := λ X Y: Object ⇒ sig (HomoMorphism et X Y).

The instance definitions for identity arrows, arrow composition, arrow setoid equality

and composition propriety are all trivial, as is the final Category instance:

Instance: Category ObjectInVariety.

In addition to this variety category, we also have categories of lawless algebras, as well

as forgetful functors from the former to the latter, and from the latter to the category of

setoids.

7.3. The first homomorphism theorem

To give a further taste of what universal algebra in our development looks like, we consider

the definitions involved in the first homomorphism theorem (Meinke and Tucker 1993)

in more detail.

Theorem 7.1 (first homomorphism theorem). If A and B are algebras, and f is a

homomorphism from A to B, then the equivalence relation ∼ defined by ‘a ∼ b ↔
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f(a) = f(b)’ is a congruence on A, and the quotient algebra A/∼ is isomorphic to the

image of f, which is a subalgebra of B.

A set of relations e (one for each sort) is a congruence for an existing algebra if:

(1) e respects that algebra’s existing setoid equality, and

(2) the operations with e again form an algebra (namely the quotient algebra):

Context ‘{Algebra σ A}.
Class Congruence (e: ∀ s: sorts σ, relation (v s)): Prop :=

{ congruence proper:> ∀ s, Proper (equiv ⇒ equiv ⇒ iff) (e s)

; congruence quotient:> Algebra σ v (e:=e) }.

We have proved that this natural and economical type-theoretic formulation, which

leverages our systematic integration of setoid equality, is equivalent to the traditional

definition of congruences as relations that, represented as sets of pairs, form a subalgebra

of the product algebra.

For the homomorphism theorem, we begin by declaring our dramatis personae:

Context ‘{HomoMorphism σ A B f}.

With ∼ defined as indicated, the first part of the proof is simply the definition of the

following instance:

Instance co: Congruence σ (∼).

For the second part, we describe the image of f as a predicate over B, and show that it

is closed under the operations of the algebra:

Definition image s (b: B s): Type := sigT (λ a ⇒ f s a = b).

Instance: ClosedSubset image.

The sigT type constructor is a Type-sorted existential quantifier. ClosedSubset is defined

elsewhere as

Context ‘{Algebra σ A} (P: ∀ s, A s → Type).

Class ClosedSubset: Type :=

{ subset proper: ∀ s x x’, x = x’ → iffT (P s x) (P s x’)

; subset closed: ∀ o, op closed (algebra op o) }.

Here, op closed is defined by recursion over the symbolic operation types.

The reason we define image and ClosedSubset in Type rather than in Prop is that

since the final goal of the proof is to establish an isomorphism in the category of -algebras

(where arrows are algebra homomorphisms), we will eventually need to map elements in

the subalgebra defined by image back to their pre-image in A.

However, there are contexts (in other proofs) where Prop-sorted construction of

subalgebras really is appropriate. Unfortunately, Coq’s universe polymorphism is not

yet up to the task of letting us use a single set of definitions to handle both cases. In

particular, there is no universe polymorphism for ordinary definitions (as opposed to
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inductive definitions) yet. We will return to this point later. In our development, we have

two sets of definitions, one for Prop and one for Type, resulting in duplication of about

a hundred lines of code.

For the main theorem, we now bundle the quotient algebra and the subalgebra into

records akin to ObjectInVariety from Section 7.2:

Definition quot obj: algebra.Object σ:=

algebra.object σA (algebra equiv:=(∼)).

Definition subobject: algebra.Object σ :=

algebra.object σ(ua subalgebraT.carrier image).

Here, algebra is the module defining the bundled algebra record Object with constructor

object. The module ua subalgebraT constructs subalgebras.

Finally, we define a pair of arrows between the two and show that these arrows form

an isomorphism:

Program Definition back: subobject −→ quot obj

:= λ X ⇒ projT1 (projT2 X).

Program Definition forth: quot obj −→ subobject

:= λ a X ⇒ existT (f a X) (existT X (reflexivity )).

Theorem first iso: iso arrows back forth.

The Program command generates proof obligations (not shown) expressing the fact that

these two arrows are indeed homomorphisms. The proof of the theorem itself is trivial.

