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Abstract 

 

Mental illness is a serious health problem and it affects many people. Increasingly, 

Clinical Decision Support Systems (CDSS) are being used for diagnosis and it is 

important to improve the reliability and performance of these systems. Missing a 

potential clue or a wrong diagnosis can have a detrimental effect on the patient's quality 

of life and could lead to a fatal outcome. The context of this research is the Galatean 

Risk and Safety Tool (GRiST), a mental-health-risk assessment system. Previous 

research has shown that success of a CDSS depends on its ease of use, reliability and 

interactivity. This research addresses these concerns for the GRiST by deploying data 

mining techniques. Clinical narratives and numerical data have both been analysed for 

this purpose.  

 

Clinical narratives have been processed by natural language processing (NLP) 

technology to extract knowledge from them. SNOMED-CT was used as a reference 

ontology and the performance of the different extraction algorithms have been 

compared. A new Ensemble Concept Mining (ECM) method has been proposed, which 

may eliminate the need for domain specific phrase annotation requirements. Word 

embedding has been used to filter phrases semantically and to build a semantic 

representation of each of the GRiST ontology nodes.  

 

The Chi-square and FP-growth methods have been used to find relationships between 

GRiST ontology nodes. Interesting patterns have been found that could be used to 

provide real-time feedback to clinicians. Information gain has been used efficaciously to 

explain the differences between the clinicians and the consensus risk. A new risk 

management strategy has been explored by analysing repeat assessments. A few novel 

methods have been proposed to perform automatic background analysis of the patient 

data and improve the interactivity and reliability of GRiST and similar systems.  

 

 

Keywords: Clinical Decision Support Systems, Concept Extraction, Risk Classification, 

Information gain, Word embedding, Galatean Model, Decision Tree, SNOMED-CT  
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1 Introduction 

1.1 Introduction 

 

Clinical Decision Support Systems (CDSSs) can improve both patient care outcomes 

and reduce the cost of care (Berner & La Lande, 2007). CDSSs are interactive expert 

systems, which use embedded clinical knowledge to help health professionals analyse 

patient data and make decisions regarding diagnosis, prevention, and the treatment of 

health problems (Wu, Lu and Duan, 2008). A systematic review of CDSSs found that 

over 90% of the systems significantly improved clinical care (Kawamoto, Del Fiol, 

Lobach and Jenders, 2010). They have shown great promise and contributed towards 

reducing medical errors and improving patient care (Kawamoto, Houlihan, Balas and 

Lobach, 2005).  

 

Despite increasing emphasis on CDSS in improving care and reducing costs, evidence 

supporting its widespread use is limited (Bright et al., 2012). The acceptance of the 

widespread applications of CDSS is hampered by factors such as complexity of the 

system, time consuming for the doctors and lack of decision accuracy (Al-gamdi, 2014). 

The GRiST is a CDSS for mental health risk assessment. This research uses GRiST as 

a test case and proposes new methods to improve the interactivity and accuracy of the 

GRiST or similar expert systems. 

 

Firstly, we looked at how we can use textual data to identify risk and alert the clinician. 

Secondly, how we could use potential relationship among attributes (GRiST ontology 

nodes) and identify risk at an early stage of the assessment. Thirdly, we looked at how 

we can validate the clinical judgement and provide feedback.  Application of these 

techniques may improve the overall performance of the GRiST by making it more 

interactive and increase its acceptance among clinicians. This in turn can enhance 

patient safety. 

 

Key phrase extraction is an important first step for Natural Language Processing (NLP) 

tasks. We have reviewed many well-known phrase extraction methods. Many of these 

phrase extraction systems need training with domain specific data and some of them 
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can extract key phrases; however, those phrases may not be domain relevant. To 

overcome this problem, we propose a two-stage generic method. At the first stage, it 

extracts key phrases by using linguistic patterns and then at the second stage those 

extracted phrases are filtered for semantic similarity with the domain by using word 

embedding. We have shown that our method can perform better than existing well-

known key-phrase extraction systems. Many other exploratory semantic analysis tasks 

have been carried out which may help with future NLP research. 

 

In the existing literature, there are encouraging mentions of predicting diseases from 

clinical notes. We have reviewed and applied many of the existing text classification 

methods with our dataset. A comprehensive number of experiments have been carried 

out from various perspective to predict suicide risk from the clinical narratives. We have 

experienced many similar difficulties as previous researchers. Predicting different levels 

of risk was challenging. Using full-text data, extracted phrases, document embedding, 

etc. all methods have been explored, and their performances were critically reviewed. 

 

Electronic health records provide better value for clinicians by allowing clinicians to 

reliably identify adverse events (Jha, 2011). High suicide risk incidents are rare in the 

GRiST dataset and identifying them by using classification methods is challenging due 

to the class imbalance problem. We assume that there exist some non-linear 

relationships among GRiST ontology nodes, which may affect the risk judgement.  It 

would be particularly important to help identify which of these potential relationships 

causes the risk to be higher. Empirical evidence suggests that statistically related nodes 

appear more in high-risk category patients.  

 

Frequent itemset mining as introduced by Agrawal, Imielinski, & Swami (1993) is 

generally used for market basket analysis to predict users shopping habits. The 

technique is also applied in finding disease symptom relationships in literature. We have 

applied frequent itemset mining for detecting high-risk patients within GRiST dataset. 

This has the benefit of not needing to gather all the data prior to a calculated prediction 

being made. The itemset (symptoms) related to higher risks of suicide are found to be 

rare. We have proposed a new approach to overcome this problem and achieved better 

accuracy than simple frequent itemset mining.  
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The third approach to improve the GRiST system was to assess the reliability of clinical 

judgements and provide interactive feedback to improve accuracy. For this, we have 

used total information gain or relative weights of an assessment. This is a novel method 

to identify the difference between a clinician given and calculated risk, explain the 

probable reason and guide clinicians to make a better judgement. We have found that 

the accuracy of the clinical judgements depends on the total information gathered by the 

clinicians. The proposed method could notify clinicians about the accuracy of their risk 

judgement and provide feedback to improve it. 

  

The focus of this research was to identify patterns in the GRiST data and knowledge 

structure to make the GRiST system more interactive and user-friendly. Finding clues in 

the comments, detecting node relationships and explaining the risk differences is a 

significant contribution to the GRiST project. The methods described in this research 

can easily be applied to other CDSS like GRiST. 

 

 

1.2 Ethical Approval 

 

Ethics of the research is covered by the GRiST project. The patient data has been kept 

confidential and secure at all the times. No data has been shared with any other third 

party. The following is the ethics clearance for analysing the GRiST database. 

 

Title of the Database: Analysing the Galatean Risk and Safety Tool (GRiST) Database 

REC reference: 13/EM/0007 

IRAS project ID: 119801 

 

REC is the Research Ethics Committee and IRAS is the submission form for the ethics 

application. 
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1.3 Research Aim 

 

The overall aim of this research was to analyse the GRiST data and its ontological 

structure to find patterns within them and enhance the system with dynamic background 

analysis, improve user interactivity and validate the risk judgement. The findings could 

also be applied to other similar systems in the future. 

 

 

1.4 Research Questions 

 

The context of this research is the GRiST system in which the data is inputted as both 

free text comments and numerical values. The clinical narratives can hold some clues 

that numerical data may be missing. Ontology node interactions may also provide useful 

information. It is a challenge to combine all these clues and build a comprehensive 

understanding of a patient’s mental health.  

 

This research has attempted to answer the following questions: 

 

1. How can NLP technology be used to extract concepts from clinical comments to 

represent a GRiST node or a patient? We were particularly interested in 

comparing and extending existing unsupervised methods. 

 

2. How can phrases be stemmed by semantic similarity and how does it compare 

with string-based similarity? Generally, we can find a base form of a word by 

stemming. Stemming algorithms mostly work on the prefix or suffix variations of 

a word. Two words may appear completely different by character matching but 

semantically they might be very close. We may use semantic vectors to do 

semantic stemming and use these stemmed phrases for risk prediction. 

 

3. Can semantic vector representation of GRiST nodes help us to identify any 

patterns that may assist us in improving the overall GRiST system? We can build 
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the semantic vector of a node or an assessment by using its constituent words 

vector. This may assist in risk analysis. 

 

4. How does the data in the GRiST and its ontological structure relate to other 

ontology like SNOMED-CT and the implication of these relations on suicide risk? 

 

5. How do risk predictions produced by using raw text, extracted phrases, word 

vectors and numerical data compare with each other? Risk calculated by 

alternative methods may assist in validating the clinicians given risk. 

 

6. How can statistical measures such as chi-square, or itemset mining such as fp-

growth, be used to find relationships between the GRiST nodes? How does the 

presence of these relationships might affect risk judgement? 

 

7. Could the difference between the clinician given and calculated risk be explained 

by identifying patterns in the raw data, particularly by using information theory? If 

the clinician given risk is higher, or it differs significantly from the calculated risk, 

then it would be extremely useful to know the probable reasons for this. Knowing 

the answer to this question may also help us to take the necessary measures to 

mitigate this exceptional circumstance. 

 

 

1.5 Contributions to Knowledge 

 

The context of this research was the GRiST clinical decision support system but many of 

the findings and techniques can be applied to the field of natural language processing 

and expert system design. The following points are a summary of the contributions 

made by this research: 

 

1. Previous researchers have described various methods to filter phrases such as 

by frequency (Pudota, et al. 2010), latent semantic analysis (J. Chen et al.,2006) 

or concept graph (Bleik, Xiong, Wang, & Song, 2010). We have developed an 

ensemble concept mining (ECM) method, which can automatically extract 
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domain specific key phrases from the text. Our method extends the previous 

methods by including word vector based semantic filtering. Empirical findings 

show that the utility of a complex method is not significantly higher than the 

simple n-gram phrase extraction method followed by a semantic filtering. The 

greatest benefit of our method is that it does not require human annotation. For 

the i2b2 dataset, our approach gives better results than the Rake or OpenNLP 

approaches. 

 

2. The distributional hypothesis in linguistics describe that the meaning of a word 

can be determined by the company it keeps (Firth, 1957). Vector space model 

(VSM) uses word co-occurrence counts from large corpora to represent lexical 

meaning (Padó & Lapata, 2007). In VSM, words are represented by vectors. Two 

words would be closer if their meaning is similar.   We have extended this idea 

and proposed that within a document a concept word or phrase will have lots of 

other words or phrases that are semantically related. We proposed a method to 

extract domain relevant key phrases by scoring its semantic relatedness to other 

words in the same document or corpus. This is a simple but fully automatic 

method that can save time and cost in finding relevant key words. 

 

3. Methods for detection of suicide and other risks from clinical notes have been 

described by researchers for example (Thompson, Bryan, & Poulin, 2014), 

(O’Dea et al., 2015), (Yang, Spasic, Keane, & Nenadic, 2012), (Pestian et al., 

2008) and many others. These methods include machine learning, rule-based, 

statistical text mining (STM), and text weighting approaches (McCart et al., 

2012). We have reviewed different approaches with our dataset and additionally 

used document embedding and GRiST ontological structures. Use of a bigger 

dataset and the comparative study provides valuable information for future 

research.  

 

4. Associated rule mining is being used to determine the relationships among 

symptoms and to predict disease. Previously researchers such as (Lacković, de 

Carvalho, Zhang, & Magjarević, 2014)  and (Huang, Huang, Chen, Liu, & Huang 

(2012) described the application of frequent itemset mining to discover 

relationships among symptoms and mental health illness. We have used the FP-

growth algorithm to predict high-risk category patients. Like others, we have 
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found that high-risk categories are rare events and normal support and 

confidence measures do not provide better results. We have proposed a new 

method by which we can apply multiple rules and achieve better accuracy in 

predicting high-risk patients. 

 

5. Entropy represents the randomness of a system and information gain identifies 

the predictive power of an attribute. We have used the notion of information to 

quantify the reliability of a clinical assessment. It was assumed and subsequently 

observed in the GRiST data that a clinical judgement is closer to the calculated 

risk if it has collected more information.  We have proposed a novel method to 

determine the probable reliability of an assessment from the information it has 

collected. Our method can also provide feedback to improve assessment 

accuracy. The technique can make a system like GRiST more dynamic and truly 

interactive. 

 

 

The following are some minor but useful additional contributions of this research: 

 

6. This research describes a simple technique for using dependency relationships 

between words to find similar words. It may be used instead of using the 

spanning window based approach that is generally used in distributional word 

embedding. 

 

7. We have developed an algorithm to dynamically select attributes and run 

predictive calculations when some data may be missing. In the context of the 

GRiST data, the predictive performance of this technique was found to be better 

than before. 

 

8. We proposed a semantic stemming technique based on the word2vector to 

reduce the number of extracted phrases. This can be used in conjunction with 

other methods such as the Levenshtein distance to reduce the list of key 

phrases. A method has been described to create a list of semantically relevant 

phrases for a GRIST node automatically. 
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9. A new method has been proposed to assist clinicians to adopt a better risk 

management strategy. This method uses previously completed repeat 

assessment data available in GRiST; it measures the increase or decrease of a 

symptom (attribute) over time and the implication of the symptom on suicide risk. 

Based on these two pieces of information it can provide feedback to the clinician 

to adopt a better risk management strategy. 

 

 

1.6 Contributions to Practitioners 

 

The outcome of this research could help clinical practitioners to make a better risk 

assessment. The following are some of the key benefits for the clinical practitioners. 

 

1. The clinician could get early feedback / be alerted to the potential suicide risk 

related symptoms before the assessment is completed. The proposed 

automatic concept extraction method and SNOMED-CT mapping can help in 

this regard. 

 

2. When a patient carried out a self-assessment using GRiST, clinicians might 

get feedback including the potential suicide risk automatically calculated by 

the proposed pattern mining method. 

 

3. GRiST node association rules (relationships) can be used to alert clinicians in 

real-time about the potential suicide risk. 

 

4. The system could provide feedback on the final risk judgement and provide 

specific guidance to make any possible amendments based on the proposed 

information gain method. 

 

5. The proposed hard and soft node analysis method can provide feedback to 

choose the best options for clinical intervention. 

 



1 Introduction 

 

24 

 

 

6. Senior management can validate the risk judgement based on the proposed 

information gain method and may review a selective set of assessments. 

 

 

1.7 Software Tools Developed 

 

In the course of our research, many software tools have been developed. Some of these 

tools are built with other relevant open source APIs. These tools will be released as 

open source software in the foreseeable future. 

 

7. A simple Java based tool has been developed, which can return a SNOMED-

CT coded XML output for an inputted sentence. This allows other scripting 

languages such as PHP to use it as a web service. 

 

8. A Java based web service for the Stanford parser was developed. Given a 

single sentence, it can output a Stanford parse tree. A similar service is 

available from Stanford online, but if data is confidential then our tool may be 

more useful as it can be run locally. 

 

9. An ensemble phrase filtering algorithm has been developed and 

implemented in both PHP and Java. 

 

10. A very fast C language based REST service has been developed that can 

output a word vector for a given word. 

 

11. Many other utility tools such as SNOMED-CT and WordNET browsers have 

been created, which may assist other researchers. Unlike others, these tools 

use a database as a storage system. 

 

12. A script to find similar words based on dependency relationships has been 

developed. 
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13. Scripts for calculating chi-square, PMI and Information gain have been 

implemented for the GRiST data. 

 

14. A script for filtering the FP-growth extracted frequent patterns and using them 

for risk prediction has been implemented. 

 

 

1.8 Report Organisation  

 

The remainder of this report is organised as follows:  

 

Chapter 2: Background and Literature Review 

This chapter reviews existing literature and research methods. It describes some of the 

existing clinical CDSS systems and their working principles. Previous works that are 

relevant to our research activities are described in detail.  How our research extends the 

previous research works is described in the respective subsections.  

 

Chapter 3: The GRiST CDSS 

The data for this research came from the GRiST system and it is the primary focus of 

this research. A detailed description of GRiST and its working principles are given in this 

chapter. The Galatean model is also described in detail with examples, as this is the 

underlying model of the GRiST system.   

 

Chapter 4: Concept Extraction 

This chapter describes recent research in phrase extraction and concept extraction. 

Different phrase extraction methods were applied to the GRiST data and the results 

were critically reviewed. This chapter also describes our proposed ensemble concept 

mining (ECM) method.  

 

Chapter 5: Semantic Processing (Exploratory) 

This chapter explores different ways to represent GRiST nodes and patients 

semantically. We have described the method to semantically connect GRiST nodes 

based on the text they share. It also mapped each GRiST node to the SNOMED-CT 
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concept. This is an exploratory work to find possible patterns and improve our 

understanding of the GRiST dataset. 

 

Chapter 6: Risk Prediction and Classification 

In this chapter, different text classification algorithms are used to predict suicide risk. 

Raw texts, extracted phrases and semantic vectors etc. have all been used to predict 

risk. The performance of these different methods was critically analysed.  A method to 

improve regression analysis is also described. How the GRiST nodes value changes in 

repeat assessments is discussed, this could be particularly useful for risk management 

purposes. 

 

Chapter 7: Association Rule Mining 

Literature review shows that the use of frequent itemset mining to identify disease 

symptoms relationships is increasing. We aim to identify high-risk patients based on the 

frequently occurring relationships among GRiST nodes and suicide risk. The interaction 

between GRiST nodes is described using the chi-square method. The FP-growth 

method was used for mining frequent itemset. A new method is proposed to identify the 

high-risk category patients effectively from the GRiST data.  

 

Chapter 8: Reliability of Risk Judgement 

The difference between a clinician given risk and a calculated risk needs to be as small 

as possible. In risk calculation, the relative contribution of different GRiST nodes can 

vary.  The reliability of a risk assessment may depend on how much information is 

collected by the clinician. This chapter explains various methods to determine the 

amount of total information collected by the clinician and uses them to explain the 

reliability of an assessment.  

 

Chapter 9: Conclusion 

This chapter gives a concluding critical analysis of each of the activities and findings 

followed by suggestions for future improvements. The practical implications of this 

research on the GRiST system as well as on any other similar CDSS system are 

discussed.  
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2 Background and Literature Review 

2.1 Introduction 

 

The domain of this research is mental health risk assessment using the clinical decision 

support system (CDSS). This chapter briefly describes the mental health problems and 

importance of its assessment. We also discuss the different methods of mental health 

risk assessments currently in use. Popular CDSS systems have been reviewed and their 

underlying methods have been compared. Finally, literature related to our research, 

limitations in the existing methods and the formulation of our own research activities are 

discussed in their respective sections. 

 

 

2.2 Mental Health Problems 

 

2.2.1 The Impact of Mental Illness 

 

According to the Mental Health Foundation (2015), one in four people in the UK will 

experience a mental health problem in any given year. It states that mental health 

problems are one of the main causes of the burden of disease worldwide. In the UK, 

they are responsible for 28% of the total burden of disease compared to 16% each for 

cancer and heart disease. Since 2009 the number of working days lost to stress, anxiety 

and depression has increased by 24% and those lost to serious mental illness has 

doubled (Bridges, 2014). 

 

“Psychosis is characterised by hallucinations, delusions and a disturbed relationship 

with reality, and can cause considerable distress and disability for the person and their 

family or carers” (NHS England, 2016, p.6). In 2013 there were 6,233 suicides recorded 

in the UK for people aged 15 and over. Of these, 78% were male and 22% were female 
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(Mental Health Foundation, 2015). Mental health problems can have a serious impact on 

an individual’s quality of life. This can also impact the people around them. 

 

The Mental Health Foundation (2015) claim that mental health services in the UK are 

overstretched, they have long waiting times and, in some regions, lack specialist 

services. There is a huge treatment gap in mental health care in England, with about 

75% of people with mental illness receiving no treatment at all (Davies, 2013).  In the 

UK, the estimated cost of mental health problems is roughly £70-100 billion each year 

and accounts for 4.5% of GDP (Mental Health Foundation, 2015). 

 

There are strong links between physical and mental health problems. Research has 

found that 30% of people with a long-term physical health problem also have a mental 

health problem and 46% of people with a mental health problem also had a long-term 

physical health problem (Mental Health Foundation, 2015). A number of reviews and 

studies have found that the lifespan of people with severe mental illness (SMI) is shorter 

compared to the general population and this is attributed to the likelihood of them having 

a physical illness (DE Hert et al., 2011). Self-neglect or self-harm could also lead to the 

poor physical health conditions. 

 

 

2.2.2 The Importance of Risk Assessment 

 

Mental illness can affect anybody at any age and it can have a significant impact on an 

individuals’ quality of life, their family and community (Davies, 2013). Not only the 

human costs associated with mental illness but the economic burden it also imposes is 

significant (Bridges, 2014). Research shows that early intervention in psychosis 

produces better clinical outcomes and is also more cost-effective (Singh, 2010).  

 

A report by NHS England (2016) mentions that people who experience psychosis can 

and do recover. The time from the onset of psychosis to the start of evidence based 

treatment could significantly influence the ultimate long-term outcomes. The sooner 

treatment is started the better the outcome and the lower the overall cost of care (NHS 

England, 2016). Early intervention can help to lessen the impact of the condition, reduce 

the risk of further (and often more debilitating) episodes and increase the possibility of 
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better social and functional outcomes, such as completing education and staying in 

employment (McDaid et al., 2016). 

 

According to McDaid et al. (2016) better outcomes are driven by three key components: 

(1) well-engaged health and other sector professionals, working collaboratively to 

achieve long-term goals; (2) infrastructure supportive of early intervention services; and 

(3) the development of early intervention care pathways for people with psychosis and 

their families. 

 

In this context, having a tool like GRiST available to the clinicians and service users may 

provide an opportunity for early intervention, which is more cost-effective. A risk 

assessment tool should be based on a systematic approach that is proven by research. 

The next section describes some of the risk assessment approaches in detail. 

 

 

2.3 Approaches to Risk Assessment 

 

Previously, risk assessment was more focused on prediction but currently risk 

assessment systems have attempted to unite research evidence with clinical practice 

and have begun to incorporate aspects of risk management (Bouch, 2005). In other 

words, the focus has now shifted from prediction to prevention. There are three broad 

approaches to risk assessment (Bouch, 2005): clinical, actuarial and structured 

professional judgement. The following is a short description of these three approaches 

adopted from (Bouch, 2005). 

 

 

2.3.1 The Clinical Approach 

 

In the clinical approach, decisions are made on the basis of a clinicians’ judgement. This 

judgement is based on evidence, but it is also subjective, intuitive and informed by the 

experience of the clinician. In suicide risk assessment, decisions are made about 

supervision, treatment and hospitalisation on the basis of professional opinion. Such 
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decisions may be criticised as being based on the feelings of the clinician rather than the 

evidence (Bouch, 2005).  

 

 

2.3.2 The Actuarial Approach 

 

The actuarial approach to risk assessment has been developed to meet the concerns of 

the clinical judgement. This approach uses formal, algorithmic methods and follows 

objective procedures for classifying risk. The ultimate objective is to calculate a risk 

probability of a future outcome. For example, patient A has a 50% chance of committing 

a violent act in the next 2 years. But this does not inform clinicians about the 

circumstances, severity or imminence of the act in question. The risk statement about 

patient A may be mathematically correct but has limited usefulness in informing 

management, especially in the short term (Bouch, 2005).  

 

 

2.3.3 Structured Professional Judgement 

  

Structured professional judgement (SPJ) is an approach to risk assessment where 

evidence base for risk factors are combined with the individual patient assessment. It 

assists but does not replace psychiatric opinion. Clinicians make a structured 

assessment for the formation of a risk management plan. This facilitates teamwork 

among multidisciplinary teams. Following a structure supports evidence-based practice, 

and also increases the transparency of decision making for the purpose of clinical 

governance (Bouch, 2005). 

 

According to Petrik, Gutierrez, Berlin, & Saunders (2015) qualitative analysis produced 

six themes that impact suicide risk assessment. They are time, privacy, collaboration, 

consultation with other professionals and integration of a standard screening protocol in 

routine care and systemic themes. Patient engagement in the assessment process and 

the providers’ communication approach with the patients and other providers can affect 

the effectiveness of suicide risk assessment (Petrik et al., 2015). 
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A comparison between actuarial and SPJ in the case of 177 adjudicated juvenile 

offenders provides moderate support for the continued use of the SPJ framework 

(Childs, Frick, Ryals, Lingonblad, & Villio, 2014). Most of the differences in these two 

methods have been found to happen in higher risk categories. SPJ methods include a 

mix of static and modifiable factors, and rather than considering them as classification 

procedures but as prognostic models are more appropriate (Falzer, 2013).   

 

Having a structured system like GRiST can help to follow a standard procedure for all 

the patients in an efficient manner. GRiST collects information in a structured manner 

and also records clinician judgements. This research has attempted to explain the risk 

differences between clinicians and calculated risk by using information gain measures. 

 

According to Shortliffe & Cimino (2014), clinical decision support systems can be 

clustered into three different types: 

 

1. Information Management Systems, for storing and retrieving clinical knowledge. 

The interpretation of the stored knowledge is left to the clinician. 

 

2. Focusing Attention Systems, which alert the user to possible conflicts or 

problems that might have been missed. 

 

3. Patient Specific Recommendation Systems, which provide a personal 

assessment of a patient, usually following simple logical rules. 

 

 

2.4 Clinical Decision Support Systems 

 

CDSS provides clinicians, staff, patients, and other stakeholders with domain knowledge 

and intelligently filtered patient specific information presented at appropriate times, to 

enhance healthcare (Osheroff et al., 2007). CDSS may provide a standardised facility 

for risk assessment and management.  
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Many clinical decision support systems are in use in the biomedical sector and their use 

is expected to rise in the United States due to the Health Information Technology for 

Economic and Clinical Health (HITECH) Act, which stipulates that health care providers 

must demonstrate the meaningful use of health IT by 2015 (Rouse, 2010). In this 

chapter, we have reviewed some of the prominent CDSSs along with their technical 

details, which are relevant to our research.  

 

 

2.4.1 Example of CDSS 

 

Before developing a methodology for GRiST improvement, it is important to know more 

about other CDSSs currently in use. The following table shows some of the prominent 

CDSSs along with a brief technical detail of those that are relevant to our research.  

 

Table 1 Clinical Decision Support Systems and their methods 

System Name Description and Methods 

IMASC Intelligent MultiAgent System for Clinical Decision Support (IMASC) 

developed by Czibula, Czibula, Cojocar, & Guran (2008)  uses a 

central database to store symptoms and makes predictions based 

on them. The system learns of new symptoms from the clinician’s 

feedback. 

 

ZynxEvidence ZynxEvidence is an online resource that provides best practice 

guidance for physicians, nurses, and health professionals and also 

displays evidence-based clinical content in a hospital setting. The 

content is divided into more than 145 modules, which addresses 

clinical conditions, procedures, and patient problems (ZynxHealth, 

2012). 

 

CADUCEUS CADUCEUS (also known as Internist, QMR), was designed at the 

University of Pittsburgh and was considered to have an extensive 

knowledge base, of more than 750 disorders and almost 4,500 
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interrelated findings or disease manifestations. But to return a 

diagnosis a disease needed to be in the system. Updating the 

knowledge base became a huge task and it was last updated in 

2001 (Moore and Loper, 2011). 

 

MYCIN MYCIN developed by Shortliffe (1977) was a very early (1970) 

expert system, which used goal focussed reasoning in an IF – 

THEN method to search its knowledge base. MYCIN could ask 

additional questions about the patient, suggest appropriate testing, 

offer possible diagnosis and recommend a course of treatment 

(Moore and Loper, 2011). 

 

Iliad Iliad was developed at the University of Utah.  It uses the frame-

based version of Bayesian reasoning to calculate the posterior 

probabilities of various diagnoses under consideration, given the 

findings present in a case. Iliad which was developed primarily for 

diagnosis in Internal Medicine, which now covers about 1500 

diagnoses in this domain, based on several thousand findings 

(OpenClinical, 2001). 

 

Isabel Isabel is a web-based diagnosis checklist system. Physicians enter 

age, gender and clinical features, either by free text or taken 

directly from an electronic medical record and Isabel instantly 

returns a list of possible diagnoses. The Isabel engine is powered 

by statistical natural language processing technology and is 

updated continually from medical textbooks and journals with 3 

separate and proprietary taxonomies (Isabel, 2012). 

 

Watson Recently the IBM Watson system became very well known. Watson 

combines natural language processing, dynamic learning, and 

hypothesis generation and evaluation to give direct, confidence-

based responses (High, 2012).  

 

DiagnosisPro Diagnosis and differential diagnosis of more than 11 thousand 
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diseases and 30 thousand medical conditions. (Shahsavarani, 

Abadi, Kalkhoran, Jafari, & Qaranli, 2015).  

Method:  Knowledge-based. 

 

Dxplain Diagnosis and differential diagnosis of internal diseases, 

educational application. 

Method: Knowledge-based, pseudo-probabilistic algorithm, 

Bayesian logic, (Shahsavarani et al., 2015) 

 

ESAGIL Diagnosis of diseases according to signs and symptoms, blood and 

urine test. 

Method: Knowledge-based, dissociative reasoning (Shahsavarani 

et al., 2015) 

 

Litmusdx Diagnosis and differential diagnosis of 11 thousand diseases, 

presentation of 300 therapeutic protocols, presentation of 50 

thousand medicines, 200 thousand medicine usage cautions, 

medical test interpretations, medical files. 

Method: Knowledge-based (Shahsavarani et al., 2015) 

 

Clinical Rules Medicine prescription, consumption monitoring. 

Knowledge-based, Knowledge management, Clinical Rules Engine, 

G standard MFB, Andere protocollen (Shahsavarani et al., 2015) 

 

SimulConsult  

 

Diagnosis of 5300 diseases especially genetic and neurological.  

Method: Knowledge-based, Bayesian inference engine, 

bioinformatics genome annotation, statistical pattern-matching 

approach (Shahsavarani et al., 2015). 

 

 

There are many other CDSS systems in use, more information about them can be found 

in  (Pawar and Patil, 2012),  (Bright, Wong and Dhurjati, 2012) and (Curtain & Peterson, 

2014). The underlying methodologies of different systems vary widely. In the next 

section, we have discussed methodologies that are used in mental health domain. 
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2.4.2 CDSS for Mental Health 

 

The following are some of the well-known clinical decision support systems that are 

being used in mental health risk assessment. 

 

Table 2 Example of CDSS in the mental health domain 

System Name Description and Methods 

OQ Analyst The OQ Analyst utilizes the Outcomes Questionnaires (OQ) 

in electronic form to track general distress among patients. 

Carepaths The Carepaths system uses the OQ Analyst functions along 

with other disease-specific scales and integrates them into 

an online mental health electronic medical record offering. 

Q-logic The Q-logic system uses the Brief Symptom Inventory (BSI-

18) for its main outcome measure. 

CRMT: Clinical Risk 

Management 

Tool/Working with Risk 

The CRMT is a structured template checklist of relevant risk 

and contextual factors. The tool includes a structured 

assessment of suicide, neglect, violence and other risks 

FACE: Functional 

Analysis of Care 

Environments 

FACE is a portfolio of assessment tools designed for adult 

and older people’s mental health settings. Five sets of risk 

indicators are coded as present or absent and then a 

judgement of risk status (0–4) is given. 

RAMAS: Risk 

Assessment 

Management and Audit 

Systems 

RAMAS consists of a framework and a set of structured 

professional judgement tools designed to improve quality 

and safety in mental health care.  

START: Short-term 

Assessment of Risk 

and Treatability 

START is a risk assessment and management decision 

support system developed in Canada. The service user’s 

strengths and risks on each of 20 dynamic factors are 

assessed on a scale of 0–2. 

 

The above information is summarised from (Brown, 2012) and (Department of Health, 

2007).  In comparison to others, GRiST uses its own Galatean risk assessment model, 

which is discussed in Chapter 3. 
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2.4.3 CDSS and NLP Technology 

 

According to Friedman (2005) the design of NLP based clinical decision support 

systems faces many issues such as availability of clinical text, confidentiality, 

interoperability, the expressiveness of the natural language, and abbreviated medical 

text.  Over the last two decades, there have been efforts to develop biomedical NLP 

systems for mining information from clinical narratives and mainly two methods, rule-

based and machine learning based have been used (Liu, Weng and Yu, 2012). The two 

approaches are described in the following subsections. 

 

 

2.4.3.1 Rule-Based Approach  

 

The rule-based system uses rules to make deductions or choices. Comprehensive 

syntactic or semantic knowledge rules are usually applied to extract encoded 

information from clinical narratives (Liu, Weng and Yu, 2012). Some rule-based systems 

are shown below: 

 

Table 3 Rule-based CDSS example 

System Name Technology Description 

MedEx rule-based Extracting medication and related fields from text. 

MedLEE rule-based Process clinical information expressed in natural 

language. 

MERKI  rule-based Extract medication names and the corresponding 

attributes. 

Table 4: Rule-Based Approach 
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2.4.3.2 Machine Learning-Based Approach  

 

Machine learning based systems learn from their data source by using various statistical 

and artificial intelligence algorithms (Liu, Weng and Yu, 2012).  Some machine learning-

based systems are shown below: 

 

Table 5 CDSS system and their technology 

System Name Technology Description  

AskHERMES SVM (support 

vector machine) 

Retrieves and mines large sets of literature 

documents and clinical notes pertaining to specific 

questions. 

Lancet CRF 

(conditional 

random field) 

Automatically extracts medication events consisting 

of medication names and their prescribed use. 

NegScope 

HedgeScope 

CRF Detect negation and hedge cues as well as their 

scopes in both the biomedical literature and clinical 

notes. 

SymText Bayesian 

network 

Extract pneumonia-related findings from chest radio-

graph reports. 

Table 6: Machine Learning based approach 

 

The above two tables are created by summarising the information provided in (Liu, 

Weng and Yu, 2012). 

 

 

2.4.4 CDSS and Knowledge Representation 

 

Constructing the Knowledge Base (KB) of a clinical decision support system is an 

important task that determines the success of the system (Stojkovska, Loskovska, & 

Member, 2010). Medical knowledge can be acquired and stored in many different ways 

for later use in a computerised system. A detailed review of the medical knowledge 
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acquisition and representation methods in CDSS has found the following common 

methods (Stojkovska et al., 2010): 

 

Logical conditions: These are generally Boolean logic to check if a variable is within or 

outside of a bound. For example, “is the patient’s heart rate below 50 BPM?”. This is 

mainly used for alerts. 

 

Rules: Contains IF-THEN rules. Reasoning process can chain together rules until a 

decision is reached. An example of CDSS using this method is MYCIN. 

 

Graphs/Networks: Decision trees and artificial neural networks allow graphical 

representation of the medical knowledge. An example of CDSS using this method is 

DXplain. 

 

Structural representations: Knowledge is stored in a well-organised structure such as 

ontology. An example of CDSS using this method is CENTAUR. 

 

In GRiST, knowledge is represented using an ontology created by experts. The ontology 

creation process is discussed later in Chapter 3. 

 

 

2.4.5 CDSS and Reasoning Methods 

 

The reasoning is a fundamental task of the inference engine of a clinical decision 

support system, which is performed by combining medical knowledge with patient 

specific data and makes appropriate decisions (Aleksovska-Stojkovska & Loskovska, 

2010). They have highlighted the following common methods of reasoning from the 

literature: 

 

a) Rule-based reasoning is based on “if-then-else” rule statements. 

 

b) A case-based reasoning searches for commonly occurring patterns that match 

the various stored cases. 
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c) Model-based reasoning provides a framework for diagnosing an artefact by 

comparing its behaviour with a model. 

 

d) Bayesian reasoning is based on conditional probabilities. It predicts the 

probability of an event based on other events. 

 

e) Heuristic reasoning methods exploit the information processing structure of the 

reasoning system and find reasonable answers. 

 

f) A semantic network is a graphical representation of interconnected nodes that 

can be used to support automated systems for reasoning. 

 

g) Neural networks are a black box modelling technique that model relationships by 

learning from historical data and pattern recognition. 

 

h) Genetic algorithms are based on simplified evolutionary processes that search 

for optimal results. 

 

 

Review of different modelling methods in health care can be found in (Stahl, 2008). In 

GRiST, the inference is performed by using the Galatean model. This research has tried 

to use other statistical and machine learning based techniques to predict risk and 

compared them with the clinicians given risk. 

 

 

2.5 Scope and Challenges of CDSS 

 

The NHS and Community Care Act (1990) had moved the emphasis from care in 

institutions to care in the community. As a result, scope and need for a reliable and user-

friendly decision support system has increased (V. K. Sharma et al., 2010, p. 497). 

Research shows that clinical decision support systems improve both patient outcomes, 

as well as the cost of care (Berner & La Lande, 2007).  Better decisions due to use of 
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CDSSs are likely to lead to higher patient safety with better treatment quality, less 

adverse events and reduced costs (Beeler, Bates, & Hug, 2014). 

 

The Mental Health Taskforce published its report in February 2016, which highlighted 

the need to improve access to high-quality care for all. “The introduction of the access 

and waiting time standard for early intervention in psychosis (EIP) services and 

improving access to psychological therapy (IAPT) services heralded the start of a new 

approach to deliver this improved access and embed standards akin to those for 

physical health” (NHS England, 2016, p.5).  

 

Many individuals may underreport stigmatized behaviours in person in an attempt to 

avoid shame or embarrassment, but web-based screening methods may encourage 

them to seek help (Michaels, Chu, Silva, Schulman, & Joiner, 2015). They stated that an 

online methodology could increase the ease by which participants at high or imminent 

risk of suicide access the service. According to them, the field of psychology is 

progressively using the internet for interventions and assessment, and it allows reaching 

large segments of the population easily. 

 

A study by Kim et al. (2012) found that two information quality factors (information 

reliability and decision supporting capability) and one supporting factor (departmental 

support) significantly influence user satisfaction. They also found that the ease of use 

was also a significant factor. A review conducted on the performance of CDSS in 

literature and it is reported that electronic health records (EHRs) without clinical decision 

support (CDS) should not be expected to improve quality (Moore & Loper, 2011).  

 

Despite increasing emphasis on CDSS in improving care and reducing costs, evidence 

supporting its widespread use is limited (Bright et al., 2012). A review of CDSS for the 

health industry, its success and related risk conducted by Al-gamdi (2014) reports the 

following factors for non-acceptance of CDSS: 

 

• The system is complex, as a huge knowledge base needs to be searched in 

order to reach a decision. 

 

• Time-consuming, for doctors and nurses as they are usually busy dealing with 

the complex diagnosis and do not have enough time to try new systems. 
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• Lacking decision accuracy, very few systems have reached the high level of 

accuracy that matched the diagnostic performance of medical professionals. 

 

• Lacking system usability, most early-developed systems were not user-friendly 

and required a lot of training. 

 

 

Analysis of 70 randomised controlled trials done by Kawamoto et al. ( 2005) identified 

four features strongly associated with a decision support system’s ability to improve 

clinical practice:  

 

a) Decision support provided automatically as part of a clinical workflow,  

b) Decision support delivered at the time and place of decision making,  

c) Actionable recommendations provided, and  

d) Computer based. 

