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Abstract

Most terrestrial biodiversity is found in tropical forests. Conservation of these forests is
therefore a global priority, which must be reconciled with ongoing land-use and climate
change. Tropical species are among the most sensitive to climate change; their persistence
in the long-term is dependent on their ability to adapt in situ or move. A crucial unknown
is the extent to which these strategies are impeded by land-use change. In this thesis, |
first assess how tropical forest conversion and degradation impacts local climate. Using
site-level (m-ha) temperature data, | show that tropical forest conversion to farmland results
in local warming of 1.6-13.6°C, but this is avoided in degraded forests and below-ground.
| then explore the conservation value of degraded forests by considering temperature at
finer spatial scales (mm-m), where thermal variation can allow species to avoid suboptimal
temperatures. | develop an R package to automate processing of images from FLIR thermal
cameras and to calculate metrics of thermal heterogeneity for gridded temperature data.
Combining this approach with data from temperature loggers, | compare thermal buffering
capacity in the understorey of selectively logged and unlogged forests on Borneo. | find
that 9-12 years after intensive selective logging the potential for thermal buffering is similar
in logged and unlogged forests. Finally, | consider that even where thermal buffering is
feasible, range shifts may be necessary for long-term persistence. Combining global forest
cover and climate datasets, | find that 62% of global tropical forest area fails to connect to
analogous future climates. In 12 years, connectivity to future climate analogues decreased in
27% of tropical forest area, with losses accelerating as the area of forest loss increased. Put
together, my findings suggest that degraded forests can buffer species from climate change,
but thermal buffering is severely compromised with conversion to non-forest habitats. To
enhance climate resilience of tropical forests there is a need to protect remaining tropical
forests and to strategically plan reforestation and forest restoration with climate gradients

and connectivity in mind.
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1.1 The global extinction crisis

Recent rates of species extinction are between 100 and 1,000 times greater than pre-human
levels (Pimm et al., 1995). It is estimated that if all species currently classified as Critically
Endangered were to go extinct, the Earth would enter its sixth mass extinction event
(Barnosky et al., 2011). Awareness and mitigating action has increased accordingly in recent

years, but the loss of biodiversity has not slowed (Butchart et al., 2010).

The key drivers of biodiversity loss are land-use change, climate change, pollution,
over-exploitation (including hunting and wildlife trade) and invasive species (Hirsch and
Secretariat of the Convention on Biological Diversity, 2010). These drivers have varying
importance depending on location and taxonomic group (Baillie et al., 2004). The greatest
overall threat to terrestrial systems is currently land-use change, with climate change

becoming increasingly important as the century progresses (Sala et al., 2000).

Tackling the extinction crisis is a monumental undertaking, which raises the question — why
is it necessary? The importance of biodiversity can be broken down broadly into intrinsic
and extrinsic value. Intrinsic value underpins much of traditional conservation thinking, and
is based on the notion that all life has inherent value and the right to exist (Millennium
Ecosystem Assessment, 2005). Extrinsic value encompasses ecosystem products and
services, recognising the tangible benefits that humans derive from nature (Balmford
et al., 2002; Costanza et al., 1997). Another consideration is that conserving maximum
biodiversity is likely to maintain redundancy in the planetary system as a whole. Crudely,
the more genes, traits and species that exist, the less likely that loss through natural or
anthropogenic disturbance causes whole processes and ecosystems to collapse (Oliver et al.,
2015). Ecosystem resilience is important at local and regional scales, where its absence
may be felt most tangibly by humans, but without global resilience we are likely to exceed
planetary boundaries with severe negative consequences for all life on Earth (Rockstrém
et al., 2009).

With limited resources, conservation must prioritise places that are most imperilled and
convey the most benefits for people and for biodiversity. Most of the world’s biodiversity
is found in the tropics (Barlow et al., 2018; Jenkins et al., 2013), including species yet to be
discovered (Joppa et al., 2011; Scheffers et al., 2012) and thus with unknown benefits. The
tropics also includes some of the world’s only remaining wilderness areas (Mittermeier et al.,
2003; Watson et al., 2016), which are irreplaceable within any time-scale that matters to
humans. Tropical forests play a key role in the global carbon cycle and atmospheric circulation
(Barlow et al., 2018; Foley et al., 2005), and accrue local benefits to some of the world’s most
deprived people and countries (Agrawal et al., 2013; Barlow et al., 2018). Simultaneously, the

tropics are disproportionately threatened by ongoing disturbance by humans, the drivers of
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which may negatively interact to exacerbate the consequences for biodiversity.

1.2 Land-use change in the tropics

The tropics are undergoing a huge amount of land-use change, particularly through loss or
degradation of tropical forest. Land-use change has already driven extensive and severe
losses of biodiversity across the planet (Newbold et al., 2015), so there is a clear need to

understand what underpins these losses and how they can be mitigated.

1.2.1 Forest conversion

Globally, there is increasing demand for agricultural land to feed a growing and developing
human population (Godfray et al., 2010; Foley et al., 2011; Tilman et al., 2011). The primary
source of new agricultural land is tropical forests (Gibbs et al., 2010), because temperate
regions have already undergone severe land-use change and because demand for food
is increasing most rapidly in developing countries, which are mostly found in the tropics
(United Nations Development Programme, 2018). The result has been a devastating loss of
habitat (particularly in Southeast Asia and the Amazon), with a total of ~150 million hectares
converted between 1980 and 2012 (Gibbs et al., 2010; Hansen et al., 2013).

With forest loss comes biodiversity loss (Brook et al., 2003; Newbold et al., 2015; Sodhi
et al.,, 2004). Under current rates of forest loss, Betts et al. (2017) predict that 121-219
species will become threatened in the next 30 years in the high-risk regions of Borneo, the
central Amazon and the Congo Basin. Forest loss has numerous secondary impacts, such as
opening up remaining forest to exploitation for timber or hunting, and delineating forests
into small fragments with associated edge effects and hazards from road traffic (Ewers and
Banks-Leite, 2013; Laurance et al., 2009; Murcia, 1995; Pfeifer et al., 2017). Deforestation
is also a major contributor to greenhouse gas emissions (Foley et al., 2005; IPCC, 2013),

compounding impacts for global biodiversity by driving climate change.

1.2.2 Forest degradation

Forest degradation refers to negative, anthropogenic changes to forest that do not cause
complete loss of forest cover. Degradation includes the secondary impacts of nearby
deforestation as described above (e.g. fragmentation and poaching), as well as direct

degradation through selective logging and fire (Barlow et al., 2016). While the impacts of
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deforestation may be more extreme locally than forest degradation, wholesale conversion
affected only 1.4% of the humid tropical biome from 2000 to 2005, compared to 20%
that was designated for selective logging in the same period (Asner et al., 2009; Hansen
et al., 2008). The term ‘selective’ refers to the targeting of particular species and stems
(usually above a minimum trunk diameter; Edwards et al., 2014c), however these targets are
typically the largest, oldest trees, the removal of which reduces canopy height and canopy
density (Kumar and Shahabuddin, 2005; Okuda et al., 2003), fragments the forest canopy,
and opens up large gaps that are often invaded by non-tree species, such as climbers and
bamboo (Edwards et al., 2014c). Commercial selective logging also causes collateral damage
— particularly where trees are connected by climbers (Schnitzer et al., 2004) — and requires
roads and skid trails that bring further challenges for wildlife (Brodie et al., 2015; Laurance

et al., 2014), as well as heavy machinery that causes soil compaction (Putz et al., 2008).

Degraded tropical forests are significant for global conservation because a greater proportion
of primary forest species are found there than in converted habitat, and it is often these
species that are of high conservation concern (Edwards et al., 2011; Edwards and Laurance,
2013; Gibson et al., 2011). A meta-analysis by Putz et al. (2012) found that 85-100% of
mammals, birds, invertebrates and plants persist 1-100 years after a single round of selective
logging, and indeed Edwards et al. (2011) observed that only 1-8 years after a second round
of logging, 75% of bird and dung beetle species found in unlogged, primary forests were still
present in the twice-logged forest, including many globally threatened bird species. Logged
forests retain a substantial proportion of above-ground live carbon (~76% in once-logged
forest; Putz et al., 2012), and can facilitate movement between intact forests (Gillies and

Clair, 2008), thereby supporting metapopulation processes (Edwards et al., 2014c).

1.3 Climate change in the tropics

While land-use change is the biggest current driver of biodiversity loss, and will certainly
continue to be a major threat to tropical species (Gibbs et al., 2010), conservation must also
seek to bolster species against additional threats that are likely to negatively interact with
land-use change, particularly climate change (Maxwell et al., 2016). There is some debate
about the vulnerability of tropical species to climate change relative to species at higher
latitudes, which has led climate research to be neglected in this region until recently (Corlett,
2012).

Vulnerability to climate change depends on exposure (extrinsic factors) and species’
sensitivity (intrinsic factors; Williams et al., 2008). Exposure and sensitivity interact to

determine whether species need to resist or recover from climate perturbations, as well
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as their ability to do so. In terms of absolute changes in climate, exposure will be less
in the tropics than elsewhere (IPCC, 2013). Relative change, however, will be greatest in
the tropics because of long periods of climatic stability (Mora et al., 2013). Temperature
in the tropics also varies very little within the year or with latitude (Colwell et al., 2008),
predisposing tropical species to high thermal sensitivity because of narrow thermal limits
(Deutsch et al., 2008; Khaliq et al., 2014; Tewksbury et al., 2008) that many species are
already operating near the upper end of (Deutsch et al., 2008; Khaliq et al., 2014; Tewksbury
et al., 2008).

Land-use change can directly influence species’ exposure to climate change by changing
vegetation structure. Evidence from global General Circulation Models (Davin and
de Noblet-Ducoudré, 2010; Findell et al.,, 2007; Pielke et al., 2011) and observational
studies in Brazil (Loarie et al., 2009), Malaysia (Luskin and Potts, 2011) and Indonesia
(Ramdani et al., 2014) demonstrate that loss of vegetation cover increases local daytime
temperature by reducing direct absorption and reflection of incident solar radiation (Oke,
1987; Murcia, 1995; Snyder et al., 2004), and by reducing the amount of thermal energy
dissipated through evapotranspiration (Findell et al., 2007; Lawrence and Vandecar, 2015;
Oke, 1987). However, studies that rely on coarse-scale (~1 km) weather station data have
limited relevance for the majority of terrestrial species (Frenne and Verheyen, 2016), which
experience temperature at mm to m, within a few cm of the ground surface and usually
with overhead vegetation and variation in topography (Gillingham, 2010; Suggitt et al.,
2011; Wiens and Bachelet, 2010). Local observational studies are able to account for these
factors, but are difficult to generalise across regions, land-use types, times of year (e.g. dry
versus wet season) and habitat strata (e.g. above-ground versus below-ground). In Chapter
2, | combine the advantages of both approaches by using site-level temperature data from
across the tropics in a mixed-effects modelling framework, to ask how land-use change
impacts local temperature in different land-use types, seasons and above-ground versus

below-ground (also see Senior et al., 2017).

Assuming tropical species are exposed to climate change and do need to respond, a key
unknown is the extent to which land-use change affects the ability of species to adaptively
respond to climate change. There are several ways that species can respond to climate

change, broadly divided into adapting in situ or moving elsewhere (Corlett, 2011).
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1.3.1 In situ adaptation

1.3.1.1 Genetic adaptation

As yet there is limited evidence for evolutionary responses to climate change, in the tropics
or elsewhere (Corlett, 2011; Parmesan, 2006). It could be that there has not yet been
sufficient time or selection pressure to drive such change, although evidence is also lacking
in the fossil record despite climate change of much greater magnitude during events such as
the Pleistocene glaciation event (Parmesan, 2006). Genetic adaptation is less intuitive and
harder to document than ecological responses (O’Connor et al., 2012), and is less likely in
tropical species of high conservation concern because these species are highly specialised,
and specialisation tends to reduce variation in heritable traits and thus decrease potential
for genetic adaptation (Williams et al., 2008). Thermal tolerance, especially upper thermal
limits, appear to be highly constrained in the species that have been assessed (Hoffmann
et al., 2013). Evidence from temperate regions suggests a more common phenomenon is
evolution in traits that underlie other adaptive responses to climate change. For example,
Dutch great tits that have greater plasticity in their timing of reproduction are better able to
match egg-laying to food availability — the peak of which has advanced as a result of climate
change — and thus achieve greater fitness (Nussey et al., 2005). Meanwhile, some British
insects have evolved improved flight capacity, which is thought to assist dispersal to track
shifting climates (Hill et al., 1999; Thomas et al., 2001).

1.3.1.2 Physiological plasticity

Similar to genetic adaptation, direct acclimation of thermal tolerance appears to be limited
(Hoffmann et al., 2013; Parmesan, 2006), but there is ample evidence for phenological
changes. Again, most evidence derives from temperate regions of the Northern hemisphere,
where seasonality is the overarching determinant of species’ phenology, and is itself
dramatically altered by climate change (Bradshaw and Holzapfel, 2006). Specifically, spring
has advanced and the growing season has lengthened. Organism responses include earlier
breeding in animals such as birds and butterflies, earlier arrival of migratory birds, and
earlier flowering in plants (Walther et al., 2002). Recent evidence also suggests that shifts in
phenology may affect both the need and opportunity for other responses to climate change,
such as range shifts, by stabilising temperature during critical and thermally sensitive life
events like nesting (Socolar et al., 2017). Similar changes in phenology are less clear in the
tropics, where seasonality is less marked and less directly associated with climate change,
and where long-term phenological monitoring is lacking (Corlett, 2011). Changes in rainy

seasons and the timing of El Nifio events may be interesting avenues for further research in
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this area.

1.3.1.3 Dispersal and movement

Over short time-scales, arguably the easiest and most effective response to unsuitable
climatic conditions at coarse spatial scales is for species to move towards suitable climatic
conditions that manifest at finer spatial scales: ‘microrefugia’ (Hannah et al., 2014,
Maclean et al., 2017). At this scale (mm to m), microrefugia provide a ‘microclimate’ that
deviates from the climate at the level of the whole habitat (m to ha; meso- or local scale).
Heterogeneity at the micro- scale is related to variation in slope and aspect (Suggitt et al.,
2011; Maclean et al., 2017), as well as the presence of vegetation (Oke, 1987) and features
such as rocks, leaf litter and tree holes, commonly referred to as ‘microhabitats’ (Scheffers
et al., 2014b).

Paleoecological evidence suggests that refugia at various spatial scales have been
instrumental in allowing species to persist through global and regional shifts in climate, and
are important for explaining modern day species distributions (Hannah et al., 2014; Stewart
et al.,, 2010). Mobile species commonly utilise microclimates within generations, through
thermoregulatory behaviour of individuals. For example, possums in tropical Australia
choose the coolest tree hollows in which to den (Isaac et al.,, 2008), and herpetofauna
of Singapore occupy microrefugia that both warm more slowly and more rarely exceed
thermal limits than the wider macroclimate (Scheffers et al., 2014b). Immobile species
utilise microclimates indirectly, according to differences in fitness between generations
(Maclean et al., 2015). Microrefugia are unlikely to support species indefinitely within areas
that become climatically unsuitable at coarser scales, but the disconnect between climate
at coarse and fine spatial scales means that microrefugia can buffer species from change
(Maclean et al., 2017; Scheffers et al., 2014b), allowing more time for other responses to
manifest, such as genetic adaptation or physiological plasticity. In England, this buffering
effect reduces extinction risk of temperature-sensitive species by up to 22% for plants and

9% for insects (Suggitt et al., 2018).

Until the recent ‘revolution’ in climate-change biology, microclimate research had been
somewhat neglected (Hannah et al., 2014). A substantial limiting factor was the ability to
measure climate both at fine resolution and with broad coverage (Potter et al., 2013), which
is now made possible with the advent of affordable dataloggers, Unmanned Aerial Vehicles
and thermal imaging cameras (Faye et al., 2016; Scheffers et al., 2017a). There remains
a great deal of untapped potential for thermography in ecology, in part because there is
little guidance on how to process the images and what metrics are of primary interest for

thermal biology (Faye et al., 2016). In Chapter 3, | present an R package, ThermStats,
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which simplifies the processing of images from FLIR thermal cameras, and calculates a
variety of biologically relevant metrics from any gridded temperature data (Senior et al., in
prep 2018a).

Whether microclimates allow species to persist through climate change in local refugia, or
simply give more time for other responses to manifest, the influence of land-use change
is a critical unknown. Changes in vegetation structure through land-use change are likely
to affect not only the average temperature (Chapter 2; Senior et al., 2017), but also the
availability and distribution of microclimates. For example, overall structural simplification
and loss of microhabitats associated with large, old trees (e.g. deadwood and tree holes; Ball
etal., 1999; Blakely and Didham, 2008) could decrease the number and buffering potential of
cool microclimates. This topic is addressed in Chapter 4. Using fine-scale temperature and
microhabitat data collected in intensively logged and unlogged forests on Borneo, | tested
the hypothesis that selective logging decreases thermal buffering potential, with associated

consequences for conservation under future climate change (also see Senior et al., 2018).

1.3.2 Range shifts

We have already seen that movement operates at fine spatial scales to allow species
to persist in habitats that are considered to be unsuitable at coarser scales. Eventually,
however, meso-scale climate change will be felt even within microclimates, and for some
species in situ adaptation will become insufficient. To avoid extinction, the only remaining
option is for species’ to shift their ranges to track favourable climates. Range shifts are
largely thought to occur through net population extinctions at the trailing edge, and/or net
population colonisations at the leading edge (Parmesan et al., 1999). Range shifts within a
generation could also occur via individual dispersal in highly mobile species. In temperate
regions there is evidence for both latitudinal and altitudinal shifts in response to rising
temperatures (Hill et al., 2002; Parmesan et al., 1999; Thomas and Lennon, 1999), while
the latter is much more frequently observed in the tropics owing to shallow latitudinal
temperature gradients (Colwell et al., 2008; Parmesan, 2006). On Borneo’s Mount Kinabalu,
for example, moth species moved upwards by an average of 67 m over 42 years (Chen et al.,
2009). For a given area of habitat, tropical rainforests also offer a diverse and expansive
amount of vertical habitat (Scheffers et al., 2013, 2017b; Scheffers and Williams, 2018),
which may prove to be an additional and significant temperature gradient for range-shifting

tropical species.

Facilitating climate-driven range shifts is increasingly acknowledged as important for
enhancing climate resilience. There are several factors that influence whether range shifts

will work for a given species:
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1. Availability of analogous climate — is there available habitat with a similar climate to
that of the species’ current distribution?

2. Accessibility of analogous climate —is there a feasible route to habitat with analogous
climate?

3. Traits of the focal species — can the species of interest actually utilise available routes

to reach habitat with analogous climate, and does it need to?

Previous studies have tended to use Species Distribution Models to answer the first of
these, using the relationship between climate (and other environmental variables) and
species’ current distribution to predict which areas will be climatically suitable under future
climate change (Hijmans and Graham, 2006; Willis et al., 2015). Several studies consider
the connectedness of suitable habitat without considering whether that habitat will remain
climatically suitable (Cosgrove et al., 2018; Tucker et al., 2018). Increasingly, studies are
beginning to combine approaches to ask whether habitat is sufficiently connected along
climate gradients to facilitate range shifts, hereafter referred to as ‘climate connectivity’
(Bagchi et al., 2018; Lawler et al., 2013; Littlefield et al., 2017; McGuire et al., 2016). In
Chapter 5, | combine global tree cover and temperature data to quantify climate connectivity
across the whole of the tropics, and to assess how climate connectivity has changed with

recent deforestation (Senior et al., in prep 2018b).

1.4 Thesis aims and rationale

The main aims of this thesis are to determine how land-use change in the tropics impacts:
(1) exposure to local warming, and the feasibility of both (2) microclimates and of (3) range
shifts as mechanisms by which species can avoid extinction under global climate change. |
begin by collating data from the literature to compare local, site-level temperature data for
different land-use types across the tropics. | then develop metrics and software to assess
microclimates in the field using thermal images, which —in combination with dataloggers and
microhabitat measurements — | use to compare the thermal buffering potential of selectively
logged and primary forests on Borneo. Finally, | use pantropical forest cover and climate
datasets to consider how recent forest loss has impacted species’ ability to track climate
change by shifting their distribution. In the General Discussion | synthesise all results to
provide an overall picture of how land-use change in the tropics impacts species responses to
climate change, and provide recommendations for action and further research. The specific

objectives of the main data chapters are outlined below:
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Chapter 2 — A pantropical analysis of the impacts of forest degradation and

conversion on local temperature

The recent surge in studies assessing impacts of climate warming on biodiversity hints at
the importance of temperature for species’ ecology. We recognise land-use change as the
main driver of biodiversity loss, mediated in a large part by changes to vegetation structure
that also governs climate at a local scale (< 1 ha). Considering interactions with climate
change, previous studies tend to focus on greenhouse gas emissions from forest conversion,
or on barriers to range shifts. This chapter instead considers how land-use change directly
causes local warming, thereby increasing the baseline temperature onto which climate
change is projected. By comparing site-level data from the literature, the main objectives of
this chapter were to: (1) compare local temperature in different land-use types across the
tropics; and (2) assess whether results were consistent between wet and dry seasons and

above-ground compared to below-ground.

Chapter 3 — A framework for quantifying fine-scale thermal heterogeneity

using thermography

Most terrestrial biodiversity experiences temperature at much finer spatial scales and
much nearer to the ground than is represented by coarse-scale climate research (> 1
km). Microclimate research is gaining traction, but has in part been neglected because
of technological limitations in measuring temperature at a fine spatial scale (mm to
m). Thermal cameras are an increasingly affordable and practical means to measure
microclimates, but the technology and data remain underutilised. The objectives of this
chapter were to: (1) provide a simple R package to streamline the processing of thermal
images from FLIR thermal cameras; and (2) to suggest and facilitate the calculation of key

metrics of thermal heterogeneity, for any gridded temperature data.

Chapter 4 — Tropical forests are thermally buffered despite intensive

selective logging

Temperature variation at a fine spatial scale allows species to cope with suboptimal
temperatures that manifest at a coarser scale, leading many to suggest that microclimates
will be increasingly important under climate change. Simultaneously, selective logging
affects a huge area of the tropics, particularly in Southeast Asia, but we do not know
how land-use change impacts microclimates. Combining microhabitat assessments with

temperature data from dataloggers and thermal images, this chapter compares various
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components of thermal buffering between intensively logged and unlogged forests on
Borneo. The main objectives were to: (1) assess the impact of commercial selective logging
on the difference between temperature at coarse (m to ha) and fine scales (mm to m); and
(2) investigate whether selectively logged and unlogged forests differ in the thermal stability

and availability of microclimates.

Chapter 5 — Global loss of climate connectivity in tropical forests

In addition to in situ adaptation, or where such adaptation is insufficient, species may shift
their ranges at coarse scale in response to climate change. Range shifting is well-documented
in both modern times and paleoecological records, but its feasibility across the tropics as a
means to prevent species from extinction under climate change depends on species being
able to reach suitable habitat with a suitable climate. No study to date has assessed the
global connectivity of tropical forests to future climate analogues, nor investigated how
this connectivity is affected by ongoing deforestation. This chapter utilises global climate
and forest cover data to determine: (1) the extent to which current forest cover in the
tropics facilitates species movement to analogous future climate; and (2) how this has been

impacted by recent changes in forest cover.
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Chapter 2

A pantropical analysis of the impacts of
forest degradation and conversion on local

temperature

Bornean horned frog (Megophrys nasuta).

This chapter has been published as:

Senior RA, Hill JK, Gonzdlez del Pliego P, Goode LK, Edwards DP. A pantropical analysis of the
impacts of forest degradation and conversion on local temperature. Ecology and Evolution.
2017;7:7897-7908.
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2.1 Abstract

Temperature is a core component of a species’ fundamental niche. At the fine scale over
which most organisms experience climate (mm to ha), temperature depends upon the
amount of radiation reaching the Earth’s surface, which is principally governed by vegetation.
Tropical regions have undergone widespread and extreme changes to vegetation, particularly
through the degradation and conversion of rainforests. Since most terrestrial biodiversity
is in the tropics, and many of these species possess narrow thermal limits, it is important
to identify local thermal impacts of rainforest degradation and conversion. We collected
pantropical, site-level (< 1 ha) temperature data from the literature to quantify impacts
of land-use change on local temperatures, and to examine whether this relationship
differed above-ground relative to below-ground and between wet and dry seasons. We
found that local temperature in our sample sites was higher than primary forest in all
human-impacted land-use types (n = 113,894 day-time temperature measurements from
25 studies). Warming was pronounced following conversion of forest to agricultural land
(minimum +1.6°C, maximum +13.6°C), but minimal and non-significant when compared
to forest degradation (e.g. by selective logging; minimum +1°C, maximum +1.1°C). The
effect was buffered below-ground (minimum buffering 0°C, maximum buffering 11.4°C),
whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that
forest-dependent species that persist following conversion of rainforest have experienced
substantial local warming. Deforestation pushes these species closer to their thermal limits,
making it more likely that compounding effects of future perturbations, such as severe
droughts and global warming, will exceed species’ tolerances. By contrast, degraded forests
and below-ground habitats may provide important refugia for thermally-restricted species

in landscapes dominated by agricultural land.

2.2 Introduction

It is well established that temperature is important in ecology, for everything from
biochemistry, to physiology, to biogeography (Kearney et al., 2009; Kingsolver, 2009;
Puurtinen et al., 2016; Thomas et al., 2004). Temperature is a key explanatory variable in
species distribution models that predict the likely impacts of projected global climate change
on biodiversity (e.g. Thomas et al., 2004). However, the majority of organisms experience
temperature at much finer spatial scale (Gillingham, 2010; Suggitt et al., 2011) than assumed
in species distribution models (often > 100 km?), and at local scales temperature is more
dependent on local factors (Suggitt et al., 2011) than on regional or global atmospheric
circulation (Davin and de Noblet-Ducoudré, 2010; Oke, 1987; Wiens and Bachelet, 2010;
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Pielke et al., 2011). One such local factor is vegetation cover, which influences temperature
through direct absorption and reflection of incident solar radiation (Murcia, 1995; Oke,
1987; Snyder et al., 2004) and through evapotranspiration, by determining the amount of
thermal energy dissipated through the evaporation of water as opposed to a change in
temperature (Findell et al., 2007; Lawrence and Vandecar, 2015; Oke, 1987).

