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Abstract 

Improvements in the understanding of the physiology of the central airways require an 

appropriate representation of the non-uniform ventilation at its terminal branches. 

This paper proposes a new technique for estimating the non-uniform ventilation at the 

terminal branches by modelling the volume change of their distal peripheral airways, 

based on vascular segmentation. The vascular tree is used for sectioning the dynamic 

CT-based 3D volume of the lung at 11 time points over the breathing cycle of a 

research animal. Based on the mechanical coupling between the vascular tree and the 

remaining lung tissues, the volume change of each individual lung segment over the 

breathing cycle was used to estimate the non-uniform ventilation of its associated 

terminal branch. The 3D lung sectioning technique was validated on an airway cast 

model of the same animal pruned to represent the truncated dynamic CT based airway 

geometry. The results showed that the 3D lung sectioning technique was able to 

estimate the volume of the missing peripheral airways within a tolerance of 2%. In 

addition, the time-varying non-uniform ventilation distribution predicted by the 

proposed sectioning technique was validated against CT measurements of lobar 

ventilation and showed good agreement. This significant modelling advance can be 

used to estimate subject-specific non-uniform boundary conditions to obtain subject-

specific numerical models of the central airway flow. 

Keywords: Non-uniform ventilation; Bronchial flow modelling; Physiological boundary 

conditions; CT image processing; Vascular segmentation. 
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1 Introduction  

Airflow analysis underpins the understanding of lung physiology and pulmonary target 

therapy. However, performing this analysis, either clinically or by in vivo experiments, 

is challenging due to the inaccessible nature of the lungs. For this reason, current 

research efforts are focusing on the numerical modelling of the central airways using 

subject-specific geometries extracted from volumetric medical imaging data, such as 

four-dimensional computed tomography (4DCT). A reliable numerical modelling of the 

central airway flow requires the appropriate representation of the tracheal bulk flow 

and of the non-uniform ventilation at its terminal branches imposed by the peripheral 

airways that are not captured by 4DCT. 

Few attempts have been made to approximate the effect of the non-uniform 

ventilation at the terminal branches when numerically modelling the bronchial flow. 

De Backer et al. [1] iteratively imposed different pressure values at the terminal 

branches of the left and the right lungs so that the numerically predicted mass flow 

towards the left and right lung reflected the proportional lung growth measured from 

CT images acquired at two different inflation levels.  De Backer et al. [2] and Lambert 

et al [3] adopted a similar iterative approach based on CT measurements of lobar 

growth rather than of lung growth. Although such iterative approaches improved the 

reliability of the numerical predictions of the central airway flow, they are not 

adequate to accurately capture the non-uniform inner lobar flow distribution. Yin et al. 

[4, 5] used a 3D-1D coupling model associated with a ventilation map computed by 

registering CT images acquired at different inflation levels to estimate the flow at the 
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terminal branches based on mass conservation. Their technique resulted in a good 

approximation to the CT measurement of lobar ventilation. However, the 1D model in 

their study uses lobe-averaged volumetric airflow data. The apportionment of the 

lobar ventilation among its terminal branches has to be assumed, which may increase 

the uncertainty of the predicted ventilation within each lobe. 

Together with the bronchial airways, the pleural cavity encloses the vascular tree, 

which is responsible for conducting the blood between the heart and the alveolar sacs 

where gas exchange takes place. The pulmonary arteries run alongside the bronchial 

airways and the pulmonary veins show a similar branching pattern to the arteries, 

though separated from them [6]. The topology of the pulmonary veins divides the lung 

lobes into several segments known as the bronchopulmonary segments. These 

segments are separated from each other by connective tissue septa that cannot be 

identified in low-resolution CT images [7]. Each segment is supplied by a segmental 

bronchus and its accompanying pulmonary artery branch [8]. This pulmonary artery 

and its peripheral arteries are tethered to the surface of their adjacent airways and to 

the lung parenchyma via a connecting tissue [9]. In the conducting zone of the lung, 

the pulmonary arteries that accompany the conducting airways tend to retain their 

shape during breathing as they contain a number of smooth muscles and a large 

volume of blood passing through them. However, they stretch and displace in 

accordance to their adjacent airways during breathing as a result of that tethering [10-