 

 

GRiST is a web-based, easily accessible system and based on a psychological model. 

However, it currently lacks background analysis and alert functionality, which is very 

important according to the above review. This research has endeavoured to add more 

notification and recommendation functionality to the GRiST system to make it more 

effective for its purpose. We would like to achieve this by text processing, automatic risk 

prediction, analysing GRiST node relationships and improving the reliability of the risk 

assessment. The following sections review existing literature, their shortcomings and 

link them to our research techniques. 

 

 

2.6 Clinical Text Processing  

 

Unstructured clinical texts may contain a rich amount of patient information but are not 

immediately accessible to any clinical application systems that require structured input 

(Y. Wu et al., 2012). Automatic extraction of concepts from the text is a prerequisite for 
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many NLP applications (Aronson, 2006). Languages are extremely expressive and often 

there are various different ways to describe the same medical concept (H. Chen, Fuller, 

Friedman, & Hersh, 2005). To use comments left in the GRiST system for further 

processing we have considered first extracting concepts from them. In this section, first 

we have reviewed generic keyphrase extraction methods, then discussed symptom 

extraction and phrase filtering methods in the existing literature.  

 

 

2.6.1 Key Phrase Extraction 

 

There are many approaches by which keyphrase extraction can be carried out, such as 

supervised and unsupervised machine learning, statistical methods, rule-based 

methods, domain specific methods and linguistic ones (Siddiqi & Sharan, 2015). The 

following paragraphs describe some of the well known systems and their methods. 

 

The KEA (Keyphrases Extraction Algorithm) calculates feature values using the lexical 

methods for each candidate phrase and then uses a machine-learning algorithm to 

predict which of the candidates are good keyphrases. It builds a prediction model using 

training documents with known keyphrases, and then uses the model to find keyphrases 

in new documents (Witten, Paynter, Frank, Gutwin, & Nevill-Manning, 1999). 

 

H. Shi, Zhou, Qian, & Li (2009) used Semantic Role Labelling (SRL) based on the 

dependency trees with multi-features to extract key phrases. Rapid Automatic Keyword 

Extraction (RAKE) is an unsupervised, domain-independent, and language-independent 

method for extracting keywords from individual documents (Rose, Engel, Cramer, & 

Cowley, 2010). In this method, candidate phrases are generated by using stop words 

and phrase delimiters.  RAKE ranks them by the sum of the scores for each of its words. 

The words are scored based on their frequency and co-occurrence. 

 

Parameswaran (2010) used k-gram to extract concepts. He defined k-gram as a concise 

entity, which does not contain any extraneous words so that excluding them would 

identify the same entity. Sharma, Swaminathan and Yang (2010) developed an 
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algorithm that first identifies and extracts the main verb(s) and using the main verb(s), it 

then extracts entities of a relationship with the main verb. 

 

Kp-miner uses heuristic methods such as term frequency and position of the term to 

extract key phrases. They assert that a phrase is never separated by punctuation marks 

or stop words and a total of 187 common stop words (the, then, in, above, etc.) were 

used in the candidate key phrase extraction step (El-Beltagy and Rafea, 2009).  

 

The TextRank is based on an unsupervised method. It first tokenises the sentence and 

then creates a graph of keywords based on their co-occurrence in a certain window. The 

related keywords are then ranked to obtain the top-ranked keywords (Mihalcea and 

Tarau, 2004).  

 

The DIKpE system works on three main steps: (i) extract candidate phrases from the 

document (ii) calculate feature values for candidates (iii) compute a score for each 

candidate phrase from its feature values and rank them in order. The highest ranked 

phrases are considered as key phrases (Pudota, Dattolo, Baruzzo and Tasso, 2010).  

 

DegExt is an unsupervised, graph-based, cross-lingual key phrase extractor. DegExt 

creates a graph representation of words in a document and unlike the traditional vector-

space model it takes into account some structural features of the document (Litvak, Last 

and Aizenman, 2011). 

 

J. Chen, Yan, Zhang, Yang, & Chen (2006)  studied topic phrase extraction through 

Latent Semantic Analysis (LSA). Wang, Mu and Fang (2008) improved Automatic Key 

phrase Extraction by using semantic information from WordNet. Tomokiyo and Hurst  

(2003) extracted key phrases by using various statistical measures of their patterns.  

 

A review of different key phrase extraction techniques can be found in (Siddiqi & 

Sharan, 2015).  We would like to extract phrases that are relevant to medical concepts 

or symptoms. Hence, the following section describes some of the symptom extraction 

methods found in literature. 
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2.6.2 Symptom Extraction 

 

There has been a lot of research in biomedical natural language processing over the last 

two decades. Information retrieval is a significant issue in the medical and healthcare 

domains where the accuracy of the retrieved information and obtaining it in a time critical 

situation is extremely important (Patrick, 2009, p. 1). In this section, key phrase 

extraction research that has analysed biomedical texts is reviewed. 

 

Love, Cai, & Karlson (2011)  used text mining techniques to extract data from electronic 

clinical notes for psoriatic arthritis (PsA) and showed a positive predictive value (PPV) of 

93% (89%-96%) when validated with new data.  They used simple NLP techniques to 

search for terms within the clinical notes. The Intelligent Clinical Notes System (ICNS)  

is a novel system to extract concepts from clinical notes which were written as free text 

(Patrick, 2009). It tokenises text and matches the token with the SNOMED-CT and other 

gazetteer. 

 

Gerbier et al. (2011) demonstrated the feasibility of developing an automated method for 

extracting and encoding medical concepts from emergency departments (ED) narrative 

reports with an overall recall of 85.8%.  They stated that the most frequent cause of 

failure was non-recognition of the term 9.7% of the time. Overall precision was 79.1%.  

 

MediClass compares phrases against normalized string representations of UMLS Meta-

thesaurus concepts to locate concept matches. Concept matches are scored for 

‘‘goodness’’ according to the number of changes that need to match the original text 

segment (Hazlehurst, Frost, Sittig, & Stevens, 2005). 

 

The MedIE (MEDical Information Extraction) system extracts and mines terms from 

clinical records by three major steps. The first is Ontology-based Term Extraction. The 

second, also the major one, is Graph-based Relation Extraction. The last is Decision 

Tree Based Text Classification (X. Zhou, Han, Chankai, Prestrud, & Brooks, 2006) . 

 

“A SympGraph has symptoms as nodes and co-occurrence relations between 

symptoms as edges, and can be constructed automatically through extracting symptoms 

over sequences of clinical notes for a large number of patients” (Sondhi, Sun, Tong and 
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Zhai, 2012, p. 1).  They described a symptom expansion method that expands a given 

set of symptoms to other related symptoms by analysing the underlying SympGraph 

structure. 

 

McCart et al. (2012) explored multiple approaches; combining regular expression-based 

rules, statistical text mining (STM), and an approach that applies weights to text while 

accounting for multiple labels to analyse suicide notes. They achieved a micro-averaged 

F1 score of 0.5023, slightly above the mean (0.4875) from the other 26 teams who 

competed. 

 

MedLEE is a web-based system, which uses an automated system for acquisition and 

discovery of medical knowledge embedded in clinical narrative reports. It uses statistical 

methods and a random sample of disease-symptom associations; it indicates an overall 

recall of 90% and a precision of 92%  (Xiaoyan Wang, Chused, Elhadad, Friedman, & 

Markatou, 2008).  

 

Griffith et al., (2012) have developed a rule-based algorithm and evaluated a natural 

language processing (NLP) system for infectious symptom detection from clinical 

narratives. They trained the system with related keywords and SNOMED-CT concepts. 

 

Koeling, Tate and Carroll (2011)  used the UK General Practice Research Database 

(GPRD), which contains coded data supplemented by free text (physicians’ notes and 

letters). They found that the system could estimate a 40% higher number of symptoms, 

when coded information was enhanced by manually tagged free text. 

 

A system was developed by Gorrell et al. (2016) to find the cases of first episode of 

psychosis using machine learning techniques that achieved an area under curve (AUC) 

of 0.85, enabling 95% of relevant cases to be identified, whilst halving the work required 

in manually reviewing cases. They used manually annotated data and machine learning. 

 

A hybrid system developed with a support vector machine (SVM) learning algorithm and 

rule-based text matching, using the Generalised Architecture for Text Engineering 

(GATE) software package, has extracted negative symptoms from the clinical narratives 

of patients with schizophrenia. A substantial proportion (41%) of the sample that was 

analysed  by this system had at least two negative symptoms (Patel et al., 2015). 
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An important part of the phrase or symptom extraction is to filter irrelevant phrases and 

only keep the domain relevant phrases. Before describing our intended approach, some 

of the filtering methods found in literatures are described in the following section. 

 

 

2.6.3 Phrase Filtering Methods 

 

This is an active area of research and there are many phrase ranking algorithms 

available.  In fact, all the phrase extraction methods described earlier have their own 

filtering logic. All phrase extraction methods in one way or another include a phrase 

filtering procedure. Literatures were reviewed to find a suitable algorithm for the filtering 

task. Pudota, et al. (2010) proposed a frequency based algorithm. They have used the 

first and the last occurrence of a phrase in a document as a feature. As our data comes 

from the different GRiST ontology nodes, so such features are not applicable in our 

case. 

 

 J. Chen et al. (2006) described a latent semantic analysis based method. Bleik, Xiong, 

Wang, & Song (2010) described a method using a concept graph. Wan & Xiao (2008) 

described a method extracting phrases from a single document by constructing a small 

set of neighbouring documents. These ideas are considered in the developing of the 

proposed ECM method, which is described in Chapter 4. 

 

 Zhao et al. (2011) described a probability and PageRank based method to extract 

phrases from Twitter. The GRiST data is different from the Twitter data. Kumar & 

Srinathan (2008) used n-gram to extract candidate phrases and then filtered them. For 

filtering, they have used sentence position in the documents, which is not applicable to 

our data. 

 

 Xin Jiang et al. (2009) described a method of extracting phrases by comparing them 

with a seed phrase list. They used co-occurrence frequency as the basis of new concept 

selection. The KP-miner system does not need training data it uses heuristics to extract 

phrases (El-Beltagy & Rafea, 2009). It is highly dependent on three main steps: 

candidate key phrase selection, candidate key phrase weight calculation and final key 
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phrase refinement. A review of different filtering methods can be found in (Hasan & Ng, 

2010) and (Siddiqi & Sharan, 2015).   

 

From the above review of the key-phrase extraction methods, we see that most of the 

automatic methods used heuristics or statistical measures for relevancy filtering or used 

a manually created word list. A generic phrase extraction method may produce domain 

irrelevant phrases. On the other hand, domain specific supervised methods need 

human-annotated training data and may only perform well in a specific context  (Pudota 

et al., 2010). These type of methods require annotation and training for every new 

domain.  

 

We proposed a novel method whereby we extract phrases and filtered them by using 

word embedding based semantic filtering to extract domain relevant phrases. The 

word2vec model developed by Mikolov et al. (2013) represents a word semantically and 

conveys semantic meanings. The key phrases can be first extracted by a generic 

method and then a semantic filtering method would keep only the domain relevant 

phrases. For the i2b2 dataset, our approach provided a better result than the RAKE or 

OpenNlP approaches. The proposed method is described in Chapter 4 of this report. 

 
 
 

2.7 Suicide Risk Prediction  

 
There are many general purpose text-based classification tools available. As described 

below, a few researchers have also claimed good results for classifying mental health 

problems from clinical notes. In this research, we have used many existing toolsets and 

methods to classify suicide risk by using clinical notes. The following paragraphs 

describe some of the relevant research papers. 

 

While electronic health records are invaluable for medical research, much of the 

information is noted in text form rather than the coded form (Shah, Martinez, & 

Hemingway, 2012). For example, causes of death and test results recorded in the UK 

General Practice Research Database (GPRD), are sometimes only recorded in free text 

(Shah et al., 2012). Free text is difficult to use in research and it often requires manual 
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reviewing. An automatic matching system is proposed by Shah et al. (2012) to find the 

cause of death from text data by using a look-up table.  

 

A  linguistics-driven prediction model was developed by  Poulin et al. (2014) to estimate 

the risk of suicide from clinical notes. The models were built with the unstructured 

clinical notes collected from a national sample of U.S. Veterans Administration (VA) 

medical records. They have created three matched cohorts: veterans who committed 

suicide, veterans who used mental health services and did not commit suicide, and 

veterans who did not use mental health services and did not commit suicide during the 

observation period (n=70 in each group). From the clinical notes, they have manually 

created a list of single word and multi-word phrases, and constructed prediction models 

based on a genetic programming framework. According to them, the resulting inference 

accuracy was consistently 65% or more. They concluded that computerised text 

analytics could be applied to unstructured medical records to estimate the risk of 

suicide. The resulting system could screen people at primary care level and 

continuously evaluate suicide among psychiatric patients (Poulin et al., 2014).  

 

Automatic detection of suicidality in Twitter was investigated by O’Dea et al. (2015). This 

study examined whether machine learning could replicate the judgement of human 

coders on expression of suicide in Twitter posts. They have collected 14,701 suicide-

related tweets and 2000 of the tweets classified by human coders. Overall, 14% of the 

tweets were classified as ‘strongly concerning’, with the majority coded as ‘possibly 

concerning’ (56%) and the remainder (29%) considered ‘safe to ignore’. The inter-

human coders agreement was 76% (average κ= 0.55). Machine learning processes 

were then applied to assess whether a ‘strongly concerning’ tweet could be identified 

automatically. The computer correctly identified 80% of ‘strongly concerning’ tweets; 

however, predictability decreases as the data size increased (O’Dea et al., 2015). 

 

Yang, Spasic, Keane, & Nenadic (2012) present a system developed for the i2b2 

obesity challenge to identify obesity status and 15 related co-morbidities in patients from 

their clinical discharge summaries. According to them, the challenge consisted of two 

tasks, textual and intuitive. The textual task was to identify the explicit references to the 

diseases and the intuitive task was to find disease status when the evidence was not 

explicitly present (Yang, Spasic, et al., 2012). 
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Pestian et al. (2008) hypothesised that the machine learning algorithm (MLA) can 

classify completer and simulated suicide notes as effectively as any mental health 

professional (MHP). Five MHPs classified 66 simulated or completer notes and later 

machine learning was used on the same data. The result shows that MHPs were 

accurate 71% of the time and using the sequential minimisation optimisation algorithm 

(SMO) MLAs were accurate 78% of the time. They concluded that there was no 

significant difference between the MLA and MPH classifiers and an evidence-based 

suicide predictor for emergency departments can be developed (Pestian et al., 2008). 

 

In the US suicide is the tenth leading cause of death and considering the significance 

the Informatics for Integrating Biology and the Bedside (i2b2) Natural Language 

Processing (NLP) shared task competition (track two) was focused on suicide (McCart 

et al., 2012). The challenge concentrated on sentiment analysis, predicting the presence 

or absence of 15 emotions (labels) simultaneously in a collection of suicide notes 

spanning over 70 years. The author’s team found multiple approaches including regular 

expression-based rules, statistical text mining (STM), and text weighting approach 

(McCart et al., 2012). 

 

Existing methods for the event trigger identification typically rely on annotated training 

data where the event trigger words are labelled with their corresponding event types (D. 

Zhou, Zhong, & He, 2014). The framework proposed by the authors, learns biomedical 

knowledge from a large text corpus built from Medline and embeds it into word features 

using neural language modelling.  

 

Another project submitted to the (i2b2) Track 2 Shared Task for sentiment analysis in 

suicide notes has used hybrid methods. The proposed hybrid model incorporates a 

number of natural language processing techniques, including lexicon-based keyword 

spotting, CRF based emotion cue identification, and machine learning-based emotion 

classification (Yang, Yang, Alistair Willis, Anne de Roeck, & Bashar Nuseibeh, 2012). 

 

Metaphorical analysis has been used by Neuman, Cohen, Assaf, & Kedma (2012) to 

infer the existence of depression in the text, given the variety of linguistic means one 

may use to express it.  They created a list of metaphors to detect depression in free text. 
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None of the above researchers has used word embedding to predict suicide risk. We 

have assumed that we can use all of the related text of a patient as a document. Then 

create a document vector by using word-embedding techniques and then use the 

vectors to classify patients. We have used a larger dataset and multiple techniques such 

as raw text, SNOMED-CT code in the text and word2vectors of the text. Being able to 

classify risk levels using text data could help improve the GRiST system. Many 

experiments were carried out on the GRiST dataset to predict suicide risk using both 

text and other methods. 

 

 

2.8 Frequent Pattern Mining  

 
Classification algorithms often do not predict all the classes with equal accuracy. With 

GRiST dataset, we have found that the prediction of high suicide risk was not accurate. 

It is important to predict higher risk categories more accurately. To identify high-risk 

patients, we have applied the node relationship and frequent pattern mining approach.  

 

Pattern mining may allow us to notify clinicians as soon as the risk related pattern is 

identified. The itemset or pattern that can predict risk may rarely occur. To address this 

issue and improve the result we propose a method that looks for multiple rare patterns. 

From the experimental data, we have shown that our approach improves the precision 

of the classification. First, we have used chi-square analysis and then frequent itemset 

mining. 

 
 

2.8.1 Chi-square Analysis 

 

The Chi-square (X2) test is a nonparametric statistical test to determine if the two or 

more classifications of the samples are independent or not (Zibran, 2015).  The chi-

square statistic may be used to test the hypothesis of no association between two or 

more groups, populations, or criteria. Knowledge of associations between biomedical 

entities, such as disease-symptoms, is critical for many automated biomedical 

applications (Xiaoyan Wang et al., 2008). 
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Finding relationships among medical symptoms, disease and treatment is an active area 

of research. The Clinical E-Science Framework (CLEF) project is used for identification 

of relationships between clinically important entities in the text by Abdel-moneim, Abdel-

Aziz, & Hassan (2013). They have identified entities that relate to the custom define 

classes.  

 

A machine learning based system for relation extraction implemented by Roberts, 

Gaizauskas, Hepple, & Guo (2008), using support vector machines, was trained and 

tested on corpus of oncology narratives that was manually annotated for clinically 

important relationships. Over a class of seven relation types, the system achieved an 

average F1 score of 72%, only slightly behind the human inter-annotator agreement on 

the same task. There has been growing interest within scientific communities to use text 

mining tools to find knowledge such as protein-protein interactions (D. Zhou & He, 

2008).  

 

Yang, Yang, et al. (2012)  supplemented manually created list of emotional terms by a 

list of terms that were selected from the annotated emotion instances and were 

identified as significant by Pearson’s chi-square from suicide notes. A list of available 

senses can be created using Wordnet for given documents. A new concept term was 

linked with the documents using the chi-square statistic. The word sense with the 

highest chi-square score was the chosen sense for that concept candidate (K. Liu, 

Hogan, & Crowley, 2011). 

 

Chi-square Automatic Interaction Detection (CHAID), and association rules were used to 

identify factors affecting the sentiments of adolescent depression (Jung, Park, & Song, 

2017). Byeon (2017) developed a depression prediction model for female students from 

multicultural families by using a decision tree model based on the CHAID algorithm. 

Outcome variables were classified as presence of depression. Explanatory variables 

included sex, residing area, experience of career counselling, experience of social 

discrimination, experience of Korean language education, experience of using a 

multicultural family support centre, Korean reading, Korean speaking, Korean writing, 

Korean listening (Byeon, 2017). 

 

When each variable has a little marginal effect, it is difficult to discover predictive 

variables. The interaction between predictive variables may be used to predict the 
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outcome (Xia Jiang, Jao, & Neapolitan, 2015). First, they identified candidate 

interactions by determining whether together variables provide more information than 

they do separately. 

 

It could be useful to find out how GRiST nodes interact with each other. Most of the 

previous research worked on the disease-symptom interactions or protein-protein 

interactions. We are trying to analyse the relationships among symptoms (GRiST nodes) 

and assess their impact on the patients’ overall suicide risk level. This might help us to 

discover relationship patterns that assist in making the GRiST system more effective 

and interactive. 

 

 

2.8.2 Frequent Itemset Mining 

 

The GRiST node relationships may be learned by association rule mining. Recently, 

pattern mining techniques are being adopted as a core part of many bioinformatics 

solutions and frequent itemset mining has been used to identify elements such as 

disease and symptoms that frequently co-occur (Naulaerts et al., 2015). This is a non-

trivial problem and a number of algorithms have been developed. According to 

Naulaerts et al. (2015) frequent itemset mining techniques can capture the 

characteristics of complex data and succinctly summarise it and these techniques have 

demonstrated its usefulness in biomedical data analysis. 

 

A mobile interface was created by Huang, Huang, Chen, Liu, & Huang (2012) to find 

associations among users' responded questionnaire and their negative emotion. They 

have used FP-tree (Frequent Patterns tree) and FP-growth (Frequent Patterns growth) 

algorithms to discover the interesting association rules from users' negative emotions. 

The have used support of 2% with FP-growth algorithm.  

 

Lakshmi & Kumar (2014) have described a new method of uncovering valid association 

rules from medical transcripts. The extracted rules describe the association among 

diseases, symptoms of a particular disease, medications used for a disease and the 

most prominent age group for a disease. They have used NLP (Natural Language 

Processing) tools in combination with data mining algorithms (Apriori algorithm and FP-
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Growth algorithm) for the extraction of rules. They have claimed that the method was 

helpful in finding the diseases that most likely co-occur with diabetes and also the 

medications used in treating diabetes. 

 

FP-growth association rule mining algorithm was used for detection of diabetes at an 

early stage by Rane & Rao (2013). Apriori association rule mining was applied to case 

diagnosis of the breast cancer in the hospital to find out the association of factors from 

volumes of case recordings (W. Zhang, Ma, & Yao, 2014). 

 

The development of mental illness can be related to a variety of psychological factors 

(Lacković et al., 2014). They have used association rules to predict mental illness based 

on scale scores of five psychological factors, including family functioning, social support, 

depressive symptoms, perceived empathic self-efficacy, and anxiety disorder. They 

have used support 1.5% since mental disorders are relatively rare in the healthy 

population. 

 

A review of the different pattern mining techniques can be found in (Satpute, 2014). A 

general survey and comparison of the algorithms for association rule mining can be 

found in (Hipp, Güntzer, & Nakhaeizadeh, 2000). An overview of the various algorithms 

and illustrations of their use in several real-life bioinformatics application domains is 

provided in (Naulaerts et al., 2015) and (K. P. Kumar, 2013). 

 

The above review shows that because the risk of disease is a rare event, many 

researchers have used a very low support value to extract association rules. Use of low 

support may affect the accuracy of the prediction. We have proposed a new method by 

which we can apply multiple rules and achieve greater accuracy in predicting high 

suicide risk. We have used the FP-growth algorithm to predict higher suicide risk in 

patients. We used symptoms association to predict suicide risk rather than only 

analysing inter symptoms relationships.  

 

2.9 Reliability of Risk Assessment  

 
The use of CDSS systems is increasing and their use is aimed at improving patient 

safety.  There is significant evidence that CDSS can positively impact healthcare 
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providers’ performance with drug ordering and preventive care reminder systems 

(Jaspers, Smeulers, Vermeulen, & Peute, 2011).  Evidence that CDSS significantly 

impacted processes of care was found in 108 out of 143 unique studies (Jia, Zhang, 

Chen, Zhao, & Zhang, 2016). Research has suggested that users often over-rely on 

system suggestions, even if the suggestions are wrong and providing explanations could 

potentially mitigate misplaced trust in the system and over reliance (Bussone, Stumpf, & 

O’Sullivan, 2015).  

 

We may use information gain to improve accuracy of risk judgement and provide better 

feedback to clinicians. The presence of different symptoms may not be equally important 

to diagnose a disease. This could be quantified by measuring the information gain of a 

symptom. Information gain has been used to improve prediction/ classification accuracy, 

some of the previous researches are described below.   

 

A support vector machine (SVM) and information gain based classification framework for 

Diabetic Retinopathy Images has been described by Dharani, Menaka, & Vinodhini  

(2014). Their experimental result shows that the Information Ranker-PART was faster 

than the SVM but the SVM had a lower mean square error.  

 

Ambert & Cohen (2012) described an algorithm based on information gain. They have 

used kNN and modified it to select features based on information gain of the features. 

The new algorithm was called kIGNN. They concluded that the performance of kIGNN 

was better than the kNN baseline, and it was mainly due to the use of information gain in 

kIGNN as that was the only significant difference between the two methods. They noted 

that the choice of classification algorithms had the most influential contribution to the 

performance of the systems. SVM light performed better with a smaller training set 

(Ambert & Cohen, 2012). 

 

Maucort-Boulch, Roy, & Stare ( 2014) discussed the measures of fitness of a regression 

model. If we are interested to know how much of the variation in the outcome variable is 

explained by the model, then in the case of simple linear regression, we can use the 

well-known R-square measure. They have argued that for nonlinear relationships the 

information gain might be a better choice. 
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A unifying measuring criterion was proposed by Shtatland & Barton (1997), along with 

the use of other criteria such as R-Square, deviance, log-likelihood and so on. According 

to them, the proposed information difference statistic is better for the following reasons:  

 

a) It is common for all the types of regression analysis;  

b) It is easy to interpret in terms of information gain/loss (in bits);  

c) It has a very convenient property of additivity that allows system users to 

evaluate the contribution of an individual feature in terms of information. 

 

In machine learning and classification, high dimensional data can be challenging to 

handle, the so-called ‘Curse of Dimensionality’. One of the interesting ways to handle 

this could be to look for interaction between data attributes and use that in machine 

learning (Jakulin, 2005).   Xia Jiang, Jao, & Neapolitan (2015) addressed this problem 

using information gain and Bayesian network scoring. First, they identified candidate 

interactions by determining whether together variables provide more information than 

they do separately. Then they used Bayesian network scoring to find out if a candidate 

interaction really is a likely model.  

 

Xia Jiang, Jao, & Neapolitan (2015) presented MBS-IGain, a method for identifying 

interactive effects in high dimensional datasets. Based on their experiments, MBS-IGain 

was highly effective at doing this, substantially exceeding other methods. Orimaye, 

Wong, & Golden (2014) have used information gain to choose features for classification 

of Alzheimer’s disease from textual narratives. 

 

The above review describes the application of information gain to improve classification 

accuracy. We believe we can use the same concept to validate the reliability of the 

clinical judgement. The proposed approach of validating risk assessment is novel. If a 

clinician asks all the relevant questions and thus gains more information about a patient, 

then it could be assumed that the clinician is more likely to make an accurate risk 

judgement.  

 

When clinical judgements vary significantly from calculated risk, we may use information 

gain to explain the difference. We have used the sum of total of the answered questions 

each weighted by their information gain. We have hypothesised that if more information 

was collected the clinical judgement would be more accurate. To overcome the problem 
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of the interrelationship among GRiST nodes, we later used total “Relative weights” 

instead of information gain. Relative weight is the amount of variance explained by an 

attribute and it compensates for the attributes inter correlation.  The methods and results 

are explained in Chapter 8. 

 
 

2.10 Summary 

 
In this chapter, I have explained the background and have highlighted the importance of 

this research. The existing literature has been reviewed, and an introduction is given on 

how our research extends the past research. We envisioned to exploit the presence of 

symptoms in clinical notes to predict suicide risk, hence concept phrase extraction 

methods have been reviewed. Particularly we were interested to extract relevant 

concept phrases automatically from clinical notes.  

 

We also aspired to explore GRiST nodes inter relationships and its impact on suicide 

risk to alert clinicians at the early stage of the assessment.  Information gain and related 

technologies have been reviewed as a measure to quantify the validity of a risk 

assessment. The GRiST system was used as a test case CDSS. The next chapter 

discusses the GRiST system in detail.  
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3 The GRiST CDSS 

3.1 Introduction 

 

The Mental Health Action Plan 2013-2020 of the World Health Organisation (WHO) 

recommends “the development of comprehensive community-based mental health and 

social care services; the integration of mental health care and treatment into general 

hospitals and primary care; continuity of care between different providers and levels of 

the health system; effective collaboration between formal and informal care providers; 

and the promotion of self-care, for instance, through the use of electronic and mobile 

health technologies” (World Health Organization, 2013, p. 14). An easily accessible 

mental health assessment tool could facilitate to achieve these objectives and could 

save money and resources. 

 

GRiST is a web-based assessment tool and it is accessible from any place at any time. 

The use of web-based assessments and intervention systems are increasing in 

psychology (Michaels et al., 2015). They noted a few advantages of web-based 

systems, which include increased validity, feasibility, efficiency, as well as improvements 

in data collection and management.  

 

The Galatean Risk and Safety Tool (GRiST) is a mental health assessment tool 

developed by Aston University and Warwick University. It is based on the Galatean risk 

assessment model proposed by Buckingham (2002). It is a Clinical Decision Support 

System (CDSS) used to evaluate multiple types of mental health related risks including 

suicide, self-harm, harm to others, self-neglect, and vulnerability. GRiST differs from 

alternative risk assessment tools by its use of a psychological model of classification. A 

detailed description of GRiST is provided, as it is the primary source of all the data used 

in this research. 

 

According to Buckingham & Adams (2011) the goal of GRiST is to “provide universal 

access to validated expert advice on risk judgements that can be clearly understood by 

people without a specialist mental-health background and be flexibly presented 

according to end-user requirements” (p. 1). It is currently being used by NHS secondary 
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mental health trusts, private hospitals, charities, primary care IAPT services, and for 

self-assessment in the community. “The aim is to facilitate risk communication across 

the care pathway and give patients more involvement in monitoring and managing risks” 

(Buckingham & Adams, 2011, p. 1). 

 

 

3.1.1 Commencement of the GRiST Project 

 

“GRiST project was funded by an NHS New and Emerging Applications of Technology 

grant, and Multi-Research Ethics Committee clearance was obtained. The research 

began with 46 practitioners who were from multiple disciplines and backgrounds which 

ensured to provide multiple perspectives and experiences of risk assessment, 

encompassing academic and research areas, as well as clinical practice. Most of the 46 

participants who were interviewed came from psychiatric nursing (21) and psychiatry 

(13), but there were also some social workers, general practitioners, and psychologists” 

(Buckingham, Ahmed, & Adams, 2007, p. 1).  

 

According to Buckingham et al. (2007) people were recruited on a continuous basis 

throughout the GRiST project and many of them were involved in web tasks and focus 

groups. The final panel membership consisted of over 100 clinicians and service users. 

As this research relies on data provided by GRIST, detailed knowledge of its 

development and structure is required.  

 

The following is the summary description of  GRiST development process adopted from 

(Buckingham et al., 2007).  

 

Step 1: Interviews were transcripted in the documents and the concepts were extracted 

from them using thematic analysis.  

 

Step 2: A mind map was built from each of the interviews using a mind map coding 

template. The process was evolved as the interviews were analysed. 

 

Step 3: All the mind maps were combined, which represented the comprehensive risk-

assessment knowledge from interviews with 46 multidisciplinary mental-health experts.  
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Figure 1 GRiST ontology development process reproduced with permission from (Buckingham et 

al., 2007) 

 

Initially, the combined structure had 7210 nodes of which only 1432 were unique. Of the 

unique nodes 477 were concepts (i.e. have child nodes) and remaining 962 were leaf 

nodes. Some of the nodes were generic and they apply to all types of risk. The mind 

map was saved in XML format, which enabled easy accessibility to the information by 

XSLT queries. 

 
 
Step 4: Clinicians prefer tools that do not involve asking too many questions. Hence, the 

big tree was pruned with the feedback from focus groups. A custom Flash based tool 

was developed to mark the node for pruning visually.  The pruned tree had a total of 394 

nodes, of which there were 124 unique concepts and 228 unique leaves. 

 

Step 5: The next step was to combine all these nodes in an XML file in accordance with 

the Galatean Model of classification. A partial schema of the XML is shown via an 

example node later in this chapter.  This XML tree used as an underlying knowledge 

base for GRiST CDSS, which allows to quantify mental health risk. 
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“GRiST is accessed through simple web-based browsers or mobile devices and its 

advice help determine whether the potential risk associated with a person justifies a 

more detailed assessment by a specialist clinician. GRiST’s potential for flexible 

interfaces means the specialist clinician, too, will be able to use it for conducting the 

assessment, thereby providing a seamless transmission of risk information that 

transcends disciplines and services” (Buckingham et al., 2007, p. 79). 

 

 

3.1.2 GRiST Innovation 

 

GRiST is not only an easy to use web-based system, it also has an underlying validated 

psychological model. According to Buckingham and Adams (2008) GRiST is a CDS 

system, which is based on the human psychological model of decision making. They 

argue that GRiST's psychological model of classification distinguishes it from alternative 

risk-assessment tools. 

 

“GRiST uses the Galatean model of decision making which mimics how people use 

cues to make decisions. It is based on the premise that the probability of different 

decision outcomes compete with each other for influence on the final decision. GRiST 

explicitly captures structured clinical judgement and links it to sophisticated probabilistic 

and statistical analyses of the patient database” (Buckingham and Adams, 2011, p. 2). 

  

While there are plenty of tools that take evidence in isolation (e.g., history of previous 

attempts increases suicide risk), Buckingham, Kearns, & Brockie (2004) argued that 

none of them has succeeded in identifying how combinations or patterns of cues can be 

integrated to give a single, accurate risk prediction.  

 

Considering the data for this study came from the GRiST and they are collected based 

on the Galatean model, a detailed description of the Galatean model is given in the next 

section. 
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3.2 The Galatean Model 

 

The underlying classification model of GRiST is a called the Galatean Model. The 

Galatean model is grounded in prototype theory. According to Hampton (2006) 

Prototype can be considered as a generic abstract concept that represents the similarity 

of the category members, and the differences from non-members. It is the centre of the 

cluster of similar objects. The centre of the cluster is well established, but the boundary 

between one category and another may be subject to vagueness (Hampton, 2006). 

 

“The galatean model is a type of prototype model but instead of representing the 

average class member, its prototype encapsulates the hypothetical ‘perfect’ member, 

the one with the highest probability of membership (the name ‘galatea’ comes from 

Pygmalion’s perfect woman)” (Buckingham, 2002, p. 240). 

 

The base-rate fallacy is a tendency of human beings ignoring available statistical data in 

favour of specific data to make a probability judgement, rather than integrating the two. 

This tendency has significant implications for understanding judgement phenomena in 

many clinical, legal, and social settings (Bar-Hillel, 1980). The Galatean Model 

considers this phenomenon and it was designed to encapsulate the real-world expert’s 

decision making process. A detailed explanation of the underpinning of the Galatean 

Model can be found in (Buckingham, 2002). 

 

A patient can have attributes such as age, ethnicity, hair style, etc. and clinical 

symptoms such as blood pressure, pulse, temperature.  A specific value of an attribute 

is referred to as a cue. Clinical decisions can be considered as classification tasks 

where cues are used to classify a patient to a specific category (Buckingham, 2002). 

 

According to Buckingham (2002) the suicide galatea cues maximize P(Category|cue) 

instead of P(cue|Category). All the categories, such as suicide and no-suicide,  are 

represented by their own galateas, where “a galatea consists of components for each of 

the attributes relevant to classifying a person into the associated category” 

(Buckingham, 2002, p. 241). 
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Uncertainty is represented in the Galatean model as a set membership. For example, if 

categories are considered as sets then the likelihood of an object to be in any of these 

sets are given by its degree of membership to that particular set. The measure of this 

criteria is called the membership grade (MG) which, like probabilities, may vary from 1 

(certain membership) to 0 (no membership) (Buckingham et al., 2004). 

 

In the Galatean Model, mental health risk is represented in a hierarchical tree of nodes. 

The parent concept nodes may have child nodes and so on. Eventually the leaf node 

represents an individual cue, which can be referred to as datum. The eventual risk 

contribution of an individual cue depends on its relative influence (RI) compared to the 

other sibling cues. RI values are pre-assigned by experts and the total risk attributable to 

the containing galatea is the sum of the RI-weighted MGs (Buckingham et al., 2004). 

 

The data used in this research was originally collected based on this model. GRiST is 

being delivered to mental-health organisations (including NHS foundation and hospitals) 

as a cloud-computing service from Aston University with a database of assessments 

increasing every day. About 1400 new assessments are being completed each month 

(source: https://www.egrist.org/why-grist).   

 

 

3.2.1 Risk Calculation Example 

 

An example may explain the GRiST internal risk calculation process better than just a 

description. This example is taken from the original paper (Buckingham, 2002) and 

(Hegazy, 2009). The figure below shows a hypothetical assignment of membership 

grades and the relative influences on the ‘Intention’ concept and how these produce 

membership grades for a particular patient.  

 

For example, each three cues (seriousness, realism and steps taken) can have values 

between 0 and 10, with a value of 10 providing the maximum membership and value 0 

the minimum membership grade. If the clinician gives realism a value of 7 than the 

membership grade will be 0.7. Similarly, ‘Steps taken’ generate an MG value of 0.8.  
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Figure 2 Example of risk calculation, reproduced with permission from (Buckingham, 2002) 

 

Now the relative influence (RI) of the ‘realism’ is 0.6 and for the ‘Steps taken’ it is 0.4. 

Relative influences of all siblings are sum to 1.  The membership grade of realism (0.7) 

is multiplied by the relative influence of 0.6 to pass a membership grade of 0.42 up to 

the plan/method concept. Similarly, Contribution of ‘Steps taken’ node is 0.32. The total 

MG of the ‘Plan/method’ node is the sum of its child’s contribution, which is 0.74 in this 

example (Buckingham, 2002). 

 

In a similar process, we can multiply the MG (0.6) of ‘seriousness’ node with its RI (0.7) 

and get its contribution towards Intention is 0.42. The contribution of ‘Plan/method’ node 

is given by multiplication of MG (0.74) and RI (0.3), which is 0.222. The final MG value 

of the Intention node is 0.42+0.222= 0.642. This means the patient has a 64% intension 

of committing suicide. By changing the membership grade and relative influences, the 

experts adjust the classification process and align the class membership grades that 

correspond to their own estimates of risk (Buckingham, 2002). 
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3.3 The GRiST Ontology 

 

A short description of the structure of the GRiST ontology and the data collection 

methods is important as this data is used for this research. The following description is 

summarised from (Ahmed, 2011) and (Buckingham et al., 2004). 

 

GRIST ontology is a structured tree (ST) available in XML file format. On the top label, 

we have the mental health risk node. This is then divided into five main areas of mental-

health risk.  These are suicide, self-harm, harm to others, self-neglect, and vulnerability.  