Land-use change can profoundly influence vegetation cover. Current and future land-use
change is concentrated in the tropics, where > 150 million hectares of forest was converted
between 1980 and 2012 (Gibbs et al., 2010; Hansen et al., 2013) and 20% of the humid
tropical biome was selectively logged from 2000 to 2005 (Asner et al., 2009). Previous
studies, from a range of disciplines, demonstrate that land-use change in the tropics tends to
increase temperature (Davin and de Noblet-Ducoudré, 2010; Findell et al., 2007; Lawrence
and Vandecar, 2015; Loarie et al., 2009; Luskin and Potts, 2011; Pielke et al., 2011; Ramdani
et al., 2014). This suggests severe consequences for global terrestrial biodiversity, most of
which is found in tropical rainforests (Myers et al., 2000) and is thought to be especially
sensitive to temperature change, owing to narrow thermal limits (Deutsch et al., 2008;
Kingsolver, 2009; Tewksbury et al., 2008).

Additionally, while absolute warming from global climate change will be highest at the
poles (IPCC, 2013), it is the tropics where relative warming will be greatest, with historically
unprecedented temperatures occurring by 2050 (Mora et al., 2013). It is frequently stated
that habitat fragmentation from land-use change will make it increasingly difficult for
tropical species to track climate (Brook et al., 2008; Scriven et al., 2015), hampered by
the poor dispersal ability of many tropical species (Van Houtan et al., 2007) and shallow
latitudinal temperature gradients (Colwell et al.,, 2008). However, it is less commonly
discussed that the baseline temperature onto which global climate predictions are projected
might itself be dramatically higher in altered land-use types (Foster et al., 2011; Tuff et al.,
2016).

To understand current and future consequences for tropical biodiversity from land-use
change and climate change it is vital to understand thermal change at the scale at which
temperature is experienced by organisms (Gillingham, 2010; Suggitt et al., 2011; Wiens
and Bachelet, 2010). Prior evidence for local warming in the tropics as a result of land-use
change originates from global General Circulation Models (Davin and de Noblet-Ducoudré,
2010; Findell et al., 2007; Pielke et al., 2011) and observational studies focused on particular
locations, such as Brazil (Loarie et al., 2009), Malaysia (Luskin and Potts, 2011) and Indonesia
(Ramdani et al., 2014). While General Circulation Models are limited in biological relevance
by their coarse spatial resolution, observational studies are limited in generality by the
site-specificity required to achieve their fine spatial resolution (Li et al., 2015). Any studies

that utilise meteorological station data have limited biological relevance because stations
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are specifically positioned to minimise the influence of the very same local characteristics
that are important to local biota, such as vegetation cover, slope and aspect (Frenne and
Verheyen, 2016).

There are several conditions under which local warming due to land-use change might be
ameliorated, which have yet to be explicitly tested. We hypothesise that low intensity forest
degradation, including commercial selective logging, fragmentation and forest regrowth
(Lewis et al., 2015), will correspond to relatively little net change in vegetation, and hence
a smaller difference in temperature. Any warming effects of land-use change are likely
reversed at night, as habitats with relatively low vegetation cover will radiate heat back to
the atmosphere more freely (Chen et al., 1995; Oke, 1987). Water availability is fundamental
in determining how much thermal energy can be dissipated through evaporation, and so
we also expect that warming would be less during the wet season given the high water
availability (and more cloudy weather) relative to dry season, and below-ground relative
to above-ground. In the latter case, even when water availability is very low, soil buffers
external temperature change (Scheffers et al., 2014a) because soil has a higher specific heat
capacity than air, and thus requires a greater change in thermal energy to achieve the same

change in temperature (Oke, 1987).

In the present study, we carry out analyses of published data to test the effect of land-use
change on local temperature across the tropics. We collected local, in situ temperature
data from the literature for paired sites (< 1ha) that differed in land-use type. Categories of
land use we studied were primary forest, degraded forest, plantation, pasture and cropland
(Table 2.1; modified from Extended Data Table 1 in Newbold et al., 2015). We examine
how land-use change affects day-time temperature at fine-scale spatial resolution, and
we quantify the effects of: (1) forest conversion compared with forest degradation; (2)
below-ground compared to above-ground; and (3) wet season conditions compared to the
dry season. We focus on day-time temperatures because few studies collected night-time
temperature, although we also separately test how the latter is impacted by land-use
change for the subset of studies able to provide these data. Recent studies also highlight
the importance of climatic extremes for species’ survival (e.g. Christidis et al., 2013; Deutsch
et al., 2008), hence we conduct additional analyses for those studies that provide these

data.
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Land-use type Definition

Primary forest Forest where any disturbances identified are very minor (e.g. a trail
or path) or very limited in the scope of their effect (e.g. hunting of a
particular species of limited ecological importance).

Degraded forest Forest with one or more disturbances ranging from moderate
intensity/breadth of impact (e.g. selective logging and bushmeat
extraction), to severe intensity/breadth of impact (e.g. regrowth after

clear-felling).

Plantation Extensively managed or mixed timber, fruit/coffee, oil-palm or rubber
plantations.

Cropland Farming for herbaceous crops, without presence of livestock.

Pasture Farming of livestock.

Table 2.1: Land use classification definitions (modified from Extended Data Table 1 in
Newbold et al. (2015).

2.3 Methods

2.3.1 Literature search

We collated temperature data from peer-reviewed literature using ISI Web of Knowledge.
The search terms were: “tropic* AND (temperature OR local climate) AND (land use OR
landuse OR land cover OR landcover OR urban* OR city OR cities OR agri* OR arable OR built*
OR metropol* OR deforest* OR forest*) AND (change OR expansion OR growth OR encroach*
OR modif* OR conversion OR convert*)”. We refined the search output by including only the
following research areas: “environmental sciences ecology”, “remote sensing”, “agriculture”,
“biodiversity conservation”, “forestry”, “urban studies”; this returned 1,372 published
studies. Excluding book chapters (21) and articles that were deemed irrelevant based on
the title (298) or abstract (484) reduced the total to 525 articles. We reviewed each of
these articles manually. Additional unpublished data (two studies) were also provided by

co-authors (P.G., L.K.G.).

2.3.2 Selection criteria

All data originated from studies with at least two different sites in at least two different
land-use types. Sites were located between 23.44° North and South, and the natural
vegetation type was defined by authors as forest. Sites were fully contained within
the land-use type of interest and positioned beneath the canopy (where applicable).
Within a single study, sampling methodology was consistent across all sites and land-use

types. Differences between studies, such as soil depth or the use of radiation shields for
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dataloggers, were accounted for by the analytical approach (see ‘Statistical analyses’). All

sites within a single study differed in elevation by no more than 150 m.

Data collected through remote sensing or from meteorological stations were excluded,
because they are inherently unrepresentative of local climatic conditions in forested areas.
Meteorological stations are established to strategically avoid the very same local conditions
in which we are primarily interested (Frenne and Verheyen, 2016). Acceptable methods of
temperature measurement were those taken in situ, using a thermometer, temperature
probe or temperature dataloggers. We included temperature data reported as an average
across multiple spatial replicates for each land-use type within a study, provided that (1) the
area over which data were averaged and (2) the number of spatial replicates within this area
was consistent across different land-use types within the study. We set the maximum area
over which data could be averaged as 1 ha, to ensure our study focused on temperature
changes at a fine spatial scale. Aggregated spatial replicates of measurements within 1 ha
were considered as a single site. Where raw data were provided, a single site comprised the

individual point at which measurements were taken.

We included data reported as an average across multiple temporal replicates within a study
site, provided that (1) the period of time over which data were averaged and (2) the number
of temporal replicates within this period was within either day or night and was consistent
across different sites within the study. We set the maximum time period over which data
could be averaged as 183 days (half a year), provided this time period was entirely within
either the dry season or the wet season, as defined by the authors. Aggregated temporal
replicates within a study site were recorded as a single observation. Where raw data
provided more than one measurement per day, we calculated a daily mean for each study
site (between sunrise and sunset only), each of which represented a distinct observation. If
night-time data were available, we applied the same approach for observations measured
between sunset and sunrise. For those studies providing more than one temperature
observation per day or night, we also calculated temperature minima and maxima for the

time period(s) available (day or night).

2.3.3 Data collation

Where possible, temperature data were extracted from text, tables or graphs in the
publication. Data in graphs were extracted using Digitizelt (www.digitizeit.de; Scheffers
et al.,, 2014b). We also extracted: site coordinates and elevation; site descriptions of
sufficient detail to enable categorisation into land-use types; season (dry or wet); time
of measurements (day or night); and whether temperature was recorded above- or

below-ground. In many cases, temperature data or methodological information were
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reported inadequately or not at all, in which case authors were contacted directly for

information.

In some cases we were unable to retrieve all the required methodological information,
and made estimates. We estimated coordinates from Google Earth, based on detailed
descriptions in the text, and we estimated elevation from coordinates using a global
digital elevation map at 3-arc second resolution (Jarvis et al., 2008). Unless authors had
explicitly stated that data were collected during day or night, we determined this by
comparing the time of data collection to the time of sunrise and sunset, estimated from
the date of collection and the site coordinates using solar calculations developed by the
National Oceanic and Atmospheric Administration (NOAA, nd), and implemented in R using
custom functions (https://github.com/rasenior/SolarCalc). Our main analyses use day-time
temperature only because very few studies considered night-time temperature, though we
retained night-time temperature data where they were available for an additional, simplified

analysis.

We assigned categories of land use based on Extended Data Table 1 in Newbold et al. (2015),

which comprise ‘primary forest, ‘degraded forest’ (renamed from ‘secondary’), ‘plantation’,

‘pasture’ and ‘cropland’ (Table 2.1). ‘Urban’ could not be included due to insufficient data.

2.3.4 Statistical analyses

Each data point in our main analysis comprised an observation of day-time temperature in a
particular land-use type. We modelled each temperature observation against land-use type
using a linear mixed effects model, implemented in the 1me4 package (Bates et al., 2015)
in R (R Core Team, 2017). Studies differed substantially in methodology and location, hence
the identity of the study from which data were taken was included as a random intercept
term. Exploratory plots suggested that the slope of the relationship between land-use type
and temperature, as well as the intercept, varied by study. The decision to include a random
slope of land-use type, with respect to study identity, was determined using AIC with the full
fixed effects structure (Zuur, 2009). Fixed effects were then selected using backward stepwise
model simplification (Zuur, 2009), with the following categorical variables: land-use type (five
levels); position relative to ground level (above- or below-ground); and season (dry or wet
season), as well as pairwise interactions between land-use type and the latter two variables.
We tested interactions using likelihood ratio tests, and then removed interactions to test
main effects independently. For a subset of studies with suitable data, we used an analogous
approach with only land-use type included as a fixed effect, to model nocturnal temperature

and also temperature minima and maxima (for day-time and night-time separately).
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. Primary forest . Degraded forest @ Plantation ® Pasture Cropland

Figure 2.1: Locations of the 25 studies contributing data to the analyses. Point labels
correspond to the study number in Table 2.1. The shading and size of concentric points
corresponds to different land-use types, to indicate the data provided by each study.

Model estimates of local temperature are presented relative to the model estimate for
primary forest (above-ground and in the dry season). Both the position relative to ground
level and seasonality interacted with land-use change to influence local temperature, but for
clarity we discuss each explanatory variable separately. As such, temperature differences
between primary forest and altered land-use types are averages across all combinations of
position and season. The influence of position on these thermal differences is presented as

an average across seasons, and the influence of seasonality is an average across positions.

2.4 Results

In total, 25 studies met the criteria for inclusion (Table 2.2). Studies spanned 12 countries,
across every continent within the tropics (Figure 2.1), and provided 113,894 observations of
day-time temperature (Figure 2.2 and Figure A.4). Most observations represented either a
single temperature observation within, or mean temperature across, a single day at the point
location where measurements were taken. Six studies reported temperature at a coarser
temporal resolution (mean = 107 days; minimum = 14 days; maximum = 183 days), and six
studies reported temperature at a coarser spatial resolution (mean = 527 m?; minimum =
64 m?; maximum = 1,000 m?). The maximum elevational difference between sites within
a single study ranged from 0 to 141 m (mean = 33 m), and site elevation was random with
respect to land-use type (LMM, x2 = 19.33, df = 14, P > 0.05; Figure A.5). We were also able to
obtain 113,459 night-time temperature observations (including temperature extremes) from

10 studies, plus 113,230 observations of day-time temperature extremes from 11 studies; but
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Figure 2.2: Raw day-time temperature against land-use type, across all studies contributing
data to the analyses (plotted by study in Figure A.4). Point shading indicates temperatures
measured above-ground (orange) or below-ground (blue), and different symbols indicate
temperatures measured during the dry season (circles) or wet season (triangles).

none of these data were collected in cropland or pasture.

In all cases, the final model included a random slope for land-use type (‘LUT’) and random
intercept with respect to the identity of the study (‘studylD’) from which data originated. The
final model of day-time temperature (‘temp_day’) included land-use type, position relative
to ground level (‘position’) and season, as well as pairwise interactions between land-use

type and the latter two fixed effects:
lmer (temp_day ~ LUT#position + LUT*season + (LUT|studyID))

The final models of (1) night-time temperature, and temperature extremes (minimum and
maximum) (2) during the day and (3) during the night, all had the same model structure, with

land-use type as the only fixed effect:

lmer(temp ~ LUT + (LUT|studyID))

2.4.1 Effect of land-use change
Altered land-use types were substantially hotter than primary forest (LMM, X2 =29.49, df =

4, P <0.001; Table 2.3; Figure 2.3), and the magnitude of the warming broadly matched the

intensity of vegetation change associated with each land-use type. Thus, degraded forests

20



Chapter 2

‘Apnis yoea Ag paJapisuod (s)uoseas pue |9A3] punoJ3 03} aAle|aJ (s)uonisod ‘sadAy
9sn-pue| 9y} 91eaIpul $9ss04) Tz 24n8i4 ul sjaqe| wiod 03 spuodsatlod Jaquinu Apnis ‘sasAjeue 03 eyep Sulnglu0d SaIPNIS §Z 3yl jo Alewwns :z'z a|qel

X X X X X X elsauopu| (S007) ‘1e 1@ emeynin4 ‘'S¢
X X X X X elSIN (066T) olopeg "t
X X X X X X 02IX3N (900¢) sodwe) "gz
X X X X X |1zeig (r002) "|e 12 olepeg 'zt
X X X X X eljesisny (866T) "[e 1@ 3uny ‘1T
X X X X X 021y ouaNnd (zoot) noz pue niq 0z
X X X X X edaly e1s0) (666T) IIOH "6T

X X X X BUIYD (9002) ‘|e 13 Jaua "8T

X X X X X puejieyy (€T07) "|e 1@ ynjSuem LT
X X X X elsauopu| (zo0?) "le 1@ Uy 9T
X X X X X X eisAeje|p| (STOT) "8 3@ Y2mpJeH ST
X X X X X X eisAeje|A| (9T0¢) WO pue ydImpleH pT
X X X X X eisAele|n (9007) "1 33 1yoepy €T

X X X X X eisAeje|p| (800¢) "[e 19 0JlyseA "TT
X X X X BJ1Y e150) (800¢) @duaimeq pue poo\ ‘TT
X X X X BJ1Y €1S0D (6007) ‘|e 3@ JaundUUOS 0T

X X X X X 02IX3N (Z102) OpIAjeIN-Za1IUSg pUB SOJUES 6
X X X X X 02IX3N (TTOT) Ssojues ‘g
X X X X 02IX3IN (£007) "I 38 YoIn3|3ueA-93243aN /L
X X X X X X 02IX3N (TTO0T) "8 13 sola41-efluga -9
X X X X X  eluopaje) maN (€T07) "|e 19 zaueq| °g
X X X X X O2IX3N (600¢) u3||v pue 3pooy *y
X X X X X 02IX3IN| (pu) apooy ‘¢
X X X X 02IX3aN (TTOT) | 33 04131d 1Q-23|8ZUOY T
X X X X elquo|o) (pu) o3al|d [9p z3]eZUOD 'T

uoseas uoseas punois3 punoud 1940} 1940}
TV Mg -mojag -anoqy puejdos) ainised uonejue|d papesS8dq Atewnd

uoseas uonisod 9dA) asn-puen Anuno) Apms

—
(gl



Chapter 2

in our sample were the most similar to primary forest with an average difference of only
+1.1°C, which was not statistically significant based on 95% confidence intervals (Figure 2.3).
By contrast, converted habitats in our dataset - plantation, pasture and cropland - were, on
average, hotter than primary forest by 2.7°C, 6.2°C and 7.6°C, respectively. Results were
robust to resampling from studies that provided disproportionate numbers of observations
(Appendix A.1; Figure A.1).

Night-time temperature, and day-time and night-time temperature extremes, showed
varying results relative to primary forest in the two altered land-use types for which data
were available: degraded forest and plantation. In all cases, sample sizes were very limited
and confidence intervals were large, hence results should be interpreted with caution.
Night-time temperature in degraded forest and plantation did not differ from that of
primary forest (LMM, x? = 2.09, df = 2, P > 0.05; Figure A.2), and neither did night-time
minimum temperature (LMM, X2 =2.31,df =2, P > 0.05; Figure A.3d). Maximum night-time
temperature was slightly higher overall in degraded forest and plantation compared to
primary forest (LMM, x? = 6.35, df = 2, P < 0.05; Figure A.3c), although pairwise differences
were not statistically significant according to 95% confidence intervals. There was no
difference between primary forest and degraded forest and plantation in terms of day-time
maximum temperature (LMM, X2 =4.87,df =2, P >0.05; Figure A.3a), or day-time minimum
temperature (LMM, X2 =4.60, df = 2, P > 0.05; Figure A.3b).

2.4.2 Above- versus below-ground

The warming effect of land-use change was much stronger above-ground than below-ground
(LMM, X2 = 1115, df =4, P < 0.001; Table 2.3; Figure 2.3a). The average difference between
the local temperature of altered land-use types and primary forest was greater if measured
above-ground rather than below-ground, by 1.9°Cin plantation, 4.3°Cin pasture, and 11.4°C
in cropland. In degraded forest, the temperature relative to primary forest was very similar
above- (+1°C) and below-ground (+1.1°C). Notably, the buffering effect below ground was
so great that any difference between primary forest and impacted land uses was effectively

negated in all land-use types but pasture (based on 95% confidence intervals; Figure 2.3a).

2.4.3 Dry versus wet season

Seasonality had some influence on the relationship between land-use change and
temperature (LMM, X2 =14.91, df = 4, P < 0.01; Table 2.3; Figure 2.3b), but the direction
of the interaction varied by land-use type, and in all cases the effect size was very small.

In degraded forest and plantation, seasonality had no appreciable effect on temperature
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Figure 2.3: Model estimates of local day-time temperature in altered land-use types relative
to primary forest (depicted by the black dashed line). In panel (a), different symbols denote
position relative to the ground (above-or below-ground), and the season is held at the
reference level (dry season). In panel (b), different symbols denote the season (dry or wet),
and the position relative to the ground is held at the reference level (above-ground). Error
bars are 95% confidence intervals. Solid lines indicate projected warming in the tropics for
the period 2081-2100 compared to the period 1986-2005, as a result of global climate change
(IPCC, 2013). Shaded bands indicate 5%-95% ranges from the distribution of the climate
model ensemble. Colours represent the lowest and highest warming scenarios (RCP2.6 and
RCP8.5, respectively).
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relative to primary forest (dry vs. wet season: +0.1°C in both degraded forest and plantation).
In contrast, the temperature difference between pasture and primary forest was 1.9°C
greater in the wet versus dry season, while in cropland the differential was 0.6°C greater in

the dry versus wet season.

2.5 Discussion

Our results show that land-use change increases local temperature in the tropics (Figure 2.3).
In all conditions where this relationship was evident, the temperature rise due to land-use
change exceeded that predicted for the tropics by the end of the 21% Century under
the minimum climate warming scenario (+0.9°C in RCP2.6; IPCC, 2013), and frequently
also exceeded the maximum warming scenario (+3.3°C in RCP8.5; IPCC, 2013). Previous
studies show that land-use change tends to increase local temperature (e.g. Davin and
de Noblet-Ducoudré, 2010; Findell et al., 2007; Loarie et al., 2009; Luskin and Potts, 2011;
Ramdani et al., 2014; Tuff et al., 2016) but this is the first study, to our knowledge, that
demonstrates this effect across many locations in the tropics at a site-level resolution (<
1 ha), considering multiple modes of land-use change concurrently, and comparing the

relationship above- and below-ground and between wet and dry seasons.

2.5.1 Thermal differences between land-use types

Human-impacted land-use types are likely hotter than intact primary forest because of
changes in evapotranspiration and the amount of solar radiation reaching the Earth’s
surface (Davin and de Noblet-Ducoudré, 2010; Findell et al., 2007; Oke, 1987). Degradation
and deforestation cause a lowering and thinning of the canopy, and reduction in rooting
depth, leaf area index and surface roughness, all of which reduce evapotranspiration
(Davin and de Noblet-Ducoudré, 2010; Findell et al., 2007; Hardwick et al., 2015; Kumar
and Shahabuddin, 2005; Okuda et al., 2003; Snyder et al., 2004), and thereby increase
temperature (Foley et al., 2005; Oke, 1987). Changes to canopy architecture and a reduction
in the number of sub-canopy vegetation strata also cause warming by increasing the amount
of solar radiation reaching the ground (Murcia, 1995; Oke, 1987). Our land use categories
encompass a spectrum of vegetation change, from relatively little change in degraded
forests (where some trees and a closed canopy are maintained) to maximal change in
pasture and cropland (where trees are replaced with herbaceous plants). Accordingly,
degradation had the smallest average effect (+1.1°C), followed by plantation (+2.7°C), and
then pasture (+6.2°C) and cropland (+7.6°C).
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We expected that the same mechanisms underlying the warming effect of land-use change
would also result in increased day-time temperature extremes and decreased night-time
temperatures in altered land-use types, relative to primary forest (Chen et al., 1995; Oke,
1987). Unfortunately, the data available were very limited, including only three of the five
land-use types (primary forest, degraded forest and plantation), and resulting in extremely
large confidence intervals (Figure A.2 and Figure A.3). We urge caution when interpreting our
results, which suggested either no effect or an extremely weak effect of land-use change on
temperature extremes and night-time temperature; clearly more data are needed to reliably

test these relationships.

2.5.2 Interaction with position relative to ground level and seasonality

We found that local warming effects of tropical land-use change are negated below-ground,
despite the strength of the relationship above-ground (Table 2.3; Figure 2.3a). This can
largely be attributed to the higher specific heat capacity of soil compared to air (Oke, 1987).
Greater availability of water may also play a role, permitting thermal energy to be dissipated
through the evaporation of water rather than increasing temperature (Christidis et al., 2013;
Davin and de Noblet-Ducoudré, 2010; Oke, 1987). We expected the latter effect to result
in increased buffering during the wet season (cf. Davin and de Noblet-Ducoudré, 2010;
Findell et al., 2007), but instead we found that seasonality had a very limited influence on
temperature relative to primary forest (Table 2.3; Figure 2.3b). The strongest influence was
in pasture, where the effect of land-use change was greater in the wet season. Potentially
longer grass in pasture in the wet season could decrease albedo compared to pale exposed
soil in the dry season, while the same pattern could be avoided in cropland through dry
season irrigation. That said, pasture and cropland had the least data of all land-use types,

and we advise that these results be interpreted with caution.

2.5.3 Implications for biodiversity

For tropical biodiversity, there are several key implications of our findings. Firstly, forest
species persisting through forest conversion have already experienced thermal change
similar, if not greater, in magnitude to that predicted by global climate change (IPCC, 2013).
Historically the tropics have experienced relatively stable climatic conditions (Mora et al.,
2013) and tropical species possess narrow thermal niches, with many already occupying the
upper bounds of that niche (Deutsch et al., 2008; Freeman and Class Freeman, 2014; Sunday
et al., 2014; Tewksbury et al., 2008). Dispersal towards more favourable climatic conditions

is limited by low dispersal ability (Van Houtan et al., 2007), a scarcity of suitable destinations
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(Colwell et al., 2008), and the necessity to pass through an increasingly hostile land-use
matrix to reach target habitat (Brook et al., 2008; Scriven et al., 2015; Thomas et al., 2004).
There is already some evidence that higher temperatures in the tropics are associated with
lower species abundance (e.g. for arthropods: Foster et al., 2011), and there are also fitness
costs associated with long-term persistence in suboptimal climatic conditions (du Plessis
et al,, 2012; Gunderson and Leal, 2016). Without any further temperature change some
species persisting in converted environments may already be committed to extinction,
particularly species that are unable to utilise microhabitats with favourable microclimates
(Gonzélez del Pliego et al., 2016; Scheffers et al., 2014a). Under predicted climate change,
increasing average temperature and the increasing frequency and intensity of droughts
(Chou and Lan, 2012; IPCC, 2013) will likely push many species beyond their upper thermal

limits, especially in heavily degraded or converted habitats.

That said, we find several circumstances where warming through land-use change is
mitigated. Degraded forests were not significantly hotter than primary forests (according
to 95% confidence intervals; Figure 2.3). This is encouraging because degraded forests
are likely to become the most widespread land-use type in future (Hurtt et al., 2011), and
many studies have demonstrated their capacity to retain species of conservation concern
(Edwards et al., 2011, 2014c; Gibson et al., 2011; Putz et al., 2012). For all altered land-use
types, the warming effect was limited below-ground, highlighting a crucial thermal refuge
for species that are able to occupy the soil, and suggesting that above-ground microhabitats,
such as deadwood and epiphytes, might fulfil a similar role (Gonzalez del Pliego et al., 2016;
Scheffers et al., 2014a). Thermal refugia may not be a permanent solution for avoiding
climate change, and sensitive species may find that even relatively cold microhabitats are
still too hot (e.g. below-ground in pasture was 4°C warmer than primary forest; Table 2.3;
Figure 2.3), but refugia could at least provide species with more time to respond to

suboptimal climatic conditions (Hannah et al., 2014).