12]. In the respiratory zone of the lung, where most of the lung volume change takes 

place during breathing, more of the adventitial surface of the arteries (and veins) is 

tethered to the surrounding lung parenchyma [9] and the smooth muscles surrounding 
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the blood vessels are less present. Hence, the overall structure (position, diameter and 

length) of the arteries (and veins) in the respiratory zone varies in accordance to the 

change in the lung volume during breathing [13-16]. This indicates a mechanical 

coupling between the lung tissues and the pulmonary arteries and veins in the pleural 

cavity.  By this mechanical coupling, the deformation of the vascular tree in accordance 

to the change in lung volume during breathing can be used to approximate the volume 

change of the missing peripheral airways distal to each terminal branch. 

In this paper, a sectioning technique is proposed to segment a time sequence of 3D 

volumes of the sampled breathing cycle of a laboratory animal into several segments, 

where each segment encloses the volume of the missing peripheral airways distal to 

each terminal branch. The corresponding segments are defined based on the 

mechanical coupling between the vascular tree and the lung tissues. The computed 

volume change of the individual segments is then used to estimate the non-uniform 

ventilation at the terminal branches of the central airways. The proposed sectioning 

technique is validated on a cast geometry of the bronchial airways of the same animal 

coupled to a CT based reconstructed vascular tree. In addition, the accuracy of the 

proposed technique in approximating the volume change of specific segments within 

the lung during breathing is validated by CT measurements of lobar regional 

ventilation. Finally, the application of the proposed technique is considered for 

estimating subject-specific physiological flow boundary conditions to bridge the gap 

between the numerical modelling of the central airway flow and the actual flow within 

a living lung.  
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2 Methodology  

2.1 Non-uniform ventilation model overview 

The block diagram shown in Figure 1 illustrates the overall process of defining the non-

uniform ventilation model. The proposed technique was implemented using multiple 

dynamic CT images that sampled the breathing cycle of a laboratory animal, as shown 

in Figure 1 (a). The dynamic CT images were initially processed to generate lung 

volume masks that cover the lung sac containing the extra-alveolar blood vessels (the 

pulmonary arteries and the pulmonary veins) as shown in Figure 1 (b). These lung 

volume-masks were then used to generate 3D geometries of the lung volumes as 

shown in Figure 1 (c). In addition, 3D geometries of the vascular tree were 

reconstructed out of the lung volume masks. The generated vascular tree geometries 

were then synchronised to their corresponding 3D lung volume geometries. Next, the 

veins that define the bronchopulmonary segments of the lung and the arteries running 

alongside the missing peripheral airways distal to each terminal branch were identified 

and extracted out of the vascular tree geometries. The skeleton of the extracted veins 

were first used to generate sectioning surfaces that define the bronchopulmonary 

segments of the lung. Then, midline curve segments were generated between the 

opposing peripheral artery pairs distal to each two adjacent terminal branches using 

their skeleton. A sectioning surface is then extracted from each midline curve and 

projected onto the surfaces boundaries of its enclosing bronchopulmonary segment 

using short distance projection. 
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As a result, each bronchopulmonary segment of the lung is sectioned into smaller 

segments where each specific lung segment encloses the missing airways distal to a 

specific terminal branch as shown in Figure 1 (d). Finally, the volume change of these 

segments was used to estimate the non-uniform ventilation for their associated 

terminal branch.   

2.2 Dynamic CT imaging and airway geometry sampling 

11 CT images were acquired dynamically for a 298g male Sprauge-Dawley rat at the 

Pacific Northwest national laboratory, Washington, USA. The animal use was approved 

by their affiliated institutional animal care and use committee (Protocol 2010-23). The 

imaging process is extensively explained in [17]. Briefly, the rat was anesthetised and 

then intubated with a 4 cm long 14-gauge catheter tube and connected to the 

commercial ventilator from CWE Inc. (Model 830/AP, Ardmore, PA). The ventilator was 

set to deliver air (30% O2, 70% N2) at 54 tidal breaths per minute (500 ms inspiration, 

600 ms expiration, and ∼6.2 cmH2O Peak Inspiratory Pressure (PIP)). The rat was 

scanned supine using the commercial micro-CT scanner eXplore (Model CT120, GE 

Health Care Waukesha, WI). Scanning parameters were 80 kVp, 32 mA, 16 ms 

exposure time, 100 µm resolution, 360° projection with 1° increment. Figure 2 (a) 

illustrates the CT imaging time points superimposed on a typical flow volume change 

waveform measured by the ventilator unit.  