A schematic representation of the ST is presented in the following figure: 

 

 

Figure 3 GRiST structure tree (ST) reproduced with permission from (Ahmed, 2011) 

 

 

Each top-level node is subdivided into its constituent’s child nodes. The last nodes in the 

tree are the individual datum or leaf nodes. Each datum node represents a piece of 

information that can be collected by clinicians. There is a question attached to the leaf 

node via an additional question attribute. 
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At the beginning of the assessment, a full assessment tree is created as per the 

assessment type and the type of patient. This tree is then used to dynamically create the 

user interface. GRiST’s main user interface is web-based and hosted in a central 

location. This allows the storing of data in one central location securely and provides 

access to the service users easily without them needing to install software on their own 

computers. A sample user interface of GRiST is shown in the screenshot below. 

 

 

 

Figure 4 Screenshot of GRiST user interface 

 

If a filter question is answered ‘YES’ then other child questions under that node are 

opened up. Each of the nodes has an option to add comments for that particular node. 

These comments are stored in the database separately.  For this research, actual 

numeric data (mg-value) and its corresponding comments are used. 
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For a scale data type a shaded list of radio buttons is displayed as shown in the image 

above. Clinicians can simply click the relevant choice of answers. The plus icon shown 

in the image is used to input additional comments. Data that are persistent are copied to 

the next repeat assessment automatically. The GRiST system allows skipping data 

entry, which causes missing data problems. The input of comments is also optional, 

which means there are missing comments in the data. The implications of this are 

described in the relevant experimental sections later in this report. 

 

 

3.3.1 Generic Concepts 

 

There are some nodes, which are common across the risk type. The GRIST 

implementation team have put them in a common location. Stub nodes are placed in the 

tree where necessary to refer to the generic node. This is mainly an internal organisation 

and the full structure tree (ST) is created for each type of assessment dynamically.  

Generic nodes for which the RI is fixed are noted by attribute generic-type=”g”. And 

generic nodes which have different RI for different risk types are marked as generic-

type=”gd”  (Ahmed, 2011). For my research this was not a concern as the data was 

collected from the database where all the nodes were present. 

 

Example of an XML node of the GRiST structure tree is shown below. 

 

<node label="suicidal thoughts” code="suic-ideation" question="To what extent 

do the person's suicidal thoughts/fantasies match those that would give you most 

concern about suicide risk? " values="scale" value-mg="((0 0) (10 1))" level="1" 

filter-q="Is the person having suicidal thoughts or fantasies?"> 

<node label="ability to control suicidal thoughts" code="suic-id-control" 

question="To what extent does the person lack ability to control suicidal thoughts 

or fantasies?" values="scale" value-mg="((0 0) (10 1))" "/> 

<node label="high risk suicidal thoughts" code="suic-id-hi-risk" question="How 

much do the ways you are imagining ending your life make it more likely that you 

will try to do it? " values="scale" value-mg="((0 0) (10 1))"  "/> 
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<node label="frequency of suicidal thoughts" code="suic-id-freq" question="How 

often do the suicidal thoughts or fantasies occur?" values="nominal" value-

mg="((DAILY 1) (WEEKLY 0.5) (MONTHLY 0.2) (LESS-THAN-MONTHLY 0))"/> 

<node label="strength, intensity" code="suic-id-strngth" question="How hard is it 

to get thoughts of suicide out of your head?" values="scale" value-mg="((0 0) (10 

1))"/> 

</node> 

 

In this research, all the GRiST nodes are saved in the database as a parent child 

relationship, including the datatype and other meta information. A utility was created to 

traverse through the nodes quickly for exploration purposes. 

 

 

3.3.2 Question and Datatype 

 

From the user’s perspective, each GRiST node represents a question. These questions 

can be a generic question, a filter question or additional questions under the filter 

questions. The answer of the filter question itself is also a data. The most used data type 

in GRiST is the scale data type. After answering all or partial questions, clinicians finally 

input their own judgement on the suicide risk.  The GRiST nodes can collect any of the 

following data types:  

 

Table 7 GRiST data type 

Type name Description 

Scale Generally range between 0 to 10 

Number values="integer|real" 

Date the date-year, date-month, date-week, and date-day 

Nominal categorical data 

Ordinal Order of the values 

 

The Galatean model requires membership grade data so each node input data needs to 

be converted to value-mg. For categorical data value-mg was estimated by focus group 

discussions (Ahmed, 2011). 
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 All the collected data is saved in the database. Comments and other data are stored in 

two separate tables. For this research, the data from the database was used. Some 

filtering was required as provisional ‘in progress’ assessment data was also saved in the 

same table with an identifier.  

 

3.4 GRiST Dataset for Experiments 

 

GRiST is provided as a web-based service from Aston University to mental-health 

organisations and its database of assessments increasing every day.  “Currently, the 

electronic version of GRiST (eGRiST) is being used across a range of clinical services 

in: Humber NHS Foundation Trust (1600 staff); Cumbria Partnership Trust (1500 staff); 

Birmingham Children Hospital; Raphael Healthcare, Newark, for their 40-bedded female 

forensic unit; and the Craegmoor Hospital group.”  

(Source: https://www.egrist.org/content/some-places-where-grist-being-used). 

 

The data for this research comes from the GRiST project. We have only chosen data 

which has at least 1KB of comments. There were a total of 46903 instances of 

assessments, of which 38197 have a suicide risk less than 5 and 8706 have a suicide 

risk more than or equal to 5. We considered the later group of patients as high-risk 

patients. 

 

Assessments conducted between 2011 and 2013 (a total of 21203 assessments) were 

used for training and the rest (25700 assessments) were used for testing purposes. The 

following table shows the distribution of risk levels in the data. 

 

Table 8 Grist assessment data with risk level 

Year/Risk 1 2 3 4 5 6 7 8 9 10 total 

2011 802 1037 1148 542 513 216 214 127 49 15 4663 

2012 1271 1547 1413 706 577 274 270 165 59 19 6301 

2013 2824 2661 1839 995 846 381 368 228 74 23 10239 

2014 4007 3228 2191 1208 928 411 395 260 86 33 12747 

2015 4576 3017 1948 1237 929 425 361 297 114 49 12953 

total 13480 11490 8539 4688 3793 1707 1608 1077 382 139 46903 
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The following table shows the distribution of assessments across the different suicide 

risk categories. 

 

Table 9 GRiST data distribution across risk levels 

Suicide Risk No of Assessments 

1 13480 

2 11490 

3 8539 

4 4688 

5 3793 

6 1707 

7 1608 

8 1077 

9 382 

10 139 

Total 46903 

 

 

 

Figure 5 Suicide risk distributions in the GRiST dataset 

The following table shows the number of assessments based on when they are 

conducted. The assessments conducted between 2011 and 2013 were used for training 

and rest were used for testing. 
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Table 10 Test and Training dataset from GRiST 

Assessment year No of Assessment Used for 

2011 4663 training 

2012 6301 training 

2013 10238 training 

2014 12747 test 

2015 12953 test 

 

 

Textual comments input is optional in the GRiST system. The following figure shows a 

typical comments input field. 

 

Figure 6 Example of a comment input field 

 

The comments may be inputted in each of the GRiST nodes. Each node is a question 

that is asked by the clinicians or answered by a service user themselves. For our 

analysis, we have used comments left in the node to create the semantic vector of the 

nodes. All comments are concatenated to build the overall textual representation of the 

patients. 
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3.5 Improvement of the GRiST System 

 

This research would try to improve GRiST’s usability and interactivity by introducing 

background analysis and alerts. The following are the key areas where this research will 

add value to the system: 

 

1. The comments in the GRiST nodes will be used to build a semantic 

vector representation of the GRiST nodes. This may allow us to use 

comments as another source of data in risk calculation. Concept 

extractions and text classification tools will be used against the GRiST 

dataset. 

 

2. Explore the non-linear relationship between GRiST nodes and use them 

for system improvement. To find the relationships between nodes that 

may help us to detect high-risk category cases. 

 

3. Explain the difference between clinicians and calculated risk. This may 

help us to guide the system users to improve the validity of their 

assessment. GRiST does not currently perform risk validation and this 

research has tried to add this feature to the GRiST system. 

 

4. Make GRiST more interactive. Find out patterns in the data such as node 

relationships and provide notifications to clinicians based on the impact of 

those patterns on risk judgement. 

 

5. Provide information to clinicians about risk management based on repeat 

assessment analysis. 

 

 

As mentioned in the review of CDSS, service users prefer interactive CDSS. Before 

providing interactive suggestions to service users, we need to find out as many patterns 

as possible in the data. Then it would be possible to provide real-time notification or 

feedback to the clinicians based on the patterns found in the comments and inputted 
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data. The following diagram gives a very simplistic overview of the proposed system in 

comparison to the original system. 

 

 

 

Figure 7 Aimed improvement of the GRiST system (in blue) 

 

 

3.6 Summary  

 

From the literature review, we have learned that the adoption of CDSS depends on 

accuracy, ease of use and decision supporting capability of the system (Kim et al., 

2012).  GRiST is a web-based clinical decision support system based on the Galatean 

Risk assessment model. This is an easy-to-use system and designed for experts, social 

workers and with service users in mind. It covers a total of five areas of mental health 

assessment, suicide, self-harm, self-neglect, harm to others and vulnerability. 
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Whilst GRiST was built on a clear research based foundation, the tool still lacks some 

desirable features. One of them is to carry out detailed background analysis of data and 

provide real-time feedback to the clinicians. It collects clinical comments, which are 

overlooked unless there is an emergency review. It is highly desirable to use artificial 

intelligence technology to make this system more interactive.  

 

“Regarding the use of GRiST for predicting risks, its current objective is more about 

supporting clinical risk judgements and the associated advice rather than trying to output 

precise probabilities or some associated overall risk score. Scores and probabilities are 

extremely hard to produce with any accuracy or confidence, partly due to the current 

paucity of data but also because suicide, for example, is a very rare event”. 

(Source: https://www.egrist.org/why-grist). This research also tried to overcome this 

limitation of GRiST. 

 

We have tried to uncover as many ways as possible to enhance the GRiST system. 

Analysis of the free text comments available in GRiST, numerical data inputted by the 

clinician and GRiST ontology nodes relationships etc. all have been used to find 

patterns to improve GRiST. 

 

Before using the comments, we need to extract concepts from them. The next chapter 

discusses concept extraction from text. The subsequent chapters focus on semantic 

processing of the textual data, suicide risk prediction, association rules mining and 

information gain. The methods proposed in those chapters can help to make the GRiST 

system an exceedingly interactive expert CDSS.  

https://www.egrist.org/why-grist
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4 Concept Extraction 

4.1 Introduction 

 

Automatic extraction of concepts from the text is a prerequisite to many applications 

including information retrieval, text summarisation, question answering, classification, 

knowledge discovery and other natural language processing tasks (Aronson, 2006). 

Concepts from the clinical comments in GRiST were extracted for knowledge discovery 

and semantic analysis of the GRiST nodes. 

 

Medical notes contain invaluable information about the current and previous medical 

history, current symptoms and severity of the condition as well as physicians clinical 

judgement (Cobb, Puri, Wang, Cise, & Edu, 2013). The GRiST data includes numerical 

and categorical input as well as free text comments. Processing of clinical comments 

may complement the collected numerical data. Many existing technologies and toolkits 

have been used and their performances have been critically reviewed.   

Extracting domain relevant concepts is challenging. We need to extract phrases and 

then only keep those that are domain relevant. Generally, this is done by training a 

system with the human annotated dataset. This is time-consuming and costly. We 

propose a new method by which we extract domain relevant phrases automatically. The 

empirical results show that the proposed method could perform equally well as the 

systems that are trained on annotated data. 

We have also extracted SNOMED-CT concepts extracted using cTAKES and compared 

its performance with other phrase extraction methods. A novel method has been 

described, which uses vector space model (word2vector) to automatically find a list of 

domain relevant keywords from the text. The proposed methods can save time and 

resources. The proposed Ensemble Concept Mining (ECM) method has been validated 

with both our own and the i2b2 dataset. 
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4.2 Phrase Extraction Methodology 

 

The terms ‘phrase extraction’, ‘concept extraction’ and ‘symptom extraction’ are used 

synonymously in this report. We wanted to extract phrases that provide cues for medical 

symptoms, procedures or any other information that might help to assess patient’s 

medical conditions. Key phrase extraction is a technique that is used often for content 

summarisation, indexing, and information extraction. Where possible existing tools and 

methodology were used, and more focus was placed on GRiST ontology analysis. The 

following sections describe some of the common key phrase extraction methods. All of 

these methods have been applied to GRiST data. 

 

 

4.2.1 N-gram Method 

 

This is the most basic approach of phrase extraction. This method is chosen as a 

baseline method for phrase extraction.   Here ‘n’ stands for the number of words in the 

phrase.  

 

Sentence: David is depressed. 

Unigrams: David, is, depressed 

Bigrams: David is, is depressed  

 

Understandably, not all n-gram phrases are a real or meaningful phrase, so a filtering 

algorithm is needed. Most of the other methods use n-grams at the beginning and then 

filter the generated phrases to find suitable phrases. Few basic filtrations can be done 

on n-gram phrases, for example, removing phrases that start with a preposition or only 

contain stop words (Pudota, et al. 2010).  

 

4.2.2 Term Frequency 

 

The score of a candidate term is related to the frequency of that candidate term 

occurring in the corpus (Justeson & Katz, 1995). “The great majority of technical terms 
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are noun phrases, largely limited to those including adjectives and nouns only. In 

running text, most topically important technical terms are repeated; those noun phrases 

that are repeated are very likely to be technical terms” (Justeson & Katz, 1995, p. 24). 

 

 

4.2.3 TF-IDF 

 

Equally frequent terms do not mean they are equally meaningful and another term IDF 

(Inverse Document frequency) is used to compensate for this (Church & Gale, 1999). 

TF-IDF stands for Term Frequency-Inverse Document Frequency, which is a statistical 

measure used to calculate how a word is important to a document in comparison to a 

corpus. The importance increases if a word appears more in the document but if the 

word generally appears more in the corpus then the weight is reduced. 

 

TF (Term Frequency) represents the number of times the phrase appears in the 

document. DF (Document Frequency) represents the number of documents containing 

the phrase in the corpus. TF-IDF score is computed as 

 

 

 
𝑇𝐹𝐼𝐷𝐹 =

𝑇𝐹

𝑁𝑑
 𝑥 𝑙𝑜𝑔

𝑁𝑐

𝐷𝐹
 (1) 

 

 

Where Nd is the number of words in a document and Nc is the number of documents in 

the corpus (Jiang, Hu and H. Li, 2009). 

 

 

4.2.4 Weirdness 

 

The concept of Weirdness described by Ahmad, Gillam, & Tostevin (1999) as follows: 

 

The differences in the distribution of certain lexical items, and their variants, in 

special and general language texts can be quantified in terms of the relative 
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frequencies of a specialist text (corpus) and a general language text corpus. We 

call this ratio an index of weirdness of a specialist text. This weirdness is used by 

an accentuated, and perhaps an eccentric, choice of lexical items measured in 

terms of their frequency of occurrence. Most weird words in a text will tend to 

represent it more closely than those that are not as weird. If the ratio is unity, 

then the lexical item has the same frequency in both general and special 

language; if the ratio is greater than unity then the item is used more frequently 

in specialist text then is the case for general language and vice versa. (p. 4) 

 

 
𝑊𝑒𝑖𝑟𝑑𝑛𝑒𝑠𝑠 =

𝑤𝑠/𝑡𝑠

𝑤𝑔/𝑡𝑔
 (2) 

 

Where:  

ws  = frequency of word in specialist language corpus  

wg  = frequency of word in general language corpus  

ts  = total count of words in specialist language corpus  

tg  = total count of words in general language corpus 

 

 

4.2.5 C-value Method 

 

The C-value method combines linguistic and statistical information, with greater 

emphasis on the statistical part. The linguistic information may consist of part-of-speech 

tagging, types of term extracted. The statistical part takes into account the statistical 

features of the candidate string and combines it in a form of measure that is called C-

value (Frantzi, Ananiadou, & Mima, 2000). 

 

The C-value statistical measure ascribes a term hood to a candidate string, which is 

used to rank the output list of terms. The measure is built using statistical characteristics 

of the candidate string and they are as follows (Frantzi et al., 2000): 

 

1. The total frequency of occurrence of the candidate string in the corpus. 
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2. The frequency of the candidate string as part of other longer candidate 

terms. 

3. The number of these longer candidate terms.  

4. The length of the candidate string (in number of words). 

 

C-value is a domain-independent method for multi-word term extraction which aims to 

increase the extraction of nested terms (Frantzi et al., 2000). The measure of term hood, 

called C-value is calculated by the equation below: 

 

 

 

(3) 

 

Where: 

a = is the candidate term, 

b  = longer candidate terms 

|a|  = length of candidate term 

f (a)  = frequency of occurrence of a in the corpus, 

f(b)  = frequency of occurrence of b in the corpus, 

Ta  = is the set of extracted candidate terms that contain a, 

P(Ta)  = number of candidate terms in Ta. 

 

The above formula is taken from the paper (Frantzi et al., 2000). It can be seen that C-

value depends on the frequency of occurrence of a term but if the candidate term 

appears in the longer terms then this has a negative effect (Frantzi et al., 2000).  
 

 

4.2.6 GlossEx 

 

GlossEx is an algorithm designed to extract domain specific glossaries from large 

document corpus (Park, Byrd, & Boguraev, 2002). The following are the steps used to 

find the candidate terms. 
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Step1: Identify glossary terms. They considered either a noun phrase or a non-

auxiliary verb. 

 

Step 2: Filter terms bases on symbolic variants, compounding Variants, inflectional 

variants, misspelling variants, and abbreviations. 

 

Step 3: Glossary item ranking and selection.  

 

Candidate terms are then ranked based on the goodness of the term and the goodness 

of the term is based on how much the term is related to the given domain, the item’s 

domain-specificity, and the degree of association of all words with the term (called term 

cohesion) (Park et al., 2002). The term confidence of a term T, C (T), is defined as 

below  

 C (T) =α*TD (T) + β * TC (T) (4) 

 

Where TD is term domain-specificity, TC is term cohesion, and α and β (α+β=1) are 

constant values, which decide the relative contribution of TD and TC respectively (Park 

et al., 2002). 

 

 

4.2.7 TermEx 

 

The TermExtractor first extracts typical terminological structures, like compounds 

(enterprise model), adjective-noun (local network) and noun-preposition-noun (board of 

directors) and then uses filters to exclude non-terminological multi-word strings from the 

list of syntactically plausible candidates (Sclano & Velardi, 2007).  

 

The algorithm used three main filters and two additional filters. A short description of 

them is given below, which is taken from the main paper (Sclano & Velardi, 2007).  

 

Domain Pertinence: This value is high if a term is frequent in the domain of interest and 

much less frequent in the other domains used for contrast. 
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Domain Consensus: This value measures how evenly the term is distributed in the 

documents set. 

 

Lexical Cohesion: This measures the degree of cohesion among the words that 

compose the term. The cohesion is high if the words composing the term more 

frequently appears in the documents. 

 

The algorithm then uses some heuristic information to enhance the filters, such as 

structural relevance, misspelling, etc.  

 

Structural Relevance: This fine tune the measurement by looking to see if the word 

appears in the text highlighted are also appears in title etc. 

 

Miscellaneous: A set of heuristics are used to remove general modification of terms, 

misspelling, etc.  

 

The final weight of a term is a weighted linear combination of the three main filters 

(Sclano & Velardi, 2007). 

 

 

4.2.8 Sentic Algorithm 

 

The first step of this algorithm is to break text into clauses by using dependency parsing. 

Then each verb and its associated noun phrase are considered in turn, and one or more 

concepts are extracted from these (Rajagopal, Cambria, Olsher, & Kwok, 2013). They 

have used different patterns like (adj+noun) to filter the concepts. According to them in 

Human Computer Interaction (HCI) and social data analysis, deep natural language 

understanding is not strictly required. A sense of the semantics in text and effects of that 

semantics is often enough to quickly perform tasks such as emotion recognition and 

polarity detection (Rajagopal et al., 2013). Further information about this method can be 

found in (Poria, Cambria, Winterstein, & Huang, 2014). 
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The Java implementation of this algorithm is fast and can work on a single sentence 

unlike other toolkits that require a complete document or corpus to extract phrases. This 

algorithm has been used to extract phrases from the GRiST data. 

 

 

4.2.9 Other ATE Methods 

 

There are other well-known Automatic Term Extraction (ATE) algorithms for example, 

Kea, Topia, Termine and AlchamyAPI, which were reviewed but not used. Firstly, some 

of them extract important key phrases for text summarisation purposes only. For this 

research, all the concept phrases are considered important. Secondly, some of them are 

only available as web service and due to the confidential nature of our data, it was not 

possible to use them. Uses of dummy data did not show any significant improvement 

over the algorithm that has been tried in this research. A review of recent automatic term 

extraction can be found in (Siddiqi & Sharan, 2015), (Z. Zhang, Iria, Brewster, & 

Ciravegna, 2008) and (Z. Zhang, Gao, & Ciravegna, 2016). 

 

For this research, I have used all the methods that are generic and not specially 

designed for text summarisation. Their performances have been evaluated with a 

sample manually extracted concept list. The evaluation and analysis of the results are 

provided later in this chapter. 

 

 

4.3 UMLS and SNOMED-CT Concept Extraction 

 

The Unified Medical Language System (UMLS) consists of a set of files and software 

utilities that merge together many health and biomedical vocabularies and standards to 

enable interoperability between computer systems (Source:  https://www.nlm.nih.gov/). 

SNOMED-CT (Systematized Nomenclature of Medicine - Clinical Terms) is a 

standardized, multilingual vocabulary available from SNOMED International 

(http://www.snomed.org/snomed-ct) and it is included in UMLS. In this report, the term 

https://www.nlm.nih.gov/
http://www.snomed.org/snomed-ct
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UMLS or SNOMED-CT are sometimes referred to as “snomed” to mean a terminology 

database. 

 

According to UMLS reference manual  (National Library of Medicine, 2009) and website 

(https://www.nlm.nih.gov/research/umls/quickstart.html), The UMLS has three tools, 

which are called the Knowledge Sources: 

 

 

1. Metathesaurus: Terms and codes from many vocabularies, including CPT, 

ICD-10-CM, LOINC, MeSH, RxNorm, and SNOMED-CT. 

 

2. Semantic Network: Broad categories (semantic types) and their relationships 

(semantic relations). 

 

3. SPECIALIST Lexicon and Lexical Tools: Natural language processing tools. 

 

 

4.3.1 Metamap 

 

Metamap is a widely available program that can discover Unified Medical Language 

System (UMLS) Metathesaurus concepts referred to in the biomedical text (Aronson & 

Lang, 2010). This is particularly useful as the discovered concepts would be more 

relevant to mental health or generic medical concepts. This tool also provides UMLS 

node names and that could allow us to compare it with the GRiST nodes.  

 

Metamap uses knowledge base (ontology), natural-language processing (NLP), word 

sense disambiguation (WSD) and computational-linguistic techniques. More information 

can be found in (https://metamap.nlm.nih.gov/). A survey of direct uses of SNOMED-CT 

can be found in (Elhanan, Perl, & Geller, 2011). To use Metamap and UMLS a 

registration is required. 

 

For this research, Metamap was installed locally and the extracted sentences from each 

assessment were fed into it via a command line program. The output was then saved in 

the database table. 

https://www.nlm.nih.gov/research/umls/quickstart.html
https://metamap.nlm.nih.gov/
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4.3.2 Apache CTAKES 

 

Apache CTAKES is another well-known tool for mapping text to SNOMED-CT ontology. 

Popular open source tools like General Architecture for Text Engineering (GATE) have 

plug-ins for this task. An automated system for conversion of clinical notes into 

SNOMED-CT clinical terminology is described by Patrick, Wang, & Budd (2007) and a 

method for encoding clinical datasets with SNOMED-CT is described by Lee, Lau, & 

Quan (2010). Both of these researches used string matching and heuristic rules. 

 

For this research, I have downloaded and installed the apache cTAKES tool locally 

(available from http://ctakes.apache.org/). Registered an account with UMLS 

(https://www.nlm.nih.gov/research/umls/) and downloaded UMLS terminology dataset. 

Then I have coded a Java program to extract UMLS coded XML data from a given 

sentence. Then phrases were extracted based on some filtering on the concept type. 

The output was the phrases that mapped to a SNOMED-CT concept. The full process is 

described in Chapter 5. 

 

cTAKES was used as it is new and provides more detailed information in XML format. 

The SNONED-CT data was saved in a local database and we could traverse through 

the ontology tree to explore the data and link them to GRiST nodes. 

 

4.4 Word Embedding 

 

Word embedding is a technique where a word is represented by a vector of real 

numbers. In general, it is also referred to as vector space model (VSM). A hypothetical 

example could be: 

 

‘depression’=[0.4, 0.3,0.6,0.8,0.7] 

 

Vector space models (VSM) of word co-occurrence have proved to be a useful 

framework for representing lexical meaning in a diverse range of natural language 

processing (NLP) tasks (Padó & Lapata, 2007).  Most of the VSM algorithms are based 

on distributional semantics, which simply means words that appear in similar context 

http://ctakes.apache.org/
https://www.nlm.nih.gov/research/umls/
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tend to have a similar meaning (Turney, 2013). Vector-based semantic space models 

use word co-occurrence counts from large corpora to represent lexical meaning (Padó & 

Lapata, 2007). The context of the target word is defined by a small number of words 

surrounding the target word. It does not even consider the parts of speech of the words. 

For this research the word2vec tool developed by Mikolov, Yih, & Zweig (2013) is used. 

There are lot of recent activity around this tool and huge trained datasets are readily 

available. A detailed explanation of this tool and data is given in the following section. 

 

 

4.4.1 Word2Vec 

 

Many methods of creating word representations were explored by the NLP community 

(Levy & Goldberg, 2014).  Continuous word representations, trained on large unlabelled 

corpora are useful for many natural language processing tasks (Mikolov, Yih, et al., 

2013). The word2vec model and its application by Mikolov et al. (2013) have attracted a 

great deal of attention in recent years. The vector representations of words learned by 

word2vec models have been shown to convey semantic meanings and are useful in 

different NLP tasks. Distributed representations of words in a vector space can facilitate 

grouping of similar words and help learning algorithms to achieve better performance in 

natural language processing tasks (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). 

 

In word2vec, a distributed representation of a word is used. Take a vector with several 

hundred dimensions (say 300). Each word is represented by a distribution of weights 

across those elements. So instead of a one-to-one mapping between an element in the 

vector and a word, the representation of a word is spread across all of the elements in 

the vector, and each element in the vector contributes to the definition of many words 

(Mikolov, Yih, et al., 2013). 

 

Table 11: Word vector example 

Word Attribute 1 attribute 2 attribute 3 attribute 4 attribute 5 

King 0.3 .25 0.36 0.36 0.40 

Queen 0.3 .36 0.36 0.20 0.30 
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The “google news model” that is used in this research has 300 dimensions in total 

(attribute1,… attribute300) - the above table is only showing 5 dimensions as an 

example. We have also used vector trained on PubMed text, which represents the 

medical domain. A defining feature of language models which uses the neural network is 

their representation of words as high dimensional real-valued vectors (Mikolov, Yih, et 

al., 2013).  

 

Word2vec is an algorithm that learns the representations of the word vectors, which 

captures the semantic relationship in an unsupervised way (Mikolov, Corrado, Chen, & 

Dean, 2013). According to them Word2Vec is a shallow learning algorithm that has 2 

variations through which it learns the word vector representation using neural networks: 

 

Skip Gram Model:  In this method given the word, the system tries to predict context 

words. Context words do not need to be immediate words, some words can be skipped, 

setting a window size determines how much to look forward and backwards from the 

current word (Mikolov, Corrado, et al., 2013). 

 

Continuous Bag of Words (CBOW): Given the context word, the target word is 

predicted.  The big window size improves semantic scores but reduces the syntactic 

score. For CBOW the size of training data should be fairly large enough as a single word 

is predicted from many contextual words (Mikolov, Corrado, et al., 2013). 

 

 

Figure 8 Word2vector training algorithm types, reproduced from (Mikolov, et al. 2013) 

The above image is reproduced from (Mikolov, Corrado, et al., 2013). Further details of 

word2vec can be found in (Mikolov, Corrado, et al., 2013), (Mikolov, Yih, et al., 2013) 
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and (Mikolov, Sutskever, et al., 2013). In this report, term ‘word vector’ is used many 

times and it generally means the vector representation of a word using word2vec. 

 

 

4.4.2 Phrase Vector 

 

A phrase may contain two or more words. To make a phrase vector from word vectors 

Kiela & Clark (2013) used pointwise multiplication and Lopyrev (2014) used neural 

network re-training. The experimental results indicate that the simple average of word 

vectors may perform well enough for generic use (Lopyrev, 2014). In this research, the 

simple average method was used to calculate phrase vectors from words vector. 

 

 

4.4.3 Cosine Similarity 

 

The output of the Word2vec is a vocabulary where each word is represented by a 

vector.  The vectors carry semantics meaning and similar words appear closer in the 

vector space. A variety of distance measures can be used to compute the similarity 

between two target words, the cosine similarity is the most popular (Padó & Lapata, 

2007). 

 

The cosine similarity measure is the cosine of the angle between two vectors. In this 

measure, 90 degrees represent no similarity cos (90) =0 and the total similarity is 0-

degree angle cos (0) =1. Given two vectors X and Y we can calculate cosine similarity 

by using the following formula (Padó & Lapata, 2007). 

 

 
𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑜𝑠𝜃) =  

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

√∑ 𝑥𝑖
2. √∑ 𝑦𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

 (5) 
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The following table shows some words and their distance from the word ‘drug’.  

 

Table 12 Similar word and cosine distance 

Word Distance 

Drug 1.000 

Drugs 0.849 

narcotics 0.643 

cocaine 0.609 

Heroin 0.608 

medication 0.542 

Pills 0.521 

Dope 0.511 

marijuana 0.503 

Pill 0.502 

 

 

For this research I have used word2vec tool developed by Mikolov, Corrado, et al. 

(2013) and available from (https://github.com/dav/word2vec).  

 

The word vectors were trained on part of Google News dataset (about 100 billion 

words). The model contains 300-dimensional vectors for 3 million words and 

phrases (Mikolov, Sutskever, et al., 2013). A wrapper around this library was created so 

it can be easily used as a web service from the Java and PHP based tools that have 

been created to analyse the GRiST data. Later I have also used vector trained with 

PubMed data available from (http://evexdb.org/pmresources/vec-space-models/). 

 

 

4.5 Evaluation of Phrase Extraction Methods 

 

Initially, many other tools have been used for test purposes but in the end, they were not 

utilised. Stanford NER (Name Entity Recogniser) was used to extract noun phrases  

(Finkel, Grenager, & Manning, 2005). I have assumed that valuable clinical information 

https://github.com/dav/word2vec
http://evexdb.org/pmresources/vec-space-models/
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could be in ‘verb’ as well as in ‘noun’ phrases, which is why NER was not used in 

isolation. The datasets, experiments and evaluations that have been used are explained 

in the following sections. 

 

 

4.5.1 Experimental Procedure 

 

I have run all of the phrase extraction algorithms as discussed above on the GRiST 

dataset.  The evaluation was done on a small subset.  The following are the generic 

steps of the operation: 

 

Step 1:  All the comments from each GRiST node have been saved into a database 

table. Comments are then split into sentences and stored in a separate table keeping 

the record of assessment_id and GRiST node name where the comment was found. 

The node name is sometimes referred to as ‘nodecode’ in this report, as this is a unique 

identifier of a node. 

 

Step 2: In the next step sentences were parsed with Enju parser (available from 

http://www.nactem.ac.uk/enju/) and Stanford parser (Manning, Bauer, Finkel, & Bethard, 

2014). Outputs of these parsers provide the base form of the word. The Stanford parser 

was chosen as it also provides the dependency relationships. 

 

Step 3: A web service was created using Java for the phrase extraction from sentences. 

These web services work as a wrapper around the Java jar file that we have 

downloaded for each of the algorithms. This allowed us to use many algorithms to 

create phrase extractors and consume them as a web service. Java was good for 

parsing and PHP was good for rapid prototyping - this is why both of them were used in 

this manner. 

 

Step 4: PHP was used as a scripting language to consume the web services to extract 

phrases and put them in a separate database table. Again, the record of assessment_id, 

sentenceid, nodecode etc. was kept for future reference.  

 

http://www.nactem.ac.uk/enju/
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4.5.2 Statistical Evaluation 

 

The accuracy of key phrase extraction methods is generally evaluated by precision and 

recall measures, for which human annotated phrases are treated as positive examples 

(Xin Jiang et al., 2009).. We have used precision, recall and F-score. Before showing 

the data, here is an introductory explanation of each of these measures.  

 

Precision, Recall and F-measure are standard measures in Natural language processing  

(Manning, Raghavan, & Schütze, 2009). The following figure shows a typical phrase 

extraction scenario. 

 

 

Figure 9 Precision and Recall 

 

Precision: PRECISION is the ratio of the number of correct records retrieved to the total 

number of incorrect and correct records retrieved. It is usually expressed as a 

percentage. 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =

𝐴

𝐴 + 𝐶
 (6) 

 

Recall: RECALL is the ratio of the number of correct records retrieved to the total 

number of correct records in the dataset. It is usually expressed as a percentage. 

 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙(𝑃) =

𝐴

𝐴 + 𝐵
 (7) 
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F-measure: F-measure is a single statistical measure that trades off precision versus 

recall, it is the weighted harmonic mean of precision and recall (Manning et al., 2009): 

 

 
𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =

(𝛽2 + 1)𝑝𝑟

𝛽2𝑝 + 𝑟
 (8) 

 

 

The default balanced F-measure equally weights precision and recall, which means 

making β = 1. It is commonly written as F1, which is short for Fβ=1. When using β = 1, 

the formula on the right hand side simplifies to (Manning et al., 2009):  

 

 𝐹1 = 2 ∗
𝑝𝑟

𝑝 + 𝑟
 (9) 

 

 

Another concept Error Rate, is the percentage of examples that are assigned to the 

wrong category (Celikyilmaz, Hakkani-Tur and Feng, 2010). 

 

 𝐸𝑟𝑟𝑜𝑟𝑟𝑎𝑡𝑒 = 100 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (10) 

 

Often accuracy is not a suitable measure for information retrieval problems as most of 

the cases, the data can be extremely skewed: normally over 99.9% of the documents 

are in the non-relevant category (Manning et al., 2009). For example, maximum patients 

are in the low suicide risk category so predicting all patients of having low risk would 

give a highly accurate result, but it would miss all the high-risk patients. 

 

 

4.5.3  Results and Analysis 

 

It is very important to validate the extracted concepts. An algorithm may perform well in 

one set of data but not so well in another dataset, especially if the domain context is 

different. Creating a gold standard data is a manual task and requires multiple people. 

There are more than a million phrases extracted so manually validating them was not 

feasible. I have taken approximately 20 thousand of them from a set of assessments 
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ranging between 2010 to 2011 and manually marked them to check if they were relevant 

to suicide risk or not. 

 

The phrases were filtered and only bigrams (2 word phrases) were used. There were too 

many unigrams and a reasonable assumption was that we could create a domain 

specific unigram list by frequency analysis (described later in section 4.6). It was 

observed that bigrams are more practical and meaningful to use. A few other research 

papers mention that bigram phrases are more suitable including (Xuerui Wang, 

McCallum, & Wei, 2007).  The single word and multi-word phrases were extracted and 

saved in the database but validation was done only on bigrams because a single word 

may apply equally well in many other contexts, whereas multi-word phrases were 

expected to be more semantically concise in their usage (McCart et al., 2012). 

 

This was a preliminary exercise to explore the accuracy of the existing methods. Based 

on the knowledge and understanding that I have acquired after looking at the GRiST 

ontology, the risk assessments data and reading more on this subject matter, I filtered 

the extracted phrases based on its relevance to suicide risk.  The performance on this 

dataset should give us an indication of the suitability of the algorithms. The following 

table shows the test results with precision, recall and F1-score. Please note that the 

phrase count was done on distinctive phrases only. 

 

Table 13 Precision and recall of phrase extraction algorithms 

Algorithm Count Right_A Missed_B Wrong_C Precision Recall 

F1-

score 

n-gram 938 370 457 568 0.39 0.45 0.42 

b-gram 462 196 631 266 0.42 0.24 0.31 

metamap 40 28 799 12 0.70 0.03 0.06 

Sentic 1500 488 339 1012 0.33 0.59 0.42 

jatetfalgo 1000 320 507 680 0.32 0.39 0.35 

jatecvalue 1315 376 451 939 0.29 0.45 0.35 

jateglossex 968 336 491 632 0.35 0.41 0.38 

jatetermfreq 908 300 527 608 0.33 0.36 0.34 

jatetfidf 812 288 539 524 0.35 0.35 0.35 

jateweirdness 818 286 541 532 0.35 0.35 0.35 
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We can see from the above table that the metamap tool has the highest precision. But 

unfortunately, it has the lowest recall. Metamap maps phrases to the UMLS 

metathesaurus and it only looks at those terms, which are available in UMLS. Hence, 

the recall is very low, as it does not extract many other possible terms.  

 

All other algorithms have very low precision and recall as well. They are usually in the 

range of 30% to 40%. This could be because these algorithms are trained with different 

kinds of data. An algorithm usually performs better on the domain that it has been 

trained. It is highly desirable to have a generic algorithm that can be used in multiple 

domains without retraining. 

 

The analysis shows that none of the tested algorithms can perform as desired with our 

data. Some of these algorithms are very complex, but when we compare their results 

with simple n-gram extracted phrases we see that the n-gram also performs equally 

well. From this, we can assume that the use of sophisticated algorithms may increase 

the complexity and make the extraction process slow, but the overall performance does 

not improve significantly. This finding matches with the findings of (Rajagopal et al., 

2013).  

 

The extracted phrases were not always meaningful to the suicide context. After 

obtaining poor results from the existing algorithms, a decision was made to extract n-

grams and then filter them to extract relevant phrases. The proposed new phrase 

extraction and filtering method is described below. 

 

 

4.6 The Ensemble Concept Mining (ECM) Method 

 

Existing automatic phrase extraction methods produced very low precision results as 

shown in the previous section. Training a model with human annotated data is very 

resource extensive. To improve the accuracy of extracting domain relevant phrases, we 

have considered a new phrase extraction and filtering method.  We have hypothesised 

that we may extract phrases by using simple n-gram or other methods and then filter 

them for domain relevancy by comparing their semantic distance from a domain relevant 
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word list.  A new Ensemble Concept Mining (ECM) method has been proposed for this 

purpose. The following sections describe the proposed ECM method in detail. 

 

 

4.6.1 Description of the ECM Method  

A concept phrase or key phrase needs to have two features: phraseness and 

informativeness (Tomokiyo & Hurst, 2003). Phraseness is the degree to which a word 

sequence is considered to be a phrase. Informativeness refers to how well a phrase 

relates to a specific domain. The proposed method covers both of these ideas. It is an 

ensemble method, which means it takes ideas from other methods and adapts them for 

the GRiST data. It uses word embedding for the domain relevancy filtering purpose. 