2.5.4 Caveats and knowledge gaps

By collating site-level data reported from the literature, we were able to achieve high
geographical coverage and fine spatial resolution that is lacking in previous studies, but
this technique is biased by the availability of data towards particular regions and land-use
types (Figure 2.1), and relies heavily on substituting space for time, which can misrepresent
anthropogenic impacts (Franga et al., 2016). In particular, there was only one study
located in Africa, and Southeast Asian studies provided all of the plantation data and no
cropland data. Future research should seek to explicitly consider how tropical land-use
change affects: vegetation structure (e.g. using Leaf Area Index cf. Hardwick et al., 2015),

relative humidity (Ewers and Banks-Leite, 2013; Luskin and Potts, 2011), nocturnal climatic
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conditions (Chen et al., 1995; Dubreuil et al., 2011), extremes of temperature (Christidis
et al., 2013), and rates of temperature change (Scheffers et al., 2014a); preferably at a range
of spatiotemporal scales (Wiens and Bachelet, 2010) and with a standardised methodology

to simplify comparisons across studies.

2.5.5 Conclusions

Our study confirms that tropical land-use change leads to warming at a local scale (< 1
ha) across the tropics, of a magnitude comparable to that predicted from global climate
change. We find pantropical evidence that the effects of land-use change on temperature
are ameliorated below-ground, and absent in degraded forests. Many studies collect
site-level climate data, and through sharing of these data and collaboration between
scientific disciplines, there is much that can be done to integrate theoretical and empirical
understanding of the processes that govern climate at different scales. This will greatly
advance our knowledge of potential synergies between two of the greatest drivers
of biodiversity loss — land-use change and climate change — and highlight mitigating
factors, such as thermal microrefugia, which could be a pragmatic focus for conservation

management.

2.6 Code availability

R functions used to estimate time of sunset and sunrise can be downloaded from GitHub

(https://github.com/rasenior/SolarCalc).

2.7 Data availability

The collated dataset can be found on Dryad (https://doi.org/10.5061/dryad.g4000). Note
that in many cases these data were aggregated for analyses. For finer resolution data please

refer to the original data sources.
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A framework for quantifying fine-scale

thermal heterogeneity using thermography

Thermal image of rainforest floor.

This chapter is currently in preparation for submission to Ecography as:

Senior RA, Hill JK, Edwards DP. A framework for quantifying fine-scale thermal

heterogeneity using thermography.
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3.1 Abstract

Variation in temperature at a fine spatial scale creates critically important microclimates for
many organisms. Quantifying thermal heterogeneity at this scale is challenging and, until
recently, has been largely restricted to the use of dataloggers to record air temperature.
Thermography is becoming an increasingly viable alternative. A single thermal photo
contains thousands of spatially explicit surface temperature measurements, making them
ideal for rapidly assessing temperature variation at fine scale. To date, the technology
and data have been underexploited in terrestrial ecology, partly because there is limited
technical support. Here, we present a framework and R package for processing thermal
images and other gridded temperature data, demonstrated using thermal images from
selectively logged and unlogged forests of Borneo. We quantified heterogeneity in
the understorey using metrics that capture both the frequency distribution and spatial
distribution of temperature. Thermal heterogeneity was similar in logged and unlogged
forests, but showed clear patterns over the day. When average temperature reached
its maximum — around noon — we observed peaks in thermal diversity, the deviation of
temperature extremes from the average, and in the area of statistically-defined ‘hot spots’.
At the same time, ‘cold spots’ were more irregularly shaped and less spatially clustered,
which could make them easier for organisms to locate when they are most necessary
(i.e. when average temperatures are highest). To illustrate how our approach can be
applied to other temperature data we used mean monthly temperature for Borneo from
WorldClim2 (~1 km? resolution). Thermal diversity and spatial clustering of cold spots were
highest in September and October, which could be related to the transition from dry to
rainy season. Put together, our framework simplifies the processing of thermal data, and
our metrics capture key spatiotemporal temperature trends that could underpin species’

responses to environmental change.

3.2 Introduction

A key way in which organisms will respond to future climate change is adaptation in situ
(Hannah et al., 2014). On a daily basis, mobile organisms respond to extremes of heat by
exploiting fine-scale (mm to m) thermal heterogeneity (Gonzalez del Pliego et al., 2016;
Scheffers et al., 2014a). Over longer time periods, climate at this scale (‘microclimates’) can
also maximise fitness and thus influence the fine-scale distribution of less mobile species
(Maclean et al., 2017). The same mechanisms could temper species’ exposure to global
climate change (Scheffers et al., 2014b; Suggitt et al., 2018), particularly in structurally

complex habitats like tropical rainforests (Scheffers et al., 2017a). To accurately predict
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species’ responses to climate warming in these places we must therefore be able to

efficiently and effectively capture thermal heterogeneity at fine scale.

The use of temperature dataloggers has been instrumental in advancing our knowledge
of temperature at biologically relevant spatial scales (Bramer et al.,, 2018). However,
dataloggers can only record the air temperature in their immediate vicinity, and so must be
highly replicated in space and in a variety of microhabitats to capture spatial temperature
variation. Additionally, the vast majority of terrestrial organisms are very small, flat,
or thigmothermic (i.e. thermoregulate via direct contact with a surface), hence surface
temperature is often more biologically relevant than is air temperature (e.g. Kaspari et al.,
2015).

Technological advances in recent years have made thermal cameras an increasingly
affordable and practical complement to dataloggers (Faye et al., 2016; Scheffers et al.,
2017a). A single thermal image provides thousands of spatially explicit surface temperature
measurements at the mm-cm scale. With such a wealth of data and limited guidance on
how to process and analyse it, both the technology itself and the data provided have not
been utilised to their full potential within terrestrial ecology. Faye et al. (2016) provide
an excellent starting point from which to formulate a framework. Using visual images
(red, green and blue spectral bands) in combination with thermal images, collected using
an unmanned aerial vehicle (UAV), Faye et al. demonstrate how thermography can be
used to compare thermal heterogeneity between different surfaces (in this case, bare soil
versus crop surface), and suggest various metrics to capture different facets of thermal
heterogeneity. However, while the use of UAVs in complex habitats is indeed becoming
more feasible (Sanchez-Azofeifa et al., 2017), for the foreseeable future it is likely that
thermography in these places will most commonly consist of thermal photos collected

manually in the field, and there is no comparable toolbox for these data.

Both Faye et al. (2016) and Scheffers et al. (2017a) provide introductory R scripts to facilitate
the processing of thermal photos. However, batch processing of data from thermal images
is rarely straightforward, while parameters such as emissivity strongly influence the accuracy
of measurements but may not be well understood by the novice user (Bramer et al.,
2018).The development of the Thermimage package (Tattersall, 2017) in R has considerably
eased extraction and conversion of raw data from FLIR thermal cameras specifically, but
this package does not directly facilitate processing in batch nor does it calculate (or suggest)

what metrics are most appropriate to quantify thermal heterogeneity using thermal images.

The most appropriate metrics to capture thermal heterogeneity will depend on the
taxonomic group and research questions of interest. Temperature varies across time and

space in a multitude of ways that can easily be captured by thermal images; it is important
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to exploit the information provided without becoming overwhelmed. Both Shi et al. (2016)
and Faye et al. (2016) provide a useful summary of some important metrics, and Faye et al.
notably introduce a spatial component by borrowing metrics from landscape ecology, such
as Shape Index and Cohesion Index (McGarigal et al., 2012). Extending this approach reveals
other techniques that could be useful in this context, such as hot spot analysis (Getis and
Ord, 1996).

In this study, we introduce an R package — ThermStats —which combines ideas, techniques
and metrics from previous work into one simple framework for quantifying heterogeneity in
thermal images. Using images collected in primary and selectively logged forests on Borneo,
we illustrate the utility of our package for comparing thermal heterogeneity over time and
between forest types. In addition, while the package was designed with fine-scale data in
mind, we use temperature data for Borneo at 1 km? resolution from the WorldClim2 database
(Fick and Hijmans, 2017) to demonstrate how our metrics of thermal heterogeneity can also

be calculated for other kinds of gridded temperature data.

3.3 Methods

3.3.1 Step 1: Data collection

High resolution surface temperature measurements can easily be collected in the field
using a handheld thermal camera. We used a FLIR Systems, model E40 camera, which costs
~US$4,000, weighs 825 g, and takes 19,200 measurements (160 x 120 pixels) in a single
photo (FLIR, 2016; Scheffers et al., 2017a). Various other models are available, including
the smaller and more affordable FLIR ONE smartphone attachment at ~US$300, 34.5 g and
a resolution of 80 x 60 pixels. As with any field study, the sampling design should aim to
achieve sufficient coverage over the study area and over time, such that the images are
representative samples of the treatments of interest. For example, a single image of the
ground from 1 m away encompasses an area of 0.9 x 1.1 m using a FLIR E40 camera (FLIR,
2016), and so it may be necessary to take multiple photos in different cardinal directions and
at different times of day to effectively represent the temperature of a study plot (Chapter 4;
Scheffers et al., 2017a).

Before any data are collected, we recommend users familiarise themselves with the
technology. There are various sources of the infrared radiation detected by a thermal
camera, but we want to focus only on the radiation emitted by the object of interest, which
is a function of its temperature. The amount of radiation emitted by a particular object,

for a given temperature, depends on its emissivity. A perfect blackbody has an emissivity
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of 1, while surfaces that an ecologist is likely to photograph typically have an emissivity
ranging from 0.92 (for dry, bare soil; FLIR, 2016) to 0.99 (for green broadleaf forest; Snyder
et al., 1998). Additionally, the temperature and relative humidity of the atmosphere and
the distance between the object and the camera will all affect (1) the amount of emitted
radiation that is absorbed by the atmosphere and (2) the amount of radiation that originates
from the atmosphere itself, with some of this also being reflected by the object (reflected

apparent temperature).

To accurately quantify surface temperature, environmental parameters (emissivity, reflected
apparent temperature, atmospheric temperature, atmospheric relative humidity and object
distance) can be set in the camera or defined during data processing (see ‘Step 3: Conversion
of raw data’). The benefit of the latter approach is that the user can measure atmospheric
temperature and relative humidity concurrently with thermal image collection, and these
parameters can then be set for each image individually. Object distance should be minimised,
and it is usually advisable to keep this value constant. Emissivity can either be estimated
from the literature (cf. Scheffers et al., 2017a) or sampled in the field (FLIR, 2016). Reflected
apparent temperature can also be sampled (FLIR, 2016), although for high emissivities and
short object distances, relatively little radiation is reflected and thus apparent temperature
can be assumed to equal the atmospheric temperature (Tattersall, 2017). It is recommended

that thermal cameras are regularly calibrated (FLIR Systems suggest doing so once per year).

3.3.2 Step 2: Data extraction

A single thermal photo from a model E40 camera comprises 160 x 120 pixels, each of which is
a unigue measurement of received infrared radiation encoded as a raw 16-bit value. Data can
be extracted into a .csv file using the freely available FLIR Tools software (https://www.flir.
com/products/flir-tools; cf. Scheffers et al., 2017a), but we do not recommend this because
it cannot be done in batch, there is less transparency regarding the conversion of raw values
to temperature, and FLIR Tools uses interpolation to elevate the number of pixels (up to
320 x 240 for a model E40 camera). A quicker and more flexible approach is to use the R
package Thermimage (Tattersall, 2017). The function readf1irJPG is able to extract all
raw data from a FLIR thermal image, and can be implemented in batch using the function

batch_extract in our package, ThermStats.

3.3.3 Step 3: Conversion of raw data

The raw values embedded in a FLIR thermal image can be converted to temperature

in °C using equations from infrared thermography (Tattersall, 2017; FLIR, 2016). This
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is made simple by the function raw2temp in the Thermimage package, which can be
implemented in batch in our package using the function batch_convert. Several default
values are defined in raw2temp, but the most accurate temperature conversion will be
achieved when the environmental parameters, described in ‘Step 1’, are defined by the user.
Notably, default emissivity is 1, but should realistically take a value between 0.95 and 0.97
(Tattersall, 2017), while the default relative humidity of 50% is excessively low for moist
habitats like tropical rainforest. Conversion of raw data also requires various calibration
constants that are specific to each camera. These can be retrieved from a thermal image
using the Thermimage function flirsettings, which is done automatically within our

batch_extract function.

3.3.4 Step 4: Calculate metrics of thermal hetereogeneity

The most relevant metrics to quantify thermal heterogeneity depend on the particular
research questions. The function get_stats takes a single thermal dataset, in the form of
a matrix or raster, and calculates user-defined summary statistics across all pixels. Standard
summary statistics could include measures such as mean and standard deviation, but may
also include metrics like thermal richness (the number of unique temperature values) and
thermal diversity indices (cf. Faye et al., 2016). Several helper functions are available to
implement less standard summary statistics. Based on discussions in Faye et al. (2016) and

Shi et al. (2016), we recommend some suitable statistics in Table 3.1.

The function get_stats identifies hot and cold spots in thermal images using a standalone
function get_patches. Hot and cold spots are based on the Getis-Ord local statistic (Getis
and Ord, 1996), calculated using the spdep package (Bivand and Piras, 2015). The statistic
is calculated for individual pixels by comparing its value to that of neighbouring pixels. The
size of the neighbourhood and style of spatial weighting are specified by the user (these
arguments are passed directly to the relevant functions in the spdep package). High positive
values exceeding the Z-value threshold (defined according to the sample size; Getis and Ord,
1996) are classified as hot spots, and low negative values as cold spots. Several spatial
statistics are then calculated to characterise the hot and cold spots (Table 3.2; cf. Faye et al.,
2016). There is an option to return patch outlines as a SpatialPolygonsDataFrame,
which can be plotted on the temperature data using plot_patches alongside an (optional)

histogram of the temperature distribution (Figure 3.1).

We assume that for most users the spatial unit of replication will comprise multiple thermal
images. In this case, the user can specify a grouping variable in stats_by_group. Matrices
from each group will be bound together and get_stats applied over the combined matrix.

We assume the images are not adjacent in space, and therefore pad matrices with NA values
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Summary Description

statistic

Average Provides context for all other statistics, and could be used as a

temperature measure of the macroclimate for small, surface-dwelling organisms.
The median is more robust than the mean to spurious extreme values
that can sometimes arise in thermal images.

Temperature While more rarely encountered, extreme values can be more

extremes significant to organisms, for example by exceeding upper thermal
limits or by providing cool refugia from average conditions. The
difference between extremes provides a measure of thermal
diversity/stability (Shi et al., 2016), while the difference between
extremes and average temperature provides a measure of the
potential for thermal buffering. Again, we suggest the 5" and 95
percentiles are more robust to spurious extreme values than the
minimum and maximum (respectively).

Temperature Over space and time, the standard deviation or coefficient of variation

variability of temperature represents another measure of thermal stability (Shi
et al.,, 2016), which may be particularly significant for organisms
requiring constant temperatures, e.g. juveniles with a lower capacity
for thermoregulatory behaviours. In contrast, for other mobile
organisms — particularly ectotherms — high thermal diversity is likely
to maximise opportunities for thermoregulation.

Thermal Captures both the richness and evenness of different temperatures.

diversity Similar to temperature variability, the biological relevance of this

indices measure is through its influence on the necessity and potential for

thermoregulation. As discussed by Faye et al. (2016), Shannon’s
thermal diversity index quantifies how reliably one can predict the
temperature of a pixel sampled at random from the temperature data.
Simpson’s thermal diversity index is similar, but instead captures the
likelihood of two pixels being the same temperature (or temperature
class) when taken at random from the thermal landscape.

Table 3.1: Suggested summary statistics that can be applied by get_stats.

before binding. Table D.2 gives an example of the output from stats_by_group.

3.3.4.1 Case studies

We demonstrate our framework and R package using fine-scale data collected in the field
with a FLIR thermal camera. To investigate how thermal heterogeneity varies over time and
with selective logging, we sampled surface temperature in a large area of contiguous forest

in Malaysian Borneo in the years 2014 and 2015, using a FLIR Systems model E40 thermal
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Figure 3.1: Examples of temperature distribution (left column) and thermal images (right
column) for temperature data collected at fine and coarse spatial scales (top and bottom
rows, respectively). Pixels are shaded from cold (purple) to hot (yellow). Hot spots (outlined
in pink) and cold spots (outlined in blue) were identified using the Getis-Ord local statistic of
each pixel.
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camera. In both years, photos were taken at the centre of plots spaced along existing
transects, with six transects in undisturbed primary forest (Danum Valley Conservation
Area; 4°57045.2“N, 117°48010.4”E), and six transects in adjacent forest that had been
commercially selectively logged twice between 1987 and 2007 (Ulu Segama-Malua Forest
Reserve, 4°57042.8“N, 117°56051.7”E). Plots were sampled repeatedly from the coolest
to the hottest part of the day (05:00-14:30 h). In each sampling event, thermal images
were taken at the centre of the plot in four orthogonal directions, with the camera held at
breast height and pointing 45° downwards (relative to the ground). A single pixel represents
roughly 0.57 cm?. In total we collected 2,972 photos across 144 plots. For full details see
Scheffers et al. (2017a) and Chapter 4.

For all analyses, each metric of thermal heterogeneity was calculated across all four photos
taken each time a plot was sampled. We focused on the following summary statistics from
Table 3.1: median temperature; Shannon Diversity Index; upper temperature range (95"
percentile - median); and lower temperature range (median - 5™ percentile). We identified
hot and cold spots using a neighbourhood size of eight pixels (k = 8 in spdep: :1localG),
with row standardised neighbour weights (style = “W” in spdep: :nb21listw). For hot
and cold spots separately, we calculated the following spatial statistics (Table 3.2): average
area per patch (total area divided by number of patches, to correct for plots with missing
photos); average number of patches per unit area (density); Shape Index; and Aggregation
Index. Overall we expected forests to be more thermally homogenous early in the day and to
increase in heterogeneity towards the hottest part of the day, around noon, as microclimates
increasingly deviate from the average temperature. Loss of vegetation, such as through
logging, tends to decrease absorption and reflection of incident radiation and reduce heat
loss through evapotranspiration (Oke, 1987; Sears et al., 2011), so we might expect logged
forests to be more thermally homogenous than unlogged forests. However, there is also
evidence that after selective logging there is rapid horizontal growth in the canopy (Asner

et al., 2004), corresponding to rapid thermal recovery (Chapter 4).

We used Generalized Additive Mixed Effects Models (GAMMs) to model the various thermal
heterogeneity metrics against forest type (categorical: primary or logged) and time of day,
smoothed with a cubic regression spline. All models were fit using the gamm4 package (Wood
and Scheipl, 2017) in R (version 3.5.0; R Core Team, 2018). We included a random intercept
term for ‘year’, and for ‘plot’ nested in ‘transect’ to account for spatial pseudoreplication.
All metrics were modelled with a Gaussian error distribution, except for Aggregation Index
which is proportion data (number of edges shared by pixels of the same class divided by the
maximum number that could be shared; He et al., 2000), and was therefore modelled using a
binomial error distribution. Statistical significance was inspected using likelihood ratio tests,

dropping each fixed effect in turn and comparing it to the full model (Zuur, 2009).
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Although our framework was designed with fine spatial scales in mind, thermal heterogeneity
metrics can be calculated for any gridded temperature data. We therefore include an
additional assessment of thermal heterogeneity across Borneo, using average monthly
temperature (hereafter: temperature) for 1970-2000 from WorldClim2 (Fick and Hijmans,
2017) at 30 arc-second resolution (approximately 1 km? at the equator). We calculated the
same heterogeneity metrics as in the field study, but focused only on cold spots (because
there were very few hot spots). Seasonality is limited on Borneo so we expected that
thermal heterogeneity would not change markedly over the year, but may be higher in the
dry season — roughly July to October (McAlpine et al., 2018) — when average temperatures
are higher and there is less buffering by high water availability. We modelled these metrics
against month using Generalized Additive Models (GAMs), smoothed with a cubic regression
spline, using the mgcv package in R (Wood, 2017). As with the field study, a Gaussian
error distribution was used for all but the Aggregation Index, which used a binomial
error distribution. Model inference was based on a likelihood ratio test of the full model

compared to a model without the fixed effect of month.

3.4 Results

3.4.1 Field study

All measures of thermal heterogeneity were comparable between primary and unlogged
forest (P > 0.05; Figure 3.2), but showed clear patterns over the day. Median temperature
was lowest around dawn (~06:00 hr) and increased steeply thereafter until reaching a plateau
around noon (x? =999, P <0.001; Figure 3.2a). The thermal Shannon Diversity Index showed
a similar pattern, reaching maximum diversity at noon (x? = 175, P < 0.001; Figure 3.2b).
Although less pronounced, noon peaks were also observed for the upper temperature range
(95'" percentile minus median; x?=59.2, P <0.001; Figure 3.2c) and lower temperature range
(median minus 5" percentile; X2 = 20.6, P < 0.001; Figure 3.2d). Together these measures
suggest that overall variation in temperature and the deviation of extreme values from the

average all increase from dawn to noon.

The spatial distribution of hot and cold spots is less intuitive, but did also vary temporally. For
hot spots, the average area peaked around noon (x?=38.8, P <0.001; Figure 3.2e) when their
density (y?=64.2, P <0.001; Figure 3.2g), and Shape Index (x? = 69.6, P < 0.001; Figure 3.2i)
were near their minimum values. The Aggregation Index of hot spots reached its lowest value
after dawn and increased thereafter (x? = 14600, P < 0.001; Figure 3.2k). Thus, throughout
the morning hot spots became larger but fewer in number, with a more irregular shape and

increased spatial clustering.
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Cold spot distribution showed slightly different patterns in the timing of peaks and troughs,
compared to hot spots. The average area of cold spots was highest early in the morning
and decreased thereafter (y? = 5.79, P < 0.05; Figure 3.2f), although their density remained
constant (2 = 1.77, P = 0.183; Figure 3.2h). The Shape Index of cold spots decreased after
dawn to its minimum value, and subsequently increased (x? = 27.7, P < 0.001; Figure 3.2j).
Aggregation Index, in contrast, increased to its maximum value after dawn, and subsequently
decreased (x? = 60000, P < 0.001; Figure 3.2l). Overall, cold spots were larger, more regularly

shaped and more clustered in the morning compared to noon.

3.4.2 Remote study

Thermal heterogeneity on Borneo varied over the year for most metrics considered. While
average temperature peaked most notably around April-May (F = 7.26, P < 0.05; Figure 3.3a),
the thermal Shannon Diversity Index was greatest around September and January (F = 11.8,
P < 0.01; Figure 3.3b) and the upper temperature range (95" percentile minus median) had
an inverse pattern to median temperature, being lowest in May and highest in December (F
=14.6, P < 0.01; Figure 3.3c). There was no clear seasonality in the lower temperature range
(median minus 5" percentile; F = 2.68, P = 0.119; Figure 3.3d), nor the area (F = 1.72, P =
0.248; Figure 3.3e) and density (F = 1.93, P =0.21; Figure 3.3f) of cold spots. The Shape Index
of cold spots was highest in June and lowest in September (F = 4.58, P < 0.05; Figure 3.3g),
in contrast to the Aggregation Index of cold spots which peaked in September (Deviance =
42.6, P < 0.001; Figure 3.3h). Taken together, these results suggest that there is some annual
variation in thermal heterogeneity, with more clustered and regularly shaped cold spots and

greatest thermal diversity around September.

3.5 Discussion

Our R package presents users with a simple protocol for processing and analysing thermal
images. Although tailored towards images collected in the field using a FLIR camera, we
demonstrate its applicability for other forms of gridded temperature data. In particular,
we facilitate the calculation of various metrics of thermal heterogeneity collated from the
literature (Faye et al., 2016; Shi et al., 2016), which are considered biologically important in

the context of thermoregulation and are not readily captured by existing methods.
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Figure 3.2: Trends in various measures of thermal heterogeneity over the day (06:00-14:30
hrs) for fine-scale temperature data collected using a thermal camera in primary (blue)
and logged forests (orange). From left to right and top to bottom, the metrics are:
median temperature (a); thermal Shannon Diversity Index (b); 95" percentile minus median
temperature (c); 5" percentile minus median temperature (d); the average area (cm?)
per hot spot (e); the average area (cm?) per cold spot (f); the number of hot spots per
unit area (g); the number of cold spots per unit area (h); the Shape Index of hot spots
(i); the Shape Index of cold spots (j); the Aggregation Index of hot spots (%) (k); and
the Aggregation Index of cold spots (%) (l). Solid lines are model-predicted values with
95% confidence intervals. Semi-transparent background points represent the raw data.
Statistically significant differences are indicated by asterisks: 0.01 < P < 0.05 (*); 0.001 <
P <0.01 (**) and P < 0.0001 (***).
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Figure 3.3: Trends in various measures of thermal heterogeneity over the year for
temperature data from WorldClim2. From left to right and top to bottom, the metrics are:
median temperature (a); thermal Shannon Diversity Index (b); 95" percentile minus median
temperature (c); 5" percentile minus median temperature (d); the average area (km?) per
cold spot (e); the number of cold spots per unit area (f); the Shape Index of cold spots (g);
and the Aggregation Index of cold spots (%) (h). Solid lines are model-predicted values with
95% confidence intervals. Points represent the raw data. Statistically significant differences
are indicated by asterisks: 0.01 < P <0.05 (*); 0.001 <P <0.01 (**) and P < 0.0001 (***). The
dry season is indicated by a light grey vertical band from July to October.
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3.5.1 Case studies

We found a strong effect of time on nearly all metrics of fine-scale thermal heterogeneity, in
both intensively logged and unlogged forests on Borneo. Average temperature was lowest
around dawn (~06:00 hrs) and peaked around noon (~12:00 hrs). Organisms are most likely to
be seeking above-average temperatures for basking after sunrise, at which point hot spots
were smaller in area but more numerous, more irregular in shape and less clustered, thus
potentially easier to locate (Sears et al., 2016). Conversely, cold spots are necessary to buffer
organisms against extremes of heat, which are most likely encountered at noon. At this time
there was the greatest difference between minimum and average temperature, and cold
spots were likely to be easier to locate because of a more irregular shape and lack of spatial
clustering. Temperature variation in both time and space was comparable between forest
types (Figure 3.2), confirming the findings of Chapter 4 that within a few years of recovery,
intensively logged forest can have an equal capacity for thermal buffering as nearby unlogged

forest.

Despite the coarseness of the data from WorldClim2 and general lack of seasonality on
Borneo (e.g. Walsh and Newbery, 1999), some temporal patterns were apparent. Namely,
thermal diversity and clustering of cold spots were highest in September and October when
the regularity of cold spot shape was lowest (Figure 3.3). This marks the end of the dry
season (McAlpine et al., 2018), at which point lower water availability may decrease heat
loss through evaporation (Oke, 1987), causing some locations to deviate more from the

regional average temperature and thereby increasing overall thermal diversity.