The medical image processing software Mimics (Materialize, Belgium) was used to 

segment and reconstruct a 3D geometry of the bronchial airways out of each CT image. 

The segmentation process was done automatically following the intensity threshold 



8 
 

approach. This segmentation required some additional manual adjustments to ensure 

the surface boundary continuity of the bronchial tree cross-sections. The generated 3D 

geometries were limited to 4±1 generations, resulting in 28 terminal branches as 

shown in Figure 2 (b). The image quality of the dynamic CT data set was not sufficient 

to reconstruct additional generations. Each airway geometry was manually cleaned up 

and the axial boundary surfaces were defined perpendicular to the centreline of their 

associated airway geometry. 

2.3 Computation and 3D sampling of the lung volume  

A mask covering the lungs and a small zone of the extra-alveolar vessels was generated 

from each CT image following the steps proposed in [18]. First, a Gaussian 3D filter 

(radius =1) was applied to the image slices. Then, the 3D Toolkit plugin within the free 

source software ImageJ (NIH, Bethesda, Maryland, USA) was used to generate the lung 

volume mask for each CT-image by inserting a seed point within the lung. Finally, the 

3D Dilate and the 3D Erode functions, also available within the 3D toolkit of ImageJ, 

were applied to the generated masks in order to fill the missing voxels and smooth the 

boundaries. Figure 3 (a) illustrates the calculated mask on a sample slice. 3D 

geometries were then reconstructed out of the generated masks using the commercial 

software Mimics. The volume change of the 3D geometries was calculated and 

compared to the lung volume change measured by the ventilator unit as shown in 

Figure 3 (b). It can be seen that the change in the volume measured from the sequence 

of the 3D geometries matches well the lung volume change measured by the ventilator 

unit. The partitioning of the 3D geometries in lung volume segments shown in Figure 
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1(d) uses sectioning surfaces of zero thickness, so that the sum of the sectioned 

volumes is equal to the un-split 3D geometry volume, by construction. This method is 

volume conservative and enables to assume that the volume change of corresponding 

segments in the mask-based 3D geometry time sequence reflects the volume change 

of the same segment within the living lung. 

2.4 Segmentation and 3D sampling of the vascular tree 

Unlike the bronchial airways, the vascular tree has a distinguishable x-ray opacity 

comparable to that of bones, which makes it visible almost down to the capillaries in 

CT scans with high resolution. However, identifying and segmenting the vascular tree 

in dynamic CT data is more challenging due to the low resolution of the acquired 

images. Hence, it was necessary to enhance the contrast of the vascular tree for an 

easier segmentation. To do this, the lung was extracted from the CT images by 

applying the lung volume-masks generated in section 2.3 to the original CT images 

using the image calculator tool in ImageJ. An enhance contrast function with histogram 

equalization was then applied to the digitally masked lung cross-section images in 

order to improve the contrast between the vascular tree and the other lung tissues. 

Finally, a tubeness filter [19], available within ImageJ, was applied to the contrast 

enhanced images. This filter examines the connectivity between the pixels within the 

data set based on the eigenvalues of the Hessian matrix. A sample of the resulting 

images is shown in Figure 4 (a). 3D geometries of the vascular tree were then 

reconstructed by assembling the tubeness-filtered cross-sections. Some manual 

processing of the 3D surfaces was required to repair open vessel walls and to properly 
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connect smaller vessels to their parent vessels. A sample geometry of the 

reconstructed vascular tree superimposed on its associated 3D airway geometry is 

shown in Figure 4 (b). It can be seen that the generated 3D geometry of the vascular 

tree adventitial surface is coarse. This is mainly due to the low spatial resolution of the 

dynamic CT data set (0.1 mm). However, as only the centreline of the blood vessels will 

be used to segment the 3D volumes of the lung, the roughness of the adventitial 

surface is not a concern for the implementation of the lung volume sectioning 

algorithm detailed in section 2.5.   