The method has two parts. The first part is the extraction of key phrases by using rules 

of phraseness and the second part is the semantic based domain relevancy filtering for 

the domain relevancy. The first part can be replaced by any other generic key phrase or 

term extractor if need be. The fundamental idea is to use a generic phrase extraction 

method and then apply semantic vector based domain relevancy filtering. 

 

Figure 10 Ensemble Concept Mining (ECM) Method 

 

Part one: Phrase Extraction 

In this step, the phrases are extracted from the biomedical data. The extracted phrases 

grammatically must resemble a phrase. 
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1.  Sentences are extracted from the text as it is assumed that no key phrase 

parts are located simultaneously in two sentences (Pudota, et al. 2010). 

Special symbols such as ‘.’, ‘@’, ‘&’, ‘/’, ‘?’, ‘!’ were replaced with sentence 

delimiters. N-gram phrases are then extracted from sentences.  

 

2. It has been noted that a phrase usually does not start or end with a common 

preposition (El-Beltagy & Rafea, 2009). A list of English prepositions was 

created and if the phrases match with them or start with them then it was 

discarded. 

 

3. Stop words filtering. A list of English stop words was created. If the phrase is 

a stop word or if it contains only stop words, then it may not be a phrase. A 

list of stop words can be found in Stanford CoreNLP toolkit (Manning et al., 

2014). 

 

4. The word that expresses meaning (concept words) tend to be longer (Joos & 

Zipf, 1936). A domain specific exceptional concept word list could be created. 

Words not in the exception list but less than 5 characters long are dropped. 

 

5. A phrase usually does not start with a number; in fact, in this case all 

numbers containing phrases are dropped. This option can be adjusted as per 

requirement. 

 

6. Words in the concept phrase appears in other phrases (Parameswaran et al., 

2010). For example, a single concept word may appear in bigrams. This idea 

comes from the C-value method (Frantzi et al., 2000). 

 

7. Phrases usually carry a noun word in them (Subhashini & Kumar, 2010). If at 

least one word is not a noun, then it can be dropped. This is an optional step 

and we have considered a verb with an adverb could also be a concept. We 

need to parse the sentence to get POS tags. One can consider many other 

combinations of word types as given in (Siddiqi & Sharan, 2015). 

 

8. How frequently the phrase appears in the document is used as a feature. A 

concept phrase should not be rare in the document (Bleik et al., 2010). A cut 
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off point can be set. It is not applicable in our case as this is mainly 

applicable in text summarisation. 

 

9. Phrase spreads in multiple documents. In this case, a key phrase should 

appear in more than one patient’s assessment. Originally it was presence of 

phrase in multiple documents in a corpus (Pudota, et al. 2010). We can set a 

cutoff point for this. 

 

Part two: Semantic Domain Relevancy Filtering  

This step semantically filters the phrases for domain relevancy. Even if a phrase is 

grammatically correct but not semantically related to the current context then it is 

removed. 

10. Extract the domain relevant word list by comparing the frequency of the 

words with a reference corpus such as Wikipedia text data. 

 

11. A concept phrase should be semantically related with other phrases of the 

context. We can use word vectors and cosine similarity measures to 

semantically filter phrases and retain the domain relevant phrases.  

 

The above steps 10 and 11 of domain relevancy filtering technique is described in detail 

in the next section. Pudota, et al. (2010) proposed a technique to combine different 

phraseness measures mathematically. A phraseness score is calculated as a linear 

combination of all the features. The phraseness of a phrase P with a non-empty feature 

set {f1,f2,...,fn}, with non-negative weights {w1,w2,..,wn} is: 

 

 
𝑃ℎ𝑟𝑎𝑠𝑒𝑛𝑒𝑠𝑠(𝑃) =

∑ 𝑤𝑖. 𝑓𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (11) 
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The proposed ECM method adopts ideas from other algorithms and incorporates 

measures that are more suitable for medical notes and GRiST comments. For example, 

some algorithms argue about the appearance of a word in the beginning or end of a 

document, which may affect its ranking. But for clinical comments, it is not possible to 

apply that rule, as the data may be stored in separate database table fields. In the case 

of GRiST, comments were stored in a specific ontology node.  

 

4.6.2 Automatic Domain Relevancy Filtering 

 

Extracting phrases relevant to a specific domain automatically can be challenging. We 

assumed that we might create a list of the most frequent words and then use semantic 

similarity measures to detect conceptually similar phrases. In the first stage, we can use 

traditional frequency based analysis to retrieve words and in the second stage, word 

vector based cosine similarity may determine the relevancy of the phrase. The proposed 

two-stage method is described below. 

 

Automatic Relevant Word Extraction: 

 

Step1: Create a list of words that are more frequent in the domain than in a 

reference corpus. 

Step2: Calculate word vectors for each of the words in the list. 

Step3: Count the number of similar words in the list for each of the words. 

Step4: Sort the words based on the similar word count scores and extract a 

certain number of them. 

 

Filtering for Domain Relevancy: 

 

Step1: Take a key phrase and calculate its word vector. 

Step2: Calculate cosine similarity between the key phrases and the relevant 

word list. 

Step3: If the similarity is greater than a certain value, then mark the key phrase 

as relevant. 
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The above method was applied to find a list of keywords automatically. It shows 

promising results when tested with I2B2 data, which is described later in this chapter. 

 

 

4.7 Validation by using the GRiST dataset 

 

Each of the components of ECM is validated by relevant previous research as 

referenced to in the previous description of the method. Clinical comments from each of 

the GRiST nodes was extracted and concatenated as if each assessment was a 

document. Then the comments were split into sentences as per the delimiter defined in 

ECM. These sentences are then parsed by the Stanford parser (Manning et al., 2014) 

and saved in the database.  

 

With a PHP script, these sentences are then split to create unigram, bigram and trigram. 

Bigrams provide more specific meaning and they have been used extensively in concept 

extraction and text classification research (Bekkerman & Allan, 2003), (Xuerui Wang et 

al., 2007), (Hasan & Ng, 2010) and (Justeson & Katz, 1995). For validation purposes, I 

have only used bigrams. Due to the confidential nature of the data and lack of resources 

manual annotation by multiple people was not possible. Initially, validation was done by 

using self-annotated data and then with the i2b2 and semeval2010 dataset. 

 

For step 10 of the ECM, a semantic filter was created with the metamap extracted key 

phrases. It has been found that metamap extracted bigrams are more meaningful or 

context related. At first the semantic vector was calculated for each metamap bigrams 

and then cosine similarity of the selected phrase with any one of the metamap bigrams 

was calculated. If similarity was less than 0.80 (it is a parameter and chosen by trial and 

error) then the phrase was discarded. Semantic vector based similarity is described in 

chapter 4 in detail. 

 

For a total of 4018 assessments, there were 150,083 bigram phrases. After applying the 

ECM, 6056 phrases were found to be relevant. The following table shows some bigrams 

without ECM applied, with ECM applied but not including semantic filter (step 11) and 

with ECM applied including semantic filtering. 
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Table 14 Results of Phraseness Algorithm 

No ECM Phraseness 

filtering 

ECM Phraseness  ECM with Semantic filter 

(yes means relevant) 

this have 

have occur 

occur but 

but currently 

currently this 

this be 

be approximately 

approximately twice 

twice a 

a week 

suicidal because 

because of 

of have 

have ms 

ms and 

and feel 

feel everyone 

everyone would 

would be 

be good 

good off 

off without 

without her 

information at 

at time 

time of 

of need 

need to 

to be 

be look 

feel suicidal 

poor memory 

further exploration 

serious suicide 

suicide attempt 

fractured spine 

bubble bath 

slashing wrist 

unprovoked assault 

threatening throughout 

verbally hostile 

florid psychotic 

physically intimidate 

overnight leaf 

lewd conversation 

continued thought 

living skill 

tissue damage 

drinking excessively 

drink bleach 

suicidal thought 

learning disability 

racial comment 

damage property 

easily influence 

mild learning 

self destructive 

permanent foster 

emotional abuse 

alcohol relate 

feel suicidal=yes 

poor memory=yes 

further exploration=no 

serious suicide=yes 

suicide attempt=yes 

fractured spine=yes 

bubble bath=no 

slashing wrist=yes 

unprovoked assault=yes 

threatening throughout=yes 

verbally hostile=yes 

florid psychotic=yes 

physically intimidate=no 

overnight leaf=no 

lewd conversation=yes 

continued thought=yes 

living skill=yes 

tissue damage=yes 

drinking excessively=yes 

drink bleach=yes 

suicidal thought=yes 

learning disability=yes 

racial comment=no 

damage property=yes 

easily influence=yes 

mild learning=yes 

self destructive=yes 

permanent foster=no 

emotional abuse=yes 

alcohol relate=yes 
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From the above data, we can see that ECM (without step 11 semantic filtering) discards 

lots of simple phrases like ‘of have’, ‘feel everyone’ etc. However, it retains phrases like 

‘overnight leaf’, ‘inpatient setting’ etc. Clearly using just syntactic filters is not enough as 

the phrases in column two in the above table demonstrates. When a semantic filter (step 

11) is applied, it removes ‘overnight leaf’. We can see bigrams such as ‘physically 

intimidate’ is also filtered out. The results can be improved by changing parameters (i.e. 

minimum matching level) and adding more quality phrases to the predefined domain 

phrase list.  Further validation was carried out with i2b2 (2010) dataset, which is 

described in the following section. 

 

The proposed ECM uses some rules that were developed and analysed by previous 

researchers. References to them are provided in the description where appropriate. My 

contribution was to adopt key parts of the other methods and modify them for GRiST 

data (steps 5 and 9). Steps 6 and 7 are simplified and made optional.  I have added 

domain relevancy filtering (steps 10 and 11). The resulting final method is more readily 

applicable in a CDSS system like GRiST. The method is further validated by using the 

i2b2 dataset, which is described below. 

 

 

4.8 Validation by using the I2B2 dataset 

 

To validate the ECM method the i2b2 2010 challenge dataset was used. The 2010 

i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records 

presented three tasks: a concept extraction task, which focused on the extraction of 

medical concepts from patient reports; an assertion classification task, which focused on 

assigning assertion types for medical problem concepts and concept relationships 

classification tasks (Uzuner, South, Shen, & DuVall, 2011); 

 

The i2b2 datasets are available to the research community at large from November 

2011 from https://i2b2.org/NLP/DataSets. A total of 394 training reports, 477 test reports 

were de-identified and released. From the annotated text, we have removed phrases 

that contain numeric values so that we can calculate the word vector for each word. 

Wikipedia plain text was used as a generic reference text corpus. Wikipedia was chosen 

https://i2b2.org/NLP/DataSets
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as a generic corpus as it covers a wide range of topics and domains. It is also a very 

large and freely available dataset. The Wikipedia plain text corpus was taken from the 

URL (http://www.evanjones.ca/software/wikipedia2text.html). 

 

Word vectors were induced from PubMed and PMC texts and their combination using 

the word2vec tool. The word vectors are provided in the word2vec binary format 

(PubMed-and-PMC-w2v.bin). The word vectors are available for download from the URL 

(http://evexdb.org/pmresources/vec-space-models/) (Pyysalo, Ginter, Moen, Salakoski, 

& Ananiadou, 2012). 

 

 

4.8.1 Step1: Relevant Keywords Extraction 

 

Let us consider that a domain can be represented by a list of words. A list of words was 

extracted from the I2B2 data by using the method described earlier in the “domain 

relevancy filter” section. Firstly, from the plain text Wikipedia corpus, word density (word 

occurrence count/total word count) was calculated. Then word density was calculated in 

the i2b2 training corpus (domain data). The words that are more likely to appear in the 

domain data are selected as domain specific words. In our experiments, we have 

chosen the words that are 10 times more likely to appear in the domain corpus and it 

must be present at least 5 times in each corpus to filter out very rare words. This was a 

choice taken based on the observation of the data. The choice may vary with another 

dataset. 

 

In the next stage, we have calculated the word vector of each of these words. The 

cosine similarity was used to calculate the distance between words. The words that 

have a large number of matching words based on a minimum threshold are more likely 

to be domain specific words. We assumed that domain specific words would have many 

similar words present within the same domain corpus. We have achieved up to 0.66 f-

score for finding the single keywords that were present in the annotation key phrases.  

 

The following table shows some detailed results. 

 

http://www.evanjones.ca/software/wikipedia2text.html
https://code.google.com/p/word2vec/
http://evexdb.org/pmresources/vec-space-models/


4 Concept Extraction 

 

101 

 

 

Table 15 Single word domain relevancy filtering results 

Min 
match 

Min 
Similarity F-score 

4 0.4 0.649 

5 0.4 0.649 

6 0.4 0.649 

7 0.4 0.649 

8 0.4 0.65 

9 0.4 0.651 

4 0.2 0.646 

4 0.3 0.646 

4 0.4 0.649 

4 0.5 0.651 

4 0.6 0.657 

4 0.7 0.658 
 

 

 

4.8.2 Step2: Validation and Comparison  

 

To test the effectiveness of our method, i2b2 test and training data were used. To 

remain consistent with previous experiments we have again used only two words 

phrases. The sentic and n-gram methods that previously performed better with the 

GRiST dataset as well as RAKE and OpenNLP methods have all been used for 

comparison purposes. 

 

1. OpenNLP: The Apache OpenNLP library is a machine learning based 

toolkit for the processing of natural language text and is available from 

(https://opennlp.apache.org). It implements a maximum entropy based 

phrase/name entity extractor, which can be trained with annotated text. 

We have trained OpenNLP with the i2b2 training dataset and used the 

trained model to extract phrases from the test dataset. 

 

2. N-gram: In this case we simply extract phrases as n-grams and filter them 

by using the ECM method. 
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3. Chunk:  In text chunking a text is divided into syntactically correlated 

parts of words, like noun groups and verb groups. We have used 

OpenNLP chunker to extract chunks and then filtered them by using the 

ECM semantic filtering method. OpenNLP chunker was trained on the 

conll2000 shared task data and a pre-trained English language model is 

available online from the URL (http://opennlp.sourceforge.net/models-

1.5/). 

 

4. Rake: Rapid Automatic Keyword Extraction (RAKE) is an unsupervised, 

domain-independent, and language-independent method for extracting 

keywords from individual documents (Rose et al., 2010). RAKE uses stop 

words and phrase delimiters to partition the document text into candidate 

keywords. Candidate keywords are then scored based upon co-

occurrence, phrase length and frequency (Rose et al., 2010). A Python 

implementation available from the URL (https://github.com/csurfer/rake-

nltk) was used. 

 

5. Sentic: This algorithm breaks text into clauses by using dependency 

parsing. Then each verb and its associated noun phrases are considered 

in turn, and one or more concepts are extracted from these based on 

linguistic patterns (Rajagopal et al., 2013). A Java implementation of this 

algorithm was collected from the original authors. 

 

 

The following two tables show some detailed results. 

 

Table 16 i2b2 accuracy without ECM 

system Precision Recall F-score 

ngram 0.15 0.99 0.26 

chunk 0.39 0.73 0.51 

opennlp 0.84 0.42 0.56 

rake 0.50 0.57 0.56 

sentic 0.16 0.55 0.24 

https://github.com/csurfer/rake-nltk
https://github.com/csurfer/rake-nltk
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Table 17 i2b2 accuracy with ECM 

system Precision Recall F-score 

ngram 0.34 0.79 0.48 

chunk 0.74 0.57 0.64 

opennlp 0.90 0.33 0.48 

rake 0.59 0.48 0.53 

sentic 0.27 0.42 0.33 

 

 

From the above data, we can observe that filtering with ECM improves the precision and 

overall f-score. The results of the RAKE and OpenNLP model did not improve as these 

methods already include some statistical relevancy filtering and adding further semantic 

filtering reduced recall. Chunking and then filtering with ECM produced the highest f-

score (0.64).  

 

The key difference between other methods such as Rake and ECM is that ECM uses 

semantic filter after applying rules and Rake and many others use statistical or co-

occurrence measures. On the other hand, OpenNLP and many others use human 

annotated datasets for training a model. Sentic uses dependency parsing and common 

linguistic patterns to extract concepts.  

 

From this, we can see that using word vector based semantic filtering after phrase 

extraction can improve accuracy. We may not need to create domain specific 

annotation. We can use a generic phrase extraction algorithm and then filter the output 

with wordvector based sematic filtering. This approach outperforms the OpenNLP 

(trained with domain phrases) method and the RAKE method (no need for training). This 

can save both time and resources required for annotation. 
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4.9 Semantic Phrase Ranking   

 

Keywords highlight the main topic described in a document and its extraction is an 

important task in text analysis and information retrieval tasks. Algorithms such as RAKE 

(Rose et al., 2010) and others use statistical measures to rank candidate phrases. The 

common phrase ranking methods are term frequency, TF-IDF, term location, term length 

and co-occurrence with other terms etc. (Siddiqi & Sharan, 2015). We can modify part 

two of our ECM method and use it for semantic phrase ranking. In this case, we do not 

create a keyword list from domain corpus rather, we use semantic relatedness among 

candidate phrases to rank them. 

 

Steps of Semantic Phrase Ranking: 

 

Step1: Gather a list of Candidate phrases and calculate the semantic vectors for 

each of them. 

Step2: Measure the sum of the cosine distances of a phrase from all the other 

phrases in the list.  

Step4: Sort the phrases based on the score calculated in step 2 above and 

finally extract a certain number of them. 

 

 

To validate our approach, we have used the semeval2010 dataset. RAKE is a well-

known algorithm for extracting keywords (technically phrases) from a document by using 

word frequency and co-occurrence statistics, which is proposed by Rose et al.,(2010).  

Instead and in addition to the RAKE scoring method, we have applied our proposed 

semantic phrase ranking method on the semeval2010 key phrase extraction dataset.  

 

The input parameters for RAKE comprise of a list of stop words (or stoplist), a set of 

phrase delimiters, and a set of word delimiters. RAKE uses stop words and phrase 

delimiters to partition the document text into candidate keywords. After every candidate 

keyword is identified, a score is calculated for each candidate keyword. They have used 

different measures such as (1) word frequency (freq(w)), (2) word degree (deg(w)), and 

(3) ratio of degree to frequency (deg(w)/freq(w)). In summary, deg(w) favours words that 

occur often and in longer candidate keywords. Words that occur frequently are favoured 
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by freq(w). Words that predominantly occur in longer candidate keywords are favoured 

by deg(w)/freq(w). The score for each candidate keyword is calculated from the sum of 

its member (Rose et al., 2010). 

 

A Java implementation of the RAKE method as described by (Rose et al., 2010) is taken 

from (https://github.com/Linguistic/rake).  For evaluation purposes, the SemEval-2010 

Keyphrase extraction track data (a total of 144 documents) is taken from: 

 (https://code.google.com/archive/p/maui-indexer/downloads#makechanges).  

 

We have implemented a Java program in which RAKE keyword scoring was replaced by 

our own semantic similarity scoring method. A semantic similarity score is the sum of the 

cosine distance of a keyword from all other keywords in the candidate keywords list. We 

have also used a combination of semantic similarity and the RAKE method to score a 

keyword. The top 10 keywords are extracted and matched with the human annotated 

keywords in the semeval2010 dataset. The correctly extracted bigrams and trigrams are 

shown below.   

 

 

Table 18 Semantic score and RAKE score extracted correct keywords 

No of 

Documents 

Human Annotated 

keywords 

RAKE  

extracted  

Semantic score 

extracted  

Semantic 

+RAKE score 

144 1684 176 246 272 

 

 

From the above table we can see that if we use semantic scoring instead of the co-

occurrence based scoring of RAKE, we can extract more keywords that are correct. If 

we use both semantic and co-occurrence scoring, we can extract even more keywords. 

The proposed ECM method has two main parts, candidate extraction and semantic 

filtering. This experimental result further proves the validity and utility of our proposed 

semantic filtering approach. 

 

 

 

https://github.com/Linguistic/rake
https://code.google.com/archive/p/maui-indexer/downloads#makechanges
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4.10 Summary  

 

There are many researchers who have tried to identify concepts from clinical narratives 

e.g. (Batool, Khattak, Kim, & Lee, 2013), (Hina, Atwell, & Johnson, 2013), (Gorrell et al., 

2016) and (Siddiqi & Sharan, 2015). Also many have attempted to map text to ontology 

such as UMLS, for example (Batool et al., 2013), Metamap and cTATES tools etc. From 

the literature review and from our experiments it seems that much more progress is 

required in this field. Even state-of-the-art tools like cTAKES have produced very low 

recall with our dataset. 

 

The main contribution of this chapter is to demonstrate that a generic phrase extraction 

method followed by semantic filtering may perform equally well or better than a model 

trained with human annotated data. The experimental results highlight that the simple 

algorithms like n-gram/chunking may work as well as other complex algorithms. Simple 

n-gram/chunking with semantic filtering may produce better results than the methods 

that only use statistical measures. This also confirms the conclusion made by Frantzi et 

al. (2000) that a simple method may perform equally well. The ECM method has been 

validated with both our own GRiST dataset and the i2b2 dataset. We have also shown 

that adding semantic phrase ranking improves the performance of RAKE on the 

semeval2010 phrase extraction dataset. 

 

We are interested to represent each GRiST node not only as a “bag of words” but also 

as a semantic vector. This could allow us to measure semantic similarity among them, 

which in turn might reveal important patterns. It might also help to detect the presence of 

a node in the text by comparing the semantic similarity of a node with the extracted 

phrases. The next chapter discusses semantic processing of phrases, GRiST nodes and 

patients in detail. 
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5 Semantic Processing (Exploratory) 

5.1 Introduction 

 

This chapter describes the semantic processing of extracted key phrases, building a 

semantic profile of a patient, semantic representation of GRiST nodes and mapping 

GRiST nodes to SNOMED-CT concepts. These were exploratory works carried out to 

find patterns that might assist us to achieve our main objectives. The activities on this 

chapter were based around the following hypotheses: 

 

Hypothesis 1: Word vector can be used as a concept stemming mechanism. 

 

Hypothesis 2: A document vector could be used as a semantic representation of 

a patient more effectively than other methods. 

 

Hypothesis 3: Representing GRiST nodes semantically may highlight interesting 

patterns. 

 

The simplest method of representing a patient by using extracted key phrases is to 

represent the patient as a bag-of-phrases. I have looked for other alternative methods 

such as document vectors, lists of relational triplets given by OpenIE (Angeli, Johnson 

Premkumar, & Manning, 2015) system. A recent review of the various linguistic 

representation methods of semantic content can be found in (Schubert, 2015). Each 

GRiST node was semantically represented by a vector and interaction among them has 

been analysed.  

 

Many semantic dictionaries and resources have been developed such as WordNet, 

VerbNet (Schuler, 2005), and FrameNet (Baker, Fillmore, & Lowe, 1998) to understand 

the natural language. A review of this method can be found in (Giuglea & Moschitti, 

2004).  Research has shown that semantic knowledge of the domain helps to improve 

the knowledge extraction by reducing false positives by up to 75% (Livingston, Johnson, 

Verspoor and Hunter, 2010). The following sections describe each of the exploratory 

works with their experimental outputs and critical analysis. 
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5.2 Dependency Based Similarity 

 

This is an exploratory experiment that I have carried out to find semantically similar 

words by using Stanford dependency relationships. There are many semantic similarity 

measures found in the literature and most of them are based on WordNet. WordNet is a 

manually created similarity database. WordNet based similarity is described in (Gao, 

Zhang, & Chen, 2015) and in (Pedersen & Michelizzi, 1998). A review of the different 

WordNet based similarity can be found in (Meng, Huang, & Gu, 2013) and in (Agirre et 

al., 2009). 

 

Taking the grammatical link between words can improve the result (Padó & Lapata, 

2007). Many researchers have taken the grammatical structure into consideration while 

building a model, a review of these studies can be found in (Padó & Lapata, 2007) and 

(Turney, 2013). Pado (2007) used graph distance between words and Turney (2013) 

used subject-verb-object type relationships.  

 

Word2vec algorithm uses surrounding words of a word to create a vector 

represenatation of a word (Mikolov, Yih, et al., 2013). Cosine similarity distance can be 

used as a metric to calculate word similarity. I believe dependency relationships can 

also be used to extract similar words. I have developed an algorithm that can find similar 

words without using WordNet or Word vector. The algorithm uses Stanford dependency 

relationships as its attributes.  

 

Firstly, comments were split into sentences then each of the sentences was parsed by 

the Stanford dependency parser. The XML parse tree was then processed to find 

dependency tuples. These tuples were then saved in a database table. 

 

Sentence: “Remains verbally hostile and aggressive to staff” 

 

Stanford dependency parse tree: 

 

<dependencies type="collapsed-ccprocessed-dependencies"> 

          <dep type="root"> 

            <governor idx="0">ROOT</governor> 
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            <dependent idx="1">remains</dependent> 

          </dep> 

          <dep type="advmod"> 

            <governor idx="3">hostile</governor> 

            <dependent idx="2">verbally</dependent> 

          </dep> 

          <dep type="xcomp"> 

            <governor idx="1">remains</governor> 

            <dependent idx="3">hostile</dependent> 

          </dep> 

          <dep type="cc"> 

            <governor idx="3">hostile</governor> 

            <dependent idx="4">and</dependent> 

          </dep> 

          <dep type="xcomp" extra="true"> 

            <governor idx="1">remains</governor> 

            <dependent idx="5">aggressive</dependent> 

          </dep> 

          <dep type="conj:and"> 

            <governor idx="3">hostile</governor> 

            <dependent idx="5">aggressive</dependent> 

          </dep> 

          <dep type="case"> 

            <governor idx="7">staff</governor> 

            <dependent idx="6">to</dependent> 

          </dep> 

          <dep type="nmod:to"> 

            <governor idx="3">hostile</governor> 

            <dependent idx="7">staff</dependent> 

          </dep> 

        </dependencies> 

 

Example of a tuple extracted from the dependency relation shown below: 

 

<dep type="advmod"> 
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            <governor idx="3">hostile</governor> 

            <dependent idx="2">verbally</dependent> 

          </dep> 

 

Table 19 Dependency tuple in table 

Type Governor Dependent 

Advmod Hostile verbally 

       

 

Dependency based Similarity algorithm: 

 

1. Take a word and find all of its governors or dependents for a particular type. 

2. Find other words that share the same governor or dependent and count them 

3. The words that share maximum dependents or governors with each other are 

stored as similar words. 

4. To improve accuracy, find out if the target word is also a similar word of its 

own similar words. (This is optional). 

5. Output similar words with similarity ranking (here simply match count is 

used). 

 

 

The following table illustrates some example words and their semantically similar words: 

 

Table 20 Similarity by dependency and word vector 

Word  Similar words by 

Stanford 

dependency 

Similar words by google 

news trained word vector 

Similar words by 

PubMed trained 

word vector 

Depression Mood, thought, 

problem, health, 

abuse, this, 

behaviour, 

stress, 

symptom, 

bipolar_disorder, 

depression_anxiety, 

mental_illness, 

psychosis, alcoholism, 

depressive, suicidal_ 

thoughts, schizophrenia, 

Depressive, anxiety, 

somatization, 

dysthymia, 

suicidality, PTSD, 

psychotic, DSM-

defined, mood, 
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feeling, pain anxiety_disorders, 

psychological_distress 

phobia 

Misuse Behaviour, 

attempt, abuse, 

alcohol, thought, 

this, problem, 

harm 

misused, misusing, 

misuses, 

misappropriation, abuse, 

pilferage, Misuse, 

misspending, 

misapplication, use 

Abuse, illicit, 

dependence, 

abusers, drug, 

addictions, self-

medication, 

marijuana, sedative 

Cannabis Alcohol, drug, 

substance, 

heroin, food, 

amount 

marijuana, Cannabis, 

Marijuana, dagga, 

heroin, cannabis_resin, 

ganja, 

medicinal_marijuana, 

cocaine, 

methamphetamine 

Marijuana, 

polysubstance, 

polydrug, ecstasy, 

heroin, alcohol, illicit, 

poly-substance, 

methamphetamine, 

hashish 

Alcohol Drug, 

substance, 

behaviour, food, 

cannabis, 

heroin, misuse, 

risk 

Alcohol, 

alcoholic_beverages, 

booze, 

alcoholic_beverage, 

alcoholic_drinks, drink, 

liquor, 

underage_drinking, 

drinking, binge_drinking 

Cannabis, 

marijuana, non-

alcohol, 

polysubstance, 

tobacco, hashish, 

cigarette, abuse, 

smoking, crack 

Feel  feel, have, be, 

say, state, 

report, do, 

make, take, 

express, 

feeling, felt, feels, think, 

know, really, Feeling, 

sense, definitely 

Think, forget, felt, 

want, say, really, 

something, 

remember, afraid, 

know, anything, hear 

Need need, support, 

care, 

needed, want, needs, 

must, needing, can, 

should, do, necessary, 

imperative 

Necessity, needs, 

strive, must, needed, 

will, should, 

necessary, continue, 

future, needing, 

help, seek,  
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In the above table, the second column shows the similar words found when using the 

proposed dependency-based similarity method. The word vector based similar words, 

shown in the third column, were taken from the web service (http://bionlp-

www.utu.fi/wv_demo/), which was trained on the “google world news negative 300” 

dataset. The fourth column displays similar words based on the word vectors, which 

were trained on the PubMed dataset (Pyysalo et al., 2012). 

 

This exploratory work shows promising results. For example, it finds similar words for 

the word ‘alcohol’ such as drug, substance, behaviour, food, cannabis and heroin.  It 

was outside the scope of this research to work on this any further. Dependency based 

word embedding is described in a recent paper by Levy & Goldberg (2014), which 

produced a slightly different set of results than a model trained on a “bag of words”.  For 

the purpose of this research we have used a model and algorithm developed by 

Mikolov, Sutskever, et al. (2013) as described previously in Chapter 4. 

 

 

5.3 Phrase Reduction 

 

Numbers of phrases extracted by the n-gram method are huge, even after filtering them 

via. a phraseness filter, as described in the ECM method earlier. It is desirable to reduce 

this huge number of phrases to a small set that may still reasonably represent the 

context. Traditional ways of doing this are via character stemming such as the Porter 

algorithm (Porter, 1980) and/or phrase edit distance such as the Levenshtein distance 

(Levenshtein, 1966). We may use semantic vector for concept level stemming. The 

following sections describe both types of stemming and compare their results on GRiST 

data. 

 

 

5.3.1 Software Setup 

 

For this research, I have used the word2vec tool developed by Mikolov, Corrado, et al. 

(2013) and available from (https://github.com/dav/word2vec). To find the vector of a 

http://bionlp-www.utu.fi/wv_demo/
http://bionlp-www.utu.fi/wv_demo/
https://github.com/dav/word2vec
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word a web service has been created.  Word vector was extracted based on the google 

word vector model (GoogleNews-vectors-negative300.bin). An HTTP server program 

was written in the C programming language with the help of open-source libraries 

(https://code.google.com/p/word2vec/) and 

(https://www.cs.utah.edu/~swalton/listings/sockets/programs/part2/chap6/simple-

server.c).  

 

Given a word, this server output 300 comma-delimited symantic attributes of the given 

word. It is very fast and can be used from other programming languages such as Java 

and PHP. I have looked at a few other, mainly Java based, tools to calculate word vector 

but ultimately created my own due to the slow processing speed of the other tools.  

 

 

5.3.2 String Stemming 

 

Phrase extraction algorithms generally produce lots of phrases. The first challenge was 

to filter them and produce a list of phrases that were actual phrases and not just simply 

two words appearing together. For this task, the ECM method was used as described in 

the previous chapter. 

 

The second challenge was to reduce the number of phrases by stemming. Levenshtein 

distance is a popular method for this. This string similarity technique can filter singular, 

plural, tenses etc. and different forms of the word to its stem. This phrase stemming 

process may reduce the number of phrases, but it does not compare similarity based on 

word semantic. Nonetheless, we can use string stemming to reduce the number of 

phrases.  

 

There are many classical stemming algorithms available such as Lovins, Dawson, 

Porter, Paice/Husk, Krovetz (Moral, de Antonio, Imbert, & Ramírez, 2014). Comparison 

of them can be found in (D. Sharma & Cse, 2012). For this research, I have used mainly 

Levenshtein distance which is explained in (Haldar & Mukhopadhyay, 2011). This 

performed better than all others that have been tried with a sample dataset. In this 

document, the terms ‘string stemming’ or ‘syntactic stemming’ refers to the reduction of 

phrases by Levenshtein distance measure. 

https://code.google.com/p/word2vec/
https://www.cs.utah.edu/~swalton/listings/sockets/programs/part2/chap6/simple-server.c
https://www.cs.utah.edu/~swalton/listings/sockets/programs/part2/chap6/simple-server.c
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There is a Java library called simmetrics, which was developed by Sam Chapm of 

Sheffield University, UK and has been released as an Open Source library. It is 

accessible from (https://github.com/Simmetrics/simmetrics). This is a Java library of 

similarity and distance metrics e.g. Levenshtein distance. It has implemented many 

algorithms and a complete list of them can be found in its Github repository source code.  

 

The measure metrics are normalised in the simmetrics library, so the maximum similarity 

is 1 and no similarity is zero. This allows us to define how much similarity we want, for 

example 0.80 or 0.90 etc. The level of similarity is a parameter of the algorithm so may 

differ from dataset to dataset, or on requirements. The normalisation also helps us to 

compare this similarity with the similarity produced by word vector (cosine similarity).  

 

 

5.3.3 Semantic Stemming 

 

String similarity measures such as Levenshtein distance does not work based on the 

actual meaning of the words. To reduce the number of phrases semantically we may 

use cosine similarity between two phrase vectors. We can use the following simple 

steps to accomplish concept stemming. 

 

Step 1: Take a word and find its word vector 

Step 2: Match the word with each of the words in the concept list 

Step 3: If a match is found within a threshold value then use the word already in 

the concept list. Or if a match is not found then add this concept word to the 

concept list. 

 

By applying the above simple steps, we can extract a reduced set of concept words that 

represent the domain concepts. It may be better to use the average of the vectors of all 

the words that match with a specific concept word to represent the vector of that 

concept. 

 

https://github.com/Simmetrics/simmetrics
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This technique has many potential benefits. If we compare the nodes based on string 

matching this would not cover the words that are different by character comparison but 

similar semantically. For example, the words ‘anxiety’ and ‘paranoid’ are different in 

spelling but semantically they are close. The application of word vectors and cosine 

similarity can aid us in this context.  

 

I have used the simmetrics library for string based similarity measures and cosine 

similarity for vector base similarity measures. The idea was to compare these two 

methods and gain an insight into their potential future use. 

 

  

5.3.4 Experimental Results 

 

For this exploratory work, I have used bigram phrases only. A Java program was 

developed to implement the phrase compression methods by both string stemming and 

semantic stemming as described earlier. The software was run with different levels of 

matching threshold. The following are the results of the experiments. 

 

Total number of phrase = 3185 

 

Table 21 Phrase reduction results 

Similarity String stemming 

number of phrase 

Semantic stemming 

number of phrase 

0.99 3185 2924 

0.90 2827 2861 

0.80 2541 2434 

0.70 2183 1673 

0.60 1355 1011 
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Figure 11 string vs semantic stemming results 

 

From the above chart, we can see that semantic compression has more impact. At 0.70 

similarity phrase compression=1-2183/3185=0.32 (approximately 32%) and vector 

based compression is 48%. More compression does not mean more quality. It has been 

seen from the data that after less than a 0.70 similarity measure the phrases start to 

differentiate semantically.  From our dataset, we have seen that about 0.80 similarity 

measure gives better results. 

 

Experimental results show that we can use string based similarity to do the stemming 

and after that, we can perform a vector based similarity to reduce the number of 

extracted phrases semantically. Some sample phrases are shown in the table below. 

 

Table 22 Phrase stemming by string match and vector similarity 

Phrase Phrase concept Vector concept 

alcohol abuse alcohol abuse Misuse alcohol 

occasional suicidal occasional suicidal frequent suicidal 

anger issue anger issue anger problem 

alcohol intoxication alcohol intoxication drinking alcohol 

anger outbust anger outbust anger toward 
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From the above sample, we can see “anger issue” and “anger problem” both considered 

as the same concept based on the semantic distance of the word vectors. Levenshtein 

distance would not work in this case, as the similarity would have been low. This result 

shows support towards the first hypothesis in this chapter that the vector based similarity 

measure can be used for concept stemming. One must find the suitable value for the 

acceptable similarity measure by trial and error. We have observed that about a 0.80 

value for similarity provides semantically similar results. Please note 1 means complete 

match and 0 means no match at all by cosine similarity measure. 

 

 

5.4 Semantic Profile Representation 

 

Developing a semantic profile of a patient based on the comments is desirable. We can 

assume that in real life when a clinician assesses a patient they create a profile of that 

patient in their mind based on the data available and the physical observations. Some of 

the methods that have been considered for building a patient profile are described 

below. 

 

 

5.4.1 Bag of Concepts 

 

We could simply use the extracted concepts from a patient description to represent the 

patient. We can create a list of all possible phrases and create a vector with value 0 for 

the non-existence of the phrase and 1 or actual count as the existence of the phrase. 

The resulting dataset can then be used in machine learning tools like Weka. Many text 

classification algorithms can create the bag-of-words themselves to run the classification 

task on raw text. We aimed to explore other possible options and put more emphasis on 

semantic rather than syntactic similarity. 
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5.4.2 OpenIE tuples 

 

This is quite similar to the “bag of concepts” method described previously but uses 

OpenIE extracted relations instead.  Relation triples produced by the Open Information 

Extraction (OpenIE) system are useful for question answering, inference, and other IE 

tasks (Angeli et al., 2015). 

 

Open information extraction (open IE) refers to the extraction of relation tuples, 

typically binary relations, from plain text. The central difference is that 

the schema for these relations does not need to be specified in advance; 

typically, the relation name is just the text linking two arguments. For 

example, Barack Obama was born in Hawaii would create a triple (Barack 

Obama; was born in; Hawaii), corresponding to the open domain relation was-

born-in (Barack-Obama, Hawaii).  

(Source: http://nlp.stanford.edu/software/openie.html) 

 

 

For sentence “Born in Honolulu, Hawaii, Obama is a US Citizen.”   

 

We get the following triples: 

 

Table 23 OpenIE tuples 

Entity Relation Object 

Obama Is US citizen 

Obama born in Honolulu, Hawaii 

 

 

From the above table, we can see that if we extract tuples from each of the sentences 

from patient notes than we can build a list of tuples. We can then compare which patient 

has similar types of relationships and whether they can be used to represent the patient 

and ultimately predict suicide. For this purpose, the OpenIE system was downloaded 

from (http://nlp.stanford.edu/software/openie.html) and a tuple generation web service 

was created in which we can feed a sentence and get all the tuples as return values. 

 

http://nlp.stanford.edu/software/openie.html
http://nlp.stanford.edu/software/openie.html
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The following are some typical outputs from the OpenIE system: 

 

Sentence: Admits to attacking a man with a cricket bat on the day she was arrested. 