3.5.2 Caveats and considerations

It is important to consider the strengths and weaknesses of thermography when deciding on
the most appropriate methodology to answer the research questions of interest. Thermal
cameras cannot directly measure sub-surface temperatures and are not as well suited for
capturing temporal variation as dataloggers. Although affordable smartphone attachments
are now available, thermal cameras may still be more expensive than dataloggers (depending
on the quantity of dataloggers required), and can be sensitive to extreme weather conditions
common to regions such as the tropics and Arctic (FLIR, 2016). Bramer et al. (2018) is an
excellent resource for ecologists seeking best practice for using dataloggers; we hope
that our study and the references herein offer something analogous for ecologists using

thermography.
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3.5.3 Summary

Fine-scale temperature variation across space and time has a huge influence on species’
ecology, which will become increasingly pertinent as average temperatures rise under global
climate warming. We showcase how our R package and framework can be used to quantify
thermal heterogeneity in tropical forests using data at a fine spatial scale, collected using a
FLIR thermal camera. We also show how our metrics can be calculated for other kinds of
gridded temperature data, such as remotely sensed data. By simplifying and streamlining
the processing of increasingly available thermal imagery, our approach enables researchers

to more readily address key issues in ecology and conservation.

3.6 Code availability

The R package ThermStats can be downloaded from GitHub: https://github.com/rasenior/
ThermStats. Bug reports and suggested enhancements can be submitted to: https://github.

com/rasenior/ThermStats/issues.
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Chapter 4

Chapter 4

Tropical forests are thermally buffered

despite intensive selective logging

Bornean tree hole frog (Metaphrynella sundana).

This chapter has been published as:

Senior RA, Hill JK, Benedick S, Edwards DP. Tropical forests are thermally buffered despite
intensive selective logging. Global Change Biology. 2018;24:1267-1278.
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4.1 Abstract

Tropical rainforests are subject to extensive degradation by commercial selective logging.
Despite pervasive changes to forest structure, selectively logged forests represent vital
refugia for global biodiversity. The ability of these forests to buffer temperature-sensitive
species from climate warming will be an important determinant of their future conservation
value, although this topic remains largely unexplored. Thermal buffering potential is broadly
determined by: (1) the difference between the ‘macroclimate’ (climate at a local scale, m
to ha) and the ‘microclimate’ (climate at a fine-scale, mm to m, that is distinct from the
macroclimate); (2) thermal stability of microclimates (e.g. variation in daily temperatures);
and (3) the availability of microclimates to organisms. We compared these metrics in
undisturbed primary forest and intensively logged forest on Borneo, using thermal images
to capture cool microclimates on the surface of the forest floor, and information from
dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences
in forest structure remained 9-12 years after repeated selective logging, we found that
logging activity had very little effect on thermal buffering, in terms of macroclimate and
microclimate temperatures, and the overall availability of microclimates. For 1°C warming in
the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly
more in primary forest than in logged forest, but the effect amounted to less than 0.1°C
difference between forest types. We therefore conclude that selectively logged forests are
similar to primary forests in their potential for thermal buffering, and subsequent ability to
retain temperature-sensitive species under climate change. Selectively logged forests can

play a crucial role in the long-term maintenance of global biodiversity.

4.2 Introduction

Land-use change is a profound threat to Earth’s terrestrial biodiversity (Maxwell et al., 2016;
Sala et al., 2000). Most of this biodiversity is found in tropical regions (Jenkins et al., 2013),
where rates of deforestation and forest degradation are among the highest globally (Hansen
et al.,, 2013). The detrimental impacts of deforestation on tropical biodiversity are well
known (Barlow et al., 2016; Gibson et al., 2011); however, tropical forest degradation via
commercial selective logging is 20 times more widespread than on-going conversion (Asner
et al.,, 2009; Hansen et al., 2008), making it important to understand the value of these
disturbed forests for biodiversity. Selectively logged forests constitute a large and effective
refuge for species of conservation concern that cannot survive in deforested land (Edwards
et al., 2011; Edwards and Laurance, 2013; Gibson et al., 2011). Protecting selectively logged

forests may be a cost effective way to retain tropical biodiversity (Edwards et al., 2014c), but
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this is heavily contingent on the assumption that these forests will maintain their current

conservation value into the future.

Several factors may influence the value of selectively logged forests for biodiversity in the
long-term, and a key consideration is the interaction of multiple drivers of biodiversity loss
(Brook et al., 2008; Mantyka-pringle et al., 2012; Sirami et al., 2017). The impacts of climate
change are particularly important, and increasingly so as this century progresses (Chou et al.,
2013; IPCC, 2013; Sala et al., 2000). Novel (non-analogous) climatic conditions are predicted
to appear first in the tropics (Mora et al., 2013), where many species have narrow thermal
limits (Deutsch et al., 2008; Khalig et al., 2014; Tewksbury et al., 2008) and where there is
limited dispersal potential owing to poor dispersal ability of many species (Van Houtan et al.,
2007). This vulnerability of tropical species is compounded by an absence of target habitats
containing analogous climates (Colwell et al., 2008), and widespread deforestation creating
a hostile matrix through which dispersal must occur (Brook et al., 2008; Scriven et al., 2015).
The ability of tropical species to withstand climate change, and so avoid extinction, is likely to
be highly dependent on their ability to adapt in situ within existing forest areas. The extent to
which species persistence can be facilitated within selectively logged forests will, therefore,

greatly influence the conservation value of these habitats.

In primary forests and secondary forests re-growing on abandoned farmland, previous
studies found that organisms — particularly ectotherms — avoid suboptimal temperatures
in the wider ‘macroclimate’ (climate at a spatial scale of m to ha) by moving locally into
‘microclimates’: climate at a fine-scale, mm to m, that is distinct from the macroclimate
(Gonzalez del Pliego et al., 2016; Scheffers et al., 2014a,b). Climate at this fine-scale is more
relevant for the majority of terrestrial biodiversity, which primarily consists of small-bodied
ectotherms (Potter et al., 2013; Nadeau et al., 2017; Suggitt et al., 2011). Indeed, the vast
proportion of terrestrial species are small in size, flat in shape, or thermoregulate via contact
with vegetation, and so it is important to consider microclimates close to, and including, the

surfaces on which these species live (Kaspari et al., 2015; Scheffers et al., 2017a).

The most informative fine-scale temperature data are derived from point measurements
that are highly replicated in both space and time, and demonstrate that loss of vegetation
cover causes local daytime warming (Ewers and Banks-Leite, 2013; Gonzalez del Pliego et al.,
2016; Hardwick et al., 2015; Senior et al., 2017). Selective logging affects vegetation by
lowering and thinning the canopy, reducing leaf area index (Ewers et al., 2015; Hardwick
et al., 2015) and the number of vegetation strata, and creating large forest gaps (Kumar
and Shahabuddin, 2005; Okuda et al., 2003). As such, the understorey of logged forests
likely receives a greater amount of solar radiation, partitioned increasingly as direct rather
than diffuse radiation (Oke, 1987), although these impacts diminish rapidly as selectively

logged forests recover (Asner et al., 2004). The most tangible impact on the local climate
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could be an overall increase in the day-time temperature of logged forests, increasing the
necessity for thermal buffering. Simultaneously, the potential for thermal buffering may be
compromised if forest structural changes also influence the temperature and distribution
of cool microclimates, particularly if their temperature becomes more similar to that of the
wider macroclimate (e.g. Caillon et al., 2014), or there are simply fewer cool microclimates
available overall. Conversely, enhanced air-mixing in more open logged forests might create
cooler and less variable microclimates. Previous evidence suggests that the availability of
cool ‘microhabitats’ (localised environments within which cool microclimates are contained;
Gonzalez del Pliego et al., 2016; Scheffers et al., 2014a; Shi et al., 2016) can be reduced
(e.g. leaf litter; Saner et al., 2009) or increased (e.g. deadwood; Carlson et al., 2017) by

selective logging, implying that forest quality alters thermal environments.

A key novel question that we address in this paper is whether vegetation changes following
commercial selective logging reduce the potential for thermal buffering. We focused on
cool microclimates in the understorey only (climate at mm to m scale that is cooler than the
macroclimate and located within ~2 m of the forest floor). Microclimates on the surface
of the forest floor were captured by a thermal camera, while dataloggers were used to
capture microclimates within cool understorey microhabitats: leaf litter, tree holes and
deadwood (Gonzalez del Pliego et al., 2016; Scheffers et al.,, 2014a,b). We determined
thermal buffering potential according to: (1) the microclimate temperature relative to
that of the macroclimate; (2) the daily variation in microclimate temperature; and (3) the
availability of microclimates in space. The first two are roughly measures of microclimate
‘gquality’ — they examine how effectively an organism will be buffered from macroclimate
warming, assuming it moves into the microclimate. The third captures the likelihood that
organisms can locate and move into suitable microclimates, according to the occurrence,
distribution and thermal diversity of microclimates within the habitat (Caillon et al., 2014,
Sears et al., 2011). We predicted that logged forests would be structurally distinct from
primary forest, and we tested the hypothesis that this would lead to reduced thermal
buffering potential and, subsequently, impaired ability of temperature-sensitive species to

respond in situ to excessively high temperatures in the wider macroclimate.

4.3 Methods

4.3.1 Study area

Sampling took place in in an extensive area of contiguous forest in Sabah (Malaysian Borneo;
Figure 4.1a). This area represents over 10,000 km? of lowland dipterocarp forest, comprising

production forest and areas of undisturbed protected forest (Reynolds et al., 2011). In this
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Figure 4.1: Study location in Malaysian Borneo (a), and distribution of sites (b): six sites in
primary forest (blue) and six sites in logged forest (orange). Each site comprised five plots
along an existing transect, with plot centres separated by 125 m (c). Tree and sapling stand
basal area was calculated from the distance to and circumference of the nearest two trees
and saplings in each of four quadrants centred on the plot centre (d; see Appendix B.1 for
more details). Curved arrows indicate the direction of magnification, from panels a-d.

study, we sampled sites in forest that had been commercially selectively logged twice (Ulu
Segama-Malua Forest Reserve, 4°57°42.8”N, 117°56’51.7”E). The area was first logged from
1987-1991, using tractors and high-lead extraction techniques to harvest commercial trees
(those in the family Dipterocarpaceae) with stems > 0.6 m diameter at breast height (D.B.H.),
and yielding ~113 m® of timber per hectare (Edwards et al., 2014b; Fisher et al., 2011).
Between 2001 and 2007, the area was re-logged and the minimum harvested tree diameter
reduced to > 0.4 m D.B.H., yielding an additional 31 m3/ha of timber (Fisher et al., 2011).
Thus, we sampled sites that had been heavily disturbed about 10 years prior to the study, at
which point 67% of the forest had an average density of < 10 trees per hectare with a D.B.H.
greater than 40 cm (Reynolds et al., 2011). The area has been recovering naturally since
logging operations ceased. Control sites were located in undisturbed, protected primary
forest (Danum Valley Conservation Area; 4°57°45.2”N, 117°48’10.4"E).

4.3.2 Sampling design

We sampled twelve sites, six in twice-logged forest and six in primary forest, along existing
transects (Figure 4.1b; Edwards et al., 2011, 2014b). Sites were more than 2 km apart, and at
least 100 m from forest edges. Within each site, we established five plots 50 m in diameter,

with plot centres spaced at 125 m intervals along the transect (Figure 4.1c; 60 plots in
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total). Fieldwork was conducted from April to July 2015, during the severe El Nifio-Southern
Oscillation (ENSO) event of 2015-2016 (NOAA Climate Prediction Center, 2015) when mean
daily temperature was 2.26°C higher and mean daily rainfall was 2.09 mm lower than the
5-year average (across April to July for the years 2007 to 2011; data from weather station at

Danum Valley Field Centre).

Forest structure

To quantify the level of disturbance to the forest from selective logging, we used an
established methodology for assessing forest structure in each plot (Hamer et al., 2003;
Lucey and Hill, 2012). The variables we measured were: the stand basal area (m?/ha) of
mature trees (circumference > 0.6 m) and saplings (circumference 0.1-0.6 m), based on the
distance to and circumference at breast height of the two nearest trees and saplings in each
of four quadrants centred on the plot centre (Figure 4.1d); the coefficient of variation for the
basal area of trees and of saplings; the proportion of mature trees that were dipterocarps
(indicative of mature, complex forest); percentage canopy cover; and visual estimates of
percentage vegetation cover at ground (1.5 m above ground), understorey (15 m above
ground) and canopy (the main stratum of leaf cover > 15 m above ground) height. For full

methodological details see Appendix B.1.

Quantifying surface microclimates

Fine-scale surface temperature of the forest floor is particularly relevant for small-bodied,
surface-dwelling organisms, such as many insect and reptile species. We measured
surface temperature within each plot using an infrared camera (FLIR Systems, model E40).
Macroclimate temperature was defined as the air temperature at 1.5 m above-ground,
measured using a whirling hygrometer. Each site was visited on two days, and each plot
within the site was sampled five times each day between 05:00 hrs to 14:30 hrs. During
each sample of any given plot, the observer stood at the centre of the plot, took a single
hygrometer reading and then, holding the camera at breast height and pointing 45°
downwards (relative to the ground), took a photo in four orthogonal directions (Scheffers
et al.,, 2017a). Each thermal image comprised 19,200 distinct observations of surface
temperature (one per pixel), and covered a surface area of approximately 1 m2. In total, we

recorded 2,400 thermal images (4 images per plot x 5 repeats x 2 site visits x 60 plots).

For all subsequent analyses, a unique data point comprised thermal information from the
four photographs taken each time a plot was sampled: 76,800 observations of surface

temperature measurements for each plot (i.e. combining 19,200 observations from the four
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photos taken in each orthogonal direction). For details of thermal image data extraction and
processing see Appendix B.2. The temperature of cool surface microclimates was defined
as the 5" percentile (i.e. coolest) across all 76,800 pixels. For some organisms, the efficacy
of thermal buffering also depends on the thermal stability of microclimates (Shi et al.,
2016). We calculated daily variation in surface microclimate temperature as the difference
between the minimum and maximum microclimate temperature, for each day and for each

plot.

To identify spatially-explicit patches of warm and cool pixels (Figure 4.2) we calculated the
Getis-Ord local statistic for each pixel within the neighbourhood of the nearest eight pixels,
using the function 1ocalG in the spdep package in R (Bivand and Piras, 2015; R Core Team,
2017). Pixels with a Z-value of > 3.886 were defined as being within warm patches, and
those with a Z-value of < -3.886 within cool patches (Getis and Ord, 1996). Thermal diversity
was defined as the difference between the median temperature of the warmest warm patch
minus the median temperature of the coolest cool patch (hereafter: ‘patch temperature
range’). The average surface area of cool patches was calculated as the total number of pixels
within cool patches, multiplied by the surface area of one pixel (0.516 cm?), and divided by
the total number of cool patches across the four photos. Finally, spatial configuration of cool
patches was quantified using the Aggregation Index: the number of edges that cool patches
share, divided by the maximum number of edges that they could possibly share (Caillon et al.,
2014; He et al., 2000). Higher values of the Aggregation Index indicate increased clustering of
microclimates in space, which makes them more difficult for organisms to track (Sears et al.,
2016).

Quantifying microclimates in leaf litter, tree holes and deadwood

Many ectotherms, such as amphibians, spend some or all of their time exploiting cool
microclimates inside microhabitats, which thermal images are unable to capture. We
selected three types of microhabitat known to provide cool microclimates (Gonzalez del
Pliego et al., 2016; Scheffers et al., 2014a,b), and placed one temperature datalogger
(HOBO pendant datalogger, Onset, model UA-001-64K or model UA-002-64K) per plot in
each microhabitat type: deadwood (> 10 cm stem diameter), tree holes (> 2 cm at widest
point of entrance hole, < 2 m above the ground) and leaf litter (1.5 m left of the plot
centre). The hygrometer measurements of macroclimate temperature were not always
synchronised with the dataloggers inside microhabitats, hence we additionally measured
macroclimate temperature using a datalogger suspended 1.5 m above the ground at the
centre of each plot, shielded against direct radiation and precipitation by an inverted plastic
funnel (Scheffers et al., 2014a; Shoo et al., 2010).
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Figure 4.2: Example thermal image. Pixels are shaded from cold (purple) to hot (yellow).
Warm patches (outlined in pink) and cool patches (outlined in blue) were identified using
the Getis-Ord local statistic of each pixel.

All dataloggers recorded temperature every 20 minutes for six consecutive days, occurring
within one week of thermal image collection. For qualitative comparison with thermal
images and to lessen the degree of temporal autocorrelation, microclimate temperatures
for each of the three microhabitats in each plot were calculated as the median of six daily
measures, computed for each two-hour interval during the same time period as when
thermal images were collected (i.e. 04:40 to 14:40 hrs). Our analyses focused on day-time
thermal buffering, but we also ran analogous models for the full 24 hours to explore
night-time thermal buffering (see Appendix B.5). In the main text, we only present data
for day-time measurements because this is most relevant to organisms seeking to avoid
extremes of heat, and because findings were qualitatively similar. Variation in temperature
for microclimates inside microhabitats was defined as the daily range (95" percentile minus

5™ percentile) of raw temperatures for each day, in each plot.

To estimate the occurrence of microclimates inside microhabitats, we measured the volume
of leaf litter, tree holes and deadwood within a 50 x 5 m subplot centred on each plot
centre (60 sub-plots in total), with the long edge running parallel to the transect. For full
methodological details see Appendix B.3. We divided microhabitat volume by the total area

surveyed to generate microhabitat volume per m? forest, for each plot.
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4.3.3 Variables analysed

Forest structure

We examined the impact of selective logging on forest structure using linear mixed effects
models to compare nine structural response variables between logged and primary forests:
stand basal area of trees and of saplings; the coefficient of variation across individual
basal areas of trees and of saplings; proportion of trees that were dipterocarps (binomial
data: dipterocarp versus non-dipterocarp); percentage canopy cover (proportion data);
and percentage vegetation cover at ground, understorey and canopy strata (proportion
data). We found that tree stand basal area (m?/ha) was a good measure of changes in forest
structure from logging activity (LR = 8.102, P < 0.01; Figure C.4a; see ‘Results’ for full details),
hence we use this variable as a continuous measure of disturbance (henceforth: forest
quality) in all our analyses exploring the thermal buffering potential of logged and unlogged

forests.

Macroclimate and microclimate temperature

Macroclimate temperature is the temperature at a relatively coarse spatial scale, and was
captured in this study using both a hygrometer and suspended datalogger (measuring the
same variable but at different times). The macroclimate does not affect thermal buffering
potential per se, but it does dictate the overall necessity for thermal buffering. We modelled
hygrometer and datalogger temperature separately, including forest type (logged or primary

forest) and forest quality as explanatory variables (see Appendix B.4).

To assess the impact of selective logging on the ability of microclimates to buffer organisms
from macroclimate warming, we modelled microclimate temperature against forest quality,
forest type and macroclimate temperature, including an interaction term between the
latter two variables. The slope of the relationship between microclimate and macroclimate
temperature is a measure of the rate of change. Surface microclimate temperature refers
to the 5" percentile of surface temperature observations (i.e. coolest) for each plot, and
this was compared against macroclimate temperature as measured by the hygrometer.
Microclimate temperature inside leaf litter, tree holes and deadwood refers to the
two-hourly median temperature recorded by dataloggers inside microhabitats, and this was

compared against macroclimate temperature as measured by a suspended datalogger.

To capture the impact of logging on the thermal stability of microclimates, we modelled
microclimate temperature range against forest type and forest quality. For surface

microclimates, the range was the daily range of surface temperature observations (the 5%
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percentiles, i.e. coolest surface temperatures). For microclimates inside microhabitats, the
range was the daily range (95" percentile minus 5" percentile) of the raw temperature
observations. All models were run separately for surface, leaf litter, tree hole and deadwood

microclimates.

Microclimate availability

Microclimate occurrence was modelled separately for surface microclimates (i.e. the
average surface area of cool patches), and those inside leaf litter, tree holes and deadwood
(each quantified by their average volume per m? forest). The thermal diversity of surface
microclimates was captured by the temperature range between the warmest warm patch
and the coolest cool patch. The spatial configuration of surface microclimates refers to
the Aggregation Index of cool patches (binomial data: edges shared by cool patches versus
edges not shared by cool patches). For all models, the fixed effects were forest type (logged

or primary forest) and forest quality (i.e. tree stand basal area).

4.3.4 Statistical analyses

All data were analysed using mixed effects models in R (version 3.3.0; R Core Team, 2017).
To account for spatial pseudoreplication, forest structure models included ‘site’ as a random
intercept term, and all other models included ‘plot’ nested within ‘site’. Temperature
data were recorded at multiple time points, hence the full models were visually assessed
for evidence of temporal autocorrelation of residuals (function acf in the nlme package;
Pinheiro et al., 2017), and a correlation structure for both date and time was incorporated
where necessary (the specific structure was chosen using AIC; Zuur, 2009). For binomial
data (proportion of dipterocarps and surface microclimate Aggregation Index) we used
generalized linear mixed effects models (GLMMs) with a binomial error distribution, fitted
using the package 1me4 (Bates et al., 2015) and tested for overdispersion. Diagnostic plots
were assessed for all models to confirm model fit and, where necessary, we modified the
variance structure of the residuals (Zuur, 2009) and transformed variables to normality.
For true proportion data (percentage canopy cover and percentage vegetation cover), the

transformation used was a modification of the empirical logit (Warton and Hui, 2011).

For all models, statistical significance was inspected using likelihood ratio tests, dropping
each fixed effect in turn and comparing it to the full model (Zuur, 2009). The significance of
main effects involved in an interaction was assessed in the same way, except reduced models
were compared to a full model without the interaction term. The basic structure for most

response variables (RV) was:

55



Chapter 4

RV ~ forest_type + forest_quality + (1|transect/plot) + cor(~
date_time|transect/plot)

4.4 Results

4.4.1 Changes in forest structure after logging

Following two rounds of commercial selective logging, tree stand basal area — our measure
of forest quality —was 23.4 m?/ha in logged forest, compared to 39.5 m?/ha in primary forest
(LR = 8.102, P < 0.01; Figure C.4a). Logged forests thus contained far fewer large trees than
did primary forests. There were also more large saplings in logged forest (9.55 m?/ha) than
in primary forests (6.77 m?/ha; LR = 4.239, P < 0.05; Figure C.4b), and trees were less variable
in size (LR =13.038, P < 0.001; Figure C.4c). There was no difference between forest types in
terms of the variability of size among saplings (LR = 0.114, P = 0.736; Figure C.4d).

Changes to forest structure from selective logging were also evident in the overall amount
of vegetation cover. Although there was no observed difference between logged forest and
primary forest in percentage vegetation at ground level (LR = 2.758, P = 0.097; Figure C.4g),
the proportion of trees that were dipterocarps (x* = 2.42, P = 0.12; Figure C.4e) or the
percentage canopy cover (LR = 0.874, P = 0.35; Figure C.4f), we did find that percentage
vegetation cover was higher in primary forest than in logged forest in both the understorey
(primary = 68.2%; logged = 54.4%; LR = 5.288, P < 0.05; Figure C.4h), and in the canopy
(primary = 23.1%,; logged = 8.6%; LR = 9.174, P < 0.01; Figure C.4i). Thus, 9-12 years after
logging there were significant differences in forest structure between logged and primary
forests. This was especially true for the components of forest structure that typically indicate
the presence of large, mature trees and high structural complexity, and which might be

expected to influence microclimates and the availability of microhabitats.

4.4.2 Macroclimate and microclimate temperature in logged and primary

forest

Despite differences in forest structure, we found no difference in macroclimate temperature
of logged and primary forests, whether measured by the hygrometer (LR = 0.081, P =
0.776; Figure C.2a) or suspended datalogger (LR = 0, P = 0.983; Figure C.2b). Macroclimate
temperature was also consistent across varying levels of forest quality, for temperature

measured via the hygrometer (LR = 0.022, P = 0.883; Figure C.2a) and suspended datalogger
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(LR = 0.527, P = 0.468; Figure C.2b). Thus, the necessity for thermal buffering was

comparable between the two forest types.

Absolute microclimate temperature was comparable between forest types for all of the
microclimates considered: surface (LR = 0.447, P = 0.504; Figure 4.3e), deadwood (LR =
0.206, P = 0.65; Figure 4.3f), tree holes (LR = 2.759, P = 0.097; Figure 4.3g) and leaf litter
(LR =1.616, P = 0.204; Figure 4.3h). We found that the relationship between microclimate
temperature and macroclimate temperature was slightly steeper in primary forest compared
to logged forest for deadwood (LR = 7.268, P < 0.01; Figure 4.3b), tree holes (LR = 13.657, P
< 0.001; Figure 4.3c) and leaf litter (LR = 28.914, P < 0.001; Figure 4.3d). However, for 1°C
macroclimate warming (from the median value) the maximum difference in microclimate
warming between forest types was < 0.1°C, and no such interaction was apparent for surface
microclimates (LR = 1.197, P = 0.274; Figure 4.3a). Similarly, for a 1 m?/ha increase in forest
quality (i.e. tree stand basal area), tree hole temperature was slightly warmer (LR = 4.661, P
< 0.05; Figure 4.3g), but the size of this effect was negligible (+0.00194°C), and not evident
for other microclimates (P > 0.05; Figure 4.3e-h). Thus we conclude that effects of logging

on microclimate temperature were generally not evident, or minimal.

The final facet of microclimate temperature that we considered was daily temperature
variation. This too was comparable between logged and primary forests for microclimates
at the surface (LR = 0.437, P = 0.508; Figure 4.4a), as well as those inside deadwood (LR =
0.02, P = 0.889; Figure 4.4b), tree holes (LR = 3.242, P = 0.072; Figure 4.4c) and leaf litter
(LR = 2.449, P = 0.118; Figure 4.4d). Microclimate temperature variation was also consistent

across different levels of forest quality (P > 0.05; Figure 4.4).

In summary, selective logging had little observed impact on absolute microclimate
temperature or its daily variation. There was some evidence that thermal buffering
potential was slightly enhanced for deadwood, tree holes and leaf litter inside logged forest,

but the effects were extremely small and not evident for microclimates at the surface.