2.5 Sectioning the lung volume geometry 

Figure 5 (a) illustrates the airway segments generated for a sample airway volume.  

The steps followed to generate these segments are illustrated on a sample terminal 

branch shown in Figure 5 (b.1). To define the boundaries of the desired lung volume 

segments, the veins that outline the bronchopulmonary segments of the lung and the 

arteries running alongside the outer branches of the missing airways distal to each 

terminal branch were extracted from the vascular tree geometries as shown in Figure 5 

(b.2). The extracted veins and arteries are referred to as the blood vessels of interest. 

Following the extraction process, centreline segments were automatically generated 

for the blood vessels of interest using the 3D thinning algorithm of Palágyi et al. [20]. 

Let 𝐶𝑣 designate the centreline segments of the extracted veins and 𝐶𝑎 designate the 

centreline segments of the extracted arteries as shown in Figure 5 (b.4). Due to the low 

resolution of the dynamic CT data set, some of the small veins and arteries at the tips 

of the vascular tree geometries were missing. Therefore, the connection between the 
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vessels of interest and the visceral pleura was missing and had to be approximated. 

This was done by projecting the end-points of each 𝐶𝑣 and 𝐶𝑎 on the wall of the 

visceral pleura. These points were then used to bridge the gaps between the centreline 

segments and the visceral pleura using straight lines. Additionally, since the structure 

of the arteries within the vascular tree follow the same branching pattern of the 

missing airways, midline curve segments 𝐶𝑚 were generated between the opposing 

artery pairs associated to each terminal branch based on the structure of their 

centreline segments 𝐶𝑎 as shown in Figure 5 (b.4). The midline tool, available in the 

commercial software ICEM CFD (ANSYS, USA), was used to generate these centrelines. 

The generation of 𝐶𝑚  was a semi-automated process as it required the user to 

designate opposing artery centreline pairs from which each 𝐶𝑚 was generated. 

Sectioning the 3D lung volume geometries was performed following two main steps. 

First, the bronchopulmonary segments of the lungs were identified by generating 

sectioning surfaces that define the boundaries of each bronchopulmonary segment 

using the centreline segments of the extracted veins 𝐶𝑣 as shown in figure 5 (b.5). 

Then, the defined bronchopulmonary segments were further sectioned into smaller 

segments where necessary using the arteries midline curve segments 𝐶𝑚. This was 

done by generating a sectioning surface between each 𝐶𝑚 and its short distance 

projection onto the boundary surfaces of the bronchopulmonary segment enclosing 

𝐶𝑚, so that each lung volume segment enclosed only one terminal branch as shown in 

figure 5 (b.6). Note that lobar boundaries were not used for generating the lung 

volume segments. This was done deliberately to enable the use of this geometrical 

data for the a-posteriori validation of the sectioning technique reported in section 3.2. 
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Since the vascular tree is tethered to the bronchial airways and to the lung 

parenchyma, it was assumed that the shape and the position of the generated 

segmental boundaries vary in accordance to the change in the lung volume during 

breathing. Thus, the volume change of the individual segments reflects the volume 

change of their enclosed airways. Hence, the volume change of the individual segment 

can be used to estimate the non-uniform ventilation for their associated terminal 

branches using the following equation 

𝑄 = 𝑑(𝑉𝑆−𝑉𝐺)
𝑑𝑑

           (1) 

where 𝑄 is the volumetric flow rate, 𝑉𝑆 is the volume of the lung segment associated 

to a given terminal branch, 𝑉𝐺 is the volume of the CT based airway geometry enclosed 

within the same lung segment, and t is the breathing time.   

3 Results 

3.1 Evaluation of the sectioning technique on an airway cast 

To evaluate the accuracy of the proposed technique in defining the lung volume 

associated to each terminal surface, the proposed sectioning process was applied to a 

cast geometry of the bronchial airways extracted from the same animal post-mortem. 