 

Table 24 OpenIE parsed results 

Probability Entity Relation Object 

0.42 She be arrest with cricket bat 

0.42 She Be with cricket bat on day arrest 

0.42 She be arrest on Day 

1 Admit Attack Man 

0.42 She Be Arrest 

 

 

From the above we can see that the phrases “attack man” and “be arrest” could be 

potential indicators of harm to others (hto) and could identify an adverse situation. 

 

Sentence: Previous reports of setting fire to his clothing (jeans) when in prison after 

obtaining a lighter from another prisoner. 

 

Table 25 OpenIE parse results of the second sentence 

Probability Entity Relation Object 

1 Report set fire when to he clothing 

1 He Clothing jeans 

1 Report set fire to he clothing 

1 previous report set fire when to he clothing 

1 previous report set when fire 

1 previous report set fire to he clothing 

1 Report Set fire 

1 previous report Set fire 

1 Report set when fire 

 

From the above table, we can see that the “set fire” could be a potential indicator of 

harm to others.  
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It appears that we may build a list of tuples and classify the patient based on the tuples 

presence. We can ignore the first entity column, which most likely includes a patient’s 

name. But we face a serious challenge here. In the first example, we have 5 tuples and 

in the second example, we have 9 tuples. Not all of these tuples are relevant, and we 

observe a huge number of them for each sentence and ultimately for each patient. 

 

There needs to be a semantic processing to filter these tuples before they can be used 

for profile building. Some of the simple methods like frequency count have been used for 

this purpose without success. It appears that we need more semantic analytical power 

than just simple occurrence counting.  

 

As a demonstration of the usefulness of the Phraseness filtering by ECM method 

described previously, we can apply it to the extracted tuples.  Approximately 100,000 

sentences were first analysed by the OpenIE tool and then the third part of the tuples 

was considered as a phrase. The following tables show lists of phrases with and without 

the phraseness algorithm. The number after the equals sign is the occurrence count. 

 

Table 26 Phraseness algorithm applied on OpenIE extracted data 

Without phraseness filtering With phraseness filtering 

the past=61(frequency) 

suicidal thought=32 

self harm=30 

he wife=28 

he life=27 

he mother=23 

long history=21 

protective factor=20 

she life=20 

he family=18 

risk of suicide=16 

thought of suicide=16 

she mother=16 

she husband=15 

suicidal ideation=15 

suicidal thought=32 

protective factor=20 

suicidal ideation=15 

mental health=14 

suicide attempt=14 

mental health service=10 

fleeting thought=9 

physical health=8 

hospital admission=8 

verbally abusive=7 

delusional belief=6 

sexually abuse=6 

illicit substance=6 

sleep pattern=6 

family member=6 
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mental health=14 

she home=14 

suicide attempt=14 

she medication=13 

she child=11 

health service=6 

memory problem=6 

fellow patient=5 

serious attempt=5 

could vulnerable=5 

 

 

We can see that the data generated by sophisticated tools like OpenIE still needs 

filtering. Arguably, to limit the complexity one can simply generate n-grams from raw text 

and apply filtering algorithms. In the case of ‘bag of concepts’ or ‘bag of triples’ the 

resulting number of total attributes for classification can be huge. Representing patients 

with semantic vector is considered more manageable and it has been shown that the 

vector representation performs better (Le & Mikolov, 2014). We may also simply use raw 

text to represent patients and use text classifiers. Some of the classification experiments 

and results are shown in Chapter 6. 

 

 

5.4.3 Document Vector 

 

Document Vector is a vector representation of a document built by combining the word 

vector of its constituent words. Creating a document vector and the use of it for text 

classification has achieved state of the art results as claimed by Le & Mikolov (2014). 

They argue that the bag-of-words features have two major weaknesses: they lose the 

ordering of the words and they also ignore semantics of the words. Empirical results 

show that document vector outperforms bag-of-words models as well as other 

techniques for text representations (Le & Mikolov, 2014). 

 

In the GRiST system, we have comments attached to the ontology nodes and if we 

concatenate all these comments then we can represent each assessment by this 

resulting text. We may apply the document vector idea and create a semantic 

representation of an assessment by creating a vector from this text. 
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There are many methods for calculating document vector from the word vectors. The 

simplest one is taking the average of the entire constituent words vector. For this 

research, I have used an implementation of the algorithm as proposed by Le & Mikolov ( 

2014). A Python based implementation of the algorithm is available from 

(https://github.com/klb3713/sentence2vec). The created document vectors were used to 

classify risk level, which is described in chapter 6. 

 

 

5.4.4 Profile Representation Summary 

 

From the above mentioned methods we can observe that “bag of words” and “openIE 

tuples” both require filtering. For any subsequent application of the created profile we 

would also need string matching. This makes them complex and unsuitable for machine 

learning. 

 

In comparison to other methods, the document vector approach is more flexible, and this 

highlights our second hypothesis of this chapter. We may represent a patient by a vector 

calculated from clinical narratives. A detailed description of the process of creating the 

document vector and its use in classification is given in Chapter 6 where it has also 

been compared with other classification methods. 

 

 

5.5 Semantic Representation of GRiST Nodes  

 

After considering the semantic representation of phrases and patients, the semantic 

representation of the GRiST nodes has been explored. GRiST ontology has leaf nodes, 

which are often linked to a question for gathering information about a patient. There are 

two types of answers - one is a numeric value and the other is an optional comment. All 

the comments are stored in a database corresponding to its GRiST node name. To build 

a semantic representation of a node the stored comments were used.  

 

https://github.com/klb3713/sentence2vec
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Once we construct a semantic representation of a node, we may use it to better 

understand the data and improve the GRiST system. This might allow us to extract 

phrases from comments and attach them automatically to a node based on the cosine 

similarity measure. This technique may also help us to determine a numeric value of a 

node for a given patient from the textual comments. 

  

Several experiments have been conducted to explore and understand the dataset and 

find interaction patterns in the GRiST ontology nodes. These experiments prove the 

third hypothesis of this chapter, that representing GRiST nodes semantically may 

highlight interesting patterns. These experiments are described below in their own 

separate sections. 

 

 

5.5.1 Experiment 1: Finding Relevant Phrases within a Node 

 

Generating a list of relevant phrases for a node is time-consuming. The method 

described here shows how we can do this automatically. Bigram phrases have been 

extracted for each node and stored in a database table. There were many phrases in a 

single node and finding which phrases were relevant to the node was a challenge. 

Understandably, there was some overlap of comments and the same phrases may 

appear in more than one node. To overcome this problem a method was applied based 

on the following algorithmic steps. 

 

Automatic generation of relevant words: 

 

1. Calculate vector for each phrase. 

2. For each phrase in a node calculate its distance with all other phrases in 

the same node and average the distances. 

3. Sort the phrase based on the average distance value. A phrase that has 

a high value means they are more closely related to this node. 

4. Do this for every node. 

 

The core assumption was that a relevant phrase would have many similar phrases of 

itself in the same node. Therefore, if we measure similarity between each phrase and 
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add the scores then the highest scoring phrase is the most relevant to that specific 

node. No other filtering has been done and the algorithm was run on the extracted 

phrases. The following are the results for some of the nodes. 

 

Table 27 Relevant phrase within a node 

Node Name Phrase=score 

Suic 

(suicide) 

sucidal thoughts=0.78 

serious attempt=0.72 

expressing suicidal=0.69 

suic_curr_int 

(suicide current intention) 

committing suicide=0.61 

harm suicide=0.50 

longer experiencing=0.472 

longer feels=0.46 

experiencing suicidal=0.39 

feels positive=0.30 

suic_pot_trig 

(suicide potential trigger) 

feels isolated=0.37 

feels lonely=0.37 

suic_ideation 

(suicide ideation) 

having thoughts=0.51 

having fleeting=0.49 

denies thoughts=0.28 

Sh 

(self-harm) 

intrusive thoughts=0.56 

self injury=0.53 

harming behaviours=0.52 

harm attempts=0.49 

superficial cutting=0.46 

coping strategy=0.33 

coping mechanism=0.33 

Hto 

(harm to other) 

physical aggression=0.57 

aggression towards=0.55 

damaging property=0.53 

aggressive towards=0.51 

verbal aggression=0.50 

physically aggressive=0.43 

damage property=0.40 
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We can see from the above table that node meaning and highly scored phrases closely 

resemble one another. We may build a semantic vector for each node based on these 

phrases. Any new phrase can be matched against the node semantic and the closer the 

match the more likely that phrase would relate to that node. 

 

When we do not have manually annotated phrases then we can use this method to 

extract meaningful phrases for a particular node. Once we have relevant phrases then 

we can use them to build the vector representation of the node. Starting from nothing 

this technique can build better semantics for each node as more and more data 

becomes available. 

 

This technique has real life application, as mapping extracted phrases to a specific node 

would indicate activities related to that node. For example, “verbally aggressive” would 

automatically match with node hto (harm to others).   

 

 

5.5.2 Experiment 2: Clustering Phrases by Semantic Vector 

 

The GRiST ontology nodes ideally should capture all possible aspects of suicide risk 

factors. For example, they could be financial problems, health problems and relationship 

problems etc. We expect an ontology should cover all the aspects of the relevant 

domain. I have assumed that we may be able to cluster the phrases based on its vector 

value and find clusters that may represent the different aspects of the domain. 

 

Before clustering the phrases, we need to find the vector representation of the phrases. 

For multi-word phrases, the phrase vector was calculated by averaging its constituent 

word vector. Each of the words was passed to the web service to obtain the word vector 

and then it was used by the java program. For cluster analysis, SimpleKMeans algorithm 

from Weka Machine learning package (Hall et al., 2009)  was used to create clusters of 

different sizes.  
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Table 28 Phrase clustering 20 clusters 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 

information sharing, 

problems reading, 

counseling services, 

personal hygiene, 

community living, 

anti social, 

behavioral changes, 

black head, hand 

lacerations, arm 

bruises, big head, 

head butt, head 

injuries, banging 

head, toes claw, 

head banging, 

interpersonal skills, 

coping skills, 

interpersonal 

relationship, 

learning skills, 

social skills, selfcare 

skills, understanding 

behaviour, literacy 

skills, 

serious injury, 

handsuperficial 

injury, blister finger, 

hip replacement, 

fractured jaw, ankle 

injury, neck 

spondylosis, broken 

wrists, stomach 

operation, abdomen 

wound, 

 

Table 29 Phrase clustering 50 clusters 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 

personal hygiene, 

anti social, social 

activities, spatial 

awareness, social 

anxiety, social skills, 

phobia social, social 

event, lifestyle 

education, social 

services, increasing 

awareness, 

personal 

awareness, social 

drinking, 

employment 

education,  

black head, hand 

lacerations, arm 

bruises, big head, 

head butt, head 

injuries, banging 

head, toes claw, 

head banging, 

interpersonal skills, 

coping skills, 

interpersonal 

relationship, 

learning skills, 

selfcare skills, 

understanding 

behaviour, literacy 

skills, verbal 

communication, 

serious injury, hand 

injury, blister finger, 

hip replacement, 

fractured jaw, ankle 

injury, neck 

spondylosis, 

abdomen wound, 

arm fractures, minor 

injury, leg dvt, groin 

abscess, sliding 

hernia, recent 

injury, fracture 

femur, tendon 

repair, broken rib 

 

The analysis of the created clusters shows that even though there are lots of similarities 

exist, but anomalies are also visible. For example, in the above Table 29 we can see 

‘head injuries’ in cluster 1 and ‘recent injury’ in cluster 4.  Many different types of 
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concepts are mixed in the same cluster. Even though there is lots of accurate clustering, 

it is still challenging to create a clear semantic boundary. It could be that words are 

spread over a huge number of contexts and using cluster sizes 20 or 50 does not 

capture the correct representation. 

 

My initial thought was to cluster the words by word vectors, then connect each of the 

clusters to a specific GRiST ontology node. From the above analysis, we see that 

getting a semantically meaningful cluster is challenging. Alternatively, I have tried to 

connect phrases to the GRiST node semantically. The detail of that process is described 

in the following section. 

 

 

5.5.3 Experiment 3: Finding Phrases Similar to a Node 

 

Semantic vector representation of the GRiST nodes was calculated. From the database, 

I have extracted the words that appear in a specific node. Then word vector for each of 

these words was calculated. The word vector was based on the google-word-vector 

model as described previously. I have used only the manually annotated words for this 

purpose. The node semantic vector was calculated by averaging the semantic vector of 

each of the occurring words.  

 

In the next step, I have queried every single word from the database. Then word vector 

was calculated for the selected word and then the cosine similarity between a word and 

a node was calculated. For each node, I have listed the top 10 words that match more 

with the node. Some of the results are shown in the table below. 

 

 

Node and Words Semantic Matching Method: 

 

Step1: Query all nodes from the database 

Step2: For each node find relevant words in the n-gram table 

Step3: Calculate word vector for each word 

Step4: Average the words vector to get the node vector 

Step5: Select a node 
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Step6: Extract words from n-gram list and calculate word vector 

Step7: Calculate the cosine similarity between word and the node vector 

Step8: Sort the word by its similarity to the node 

Step9: Display the top ten words per node 

 

 

Table 30 Phrases similar to a node 

Node name Top matching words 

suic_discovery suicidal=0.63 
overdose=0.59 
unprescribed=0.59 
medication=0.59 
alochol=0.57 
overdosed=0.56 
psychiatric=0.56 
methadone=0.55 
overdoses=0.55 
overdosing=0.54 
temazepam=0.54 

suic_lethality unprescribed=0.69 
methadone=0.68 
medication=0.68 
painkillers=0.67 
overdose=0.66 
drugs=0.66 
temazepam=0.65 
alcohol=0.64 
medications=0.64 
overdosing=0.63 
antidepressants=0.63 

suic_regret embarrassed=0.66 
despondent=0.64 
angry=0.63 
ashamed=0.62 
unhappy=0.61 
sorry=0.61 
remorseful=0.61 
suicidal=0.61 
scared=0.60 
frustrated=0.59 
regretful=0.58 

suic_leth_insght 

(suicide lethality insiht) 
unprescribed=0.62 
suicidal=0.60 
medication=0.60 
overdosing=0.58 
drugs=0.58 
disinhibited=0.58 
overdose=0.57 
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Node name Top matching words 
methadone=0.56 
psychosis=0.56 
antidepression=0.56 
overdoses=0.56 

suic_prosp_leth 

(potential lethality of prospective 

suicide method) 

overdoses=0.66 
overdose=0.66 
methadone=0.65 
drugs=0.64 
medication=0.64 
painkillers=0.63 
unprescribed=0.62 
overdosing=0.61 
antidepressants=0.60 
medications=0.60 
methodone=0.59 

suic_eol_prep 

(suicide end of life preparation) 
suicidal=0.56 
concerned=0.56 
worried=0.55 
concern=0.52 
anxiety=0.50 
afraid=0.50 
distress=0.48 
paranoid=0.48 
concerns=0.48 
scared=0.48 
harm=0.47 

gen_sh_cuts 

(general self-harm cutting) 
abdomen=0.63 
wrists=0.62 
throat=0.61 
wounds=0.57 
bruises=0.54 
knife=0.49 
machette=0.46 
abrasion=0.45 
selfdefence=0.44 
arms=0.44 
abcesses=0.44 

 

 

From the above empirical data, we see that ‘suic_discovery’ and ‘suic_lethality’ share 

many relevant phrases. For both ‘suicide discovery’ and ‘lethality’ contexts we generally 

expected to see words like "overdose" and 'unprescribed' drugs. 

 

In the node 'suic_regret' we see the words 'embarrassed', ‘ashamed’ and 'remorseful'. 

Again, in this context, we probably expected to see if somebody attempted suicide and 

failed to do so. 
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The ‘suic_eol_prep’ (end of life preparation) has the words like ‘concerned’, ‘worried’, 

‘anxiety’ and ‘paranoid’. Again, this seems similar to the context. 

 

The node ‘suic_p_trig_mtch’ (potential trigger) contains the words ‘anxiety’, ‘depression’, 

‘traumatic’ and ‘paranoid’.  

 

The node ‘gen_sh_cuts’ (self-harm cuts) contains the words ‘wrists’, ’throat’, ‘wounds’ 

and ‘knife’. 

 

The node ‘hto_dest_prprty’ (harm to other destroy) contains the words ‘assaulted’, 

‘stabbed’, ‘violent’ and ‘altercation’. 

 

It is clear from the above example that we can attach relevant words to a specific 

ontology node by the proposed method. The semantic vector of an ontology node 

attracts the relevant words. We do not have to annotate a big list of words. If we 

annotate a few words and build the semantic representation of a GRiST ontology node 

from them, we can then automatically extract other words that may be relevant to the 

context of the node.  

 

Some of the nodes for example, ‘suic_eol_prep’, ‘suic_leth_insght’, ‘suic_discovery’ and 

‘suic_lethality’ share many common words. I would argue that in all of the cases they are 

very closely related nodes. If we look at the GRiST structure, we see that some nodes 

have only subtle difference.  We expect ‘suic_discovery’ and ‘suic_lethality’ to be related 

to actual suicide attempt or process. This leads us to investigate how the GRiST nodes 

are themselves semantically related, which I have done later in this chapter. 

 

We can see that if we want to develop an ontology from raw data, using clustering 

based on the word vectors, it might prove more challenging. However, the other way 

around, when we have an ontology, then we can do semantic analysis and potentially 

improve the ontology easily. The next experiment looked at how GRiST nodes are 

themselves clustered based on their vector representation. This could indicate which 

nodes are similar. 
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5.5.4 Experiment 4: Clustering Nodes by Vector 

 

GRiST ontology has a huge number of nodes - a total of 446. The semantic vector of a 

node represents it semantically. The objective of this experiment was to cluster the 

nodes based on its semantic vector value and to find out which nodes are closely 

related with each other. As GRiST has many nodes, this might provide us a way to 

review the dimension of the ontology. We could try with other established methods such 

as principal component analysis, but doing this task using comments and word vectors 

could be advantageous, especially when numerical data may not be available. 

 

I have calculated the node vectors by averaging the word vectors of the frequent words, 

which appeared in the nodes. A list of words was queried from the database for a 

particular node and then word vectors for the words were calculated by using the word 

vector HTTP server as mentioned previously. Then the average of the word vectors was 

chosen as the node vector. Once I have the vector for all the nodes, then they were 

clustered with the SimpleKmeans clustering algorithm by using Weka library. I have 

written all the relevant code to build a Java based tool that does this task efficiently.  

 

The following tables show the clustering of the nodes. The number of cluster is a 

variable of the software tool. I have carried out analysis with many number of cluster 

sizes. Some of the clusters with a total cluster number of 10 and 20 are shown in the 

tables below. 

 

Table 31 GRiST node clustering 10 clusters 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 

suic_leth_insght, 

suic_lethality, 

gen_drug_misuse, 

gen_alc_misuse, 

gen_diet_weigt_chg, 

gen_meds_concord, 

gen_rsk_behavr, 

gen_unint_risk_behavr, 

suic_prosp_leth,   

gen_low_mood, phys_vuln,  gen_hostile,  

gen_prob_act_par_del,  

hto_steps_plan, 

gen_empathy_abil, 

gen_threat_move, 

gen_detached, 

hto_hi_rsk_ideatn, 

gen_risk_aggrsv, 

gen_chall_bhvr, 

gen_learn_disab, 

gen_decision, 

gen_com_imp, 

gen_diet_eating, 

gen_phys_hlth_disa, 

sn_hygiene, 

gen_phys_hlth_det, 

gen_cog_think_mem, 

gen_app_diet, 
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gen_voice_dang_o, 

gen_voice_dang_s, 

gen_gut_assmnt,  

sn_skin, 

sh_lethality_mth, 

gen_phys_hlth_pain, 

 

Please note: The meaning of the GRiST node can be found in Appendix A. 

 

Table 32 GRiST node clustering 20 clusters 

Cluster 2 Cluster 3 Cluster 4 Cluster 6 

gen_detached,  

gen_voice_dang_o,  

gen_voice_dang_s,  

hto_strgth_ideatn,  

gen_congruence, 

sn_recnt_app_chnge,  

sn_hair_clothes,  

sn_hygiene,  

gen_liv_skills,  

sn_skin, 

gen_distrss_b_lang,  

gen_anx_emotns,  

gen_mood_swings,  

gen_avoid_eye_conta

ct,  gen_mania,  

gen_angry_emotns,  

gen_sad, 

gen_alc_misuse,  

suic_planning,  

gen_meds_concord,  

sn,  sh,  

gen_mentl_insght,  

family_ment_hlth,  

gen_nd_hlp_diff, 

 

Please note: The meaning of the GRiST node can be found in Appendix A. 

 

Finding clear patterns from these clusters is challenging. Clearly some of the 

conceptually similar nodes appear in the same cluster. For example, in cluster 4 we see 

distress, anxiety, mood swings and mania, which are semantically similar nodes. In 

cluster 3, we have nodes like hygiene, self-neglect etc. This shows that there is some 

semantic coherence among the nodes, which appear within the same cluster. But at the 

same time, cluster 6 contains the nodes such as alcohol misuse, suicide planning, self-

harm and family mental health. These nodes represent semantically different concepts, 

but they have all appeared in the same cluster. This demonstrates that only some of the 

clusters represent semantically coherent themes. 

 

GRiST has a huge number of nodes and sometimes the differences between them are 

very subtle. For example, ‘self neglect hygiene’ and ‘self neglect skin’ are very similar 

concepts. The results of this experiment may be used for exploration purposes and to 

gain a better understanding of the GRiST ontology. We may also explore the node 

relationships simply by measuring the cosine similarity among them. This is discussed in 

the following section. 
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5.5.5 Experiment 5: Inter Node Cosine Similarity 

 

In the previous sections, I have discussed the semantic representation of GRiST nodes. 

Once we have calculated the semantic vector of the GRiST nodes we can compare how 

close they are from each other. Cosine similarity was used to calculate the similarity 

between the nodes.   

 

Each of the GRiST nodes was compared against other nodes and the top ten closest 

nodes were extracted. In the cosine similarity measure score 1 means very similar and 

score 0 means not similar. The following table shows a partial list of nodes and their top 

ten similar nodes. A complete list can be found in Appendix B. 

 

 

Table 33 GRiST internode node similarity 

Node Name Cosine Similarity 
gen_hostile gen_hostile=1.00 

gen_chall_bhvr=0.91 
hto_pot_trig_mtch=0.90 
hto_pot_trig=0.90 
gen_neigbrhd_rsky=0.89 
gen_angry_emotns=0.89 
risk_dep=0.89 
gen_prob_act_par_del=0.89 
gen_unusl_rec_bhvr=0.88 
gen_gut_assmnt=0.87 
phys_vuln=0.87 

gen_mood_swings gen_mood_swings=1.00 
gen_anx_emotns=0.97 
suic_pot_trig=0.96 
hto_pot_trig=0.96 
gen_mania=0.95 
gen_unusl_rec_bhvr=0.94 
vuln_su=0.94 
gen_sad=0.94 
gen_angry_emotns=0.94 
suic_p_trig_mtch=0.93 
sh_pot_triggs=0.93 

gen_motivation gen_motivation=1.00 
gen_day_struct=0.92 
gen_med_perc_benft=0.91 
gen_phys_withd=0.91 
gen_diet_eating=0.91 
gen_liv_skills=0.90 
sn_hair_clothes=0.90 
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Node Name Cosine Similarity 
sh_pot_trigs_mtch=0.90 
gen_app_diet=0.89 
gen_insght_behvr=0.89 
gen_mental_withd=0.89 

suic_lethality suic_lethality=1.00 
gen_drug_misuse=0.93 
gen_unint_risk_behavr=0.92 
gen_alc_misuse=0.92 
suic_leth_insght=0.91 
gen_meds_concord=0.90 
gen_rsk_behavr=0.90 
suic_discovery=0.90 
sh_lethality_mth=0.89 
suic_planning=0.89 
gen_impulse=0.89 

gen_distress gen_distress=1.00 
suic_p_trig_mtch=0.96 
gen_sad=0.96 
gen_anx_emotns=0.95 
gen_life_not_livng=0.94 
hto_pot_trig=0.94 
sh_pot_triggs=0.94 
gen_mood_swings=0.93 
suic_id_strngth=0.93 
gen_angry_emotns=0.93 
emot_vuln=0.93 

 

Please note: The meaning of the GRiST node can be found in Appendix A. 

 

From the above data, again we can see that nodes that are similar by cosine similarity 

measures seem to be closely related semantically. For example, gen_distress node is 

closely similar to gen_sad, gen_anx_emotns, gen_mood_swings and emot_vuln.  There 

are some dissimilar nodes such as suic_lethality and gen_drug_misuse, which appear to 

be similar based on this analysis. While there are some exceptions, the overall pattern 

of similarity is visible in majority of the nodes. 

 

I have compared this data with the correlation between nodes based on the inputted 

numerical value. In Appendix B I have included more data.  For discussion purposes, 

data for only two nodes are shown here. 
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Table 34 Node to node correlation 

Node name Correlation Cosine Similarity 

suic_lethality suic_lethality=1.00, 
suic_ser_succd=0.65, 
suic_planning=0.48, 
suic_discovery=0.48, 
sh_lethality_mth=0.40, 
suic_id_hi_risk=0.38, 
suic_id_strngth=0.38, 
suic_id_control=0.34, 
suic_prosp_leth=0.32, 
hto_fire_setting=0.27 
 

suic_lethality=1.00 
gen_drug_misuse=0.93 
gen_unint_risk_behavr=0.92 
gen_alc_misuse=0.92 
suic_leth_insght=0.91 
gen_meds_concord=0.90 
gen_rsk_behavr=0.90 
suic_discovery=0.90 
sh_lethality_mth=0.89 
suic_planning=0.89 
gen_impulse=0.89 

gen_hostile gen_hostile=1.00, 
gen_risk_aggrsv=0.71, 
gen_angry_emotns=0.66, 
gen_threat_move=0.65, 
gen_chall_bhvr=0.60, 
gen_empathy_abil=0.48, 
hto=0.48, 
gen_mania=0.45, 
gen_reliable=0.45, 
hto_curr_persp_ep=0.43 
 

gen_hostile=1.00 
gen_chall_bhvr=0.91 
hto_pot_trig_mtch=0.90 
hto_pot_trig=0.90 
gen_neigbrhd_rsky=0.89 
gen_angry_emotns=0.89 
risk_dep=0.89 
gen_prob_act_par_del=0.89 
gen_unusl_rec_bhvr=0.88 
gen_gut_assmnt=0.87 
phys_vuln=0.87 

 

Please note: The meaning of the GRiST node can be found in Appendix A. 

 

We can observe that if we only take 10 nodes that are close by similarity or correlation 

we see some overlap. The vector based similarity is matching with a few numbers of 

relations found by inter node correlation. There are a few limitations that may be 

affecting the results.  

 

Firstly, GRiST nodes are too granular in nature. For example, gen_hostile, 

gen_chal_bhvr and gen_angry_emotns all are very similar concepts. Someone is ‘angry’ 

may easily imply that he or she is also ‘hostile’ or vice versa. It is possible that clinicians 

are inputting similar comments in these nodes. I have observed in the data that 

sometimes clinicians inputted exactly the same text in these fields. 

 

Secondly, text inputting is optional and in fact, numerical inputting is also optional in 

cases of rapid assessment. The original design of GRiST mainly focused on numeric 
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data. This causes lots of missing comments in the node. That ultimately might affect this 

analysis. 

 

Thirdly, in natural language for describing somebody as aggressive or angry someone 

may use similar words. Capturing subtle differences is very challenging. 

 

The results of this and the previous experiments clearly show a positive trend of 

similarity between semantically similar nodes even though results are not as accurate as 

expected. This could improve the understanding of the underlying knowledge structure 

of the GRIST ontology.  

 

 

5.5.6 Node Representation Summary 

 

The above experimental results show that representing a GRiST node by semantic 

vector can be useful. Once a semantic vector of a node is created, we can automatically 

assign to it extracted phrases from comments. If a phrase has cosine similarity of more 

than a certain value, then it can be considered very close to that node. We can also 

compare how close a node is to each other. This technique opens up many possibilities 

including finding similar nodes and possibly merging them together. 

 

In SNOMED-CT, there is a list of representative phrases for each node. GRiST ontology 

does not have that. By the techniques described above, we can automatically build a set 

of phrases that may represent GRiST nodes semantically. This exploratory work could 

be considered as a contribution towards future research on the GRIST project. 

 

 

5.6 GRiST and SNOMED-CT (Exploratory) 

 

Ontologies are being used as knowledge structures by many medical expert systems 

and these ontologies vary in terms of their coverage, completeness and purpose 

(Cardillo, 2015). Semantic interrelationships among these ontologies are required for 
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interoperability of clinical systems. To facilitate interoperability with other systems GRiST 

ontology nodes were mapped to the SNOMED-CT terminology. SNOMED-CT is a 

standard terminology database and widely used so linking GRiST with SNOMED-CT 

may facilitate new knowledge discovery. 

 

There has been a lot of research to collect concepts from text and map them to the 

terminology database like SNOMED-CT, some of them are described below. Matching 

GRiST nodes to standard terminology like SNOMED-CT may provide the semantic 

meaning of the node as well as it may be possible to link them to other ontology in the 

same domain. This was a high level exploration work to see whether it was worth 

 exploring in more detail.  

 

Concepts extracted without focusing on a specific domain may generate lots of phrases 

which are generally scattered over a large concept space and hardly useful for practical 

purpose (Hovy, Kozareva and Riloff, 2009). The basic model of mapping is to chunk text 

to phrases and then map them to the concepts in the ontology (Ducatel, Cui and Azvine, 

2006). A review of the recent methods of ontology mapping techniques can be found in 

(Kaza & Chen, 2008) and (Ramar & Gurunathan, 2016). 

 

SNOMED-CT is a comprehensive reference terminology that allows healthcare 

providers to record clinical events accurately and unambiguously (Lee et al., 2010). 

The Unified Medical Language System (UMLS) is a collection of many biomedical 

vocabularies, which includes SNOMED-CT. In this report, the term UMLS and 

SNOMED-CT are sometimes used synonymously. 

 

The International Health Terminology Standards Development Organisation is in charge 

of SNOMED-CT and their website (http://www.ihtsdo.org/snomed-ct) describes the 

benefits of SNOMED-CT as follows: 

 

 It is a comprehensive multilingual terminology database 

 Contents are scientifically validated. 

 Is consistent and electronically processable. 

 Is mapped to other international standards. 

 Is already used in more than fifty countries. 

 

https://en.wikipedia.org/wiki/Compendium
http://www.ihtsdo.org/snomed-ct
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There are researches that have specifically tried to identify medical concepts from free 

text and map them to SNOMED-CT. For example, an automated system for the 

conversion of clinical notes into SNOMED clinical terminology proposed by Patrick, 

Wang, & Budd (2006). Learning formal definitions of terms in the text from SNOMED-CT 

by Ma & Distel (2013) and automatically mapping concepts in the patients discharge 

summary to SNOMED-CT by Batool et al. (2013). 

 

Adlassnig (2009)  extracted morphemes from clinical texts and mapped them onto 

concepts from SNOMED-CT. Bleik, Xiong, Yiran Wang and Song (2010) represented 

full-text documents as a graph using LingPipe’s NER concept nodes and relation edges. 

They mapped extracted terms to the concepts from the UMLS database. 

 

The SyMSS (Syntax-based Measure for Semantic Similarity) system compares 

semantic similarity between short texts and sentences by taking into account semantic 

and syntactic information. Psychological plausibility was added to the system by using 

the previous findings about how humans weigh different syntactic roles, when computing 

semantic similarity (Oliva, Serrano, del Castillo and Iglesias, 2011). 

 

Pakhomov, Buntrock & Duffy (2005) developed a high throughput modularised system 

for text analysis and information retrieval that identifies clinically relevant entities in the 

clinical notes and maps them to the several standardised nomenclatures such as 

SNOMED-CT.  

 

In this research, I have tried to use the existing tools like cTAKES to extract concepts 

from the clinicians’ comments and used their mappings to SNOMECT-CT terms. The 

objective was to find out how the concepts in GRiST nodes link to the concepts in 

SNOMED-CT. This may allow us to discover some patterns, which may eventually help 

us to find further patterns in the GRIST nodes inter-relationships. Before describing the 

methods, a brief description of the SNOMED_CT is provided next. 
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5.6.1 Structure of SNOMED-CT 

 

SNOMED-CT is a core clinical healthcare terminology that contains concepts with 

unique meanings and formal logic based definitions, organized into hierarchies 

(IHTSDO, 2014).  SNOMED-CT Starter Guide (IHTSDO, 2014) describes that the 

SNOMED-CT contents are represented using three types of components: 

 

 Concepts: represents clinical meanings and are organized into hierarchies. 

 Descriptions: link appropriate human readable terms to concepts. 

 Relationships: link each concept to other related concepts. 

 

These components are enhanced by Reference Sets, which facilitate addition of the 

additional features and enable configuration of the terminology to address different 

requirements. The following short descriptions are summarised from (IHTSDO, 2014). 

 

Concepts: SNOMED-CT concepts represent clinical thoughts and is organised in 

hierarchy from general to more detailed. This allows detailed clinical data to be recorded 

and later retrieved or aggregated at a more general level. 

 

Descriptions: SNOMED-CT descriptions are generic descriptions of a concept. A 

concept can be described in different ways, each representing a synonym that describes 

the same clinical concept. Each translation of SNOMED CT includes more language 

specific description of the concepts. Every description has a unique numeric description 

identifier. 

 

Relationships: SNOMED-CT relationships link one concept to others semantically. 

These relationships depict the properties of the concept. One type of relationship is the 

|is a| relationship, which relates a concept to more general concepts. This |is a| 

relationship defines the hierarchy of SNOMED-CT concepts. 

 

Reference sets: The Reference sets (Refsets) are used for customisation of SNOMED-

CT and it is a flexible approach for the enhancement of SNOMED-CT.  
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To get a feeling about the structure and content of the SNOMED-CT an online browsing 

tool is available at (http://browser.ihtsdotools.org). For this research, I have downloaded 

and installed the SNOMED database and other necessary relevant tools locally. One of 

the tools that was used is called cTAKES. This tool is described next in detail. 

 

 

5.6.2 Information Extraction by cTAKES 

 

The Apache Clinical Text Analysis and Knowledge Extraction System (cTAKES) is a 

natural language processing (NLP) system for extraction of information from clinical 

narratives stored in electronic medical records. The cTAKES is a modular system, which 

has pipelines to process free text, and it uses Unstructured Information Management 

Architecture (UIMA) as an architectural and software framework. cTAKES was created 

and tested on the clinical notes from the Mayo Clinic EMR (Savova et al., 2010). 

 

The cTAKES NER component has a terminology agnostic dictionary look-up algorithm 

that extracts noun-phrases from a lookup window and the extracted entity is mapped to 

a concept from the terminology (Savova et al., 2010). The terminology is usually the 

UMLS. For this research, I have coded a web service that takes a sentence and output 

snomed parsed XML data, which shows UMLS concepts, phrases etc. in XML format. 

The software was developed with Apache cTAKES SDK and Eclipse. The web service 

was consumed by PHP script. This way all the heavy lifting was done by the Java code 

and quick prototyping was done with PHP. 

 

 

5.6.3 Parsing Text with cTAKES 

 

The objective was to find snomed concepts in the GRiST clinical comments and explore 

any potential patterns. Firstly, I have parsed the sentences of each assessment with 

SNOMED-CT parser, a custom implementation based on cTAKES API library. It gave an 

XML output. A procedure was developed to extract the desired information from the 

XML tree. Concept phrases, their SNOMED-CT codes and UMLS codes have been 

http://browser.ihtsdotools.org/
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extracted from the XML data. The hierarchy of the concepts were also extracted by a 

separate procedure by traversing the concept relation table. 

 

Giving a detailed explanation of the UIMA specification and JCas (Java Common 

Analysis System) object is outside the scope of this document. A detailed description 

can be found in (https://uima.apache.org/). In simple words, it is a XML format that 

contains parts of speech (POS) tag, UMLS code and other information. When we input a 

sentence, we get a XML output for that sentence. The system was coded according to 

samples provided in cTAKES SDK.  

 

The annotation provided by the cTAKES tool includes many data types. A full list can be 

found in 

(http://ctakes.apache.org/apidocs/trunk/org/apache/ctakes/typesystem/type/textsem/Ide

ntifiedAnnotation.html). From the annotation, I have considered the following types as 

relevant for our purpose. Most of the other types are related to date, measurement, 

roman numerals etc. 

 

 SignSymptomMention, 

 DiseaseDisorderMention, 

 MedicationMention, 

 ProcedureMention, 

 AnatomicalSiteMention 

 

The concept terms and their attributes [phrases, SNOMED-CT code, UMLS code, root 

category node] are extracted from the XML tree and stored in the database. All the 

relevant information including assessment_id, GRiST node names and suicide risk 

scores were also stored. This data was used later for finding patterns. 

 

 

5.6.4 SNOMED-CT Concepts in GRiST 

 

Approximately 50,000 assessments from between 2010 to 2014 have been chosen that 

had at least 500 bytes of text in its comment. Only bigram phrases were considered as 

https://uima.apache.org/
http://ctakes.apache.org/apidocs/trunk/org/apache/ctakes/typesystem/type/textsem/IdentifiedAnnotation.html
http://ctakes.apache.org/apidocs/trunk/org/apache/ctakes/typesystem/type/textsem/IdentifiedAnnotation.html
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they convey a more specific meaning. The presence of average numbers of snomed 

concepts has been queried from the database.  

 

Table 35 Average unique snomed occurrence 

Root Category 

Unique 

Phrase 

No of 

Assessment Average 

AnatomicalSiteMention 
6051 

4122 1.47 

DiseaseDisorderMention 86503 37531 2.30 

MedicationMention 146 131 1.11 

ProcedureMention 10159 7373 1.38 

SignSymptomMention 114488 45121 2.54 

 

 

Result in grapthical format: 

 

 

Figure 12 Average snomed concepts presence per assessment 

 

From the above data and graph we can observe that category “SignSymptomMention” 

and “DiseaseDisorderMention” occurred more than the others. The result was expected 

as GRiST is a mental health assessment tool and the signs and symptoms expected to 

appear more than the medications and procedures.  
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Previously, phrase compression has been described with string match and vector based 

semantic stemming. The same method was run on snomed data and following table 

shows the results.  

 

Table 36 Phrase stemming results 

Snomed Type phrase 
String 
concept 

Vector 
concept 

AnatomicalSiteMention 490 232 138 
DiseaseDisorderMention 3567 1266 676 
MedicationMention 59 26 25 
ProcedureMention 1234 425 289 
SignSymptomMention 4485 1236 868 

 

 

From the data we can see that the proposed semantic stemming can reduce the number 

of phrases significantly (e.g. from 4485 to 868). This again proves the utility of the 

proposed semantic stemming method. 