8. Numerical interfaces

EquationalTheory’s for semirings and rings are easy to define, and so from Section 7.2

we get corresponding categories in which we can postulate initial objects:

Class Naturals (A: ObjectInVariety semiring theory) ‘{InitialArrow A}: Prop :=

{ naturals initial:> Initial A }.

Although succinct, this definition is not a satisfactory abstraction because the use of

ObjectInVariety for the type of the A component ‘leaks’ the fact that we used this one

particular universal algebraic construction of the category, which is just an implementation

choice. Furthermore, this definition needs an additional layer of class instances to relate

it to the SemiRing class from our algebraic hierarchy.

What we really want to say is that an implementation of the natural numbers ought

to be an a priori SemiRing that, when bundled into an ObjectInVariety semiring theory,

is initial in said category. This is a typical example where conversion functions between

concrete classes such as SemiRing and instantiations of more abstract classes such as

InVariety and Category are required in our development in order to leverage and apply

concepts and theory defined for the latter to the former. While sometimes a source of some

tension in that these conversions are not yet applied completely transparently whenever
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needed, the ability to move between ‘down to earth’ and ‘high in the sky’ perspectives on

the same abstract structures has proved invaluable in our development, and we will give

more examples of this in a moment.

Taking these conversion functions for granted, we will also need a ‘down to earth’

representation of the initiality arrows if we are to give a SemiRing-based definition of

the interface for natural numbers. Once again, we introduce an operational type class to

represent this particular component:

Class NaturalsToSemiRing (A: Type) :=

naturals to semiring: ∀ B ‘{RingMult B} ‘{RingPlus B} ‘{RingOne B}
‘{RingZero B}, A → B.

The instance for nat is defined as follows:

Instance nat to semiring: NaturalsToSemiRing nat :=

λ ⇒ fix f (n: nat) := match n with 0 ⇒ 0 | S m ⇒ f m + 1 end.

To use NaturalsToSemiRing with Initial, we define an additional conversion in-

stance that takes a NaturalsToSemiRing along with a proof showing that it yields

SemiRing Morphisms and builds an InitialArrow instance out of it. This conversion in-

stance in turn invokes another conversion function that translates concrete

SemiRing Morphism proofs into univeral algebra Homomorphisms instantiated with

the semiring signature, which make up the arrows in the category.

With these instances in place, we can now define the improved natural numbers

specification:

Context ‘{SemiRing A} ‘{NaturalsToSemiRing A}.
Class Naturals: Prop :=

{ naturals ring:> SemiRing A

; naturals to semiring mor:> ∀ ‘{SemiRing B},
SemiRing Morphism (naturals to semiring A B)

; naturals initial:> Initial (bundle semiring A) }.

Basing theory and programs on this abstract interface instead of on a specific imple-

mentation (such as the ubiquitous Peano naturals nat in the Coq standard library) is not

only cleaner mathematically, but also facilitates easy swapping between implementations.

And this benefit is far from theoretical, as diverse representations of the natural numbers

abound; for instance, unary, binary, factor multisets and arrays of native machine words.

Since initial objects in categories are isomorphic, we can easily derive the fact that

naturals to semiring gives isomorphisms between different Naturals implementations:

Lemma iso naturals ‘{Naturals A} ‘{Naturals B}:
∀ a: A, naturals to semiring B A (naturals to semiring A B a) = a.

This is very useful because some properties of naturals are more easily proved, and oper-

ations on them more easily defined, for concrete implementations (such as nat) and then

lifted to the abstract Naturals interface so that they work for arbitrary implementations.

For example, while showing decidability directly for an arbitrary Naturals implementation
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is tricky, it is very easy to show decidability for nat. Using iso naturals, the latter can be

very straightforwardly used to implement the former.

To lift properties such as injectivity of partially applied addition and multiplication

from nat to arbitrary Naturals implementations, we take a longer detour. As part of our

universal algebra theory, we have proved that proofs of statements in the language of an

equational theory can be transferred between isomorphic implementations. Hence, we can

transfer proofs of such statements between implementations of Naturals, requiring only

that we reflect the concrete statement (expressed in terms of the operational type classes)

to a symbolic statement in the language of semirings. We intend eventually to make this

reflection completely automatic using type class based quotation techniques along the

lines of those described in Section 9.