The cast geometry was coupled to a vascular tree geometry of the animal 

reconstructed out of a CT image acquired at approximately the same inflation level as 

the cast geometry. Airway casting and animal imaging were performed by a research 

group at the at the Pacific Northwest national laboratory, Washington, USA. The 
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animal imaging process and airway casting are extensively explained in Jacob et al. 

[21]. Briefly, the rat was subjected to euthanasia using CO2 asphyxiation, and then 

intubated with a 14-gage catheter tube. A ventilator unit was then used to inflate the 

rat lungs to its Total Lung Capacity (TLC) at ∼25 cmH2O. At that time, the lungs were 

scanned using the commercial micro-CT scanner (eXplore CT120, GE Health Care 

Waukesha, WI). Scanning parameters were 90 kVp, 40 mA, 16 ms exposure time, 50 

µm resolution, 360° gantry rotation with 900 projections. Following the scanning 

process, an in-situ rigid cast of the rat bronchial tree was made following the 

methodology of Phalen et al. [22]. The lungs were degassed and held inflated at ∼30 

cmH2O. A pre-calculated lung volume of ∼2.3 mL of a casting agent was then slowly 

injected into the lungs in-situ via the intubated catheter tube.  The casting agent mix 

consisted of 10 g Dow-Corning 734 flowable sealant, 3.7 g Dow-Corning 200 fluid, and 

1.3 g of Ultravist (iopromide, Bayer HealthCare), and an iodine-based CT contrast agent 

[21]. Finally, a CT image of the rat thorax was acquired using the same scanning 

parameters used for imaging the lung at TLC. 

A 3D geometry of the airway cast was then automatically segmented and 

reconstructed out of the cast images. The segmentation process did not require any 

pre-processing steps. This is due to the CT contrast agent that was added to the cast 

materials which makes it distinguishable in the CT image. The reconstructed cast 

geometry included a high number of airway generations that are significantly beyond 

the resolution of the 4DCT images of living animals. Each additional generation is 

morphologically connected to a specific terminal branch of the CT images and, 

therefore, should be contained in the lung volume section associated to this specific 
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branch. The vascular tree of the animal was segmented and reconstructed out of the 

TLC image acquired prior to the casting process following the same steps discussed in 

section 2.4. A 3D geometry of the bronchial airways was also segmented and 

reconstructed out of the TLC image following the steps discussed in section 2.2. The 

airway cast geometry was aligned to this CT based airway geometry in order to attach 

the airway cast geometry to the geometry of the CT based vascular tree as shown in 

Figure 6. It can be seen from the magnification window in Figure 6 that the blood 

arteries run alongside the bronchial tree and follow a similar branching pattern.   

The airway cast geometry was pruned to represent the geometry of the bronchial 

airways with a reduced number of generations similar to that obtained from the 

dynamic CT scans (4±1 generations with 28 terminal branches). The sectioning 

technique was then applied to the pruned cast geometry in order to estimate the 

sections of the lung volume associated to each terminal branch. The actual section of 

the lung associated to each terminal branch was determined by referring back to the 

unpruned airway cast geometry. Figure 7 illustrates the sectioning process applied to 

the right cranial lobe of the animal lungs. It can be seen that the proposed sectioning 

technique was able to successfully define segments within the lung volume that wrap 

and separate the missing peripheral airways of the terminal branches. However, minor 

geometrical violations were observed on some of the generated segments of the 

animal lungs similar to the one shown in the magnification window in Figure 7 (d). 

Figure 7 (d) shows some of the airway branch tips from the cast airway geometry 

dipping into the neighbouring volume section. The volume of the misinterpreted 

airway geometries within the lung volume segments was less than 2% compared to the 
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volume of the enclosed airway branches. Such a small error is not expected to 

significantly affect the accuracy of the estimated non-uniform ventilation. 

3.2 Validation of the non-uniform bronchial ventilation 

model 

Section 3.1 provided a validation test for the non-uniform sectioning of the lung 

volume among the terminal branches at TLC. This section addresses the validation of 

the non-uniform ventilation model by evaluating the non-uniform ventilation 

distribution among the five lobes over the tidal breathing cycle of the laboratory 

animal. Figure 8 illustrates the comparison between the lobar volumes at different 

time points computed following the proposed sectioning technique to that measured 

from the CT scans. The CT measurement of the lobar volume was done by segmenting 

the lobes from the CT images following the fissure lines. The purpose of this 

comparison was to validate the accuracy of approximating the time dependant volume 

of a specific lobe within the lung using the proposed technique.  