 

 

5.6.5 Suicide Risk and Concept Type 

 

Exploration work was done to find the patterns that may indicate the relationship 

between suicide risk and the presence of certain snomed concept types. Using a scale 

of 0-10 for suicide risk is too granular so I have divided the suicide risk by 3 and rounded 

it to get 0,1,2,3 (four) risk categories. Then the average number of times each specific 

snomed category occurrs per risk level was calculated. The following table shows the 

results. 

 

Table 37 SNOMED category per suicide risk level 

Risk AnatomicalSite DiseaseDisorder Medication Procedure SignSymptom 

0 1.41 2.02 1.09 1.31 2.13 

1 1.37 2.41 1.10 1.30 2.74 

2 1.43 2.68 1.00 1.33 3.02 

3 1.63 2.74 1.00 2.05 2.48 
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For AnatomicalSite concept type, the difference is not significant across risk levels. 

Though a tendency of increasing with risk is present but we probably cannot rely on this 

for risk classification task. For DiseaseDisorder type, we can see that there is a steady 

growth of risk as more and more of this concept type appears in the comments. But we 

have to be careful here - the trend we see is actually the global average. How it works 

for an individual assessment is probably another matter altogether.  

 

For MedicationMention, we can see quite similar results as we see with AnatomicalSite. 

Therefore, the same explanation applies to this type. 

 

For ProcedureMention, again the number of presence increases with risk. 

 

For SignSymptom, we can see a similar trend whereby the number of concepts 

increases with the risk. We can see a slight anomaly for risk level 3 whereby number of 

concepts is reduced slightly. The data is shown in the graph below. 

 

 

  

 

Figure 13 Suicide risk vs snomed category 
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Graph for all concept type is shown below. 

 

 

Figure 14 Risk vs snomed category 

 

From the above graph, we see that for risk level 2 to 3 the number of concepts does not 

increase. In other words, if the suicide risk rating is 6 or more then there seems to be no 

increase in the number of mentions of the snomed concept. This analysis shows that the 

number of concepts might be an indicator of a higher risk category. However, fine grain 

classification may not be possible from the extracted concepts.  

 

The overall conclusion is that the mentions of snomed concepts in the text tend to 

increase in parallel with the risk score.  Higher risk patients would have more mention of 

various snomed concepts in their comments.   

 

It has been hypothesised that the increased presence of snomed concepts in the 

comments could indicate that the patient is of a high-risk category. To validate this 

hypothesis a test was run on the 50,000 assessments. An assessment was queried from 

the database then the numbers of snomed concepts present in the comments were 

counted. Based on the number of concepts found a risk score is given to the 

assessment and compared with the clinicians given risk. High risk patient means the risk 

score given by the clinician is more than five and low means a score less than or equal 

to five. 
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If in an assessment, the number of concepts present was more than 2 and if we 

consider them as high risk then in comparison with the clinician given risk, we get a 

precision of 0.14 and a recall of 0.58. However, if we only compare with the patients 

whose clinician given risk was at least 3 then within this subgroup precision is 0.36, 

recall is 0.58 and F1-score is 0.45. 

 

If the number of concepts was more than 1 and if we consider them as high risk, then in 

comparison with the clinician given risk precision is 0.14 and recall is 0.76. But if we only 

compare with the patients whose clinician given risk is at least 3 then within this 

subgroup precision is 0.36, recall is 0.76 and F1-score is 0.49. For clinician given scores 

of at least 4 we obtain precision of 0.56, recall of 0.76 and F1-score of 0.64. 

 

These results show that this method only works when the clinicians given risk is above a 

certain threshold. One suitable application for this could be to alert the clinicians if many 

snomed concepts are found in the comments. 

 

 

5.6.6 GRiST to SNOMED-CT Mapping 

 

For further exploration purposes, we have mapped each GRiST node to the SNOMED-

CT concepts. A system based on OpenMRS, an electronic medical record system 

framework, was enhanced by mapping its knowledge with SNOMED-CT that facilitated 

deploying reasoning techniques (Halland, Britz, & Gerber, 2010). To increase semantic 

interoperability Health Level 7 (HL7) standard has been mapped to SNOMED-CT (Ryan, 

2006). A review of different techniques of mapping an ontology to SNOMED-CT can be 

found in (Cardillo, 2015). 

 

BioPortal (http://bioportal.bioontology.org) is an open web accessible repository of 

biomedical ontologies (Whetzel et al., 2011). It provides information about the inter 

connection of different ontology nodes. Many ontologies in this repository are mapped to 

SNOMED-CT.  MIMapper is a system implemented by using WordNet and mutual 

information between data instances to map ontologies and is found to perform better 

with an average F-measure of 0.84 (Kaza & Chen, 2008). 
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Presence of snomed node and GRiST node in comments are already available in the 

database from previous analysis. An SQL query was run to find the most common 

snomed code per GRiST node. Then the resulting snomed node was converted to its 

short description string. Please refer to the Table 83 in appendix B for more data.  

 

From the data, we find that most of the nodes are semantically attached to relevant 

snomed nodes. It shows that this simple technique may work. A few examples are 

shown in the table below: 

 

Table 38 GRiST node to SNOMED-CT node mapping 

GRiST node SNOMED-CT node 
gen_coping_abil Stress 
gen_decision Interested 
gen_depression Mood disorder of depressed type 
gen_detached Agitated (& symptom) 
gen_distress Distress 
gen_jealous Jealousy 
suic [X](Intentional self-harm) or (suicide) (event) 
suic_curr_int Thinking, function (observable entity) 
suic_discovery OD - Overdose of drug 
 

Please note: Meaning of the GRiST node can be found in Appendix A. 

 

We can align the GRiST ontology with the SNOMED-CT. This data tells us which node 

is more similar to which snomed node. This was not the primary focus of the research, 

which is why only a high level analysis was done for exploration purposes. Any further 

explorations and improvements of this technique have been left for future research. 

Nonetheless, this was the first time we have compared the two ontologies side by side 

and it can be considered a contribution to the GRiST project. 
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5.7 Summary 

 

In this chapter, we have described the activities related to semantic vector 

representation of a phrase, a patient and a GRiST node. Many distinctive experimental 

works have been carried out that might help to improve the GRiST system. Most of the 

experiements were exploratory and aimed towards finding potential patterns in the data. 

 

A simple technique was demonstrated in finding similar words using only Stanford 

dependency relationships. The result was compared with vector based similarity results. 

A novel method is described in this chapter, which can extract phrases from the text 

when no seed phrases are available. The technique can be used to build lists of phrases 

relevant to any specific GRiST node automatically. 

 

To reduce the number of phrases to a representative short list, a semantic concept 

stemming method has been discussed in detail. A comparison has been shown between 

string similarity and semantic similarity with data from the GRiST system. Application of 

both of these techniques to reduce the number of phrases and a detailed analysis of it 

could be considered a contribution to NLP research. 

 

Building the semantic profile of a patient was examined in detail. The possible 

application and limitations of the OpenIE system in this context is discussed using 

experimental data. The document vector approach is regarded as a method to build a 

semantic profile of a patient. It is more flexible and easy to use mathematically. The 

number of phrases to represent a patient can vary but if we use semantic vectors then 

we can use a fixed number of attributes. 

 

I have shown how we can use word vector and build a semantic representation of the 

GRiST nodes. Many detailed experiments have been carried out to semantically analyse 

the GRiST nodes and their inter-relationships. Using word embedding to find node 

relationships is a new approach and I believe it is a contribution to the GRiST project. 

We can find the presence of a node in a text by comparing its semantic distance from 

the phrases in the text. This approach is generic and can be applied to other similar 

ontology. 
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Finally, the presence of SNOMED_CT concepts in GRiST data has been analysed. It 

has been found that the number of snomed concepts increase as the risk level 

increases. Mapping between GRiST and SNOMED_CT has been carried out for 

exploration purposes. This could help to further our understanding of the GRiST data 

and assist in future research. 

 

The ultimate underlying desire of phrase extraction and semantic processing was to find 

patterns and help predict suicide risk. The presence of snomed concepts and other 

numeric attributes have been used to predict suicide risk, which is discussed in the 

following chapter. 
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6 Risk Prediction 

6.1 Introduction 

 

This chapter describes the experimental efforts to predict suicide risk from the text, the 

semantic vector of the assessments and from the numerical data. Many previous 

research papers described suicide risk predictions, disease predictions and sentiment 

analysis from electronic medical records, which are described in the literature review. 

Few of them have specifically focused on suicide risk. Some researchers worked on a 

limited set of data for risk prediction from textual data.  Many well-known text classifiers 

were used to assess how well they perform in the task of suicide risk classification, 

especially with GRiST data. We have used raw text, SNOMED-CT concepts in the text, 

a semantic vector representation of patients and numerical data. 

 

Within the GRiST system, patients are sometimes assessed multiple times. Another 

particular interest was to find out how the assessment varies over time by looking at the 

trend in the node value changes in GRiST. This might help us to measure the 

effectiveness of a potential clinical intervention and prompt clinicians accordingly. This 

could aid us to make the GRiST system more interactive. The following sections first 

describe risk predictions and then repeat assessment related experiments. 

 

 

6.2 Methodology for Risk Prediction 

 

Five types of experiments have been conducted to predict suicide risk from the GRiST 

data. 

 

Method 1 (Using raw text): Existing toolkits like Mallet, Stanford classifier, 

Libshorttext and fastText were used to predict risk directly from the raw text data. 

Risk prediction was considered as a classification task. 
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Method 2 (Using phrases): The extracted phrases from Chapter 4 were used to 

build classifiers using the Weka machine learning tool. Weka implements many 

machine learning algorithms and many of them have been tried. 

 

Method 3 (Using vector): Firstly, we created a semantic vector representation of 

a patient by using the document vector technique and then classified them using 

various algorithms. 

 

Method 4 (Using SNOMED-CT): SNOMED-CT concepts were extracted from the 

clinical comments and then they were used for risk prediction. 

 

Method 5 (Using numeric data): Numerical data has been used directly from the 

GRiST system, which had been inputted by the clinicians. 

 

 

 

A detailed review has been carried out of the different well-known tools and methods. 

For exploration purposes, full text, extracted phrases, SNOMED-CT nodes, wordvector 

and various other methods have been tried with a relatively big dataset. Experimental 

results and their critical reviews are provided in the following sections. 

 

 

6.3 Dataset 

 

For this experiment, the same dataset from the GRiST database was chosen, which was 

used in the regression analysis. There was a total of 46903 instances of assessments of 

which 38197 had suicide risk of less than 5 and 8706 had suicide risk of more than or 

equal to 5. We considered the later group of patients as high-risk ones. 

 

There were 21,203 assessments conducted between 2011 and 2013 that were used for 

training and the remaining 25,700 were used for testing. The following table shows the 

distribution of risk levels in the data. 
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Table 39 GRiST assessment data with risk level 

Year/Risk 1 2 3 4 5 6 7 8 9 10 total 

2011 802 1037 1148 542 513 216 214 127 49 15 4663 

2012 1271 1547 1413 706 577 274 270 165 59 19 6301 

2013 2824 2661 1839 995 846 381 368 228 74 23 10239 

2014 4007 3228 2191 1208 928 411 395 260 86 33 12747 

2015 4576 3017 1948 1237 929 425 361 297 114 49 12953 

total 13480 11490 8539 4688 3793 1707 1608 1077 382 139 46903 

 

A more detailed description of the dataset is provided in Chapter 3. 

 

 

6.4 Predictions Using Full Text 

 

This section describes the prediction of risk from raw text data. All the comments in the 

various nodes of an assessment were put together to build a document. These 

documents were then used by the following text classifiers. The classifiers were run on 

all the 21203 assessments conducted within 2011 to 2013. For different classification 

methods such as MaxEntropy, NaïveBayes and Support Vector Machine (SVM), we 

have used well known tools, which are described below. 

 

 

6.4.1 Predictions Using Mallet 

 

MALLET (MAchine Learning for LanguagE Toolkit) is an open source Java based 

package designed for statistical natural language processing, document classification, 

clustering, topic modelling, and information extraction. It includes tools to convert text to 

features, uses various machine learning algorithms (including Naïve Bayes, Maximum 

Entropy, and Decision Trees) for classification purposes and has a built-in classification 

performance evaluator (McCallum, 2002). 

 

From all the 21203 instances, 70% of the assessments were used for training and the 

remaining 30% were used for testing purposes. Before running the tool, we had to 
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convert the data from a normal CSV format to a mallet specific format. The Mallet tool 

has a command line option enabling us to do that. Maxentropy and NaiveBayes were 

used as classification algorithms. For the first batch, a risk scale range from 1 to 10 was 

used and for the second batch the risk was reduced to only three categories (0=low. 

1=medium, 2=high). 

 

 

Table 40 Results from the Mallet Classifier 

Category  Accuracy Training Accuracy Test 

Category 10  MaxEntropy  0.99 0.27 

Category 10  NaiveBayes 0.60 0.30 

Category 3    MaxEntropy 0.99 0.69 

Category 3  NaiveBayes 0.82 0.68 

 

 

We could see from the results that though training had a good accuracy score, however 

the test accuracy is very low (30%). When we have reduced the risk range from 10 to 3 

then the test accuracy increased to 68%. Closer inspection shows that it failed to 

classify most of the high risk category patients. High risk category means the clinician 

given suicide risk is equal to or more than 5.  For a screenshot of the program output, 

which contains a confusion matrix, please refer to Appendix C. 

 

 

6.4.2 Predictions Using Stanford Classifier 

 

The Stanford Classifier is a Java implementation of a maximum entropy classifier 

(otherwise known as softmax classifiers) by Manning & Klein (2003). If a training dataset 

with classes and textual data is provided, the classifier can automatically extract 

features and create a model. This model can then be used for classification of unknown 

data. The classifier can work with numeric real values or categorical inputs, and 

supports several machine learning algorithms (Manning & Klein, 2003). 

 

http://nlp.stanford.edu/software/classifier.shtml
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The same dataset was used for this experiment, which contained 21203 assessments. 

Again, data was pre-processed to the format as required by this tool. For 10 classes the 

F1-score was 0.30 and for 3 classes the F-score was 0.47. This was again proving to be 

a very challenging task with this dataset. It seems that the off the shelf tools may not 

perform accurately enough for risk prediction. Please refer to Appendix C for the 

screenshot of the output. 

 

 

6.4.3 Predictions Using LibshortText 

 

LibShortText is an open source library for short-text classification and analysis. It uses 

LIBLINEAR classifier, which is a linear Support Vector Machine (SVM) based library. 

The package includes effective text pre-processing and fast training/prediction 

procedures (Yu, Ho, Juan, & Lin, 2013). This tool is especially suitable for short text like 

Twitter sentiment analysis. It comes as a set of Python programs. Data from the 

database was extracted by PHP scripting and then fed to the program via a shell script. 

This allowed us to re-run the test dynamically. Out of all the other tools, this tool seems 

to work faster.  The following is the confusion matrix of the test results. 

 

Table 41 Confusion matrix of LibshortText results 

 Risk Original> 1 2 3 4 5 6 7 8 9 10 

1 1223 672 347 144 29 17 8 6 0 0 0 
2 1594 579 539 300 81 60 12 17 4 2 0 
3 1746 424 595 475 114 86 10 30 12 0 0 
4 833 145 252 213 107 81 9 19 7 0 0 
5 740 111 189 210 86 84 19 29 12 0 0 
6 332 52 54 77 52 53 11 21 11 1 0 
7 304 22 55 70 41 42 18 47 8 1 0 
8 198 12 35 27 23 31 15 36 17 2 0 
9 72 5 8 18 5 9 7 12 7 1 0 
10 26 3 1 6 1 2 1 6 6 0 0 

 

Accuracy = 27.63% (1953/7068) 

 



6 Risk Prediction 

 

155 

 

 

When we run the same experiment with 3 categories of risk (low, medium, and high) we 

can achieve a score close to 71% accuracy. The following is the confusion matrix of the 

3 category tests. 

 

Table 42 Confusion matrix of LibshortText 3 category 

Risk Original 0 1 2 

0 4563 4052 506 5 
1 2209 1270 930 9 
2 296 88 193 15 
 

Accuracy = 70.69% (4997/7068) 

 

LibShortText tool’s execution speed and classification accuracy was better than the 

other tools. This tool is very easy to run and has been run from PHP script as an 

external program. It can be used as a background tool to predict suicide risk in real time. 

For low number of risk categories, it provides a high accuracy score. Unfortunately, as 

the other tools described before it also failed to accurately predict most of the high risk 

patients. This is because the number of low risk patients was significantly higher than 

the number of high risk patients in the training dataset. This may have caused the 

classifier to become biased towards the low risk categories. Using an equal number of 

patients in each category did not improve the results.  

 

 

6.5 Predictions Using Extracted Concepts 

 

Clinical concepts were extracted from the comments and saved in the database as 

described in chapter 4. These extracted concepts were then used to predict suicide risk. 

The following section describes the experimental procedure and outlines the test results.  
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6.5.1 Experiments and Methods 

 

The key phrases were extracted from the above mentioned dataset by different phrase 

extraction methods and saved in the database as described in Chapter 4. A Weka ARFF 

file was created from the extracted phrases and processed by the Weka tool. The 

Waikato Environment for Knowledge Analysis (WEKA) is a collection of machine 

learning algorithms suitable for data mining (Hall et al., 2009). This tool can be used 

directly as a GUI application or called from Java. It includes data pre-processing, 

classification, regression, clustering, association rules, and a visualisation facility (Hall et 

al., 2009).  Weka is an open source software issued under the GNU General Public 

License.  

 

Weka uses an ARFF file format, which is a text file with a header that includes the 

attributes name and type followed by a data portion that includes comma separated 

data. In our case, each line represents an instance of a suicide risk assessment. The 

Weka tool has a huge number of machine learning algorithms. Once we have data in the 

ARFF file format, we can easily apply any of these algorithms. Though I have used 

almost all of the algorithms to explore the data, I have only reported here the Naïve 

Bayes results. All the other algorithms have produced similar results. Naïve Bayes is a 

probability-based classification algorithm. It is a very well-known algorithm hence a 

description is not given in this report. 

 

There were quite a few experiments conducted with the extracted phrases. Sometimes 

these experiments used the full 10 risk category classes and other times, only three 

(low, medium and high) classes were used.  A brief introduction of each of these 

experiments and datasets are given below. 

 

 

Experiment 1: SNOMET-CT 10 classes 

 

This experiment uses SNOMED-CT concepts found in the comments. Risk category 

spans from classes 1 to 10. 

 

 

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
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Experiment 2: SNOMET-CT 3 classes 

 

This experiment uses SNOMED-CT concepts found from the comments. The original 

risk was converted to three categories, low, medium and high. The risk was divided by 4 

and floored to an integer value. Less than 4 is converted to 0, 4 to 7 is converted to 1, 

and 8 or above is converted to 2. 

 

 

Experiment 3: N-gram with ECM phrasness, 3-classes 

 

N-gram extracted phrases were filtered by the ECM phraseness method. The original 

risk was converted to three categories, low, medium and high.  

  

 

Experiment 4: N-gram with full ECM, 3-classes 

 

N-gram extracted phrases were filtered by the ECM phraseness and semantic filtering 

method. The original risk was converted to three categories, low, medium and high.  

 

 

Experiment 5: ECM Phrasness string stemmed 3 classes 

 

N-gram extracted phrases were filtered by the ECM phraseness algorithm and 

compressed by string stemming as described in chapter 3. The original risk was 

converted to three categories, low, medium and high.  

 

 

Experiment 6: ECM Phraseness vector stemmed, 3 classes 

 

N-gram extracted phrases were filtered by the ECM phraseness algorithm and 

compressed by vector stemming as described in chapter 3. The original risk was 

converted to three categories, low, medium and high.  
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The next section provides the experimental results. Screen shot of each of the 

experiments are provided in appendix C. 

 

 

6.5.2 Results of the Experiments: 

 

The following table includes a summary of all the previously mentioned phrase filtering 

experiments.  

 

 

Table 43 Suicide risk predictions with extracted phrases 

Experiment Classes Correct% Precision Recall F1-score 

E1. Snomed 10 classes 10 23.23 0.21 0.23 0.19 

E2. Snomed 3 classes 3 63.01 0.58 0.63 0.59 

E3. N-gram with ECM 

phrasness 

3 57.59 0.59 0.57 0.58 

E4. N-gram with full ECM 

(phraseness + semantic) 

3 59.35 0.59 0.59 0.59 

E5. ECM Phrasness string 

stemmed  

3 61.32 0.58 0.61 0.59 

E6. ECM Phraseness vector 

stemmed 

3 60.20 0.59 0.60 0.59 

 

 

From the above results, we can see that all the phrase extraction methods produce 

similar results. For 10 categories of risk, the accuracy was very low. For 3 categories, 

the accuracy was higher. However, using accuracy alone as a measure is misleading as 

we have seen that many high category risk assessments were not classified correctly. A 

screenshot of the Weka output is provided in Appendix C. From the above experimental 

results, we can see that the n-gram phrases filtered via the ECM method produced a 

similar (f-score of 0.59) result as produced by the SNOMED-CT concepts extracted by 

the cTAKES. This shows that a simple n-gram with filtering can be a viable alternative 

method to the SNOMED-CT database. 
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6.6 Predictions with SNOMED Code 

 

The SNOMED-CT codes extracted from the comments in the assessments were directly 

used for this experiment.  Their presence was used to determine the patient’s risk level. 

With NaiveBayes classifier (10-fold validation using Weka), we have found accuracy of 

63.47% and an F-score of 0.58. The test results were not different from the other 

methods that we have mentioned above. For this experiment, we have created a web 

service that can provide snomed XML format data from a sentence. This tool can be 

useful to other researchers.  

 

To address the class imbalance problem, I have used the Weka tool to resample the 

dataset. A resample bias value of 0 leaves the class distribution as-is, a value of 1 

ensures the class distribution is uniform in the output data. For a bias value of 1 or an 

equal number of classes in each risk category, the accuracy was 38%. For bias 0.5 the 

accuracy was 48%.  

 

6.7 Predictions with Document Vector 

 

A fixed length features vector is required by many machine learning algorithms (Le & 

Mikolov, 2014). Though a fixed length features vector can be created with bag-of-words, 

however they suffer some weakness. The bag-of-words technique used in natural 

language processing loses the order of words and they also ignore the semantic of the 

words (Le & Mikolov, 2014).  

 

A document vector can be created by combining word vectors of the document. An 

algorithm is proposed by Le & Mikolov (2014) to create a document vector, which may 

potentially overcome the weaknesses of the bag-of-words models. “Empirical results 

show that Paragraph Vectors outperform bag-of-words models as well as other 

techniques for text representations. Finally, we achieve new state-of-the-art results on 

several text classification and sentiment analysis tasks” (Le & Mikolov, 2014, p. 1). 
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For this experiment, I have created a text file that includes suicide risk as a class and 

aggregated all comments as text data. Each line of the text file represents a single 

assessment. Then the file was processed by the python program as available from 

GitHub (https://github.com/klb3713/sentence2vec). This program is an implementation 

of the algorithm proposed by Le & Mikolov (2014). This method involves retraining of the 

neural network with paragraph vectors as an additional input.  

 

After running the program, we can obtain the suicide risk and its corresponding vector 

(created from the text data). The generated file was then converted to the Weka ARFF 

file format and processed by the Weka software. Weka implements many machine 

learning algorithms and all major algorithms were run on the dataset. These are very 

common well-known algorithms so descriptions of each of them are not given.   

 

The test results were not different from the other methods discussed above. One 

advantages of the document vector is that we can achieve similar results without phrase 

extraction. This can simplify the whole process. The following table shows the results 

(66% for training and 33% for testing using word2vector trained on PubMed dataset). 

 

Table 44 Document vector classification results 

 

 

 

 

 

 

 

 

 

Recently another tool has become available from the same group of researchers called 

FastText. FastText allows us to create word embedding very fast (Bojanowski, Grave, 

Joulin, & Mikolov, 2016). Another component of the tool is text classification (Joulin, 

Grave, Bojanowski, & Mikolov, 2016). With this tool, we do not need to create a word or 

a document vector separately. I have installed and used this tool and tried to classify the 

suicide risk from comments. Unfortunately, this did not provide any better results. 

Algorithm Accuracy % Precision Recall F1-measure 

NaiveBayes 66.18 0.60 0.66 0.60 

LibSVM* 68.47 0.46 0.68 0.55 

Logistic* 68.74 0.62 0.68 0.58 

IBk 0.59 0.59 0.60 0.60 

DecisionTable 68.47 0.47 0.69 0.56 

RandomForest 66.9 0.57 0.66 0.58 

https://github.com/klb3713/sentence2vec
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6.8 Predictions with Node Similarity 

 

Calculating the semantic vector of each GRiST node has been discussed in Chapter 5. 

One of the ideas was to calculate how close a specific assessment is to a given node 

and use that as an attribute to predict risk. For example: If we have a node ‘self harm’ 

and we first create a vector representation of this node by taking the average of the 

words vector within this node. We can then calculate how close an assessment to this 

specific node is by calculating the cosine similarity between the node and the 

assessment vector. The full method is described below: 

 

Prediction with node vector similarity: 

 

Step 1: Calculated the semantic representation of each node. 

Step 2: For each node of an assessment, calculate the node vector by averaging 

the word vectors of the words that appear in that node in that assessment. 

Step 3: Calculate cosine similarity for each corresponding GRIST node with 

assessment’s nodes. 

Step 4: Use the node similarity measure as an attribute for machine learning. 

 

The idea was to use node similarity rather than the mg-value to predict suicide risk. The 

simple linear regression analysis has been done with the generated data using the 

Weka tool. The output showed a correlation coefficient of 0.296 with the original clinician 

given risk value. The screenshot of the results are given in Appendix C. 

 

The accuracy of this exploratory method is not any better than the other methods 

previously described in this chapter. Because vector generation depends on the text 

data, any missing text data would have a negative impact on the accuracy. The problem 

of missing comments within GRiST is discussed earlier. Although performance was not 

ideal, I still believe the method itself has its merits. It can help to move text analysis from 

string matching to numerical analysis quickly and having numerical data is desirable for 

analysis purposes as noted by Mikolov, Yih, et al. (2013). 
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6.9 Prediction with Numerical Data 

 

In the GRIST system, the risk data is collected and stored in a database table. This 

collected data includes node values given by clinicians as well as textual comments. 

The previous sections described the risk prediction by using text data, and this section 

discusses the prediction of suicide risk based on the numerical data in the GRIST 

assessments. 

 

Previously there have been a few other attempts made by the other members of the 

GRiST research team to make a risk prediction from the numerical data, but the 

accuracy achieved was poor. This research requires a consensus risk and without 

manual re-evaluation, a calculated risk was thought to be a good alternative.  For this 

reason, at the early stage of this research I have attempted to calculate suicide risk from 

the numerical data. 

 

The main challenge was handling the missing data. As GRiST has plenty of 

assessments already in its database, I have chosen to subgroup the assessments 

based on the data present and carry out the calculation only on the subgroup. This 

achieved a good result. The following section describes the dynamic risk prediction 

methods in detail with rationale. 

 

 

6.9.1 Dynamic Regression 

 

GRIST CDSS does not force clinicians to input all the data, which results in having lots 

of missing data in a completed risk assessment. GRiST has the following data types in 

its nodes. 

 

a) Yes/NO data 

b) Categorical data 

c) Numeric data 

d) Date and time 
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Categorical data is converted to numerical data based on expert weighting. The 

calculated value is called MG (membership grade) values. Using the mg-value to predict 

suicide risk is a challenge as many of the nodes values were missing. An example node 

is shown below: 

 

<node label="frequency of self-harming thoughts" code="sh-freq-ideatn" question="How 

often do the self-injury thoughts or fantasies occur?" values="nominal" value-

mg="((DAILY 1) (WEEKLY 0.5) (MONTHLY 0.2) (LESS-THAN-MONTHLY 0))"/> 

 

 

To overcome the problem of missing data a simple dynamic node selection technique 

was adopted.  

 

The following are the steps used: 

 

Step 1: Determine the nodes that have been answered.  

Step 2: Query the previous data and find only instances that have the same 

nodes answered. 

Step 3: Create a dataset with this new subset. 

Step 4: If there is not enough data then eliminate a node as per a preference list 

and go back to step 3 

Step 5: If there is enough data then do regression analysis  

 

The node preference list can be built manually or by using attribute selection algorithms 

like Principle Component Analysis (PCA) or based on information gain. The whole 

algorithm can run in real-time and work very fast. I have used Java JSP technology to 

build a web interface for this. The following is the screenshot of the web interface output. 
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Figure 15 GRiST risk assessment by dynamic regression 

 

The clinician given and calculated risk correlation was up to 0.92. This result was much 

better than anybody else had achieved on the GRiST dataset before. However, this 

method still failed to predict some of the patients, where too little data was available. I 

required a result that includes all the assessments to use it as a consensus risk for 

further work. To overcome this problem the following section describes an alternative 

approach. 

 

 

6.9.2 Prediction with Scale Data Type 

 

One of the main objectives of this research was to develop a mechanism to validate the 

clinician given risk data and where there was a difference between the clinician and 

calculated risk then explain that difference. For this, the calculated prediction value was 

needed for all the assessments. GRiST has a huge number of nodes (446) and they 

have a variety of data types as discussed earlier. For simplicity we have taken only the 

scale data type for which there is 141 nodes available. Then we ran the regression 

analysis based on these certain nodes. 
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The full dataset as described before was taken from the GRiST system where the 

clinicians given suicide risk ranged from 1 to 10. The NULL data was converted to “?” 

mark as per Weka ARFF format. The created ARFF file was then loaded to Weka and 

run with various algorithms. The linear regression analysis gave a result of 

approximately 0.78 correlation across all assessments by a 10-fold validation. The first 

21203 assessments were used for training, the rest of the 25700 assessments were 

used for testing, and this gave a correlation coefficient result of 0.77. The NaiveBayes 

with a 10-fold validation predicted suicide risk with 40% accuracy for 10 classes and for 

3 classes the accuracy was 66.62%.  Resampling the data to reduce class imbalance 

did not yield better results. 

 

It would be useful to find out if there were any underlying patterns that could help us to 

identify the cases where clinicians and regression risk differs. No one has attempted to 

look at this issue before with the GRiST data. We have a good amount of data, which 

has both clinicians and calculated risk, we can find differences between them and look 

for any underlying patterns. Risk difference analysis is described in detail in chapter 8. 

 

 

6.10 Analysis of Prediction Results 

 

The poor performance of the risk prediction could be due to three main reasons. Firstly, 

text can be vague and predicting different levels of risk using text is challenging.  

Secondly, the problem of class imbalance is due to most of the training classes being of 

a low risk level. Thirdly, the GRiST data has lots of missing comments. 

 

From the experimental results, we can see that using text data and readily available 

classification tools to predict suicide risk was challenging. When we reduce the range to 

3 (low, medium and high risk) we can see accuracy increased to 65 - 70%. But the 

problem is it fails to classify most of the high risk patients. In fact this result is similar to 

what Poulin et al. (2014) found in their experiments. They reported that they could 

classify patients who had suicide risk or patients who did not have a suicide risk but 

could not do so for low and high-risk category patients. They have used only 137 

records and I have used close to 50,000 records. 
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This negative result agrees with other previous works. For suicidality predictions from 

text, predictability decreased as the data size increased (O’Dea et al., 2015). What this 

means is we might achieve better results where we have a hand annotated phrase list 

but applying that to a big dataset is still challenging.  

 

SNOMED-CT concepts extracted by cTAKES and n-gram phrase filtered by ECM 

produced similar results. In fact, ECM has produced a slightly better F1-score and 

produced slightly better results for high risk category patients. However, the overall 

results are still the same and support Poulin et al. (2014) and O’Dea et al.(2015). 

 

In the case of word and document vectors, the results were broadly similar to other text 

based classification. As vector only contains numerical attributes, hence they are easy 

to use by a variety of machine learning algorithms. For this reason, it may be preferred 

over text based approaches. 

 

Class imbalance occurs in many real-world classification tasks. In class imbalanced 

classification, the training set for one class (majority) far surpassed the training set of the 

other class (minority), in which, the minority class is often the more interesting class (Ali, 

Shamsuddin, & Ralescu, 2015). There are different methods available for classification 

of imbalanced datasets, which can be divided into three main categories, the algorithmic 

approach, data pre-processing approach and feature selection approach (Longadge, 

Dongre, & Malik, 2013). We have used pre-processing to balance the risk classes, but it 

did not improve the outcomes. 

 

The GRiST data contains the judgement of an individual clinician regarding a patient 

made on the assessment date. The risk judgement is purely an individual’s judgement 

on a patient. Looking at the repeat assessment of the same patient shows that 

sometimes risk can vary significantly even within a short time span. 

 

Another problem was that the GRiST system mainly collects numerical data and 

inputting comments is optional. Hence, in many instances, clinicians have given 

numerical input but they have not provided any comments. This resulted in lots of 

missing comments in the data. This is probably why numerical analysis yielded better 

results (up to a 0.92 correlation with the clinician given risk) than the text analysis.  
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6.11 Analysis of Repeat Assessments  

 

This is an exploratory work to identify patterns in repeat assessments. In medical 

assessments, some data are permanent, and some are variable. For example, gender is 

a permanent attribute of a person, but weight can vary. GRiST ontology has built in 

concepts of variability. In this regard, two types of nodes are defined namely ‘hard’ and 

‘soft’. Some examples of hard and soft nodes are shown in the table below. 

 

Table 45 GRiST hard and soft node examples 

Hard nodes Soft nodes 

Suic_past_att (past attempt) 

Suic_fam_hist (famility history) 

hto_weapons_hist  

(history of using weapons) 

hto_any_violent (violent behaviour) 

sh_first_time_ep (self harm first time) 

suic_regret (suicide regret) 

suic_how_many (suicide how many 

times) 

sh_freq_eps (self harm frequency) 

hto_violent (violent to other) 

hto_number (harm to other episodes) 

 

 

Soft nodes are expected to change as time passes. This information is hard coded in the 

GRiST ontology based on the experts’ opinion. Are all the so called soft nodes equally 

soft? Answering this question is important if we want to add interactivity to the GRiST 

system. Here interactivity means the ability of the GRiST system to suggest risk 

management at a granular level. For example, the system may advise clinicians to first 

intervene on a softer node. 

 

Another researcher Rezaei-yazdi (2015) of the GRiST team has looked at dynamically 

selecting the most appropriate nodes for risk assessment. This research is different. I 

am trying to find the most appropriate node to intervene to manage the risk after the 

assessment has been completed. 

 

When a repeat assessment is done, the hard nodes are not expected to change. The 

extracted data shows that not all nodes in the repeat assessment change similarly. 

Some nodes change more than the others do and the effects of these changes are also 
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different. The exploration of node changes in the context of repeat assessment may help 

us to design a better risk management strategy. Again, we limit ourselves to scale data 

type to reduce the complexity of the analysis. The experiment was run on 500 patients 

for whom at least 5 suicide risk assessments had been carried out. The following table 

shows a sample of the experimental results and for the full data please refer to Table 84 

in Appendix C. 

 

Table 46 Repeat node example data 

Node Name 

Suic 

Incre. 

Suic 

Decr. 

Suic 

same 

Sub 

total 

Has 

value  

Corr. 

with 

suic 

Change 

prob. 

Probab. 

of 

decrease 

gen_sad_answer 214 282 279 775 2027 0.52 0.38 0.14 

suic_regret_answer 107 114 93 314 2329 0.33 0.13 0.05 

 

 

From the above two example nodes we see that ‘gen_sad_answer’ has a total of 2027 

occurrences in the sample data, and it changed 775 times in total and when it changed, 

suicide risk increased 214 times, 282 times suicide risk decreased, and 279 times 

suicide risk remained the same. The probability of change of this node is 

775/2027=0.38.  Probability of the risk decreasing within the changes is 282/775=0.36.  

If we now multiply the probability of change and the probability of the decrease, then we 

obtain 0.38 x 0.36 =0.14. 

 

This value of 0.14 is the probability that this node (gen_sad_answer) will change and as 

a result will decrease the suicide risk. We can hypothesise that we should intervene or 

manage those risks attributes, which are more likely to reduce risk and have a higher 

probability of change. This could be incorporated in the system design to prompt 

clinicians for better management of the risks. 

 

One can argue that only considering node change probability is enough for this purpose. 

We could also use node’s general correlation with the suicide risk. A node may change 

more but the changes may not affect the risk much. Moreover, high correlation does not 

mean that the node would change, ‘suic_lethality’ has a high correlation with suicide risk 

but it hardly changes.  
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We investigated how the value of the node changes when risk of the present 

assessment is increased from previous assessments. The results are shown in the table 

below. I have found that the changes are not happening in the same order in conjunction 

with the node values and suicide risk correlation. For example, ‘hto_answer’ has a 0.17 

correlation with suicide risk globally. But its count is increasing more times in repeat 

assessments, whilst the risk was increasing. In other words, ‘harm to other’ is likely to be 

found more in repeat assessments if a patient’s suicide risk is increasing. In repeat 

assessment nodes ‘sh’ (self-harm), ‘gen_sad’ (general sadness), ‘sn’ (self-neglect) etc. 

are more likely to increase in value as the suicide risk increases. 

 

Table 47 Risk increase and node value change 

Node Name Increase Decrease Total Correlation 

sh_answer (self-harm) 119 20 178 0.69 

gen_sad_answer (general sadness) 101 25 222 0.52 

sn_answer (self neglect) 94 25 204 0.26 

vuln_su_answer (vulnerability to service user) 93 25 247 0.25 

gen_anx_emotns_answer (anxious or fearful) 90 27 209 0.25 

gen_helpless_answer 88 25 191 0.54 

gen_life_not_livng_answer 88 19 165 0.63 

gen_distress_answer 88 31 210 0.43 

gen_negative_self_answer 85 21 182 0.49 

hto_answer (harm to other) 80 25 174 0.17 

gen_plans_future_answer (future plan) 79 21 171 0.49 

gen_mood_swings_answer 78 25 200 0.42 

suic_pot_trig_answer (potential trigger) 73 11 101 0.46 

gen_angry_emotns_answer 72 24 177 0.25 

suic_id_hi_risk_answer (suicide ideations) 62 4 85 0.86 

suic_id_control_answer (suicide ideation control) 59 3 79 0.65 

gen_listless_answer (loss of drives) 59 10 109 0.22 

suic_id_strngth_answer (ideation strength) 59 3 78 0.78 

gen_motivation_answer 58 13 107 0.31 

gen_mental_withd_answer (mental withdrawal) 58 14 110 0.23 

worthlessness_answer 55 9 92 0.47 
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Node Name Increase Decrease Total Correlation 

gen_phys_withd_answer (physical withdrwal) 53 9 104 0.20 

risk_dep_answer (risk to dependents) 48 16 110 0.39 

gen_sleep_dist_answer 46 22 144 0.28 

 

Please note: The meaning of the GRiST node can be found in Appendix A. 