Thanks to our close integration of universal algebra, we can actually obtain a Naturals

implementation completely automatically by invoking a generic construction of initial

models built from the closed term algebra for the signature along with a setoid equality

expressing the congruence closure of the identities in the equational theory. However,

this implementation is not very useful, neither in terms of efficiency, nor as a canonical

implementation (to be used as the basis for theory and programs that are then subsequently

lifted). For example, defining a normalisation procedure to decide the aforementioned

setoid equality is far harder than deciding equality for, say, nat.

8.1. Specialisation

The generic Decision instance for Naturals equality implemented by mapping to nat

will typically be far less efficient than a specialised implementation for a particular

representation of the natural numbers. Fortunately, with Coq’s type classes, it is no

problem for instances overlapping in this way to co-exist. We can even deprioritise the

generic instance so that instance resolution will always pick the specialisation when the

representation is known.

To permit a generic function operating on naturals to take advantage of specialised

operations, we simply introduce an additional instance parameter:

Definition calculate things ‘{Naturals N} ‘{∀ n m: N, Decision (n = m)}
(a b: nat): ... := ... decide (a = b) ... .

Without the Decision parameter, calculate things would be equally correct, but could

be less efficient. Thus, using this scheme, one can start by writing correct-but-possibly-

inefficient programs that make use of generic operation instances, and then selectively

improve efficiency of key algorithms simply by adding additional operational type class

instance parameters where profiling shows it to make a significant difference, and without

changing their definition body.

Other examples of operations on natural numbers that are sensible choices for

specialisation include subtraction, distance, and division and multiplication by 2.

8.2. Integers, rationals and polynomials

The abstract interface for integers is completely analogous to the one for natural numbers:
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Context ‘{Ring A} ‘{IntegersToRing A}.
Class Integers: Prop :=

{ integers ring:> Ring A

; integers to ring mor:> ∀ ‘{Ring B},
Ring Morphism (integers to ring A B)

; integers initial:> Initial (ring.object A) }.

The rationals are characterised as a decidable field with an injective ring morphism

from a canonical implementation of the integers and a surjection of fractions of such

integers:

Context ‘{Field A} ‘{∀ x y: A, Decision (x = y)} {inj inv}.
Class Rationals: Prop :=

{ rationals field:> Field A

; rationals frac: Surjective

(λ p ⇒ integers to ring (Z nat) A (fst p) ∗
/ integers to ring (Z nat) A (snd p)) (inv:=inj inv)

; rationals embed ints: Injective (integers to ring (Z nat) A) }.

Here, Z is an Integers implementation paramerised by a Naturals implementation, for

which we just take nat. The choice of Z nat here is immaterial; we could have picked

another, or even a generic, implementation of Integers, but doing so would provide no

benefit.

In our development, we prove that the standard library’s default rationals do indeed

implement Rationals, as do implementations of the QType module interface. While

the latter is rather ad hoc from a theoretical perspective, it is nevertheless of great

practical interest because it is used for the very efficient BigQ rationals based on machine

integers (Armand et al. 2010). Hence, the theory and programs developed on our Rationals

interface applies and we can make immediate use of these efficient rationals. We plan to

rebase the computable real number implementation (O’Connor 2008) on this interface,

precisely so that it may be instantiated with efficient implementations like these.

We also plan to provide an abstract interface for polynomials as a free commutative

algebra. This would unify existing implementations such as coefficient lists and Bernstein

polynomials – see Zumkeller (2008) for the latter.

9. Quoting with type classes

A common need when interfacing generic theory and utilities developed for algebraic

structures (such as normalisation procedures) with concrete instances of these structures

is to take a concrete expression or statement in a model of a particular algebraic structure,

and translate it to a symbolic expression or statement in the language of the algebra’s

signature so that its structure can be inspected.

Traditionally, proof assistants such as Coq have provided sophisticated tactics or built-

in commands to support such quoting. Unification hints (Asperti et al. 2009), a very

general way of facilitating user-defined extensions to term and type inference, can be
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used to semi-automatically build quote functions without dropping to a meta-level†. This

feature is absent from Coq, but, fortunately, type classes also allow us to do this, as we

will now show.