4.4.3 Microclimate availability in logged and primary forest

The thermal buffering potential within a habitat depends not only on the temperature of
microclimates relative to the macroclimate, but also on the overall availability and thermal
diversity of those microclimates. The occurrence of surface microclimates was not impacted
by forest type (LR = 0.872, P = 0.35; Figure 4.5b), and the average volume of microhabitats
(per m? forest) was similar in logged and primary forest for deadwood (LR = 0.263, P = 0.608;
Figure 4.5d), tree holes (LR = 3.053, P = 0.081; Figure 4.5e) and leaf litter (LR = 0.162, P =

0.687; Figure 4.5f). There was no observed impact of forest quality on the occurrence of
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Figure 4.3: Comparison between primary forest (blue) and logged forest (orange) in
terms of: (a-d) the relationship between microclimate temperature and macroclimate
temperature; and (e-h) absolute microclimate temperature across varying levels of forest
guality (measured as tree stand basal area). Microclimates were measured at the surface (a,
e), and inside deadwood (b, f), tree holes (c, g) and leaf litter (d, h). The grey dashed lines in
panels a-d indicate zero temperature buffering, where the microclimate temperature is equal
to the macroclimate temperature. In all panels, shaded bands are 95% confidence intervals.
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Figure 4.4: The influence of forest type (primary or logged) and forest quality (measured
as tree stand basal area) on microclimate temperature range. Daily range for surface
microclimates (a) was calculated as the difference between the maximum and the minimum
microclimate temperature (itself calculated as the 5™ percentile temperature across four
photos taken at each visit to each plot). For microclimates inside deadwood (b), tree holes
(c) and leaf litter (d), the daily range was the difference between the 95" percentile and 5%
percentile of raw temperature measurements. Primary forest data points are depicted as
blue circles and logged forest as orange triangles. Shaded bands represent 95% confidence
intervals.

58



Chapter 4

surface microclimates (LR = 1.324, P = 0.25; Figure 4.5b) or the volume of deadwood (LR =
3.78, P = 0.052; Figure 4.5d) and tree holes (LR = 2.172, P = 0.141; Figure 4.5e). In contrast,
we found that leaf litter volume increased by 12.3 cm3/m? for a 1 m?/ha increase in forest

quality (i.e. tree stand basal area; LR = 7.056, P < 0.01; Figure 4.5f).

Using thermal images we were able to quantify the thermal diversity and spatial
configuration of surface microclimates. Thermal diversity has a bearing on the diversity
of organisms that are able to find microclimates meeting their thermal requirements
(which vary according to species, age, time of day, seasonality, etc.). Spatial configuration
influences the ease with which organisms can utilise microclimates. We found that the
temperature range spanned by surface microclimates (both warm and cool patches) was
comparable between logged and primary forests (LR = 0.276, P = 0.599; Figure 4.5a) and
with varying forest quality (LR = 3.552, P = 0.059; Figure 4.5a). The same was true for the
Aggregation Index of cool surface patches, both between logged and primary forest (X2
= 0.312, P = 0.576; Figure 4.5c) and with different levels of forest quality (X2 =0.183, P =
0.669; Figure 4.5c).

Overall, the availability of microclimates was minimally affected by selective logging,
regardless of whether microclimates were located at the surface or inside microhabitats.
This was true for various different components of microclimate availability, including their

occurrence, thermal diversity and spatial configuration.

4.5 Discussion

Forest degradation by commercial selective logging affects huge expanses of the tropics
(Asner et al., 2009; Lewis et al., 2015). Southeast Asia has experienced the most intensive
selective logging of all tropical rainforests (Lewis et al., 2015), and in our study area ~145
m> of timber was removed per hectare. Despite these forests having only a maximum
of 12 years post-logging recovery (Fisher et al., 2011), and the coincidental occurrence
during data collection of abnormally hot and dry conditions associated with the strongest
El Nifo-Southern Oscillation (ENSO) event since 1998 (NOAA Climate Prediction Center,
2015), we found very few thermal differences associated with selective logging. This is an
important finding for tropical conservation because it suggests that the potential for thermal
buffering will not limit the ability of selectively logged forests to maintain high biodiversity

under climate change.
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Figure 4.5: The influence of forest type (primary or logged forest) and forest quality

(measured as tree stand basal area) on microclimate availability.

Results for surface

microclimates (top row) include: the temperature range from the warmest warm patch to
the coolest cool patch (a); the average surface area of cool patches (b); and the Aggregation
Index of cool patches (c). The volume (per m? forest) of microhabitats typically associated
with microclimates (bottom row) is shown for deadwood (d), tree holes (e) and leaf litter (f).
Primary forest data points are depicted as blue circles and logged forest as orange triangles.
Shaded bands represent 95% confidence intervals. Asterisks in panel f denote a statistically
significant difference at 0.001 < P < 0.01 (**).
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4.5.1 Forest structure

At a local scale (m to ha), climate is highly dependent upon vegetation (Oke, 1987; Sears et al.,
2011). Selective logging operations generally target larger and older trees, leading to many
associated changes in vegetation structure (Edwards et al., 2014c; Kumar and Shahabuddin,
2005; Okuda et al., 2003). A clear signal of historical logging in our study area was a reduction
in stand basal area of mature trees by 40.8% (Figure C.4a; Berry et al., 2008), accompanied
by reduced variation in tree basal area (Figure C.4c), and reduced vegetation cover at > 15 m
height (Figure C.4h,i). The increase in stand basal area of saplings by 41.1% (Figure C.4b) is

evidence that there has been substantial natural regeneration in the intervening years.

4.5.2 Macroclimate and microclimate temperature

Although primary forest contained more large trees (Figure C.4a), the absence of any
long-term effect of selective logging on percentage canopy cover (Figure C.4f) suggests that
forest vegetation as a whole — regardless of how it was distributed vertically — intercepted
comparable amounts of incoming solar radiation in both logged and primary forests. This
finding is in keeping with previous studies observing rapid horizontal canopy growth
following selective logging (e.g. Asner et al., 2004). Alternatively, vegetation in logged
forest may have intercepted less incoming radiation than in primary forest (i.e. if there
was less vegetation overall), but reflected a greater proportion of what was intercepted,
owing to the higher albedo of habitats with an abundance of non-tree species (Davin
and de Noblet-Ducoudré, 2010; Edwards et al., 2014c; Oke, 1987). In either case (or in
combination), given comparable levels of solar radiation reaching the forest floor of logged
and primary forests, it follows that the temperature at coarse and fine scales (macroclimate

and microclimate temperatures) should also be comparable (Figure 4.3 and Figure C.2).

The temperature of cool microclimates relative to average conditions is what largely
determines their ability to buffer macroclimate warming (Gonzalez del Pliego et al., 2016;
Scheffers et al., 2014a; Shi et al., 2016). Given that selective logging did not affect absolute
temperature of the macroclimate (Figure C.2) or microclimates (Figure 4.3), we can infer
that there was no overall effect of selective logging on the difference between micro- and
macroclimate temperature. There was also no evidence that selective logging impacted
overall daily variation in microclimate temperature (Figure 4.4). There were some impacts
of logging on the relationship between microclimate and macroclimate temperature for
microclimates inside deadwood, tree holes and leaf litter (Figure 4.3), but the effect sizes for
these interactions were extremely small. The maximum difference in microclimate warming

between logged and primary forests was < 0.1°C for 1°C of macroclimate warming. As such,
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we conclude that even when selective logging had a statistically significant influence on

thermal buffering potential, the effect was small and of limited biological relevance.

4.5.3 Microclimate availability

Even if microclimates are present and effective at buffering temperature change, overall
rarity or isolation could render them functionally redundant to some species (Sears et al.,
2011, 2016). We demonstrate that lower forest quality was associated with less leaf litter
(Figure 4.5; cf. Saner et al., 2009), but forest quality and forest type had little effect on
the occurrence of microclimates at the surface or inside deadwood and tree holes. This
is contrary to expectations from previous studies (Ball et al., 1999; Blakely and Didham,
2008). However, high volumes of deadwood could be maintained in logged forest by lower
decomposition rates (Ewers et al., 2015; Yeong et al., 2016; but see Hérault et al., 2010), and
large remnant pieces from harvest operations. In undisturbed forests, tree holes tend to
be associated with larger, older trees (Blakely and Didham, 2008; Lindenmayer et al., 2000).
A comparable quantity of tree holes might be found in logged forests because of damage
from logging operations (Edwards et al., 2014c), increased wind in gaps (Chen et al., 1995)
and remnant large trees that were specifically avoided by logging companies because of
hollow boles. Additionally, we assessed tree holes in the understorey only, and differences

may well manifest at higher forest strata.

The availability of microclimates to organisms is also influenced by their thermal diversity and
distribution in space. We found that patches of warm and cool microclimates on the surface
of the forest floor spanned a temperature range of about 3°C, regardless of logging activity
(Figure 4.5a). Cool patches were generally highly clustered in space (Aggregation Index of
83.3%), but this was not affected by logging (Figure 4.5c). Thermal diversity and spatial
configuration of microclimates are relatively novel facets of thermal buffering potential (but
see: Caillon et al., 2014; Faye et al., 2016; Sears et al., 2016); they are likely determined by
the composition of the forest floor and the relative radiative properties of these different
components (e.g. bare soil versus leaves versus water; Oke, 1987; Snyder et al., 2004). We
therefore suggest that these characteristics of the forest floor were comparable between

forests despite the large differences in forest structure that were evident after logging.

4.5.4 Caveats and future research directions

The potential for thermal buffering and its general necessity are influenced by moisture
levels, as well as temperature (McLaughlin et al., 2017). Many ectotherms, including

amphibians (Duellman and Trueb, 1986) and isopods (Hassall et al., 2010), can survive in
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hot temperatures for longer if relative humidity is sufficiently high to prevent desiccation.
Although we did not measure fine-scale vapour pressure deficit (a variable combining both
temperature and relative humidity), we did find that coarse-scale vapour pressure deficit
measurements from the hygrometer and from hygrochron iButtons (Appendix B.4) showed

little variation within or between forests (Figure C.2).

Relative climates in primary and logged forests could be very different above the understorey,
which we were unable to capture in our study. Some ectotherms move down from the upper
strata to exploit more favourable temperatures lower down (Scheffers et al., 2013). Hence, if
temperatures in higher strata are in fact hotter in logged forest compared to primary forest, it
is possible that species could move to utilise the favourable temperatures of the understorey
of logged forest that we demonstrate here, potentially resulting in a ‘flattening’ of species’

vertical distributions.

While thermal cameras are an important addition to the toolbox of microclimate research
(Faye et al., 2016), it is also important to remember that they are just one element. Thermal
cameras are well-suited to capturing temperature at a very fine-scale and with inherent
spatial information, but differences in 3D topography of a surface could affect results
(e.g. the real distance between neighbouring pixels can be more than is apparent in
the 2D image). Additionally, although thermal cameras are ideal for measuring surface
temperatures, they have a limited capacity to capture sub-surface temperatures, and hence

we have used thermal imagery in combination with dataloggers.

The ability of selectively logged tropical forests to retain current levels of biodiversity
will critically depend on their ability to protect species from the impacts of increasingly
severe climate change. As average temperatures increase over this century, so too will
the intensity and frequency of extreme climatic events. Thermal buffering will likely be
crucial in allowing species to move locally to avoid suboptimal climates. We sampled in
some of the most intensively logged forest in the tropics, during abnormally hot and dry
conditions of a severe ENSO event; it is highly unlikely that our study would have failed to
detect any appreciable thermal differences between primary and logged forests had they
existed. Regardless of whether commercially selectively logged forests remain biologically
or structurally distinctive from undisturbed forests, this study shows for the first time that
they are functionally equivalent in the provisioning of cool microclimates, and underscores

their vital role in conservation both now and under future climate warming.
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4.6 Data availability

Data available from the University of Sheffield Online Research Data repository (https://doi.
org/10.15131/shef.data.5414629).
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Global loss of climate connectivity in

tropical forests

Mixed use tropical landscape in Bali.
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Senior RA, Hill JK, Edwards DP. Global loss of climate connectivity in tropical forests.
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5.1 Abstract

Range shifts are a crucial mechanism enabling species to avoid extinction under climate
change (Chen et al., 2011; Parmesan, 2006). The majority of terrestrial biodiversity is
concentrated in the tropics (Jenkins et al.,, 2013), including species considered most
vulnerable to climate warming (Tewksbury et al., 2008), but extensive and ongoing
deforestation of tropical forests is likely to impede range shifts (McGuire et al., 2016;
Taubert et al., 2018). We conduct the first global assessment of the potential for tropical
species to reach analogous future climates — so-called ‘climate connectivity’ —and empirically
test how this has changed in response to deforestation between 2000 and 2012. We find
that over 62% of tropical forest (~7M km?) is already incapable of facilitating range shifts to
analogous future climates. In just 12 years over 27% of tropical forest experienced a loss
of climate connectivity, with non-linear declines in connectivity as forest loss increased.
On average, if species’ ranges shift as far down climate gradients as permitted by existing
forest connectivity, by 2070 organisms would still experience 0.69°C of warming under the
least severe climate warming scenario, up to 2.5°C warming for the most severe scenario.
Limiting further forest loss and focusing the global restoration agenda towards creating
climate corridors are global priorities for improving resilience of tropical forests under

climate change.

5.2 Main text

Globally, in paleoecological records and under modern climate change, species have
moved polewards or upwards to avoid extinction under climate warming (Chen et al.,
2011; Parmesan, 2006). Land-use change increasingly impedes range shifts by fragmenting
natural habitat (Tucker et al., 2018). This is of particular concern in the tropics, where most
remaining terrestrial biodiversity is harboured (Jenkins et al., 2013) and where most new
agricultural land will be sourced (Lewis et al., 2015). Additionally, the tropics will experience
the earliest appearance of novel climatic conditions (Mora et al., 2013), for which many
tropical species will be unequipped because of their narrow thermal limits (Tewksbury et al.,
2008) and limited dispersal relative to rates of climate change (Loarie et al., 2009; Opdam

and Wascher, 2004).

The potential for species to shift their range in response to climate change depends both
on the future availability of suitable habitat with an analogous climate, and the connectivity
between that habitat and the species’ current distribution (Littlefield et al., 2017). Many
studies have addressed these factors individually, but few have integrated them to quantify

the connectedness of natural areas to future climate analogues — hereafter: ‘climate
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connectivity’ (Nufiez et al., 2013). Of those that do (Lawler et al., 2013; Littlefield et al.,
2017; McGuire et al., 2016), none have applied the approach pantropically or considered

how climate connectivity has changed over time.

Here we combine a high-resolution forest cover layer (Hansen et al., 2013) with current and
projected future Mean Annual Temperature (Hijmans et al., 2005) (hereafter: temperature),
to quantify across the tropics: (1) the potential for species to reach analogous future climate
within existing forest cover, and (2) the change in this measure of climate connectivity
from 2000 to 2012. Climate connectivity was calculated based on the method of McGuire
et al. (2016), whereby natural land cover — here defined as cells with more than 50% forest
cover (Hansen et al., 2013) — was partitioned into patches based on current temperature
(~1950-2000; WorldClim v1.4), and each forest patch traced to the coolest patch that
could be reached by traversing a gradient of hotter to cooler adjacent patches. All patches
were then assigned mean future temperature for the year 2070 (average for 2061-2080),
derived from the HadGEM2-AO general circulation model (IPCC, 2013) and Representative
Concentration Pathway (RCP) 8.5, which is the most severe (‘business-as-usual’) IPCC
scenario. To capture the extent to which forest cover enables species to reach a place that,
under future climate warming, is the same as or cooler than their current location, climate
connectivity was calculated as the current temperature of each patch minus the future
temperature of its designated destination patch. Negative values indicate that the coolest
reachable forest is still warmer under climate change than the current temperature, and

inhabitant organisms would fail to reach an analogous climate under projected warming.

We found that, on average, if tropical species were only limited by climate connectivity
and their range shifted as far along temperature gradients as permitted by current forest
cover, they would still experience 2.5°C of warming under projected future climate change
(median value across all realms; Figure 5.1a). By comparison, average warming without any
movement would be 4°C. The average climate connectivity of discrete land masses varied by
biogeographic realm (F = 76.9, P < 0.001; Figure 5.2a) with the Neotropics and Afrotropics
the least well connected, resulting in unavoidable warming of -2.8°C and -2.7°C, respectively.
Range-shifting species in Indomalaya, Australasia and Oceania would also fail to reach
analogous temperatures, experiencing warming of -2.5, -2.3 and -2°C, respectively. This
suggests that the average tropical forest, for any given realm, is not sufficiently connected
along a temperature gradient to enable species to avoid climate change by shifting their

distribution.

67



Chapter 5

‘BIUBDI(Q Ul S9SSEW pue| paYys aAey am uonesijensia pie o] *(q) |sued ul A}IALDSUUO0D
J0 sso| e Jo ‘(e) |9ued ul AHALIISUUOD S1BWID |NJSSDIINSUN 3leIIPUl (PaJ) sanjen aanedsaN °(q) |dued ul AlAlRdSUUOD Jo uled e Jo ‘(e) |sued ul A}IARdSUUOD
91eWI[d |NJSSIINS 31edIpul (3Nn|q) sanjeA aalisod *(q) ZT0Z 03 000¢ woJy ALAROSUUOD dlewld Ul 93ueyd pue (e) ¢Tog ul AliAndsuuod ajew ) :T°G 24n3i4

o1 ] 0 S- 01-
N - THEN

(Do) AnAnoBUU0D B1RWID V

N
o
=
N
........................ |
A IremeH n
o
o
>
>
BlUBa2Q eisejessny soidonosy sojdonoaN @
9 v 2z 0 - ¥ o
m i
(D.) AuAnoBUUOD BYRWIID
B -
;
1 N
B o
c P
A IremeH | nejed N
: ®
- m
&

BIURIOO eisefelsny ehejewopu| soidonoly soidonosN ©

68



Chapter 5

Overall, 62.2% of tropical forest area failed to achieve successful climate connectivity (= 0;
median value across realms), whereby species’ range shifts within existing forest cover could
circumvent climate warming. This is comparable to the 59% observed in the continental
United States by McGuire et al. (2016), and is all the more concerning because of the
greater numbers of climate-vulnerable species with narrow thermal limits. Variation across
biogeographic realms (F = 120, P < 0.001; Figure 5.2b) showed slightly different patterns
than for average climate connectivity. Indomalaya was the least successful realm with 71.2%
of its forested area failing to connect to climate analogues, followed by the Neotropics
(66.9%), Oceania (62.2%), Afrotropics (62%), and Australasia (42.3%). As found in previous
studies (Lawler et al., 2013; Littlefield et al., 2017), regions with large, contiguous forest
patches connecting warmer lowland regions to cool uplands, such as the western Amazon,
Congo Basin and parts of New Guinea (Figure 5.1a), can compensate somewhat for low
average climate connectivity. That said, in these locations the total path distance from
source to target patch was often substantial — up to 2,820 km for one source patch in the
Neotropics — and this does not account for biogeographic barriers, such as major rivers.
Climate connectivity was consistently low for regions with severe and extensive loss of
lowland rainforests, such as Indochina, Brazilian Atlantic forest and West Africa (Haddad
et al., 2015; Lewis et al., 2015).
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Figure 5.2: Climate connectivity of land masses in different biogeographic realms in the year
2000 (green) and 2012 (purple). Panel (a) shows results for median climate connectivity, with
the dashed line indicating zero climate connectivity, at and above which successful climate
connectivity is achieved. Panel (b) shows results for the proportion of total forested area
that fails to achieve successful climate connectivity. Solid points are model-predicted values
with 95% confidence intervals. Raw data are plotted in the background as semi-transparent
points.

In only 12 years, change in climate connectivity was widespread — 26.6% of cells forested
in 2000 or 2012 (~3M km?) experienced loss of climate connectivity, compared to 10%

of cells that experienced gains (Figure 5.1b). While average climate connectivity did not
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differ between years (F = 0.623, P = 0.43; Figure 5.2a), the proportion of forested area that
was unsuccessfully connected increased overall from 2000 to 2012 (F = 193, P < 0.001;
Figure 5.2b), with variation between realms (F = 256, P < 0.001; Figure 5.2b). The biggest
losses of climate connectivity were seen in Indomalaya (-31.1%), followed by the Neotropics
(-19.5%), Australasia (-2.9%), and Oceania (-1.5%). Conversely, there was a considerable
gain of connected forest area in the Afrotropical realm (+17.6%), likely driven by apparent

tree cover gain in the central Congo basin (Hansen et al., 2013).

Loss of climate connectivity from 2000 to 2012 increased non-linearly with increasing area
of forest loss (F =992, P < 0.001; Figure 5.3). Notably, the proportion of tropical forest area
losing climate connectivity appeared to increase rapidly beyond 1,000 km? of deforestation
within a given land mass. The effect was clearest in Indomalaya and the Neotropics
(Figure 5.3), probably because of the greater number of land masses experiencing such high
levels of forest loss. A comparable effect is seen in the number and size of forest fragments
created by forest loss (Taubert et al., 2018). We suggest that relatively low levels of forest
loss reduce redundancy by removing links to future climate analogues, until a critical point
is reached beyond which additional forest loss severs all links and climate connectivity falls
below zero. Disproportionate benefits could come from reinstating these connections —
particularly along elevational gradients (cf. Elsen et al., 2018) — through forest restoration
initiatives such as the Bonn Challenge, which aims to restore 3.5 million km? by 2030.
Habitat corridors are not appropriate for all taxa and locations (Early and Sax, 2011; Lees
and Peres, 2008), but are likely to be of particular value in the locations where poor climate
connectivity (Figure 5.1a) or high connectivity loss (Figure 5.1b) coincide with high species’
vulnerability to climate change (Figure D.10; Pacifici et al., 2018) or high levels of endemism
(Figure D.11).
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Figure 5.3: The proportion of total forested area in each land mass that lost climate
connectivity between 2000 and 2012. Connectivity loss (% area) is plotted against increasing
area of forest loss (log scale) and across different biogeographic realms (orange = Neotropics,
blue = Afrotropics, green = Indomalaya, yellow = Australasia and pink = Oceania). Points
correspond to raw data, with point size indicating the number of observations at that location.
Fitted lines derive from model predictions with 95% confidence intervals.

The climate connectivity metric used here is a measure of the physical potential for
thermally restricted groups of species to track climate through near-contiguous forest
cover (cf. McGuire et al., 2016). We focus on broad trends and patterns across the Earth’s
most biodiverse terrestrial region, which requires assumptions and simplifications that
inevitably render our results less applicable at finer spatial scales and for particular species
(Brito-Morales et al., 2018). We do not incorporate any species-specific information, but
note that other factors will affect both the need and capacity for species to shift their ranges,
such as in situ adaptation (Hannah et al., 2014; Parmesan, 2006; Socolar et al., 2017) and
dispersal limits (Schloss et al., 2012). We assumed that forest patches of 10 km? and above
would be sufficiently large to facilitate species range shifts, but in reality minimum patch
size will depend on the species of interest. Repeating our analyses with minimum patch

sizes of 1, 5, 25 and 100 km? revealed qualitatively similar results (Appendix D.1).

Our estimates of climate connectivity are conservative because the forest cover layer
does not distinguish between natural forest and tree plantations (Hansen et al., 2013). A
precautionary reanalysis excluding tree plantations for the seven countries where plantation

boundaries were available (Brazil, Cambodia, Colombia, Indonesia, Liberia, Malaysia, and
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Peru) produced very similar results, except that from 2000 to 2012 the percentage of forest
failing to connect to analogous climates decreased by 2.9% when including plantations,
compared to an increase of 8.6% if they were excluded (see Appendix D.2). We do not use
sub-canopy temperature nor account for forest quality, but note that thermal buffering
by forest canopy varies little between pristine and degraded forests (Senior et al., 2018).
Relative temperature change in the understorey, and thus our broad conclusions, should

therefore be consistent across forests of different quality.

We focus on the most severe climate warming scenario (RCP8.5), which appears the most
likely outcome (Sanford et al., 2014). Repeating our analysis for the least severe scenario
(RCP2.6) resulted in similar overall trends, although we found that the proportion of
successfully connected forest was enhanced and the loss of climate connectivity alleviated
under this scenario (Appendix D.3). Other climate variables — particularly temperature
extremes and precipitation — are important in determining the climatic niche of any given
species. Unfortunately, projections of future precipitation under climate change remain
highly uncertain (Corlett, 2012; IPCC, 2013) and are highly variable in space, both of which
make it difficult to determine the gradient that species would have to follow to avoid

deleterious changes in precipitation.

Our study is the first to quantify climate connectivity pantropically and over time. Loss
of forest cover is extensive in the tropics (Hansen et al., 2013; Lewis et al., 2015) and
causes widespread and accelerating fragmentation of remaining habitat (Taubert et al.,
2018). Simultaneously, climate change poses an increasing risk to thermally-restricted
forest specialists (Tewksbury et al., 2008); the ability of these species to track climate will
be important in determining their risk of extinction under climate change. We found that,
across most of the tropics, current forest cover is already insufficient to facilitate range shifts
to future climate analogues. Furthermore, the relationship between loss of forest cover
and loss of climate connectivity is such that the problem is likely to magnify as forest loss
continues. Landscape planning for climate resilience should endeavour to limit the extent
of forest loss to protect existing forest cover, via land-sparing approaches and carbon-based
payments for ecosystem services. Where opportunities arise to protect or restore forest,
such as through the global landscape restoration agenda, disproportionate gains may come

from focusing on connecting forest along climate gradients (Elsen et al., 2018).

5.3 Methods

We focused our study pantropically, including all land masses located between +23.4°

latitude. For those land masses with a true extent beyond the tropics, boundaries were
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buffered by 100 km to reduce artificial truncation of climate gradients (cf. McGuire et al.,
2016). Maps were analysed at 1-km resolution projected into the World Cylindrical Equal
Area projection. All spatial layers were processed with Python code implemented using the
arcpy module in ArcMap version 10.4.1 (ESRI, 2011).

5.3.1 Climate-partitioned forest patches

Since we were interested in climate connectivity for species inhabiting tropical forests, we
calculated climate connectivity based on movement along a temperature gradient within
forested areas only. We defined cells as forest or non-forest using tree cover data from
Hansen et al. (2013). For the year 2000, cells were defined as forested if they had > 50%
tree cover (Hansen et al., 2013). Results are conservative because the Hansen et al. (2013)
dataset does not differentiate between natural forest and tree plantations, but see Appendix
D.2 for analyses excluding cells within tree plantations for those countries where plantation
boundaries were available (Brazil, Cambodia, Colombia, Indonesia, Liberia, Malaysia, and
Peru). For the year 2012, cells were classified based on forest loss and forest gain (Hansen
et al., 2013) relative to forest cover in 2000. If a cell had experienced forest loss from 2000 to
2012, it had gone from a forested to non-forested state and the cell was classed as non-forest
in 2012. Conversely, if a cell had experienced forest gain from 2000 to 2012, it had gone from
a non-forested to a forested state; providing there had been no concomitant loss, the cell was

classed as forest in 2012.