 

This repeat assessment analysis can help us to build a more intelligent and interactive 

CDSS system. The system can suggest to a clinician where to intervene to reduce risk. 

It can give intelligent suggestions in real-time to manage risk better. Based on the data a 

list of nodes can be created that would provide better results upon intervention. 

 

For example if we have two areas where the clinician can intervene, then the system 

can calculate which one would probably yield better results in terms of risk reduction. 

This technique would allow the GRiST system to provide risk management suggestions 

in real time. This is a significant contribution towards the improvement of the GRiST 

system. 

 

 

6.12 Summary 

 

It could be helpful if we can accurately predict suicide risk from the clinical notes. A  

linguistics-driven prediction model is described by  Poulin et al. (2014) to estimate the 

risk of suicide from clinical notes. Automatic detection of suicidality in Twitter 

investigated by O’Dea et al. (2015). Their sample size and scope were limited whereas 

we have used a bigger sample from the GRiST system. Application of the existing tools 

and algorithms show that more work is needed in this regard. Most of the research used 

human created lists of positive or negative words to conduct sentiment analysis or a list 

of symptoms to predict disease from text. But having generic systems to do this 

prediction from text data in an unsupervised manner is quite challenging. 

 

Furthermore, we have also tried to predict risk by using the presence of SNOMED-CT 

concepts in the text as well as using semantic vector representation of the patients. If we 
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reduce the category of risk from 10 to 3 (low, medium, high) the prediction accuracy 

increases. However, a careful observation shows that most of the high risk patients are 

not predicted correctly. Our results actually support the conclusion made by other 

researchers such as Thompson et al. (2014), O’Dea et al.(2015) and Poulin et al. (2014) 

that the prediction of different degrees of risk from text is challenging.  The 

comprehensive list of experiments carried out in this regard and their critical analysis 

could be useful for future research.  

 

I have been able to predict suicide risk of about 50,000 assessments with correlation 

coefficient values of 0.78 using only the scale type nodes.  It shows that using non-

categorical or ordinal data provides better results than using artificial values for 

categorical data. GRiST uses mg-values, which are estimated for categorical data by 

experts. This experiment shows that not using them in regression analysis produces 

better results. The regression analysis data from this chapter is used later in Chapter 8 

as a consensus risk. 

 

Firstly, we have attempted to predict risk from text and numerical data. From empirical 

results, we have seen that predicting higher risk patients is challenging even though the 

overall accuracy might be good. Considering the challenges of predicting higher risk, we 

have tried to explore the GRiST node inter-relationships as the next step to predict risk. 

We have applied frequent itemset mining to identify high risk category patients more 

accurately. The next chapter discusses association rule mining in the context of GRiST. 
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7 Association Rule Mining  

7.1 Introduction  

 

In the literature, frequent itemset mining has been shown to be successful in detecting 

disease and symptom relationships. Risk prediction results discussed in the previous 

chapters shows that accurately detecting higher levels of suicide risk is challenging. 

Detecting a specific category of risk from patient data can be unreliable due to class 

imbalance problems even if the overall accuracy may be higher. To improve diagnostic 

accuracy the association rule mining technique was applied. Association rule mining is 

one of the fundamental research topics in data mining, which identifies interesting 

relationships between itemsets (S. Zhang & Wu, 2011).  

 

Application of rule mining is challenging in risk analysis, as risk generally is a rare event. 

Using low support or other methods have been described in the literatures to extract 

rules.  We have proposed a multi-rule based approach to predict risk. Application of our 

method demonstrates that we can predict high suicide risk with more confidence than 

the normal association rule mining techniques. The multi-rule approach proposed in this 

chapter improves prediction accuracy and is easily configurable. 

 

It has been hypothesised that the GRiST ontology node relationships analysis might 

help to identify exceptional cases, especially the identification of high risk category 

patients. To find node relationships, various statistical methods have been explored. 

Then the impact of the discovered relationships on suicide risk has been analysed. We 

have used two distinctive approaches for node relationships identification: 

 

1. Chi-square analysis 

2. Frequent itemset mining 

 

This chapter describes the theoretical background, the proposed new method and the 

experimental results. 
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7.2 Dataset 

 

For this experiment, the same dataset from the GRiST database was chosen, which was 

used in the regression analysis. There was a total of 46903 instances of assessments in 

which 38197 had suicide risk of less than 5 and 8706 had suicide risk of more than or 

equal to 5. We considered the later group of patients as high-risk patients. 

 

Assessments conducted between 2011 and 2013, a total of 21203 assessments were 

used for training and the rest of the 25700 were used for testing purposes. The following 

table shows the distribution of risk levels in the data. 

 

Table 48 GRiST assessment data with risk level 

Year/Risk 1 2 3 4 5 6 7 8 9 10 total 

2011 802 1037 1148 542 513 216 214 127 49 15 4663 

2012 1271 1547 1413 706 577 274 270 165 59 19 6301 

2013 2824 2661 1839 995 846 381 368 228 74 23 10239 

2014 4007 3228 2191 1208 928 411 395 260 86 33 12747 

2015 4576 3017 1948 1237 929 425 361 297 114 49 12953 

total 13480 11490 8539 4688 3793 1707 1608 1077 382 139 46903 

 

A more detailed description of the dataset is provided in Chapter 3. 

 

The following table shows the correlation coefficient between calculated and predicted 

risk across varying risk levels.  Correlation co-efficient for the high risk category patients 

was much lower. It indicates that the clinicians given risk differs significantly from the 

calculated risk for high risk category patients. 

 

Table 49 Correlation between clinical and calculated risk 

Risk Level Correlation 

>0 0.785 

>1 0.726 

>2 0.661 

>3 0.590 

>4 0.520 
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>5 0.421 

>6 0.341 

>7 0.252 

 

 

The overall correlation between the clinicians given and calculated risk is 0.78, but the 

predictive accuracy varies as the levels of risk increase. For the test dataset high risk 

(>=5) was predicted with 66% accuracy. Our objective was to find methods to identify a 

high-risk patient more accurately. In order to achieve this, we have used the node 

relationships and frequent itemset mining techniques as described in the following 

sections. 

 

 

7.3 Node Relationships by Chi-square 

 

Chi-square statistics was used to determine whether there was a significant association 

between any two GRiST nodes. The following two different sets of experiments have 

been carried out. 

 

1. Nodes share similar phrases 

2. Nodes share similar level of numeric values 

 

 

Before providing an introduction to the chi-square method, the definition of some of the 

terms used in this report is provided below. 

 

 

7.3.1 Explanation of the Terminology 

 

In this chapter, some concepts or terms are repeated many times. The following are the 

explanation of those terms. 

 



7 Association Rule Mining 

 

175 

 

 

If we consider two hypothetical nodes nodeA and nodeB in the GRiST ontology then:  

 

nodeA is present = there is a phrase match or numerical value match with nodeA within 

a specific assessment. 

 

nodeA average risk= average suicide risk of all the assessments where nodeA is 

present. 

 

Combined risk= the average of suicide risk when both nodeA and nodeB are present. 

 

Combined risk high= combined risk is higher than any individual node’s average risk. 

High risk relationship= relationships whose combined risk is higher. 

 

High risk category assessment= assessments where suicide risk is higher than a 

specific value (e.g. >=5).  

 

Node relationship/pattern = when chi-square analysis indicates a statistically significant 

relationship between two nodes. 

 

Pattern or relationship exists= when an assessment has a specific node relationship 

present in it. 

 

 

7.3.2 Introduction to Pearson's Chi-square Test 

 

Chi-square (X2) test is a nonparametric statistical analysing method often used in 

experimental work, where the data consist in frequencies or counts for example, the 

number of people exposed and the number of them who had diseases (Zibran, 2015).  

The chi-square statistic can be used to test the hypothesis of no association between 

two attributes, groups or events. However, the statistical association confirmed by the 

chi-square method does not automatically imply any causal relationship between the 

groups being compared, but it means the relationship is worth investigating (Zibran, 

2015). 
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In a simple case, we can use 2x2 contingency table to calculate chi-square (Zibran, 

2015).  For example: 

 

Null hypothesis: Exposer and disease is independent. 

 

Table 50 2 by 2 contingency table 

 Disease 

Exposer Yes No  

Yes a b a+b 

No c d c+d 

 a+c b+d a+b+b+d 

 

Then we can write: 

 

 
𝑐ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒 (𝑋2) =

(𝑎𝑑 − 𝑏𝑐)2(𝑎 + 𝑏 + 𝑐 + 𝑑)

(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑑 + 𝑐)(𝑎 + 𝑐)
 (12) 

 

 

To assess the significance of the calculated value of X2, we refer to the standard chi-

square table. This table contains the critical X2 values on different degrees of freedom 

and levels of probability (Zibran, 2015).  The degree of freedom for a 2 × 2 contingency 

table is (2-1) (2-1) =1. 

 

First, we calculate the chi-square and the degree of freedom, and then we can consult 

the chi-square table and look into the row corresponding to the given degree of freedom. 

If the corresponding probability value is less than or equal to 5% then we reject the null 

hypothesis. Therefore, we can conclude that the exposer and disease has an 

association (Zibran, 2015). 

 

The next sections describe different experiments performed using the chi-square test. If 

the p-value was less than 0.05 then I rejected the null hypothesis and considered there 

to be a relationship between the two nodes. 
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7.3.3 Relationship by Phrase 

 

The SNOMED-CT concept phrases from each of the GRiST nodes were extracted and 

saved in the database. For each assessment, a list of nodes was created only if the 

frequent phrases in those nodes matched with the phrases in that assessment. For 

example, one assessment may have phrases that match to a particular set of GRiST 

nodes. If an assessment has phrases that match with phrases of a node then we 

assume that the assessment has semantic similarity with that particular node. 

 

A chi-square model was created as described below 

 

Table 51:  2 by 2 contingency table 

 Node2 Not Node2 

Node1 a b 

Not Node1 c d 

 

Where an assessment:   

a= match with both node1 and node2 

b=match with node1 but not node2 

c=do not match with node1 but match with node2 

d=do not match with node1 and node2 

 

 

 
𝑐ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒 =

(𝑎𝑑 − 𝑏𝑐)2(𝑎 + 𝑏 + 𝑐 + 𝑑)

(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑑 + 𝑐)(𝑎 + 𝑐)
 (13) 

 

 

Please refer to the Table 80  in Appendix B for more data. The following table shows 

some of the found relationships. The meaning of the node name can be found in 

Appendix A. 
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Table 52  Node to node relationship by snomed concept phrases 

Node Name Other node 

Both 

present 

Avg 

Risk Chi p-value remark 

gen_alc_misuse 

(alcohol misuse)  suic_lethality 16 4.31 9.12 0.003 increase 

gen_app_diet 

(appetite) 

 suic_pot_trig 

(potential trigger) 50 4.26 9.03 0.003 increase 

 gen_liv_skills  

(live skill)  Sn (self-neglect) 23 2.48 40.41 0.000 decrease 

 gen_sleep_dist Hto (harm to other) 113 2.51 11.69 0.001 decrease 

 

 

From the experimental data it has been found that there was a total of 728 relationships 

with p-value<0.05 which means that the relationships were statistically significant. I have 

calculated the average risk of each individual node and the combined average risk of the 

nodes (when both nodes were present). I have found that in 271 cases, combined risk is 

more than the individual node risk and in 171 cases, combined risk is low. Which means 

when there is a relationship between two nodes then the combined (when they are both 

present in the assessment) risk is more likely to be higher. 

 

For each risk category, I have looked at how many times any relationship appears in the 

assessment and how many times high risk relationships appear.  The following table 

shows the results. 

 

Table 53 Node to node relationship and risk 

Risk 
level 

No of 
Assessment 

Any relationship 
per assessment  

High rel. 
per 

assessment 

Total 
rel. 

count 

High 
rel. 

count 
High 

percent 

1 4897 1.76 0.13 8632 614 7.11 

2 5245 1.92 0.23 10064 1224 12.16 

3 4400 1.99 0.36 8737 1593 18.23 

4 2243 2.45 0.57 5503 1282 23.3 

5 1936 2.53 0.62 4889 1205 24.65 

6 871 2.83 0.79 2464 691 28.04 

7 852 2.75 0.83 2344 704 30.03 

8 520 2.74 0.87 1424 453 31.81 
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9 182 2.31 0.81 421 148 35.15 

10 57 4.82 2.12 275 121 44 
 

Interestingly, it has been found that as the risk increases so does the presence of high 

risk category relationships (where the combined node risk is high).  In the risk category 

level_1 only 7% of the relationships were from high risk but in risk category level_8 

almost 31% of the relationships came from high risk relationships. These results indicate 

that finding high risk relationships within an assessment is useful and we can flag their 

presence to the system user. 

 

For example if in an assessment we find that there are some high risk relationships 

present then we can alert the clinician that the potential suicide risk for this patient is 

high. I have continued to investigate these relationships further with different criteria, 

which are described in the following sections. 

 

 

7.3.4 Relationships by Node Value 

 

Relationships found by phrase matching may not be as precise as those that are found 

by numerical value matching.  To verify the results found by phrase matching, I have 

used numerical data to repeat the experiment. Here numerical data means the 

membership grade (mg value) that was inputted by the clinicians. In the scale datatype 

nodes, the values that was given by the clinicians ranges from 0 to 10. 

 

Chi-square was calculated by using the values as defined below: 

 

a= in an assessment both node1 and node2 has value >=5 (high value) 

b= node1 high value but not node2 

c= node1 low value but node2 high value 

d= both node1 and node2 low value 

 

 

 
𝑐ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒 =

(𝑎𝑑 − 𝑏𝑐)2(𝑎 + 𝑏 + 𝑐 + 𝑑)

(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑑 + 𝑐)(𝑎 + 𝑐)
 (14) 
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Please refer to the Appendix B and Table 81 for more data. The following table shows 

some of the results.  

 

Table 54 Node relationships by mg-value 

Node Other node 

Both 

count 

Avg 

risk 

Chi 

square 

p-

value Remark 

suic_discovery 

(suicide discovery) 

 suic_pot_trig 

(potential trigger) 1157 5.57 33.32 0 increase 

 hto_answer  

(harm to other) 

vuln_su_answer 

(feeling vulnerable) 1713 3.14 507.49 0 decrease 

 suic_lethality 

 suic_pot_trig 

(potential trigger) 2763 5.29 61.93 0 increase 

 gen_helpless 

(general helpless) 

 suic_id_hi_risk 

(ideation high risk) 1278 6.35 448.03 0 increase 

 gen_life_not_livng 

 suic_id_control 

(ideation control) 1026 6.49 621.96 0 increase 

 

 

From the data, we have found that there are a total of 595 relationships of which 443 

relationships have high combined risk. Again, in this case a relationship of which 

combined risk is high appears significantly higher in high risk category assessments.  

 

Table 55 Node relation and risk category by mg-value 

Risk 
level 

No of 
Assessment 

Any rel. 
per 

assessment  

High rel. 
per 

assessment 

Total 
rel. 

count 
High rel. 

count 
High 

percent 

1 4897 22.36 10.14 109503 49653 45.34 

2 5245 28.24 15.78 148102 82775 55.89 

3 4400 37.84 24.29 166504 106860 64.18 

4 2243 55.7 38.4 124932 86133 68.94 

5 1936 76.75 55.95 148591 108322 72.9 

6 871 99.47 75.23 86639 65523 75.63 

7 852 120.92 93.68 103026 79814 77.47 

8 520 133.6 104.78 69472 54483 78.42 

9 182 147.86 116.15 26911 21140 78.56 

10 57 146.63 113.53 8358 6471 77.42 
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From the above table we can see that in low suicide risk (e.g. 1) the percentage of high 

risk relationships is about 45% but for high risk patients the high-risk relationship is 

present about 78% of the time. We can view the results in the following graph. 

 

 

Figure 16 Risk level vs high risk relationships 

 

 

7.3.5 Ch-Square Relationships Analysis 

 

After running different sets of relationship tests and analysing the data, I have found that 

there is a general tendency of combined risk (when both nodes have a value in an 

assessment) being higher when there was a chi-square relationship between two nodes. 

High risk relationship types are also more likely to be present in the high risk 

assessments. 

 

This is an interesting finding in the context of the GRiST system.   We now know that 

there exists relationships between nodes and those relationships tend to produce higher 

risk. If we analyse a patient and find the ‘high risk type relationship’ then that could 

potentially indicate suicide risk for that patient is higher. This finding is a useful 

contribution towards making the GRiST system more interactive.  
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Considering the potential significance of the relationship between GRiST nodes, we 

have tried a more systematic approach to predict suicide risk by frequent itemset mining, 

where one of the items is always suicide risk. To do this analysis we have used an fp-

growth algorithm as it was claimed to be faster in the literature. The next section 

discusses frequent itemset mining techniques. 

 

 

7.4 Frequent Itemset Mining 

 

Frequent itemset mining was initially introduced for market basket analysis. In the 

literature review, we have described the increasing use of association rule mining in 

disease and symptom relationships analysis. In the previous section, we have shown 

that relationships of nodes are more likely to appear in higher risk category patients. 

This suggests that application of association rule mining techniques may provide a 

means to identify high-risk patients. The following sections describe theoretical 

introduction followed by experimental results and analysis. 

 

 

7.4.1 Theoretical Background 

 

Association rule mining is one of the fundamental research topics in data mining, which 

identifies interesting relationships between items and predicts the associative and 

correlative behaviours for new data (S. Zhang & Wu, 2011). Frequent itemset mining is 

a popular technique that was originally developed for market basket analysis and it is 

now commonly used in discovering regularities between nominal variables (Borgelt, 

2012). 

 

The problem of discovering all association rules can be divided into two sub problems 

(Agrawal & Srikant, 1994): 

 

1. Find all sets of items (itemsets) that have minimum support (in the 

number of transactions they appear). 
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2. Use the large itemsets to generate the desired rules.  

 

Based on the definition given by  Agrawal, Imielinski, & Swami (1993), association rules 

mining can described as follows: 

 

 

Let I = {i1, i2 . . . in} be a set of n distinct attributes called items.  

Let T= {t1, t2, t3, …..tm} be a set of m transactions. 

 

Each transaction in T has a unique transaction ID and contains a subset of the items in  

I. 

 

Let X, Y be a set of items; an association rule is an implication of the form  

 

X ⇒ Y, where X ⊂ I , Y ⊂ I , and X∩Y = ∅.  

 

X is called the antecedent or left hand side (LHS) and Y is called the consequent or right 

hand side (RHS). In order to select interesting rules various measures of significance 

and interest are used. Two commonly used measures are the support and confidence of 

a rule. 

 

 

Support of X is the proportion of transactions in T that contain both X. 

 

 𝑆𝑢𝑝𝑝 (𝑋) =
Number of  transations conatin X

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

 

The confidence value of a rule (X =>Y) with respect to a set of transactions T is the 

proportion of the transactions that contains X, which also contains Y. 

 

 𝐶𝑜𝑛𝑓 (𝑋 => 𝑌) =
Supp(XUY)

𝑆𝑢𝑝𝑝(𝑋)
 

 

 

The problem of discovering all association rules from a transactional database is to 

generate the rules that have a support and confidence greater than predefined 
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thresholds. Such rules are called valid (or strong) rules, and the framework is known as 

the support–confidence framework (L. Zhou & Yau, 2007). In depth explanation of the 

association rule mining techniques can be found in (S. Zhang & Wu, 2011), (Naulaerts 

et al., 2015), (Hipp et al., 2000) and (Borgelt, 2012). 

 

The performance and complexity of an association rule mining system is greatly 

dependent upon the identification of frequent itemsets (S. Zhang & Wu, 2011).  One of 

the well-known algorithms to perform this identification is the Apriori algorithm.  For a  

detailed description of  the Apriori algorithm please refer to Agrawal & Srikant (1994). 

The Apriori algorithm is quite slow and one of the new faster algorithms is the FP-

Growth algorithm developed by Han, Pei, Yin, & Mao (2004). The FP-growth algorithm is 

used in this research hence it is described in detail in the next section. 

 

 

7.4.2 FP-Growth Algorithm 

 

The FP-Growth algorithm is proposed by Han et al. (2004).  The proposed algorithm 

uses a novel frequent-pattern tree (FP-tree) structure, which is an extended prefix-tree 

structure for storing information about frequent patterns in a compressed form. FP-

growth algorithm mines the complete set of frequent patterns by analysing pattern 

fragment growth (Han et al., 2004).  

 

According to Han et al. (2004) the efficiency of the fp-growth method comes from the 

following three techniques:  

 

1. A condensed data structure (FP-tree) avoids costly, repeated database scans,  

 

2. It uses a pattern-fragment growth method to avoid the costly generation of a 

large number of candidate sets, and  

 

3. A divide-and-conquer method is used to decompose the mining task into small 

sets, which dramatically reduces the search space.  
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The fundamental principle of the FP-Growth algorithm is explained with an example 

below. This example is summarised from the original paper written by Han et al. (2004). 

 

The following table has five transactions of items that are bought by customers. Firstly, 

all the items are counted and an ordered list is created. Items that have support of less 

than 3 are ignored. 

 

Table 56 A transactional database for FP-tree example 

TransactionID Items bought (Ordered) frequent items 

1 f, a, c, d, g, i,m,p f, c, a,m, p 

2 a, b, c, f, l,m,o f, c, a, b,m 

3 b, f, h, j,o f, b 

4 b, c, k, s,p c, b, p 

5 a, f, c, e, l, p,m,n f, c, a,m, p 

 

 

After this an FP-tree is created using the following steps as described in (Han et al., 

2004).   

 

Step1:  The first transaction has items (f,c,a,m,p). A tree is created as shown in the 

image below. 

 

Step2: For the second transaction (f, c, a, b,m) shares a common prefix ( f, c, a) with the 

existing path ( f, c, a,m, p), the count of each node along the prefix is incremented by 1, 

and one new node (b:1) is created and linked as a child of (a:2) and another new node 

(m:1) is created and linked as the child of (b:1). 

 

Step3: For the third transaction, since its frequent item list (f, b) shares only the node (f ) 

with the f -prefix subtree, f ’s count is incremented by 1, and a new node (b:1) is created 

and linked as a child of ( f :3). 

 

Step4: The scan of the fourth transaction leads to the construction of the second branch 

of the tree, (c:1), (b:1), (p:1). 
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Step5: For the last transaction, since its frequent item list (f, c, a,m, p) is identical to the 

first one, the path is shared with the count of each node along the path incremented by 

1. 

 
Figure 17 FP-growth creation example 

 
Compact FP-tree creation helped to perform subsequent tasks more efficiently on a 

compact data structure (Han et al., 2004). All the possible patterns containing only 

frequent items and a node can be found by following the nodes link towards the root and 

starting from the node head. A detailed description of the FP-growth can be found in 

(Han et al., 2004). For the experimental purpose, I have used Weka tools, which has an 

implementation of the FP-growth algorithm. 

 

 

7.4.3 Experimental Results 

 

The Weka data mining tool was used to extract the association rules among GRiST 

nodes by using the FP-growth algorithm. For this analysis, 141 scale data type nodes 

were chosen. If the value of the node was >=5 then 1 was chosen and if the value was 

<5 then 0 was chosen. 

 

The first 21203 records were used to learn association rules by using the fp-growth 

algorithm. The following table shows some of the learned rules with Confidence=0.85 

and Support=0.05. To make it useful for our purpose I have only chosen rules that refer 
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to the suic_answer node. A PHP script was written to filter all the rules and find only the 

suic_answer related rules. The detailed meanings of nodes are given in Appendix A.  

Please read id=ideation, suic=suicide, pot=potential, trig=trigger, hi=high, gen=general, 

strngth=strength. 

 

Table 57 Some sample rules extracted by the FP-growth algorithm 

Antecedent nodes 

(left hand side) 

Consequent node 

(right hand side) 

Confidence of the rule 

suic_id_hi_risk, suic_id_strngth, 

suic_pot_trig 

suic  (suicde risk) 0.92 

suic_id_control, suic_id_hi_risk suic   0.90 

suic_id_hi_risk, suic_id_strngth suic   0.90 

gen_life_not_livng, suic_id_hi_risk suic   0.89 

suic_id_control, suic_id_strngth suic   0.88 

gen_distress, suic_id_hi_risk suic   0.87 

gen_sad, suic_id_hi_risk suic   0.87 

suic_id_hi_risk, suic_pot_trig suic   0.87 

suic_id_control, suic_pot_trig suic   0.87 

gen_helpless, suic_id_hi_risk suic   0.87 

gen_negative_self, suic_id_hi_risk suic   0.86 

gen_life_not_livng, suic_id_strngth suic   0.86 

suic_id_strngth, suic_pot_trig suic   0.85 

 

Please note: The meaning of the GRiST node can be found in Appendix A. 

 

In the GRiST data, most of the nodes rarely have any values as clinician can skip 

nodes. The support parameter was lowered to 0.05 and the confidence parameter 

chosen was 0.85. This has generated a total of 144 rules. Even though support was 

0.05 it still was using at least 1060 out of 21203 assessments to create a rule. The high 

suicide risk is a rare event hence threshold needs to be low to find any rule. Use of low 

support value for scarce data, especially in biomedical application is not uncommon. For 

example, in some experiments support 1.5% was used since mental disorders are 

relatively rare in the healthy population, especially for those who have compounded 

disorders (Lacković et al., 2014). For negative and positive association rules mining from 
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text using frequent and infrequent itemsets, support from 0.05 to 0.15 was used by 

Mahmood, Shahbaz, & Guergachi (2014). Rare events mining is discussed in further 

detain in section 7.5. 

 

 

7.4.4 Risk Prediction by Association Rules 

 

Once we have found and filtered the association rules from the training dataset then we 

have used them to predict suicide risk from the test dataset. The method of predictions 

is shown below: 

 

Step1: Make a list of rules 

Step2: Extract patient data 

Step3: Match patient attributes with each of the rules. 

Step4: If a match is found then it is high risk or else it is low risk 

Step5: Repeat this for another patient 

 

For example, for support=0.05 and confidence=0.85 a total of 144 rules were extracted. 

Out of which 13 rules had suic_answer high at the right hand side. We used these 13 

rules to predict high risk based on the above mentioned steps.  

 

Out of 25000 test instances the number of high risk patients was 4165, the number of 

predicted high risk patients was 2518 of which 1829 predictions were correct. For the 

high-risk patient this gives us a recall=0.439, a precision=0.726 and an f-score=0.54. 

The overall accuracy of prediction including high and low risk was about 88%.  
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The following table shows data with different confidence and support levels. 

 

Table 58 Precision and Recall of High risk prediction 

Support Confidence Rule count High recall   High precision F-measure 

0.03 0.75 539 0.80 0.51 0.62 
0.03 0.8 404 0.74 0.56 0.64 
0.03 0.85 299 0.56 0.67 0.61 
0.03 0.9 163 0.43 0.75 0.54 
0.03 0.95 5 0.25 0.90 0.39 
0.04 0.75 114 0.76 0.55 0.63 
0.04 0.8 76 0.66 0.61 0.64 
0.04 0.85 55 0.50 0.69 0.58 
0.04 0.9 20 0.37 0.81 0.51 
0.05 0.75 26 0.65 0.60 0.63 
0.05 0.8 16 0.50 0.69 0.58 
0.05 0.85 13 0.44 0.73 0.55 
0.05 0.9 3 0.26 0.87 0.40 

 

 

From the above test results, we can conclude that whilst the proposed method cannot 

always predict (low recall value) but when it can, the prediction can be up to 87% 

accurate. This method is very flexible and we can predict with different levels of 

confidence. Rules that have high confidence produce results that are more accurate as 

shown in the graph below. This is an important finding with the GRiST data. It could 

allow us to predict risk as soon as a pattern is found before the assessment is 

completely finished.  

 

 

Figure 18 Association rules confidence and accuracy  
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One of the problems is that the support value is low due to rare occurrences of the 

attributes. We propose a simple solution to overcome this problem by using multiple 

rules for predictions. If we increase the number of required rules to predict suicide risk to 

more than one, then we can see that precision also increases. This new approach would 

allow us to modify precision and recall and achieve the desired level of accuracy. The 

following table shows some of the experimental data, which are filtered from rules (144) 

found with min support=0.05. 

 
 
Table 59 High risk prediction with multiple rules 

Confidence Rule count Min rules High recall High precession F-score 

0.8 16 1 0.50 0.69 0.58 

0.8 16 2 0.41 0.76 0.53 

0.8 16 3 0.37 0.80 0.51 

0.8 16 4 0.34 0.83 0.48 

0.85 13 1 0.44 0.73 0.55 

0.85 13 2 0.37 0.80 0.51 

0.85 13 3 0.33 0.83 0.48 

0.85 13 4 0.30 0.85 0.45 

0.90 3 1 0.26 0.87 0.40 

0.90 3 2 0.23 0.88 0.37 

0.90 3 3 0.17 0.92 0.29 

 

 

The following graph shows the effect of using multiple rules extracted by using 

confidence 0.85. 

 

 

Figure 19 No of rules vs Recall and Precision 
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From the above table we see that while initial precision was 69% we can improve that to 

83% by matching at least 4 rules. This could allow us to apply this method and alert 

clinicians with different confidence levels. An alert can be generated as soon as the 

relevant attributes become available. The system does not need to wait for the 

completion of the assessment. To investigate it further, we have compared our approach 

with other rare event mining methods in the subsequent sections.  

 

 

7.5 Rare Event Mining 

 

Rare itemset mining has a wide range of application possibilities in the field of risk 

assessment and fraud detection (Abraham & Joseph, 2016). It can provide useful 

information in different decision-making domains such as business transactions, 

medical, security, fraudulent transactions and retail communities (Pillai, 2010). For 

example in medical dataset a rare combination of syndrome plays a vital role for the 

physicians (Bhatt & Patel, 2015). A review of rare itemset mining can be found in 

(Kiruthika & Roopa, 2015).   

 

In the GRiST dataset, higher risk of suicide is a rare event. Previously we have shown 

the application of fp-growth methods with low support values. The following sections 

describe the application of two rare itemset mining techniques on the GRiST data. As 

before the extracted rules were used to predict suicide risk. 

 

 

7.5.1 Using the CORI Algorithm 

 

CORI is an algorithm for discovering itemsets (group of items) that are rare and 

correlated in a transaction database (rare correlated itemsets). A rare itemset is an 

itemset such that its support is low (less than maximum support set by the user) but they 

are correlated amongst themselves. The support of an itemset is the number of 

transactions containing the itemset (Fournier-Viger et al., 2016a).  
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To find the rare but correlated itemset a new measure BOND is proposed by  

Bouasker & Ben Yahia (2015). A correlated itemset is an itemset such that its bond is no 

less than a minimum bond threshold set by the user. The bond of an itemset is the 

number of transactions containing the itemset divided by the number of transactions 

containing any of its items. The bond is a value in the [0,1] interval. A high value means 

a highly correlated itemset. Note that single items have a bond of 1 by default. 

 

The GRiST data was run through the CORI algorithm to find rare itemsets. The 

maxsupport was set at 0.8 and the patterns were extracted for various levels of BOND. 

Because most of the relationships are rare in the GRiST dataset, so a maximum support 

of 0.4 to 1 yields the same results. 

 

Table 60 High risk prediction with CORI 

BOND No of rules High recall High precision F-score 

0.2 29 98.29 20.96 34.56 

0.25 17 97.43 23.71 38.13 

0.3 5 83.19 45.56 58.87 

0.35 3 80.38 47.49 59.71 

0.375 2 74.71 51.49 60.97 

0.4 1 70.97 51.15 59.45 

 

 

At this stage we are interested in identifying only high risk category patients (suicide 

risk>=5).  By using the pattern extracted from the CORI algorithm, we achieve a 

maximum f-score of 60.097% but the precision score was only 51.49%. Using the high 

BOND value increases precision but our multi-rule approach is much more flexible. 

Next, we have tried to extract rules with high confidence by using the TopK Rules 

algorithm. 

 

 

7.5.2 Using the TopKRules 

 

The top-k association rules are the k most frequent association rules in the database 

having a confidence higher or equal to minimum confidence  (Fournier-Viger et al., 
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2016b). Other association rules mining algorithms requires us to set a minimum support 

(minsup) parameter, this is hard to set (users usually set it by trial and error, which is 

very time consuming). TopKRules solves this problem by letting users directly indicate k, 

the number of rules to be discovered instead of using minsup (Fournier-Viger et al., 

2016b).  

 

It provides the benefit of being very intuitive to use. It should be noted that the problem 

of top-k association rule mining is more computationally expensive than the problem of 

association rule mining. Using TopKRules is recommended for k values of up to 5000, 

depending on the datasets (Fournier-Viger, Wu, & Tseng, 2012). 

 

TopKRules takes three parameters as input: 

 

1. a transaction database, 

2. a parameter k representing the number of association rules to be 

discovered (a positive integer), 

3. a parameter minconf representing the minimum confidence that the 

association rules should have (a value in [0,1] representing a 

percentage).  

 

The GRiST dataset was used to find the top 1000 association rules. We have run the 

algorithm with various levels of confidence. Then the extracted rules were used to 

predict suicide risk. 

 

Table 61 High risk prediction with Top K rules 

Confidence Rule count Min rules High recall High precession F-score 

0.8 36 1 54.54 66.52 59.95 

  

2 48.33 71.08 57.53 

  

3 42.64 74.87 54.33 

0.85 27 1 43.16 72.55 54.13 

  

2 37.35 79.55 50.84 

  

3 33.42 82.85 47.63 

0.9 6 1 26.26 86.34 40.27 

  

2 23.02 89.29 36.61 

  

3 20.91 90.54 33.97 
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From the above table we can see that the precision of high risk prediction can be up to 

90.54%. Recall decreases as the precision increases. Only a few other algorithms such 

as AprioriRare and MNR (minimal non-redundant association rules) were also 

experimented with. They have produced similar but slightly less favourable results. One 

of the benefits observed with the TopKRules algorithm is that it is simple and produces a 

wide range of precision results.  

 

 

7.6 The Multi-rule Risk Prediction Method 

  

Based on the experimental results and the above discussion, we propose an algorithmic 

procedure for Risk Prediction from Node Association rules. The proposed method can 

be defined as below: 

 

 

Figure 20 The Multi-rule risk prediction method 
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The proposed algorithm can be adjusted by the confidence and support parameters of 

the FP-Growth association rules learning algorithm. The output can be dynamically 

adjusted as per the required accuracy by changing these parameters. The rules can 

also be extracted by other methods such as TopKRules. As the association rules can be 

learned offline, therefore it could be used in a real time environment where fast 

processing is required. It can predict high risk patients with up to 90% precision. 

 

By using the proposed method, we can add an alert mechanism in the GRiST CDSS 

system work flow. The alert can be given as soon as any matching rules are found even 

before the completion of the assessment. If regression analysis is used for prediction 

then we have to wait for the assessment to be fully completed before any alert can be 

given.  The following diagram shows the modified GRiST CDSS system. 

 

 

 

 
Figure 21 Proposed alerting mechanism for GRiST CDSS 
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7.7 Summary  

 

There exist some statistically significant relationships between the GRiST nodes and 

they were confirmed by both phrase and numerical analysis.  It has been found that the 

presence of a greater number of node relationships in an assessment indicates a 

potentially higher risk of suicide. This is a new finding in the context of the GRiST 

dataset and might help us to further analyse the GRIST data. The presence of node 

relationships that produce higher average risk rather than the individual node’s average 

risk is considered as a high-risk relationship.  

 

To further investigate the relationships among nodes we have used association rule 

mining techniques. Within the GRiST dataset, the higher risk of suicide is a rare event. A 

new multi-rules based method has been proposed to find the high risk category patients 

dynamically at the time of assessment. The proposed method is adjustable based on the 

expected accuracy of the prediction. Empirical data shows that the proposed method 

can be used to predict high risk patients with greater accuracy (up to 90%) than the 

regression method (66%). Another benefit of this method is that we can predict before 

the completion of the assessment and as soon as the patterns are detected. This is a 

significant contribution to the GRiST project. This fulfils one of our key objectives, which 

was to find high risk category patients with better precision. 

 

Because a disease is generally a rare event in a dataset, hence low support is used in 

association rule mining in biomedical literature. We have compared many rare event 

mining techniques found in the literature. Empirical results show that our proposed multi-

rule approach works better than the other method such as CORI or TopKRules itemset 

mining alone. 

 

After completion of the assessment, clinicians provide their own risk judgement. To 

make the GRiST system a more intelligent CDSS, we would like to assess the reliability 

of the clinician’s judgement and provide feedback accordingly. In the following chapter, 

we discuss the differences between the calculated/predicted risk and the clinicians given 

risk and propose a novel method to improve the reliability of the risk judgement.   
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8 Reliability of Risk Judgement 

8.1 Introduction 

 

The use of clinical decision support systems (CDSSs) has increased recently and has 

shown an improvement in productivity, reduction of medication errors and an increase in 

quality of hospital services (Al-gamdi, 2014). However, the acceptance of 

CDSSs is hampered by the complexity of the system, their time-consuming 

nature, and a general lack of accurate decision support (Al-gamdi, 2014). In this chapter, 

we address the decision accuracy problem in the context of the GRiST decision support 

system. 

 

One of the aims of this research was to explain the differences between the clinician 

given risk and the calculated risk. The calculated risk may come from regression or any 

other machine learning approach. Presently, when the clinician provides a risk 

judgement, there is no way to validate this judgement. One way to validate this could be 

to compare the clinician given risk with the risk calculated by regression analysis. We 

may consider the calculated risk as the consensus risk. When there is a difference 

between the clinician and calculated risk, it would be extremely valuable to be able to 

explain that difference. The CDSS can then alert the clinician and point to the possible 

improvement strategy. 

 
 

To solve the above mentioned problem, we have chosen to use the Information theoretic 

approach. For clustering comparison information theoretic  measures have been 

employed because of their strong mathematical foundation, and ability to detect non-

linear similarities (Vinh, Epps, & Bailey, 2010). We might use the information gain 

indirectly as to explain why the clinician’s judgement and calculated risk differ, especially 

when the difference is high. The assumption is that the difference between the clinicians 

and calculated risk increases when the overall information gain of the assessment is 

low. In other words, the assessment was probably not conducted encompassing all the 

aspects of the evaluation process, which resulted in less information gain and more 

differences. 
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Hypothesis 1: The accuracy of the risk judgement depends on the information collected 

by the clinician at the time of the risk judgement and a higher level of risk requires more 

information collection. 

 

Hypothesis 2: The difference between the clinicians and the predicted risk is inversely 

correlated with the total information gain of the assessment. 

 

Hypothesis 3: The clinician given risk can be adjusted to bring it closer to the consensus 

risk (calculated risk) based on the total information gain of the assessment. 