For ease of presentation, we will only show a proof of concept for a very concrete

language. We are currently working to integrate this technique with our existing universal

algebra infrastructure. In particular, the latter’s term data type should be ideally suited

to serve as a generic symbolic representation of terms in a wide class of algebras. This

should let us implement the basic setup of the technique once and for all so that quotation

for new algebraic structures can be enabled with minimal effort.

For the present example, we define an ad hoc term language for monoids:

Inductive Expr (V: Type) := Mult (a b: Expr V) | One | Var (v: V).

The expression type is parameterised over the set of variable indices. In the following, we

use an implicitly defined heap of such variables. Hence, we diverge from Asperti et al.

(2009), which uses nat for variable indices, thereby introducing a need for dummy variables

for out-of-bounds indices.

Suppose now that we want to quote nat expressions built from 1 and multiplication. To

describe the relation we want the symbolic expression to have to the original expression,

we first define how symbolic expressions evaluate to values (given a variable assignment):

Definition Value := nat.

Definition Env V := V → Value.

Fixpoint eval {V} (vs: Env V) (e: Expr V): Value :=

match e with

| One ⇒ 1

| Mult a b ⇒ eval vs a ∗ eval vs b

| Var v ⇒ vs v

end.

We can now state our goal: given an expression of type nat, we seek to construct an

Expr V for some appropriate V along with a variable assignment such that evaluation of

the latter yields the former. Because we will be doing this incrementally, we introduce a

few simple variable ‘heap combinators’:

Definition novars: Env False := False rect .

Definition singlevar (x: Value): Env unit := λ ⇒ x.

Definition merge {A B} (a: Env A) (b: Env B): Env (A+B) :=

λ i ⇒ match i with inl j ⇒ a j | inr j ⇒ b j end.

These last two combinators are the ‘constructors’ of an implicitly defined subset of Gallina

terms, representing heaps, for which we will implement syntactic lookup with type classes

in a moment. The heap can also be defined explicitly, with no essential change in the

code.

† Gonthier provides similar functionality through an ingenious use of canonical structures.
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With these, we can define the primary ingredient, the Quote class:

Class Quote {V} (l: Env V) (n: Value) {V’} (r: Env V’): Type :=

{ quote: Expr (V + V’)

; eval quote: eval (merge l r) quote = n }.

We can think of Quote as the type for a family of Prolog-like syntax-directed resolution

functions, which will take as input V and l representing previously encountered holes

(opaque subexpressions that could not be destructured further) and their values, along

with a concrete term n to be quoted. Their ‘output’ will consist not only of the fields in

the class, but also of V’ and r representing additional holes and their values. Hence, a

type class constraint of the form Quote x y z should be read as ‘quoting y with existing

heap x generates new heap z’.

The Quote instance for 1 illustrates the basic idea:

Instance quote one V (v: Env V): Quote v 1 novars := { quote := One }.

The expression ‘1’ can be quoted in any context (V, v) – it introduces no new variables,

and the symbolic term representing it is just One. The eval quote field is turned into a

trivial proof obligation.

The Quote instance for multiplication is a little more subtle, but really only does a bit

of heap juggling:

Instance quote mult V (v: Env V) n V’ (v’: Env V’) m V’’ (v’’: Env V’’)

‘{Quote v n v’} ‘{Quote (merge v v’) m v’’}:
Quote v (n ∗ m) (merge v’ v’’) :=

{ quote :=

Mult (map var shift (quote n)) (map var sum assoc (quote m)) }.

These two instances specify how 1 and multiplications are to be quoted, but what about

other expressions? For these, we want to distinguish between expressions we have seen

before, and those we have not. To make this distinction, we need to be able to look up

expressions in variable heaps to see if they are already there. Importantly, we must not do

this by comparing the values they evaluate to, but by actually browsing the term denoting

the variable heap – that is, a composition from novars, singlevar and merge. This, too,

is a job for a type class:

Class Lookup {A} (x: Value) (v: Env A) := { key: A; key correct: v key = x }.

Our first Lookup instance states that x can be looked up in singlevar x:

Instance singlevar lookup (x: Value): Lookup x (singlevar x) := { key := tt }.

Finally, if an expression can be looked up in a pack, then it can also be looked up when

that pack is merged with another pack:

Context (x: Value) {A B} (va: Env A) (vb: Env B).