We partitioned forest patches using a present-day (~1950-2000), 30-arc-second global layer
for Mean Annual Temperature (hereafter: temperature) from the WorldClim database
(Version 1.4; Hijmans et al., 2005; McGuire et al., 2016), re-sampled to 1 km?. The same
approach was applied separately to forest cover in 2000 and 2012: temperature values
were assigned to forested cells and reclassified to increments of 0.5°C (ranging from -18 to
32°C), based on evidence that tropical species are sensitive to this degree of temperature
difference (e.g. Freeman and Class Freeman, 2014; Raxworthy et al., 2008). The resulting
raster was converted to polygons, whereby neighbouring forest cells with the same
reclassified temperature value were assigned to the same polygon (hereafter: forest patch).
While our approach is not specific to any particular taxon, it may be helpful to consider the
method in the context of range shifts by non-volant terrestrial animals (cf. Nuiiez et al.,
2013). We removed forest patches < 10 km?, based on the assumption that they could
not support a population for long enough to enable range shifts. See Appendix D.1 for
the implications of varying minimum patch size. Patches within 2 km of each other were
assigned to the same patch, conservatively assuming that populations could move across 2

km of non-forest to reach suitable habitat (cf. McGuire et al., 2016).
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5.3.2 Climate connectivity

The logic behind the measure of climate connectivity in McGuire et al. (2016) is that it
represents the maximum temperature differential between current and future conditions
that can be achieved by traversing a gradient from hotter to cooler patches within
existing natural habitat. We assigned mean current and future temperature to all forest
patches, again using data from WorldClim. Future temperature was for the year 2070
(average for 2061-2080), derived from the HadGEM2-AO general circulation model (IPCC,
2013) and Representative Concentration Pathway (RCP) 8.5, which is the most severe
(‘business-as-usual’) IPCC scenario. See Appendix D.3 for a re-analysis using RCP2.6, the

least severe IPCC scenario.

To trace each forest patch to its final destination, we identified which patches were
neighbours, and iterated over all unique temperatures from cooler to hotter, each time
identifying the patch corresponding to that temperature and the identity of its coolest
neighbour. For patches with no cooler neighbours, the final destination patch was assigned
as itself. For all other patches, the destination was assigned as the final destination of its
coolest immediate neighbour. This algorithm ensures that the coolest destinations are
passed on with each iteration, enabling destination patches to extend beyond immediate

neighbours. See Appendix D.4 for a full worked example (McGuire et al., 2016).

Once each origin patch has a designated final destination patch, climate connectivity is
calculated as the temperature difference between them. The key question is whether forest
cover is sufficient for organisms to reach a place that, under future climate warming, is
the same as or cooler than their current location. Thus, climate connectivity is the current
temperature of the origin patch minus the future temperature of the destination patch.
Where this value is zero or positive, the patch has achieved successful climate connectivity:
there is sufficient structural connectivity between forested areas for organisms to reach
forest that is same as or cooler than the temperatures they currently experience. Negative
values indicate that the coolest reachable forest is still warmer under climate change than
the current temperature, and inhabitant organisms would fail to reach an analogous climate

under projected warming.

5.3.3 Statistical analyses

All data were analysed in R (version 3.5.0; R Core Team, 2018). The specific variables included
are detailed below. For all models, statistical significance was inspected by dropping each
fixed effect in turn and comparing to the full model (Zuur, 2009). The significance of main

effects involved in an interaction was assessed in the same way, except reduced models were
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compared to a full model without the interaction term.

5.3.3.1 Current state of climate connectivity

Climate connectivity was necessarily calculated at a patch-level, but because patches
themselves were not constant through time our spatial unit of replication was land mass.
There were 697 land masses in total, comprising whole islands, such as Borneo and
Madagascar, as well as sections of continents clipped to the extent of the tropics, such as
for Africa and Australia. To assess current status we calculated median climate connectivity
for each land mass, as well as the proportion of the total area of forested patches that failed

to achieve successful climate connectivity (i.e. climate connectivity < 0).

Median climate connectivity (range = -3.8-0°C; n = 697) and percentage area of unsuccessful
connectivity (range = 16-100%; n = 697) were modelled against year (categorical: 2000
or 2012) and biogeographic realm (categorical: Neotropics, Afrotropics, Indomalaya,
Australasia, and Oceania), with an interaction between them, fit using the 1me4 package
(Bates et al., 2015). Median climate connectivity was modelled using a linear model. Area
of successful connectivity was modelled as a binary variable (sum patch area with climate
connectivity < 0 versus sum patch area with climate connectivity > 0), using a Generalized
Linear Model (GLM) with a quasibinomial error distribution to account for overdispersion.

For both response variables, model comparisons were performed using F tests.

5.3.3.2 Change in climate connectivity

Change of climate connectivity from 2000 to 2012 was first calculated at the level of the
grid cell. For both years, we created a binary raster of climate connectivity, where cells
were either successful (climate connectivity = 0) or unsuccessful (climate connectivity < 0).
Change was then calculated as climate connectivity in 2012 minus climate connectivity in
2000, and could take one of three values: no change (value of 0), loss of climate connectivity
(value of -1), or gain of climate connectivity (value of 1). Where cells changed from a forested
to a non-forested state, we assume a loss of climate connectivity for that cell. Where cells
changed from a non-forested to a forested state (e.g. via secondary forest regrowth on
abandoned farmland; Aide et al., 2013), we assume a gain of climate connectivity for that
cell. For analyses, loss of climate connectivity was captured for each land mass (n = 695) by
the proportion of the total area of forested cells (forested in either 2000, 2012 or both) that
experienced a change from successful to unsuccessful climate connectivity. An analogous

approach was applied to quantify gain of climate connectivity.

Area of connectivity loss was modelled as a binary variable (area losing connectivity versus
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area not losing connectivity), against the explanatory variables: biogeographic realm and
area of forest lost between 2000 and 2012. We used a Generalized Additive Model (GAM)
implemented in the mgcv package (Wood, 2017), with a quasibinomial error distribution to

account for overdispersion.

5.4 Code Availability

Custom Python code to calculate climate connectivity can be downloaded from
GitHub (https://github.com/rasenior/ClimateConnectivity). = These scripts have been
directly adapted from the methods in McGuire et al. (2016), and the R code therein
(https://github.com/JennyMcGuire/ClimateConnectivity).
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General Discussion

Frilled tree frog (Kurixalus appendiculatus).
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6.1 Summary

The conservation of biodiversity globally depends in large part on the conservation of
tropical biodiversity (Barlow et al.,, 2018). The biggest single driver of biodiversity loss
is land-use change (Sala et al., 2000). In the tropics, this is largely driven by continuing
deforestation to meet global food demands (Gibbs et al., 2010; Tilman et al., 2011),
alongside extensive degradation by direct disturbances such as selective logging and fire, as
well as indirect, secondary impacts such as edge effects from fragmentation and increased
access for poachers from expanding road networks (Barlow et al., 2016; Haddad et al., 2015;
Laurance et al.,, 2009). Simultaneously, the intensifying and inexorable threat of climate
change will be felt keenly in the tropics (Corlett, 2011). Relative to the long periods of
climatic stability that characterise this region, species’ exposure to climate warming will be
among the highest globally (Mora et al., 2013), compounded by high sensitivity of tropical
species resulting from their restricted thermal tolerance (Deutsch et al., 2008; Khaliq et al.,
2014; Tewksbury et al., 2008) and limited capacity for dispersal or adaptation (Hoffmann
and Sgro, 2011; Loarie et al., 2009; Moore et al., 2008; Opdam and Wascher, 2004). A key
unknown, addressed in this thesis, is the extent to which the loss and degradation of tropical
forests might exacerbate biodiversity loss by impeding species’ ability to adaptively respond

to climate change.

The main aims of this thesis were to determine how land-use change in the tropics impacts:
(1) exposure to local warming, and the feasibility of both (2) microclimates and of (3) range
shifts as mechanisms by which species can avoid extinction under global climate change.
First, comparing local, site-level temperature in various different land-use types, | found
that conversion of forest to farmland resulted in local warming of 1.6-13.6°C, but this
was avoided below-ground and in degraded forests. To further investigate the thermal
buffering potential of degraded forests | developed a framework and R package, which
together facilitate assessment of thermal heterogeneity using thermal images. Combining
this approach with temperature loggers and microhabitat assessments, | found that the
potential for thermal buffering was similar in intensively logged forest and unlogged forests
on Borneo, despite notable differences in forest structure. Even with thermal buffering the
distribution of many species will shift as the climate warms, hence | used global forest cover
and climate datasets to quantify, across the tropics, the extent to which range shifts to
analogous future climates are facilitated by existing forest cover, and how this has changed
with recent deforestation. | found that 62% of tropical forests already fail to connect to
future climate analogues, and this will likely deteriorate further since 27% of these forests
experienced loss of climate connectivity from 2000 to 2012, accelerating with increasing

forest loss.
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In the following chapter | synthesise all my results to illustrate how, overall, the loss and
degradation of forests has impacted species’ ability to respond to future climate change in the
tropics. | conclude with recommendations for conservation practitioners and policy-makers,

and some suggestions for priority research directions.

6.1.1 Climate at the fine scale

Until recently most studies of climate change impacts used very coarse resolution climate
data — up to 10,000 times larger than the size of the study organism (Potter et al., 2013) —
and did not integrate the combined effects of land-use change and climate change (Titeux
et al., 2017). The findings of Chapter 2 highlight that coarse-scale data can mask important
anthropogenic impacts at the level of the organism. Namely, that in many parts of the
tropics where forest has been lost, extreme warming has already occurred as a result
of conversion to agriculture. Degraded forests and below-ground habitat avoided local
warming through land-use change, although Chapter 2 did not consider temperature at
the micro-scale (mm to m; ‘microclimates’) that allows mobile organisms to behaviourally
thermoregulate (Gonzalez del Pliego et al., 2016; Scheffers et al., 2014a), and can even

influence the fine-scale distribution of less mobile organisms (Maclean et al., 2017).

Capturing micro-scale, biologically-relevant temperature data has become increasingly
feasible with the advent of small dataloggers and affordable thermal imaging technology
(Scheffers et al., 2017a). The latter has, however, been underutilised at least in part because
there is little guidance available for processing and analysing thermal images in ecology.
| addressed this shortfall in Chapter 3, where | presented an R package — ThermStats —
designed to streamline the processing of images from FLIR thermal cameras, and to calculate

key metrics of thermal heterogeneity for any gridded temperature data.

In Chapter 4 | built on the findings of Chapter 2 by assessing microclimate availability and
buffering capacity in intensively selected logged forests on Borneo, in comparison with
nearby unlogged, primary forest. Using techniques developed in Chapter 3, combined with
data from temperature loggers and microhabitat measurements, | found that not only are
degraded forests and primary forests comparable in local temperature (cf. Chapter 2), but
microclimates are similar in availability, thermal stability and ability to buffer organisms

from warming at coarser spatial scales.
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6.1.2 Climate at the coarse scale

Chapters 2 to 4 focused on the impact of land-use change on temperature at spatial
scales of millimetres to hectares, which, in the context of climate change, is important for
understanding the baseline temperature onto which global climate warming is projected, as
well as the likely ability of organisms to utilise microclimates as a means to avoid suboptimal
temperatures experienced at coarser spatial scales. However, even where microrefugia
are available, and especially where they are not, global climate change could impact
temperature at all spatial scales to the extent that organisms will need longer-term solutions
to avoid extinction (Hannah et al.,, 2014). Range shifts are one such solution, and have
been widely documented (Parmesan, 2006). In Chapter 5 | found that tropical forests are
generally poorly connected along climate gradients, such that the average tropical forest will
fail to facilitate species’ range shifts to analogous future climates. Increasing loss of forest
resulted in an accelerating loss of climate connectivity, suggesting that without intervention

the current situation could decline rapidly.

6.2 Wider applicability of findings

6.2.1 Biological relevance

The results of Chapters 2 to 4 are most relevant for small-bodied ectotherms, which are
strongly influenced by local and fine-scale temperature, and are widely known to utilise
thermal variation at these spatial scales to avoid suboptimal climatic conditions at coarser
scales (Gonzalez del Pliego et al., 2016; Scheffers et al., 2014a). Small-bodied animals
are more strongly influenced by surface temperatures and boundary layer climates (e.g.
Kaspari et al., 2015) so our results are also relevant for small-bodied endotherms, although
less is known about the extent to which they can and do utilise microclimates in tropical
rainforests. While immobile species cannot directly utilise microclimates within generations,
their fitness may still be affected by local temperature and by changes in fine-scale thermal
heterogeneity, the latter potentially driving dispersal between generations and causing

individuals to localise within particular microclimates (Maclean et al., 2015).

The findings of Chapter 5 are most immediately relevant for species that can disperse easily
but require forest cover to do so, such as medium to large-sized, non-volant forest specialists
(cf. Nufez et al., 2013). The size of these organisms makes microclimates a less viable way to
avoid climate warming in the long term, but also enhances their ability to disperse to more
favourable climates. Poorer dispersers may be unable to keep pace with changing climate

(Schloss et al., 2012), while range shifts of various species will be additionally shaped by
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novel bioticinteractions and reductions in habitat area at higher elevations (Elsen and Tingley,
2015; Mason et al., 2014).

A key consideration for future research is water balance. Moist habitats are more robust to
temperature change because water has a higher specific heat capacity than air, requiring
a greater input of thermal energy to achieve the same change in temperature. Increased
water availability also increases evapotranspiration in forests, meaning that thermal energy is
dissipated through the evaporation of water rather than a change in temperature (Oke, 1987).
Additionally, water can determine species’ sensitivity to temperature change. Amphibians,
for example, have a semi-permeable skin and are prone to dessication in hot environments
when water availability is low (Duellman and Trueb, 1986). A particularly useful metric is
vapour pressure deficit — the difference between the amount of moisture in the air and
how much moisture the air can hold when it is saturated — which can be measured at fine
spatial scales using dataloggers that record both temperature and relative humidity. These
dataloggers are prone to water damage (Bramer et al., 2018), but could provide valuable
information for quantifying microclimates. The influence of water in shaping species’ climate
niche may also influence species’ range shifts in a warming world. Precipitation data could
provide a valuable extension to the approach of Chapter 5, although this is best applied at
regional scale where future projections are more reliable and there is a clearer gradient that

species would need to follow to avoid deleterious changes in precipitation.

Regardless of spatial scale, in this thesis | have only focused on species movement in two
dimensions. In reality, tropical rainforests have a high degree of structural complexity in the
third dimension, providing an additional climate gradient that species could exploit to cope
with global climate warming (Scheffers et al., 2017b; Scheffers and Williams, 2018). With
ever-improving technology, it is possible to apply the techniques of Chapter 3 and Chapter 4
vertically and in forests of varying human impact to create a fuller, more three-dimensional
picture of how human activity affects thermal regimes in tropical forests. Thermal data
could be collected more extensively using LiDAR (Jucker et al., 2018), by combining thermal
imagery with unmanned aerial vehicles (Faye et al., 2016; Sanchez-Azofeifa et al., 2017), and
by combining telemetry and dataloggers to record and recreate the thermal experiences
of mobile species. Detailed ground-truthed data could be combined with above-canopy,
remotely sensed data in correlative or mechanistic models (cf. Kearney and Porter, 2017;
Maclean et al., 2017) to create sub-canopy climate layers, which could feed into Species
Distribution Models or help us to understand other responses to climate change, such as

local adaptation and acclimation.
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6.2.2 Relevance across tropics and elsewhere

Chapters 2 and 5 had the broadest geographical relevance, since they were pantropical in
scope. The representativeness of Chapter 2 was limited by the availability of temperature
data in the literature, with Africa being particularly poorly represented. This is a problem
noted in other large-scale ecological studies (e.g. Gibson et al., 2011; Spooner et al., 2018),
and could compromise the generality of results because of the unique biogeography and

land-use history of Africa (Hansen et al., 2008).

Chapter 4 focused on a region of the tropics where logging intensity was once among the
highest globally (Lewis et al., 2015) but has since ceased entirely (Reynolds et al., 2011).
Field studies such as this are inevitably site-specific, but combined with the framework of
Chapter 3 and technological advances described above, the approach could be applied more
extensively, for different modes of land-use change and of varying intensity and periods of
recovery. Similarly, Chapter 5 considered only the effects of wholesale forest conversion
because of limitations in the forest cover data available (Hansen et al., 2013). Techniques to
remotely sense the age, quality and type of forest are still in development (Mitchell et al.,
2017), but could in time allow a more nuanced assessment of climate connectivity across

heterogenous forest landscapes.

This thesis focuses on tropical rainforests, but there are many priority regions for tropical
conservation where natural vegetation is not closed canopy forest — for example, Brazil’s
cerrado and the Succulent Karoo of South Africa and Namibia (Myers et al., 2000). In
these places, modification by humans is less likely to dramatically alter local and fine-scale
temperature because there is naturally less thermal buffering by complex, three-dimensional
vegetation. However, that is not to say that a small change in absolute temperature would
not have ecological implications; this depends on the ecology of inhabitant species and their
sensitivity to temperature change. The specific structures associated with microclimates
will undoubtedly also vary by location, e.g. desert burrows and alpine boulder fields (Shoo
et al., 2010). Climate connectivity is likely to be poor for many habitat types because of
widespread habitat loss and resulting fragmentation. More intact regions tend to be those
that are inhospitable to humans, such as taiga and deserts (Watson et al., 2016) and regions
at very high elevation (Elsen et al., 2018). In these places, climate connectivity will be largely
determined by the availability of analogous future climate, and this is more likely in areas of

high topographic complexity (Elsen et al., 2018).
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6.3 Recommendations for conservation

Land-use change is still the primary cause of species loss (Sala et al., 2000), and the
lack of consideration of associated climatic effects suggests that its full impact may be
underestimated and potentially confounded with climate change (Chapter 2; Oliver and
Morecroft, 2014; Senior et al., 2017). As a growing driver of biodiversity loss, it is necessary
to consider climate change and mitigate against it, but the priority for conservation research,
practice and policy should — first and foremost — be to minimise land-use change and its
negative consequences. A growing body of evidence suggests that a land sparing approach
is often the best way to maximise biodiversity retention, whether the land use is agriculture
(Phalan et al., 2011), selective logging (Edwards et al., 2015) or urban development (Collas
et al., 2017).

On a local scale, enhancing thermal heterogeneity could increase the potential for thermal
buffering, thus protecting species from climate change or, at the very least, providing more
time for adaptation and dispersal (Hannah et al., 2014). Chapter 4 demonstrates that forest
regeneration over a decade is sufficient for thermal recovery in the forest understorey
after intensive selective logging. More research is needed to identify minimum recovery
time, but it may be that active restoration or reduced impact logging could bolster thermal
recovery further. One possible approach is in situ management of microrefugia, reviewed
in Greenwood et al. (2016). It would be insightful to experiment with such interventions in
different land-use types in the tropics, assessing impacts on fine-scale thermal heterogeneity
using dataloggers or thermal imagery (cf. Chapters 3 and 4), as well as the impact on local

biodiversity.

Given the potential value of logged tropical forests for buffering species against climate
change (Chapter 4) and the well-established role of degraded forests in retaining species
of conservation concern (Edwards et al.,, 2011; Gibson et al., 2011; Putz et al., 2012), it
is critical that they too are incorporated into conservation planning. Without protection,
logged forests are susceptible to over-harvesting as well as edge effects, fire, hunting and
wildlife trade associated with the expanding networks of roads and skid trails (Edwards
et al., 2014c; Laurance et al., 2014). With increasing forest degradation there is heightened
risk of ‘salvage’ logging and, ultimately, conversion to agriculture (Edwards et al., 2014c). By
managing forests designated for logging within larger, permanent timber estates, protocols
can be implemented with sustainability and biodiversity retention in mind. For example:
rotating cutting to allow for regeneration post-harvest; using reduced-impact logging
techniques (Putz et al., 2008); and ensuring that mature forest is set-aside within the
landscape to seed recovering sites and to provide habitat for disturbance-intolerant species

(Edwards et al., 2014a,c). Sustainable timber harvesting can be promoted through schemes
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like REDD+, through government regulations, and through market-based incentives ranging
from positive publicity to certification schemes, such as the Forest Stewardship Council
(Edwards et al., 2014a,c).

Chapter 5 outlined the importance of connecting tropical forest along climate gradients
to facilitate species range shifts under future climate change. Reforestation is in line with
the Bonn Challenge, which seeks to restore 350 million hectares by 2030. Expanding
the protected area network would contribute to Aichi target 11, whereby at least 17%
of terrestrial and inland water areas are protected by 2020 (CBD, 2010). A simple way
to connect forest along climate gradients is to focus on elevational gradients, which are
currently poorly connected (Elsen et al., 2018). This could have the additional benefit of
conserving regions of topographic complexity and their associated microclimates, thus
maximising species’ options for responding to climate change (Suggitt et al., 2018). The
results in Chapter 5 can be used to signpost to centres of poor climate connectivity, which
would benefit from more targeted research at finer spatial resolutions, and tailored towards
priority habitat types or taxa. Where it is not possible to connect current distributions to
future climate analogues, well-planned translocation of poor dispersers can be a worthwhile
and cost-effective solution to help imperilled species cope with climate warming (Willis
et al., 2009).

6.4 Conclusions

The influence of ongoing forest degradation and conversion on the ability of tropical species
to respond to climate change will have a major bearing on their long-term prospects.
Tropical species represent a large, valuable and vulnerable pool of global biodiversity, the
loss of which would invariably push us towards, and perhaps beyond, various planetary
boundaries. Land-use change can directly and substantially alter local climate, but degraded
forests and microhabitats are valuable assets to conservation through their ability to buffer
species from climate warming. Forest protection and restoration can also help connect
species to future climate analogues, which most tropical forests currently fail to do. To
maximise climate resilience of tropical rainforests, practitioners and policy-makers should
maximise the options available for species to respond to climate: minimising forest loss,
permitting and facilitating the recovery of degraded forests, and planning forest loss, gain

and restoration with climate gradients and connectivity in mind.
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A.1 Impact of unbalanced sampling

A.1.1 Methods

Some studies contributed substantially more temperature observations than others. To
test whether these studies were unduly influencing our results, we established a threshold
over which a given land-use type, in a given study, was deemed to have a disproportionate
number of associated temperature observations. The threshold used — 2,071 observations
— was the mean number of observations across all unique combinations of land-use
type and study identity (55 in total). The same number of observations (2,071) was then
randomly re-sampled from each of the land-use type and study combinations that exceeded
the threshold. With this reduced and more balanced dataset we repeated the main analysis
(see Chapter 2: ‘Statistical analyses’ for more details), modelling local day-time temperature
(‘temp_day’) against land-use type (‘LUT’), position relative to ground-level (‘position’) and
season. The final model structure was unchanged, and included a random slope for land-use
type and random intercept with respect to the identity of the study (‘studylD’) from which

data originated:

lmer (temp_day ~ LUT*position + LUT*season + (LUT|studyID))

A.1.2 Results

All results were qualitatively unchanged from those derived using the full dataset. Local

day-time temperature was warmer in altered land-use types, compared to primary forest
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(LMM, X2 =32.19, df =4, P < 0.001; Figure A.1). Averaged across above- and below-ground,
and across seasons, the temperature differential was greatest in cropland (7.7°C), followed

by pasture (6.4°C), plantation (3.2°C) and degraded forest (0.9°C).

The relationship between land-use type and temperature interacted with both position
relative to ground level (LMM, x? = 681, df = 4, P < 0.001; Figure A.1a) and season (LMM, x>
=105.63, df =4, P <0.001; Figure A.1b). Specifically, the difference between altered land-use
types and primary forest was greater above-ground than below-ground (Figure A.1a), and

variable between seasons according to the land-use type (Figure A.1b).
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Figure A.1: Model estimates of the temperature difference between altered land-use types
and primary forest, using a reduced dataset to balance sample sizes between the different
studies that contributed data. Parameter estimates are standardised against the estimate
for primary forest, which is represented by the dashed line. Error bars are 95% confidence
intervals. Solid lines indicate projected warming in the tropics for the period 2081-2100
compared to the period 1986-2005, as a result of global climate change (IPCC, 2013). Shaded
bands indicate 5%—95% ranges from the distribution of the climate model ensemble. Colours
represent the lowest and highest warming scenarios (RCP2.6 and RCP8.5, respectively).

86



Appendix A

A.2 Supplementary figures
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Figure A.2: Model estimates of the nocturnal temperature difference between altered
land-use types and primary forest. Note that cropland and pasture are missing from this
analysis because nocturnal temperature data for these land-use types were not available.
Parameter estimates are standardised against the estimate for primary forest, which is
represented by the dotted line. Error bars are 95% confidence intervals.
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Figure A.3: Model estimates of the difference between altered land-use types and primary
forest in terms of temperature extremes. Day-time results are depicted in panels (a) and (b),
and night-time results in panels (c) and (d). Panels (a) and (c) indicate the effect of land-use
change on maximum temperature, and panels (b) and (d) indicate the same for minimum
temperature. Note that data for cropland and pasture are absent from this analysis because
data for these land-use types were not available. Parameter estimates are standardised
against the estimate for primary forest, which is represented by the dotted line. Error bars
are 95% confidence intervals. The grey numbers next to points represent the number of
studies providing the underlying data.
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Figure A.4: Day-time temperature against land-use type for each study contributing data to
the analyses. Panel numbers refer to the study number in the reference list of Table 2.2.
Land-use types are: primary forest (PF), degraded forest (DF), plantation (Pl), pasture (Pa)
and cropland (Cr). Panels are ordered by the combination of land-use types for which data
was available: (1-12) PF + DF; (13-15) PF + DF + PI; (16-18) DF + PI; (19-20) PF + Pa; (21) DF + Pa;
(22-23) PF + Pa + Cr; and (24-25) DF + Cr. Shading of points indicates temperatures measured
above-ground (orange) or below-ground (blue), and point symbol indicates temperatures
measured during the dry season (circles) or wet season (triangles).
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Figure A.5: Site elevation against land-use type for each study contributing data to the
analyses. Panel numbers refer to the study number in the reference list of Table 2.2. Land-use
types are: primary forest (PF), degraded forest (DF), plantation (Pl), pasture (Pa) and cropland
(Cr). Panels are ordered by the combination of land-use types for which data was available:
(1-12) PF + DF; (13-15) PF + DF + PI; (16-18) DF + PI; (19-20) PF + Pa; (21) DF + Pa; (22-23) PF
+ Pa + Cr; and (24-25) DF + Cr. Dotted black lines connect the mean elevation of all the sites
within each land-use type.
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B.1 Package vignette

B.1.1 Summary

ThermStats is designed for biologists using thermography to quantify thermal
heterogeneity. It uses the Thermimage package (Tattersall, 2017) to batch process
data from FLIR thermal cameras, and takes inspiration from FRAGSTATS (McGarigal et al.,
2012), SDMTools (VanDerWal et al., 2014), Faye et al. (2016) and Shi et al. (2016) to facilitate
the calculation of various metrics of thermal heterogeneity for any gridded temperature

data.