No significant discrepancy was observed between the computed and the measured 

volume at all the investigated time points over the breathing cycle. The proposed 

technique was able to accurately predict the lobar volume at different times with a 

maximum error of less than 2.5%. Since this section does not provide a validation of 

the non-uniform bronchial ventilation for the individual terminal surfaces, it is 

important to note that the lobes are the smallest morphologically defined segments of 

the lung in a CT scan since the fissure lines separate them. Therefore, validating 
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against the change in the lobes volume is a good indication of the accuracy of the 

proposed technique.  

4 Discussion and limitations 

The proposed non-uniform ventilation model provides the ability to define dynamic 

physiological boundary conditions for the numerical modelling of the central airway 

flows depending mainly on biometrical information extracted from the lungs using 

dynamic CT scans. This technique has significant and substantial differences with 

respect to algorithms used in previous work, which either relied on the volume change 

of the overall lungs or that of individual lobes [1, 2, 4, 5] to approximate the boundary 

conditions for flow modelling applications. The boundary conditions that can be 

defined by the proposed technique use additional physiological information in the 

form of the vascular tree that was not used in past work. This greater use of subject-

specific data is conducive to obtaining more reliable numerical predictions of the 

bronchial flow compared to that of a living lung. However, important limitations and 

uncertainties remain to be addressed. Firstly, the proposed sectioning technique of the 

lung volume depends on the mechanical coupling between the vascular tree and the 

lung tissues. This mechanical coupling, whilst present throughout the bronchial tree, 

exhibits zonal variations.  Although the arteries are accompanying the bronchial 

airways down to the alveolar sacs, the amount of their adventitial surface that is 

tethered to their adjacent airways vary widely from dorsal to apex [9]. Similarly, the 

tethering between the veins and the lung tissues is complex and inhomogeneous. 

Moreover, the volume of the smooth muscles surrounding the arteries and the veins 
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vary widely from dorsal to apex and the volume of the blood flowing through each 

vessel varies. All these elements may affect the elasticity and, hence, the deformation 

pattern of the blood vessels during breathing with respect to the deformation in the 

lung volume. Since many of these effects have not been systematically investigated, 

the assumption that the vascular tree deforms in accordance to the change in the lung 

volume during the breathing cycle should be investigated further. In addition, there 

are significant morphological differences between the vascular trees of rats and 

humans. The human vasculature is relatively thicker and has a larger volume compared 

to the rat vasculature. Therefore, it should be possible to render the human vascular 

tree as readily as in rats using a similar filtration approach [23]. However, the presence 

and the number of the elastic laminae and the degree of the muscularity vary widely in 

the vasculature of humans and rats [24]. Thus, as the validation of the proposed 

technique was limited to a rat model, its direct application on humans requires further 

analysis. 

Another limitation affecting the accuracy of the proposed sectioning technique and, 

hence, the reliability of the derived dynamic subject-specific boundary conditions is 

the ability of identifying and segmenting the lower vessels of the vascular tree (the 

arterioles, the venules, and the capillaries) out of the CT images. This limitation 

manifests particularly when dealing with a low-resolution CT data set similar to that of 

the dynamic CT imaging used in this study. The missing blood vessels are likely to affect 

the accuracy of the lung volume sectioning since the coupling between the segmented 

vascular tree and the inner pleural membrane (the visceral pleura) has to be 



18 
 

approximated.  This may result in imprecise but still acceptable dynamic physiological 

boundary conditions.  

Conclusions 

This paper introduces a lung volume sectioning technique based on vascular 

segmentation to estimate the non-uniform ventilation within the peripheral airways 

that are not captured by currently available 4DCT imaging techniques. The motivation 

for modelling the subject-specific non-uniform ventilation is the prospective of using 

subject-specific numerical models for investigating the flow within patient-specific 

geometries of the central airways.  