Instance lookup left ‘{Lookup x va}: Lookup x (merge va vb)

:= { key := inl (key x va) }.
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Instance lookup right ‘{Lookup x vb}: Lookup x (merge va vb)

:= { key := inr (key x vb) }.

With Lookup, we can now define a Quote instance for previously encountered expres-

sions:

Instance quote old var V (v: Env V) x {Lookup x v}:
Quote v x novars | 8 := { quote := Var (inl (key x v)) }.

If none of the Quote instances defined so far apply, the term in question is a newly

encountered hole. For this case, we define a catch-all instance with a low priority, which

yields a singleton heap containing the expression:

Instance quote new var V (v: Env V) x: Quote v x (singlevar x) | 9

:= { quote := Var (inr tt) }.

And with that, we can now start quoting:

Goal ∀ x y (P: Value → Prop), P ((x ∗ y) ∗ (x ∗ 1)).

intros.

rewrite ← eval quote.

The rewrite rewrites the goal to (something that reduces to):

P (eval

(merge novars

(merge (merge (singlevar x) (singlevar y)) (merge novars novars)))

(Mult (Mult (Var (inr (inl (inl ())))) (Var (inr (inl (inr ())))))

(Mult (Var (inr (inl (inl ())))) One)))

The following additional utility lemma lets us quote equalities with a shared heap (so

that an opaque expression that occurs on both sides of the equation is not represented by

two distinct variables):

Lemma quote equality {V} {v: Env V} {V’} {v’: Env V’} (l r: Value)

‘{Quote novars l v} ‘{Quote v r v’}:
let heap := merge v v’ in

eval heap (map var shift quote) = eval heap quote → l = r.

Notice that we have not made any use of Coq’s tactic language Ltac. Instead, we have

used instance resolution as a unification-based programming language to steer the unifier

into inferring the symbolic quotation.

10. Sequences and universes

Finite sequences are another example of a concept that can be represented in many

different ways: as cons lists; maps from bounded naturals; array-queues; and so on. Here,

too, the introduction of an abstract interface facilitates implementation independence.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Jul 2012 IP address: 131.174.17.23

Type classes for mathematics in type theory 821

Mathematically, finite sequences can be characterised as free monoids over sets. A

categorical way of expressing this is in terms of adjunctions. As with the numeric

interfaces, we could fully embrace this perspective, paying no heed to the practicality of

implementation and usage, and define a relatively succinct type class for sequences as

follows:

Class PoshSequence

(free: setoid.Object → monoid.Object) ‘{Fmap free}
(singleton: id =⇒ monoid.forget ◦ free)

(extend: ‘((x −→ monoid.forget y) → (free x −→ y))): Prop :=

{ sequence adjunction: AltAdjunction singleton extend

; extend morphism: ‘(Setoid Morphism (extend x y)) }.

Here, monoid.forget is the forgetful functor from monoids to sets.

However, we do care about practicality, so we will again take a more concrete

perspective, starting with operational type classes for the characteristic operations:

Context ‘{Functor (seq: Type → Type)}.

Class Extend := extend: ∀ {x y} ‘{SemiGroupOp y} ‘{MonoidUnit y},
(x → y) → (seq x → y).

Class Singleton := singleton: ∀ x, x → seq x.

With these, we can now define the predicate class for sequences:

Class Sequence

‘{∀ a, MonoidUnit (seq a)} ‘{∀ a, SemiGroupOp (seq a)}
‘{∀ a, Equiv a → Equiv (seq a)} ‘{Singleton} ‘{Extend}: Prop := ...

On top of this interface, we can build theory about typical sequence operations such as

maps, folds, their relation to singleton and extend, and so on. We can also generically

define ‘big operators’ for sums (
∑

) and products (
∏

) of sequences, and easily show

properties like distributivity, all without ever mentioning cons lists.

Unfortunately, disaster strikes when, after having defined this theory, we try to show

that regular cons lists implement the abstract Sequence interface. When we get to the

point where we want to define the Singleton operation, Coq emits a universe inconsistency

error. The problem is that because of the categorical constructions involved, the theory

forces Singleton to inhabit a relatively high universe level, making it incompatible with

lowly list.