The package is available to download from GitHub using devtools:

devtools: :install_github("rasenior/ThermStats")

library(ThermStats)

Once loaded, the code below can be followed step-by-step.

B.1.2 Extracting raw data

Data are extracted from FLIR images using batch_extract. This is a batch implementation
of the readf1lirJPG function from Thermimage. It requires only the path to the
directory of FLIR thermal images, and the freely available external software ‘Exiftool’

(https://www.sno.phy.queensu.ca/~phil/exiftool/). = Besides raw data, this step also
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retrieves camera-specific calibration parameters which are required later to convert raw

data to temperature values.

# Batch exztract images included in ThermStats installation
flir _raw <-
batch_extract(in_dir = system.file("extdata",
package = "ThermStats"),
write results = FALSE)

B.1.3 Converting raw data to temperature

Raw data are encoded in each thermal image as a 16 bit analog-to-digital signal, which
represents the radiance received by the infrared sensor. The function batch convert
converts these raw data to temperature values using equations from infrared thermography,
via a batch implementation of the function raw2temp in Thermimage. It uses
environmental parameters defined by the user, and the calibration constants extracted
in batch_extract. See Chapter 3: ‘Methods’ for a full discussion of the different

environmental parameters. In brief:

e Emissivity = the amount of radiation emitted by a particular object, for a given
temperature.

¢ Object distance = the distance between the camera and the object of interest.

¢ Reflected apparent temperature = the temperature resulting from radiation that
originates from the atmosphere and is reflected by the object.

e Atmospheric temperature = the temperature of the atmosphere.

¢ Relative humidity = the relative humidity of the atmosphere.

# Define raw data

raw_dat <- flir raw$raw_dat

# Define camera calibration constants dataframe
camera_params <- flir_ raw$camera_params

# Define metadata

metadata <- flir metadata

# Create vector denoting the position of each photo in metadata
photo_index <- match(names(raw_dat),

metadata$photo_no)

# Batch convert

flir converted <-
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batch_convert(
raw_dat = raw_dat,
# Emissivity =
# mean of the range in Scheffers et al. 2017
E = mean(c(0.982,0.99)),
# Object distance =
# hypotenuse of a right triangle where the wvertical side
# 415 1.3 m (breast height) & the angle down is 45 degrees
0D = (sqrt(2))*1.3,
# Apparent reflected temperature, atmospheric temperature
# & infrared window temperature =

# atmospheric temperature measured in field

RTemp = metadata$atm_temp [photo_index],

ATemp = metadata$atm_temp[photo_index],

IRWTemp = metadata$atm_temp[photo_index],

# Infrared Window transmission = default value of 1

IRT = 1,

# Relative humidity = relative humidity measured in field
RH = metadata$rel_humidity[photo_index],

# Calibration constants from 'batch_extract’

PR1 = camera_params[,"PlanckR1"],

PB = camera_params[,'"PlanckB"],
PF = camera_params[,"PlanckF"],
PO = camera_params[,"Planck0"],

PR2 = camera_params/[,"PlanckR2"],
# Whether to write results or just return

write results = FALSE)

B.1.4 Calculating thermal statistics

Statistics can be calculated for individual temperature matrices, or across multiple matrices
within a specified grouping. The latter is useful for sampling designs where multiple images
are collected at each sampling event to capture temperature across a wider sampling unit,
such as a plot. In either case, statistics include summary statistics specified by the user —
for example, median, 5" and 95 percentiles and Shannon Diversity Index (SHDI) — as well
as spatial statistics for hot and cold spots, identified using the Getis-Ord local statistic (Getis
and Ord, 1996).
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For an individual matrix, get_stats requires the user to specify the matrix and the desired
statistics. Statistics can be calculated for geographic temperature data (in a matrix or raster

format), in which case the user should also define the extent and projection of the data.

flir_stats <-
get_stats(
# The temperature matriz
val mat = flir_converted$ 8565,
# The ID of the matriz
matrix_id = "8565",
# Whether or mnot to tdentify hot and cold spots
get_patches = TRUE,
# Size of the neighourhood (for calculating Getis-Ord stat)
k =8,
# Neighbour weighting style (for calculating Getis-Ord stat)
style = "W",
# Matriz projection (only relevant for geographic data)
mat_proj = NULL,
# Matriz extent (only relevant for geographic data)
mat_extent = NULL,
# The data to return
return_vals = c(
# Temperature data as dataframe
"daf",
# SpatialPolygonsDataFrame of patch outlines
"patches",
# Patch statistics dataframe
"pstats"),
# The names of the stattistics functions
# (used to mame columns in the 'pstats' dataframe)
pixel_fns = NULL,
# The summary statistics of interest

median, perc_b5, perc_95, SHDI

For grouped matrices, stats_by_group requires the user to supply a list of matrices
along with metadata and the name of the variable in the metadata that defines the matrix
grouping. Table B.1 shows the metadata used in the code snippet, where photo number
(‘photo_no’) defines individual temperature matrices, and replicate identity (‘rep_id’)

defines the grouping of photos. There are two replicates, ‘T7P1’ and ‘T7P2’, and each has
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two associated photos.

photo no rep_id atm_temp rel_humidity

8565 T7P1 24.00 96
8583 T7P1 24.00 96
8589 T7P2 23.25 98
8613 T7P2 23.50 96

Table B.1: Example metadata denoting the grouping (‘rep_id’) of different temperature
matrices. Statistics can be calculated over multiple matrices within a group, using the
function stats_by_group.

By default, both get _statsand stats_by_group return a dataframe with patch statistics

(Table B.2) for each matrix or matrix group, respectively.

median perc_ 5 perc 95 SHDI hot shape_index hot_aggregation

23.5 23 245 1.16 7.54 0.895
24.0 23 25.0 1.68 7.80 0.855

Table B.2: A snippet of hot spot patch statistics returned by stats_by_group, which
implements get_stats within groups.

B.1.5 Plotting

In addition to patch statistics, get_stats can return (1) the temperature matrix in a
dataframe format, and (2) a SpatialPolygonsDataFrame of its hot and cold spots. The
function plot_patches can then recreate the original thermal image overlaid with outlines
of hot and cold spots, and plot the temperature distribution (if plot_distribution =
TRUE).

plot_patches(
# The raw temperature data
df = flir stats$df,
# The patch outlines
patches = flir_ stats$patches
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Figure B.1: The output of plot_patches includes a histogram and the original temperature
data overlaid with outlines of hot and cold spots, identified using the Getis-Ord local statistic.
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C.1 Sampling methods for forest structure

Figure C.1: Sampling design schematic.

Several different variables have been previously identified as efficiently capturing overall
forest structure (Hamer et al., 2003; Lucey and Hill, 2012). Each plot (background circle in
the schematic) was divided into quadrants (Q1-Q4). Within each quadrant we measured
the distance to and circumference at breast height of the two nearest mature trees
(circumference > 0.6 m) and saplings (circumference 0.1-0.6 m). Stand basal area (m?/ha)
was calculated separately for trees and for saplings. In the above schematic, tree/sapling
individuals are depicted as points: there can be zero, one or two individuals in each

guadrant; the nearest individual is represented by a cross, and the furthest individual as
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a star. To estimate stand basal area, we calculated the basal area of each individual from
its circumference at breast height, summed this across all observed individuals, divided by
the true area of forest that was surveyed and multiplied by 10000 to convert units into
the standard m?/ha. The true area surveyed is depicted by coloured quadrants; this was
calculated for each quadrant individually and then summed together. Each true quadrant

area was calculated using the equation:

A= qmr?

Where A is the area (m?) and r is the distance to the furthest individual (tree or sapling; m).

To capture plot-level variation in basal area we calculated the coefficient of variation for trees
and for saplings, and we also noted the proportion of observed tree individuals that were in
the family Dipterocarpaceae, given the association of these species with mature, complex

forest.

Finally, to capture the overall density of vegetation at the plot centre we measured
percentage canopy cover using a spherical densiometer (Lemmon, 1956), and the same
observer estimated percentage vegetation cover at three distinct forest strata: ground (1.5
m above ground), understorey (15 m above ground) and canopy (the main mat of leaf cover
> 15 m above ground). Visual estimates of vegetation cover were made by imagining a
horizontal gridded plane intersecting vegetation at the three different heights, and then

estimating the percentage of grid cells occupied by vegetation.
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C.2 Extracting and processing data from thermal images

Using infrared cameras to sample microclimates in the terrestrial realm is a relatively novel
methodology (Scheffers et al., 2017a; but see: Caillon et al., 2014; Faye et al., 2016). There
is, as yet, no standardised protocol, and there are numerous different choices of hardware.
In this study, we used a FLIR Systems, model E40 camera. A single thermal image comprised
19,200 distinct measurements from the infrared sensor (one per pixel). These raw data can
be extracted and converted to temperature in °C using the freely available software FLIR
Tools (cf. Scheffers et al., 2017a). However, it is easier, faster and more thorough to use the

R package Thermimage (Tattersall, 2017).

Raw data were first extracted from thermal images using the function readf1irJPG, which
produces a numeric matrix of the same dimensions as the original jpeg (160 x 120). The
function raw2temp was then used to convert raw data into temperature using standard
equations from infrared thermography (see ?Thermimage: : raw2temp for more details).
At this point it is possible to specify various parameters that likely differ from the default
settings. For emissivity we used a value of 0.986, which represents the mean of the range
(0.982 to 0.990) for bare soil, leaf litter, live tree leaves and the bark of tree trunks in green
broadleaf forests (Snyder et al., 1998). For atmospheric temperature and relative humidity,
we used measurements taken using a whirling hygrometer immediately prior to each
sampling event at each plot. We defined the distance between the camera and the surface
as the hypotenuse of an isosceles right triangle with its vertical length equal to breast
height: 1.3 X v/2 = 1.84 m. Finally, there are five different calibration constants (PlanckR1,
PlanckB, PlanckF, PlanckO and PlanckR2) that are specific to each camera, and we retrieved
these from thermal images using the function flirsettings. See Chapter 3 for a full

description of these methods, combined into a framework and R package: ThermStats.
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C.3 Sampling methods for microhabitat volume

We measured the volume of leaf litter in five 1 x 1 m quadrats, centred 2 m to the left of
the transect edge, at 0, 10 and 20 m from the plot centre. Leaf litter was compressed inside
a purpose-built compression cylinder with a plunger, and the volume read directly from a

graduated scale on the cylinder (Parsons et al., 2009).

Within the subplot we measured the length and circumference at both ends of all intact
deadwood (> 10 cm diameter). If only a portion of the deadwood was contained within
the subplot, we measured that portion only. We calculated volume using Smalian’s volume
formula (Waddell, 2002):
_ L(§)(DE+D})
V=== 10000

Where V is volume (m3), | is the length (m), Ds is the small-end diameter (cm), D, the
large-end diameter (cm). We also measured the maximum and minimum diameter of
entrances to all tree holes (maximum entrance diameter > 2 cm and < 2 m high), and their
internal volume. Approximating the entrance to an ellipse shape, we calculated entrance

area using the standard equation for area of an ellipse:
A=7mxaxb

Where A is entrance area (cm?), a is the maximum diameter of the entrance (cm) and b is the
minimum diameter (cm). Internal volume could not be adequately measured for one very

large tree hole, hence the plot in which it was located was excluded from analyses.
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C.4 Impact of logging on macroclimate

C.4.1 Methods

To interpret the impact of selective logging on thermal buffering by microclimates in a
meaningful way it is also necessary to know whether macroclimate conditions are affected
by selective logging. As discussed in the Materials and Methods, macroclimate temperature
was measured prior to thermal image collection using a whirling hygrometer, and also by a
temperature datalogger suspended at the centre of each plot (HOBO pendant datalogger,
Onset, model UA-001-64K or model UA-002-64K).

The necessity for thermoregulation, however, is dependent not only on temperature, but
also on water availability. Vapour pressure deficit (VPD) encompasses both temperature and
relative humidity. We measured VPD in two ways. First, using dry-bulb (i.e. macroclimate
temperature) and wet-bulb temperature from the whirling hygrometer. We also suspended
one hygrochron iButton datalogger (Maxim, model DS1923) 1.5 m above the ground in the
plot centre of a subset of plots, alongside the HOBO dataloggers measuring macroclimate
temperature. We attempted to distribute our limited number of hygrochrons as evenly as
possible; ultimately we collected data from 15 plots across all six sites in primary forest,
and from 13 plots across five sites in logged forest. As there were five plots in each site
(Figure 4.1), we placed dataloggers either in plots one, three and five, or plots one and five,
depending on the number of hygrochrons available. Uneven sample sizes resulted because
several hygrochrons were lost or broken. Hygrochrons measured relative humidity every 20
minutes for six days and, as in Chapter 4: ‘Methods’, a unique datapoint was the median
value across each two-hourly increment from 04:40-14:40 hrs, on each day of recording for

each of the 60 total plots.

Macroclimate VPD was calculated from saturated vapour pressure and relative humidity

using the formula:

VPD =108 5 gy p

Where VPD is vapour pressure deficit (Pa), RH is relative humidity (%) and SVP is saturated
vapour pressure (Pa). SVP was calculated from temperature:

7.5xTy

SV P = 610.7 x 10%73+74

Where T4 is macroclimate (dry-bulb) temperature (°C). Relative humidity can be estimated
directly from a whirling hygrometer, but to reduce human error we calculated relative

humidity using the equation:

100



Appendix C

RH = <&

SVP

Where p is partial vapour pressure (Pa), estimated assuming ambient pressure of 1 atm:
p=SVR, —66.86-(1+0.00115-(T,)) - (Ty — Ty)

Where T4 is dry-bulb temperature (°C), T,, is wet-bulb temperature and SVP,, is saturated
vapour pressure at the wet-bulb temperature, calculated in the same way as SVP, but

substituting in T,, for Ty.

C.4.2 Statistical analysis

All supplementary analyses were carried out in an analogous way to the main analyses of
microclimate temperature (see Chapter 4: ‘Statistical analyses’). The response variables
(macroclimate temperature or VPD, from either the hygrometer or dataloggers) were
modelled against the fixed effects forest quality (measured as tree stand basal area;
m?/ha) and forest type (categorical: primary forest or logged forest), using linear mixed
effects models implemented in the nlme package (Pinheiro et al., 2017) in R (R Core Team,
2017). Plot nested in site was included as a random intercept term, to account for spatial
pseudoreplication. Temporal autocorrelation of residuals was evident (function acf), and
we therefore included date and time in a correlation structure, with the best structure
determined using AIC (Zuur, 2009). Statistical significance was inspected using likelihood
ratio tests (see Chapter 4: ‘Methods’; Zuur, 2009), and diagnostic plots were assessed to

confirm model fit.

C.4.3 Results

Macroclimate temperature was comparable between primary and logged forest whether
measured using a whirling hygrometer (LR = 0.081, P = 0.776; Figure C.2a) or suspended
datalogger (LR =0, P = 0.983; Figure C.2b), and was also unaffected by forest quality for both
the hygrometer (LR=0.022, P =0.883; Figure C.2a) and datalogger measurements (LR=0.527,
P = 0.468; Figure C.2b). Similarly, macroclimate VPD did not differ according to forest type
for either method of VPD measurement: hygrometer (LR = 1.344, P = 0.246; Figure C.2c) and
suspended datalogger (LR = 3.489, P = 0.062; Figure C.2d). Neither did the two measures
of macroclimate VPD vary with forest quality (P > 0.05; Figure C.2c-d). Thus, we found no

evidence that selective logging impacted macroclimate temperature or macroclimate VPD.
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Figure C.2: The influence of forest type (primary or logged forest) and forest quality
(measured as tree stand basal area; m?/ha) on macroclimate temperature (top row) and
macroclimate vapour pressure deficit (VPD; bottom row). Macroclimate measurements
collected using a whirling hygrometer are shown in the left column, and from dataloggers
in the right column. Datapoints from primary forest points are depicted as blue circles, and
from logged forest as orange triangles. Shaded bands are 95% confidence intervals.
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C.5 Impact of logging on microclimate over 24 hours

C.5.1 Introduction

We were primarily interested in the impact of selective logging on thermal buffering at times
when buffering from extremes of heat is most necessary. In the main analyses, therefore,
we limited our study to temperatures recorded between the coolest part of the day (around
sunrise) and the hottest part of the day (around noon; cf. Scheffers et al., 2017a). However,
the wealth of data recorded by dataloggers also enables us to investigate how thermal
buffering varies over the full 24-hour period, and particularly during the day versus during
the night. In the same way that we would expect logged forests to receive more incoming
solar radiation during the day — because of reduced structural complexity and canopy cover
(Kumar and Shahabuddin, 2005; Okuda et al., 2003) — we would also expect these forests
to radiate heat more freely at night (Chen et al., 1995). Night-time conditions, although
less thermally challenging, are still important biologically because nocturnal species can be
inactive inside refugia during the heat of the day, but they must forage and seek mates at

night if they are to survive and reproduce in the long-term.

C.5.2 Statistical anlaysis

We assessed the impact of selective logging on microclimate temperature in the same way
as in Chapter 4: ‘Methods’, but using the full datalogger dataset. Each unique datapoint was
the median of six repeated measures taken every 20 minutes for each two-hourly interval,
for each of six sequential days and in each of the 60 total plots (5 plots x 12 sites). As
these analyses were not compared alongside results from thermal images, the two-hourly
intervals began from 00:00 hrs (rather than 04:40 hrs). For simplicity, data recorded between
06:00-18:00 hrs were defined as being during the day, and 18:00-06:00 as during the night.
Analyses were carried out separately for day and night and for each microhabitat: deadwood,
tree holes and leaf litter. Thus, for each analysis (out of six), there was a maximum of 4320

unique datapoints: 12 time intervals x 6 days x 5 plots x 12 sites.

As in Chapter 4, we used mixed effects models to analyse microclimate temperature as a
function of forest quality (measured as tree stand basal area; m?/ha), forest type (primary
or logged forest) and macroclimate temperature, with an interaction between the latter
two variables. Models were implemented in the nlme package (Pinheiro et al., 2017)
in R (R Core Team, 2017). We included plot nested within site as a random intercept to
account for spatial pseudoreplication, and both date and time in a correlation structure to

account for temporal autocorrelation (the best structure was determined using AIC; Zuur,
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2009). Statistical significance was inspected using likelihood ratio tests, first dropping the
interaction and comparing to the full model, and then dropping main effects in turn and

comparing to a model without the interaction term (Zuur, 2009).

C.5.3 Results

We found no effect of either forest quality or forest type on microclimates at the surface
or inside deadwood and leaf litter (P > 0.05; Figure C.3). We found a very small effect of
both variables on the absolute temperature of microclimates inside tree holes, during the
day. At the median value of tree basal area, tree hole temperature in primary forest was
24.8°C compared to 24.9°C in logged forest (LR = 58.202, P < 0.001; Figure C.3b), and with
an increase in forest quality (i.e. tree stand basal area) of 1 m?/ha, tree hole temperature
increased by 0.00504°C (LR = 57.814, P < 0.001). Evidently, these effects were extremely

small, and therefore unlikely to be relevant to the majority of organisms.

Similarly, any effects of forest type on the relationship between microclimate and
macroclimate temperature, while statistically significant, were small in real terms. During
the day, 1°C of warming in the macroclimate (from its median temperature) corresponded
to more warming in primary forest than in logged forest for tree holes (LR = 18.214, P <
0.001; Figure C.3b) and leaf litter (LR = 40.957, P < 0.001; Figure C.3c), but there was no
difference for microclimates inside deadwood (LR = 0.254, P = 0.614; Figure C.3a). At night,
1°C of cooling in the macroclimate corresponded to more cooling in primary forest than in
logged forest for microclimates inside deadwood (LR = 8.589, P < 0.01; Figure C.3d) and leaf
litter (LR = 861.623, P < 0.001; Figure C.3f), but there was no longer any observed difference
for microclimates inside tree holes (LR = 1.359, P = 0.244; Figure C.3e).

Overall, there is some evidence that thermal buffering from warming and cooling is slightly
enhanced for microclimates in logged forest compared to primary forest. However, the size

of these effects was so small that they are unlikely to have much biological relevance.
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Figure C.3: Comparison of the relationship between microclimate temperature and
macroclimate temperature within primary forest (blue circles) and logged forest (orange
triangles), during the day (top row) and night (bottom row), and for three microhabitats:
deadwood (left column), tree holes (centre column) and leaf litter (right column). The grey
dashed line indicates zero temperature buffering, where the microclimate temperature is
equal to the macroclimate temperature. Shaded bands are 95% confidence intervals.
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C.6 Supplementary figures
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Figure C.4: Comparison between primary forest (blue) and logged forest (orange) for the nine
forest structure measures: the stand basal area of trees (a) and saplings (b); the coefficient of
variation for tree basal area (c) and sapling basal area (d); the proportion of trees that were
in the family Dipterocarpaceae (e); the percentage canopy cover (f); and visual estimates of
percentage vegetation at 1.5 m above ground (g), 15 m above ground (h) and > 15 m above
ground (i). Statistically significant differences are indicated by asterisks: 0.01 < P < 0.05 (*);
0.001 <P <0.01 (**) and P <0.0001 (***). Error bars are 95% confidence intervals.
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Appendix D

Supporting information for Chapter 5

D.1 Supplementary analyses for different patch parameters

D.1.1 Methods

Following McGuire et al. (2016) we excluded forest patches less than 10 km?. This was based
on the assumption that excessively small patches are incapable of sustaining populations for
long enough to enable range shifts through differential fitness at the leading and trailing edge
of a species’ range. However, the critical patch size to enable such demographic processes
to occur will depend on the species in question, and indeed some species may shift their
ranges via within-generation movement of migrating individuals. We tested the influence of
minimum patch size by repeating the analyses for patch sizes of 1, 5, 10, 25 and 100 km?.
Note that a minimum size of 1 km? corresponds to no exclusions, since this is the resolution
of the layers used. To speed up iteration over the different parameters we used a subset of
the main data, which excluded land masses less than 10 km? and those with a temperature
range less than the predicted temperature change under climate warming, since range shifts

are unlikely to be sufficient responses to climate change in these land masses.

D.1.2 Results and Discussion

Current climate connectivity was captured by median climate connectivity in 2012, and the
proportion of forested area that failed to achieve successful climate connectivity (= 0) in
2012. Median climate connectivity differed by realm for all patch sizes assessed (P < 0.001;
Figure D.1a), and was below zero in all cases except where minimum patch size was 1 km?.

This suggests that for species capable of surviving and reproducing in patch sizes of 1 km?
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or less, current forest cover is sufficiently well-connected along climate gradients that these
species should, on average, be able to shift their range within existing forest cover to avoid
climate warming. For species requiring a larger critical patch size, tropical forest cover in
all biogeographic realms was, on average, insufficient to facilitate such range shifts. For all
patch sizes, median climate connectivity was generally lowest in the Neotropics, followed
by the Afrotropics, Indomalaya, Australasia and Oceania (precise ranking depended on the

minimum patch size applied; Figure D.1a).

The percentage of forest area with unsuccessful climate connectivity (< 0) in the year 2012
varied by biogeographic realm for all minimum patch sizes (P < 0.001). Precise ranking
varied by minimum patch size (Figure D.1b), but generally the Afrotropics and Indomalaya
had the highest proportion of forest failing to connect to future climate analogues, while
the Neotropics and Australasia had the lowest. We suggest that low average values of
climate connectivity in the Neotropics are somewhat compensated for by the large size of
forest patches that do achieve successful climate connectivity. Although the proportion of
successfully connected tropical forest was generally more than half of total forest area, a
substantial portion of forest failed to achieve climate connectivity and the situation was
worse for a larger minimum patch size and when including all land masses in the tropics (see
Chapter 5).
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Figure D.1: Climate connectivity in the year 2000 (green) and 2012 (purple), for different
values of minimum patch size (rows). Panel (a) shows results for median climate connectivity,
with the dashed line indicating zero climate connectivity, at and above which successful
climate connectivity is achieved. Panel (b) shows results for the proportion of total forested
area that fails to achieve successful climate connectivity. Hollow circles are model-predicted
The small number in the centre indicates rank: 1

values with 95% confidence intervals.

corresponds to the realm and dataset with the worst climate connectivity, through to 5
for the best. Raw data are plotted in the background as semi-transparent, filled points.
Confidence intervals in panel (b) are plotted with dotted lines where they extend beyond
0 or 100%.
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From 2000 to 2012 we found that median climate connectivity did not change regardless
of the minimum patch size applied (P > 0.05; Figure D.1a), and this was true regardless of
biogeographic realm (P > 0.05; Figure D.1a). The change in proportion of unsuccessfully
connected forest was, however, more complicated. For extremes of minimum patch size
— either 1 km? of 100 km? — there was no effect of year (P > 0.05; Figure D.1b). In the former
case, it may be that any effect of year is masked by the greater amount of noise associated
with an abundance of 1 km? patches. In the latter case it is likely that so few 100 km? patches
were present at all that statistical power is lost, as well as the fact that patches of this size
are likely to be more robust to relatively small changes in forest cover. For all other patch
sizes, the proportion of successfully connected forest decreased from 2000 to 2012 (P < 0.01;
Figure D.1b). Only for a minimum patch size of 5 km? was this relationship affected by realm
(F=10.9, P <0.001; Figure D.1b), with a stronger loss of climate connectivity over time for

the Afrotropics than in other realms.