The vascular tree was used as a reference to section the lung volume generated from 

successive 4DCT images that sample the breathing cycle into several segments, where 

each segment encloses the missing peripheral airways associated to each CT captured 

terminal airway branch. Since the vascular tree is mechanically coupled to the 

bronchial tree and the lung parenchyma, the volume change of the corresponding 

segments defined by the vascular tree over the breathing cycle is expected to reflect 

the volume change of the same segment within a living lung. Therefore, the volume 

change of the corresponding lung segments defined by the vascular tree was used to 

estimate the non-uniform ventilation for their enclosed terminal branches.  

Using a cast model, the proposed sectioning technique was found to be able to 

successfully estimate the volume of the missing peripheral airways at TLC within a 

tolerance of 2%. Furthermore, the ability of the proposed technique in approximating 
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the volume change of specific segments of the lungs over time during breathing was 

validated by comparing CT measurements of the lobar volume change to that 

computed following the proposed technique. Although the maximum observed 

discrepancy between the measured and the computed lobar volume change was less 

than 2.5%, this strategy is not sufficient to fully validate the capability of the proposed 

technique in estimating the non-uniform ventilation of the missing peripheral airways 

distal to each individual terminal branch. 

The significant output from this research is the availability of a technique that can be 

used to develop dynamic physiological boundary conditions for the numerical 

modelling of the central airway flow depending mainly on biological information 

obtained from the lung deforming constituents. This is different to the previously 

published algorithms that use the global lung (or lobes) volume change or empirical 

flow volume fraction models of the bronchial airways to predict non-uniform 

ventilation effects. 
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Figure 1: Block diagram of deriving defining the non-uniform ventilation model. 
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Figure 2: (a) CT image time points superimposed over a typical breathing cycle imposed by the 
ventilator. The width of the bars represents the 16 ms exposure time and the height of the bars 
represents the standard deviation. (b) A sample of the reconstructed airway geomtries at t = 0 ms. 
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Figure 3: (a) the computed lung volume-mask illustrated on a sample slice, (b) a comparison of the 
average ventilator-measured lung volume change and the total volume change measured from the lung 
3D geometries. The error bars represent the standard deviation of the ventilator measurements. 
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Figure 4: (a) CT image pre-processing for the segmentation and transverse plane sampling of the vascular tree 
out of the dynamic CT data set. (b) 3D rendering of a sample vascular tree superimposed on its associated 
airway geometry. 
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Figure 5: (a) sections of a sample lung volume generated following the proposed technique.  Each colour in 
figure 5 (a) (centre and right) represents the volume of the missing airways associated to each terminal branch 
in figure 5 (a) (left). (b) the sectioning technique illustrated on a sample terminal branch highlighted by the 
square inset, (1) the sample terminal branch, (2) the extraction of the blood vessels of interest, (3) generation 
of the centreline segments 𝐶𝑣 and 𝐶𝑎, (4) generation of the midline curve segments 𝐶𝑚, (5) defining the 
bronchopulmonary segments, (6) defining the lung volume segment. 
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Figure 6: The coupling between the airways cast geometry and the vascular tree geometry following the 
registration between the airways cast geometry and the airways geometry at TLC. The magnification window 
illustrates the configuration of a sample airway branch. 

 

The airway cast geometry 
The vascular tree at TLC 



30 
 

 

 

 

RCR1 

RCR3 RCR2 

Pleural cavity 
Airway geometry 

Blood 
 

RCR1 
 

RCR2 airways 
RCR3 airways 

Vessels of interest (arteries) Vessels of interest 
 

Segmental boundaries 

(c) 

(a) 

(b) 

(d) (e) 

Figure 7: Implementation of the sectioning technique to a cast model of th bronchial airways 
represented on the right carinal lobe of the Sprauge-Dawley rat. (a) the lobe position in the pleural 
cavity. (b) the bronchial airways related to each terminal branch of the right carinal lobe coupled to 
the blood vessel within the lobe. (c) extraction of the vessels of interest. (d) the generation of the 
boundary surfaces of each segment. (d) the generated segments. The magnification window 
illustrates a minor geometrical violation observed between the RCR3 segment and the RCR2 
segment. 
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Figure 8: Comparison between the lobar ventilation measured using the proposed sectioning technique to that 
measured from the dynamic CT data set. 
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