In principle, universe polymorphism could probably be used to solve this problem,

but its current implementation in Coq only supports universe polymorphic inductive

definitions, while Singleton is a regular definition. Historically, universe polymorphic

regular definitions have not been supported in Coq, primarily because of efficiency

concerns. However, we have taken up the issue with the Coq development team, and they

have agreed to introduce a mechanism for voluntarily turning on universe polymorphism

for definitions on a per-definition basis. Using this functionality, we could make Singleton

universe polymorphic, and hopefully resolve these problems.
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We have encountered universe inconsistencies in other places in our development that

could be traced back to universe monomorphic definitions being forced into disparate

universes (Equiv being a typical example). Hence, we consider the support for universe

polymorphic definitions that is currently being implemented to be of great importance to

the general applicability and scalability of our approach.

11. Conclusions

While bundling operational and propositional components of abstract structures into

records may seem natural at first, doing so actually introduces many serious problems.

With type classes, we avoid these problems by avoiding bundling altogether.

It has been suggested that canonical structures are more robust because of their

more restricted nature compared to the wild and open-ended proof search of instance

resolution. However, these restrictions force one into bundled representations, and,

moreover, their more advanced usage requires significant ingenuity, whereas type class

usage is straightforward. Furthermore, wild and open-ended proof search is harmless for

predicate classes, for which only existence, and not identity, matters.

Unification hints are a more general mechanism than type classes, and could provide

a more precise account of the interaction between implicit argument inference and proof

search. It is not a great stretch to conjecture that a fruitful approach might be to use

unification hints as the underlying mechanism, with type classes as an end-user interface

encapsulating a particularly convenient idiom for using them.

There are really only two pending concerns that keeps us from making an unequivocal

endorsement of type classes as a versatile, expressive and elegant means of organising proof

developments. The first, and lesser, of the two is universe polymorphism for definitions

as described in the previous section. The second is instance resolution efficiency. In more

complex parts of our development, we are now experiencing increasingly serious efficiency

problems, despite having already made sacrifices by artificially inhibiting many natural

class instances in order not to further strain instance resolution. Fortunately, there is plenty

of potential room for improvement of the current instance resolution implementation. One

source is the vast literature on efficient implementation of Prolog-style resolution, which

the hint-based proof search used for instance resolution greatly resembles. We emphasise

that these efficiency problems only affect type checking; the efficiency of computation

using type-checked terms is not affected.

We are currently in the process of retrofitting the rationals interface into CoRN. In

future work, we aim to base our development of its reals on an abstract dense set, allowing

us to use the efficient dyadic rationals (Boldo et al. 2009) as a base for exact real number

computation in Coq (O’Connor 2008; O’Connor and Spitters 2010). The use of category

theory has been important in these developments.

An obvious topic for future research is the extension from equational logic with

dependent types (Cartmell 1978; Palmgren and Vickers 2007). Another topic would be to

fully, but practically, embrace the categorical approach to universal algebra (Pitts 2001).

According to coqwc, our development consists of 5660 lines of specifications and 937

lines of proofs.
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Armand, M., Grégoire, B., Spiwack, A. and Théry, L. (2010) Extending Coq with imperative features

and its application to SAT verification. In: Kaufmann, M. and Paulson, L. (eds.) Proceedings,

Interactive Theorem Proving, ITP 2010. Springer-Verlag Lecture Notes in Computer Science 6172

83–98.

Asperti, A., Ricciotti, W., Sacerdoti Coen, C. and Tassi, E. (2009) Hints in unification. In: Berghofer,

S., Nipkow, T. Urban, C. and Wenzel, M. (eds.) Theorem Proving in Higher Order Logics, 22nd

International Conference (TPHOLs 2009). Springer-Verlag Lecture Notes in Computer Science

5674 84–98.

Asperti, A., Sacerdoti Coen, C., Tassi, E. and Zacchiroli, S. (2007) User interaction with the Matita

proof assistant. Journal of Automated Reasoning 39 (2) 109–139.

Barthe, G., Capretta, V. and Pons, O. (2003) Setoids in type theory. Journal of Functional

Programming 13 (2) 261–293. (Special issue on ‘Logical frameworks and metalanguages’.)
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