Loss of climate connectivity was strongly driven by loss of tree cover, regardless of minimum
patch size (P < 0.001; Figure D.2). The proportion of forest area losing connectivity differed
by realm for all minimum patch sizes (P < 0.001; Figure D.2), and was generally highest in
Indomalaya, the Neotropics and the Afrotropics. In most cases climate connectivity was lost
at an accelerating rate as the area of forest loss increased. It is likely that forest patches
become smaller and increasingly isolated as more forest area is lost, to the point where vital
connections are severed and climate connectivity is degraded. For minimum patch size of 100
km? there was a hump-shaped relationship with tree cover loss, which could be an artefact

of there being fewer datapoints for this dataset at high values of tree cover loss.
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Figure D.2: The proportion of total forested area in each land mass that lost climate
connectivity between 2000 and 2012, with increasing area of forest loss and across different
biogeographic realms (orange = Neotropics, blue = Afrotropics, green = Indomalaya, yellow
= Australasia and pink = Oceania). Points correspond to raw data, with point size indicating
the number of observations at that location. Fitted lines derive from model predictions with
95% confidence intervals.
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D.2 Supplementary analyses without tree plantations

D.2.1 Methods

The tree cover layers from Hansen et al. (2013) do not currently distinguish between
natural forests and tree plantations. However, boundary polygons for tree plantations are
available for seven countries: Brazil, Cambodia, Colombia, Indonesia, Liberia, Malaysia,
and Peru (Transparent World, 2015). We therefore re-ran our analyses (see Chapter 5:
‘Methods’) for these seven countries only, with and without cells inside tree plantations. We
buffered country polygons by 100 km to prevent artificial truncation of climate gradients (cf.
McGuire et al., 2016). Statistical models were analogous to those in Chapter 5, except that
biogeographic realm was not included as an explanatory variable because of the smaller

and more uneven sample sizes in this subset of the data.

D.2.2 Results and Discussion

Median climate connectivity in 2012 was -1.17°C including cells in tree plantations, versus
-1.2°C excluding tree plantations. Median climate connectivity did not differ by year in either
case (P > 0.05; Figure D.3a). Thus, regardless of the year or inclusion of tree plantations,

typical tropical forest fails to connect patches to future analogous climates.

The percentage of forest that failed to achieve successful climate connectivity in 2012
was consistent regardless of whether tree plantations were included (37.6% if including
plantations versus 41% excluding plantations), although the trends over time did differ. If
cells inside plantations were included, there was a slight decrease (-2.9%) from 2000 to
2012 in the percentage of forest that was unsuccessfully connected (F = 4.72, P < 0.05;
Figure D.3b). The opposite was true when cells inside plantations were excluded (F = 28.1,
P < 0.001; Figure D.3b), with the proportion of unsuccessfully connected forest increasing
by 8.6% from 2000 to 2012. The discrepancy between datasets in the effect of year is very

likely driven by increasing tree cover inside tree plantations.
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Figure D.3: Climate connectivity in the year 2000 (green) and 2012 (purple), including or
excluding cells that fall inside tree plantations. Panel (a) shows results for median climate
connectivity, with the dashed line indicating zero climate connectivity, at and above which
successful climate connectivity is achieved. Panel (b) shows results for the proportion
of total forested area that fails to achieve successful climate connectivity. Solid points
are model-predicted values with 95% confidence intervals. Raw data are plotted in the
background as semi-transparent points.

From 2000 to 2012, loss of climate connectivity increased with increasing loss of forest
area. This was true whether including tree plantations (F = 96.4, P < 0.001; Figure D.4)
or excluding tree plantations (F = 41.5, P < 0.001; Figure D.4). The relationship for both
datasets was weaker than in the full model (see Chapter 5), and when including plantations
the relationship appeared to invert for very high loss of forest area. These results may be
caused by the smaller sample size and truncation of climate gradients (e.g. from the Amazon
to parts of the Andes) when focusing only on countries with tree plantation data. It is also
possible that very high loss of forest area is concentrated in places which have already lost

climate connectivity, and therefore have little left to lose.
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Figure D.4: The proportion of total forested area in each land mass that lost climate
connectivity between 2000 and 2012 with increasing area of forest loss, including or
excluding cells inside tree plantations. Points correspond to raw data. Fitted lines derive
from model predictions with 95% confidence intervals.
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D.3 Supplementary analyses for different RCP scenarios

D.3.1 Methods

In Chapter 5 we used Representative Concentration Pathway (RCP) 8.5 to derive Mean Annual
Temperature in the year 2070. This is the most severe (‘business-as-usual’) IPCC scenario
(IPCC, 2013), which has thus far been the best predictor of observed climate change (Sanford
et al., 2014). However, it is possible that by 2070 stronger mitigating action is taken. We
therefore repeated our analyses using RCP2.6, which is the least severe warming scenario.
All methods were identical to those in Chapter 5, changing only the layer used for future

temperature.

D.3.2 Results and Discussion

For both RCP scenarios, median climate connectivity differed between realms (P < 0.001;
Figure D.5a), being highest in the Neotropics, Afrotropics and Indomalaya and lowest in
Australasia and Oceania. Median climate connectivity was below zero for both scenarios,
but closer to zero for RCP2.6 than RCP8.5. The implication is that forest patches across the
tropics will generally fail to facilitate species range shifts to the extent that species could
completely avoid climate warming, but with mitigation the amount of warming experienced

would be less.

The proportion of forest area that failed to achieve successful climate connectivity (> 0)
in the year 2012 was influenced by biogeographic realm in both RCP scenarios (P < 0.001;
Figure D.5b). All realms were less successfully connected using RCP8.5 (percentage area
that was unsuccessful ranged from 42-71% in RCP8.5 vs. 19-36% in RCP2.6) and the ranking
of different realms was also different depending on the RCP scenario. In both scenarios,
Indomalaya and Oceania were among the least successfully connected and Australasia
the best. The Afrotropics, however, had the lowest proportion of connected forest in
2012 under RCP2.6, but the second highest under RCP8.5. The Neotropics had the second
highest proportion of connected forest in 2012 under RCP2.6, versus the second lowest for
RCP8.5. Overall, these results suggest that despite the low average climate connectivity in
both scenarios of future warming, strong mitigation like that assumed under RCP2.6 could

maintain high climate connectivity in large forest patches.
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Figure D.5: Climate connectivity in the year 2000 (green) and 2012 (purple), for RCP2.6
(least severe warming scenario) and RCP8.5 (most severe warming scenario). Panel (a)
shows results for median climate connectivity, with the dashed line indicating zero climate
connectivity, at and above which successful climate connectivity is achieved. Panel (b)
shows results for the proportion of total forested area that fails to achieve successful climate
connectivity. Hollow circles are model-predicted values with 95% confidence intervals. The
small number in the centre indicates rank: 1 corresponds to the smallest y value for that
realm and dataset, through to 5 for the highest value. Raw data are plotted in the background
as semi-transparent, filled points. Confidence intervals in panel (b) are plotted with dotted
lines where they extend beyond 0 or 100%.
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For both RCP scenarios we found that median climate connectivity did not change between
2000 and 2012 (P > 0.05), and this was consistent across biogeographic realms (P > 0.05;
Figure D.5b). In contrast, the proportion of forest area that failed to achieve successful
climate connectivity was generally higher in 2012 than 2000, for both RCP2.6 (F = 6.38, P
< 0.05; Figure D.5b) and RCP8.5 (F = 193, P < 0.001; Figure D.5b). Under both scenarios this
pattern depended on the biogeographic realm (P < 0.001), with the biggest losses in the

Neotropics and Indomalaya compared to a decrease in the Afrotropics (Figure D.5b).

The proportion of forest experiencing a decrease in climate connectivity from 2000 to 2012
was influenced by both the area of forest loss (P < 0.001) and biogeographic realm (P <
0.001; Figure D.6), in both RCP scenarios. Indomalaya and the Neotropics experienced
substantial loss of climate connectivity in both scenarios, while the magnitude of change
varied between scenarios for the Afrotropics, Oceania and Australasia (Figure D.6). In both
scenarios the relationship between connectivity loss and forest loss is non-linear, however
under RCP2.6 the steepness of this relationship decreases for very high values of forest loss,
while it increases under RCP8.5. This discrepancy should be interpreted with caution since
there are only a small number of datapoints at the upper end of the relationship, but the
implication is that there is a greater propensity for climate connectivity loss to accelerate

under a business-as-usual compared to a strong mitigation scenario.
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Figure D.6: The proportion of total forested area in each land mass that lost climate
connectivity between 2000 and 2012, with increasing area of forest loss and across different
biogeographic realms (orange = Neotropics, blue = Afrotropics, green = Indomalaya, yellow
= Australasia and pink = Oceania). Points correspond to raw data, with point size indicating
the number of observations at that location. Fitted lines derive from model predictions with
95% confidence intervals.
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D.4 Worked example of climate connectivity calculation

The following text provides a step-by-step calculation of climate connectivity in the Brazilian

states of Ronddnia and Mato Grosso.

D.4.1 Step 1: Creating forest patches

Climate connectivity is calculated using climate-partitioned patches of natural habitat
(McGuire et al., 2016). In this study natural habitat refers to tropical forest, derived from
Hansen et al. (2013) for the years 2000 and 2012. For the year 2000, cells were classed
as forested if they had > 50% tree cover (Figure D.7a; Hansen et al., 2013). For the year
2012, cells were classed as forest based on forest loss and forest gain, relative to forest
cover in 2000 (Figure D.7b). If a cell experienced forest loss, it had gone from a forested
to non-forested state between 2000 and 2012 and was classed as non-forest. If a cell had
experienced forest gain, it had gone from a non-forested to forested state between 2000
and 2012; providing there had been no concomitant loss, the cell was classed as forest. All
subsequent steps were applied separately to forest cover in 2000 and 2012.

T

100
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0

No change
Loss only
Gain only

Loss and gain

Figure D.7: Tree cover in the year 2000 (a) ranges from low (beige) to high (dark green). Tree
cover change from 2000 to 2012 (b) includes: no change (blue), forest loss (purple), forest
gain (green) or both loss and gain (yellow). Both layers derive from Hansen et al. (2013), and
are used to classify cells into either forest or non-forest in the years 2000 and 2012.

We used Mean Annual Temperature (MAT) as our climate variable, which is the first
bioclimatic variable of the WorldClim database (Version 1.4; Hijmans et al., 2005). All

layers (forest cover and climate data) were projected into the World Cylindrical Equal
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Area projection and re-sampled to 1 km? resolution. Current climate (~1950-2000) was
assigned to forested cells, and rounded to increments of 0.5°C. Adjacent cells with the same
temperature were assigned to the same patch (Figure D.8). Patches less than 10 km? in area
were removed, and patches within 2 km of each other were assigned to the same patch.
Once forest patches had been determined we re-calculated current temperature (so it was
no longer rounded to increments of 0.5°C), and calculated future temperature for each
patch in the year 2070 (2061-2080) using data from the HadGEM2-AO general circulation
model (IPCC, 2013) and Representative Concentration Pathway (RCP) 8.5, which is the most

severe (‘business-as-usual’) IPCC scenario.

(@) (b)

2000 2012

©

Figure D.8: Forest patches in 2000 (a) and 2012 (b). Black inset (c) corresponds to magnified
view of the subset of patches used below to calculate climate connectivity. Shading indicates
unique patches and numbers correspond to patch identities, a sample of which can be found
in Table D.1.
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D.4.2 Step 2: Identifying destination patches

Climate connectivity for a given patch depends on the difference between the current
temperature of that patch, and the future temperature of the coolest patch that can be
reached by traversing a gradient of hotter to cooler adjacent patches (McGuire et al., 2016).

The aim of this next step, therefore, was to determine the coolest destination patch for each

origin patch.
(a) (b)
patchl patch2 templ temp2 origin dest origin_temp dest_temp
12 53 22.0 22.5 53 12 22,5 22.0
43 108 22.7 22.9 108 43 22.9 22.7
43 224 22.7 235 224 43 23.5 22.7
43 387 22.7 24.0 387 43 24.0 22.7
45 111 22.6 22.9 111 45 22.9 22.6
45 224 22.6 23.5 224 45 23.5 22.6

Table D.1: Dataframe of patch neighbours before (a) and after (b) sorting neighbours into
either the hotter origin patch or cooler destination patch.

We first identified, for each pair of neighbouring patches, which of the two was the hotter
‘origin’ patch and which was the cooler ‘destination’ patch (Table D.1). In the code snippets
below, nbr refers to a dataframe of patch neighbours, and temp_dat is a dataframe of the

current and future temperature for all patches.

nbr$origin <- NA
nbr$dest <- NA
nbr$origin_temp <- NA
nbr$dest_temp <- NA

for (i in 1:nrow(nbr)){
# If templ is more than tempZ2, patchl <s the origin and
# patch 2 is the destination
if (nbr$templ[i] > nbrétemp2[i]){
nbr$origin[i] <- nbr$patchi[i]
nbr$origin_temp[i] <- nbr$templ[il
nbr$dest[i] <-nbr$patch2[i]
nbr$dest_temp[i] <- nbr$temp2[i]
# If temp2 is more than templ, patchZ2 ts the origin and
# patch 1 is the destination
Yelse{
nbr$origin[i]<- nbr$patch2[i]
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nbr$origin_temp[i] <- nbr$temp2[il
nbr$dest [i]<-nbr$patchl [i]
nbr$dest_temp[i] <- nbr$templ[i]

Most patches have multiple neighbours, so we next identified all the neighbours for each
origin patch (assigned to: connections). For example, we can see below that origin patch
135 has only one neighbour: patch 53. Patch 231 has no neighbours, and patch 224 has

many.

connections <-
sapply(1l:nrow(temp_dat), function(x){
nbr$dest [nbr$origin == temp_dat[x,"patch"]]
H
names (connections) <- temp_dat$patch
# Look at a subset of patch connections:

connections[20:22]

## $7135°

## [1] 53

##

## $7224°

## [1] 43 45 48 51 52 53 104 106 108 111 115 116
##

## $7231°

## integer (0)

To determine the final, coolest destination patch that can be reached from each origin patch,
we traced the path according to which of the immediate neighbours was the coolest. This
step was done by iterating over unique patch temperatures (uniquetemps), from cooler to
hotter.

uniquetemps <- sort(unique(temp_dat$temp))

uniquetemps

## [1] 22.0 22.5 22.6 22.7 22.8 22.9 23.0 23.1 23.3 23.5 23.6 24.0

We created variables in temp_dat to populate with the temperature and patch identity of
the final destination patch for each origin patch, and created a copy of this dataframe called

running. The dataframe running is updated with each iteration.
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# Set up output columns
temp_dat$dest <- NA
temp_dat$dest_temp <- NA
temp_dat$inter_patch <- NA

# Copy the original dataframe
running <- temp_dat[, c("patch", "temp")]

In each iteration through unique temperatures (from cooler to warmer) we identified:

e The origin patches that corresponded to that temperature;

¢ The coolest neighbour of each origin patch;
And subsequently we:

¢ Populated the empty columns in our original dataframe with the patch identity and
temperature of the final destination patch of the coolest neighbour;
e Updated the running dataframe, to track the pathway from each origin patch to its

final destination patch (which may or may not be an immediate neighbour).

The iterations below were runin a loop, but for illustrative purposes we will iterate over each

unique temperature manually.

D.4.3 Iteration1

7

We begin by defining the focal unique temperature of this iteration. In this case, it’s
the first (i.e. coolest) value from our previously defined vector of unique temperatures,

uniquetemps.

this_temp <- uniquetemps[1]

this_temp

## [1] 22

Next we define the indices of all patches that are 22°C (inds).

inds <- which(running[,"temp"] == this_temp)

running[inds, "patch"]

# [1] 12
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Patch number 12 is the only patch at this temperature. Now we need to see if patch 12 has

any associated destination patches:

length(connections[[inds]]) > 0

## [1] FALSE

No, therefore the final destination patch and the final destination temperature are the same
as the origin: patch 12, temperature 22°C. The reason that we use the running dataframe
(a copy of the original temp_dat dataframe) to retrieve the temperature and identity of the

destination patch will become clear in later iterations (i.e. Iteration 5).

temp_dat$dest[inds]<- running[inds, "patch"]
temp_dat$dest_temp[inds]<- this_temp

Let’s look at the row in our dataframe that we have just populated:

temp_dat [inds,]

##  patch temp ftemp dest dest_temp inter_patch
## 1 12 22 25 12 22 NA

Note that because the origin and destination patch are the same, there are no intermediate

patches and so the value for inter_patch remains NA.

D.4.4 Iteration 2

Moving onto the next unique temperature. This iteration is more complicated because the

origin patch does have one or more neighbouring destination patches.

this_temp <- uniquetemps[2]
this_temp

## [1] 22.5

Again we define the indices of all patches that have this temperature (22.5°C).

inds <- which(running[,"temp"] == this_temp)

running[inds, "patch"]

## [1] 53 58

This time both patch 53 and patch 58 have the temperature that we’re interested in. We

start with patch 53 (index 1 in the vector inds).
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Are there any associated destination patches?

length(connections[[inds[1]]]) > O

## [1] TRUE

Yes. We define the indices of the destination patches as well (dest_inds).

dest_inds <- which(temp_dat$patch %in), connections[[inds([1]]])

There may be multiple destination patches, so we need to identify the minimum temperature
across all of them (t), as well as the index of the patch (or patches) that correspond to this

minimum temperature (min_ind).

t <- min(running[dest_inds, "temp"])

t
## [1] 22
min_ind <- which(running[dest_inds, "temp"] == t)

Is there more than one destination patch that has this minimum temperature (22°C)?

length(min_ind) > 1

## [1] FALSE

No, somin_ind is the index of the destination patch that we’re interested in. If there were
more than one destination patch with the same minimum temperature, the first would be
used arbitrarily.

Which patch does this index correspond to?

temp_dat$patch[min_ind]

## [1] 12

Patch 12. This is the final destination patch for patch 53. We assign the final temperature
(22°C) and the identity of the final destination patch (12) to the associated origin patch (53)

in our original dataframe, temp_dat.

temp_dat$dest_temp[inds[1]] <- t
temp_dat$dest[inds[1]] <- running$patch[min_ind]

We must also update the running dataframe so that patch 53 acquires the temperature and

identity of patch 12. This step is vital for constructing more complicated pathways. In this
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example, since the final destination of patch 53 is patch 12, any origin patches in subsequent
iterations whose neighbouring destination is patch 53 (see Iteration 5) will be assigned the

final destination temperature and identity of patch 12, not patch 53.

running$temp[inds[1]] <- t
running$patchl[inds[1]] <- running$patch[min_ind]

Finally, we capture intermediate patches that are traversed from origin to destination. The
path from patch 53 to patch 12 cannot have intermediate patches because patch 12 is its

own destination (there were no neighbouring patches that were cooler; see Iteration 1).

inter_patch <- temp_dat[min_ind, "inter patch"]

is.na(inter_patch)

## [1] TRUE

We assign the final destination patch as the only intermediate patch. This is not strictly
necessary since we have already recorded patch 12 as part of the path because it is the
destination. However, this step highlights the fact that in this iteration the destination patch

is not the same as the origin patch.

temp_dat$inter_patch[inds[1]] <- temp_dat[min_ind, "patch"]

We can now check the row for patch 53 in temp_dat and in the running dataframe. Note
how in the running dataframe the row associated with patch 53 now has the identity and

temperature of patch 12 instead.

temp_dat [inds[1],]

##  patch temp ftemp dest dest_temp inter_patch
## 8 53 22.5 25.6 12 22 12

running[inds[1],]

##  patch temp
## 8 12 22

Remembering that there were two origin patches corresponding to the focal temperature of
this iteration (22.5°C), we must now repeat the above process for patch 58 (index 2 in the

vector inds).

Does patch 58 have any neighbouring destination patches?
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length(connections[[inds[2]]]) > O

## [1] FALSE
No. As with Iteration 1, we assign the final destination temperature and patch identity to be
the same as the origin.

temp_dat$dest[inds[2]]<- running[inds[2], "patch"]
temp_dat$dest_temp[inds[2]]<- this_temp
temp_dat [inds[2],]

#i# patch temp ftemp dest dest_temp inter_patch
## 10 58 22.5 25.5 B8 22.5 NA

D.4.5 Iteration5

We will now skip ahead to the fifth unique temperature, which illustrates the importance of
updating the running dataframe in each iteration and using this to assign the temperature

and identity of the final destination patch.

this_temp <- uniquetemps[5]
this_temp

## [1] 22.8

inds <- which(running[,"temp"] == this_temp)

running[inds, "patch"]

## [1] 135

Patch 135 is the only origin patch that is 22.8°C. Does it have any neighbouring destination

patches?

length(connections[[inds[1]]]) > O

## [1] TRUE

dest_inds <- which(temp_dat$patch %in), connections[[inds[1]]])

Yes. Of the one or more neighbouring destination patches, what is the minimum temperature

and what is the index of the corresponding patch?
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t <- min(running[dest_inds, "temp"])

t
## [1] 22
min_ind <- dest_inds[which(running[dest_inds, "temp"] == t)]

Is there more than one destination patch at this minimum temperature (22°C)?

length(min_ind) > 1

## [1] FALSE

temp_dat$patch[min_ind]

## [1] 53

No. Patch 53 is the destination for patch 135. At this point, note that patch 53 was
encountered in Iteration 2, and is itself connected to patch 12. As such, the row
corresponding to the index of patch 53 actually has the temperature and identity of patch
12:

running[min_ind, ]

##  patch temp
## 8 12 22

Because the final destination temperature and patch identity are retrieved from the
running dataframe, we assign the final destination identity and temperature as patch 12,
22°C.

temp_dat$dest_temp[inds[1]] <- t
temp_dat$dest[inds[1]] <- running$patch[min_ind]

We again update the running dataframe. In subsequent iterations any origin patch whose
coolest neighbour is patch 135 will also be assigned the final destination temperature and

identity of patch 12.

running$temp[inds[1]] <- t
running$patchl[inds[1]] <- running$patch[min_ind]

Lastly, we define the intermediate patches.

inter_patch <- temp_dat[min_ind, "inter patch"]

is.na(inter_patch)
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## [1] FALSE

Inthis case, of course, there is an intermediate patch between the origin and the destination —
patch 53. We paste this patch together with the final destination to construct the full pathway

from origin to destination.

temp_dat$inter patchlinds[1]] <-
paste(temp_dat[min_ind, "patch"],
inter_patch[!(is.na(inter_patch))],

Sep = ll;ll)

Let’s inspect the rows that we have just populated:

temp_dat [inds[1],]

#i# patch temp ftemp dest dest_temp inter_patch
## 20 135 22.8 25.9 12 22 53;12

running[inds[1],]

#i# patch temp
## 20 12 22

D.4.6 Step 3: Calculating climate connectivity

At this point we know the current and future temperature of all patches (Step 1), and the
identity and current temperature of their final destination patches (Step 2). Combining this
information we can easily assign to each origin patch the future temperature of its destination

patch:

temp_dat$dest_ftemp <-
vapply (1:nrow(temp_dat), function(x){
dest <- temp_dat$dest [x]
dest_ftemp <- temp_dat$ftemp[temp dat$patch == dest]
return(dest_ftemp)
}, FUN.VALUE = numeric(1))

Finally, we calculate climate connectivity. Conceptually, climate connectivity is the maximum
temperature difference that can be achieved by traversing a gradient of hotter to cooler
adjacent patches. Mathematically, this is calculated as the current temperature of the origin

patch minus the future temperature of the destination patch. If this value is zero or positive
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then climate connectivity is successful — organisms could potentially reach a forest patch that,

under climate change, is the same as or cooler than where they currently are.

temp_dat$clim_conn <- temp_dat$temp - temp_dat$dest_ftemp

Final results can be seen in Figure D.9 and Table D.2. Table D.3 demonstrates what the

running dataframe looks like after having updated for each iteration.

(b)

Climate
connectivity
<)

Current
temperature
<)

-1.0

Figure D.9: Pathways from origin to destination patches (a) and climate connectivity across
all patches (b). In panel (a), patch shading corresponds to current mean annual temperature
(°C), from cooler (black) to hotter (light grey). Circles indicate patch centroids, the numbers
inside correspond to the patch identity (asin Tables D.1, D.2 and D.3) and the arrows between
indicate the direction of travel from hotter to cooler patches. In panel (b), patch shading
corresponds to climate connectivity (°C), measured as the current temperature of the origin
patch minus the future temperature of the destination patch. All values here are negative,
indicating that existing forest cover would fail to facilitate range shifts to an analogous future
climate.
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patch temp ftemp dest dest temp inter_patch dest ftemp clim_conn
12 22.0 25.0 12 22.0 NA 25.0 -3.0
43 22.7 26.0 43 22.7 NA 26.0 -3.3
45 22.6 25.8 45 22.6 NA 25.8 -3.2
46 22.6 25.7 46 22.6 NA 25.7 -3.1
48 22.6 25.8 48 22.6 NA 25.8 -3.2
51 22.7 25.8 51 22.7 NA 25.8 -3.1
52 22.6 25.8 52 22.6 NA 25.8 -3.2
53 225 25.6 12 220 12 25.0 -2.5
55 22.6 25.8 55 22.6 NA 25.8 -3.2
58 225 25.5 58 22.5 NA 25.5 -3.0
104 23.0 26.1 12 22.0 53;12 25.0 -2.0
106 23.1 26.2 12 22.0 104;53;12 25.0 -1.9
107 22.9 26.5 107 229 NA 26.5 -3.6
108 22.9 26.1 43 22,7 43 26.0 -3.1
111 22.9 26.0 45 22.6 45 25.8 -2.9
115 23.0 26.1 48 22.6 48 25.8 -2.8
116 23.1 26.5 116 23.1 NA 26.5 -3.4
119 23.0 26.1 119 23.0 NA 26.1 -3.1
127 23.0 25.9 12 22.0 53;12 25.0 -2.0
135 22.8 25.9 12 22.0 53;12 25.0 -2.2
224 235 26.6 12 22.0 53;12 25.0 -1.5
231 23.6 269 231 23.6 NA 26.9 -3.3
242 235 26.5 12 22.0 104;53;12 25.0 -1.5
266 23.3 26.4 12 22.0 104;53;12 25.0 -1.7
387 24.0 27.1 12 22.0 104;53;12 25.0 -1.0

Table D.2: The results dataframe with final destination patches, final temperatures and
climate connectivity for each origin patch.
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patch temp
12 22.0
43  22.7
45 22,6
46 22.6
48 22.6
51 227
52 226
12 220
55 226
58 225
12 220
12 22.0
107 229
43 22.7
45 22,6
48 22.6
116 23.1
119 23.0
12 220
12 220
12 220
231 236
12 22.0
12 22.0
12 220

Table D.3: The running dataframe, after updating with each iteration through unique
temperatures. Note the repeated appearance of patch 12, which is a common final
destination patch.
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