 

 

8.2 Dataset 

 

For this experiment, the same dataset from the GRiST database was chosen, which was 

used for regression analysis in Chapter 6. GRiST has more than 436 nodes and it is 

regularly updated with new assessment types. A subset of 141 nodes were chosen, 

which have a scale data type. The reason for this is to keep the number of nodes 

computationally manageable and regression analysis was done using these nodes. We 

wanted to compare the risk from the regression analysis with the clinicians given risk 

and explain the differences with information gain.  

 

A total of 46903 assessments were chosen from the GRiST database.  These 

assessments had at least 1KB of text comments and suicide risk judgement was more 

than zero. The other assessments, which were not suicide related, were eliminated. 

Some of them were only related to self-harm or absconding. The following table shows 

the distribution of assessments across the different suicide risk categories. 
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Table 62 GRiST data distribution across risk levels 

Suicide risk No of assessments 

1 13480 
2 11490 
3 8539 
4 4688 
5 3793 
6 1707 
7 1608 
8 1077 
9 382 

10 139 
Total 46903 

 

 

The following table shows the number of assessments based on when they were 

conducted. Assessments conducted between 2011 and 2013 were used for training and 

the rest were used for testing. 

 

Table 63 Test and Training dataset from GRiST 

Assessment year No of Assessment Used for 

2011 4663 training 

2012 6301 training 

2013 10238 training 

2014 12747 test 

2015 12953 test 

 

 

The multiple linear regression analysis was done on the dataset using the 141 scale 

type nodes as attributes and suicide risk was calculated. The 10-fold validation 

correlation coefficient was 0.78. The calculated suicide risk was considered as 

consensus suicide risk for further analysis. 
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The following table shows the correlation coefficient between the calculated and 

predicted risk across varying risk levels.  The correlation co-efficient for the high risk 

category patients was much lower. It indicates that the clinicians given risk differs 

significantly from calculated risk for the high risk category patients. 

 

Table 64 Correlation between clinical and calculated risk 

Risk Level Correlation 

>0 0.785 

>1 0.726 

>2 0.661 

>3 0.590 

>4 0.520 

>5 0.421 

>6 0.341 

>7 0.252 

 

 

From the data, we can see that the overall correlation is 0.78 (between the clinicians 

and calculated risk), but the predictive accuracy varies as the level of risk goes higher.  

Our objective was to find methods to identify probable inaccurate risk judgement and 

notify clinicians in real time. For example, the system may notify the clinician, that the 

given risk level requires more information collection. 

 

We have applied multiple methods to achieve our objective. Sequentially, the later 

described methods address some of the limitations of the prior methods. The applied 

methods and their respective results are described in the following sections. 
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8.3 Method A: Information Gain 

 

8.3.1 Introduction to Entropy 

 

Information theory and its use in communication was originally proposed by Shannon 

(1948) in his seminal paper “A mathematical theory of communication”.  Most of the 

ideas came from this paper. 

 

Information we get from observing the occurrence of an event having probability p is 

defined as (Carter, 2007), (Shannon, 1948): 

 

 𝐼(𝑝) = − log𝑏(𝑝) (15) 

 

Where: 

p = probability 

b = base (base 2 is used in information theory) 

 

 

“The entropy of a probability distribution is just the expected value of the information of 

the distribution” (Carter, 2007, p. 25). It is calculated as the weighted average amount of 

the information from the event.   

 

Suppose X is a discrete random variable which takes values from the set X = {x1,x2, 

...,xn}, and is defined by a probability distribution p(X), then the entropy of the random 

variable can be defined by the following equation (McEliece, 2013), (Thomas M Cover & 

Thomas, 2005) and (Shannon, 1948): 

 

 
𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log𝑏 𝑝(𝑥𝑖)

𝑛

𝑖=1

 (16) 

 

 

If the log in the above equation is based on 2 then the entropy is expressed in bits and If 

the log is based on natural log, then the entropy is expressed in nats (McEliece, 2013). 
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In computing, entropy is commonly expressed in bits, and unless otherwise stated, we 

will assume a logarithm with base 2. 

 

The concept of entropy is related to ‘uncertainty’, ‘randomness’ or ‘noise’ in a system. 

High Entropy means that the probability distribution is uniform. There is an equal chance 

of obtaining any possible value. A Low Entropy means that the distribution is not 

uniform. Hence, it is more predictable. 

 

In a tree-type structure if a choice is broken down into two successive choices, the 

original H should be the weighted sum of the individual values of H (Shannon, 1948). 

The meaning of this is illustrated in Figure 22 reproduced from (Shannon, 1948). 

 

 

 

 

Figure 22 Decomposition of a choice from three possibilities reproduced from (Shannon,1948) 

 

The left tree has three branches with p1=1/2, p2=1/3, p3=1/6. The right has two branch 

with a probability of 1/2, and the second branch makes more branches as shown in the 

second image. According to Shannon (1948) the final results have the same 

probabilities for both of these trees. Hence, 

  

H(1/2,1/3,1/6)=H(1/2,1/2) +(1/2) H(2/3,1/3) 

 

The coefficient 1/2 is because the second branch only occurs half the time (Shannon, 

1948).  This calculation technique is used to calculate information gain, which is 
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described next. More detail on information theory and entropy can be found in (T M 

Cover & Thomas, 2012), (McEliece, 2013), (Carter, 2007) and (MacKay, 2003).  

 

 

8.3.2 Information Gain (IG) 

 

Information gain (IG) is a measure of the reduction of uncertainty in class prediction, if 

the only information available is the presence of a feature and the corresponding class 

distribution (Roobaert, Karakoulas, & Chawla, 2006). It measures the expected 

reduction in entropy by partitioning a group according to a feature or the attribute in 

question (Bahety, 2014). 

 

For example if we have a data set T which has C1,C2,…Ck class. |T| is total number of 

class and |Ck| is the number of items in k class. The total entropy or information of the 

set T is: 

 

 

 
𝐼𝑛𝑓𝑜(𝑇) = − ∑(

𝑘

𝑖=1

|Ci|)/|𝑇|) ∗ 𝑙𝑜𝑔2(|Ci|/|𝑇|)) (17) 

 

 

Considering the similar measurement after T has been partitioned by attribute X into T1, 

T2, … Tn subsets. We can calculate the entropy of each of these subsets by using the 

above formula. The expected information of the attribute X is the weighted sum of each 

subsets (Kantardzic, 2011). 

 

 
𝐼𝑛𝑓𝑜𝑥(𝑇) = ∑((|𝑇𝑖

𝑛

𝑖=1

|/|𝑇|) ∗ 𝐼𝑛𝑓𝑜(𝑇𝑖)) (18) 

 

Then the loss of entropy is the information gain for the attribute X. We get 

 

 𝐺𝑎𝑖𝑛(𝑋) = 𝐼𝑛𝑓𝑜(𝑇) − 𝐼𝑛𝑓𝑜𝑥(𝑇) (19) 
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In decision tree algorithms the attribute that maximises the Gain(X), is selected for tree 

split. The above explanation is summarised from (Kantardzic, 2011). This calculation 

technique is used in this research. 

 

 

8.3.3 Gain Ratio 

 

Decision tree learning algorithms (e.g. ID3) uses information gain to select the best node 

for split. “One limitation of ID3 is that it is overly sensitive to features with large numbers 

of values” (Hssina, Merbouha, Ezzikouri, & Erritali, 2014, p. 15). To overcome this 

problem Gain(X) is normalised using SplitInfo(X) as described in (Kantardzic, 2011). 

 

 
𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑋) = − ∑ (

|𝑇𝑖|

|𝑇|
)

𝑛

𝑖=1

𝑙𝑜𝑔2 (
|𝑇𝑖|

|𝑇|
) (20) 

 

This represents the potential information generated by dividing set T into n subsets Ti. A 

new gain measure is defined (Kantardzic, 2011) as: 

 

         Gain-Ratio(X)=Gain(X) /Split-info(X) (21) 

 

This measure is robust and typically gives a consistently better choice of a test than the 

previous gain measure used (Kantardzic, 2011). Several splitting schemes have been 

compared in the past (Banfield, Hall, Bowyer, & Kegelmeyer, 2007). We have used both 

gain and gain ratio in our experiments. The exact method detailing how it was done in 

this research is explained in the next section. 

 

 

8.3.4 Example of IG Calculation 

 

The information gain of each node can be calculated based on the theoretical discussion 

above and the examples described in (Du, Du, Zhan, & Zhan, 2002) and  (Kantardzic, 
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2011). It might be better to explain the method with an example. This example is 

adapted from (Kantardzic, 2011) and (Amro, 2009).  

 

Let us consider a single node of GRiST ontology such as [depression] and run a 

calculation based on the information depicted in the figure below. 

 

 

Figure 23 Information gain calculation example 

 

 

Suppose we have 15 patients, of which 6 are of high suicide risk category and 9 are of 

low suicide risk category. This gives us the probability of high risk, P(H)=6/15 and a 

probability of low risk, P(L)=9/15. 

 

Using the formula to calculate entropy we get: 

 

Entropy_before = - (6/15)*log2(6/15) - (9/15)*log2(9/15) = 0.9709 

 

Based on the answer to the depression status question, we can divide the patients into 

two groups. For the group on the left (depression=NO) we get the entropy as follows: 

 

Entropy_NO = - (2/9)*log2(2/9) - (7/9)*log2(7/9) = 0.7642 
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And for the group on the right (depression=YES), we get the entropy: 

 

Entropy_YES = - (4/6)*log2(4/6) - (2/6)*log2(2/6) = 0.9182 

 

Now we can combine these two entropy’s as a weighted sum, which gives us the 

entropy after the split: 

 

Entropy_after = 9/15*Entropy_NO + 6/15*Entropy_YES = 0.8259 

 

If we deduct entropy_after from the entropy_before we get the information gain of the 

depression node. 

 

Information_Gain = Entropy_before - Entropy_after = 0.1449 

 

We can say that after asking the ‘depression question’ we have gained some 

information about the patient’s suicide risk. The information gain amount is 0.1449. Like 

this example, information gain can be calculated for any of the GRiST nodes. 

 

 

8.3.5 Gain Ratio Calculation 

 

To calculate the gain ratio of each of the GRiST nodes I have used the machine-learning 

tool Weka (Hall et al., 2009) that implements various attribute selection algorithms 

including GainRatio. The GainRatio attribute selection option was used to calculate 

gainratio of each of the selected GRiST nodes. The gain ratio calculated by myself using 

the method described above and by Weka have both produced the same results. 

Subsequently for simplicity purposes, Weka was used.  The following table shows some 

of the results.  
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Table 65 Gain Ratio of GRiST nodes 

GRiST node Description Gain Ratio 
suic_plan_real_answer Realism of the suicide plan 0.19787 
suic_id_hi_risk_answer High risk suicide ideation 0.1937 
suic_steps_takn_answer Suicide steps taken 0.19063 
suic_prosp_leth_answer Lethality of the methods 0.1889 
suic_eol_prep_answer End of life preparation 0.17803 
suic_pot_trig_answer Potential trigger 0.17285 
suic_id_strngth_answer Suicide ideation intensity 0.16096 

 

 

The calculated Gain ratio was used for subsequent analysis and application. The Gain 

ratio was calculated from the training dataset and applied for risk adjustment in the test 

dataset. Later in this chapter, the term information gain is sometimes used in general to 

refer to gain ratio or the total information collected by an assessment. 

 

 

8.3.6 Experimental Results and Analysis 

 

The relationship between a node and suicide risk can be viewed in the way the node 

correlates with suicide risk. A node’s correlation with suicide risk may also be related to 

the information gain of the node. For further exploration a node’s information gain and its 

correlation with suicide risk were compared and some of the results are shown below.  

 

Table 66 Gain Ratio of GRiST nodes 

GRiST node 
Description Correlation 

with suicide Gain ratio 
suic_plan_real_answer Realism of the suicide plan 0.34 0.19787 
suic_id_hi_risk_answer  High risk suicide ideation  0.80 0.1937 
suic_steps_takn_answer Suicide steps taken 0.31 0.19063 
suic_prosp_leth_answer Lethality of the methods 0.21 0.1889 
suic_eol_prep_answer End of life preparation 0.23 0.17803 
suic_pot_trig_answer Potential trigger 0.61 0.17285 
suic_id_strngth_answer Suicide ideation intensity 0.75 0.16096 

 

Please note: The meaning of the GRiST node can be found in Appendix A. 
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The analysis reveals that a node having a high correlation with suicide risk does not 

always mean that the node would provide high information gain (gain ratio). For 

example, sh_steps_taken (steps taken) has correlation 0.31 but information gain is 

0.190 and suic_pot_trig (potential trigger) has a correlation of 0.61 but information gain 

is 0.172. Which may be interpreted as the knowledge of ‘steps taken’ provides us with 

more of an indication than the knowledge of a ‘potential trigger’ to identify the suicide 

risk. 

 

We can assume that if a patient came for an assessment and a high-risk score was 

given then the patient should have been assessed more rigorously (Hypothesis 1). In 

other words, many relevant questions should have been asked before making the 

judgement hence the total information gain should be high. On the other hand, when a 

low risk score was given then there was possibly a lack of evidence or only a few 

questions were needed to be asked. 

 

For a particular assessment, we can calculate “total gain” by adding the gain of each of 

the answered questions. Technically, this is not the total information gain as there may 

be interactivity between nodes. Nevertheless, we use the “total gain” as a relative 

measure for total information collected by an assessment. It is the total number of 

questions asked weighted by information gain/ gain ratio. The following is the formula to 

calculate sum total gain. 

 

Sum total gain= question1 * gainratio1  +  question2 * gainratio2  + ……. 

 

Strictly speaking, this is not the total gain of the assessment because there may be 

mutual interdependency among some questions. Acknowledging this limitation, we 

assume this could be considered a good indicator of the total information gain of the 

assessment for comparison between two assessments. We have addressed this 

limitation with other methods described later in this chapter. 

 

Table 67 Gain ratio and average risk difference 

Suicide risk Sum total Gain Ratio Average risk difference 

1 0.44 -0.77 

2 0.66 -0.20 
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Suicide risk Sum total Gain Ratio Average risk difference 

3 0.89 -0.19 

4 1.13 0.47 

5 1.26 0.87 

6 1.49 1.08 

7 1.67 1.39 

8 1.80 1.63 

9 1.92 1.88 

10 1.80 2.25 

 

 

The above table shows the average total gain ratio and the risk difference per risk 

category. We can see that as the risk increased more information was collected. In other 

words, with increasing risk, perhaps more information was available to collect. The trend 

of this result was expected. We can also observe that the average risk difference is 

higher in the high-risk category patients. For suicide risk level 10, we can see that the 

gain is slightly less than the gain of risk level 9. A possible reason could be that in very 

high-risk situations there could possibly be other factors influencing a clinician’s risk 

judgement.  The following figure shows the total gain and risk level trend graphically. 

 

 

Figure 24 Sum total gain for different risk level 

 

If an assessment has been done without asking all the questions, then ideally, we could 

expect an anomaly. We can calculate the difference between the clinical judgement and 



8 Reliability of Risk Judgement 

 

210 

 

 

calculated risk for each of the assessments. We assume that these differences would be 

inversely proportional to the total gain. This would be especially true for high risk 

category patients, as they may require more information collection. The following table 

shows the correlation between risk difference and the total information gain of the 

assessment and this helps to prove our first hypothesis. 

 

Table 68 Total gain vs Risk difference 

Risk level Risk Difference vs Total gain 

>1 -0.267 

>2 -0.435 

>3 -0.554 

>4 -0.640 

>5 -0.731 

>6 -0.781 

>7 -0.809 

 

 

Hypothesis 2: The difference between the clinicians and the predicted risk is inversely 

correlated with the total information gain of the assessment. 

 

The data in the above table shows that total gain is inversely proportional to the risk 

difference. The assessment, which has more total information gain, matches more 

closely with the consensus risk. In other words, the difference between the clinicians 

and the predicted risk is inversely correlated with the total information gain of the 

assessment. It is an important finding from this dataset. 

 

From the data, we also see that the risk difference is generally higher when the 

clinician’s given risk is high. We also know that the correlation between the clinician’s 

risk and the predicted risk is lower for higher risk patients. These results suggest that 

there may be a potential link between information gain and risk assessment accuracy. 

One of the objectives of this research was to find potential reasons why the clinicians 

and calculated risk differ. 
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For example, for all the assessments the correlation between the clinicians and 

calculated risk is approximately 0.78 and for assessments where the suicide risk is 

greater than 5, the correlation is only 0.42. In other words, the prediction of high risk is 

not as accurate as the prediction of low risk. It is desirable to predict higher risk cases 

more accurately. We assume that total information gain might help us to adjust the 

clinicians given risk, especially when the risk is in higher categories (>=5). This leads to 

our third hypothesis of this chapter, which is discussed in the following section. 

 

 

8.3.7 Adjustment of the Clinical Judgement 

 

We assume that we can adjust the clinical judgement based on the total gain of the 

assessment. We can notify the clinician interactively to suggest collecting more 

information based on the clinicians given risk level and the total gain of the assessment. 

 

Hypothesis 3: We can adjust the clinicians given risk based on the information gain and 

make it closer to the consensus risk (calculated risk). 

 

We can adjust the clinical judgement based on the total gain and achieve a risk 

judgement that is much closer to the calculated risk. We know from the empirical data 

that the risk difference is higher in high risk category patients and the sum total 

information gain is inversely proportional to the risk difference. This allows us to adjust 

the clinicians given risk based on total information gain. I have taken the following steps 

to adjust the clinicians given risk: 

 

Step 1: The linear regression equation between Risk Difference and total Gain Ratio 

was calculated. 

 

 Risk Difference = Gain Ratio * -1.55 + 3.8 (22) 

 

 

The above equation was created from the data in which the clinicians given risk was 

greater than 5. Please note that it is not a static equation. It can change based on the 

risk level. 
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Step 2: Calculate the total Gain Ratio of an assessment and apply step 1 to find out risk 

differences. This is the total risk adjustment we need to make. 

 

Step 3: Apply the calculated risk difference to the clinicians given risk. 

 

Step 4: Correlate this new risk with the risk calculated by regression. 

 

The following table shows the correlation with the calculated risk before and after the 

adjustment. 

 

Table 69 Risk adjustment by information gain 

Risk level Correlation before Correlation after 

>1 0.726 0.780 

>2 0.661 0.777 

>3 0.590 0.779 

>4 0.520 0.781 

>5 0.421 0.794 

>6 0.341 0.811 

>7 0.252 0.823 

 

 

From the above table we see that if we adjust the clinical judgement then the correlation 

between the adjusted clinical and calculated risk improves significantly. For the clinician 

given risk>5 the correlation between the clinicians and the calculated risk was 0.42 and 

after adjustments it became 0.79. The similar pattern (before adjustments the correlation 

=0.33 and after adjustment the correlation =0.60) was observed with the risk prediction 

data provided by other GRiST researchers (Nagy, 2016).  The adjustments significantly 

improved the correlation. Some sample data are shown in the table below. 
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Table 70 Adjusted risk example 

Suicide 
risk Adjustment 

Adjusted 
risk 

Total 
relative 
weight 

Predicted 
risk 

6 -1.78 4.22 0.30135 4.115 

6 +0.19 6.19 0.50236 6.102 

6 -3.57 2.43 0.11919 2.631 

6 -1.11 4.89 0.36924 5.309 

6 +1.01 7.01 0.58553 7.881 

7 -0.99 6.01 0.38164 4.407 

7 -2.33 4.67 0.24517 5.793 

7 -1.44 5.56 0.33568 5.598 

7 +0.81 7.81 0.56491 6.826 

7 +0.96 7.96 0.58081 8.362 

8 -1.13 6.87 0.36727 5.5 

8 -1.15 6.85 0.36528 6.606 

8 +0.58 8.58 0.54173 9.094 

8 +0.05 8.05 0.48767 8.278 

8 -3.29 4.71 0.14774 3.467 

9 +0.22 9.22 0.50496 9.498 

9 -2.49 6.51 0.22891 5.177 

9 -1.81 7.19 0.2989 6.384 

9 -2.52 6.48 0.22637 4.421 

9 +0.89 9.89 0.57375 9.875 

10 -3.13 6.87 0.16422 5.094 

10 -1.72 8.28 0.30748 6.696 

10 -3.14 6.86 0.16306 3.768 

10 +0.66 10.66 0.55011 10.97 

10 +0.53 10.53 0.5368 9.171 
 

 

The main assumption here is that if an assessment has only low total information gain 

then the clinicians probably did not undertake the full assessment or did not ask the 

most critical (high gain) questions. In this scenario, it is more likely the given risk was not 

accurate. If the gain is low, then we might adjust this assessment before we compare it 

with the calculated risk. Please note that we are considering the calculated risk as a 

consensus risk. 

 

The main idea can be explained by a hypothetical example. If a doctor diagnoses 

somebody with cancer without performing multiple tests, then we might say the 
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diagnosis was not comprehensive. The information gain would be too low in this case. 

We expect the accuracy of the judgement to be higher when the overall information gain 

is high and vice versa. 

 

If we adjust the clinicians given risk, then the correlation between the clinician and the 

consensus risk improves significantly (from 0.42 to 0.79 for risk>5). An explanation for 

this could be that the calculated risks came from mathematical data, but the clinicians 

given risk came from a subjective judgement. That is why an adjustment may need to be 

done on the clinicians given risk. In this case, the calculated risk is also considered as a 

consensus risk, so it should not be adjusted. 

 

We have used regression generated risk as consensus risk. It could be calculated by 

any other method. Because the data size was approximately 50,000 so we can 

reasonably assume that risk calculated by regression is suitable to be considered as a 

consensus risk. I have also compared the data with the risks predicted by different 

methods by other members of the GRiST team such as by Nagy (2016). To overcome 

the problem of inter node correlation affecting the total information gain; we have used 

other different methods, which are described in the following sections. 

 

 

8.4 Method B: R-Square (variance) Analysis 

 

Multiple linear regression analysis is widely used in many scientific fields, including 

public health, to evaluate how an outcome or response variable is related to a set of 

predictors (Chao, Zhao, Kupper, & Nylander-French, 2008). One is generally interested 

in finding the relative contribution of each predictor towards explaining variance in the 

criterion variable. It becomes difficult when the predictor variables are typically 

correlated with one another. 

 

“Relative importance” refers to the quantification of an individual predictor’s contribution 

to a multiple regression model. Assessment of relative importance in linear models is 

simple, as long as all regressors are uncorrelated: Each regressor’s contribution is 
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simply the R-square from univariate regression, and all univariate R-square-values add 

up to the full models’ R-square (Grömping, 2006).  

 

A sequential analysis might circumvent this problem, but in most cases, there is no 

obvious way in which order the predictors should be considered (Nimon & Oswald, 

2013). There are now procedures available by which we can partition the R-square into 

pseudo-orthogonal portions, each portion representing the relative contribution of one 

predictor variable.  “Relative weights” is a way to partition an MLR model R-square 

across predictors. They are computed by first transforming p predictors into a new set of 

p variables that are uncorrelated with one another, yet are correlated as highly as 

possible with the original predictors (Nimon & Oswald, 2013). 

 

 

8.4.1 Calculation of Relative Weights 

 

There is an R-package called “yhat”, which implements the relative weight calculation 

method. We have used the ‘yhat’ package from R to calculate relative weights of each 

individual node from the test data.  Source of the ‘Yhat’ R package and documentation is 

available from the URL (https://CRAN.R-project.org/package=yhat). 

 

Table 71 Relative weights of GRiST sample nodes 

GRiST Node Name Description Relative weights 
suic_pot_trig_answer Potential trigger 0.08493 
suic_id_hi_risk_answer High risk suicide ideation 0.04922 
suic_p_trig_mtch_answer Trigger and past attempt match 0.03516 
suic_id_strngth_answer Suicide ideation strength 0.0344 
suic_id_control_answer Suicide ideation control 0.03222 
suic_regret_answer Suicide regret 0.02481 
gen_life_not_livng_answer Life not worth living 0.02388 
suic_eol_prep_answer End of life preperation 0.02184 
suic_ser_succd_answer Seriousness of success 0.02078 
suic_lethality_answer Suicide lethality 0.01982 

 

Please note: The meaning of the GRiST node can be found in Appendix A. 

 

https://cran.r-project.org/package=yhat
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8.4.2 Relative Weight for Reliability Analysis 

 

We can calculate the total sum of R-square of an assessment from each individual 

node’s relative weight. Theoretically, this total sum of R-square means how much of the 

variance of the data is explained by the clinical assessment. We can assume that the 

bigger sum would indicate thorough assessment hence would produce better clinical 

judgements. In other words, the risk difference would be inversely proportional to the 

total sum of R-square. 

 

Table 72 Correlation between risk difference and the total sum of R-square 

Risk level Risk Difference vs Sum of R-Square 

>1 -0.314 

>2 -0.499 

>3 -0.620 

>4 -0.700 

>5 -0.783 

>6 -0.827 

>7 -0.850 

 

 

The above table shows that indeed for high risk patients the risk difference is inversely 

correlated with the total sum of R-square. For each level of risk, we have calculated the 

adjustments required from the training data as we have done previously with total 

information gain. Then applied the adjustments to the data collected in both 2014 and 

2015.  

 

Firstly, we have calculated the total sum of R-square and used that to predict the risk 

difference for training data and build a regression model. Then we applied the model to 

test data to adjust the clinical judgement based on the total sum of R-square. 
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Table 73 Adjusted clinical risk by total sum of R-square 

Risk level Correlation before Correlation after 

>1 0.726 0.790 

>2 0.661 0.798 

>3 0.590 0.810 

>4 0.520 0.814 

>5 0.421 0.832 

>6 0.341 0.851 

>7 0.252 0.861 

 

 

From the above table we see that if we adjust the clinical judgement with the total sum 

of R-square then the correlation between the clinical and calculated risk improves 

significantly. 

 

 

Figure 25 The Improvement of risk judgement 

 

The above graph shows the correlation before and after the adjustment of the clinical 

judgement. The adjustment with relative weight produced better results than the 

information gain. 
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8.5 Method C: Using Number of Questions 

 

We could simply use the number of questions that has been asked and adjust the 

clinician’s given risk. This is the baseline method. Comparison with this method could 

highlight the utility of the other methods. 

 

Table 74 Correlation between No of Questions and risk difference 

Risk level Risk Difference vs No of questions 

>1 -0.179 

>2 -0.295 

>3 -0.375 

>4 -0.420 

>5 -0.469 

>6 -0.498 

>7 -0.503 

 

 

The above table shows, that indeed for high risk patients the risk difference is inversely 

correlated with the total number of questions asked. However, the effect is much less 

than the Information gain and R-square (relative weight) method. 

 

Table 75 Risk adjustment by No of questions 

Risk level Correlation before Correlation after 

>1 0.726 0.748 

>2 0.661 0.711 

>3 0.590 0.675 

>4 0.520 0.641 

>5 0.421 0.598 

>6 0.341 0.575 

>7 0.252 0.545 

 

From the above table, we can see that the adjustment done using a simple number of 

questions asked can produce a better correlation between the adjusted clinicians and 
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calculated risk. Adjustments done with Information gain or R-square (relative weight) 

provides much better results than the simple number of questions.  

 

8.6 Comparison of Different Methods 

 

Using the number of questions weighted by information gain provides better results than 

just the simple number of questions. If we use the sum of Relative weights of the 

questions we obtain much better results. The following table shows the comparison 

amongst the different approaches. 

 

Table 76 Comparisons amongst the different approaches 

Risk level Correlation 

before 

No of question Information gain Relative 

weight 

>1 0.726 0.748 0.780 0.790 

>2 0.661 0.711 0.777 0.798 

>3 0.590 0.675 0.779 0.810 

>4 0.520 0.641 0.781 0.814 

>5 0.421 0.598 0.794 0.832 

>6 0.341 0.575 0.811 0.851 

>7 0.252 0.545 0.823 0.861 

 

 

Information gain provides better results than the simple total number of questions 

because in the total gain calculation we take into account the relative importance of the 

questions. Because of the possible interaction between GRiST nodes calculating total 

gain of the assessment is difficult. Relative weight performs better than total gain 

probably because we eliminated the interdependency of the nodes. Two correlated 

predictive variables would not affect the overall total relative weight because the 

algorithm firstly converts them to orthogonal variables (Nimon & Oswald, 2013). The 

following graph shows the correlation between the adjusted and calculated suicide risk 

at the different risk levels. 
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Figure 26 Improvement of assessment accuracy by different methods 

 

8.7 The Reliability Assessment Method 

 

We are proposing a novel method to check the reliability of the clinical judgement. If the 

total gain (or relative weight) of the assessment is less than the required gain (or weight) 

for that level of risk, then we might adjust the clinical judgement. Experimental data 

suggests that applying this adjustment brings the clinical judgement closer to the 

consensus risk. Similar trends have been observed with the risk calculated by 

regression analysis and the risk calculated by other methods and by other members of 

the GRiST team (Nagy, 2016).  

 

The empirical data suggests that if implemented properly within a CDSS then the 

proposed method could guide a clinician towards the direction, where clinical judgement 

would more closely relate to the consensus. The system could alert the clinician to 

collect more data based on the risk levels and total information gain and that might all in 

all lead to a better assessment. 

 

The following figure shows a typical possible implementation of the method. We can use 

information gain or relative weight to measure total information collected. 
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Figure 27 Reliability of the Risk Assessment 

 

8.8 Applications of the Method 

 

The following are some suggested applications of the method described in this chapter: 

 

Application 1: This method can validate the GRiST assessments and explains the 

reason for the difference between the clinicians and the calculated risk. It was one of the 

main objectives of the research. Empirical data shows that a lack of Information gain 

could be a reason for the difference.  

 

Application 2: Information gain tells us which nodes are important. We can use 

information gain as a node selection criterion. We can direct the clinician to the high gain 

nodes. We could redesign the assessment flow based on the Information gain. 

 

Application 3: Adjusted risk can be used to trigger events for example prompting 

certain actions by the clinicians. Higher management can also filter out specific 

assessments based on information gain and risk level. 
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Application 4: Provide real-time notifications about the projected accuracy of the risk 

assessment. We may ask the clinicians to explore further if the given risk appears to be 

higher and the information gain is very low.  

 

 

Figure 28 Application of Information Gain Analysis 

 

 

8.9 Summary 

 

It is desirable to be able to validate the risk judgement provided by the clinician 

automatically. We could calculate risk by using regression or other machine learning 

methods. Previously, we did not know why there was a difference between the 

clinician’s given risk and the calculated risk. By using the proposed method, we could 

possibly analyse the clinical judgement based on the information collected before 

reaching that judgement and provide appropriate feedback. 
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The method can be applied in real-time, as the main calculation is not computationally 

expensive. Some of the calculations such as Gain calculation and regression equation 

calculation can be done periodically to bring them up-to-date with recent data. The 

method can be extended to other clinical decision support systems, which use a similar 

structure like the GRiST system. 

 

The performance of the GRiST system can be greatly enhanced by adding background 

analysis capability. The ability to provide intelligent feedback might increase the 

acceptance of the system as suggested by (Al-gamdi, 2014). The sum total of 

information gain is calculated on the available data only, so any missing data would not 

affect this method. The missing data would reduce the total gain and may generate a 

warning. 

 

To address the potential problem of inter node relationships; we have used ‘relative 

weights’ to calculate the total weight of the assessment. The proposed method also 

provides a facility to direct clinicians to collect important data that might help improve the 

overall accuracy of the judgement. This technique could be applied in real-time at the 

time of assessment to provide alerts or as a management tool to evaluate assessments 

at a later date. Low gain but high risk assessments could generate management alerts.  
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9 Conclusion 

9.1 Introduction 

 

According to the Mental Health Foundation (2015) one in four people in the UK will 

experience a mental health problem in any given year. It states that mental health 

problems are one of the main causes of the burden of disease worldwide. The context of 

this research was the GRiST clinical decision support system, which assesses mental 

health risks. I have tried to improve the interactivity of the GRiST system and validate 

the clinicians given risk score. Techniques starting from natural language processing, 

statistical analysis to information theoretic analysis have been investigated.  

 

This chapter gives a concluding critical analysis of each of the activities and findings 

followed by suggestions for future works. The practical implications of this research on 

the GRiST system and on any other similar CDSS system are discussed ending with a 

concluding remark. 

 

 

9.2 Empirical Findings 

 

Empirical findings of these activities with concluding critical analysis are given in the 

following individual sections. 

 

9.2.1 Concept Extraction 

 

To use clinical narratives found in the CDSS firstly we need to extract relevant concepts 

from them. Many well-known phrase extraction algorithms have been applied and their 

performance was analysed.  The outcome of the off the shelf phrase extraction 

algorithms was not very useful. Algorithms that did not require training data produced 
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many irrelevant phrases (low precision). On the other hand, algorithms that required 

training had low recall. 

 

SNOMED-CT is a medical terminology database and there are tools available to extract 

phrases based on this ontology. Originally, Metamap was used and subsequently 

cTAKES was used to identify phrases in the comments that relate to SNOMED-CT and 

extracted them as important concepts. The results showed that cTAKES and Metamap 

could both extract phrases with high precision. But unfortunately, their recall was very 

low. The use of these tools would miss a lot of valuable information. 

 

After reviewing the outcome of the other methods, we have developed a two-stage 

method that can extract concepts unsupervised. The proposed method first extracts 

phrases with linguistics patterns, in the second stage, it filters the extracted phrases for 

the domain relevancy using vector based semantic filtering. Domain relevancy is 

measured by calculating the semantic distance of a phrase to the list of frequently found 

concepts in that domain. The empirical results show that our method can achieve better 

than other methods tried on the i2b2 dataset.  

  

The proposed Ensemble Concept Mining (ECM) method borrowed ideas from other 

research papers and added a novel vector based automatic domain relevancy filtering. 

This expands the ideas from (Pudota, et al. 2010), (Bleik et al., 2010), (Patrick, 2009) 

and others. Other phrase ranking algorithms work on documents, they had been 

adopted for clinical narratives. A semantic phrase ranking method has been proposed, 

which is a slight variation of the domain relevancy filtering. Empirical results showed that 

our semantic phrase ranking method performs better than the RAKE (Rose et al., 2010) 

phrase scoring method on the semeval2010 phrase extraction dataset.  

 

The concept extraction activities as described above and in Chapter 4, address the 

following research question. 

 

Question 1: How can NLP technology be used to extract concepts from clinical 

comments to represent a GRiST node or a patient? 

 

We can use existing NLP technology to extract phrases, but they need to be filtered out 

by a filtering algorithm to achieve a better outcome. The overall detailed analysis, 
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comparison of different existing methods and the proposed two stage method is a 

contribution to the knowledge. We have shown that rather than building supervised 

models we can combine generic phrase extraction and domain relevancy filtering 

methods to achieve a similar result. 

 

 

9.2.2 Semantic Processing 

 

The semantic processing activities as described in Chapter 5 address the following 

research questions. 

 

Question 2: How can phrases be stemmed by semantic similarity and how does it 

compare with string-based similarity? 

 

The number of extracted phrases can be huge. It is desirable to reduce the number of 

phrases. For a single word we can apply stemming.  For exploration purposes I have 

compared the string similarity and semantic similarity to reduce the number of phrases. 

Out of many string similarity algorithms, the Levenshtein distance method looked to be 

the most promising. Filtering the phrases and only retaining the phrases where similarity 

was more than a certain value (e.g. 0.80) reduced the number of phrases by up to 2/3 of 

the original number. Semantic similarity can even work when the string consists of 

different characters. This was an exploratory work to expand our understanding and it 

may help other researchers in the future. 

 

Question 3: Can the semantic vector representation of GRiST nodes help us to find any 

patterns that may assist us to improve the overall GRiST system? 

 

Based on the frequently occurring phrases in a specific node and their word vector we 

have calculated vector representation of each GRiST node. We can see semantically 

similar nodes appear closer in this analysis. This technique can be used to find 

semantically similar nodes in an ontology. This could help to review the ontology 

structure. 
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Representing a patient by using bag of concepts and other methods has also been 

discussed. The number of concepts can vary and keeping a fixed dimension of the data 

for machine learning purposes is desirable. After careful exploration we concluded that 

using a document vector to represent a patient is far more manageable.  

 

 

Question 4: How does the data in the GRiST and its ontological structure relates to other 

ontology like SNOMED-CT and the implication of these relations on suicide risk? 

 

The semantic similarity between GRiST nodes and SNOMED-CT concepts were also 

analysed. We have used word vector based semantic similarity as well as phrase 

matching to find inter connections between the two ontologies.  We have found that this 

technique finds semantically similar GRiST and Snomed nodes. Distribution of 

SNOMED-CT concepts across different risk levels has been discussed. 

 

The exploratory works were carried out to improve our understanding about GRiST 

ontology and NLP technology. This information can be used to review the GRiST 

structure in the future.  This may help future researchers to make a more informed 

decision. 

 

 

9.2.3 Risk Prediction 

 

The risk prediction activities as described in Chapter 6 address the following research 

question. 

 

Question 6: How do risk predictions produced by using raw text, extracted phrases, 

word vectors and numerical data compare with each other? 

 

After concept phase extraction and filtering the next logical step was to use them for risk 

prediction. This appears to be a very challenging task, especially with the dataset we 

have. To confirm the results many of the state of the art tools were used. A total of four 

types of methods were used. The first method used extracted phrases as attributes, the 
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second method used the full text directly, the third method used document vectors and 

the final method used numerical data. 

 

A detailed description of the findings of risk prediction is provided in chapter 6. It was 

found that predicting risk consisting of 10 categories was very challenging. All of the 

methods produced similar results.  

 

When the number of categories was reduced to three (low, medium and high) accuracy 

improved significantly. In fact, accuracy can be measured up to 80%. I am aware of the 

problem of using simple accuracy as a measure of success. When risk was reduced to 

three categories then most of the risk falls into the low category hence the accuracy was 

improved. GRiST is mainly designed to take input in a numerical format and inputting 

comments is optional. Clinicians have not inputted comments in all the required places, 

which resulted in the missing comments. To address this issue, we have also tried using 

the association rule mining and information gain method. 

  

The findings substantiate previous findings in the literature (Thompson et al., 2014), 

(O’Dea et al., 2015). The text analysis may be used to predict risky and non risky 

patients but to predict a potentially high and low risk category from only text remains to 

be very challenging. For regression analysis, a dynamic feature selection technique is 

proposed, which produced better results across the board first time with the GRiST data.  

 

The concept of soft and hard changing symptoms was explored with the GRiST data. 

For example, if clinicians can intervene in two differing areas, then the system can 

calculate which action could yield better results in relation to the risk reduction. This 

technique could allow the GRiST system to provide risk management suggestions to the 

clinicians in real time. 

 

 

9.2.4 Association Rule Mining 

 

The node association analysis and activities as described in Chapter 7 addresses the 

following research question. 
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Question 6: How can statistical measures such as chi-square or fp-growth be used to 

find relationships between the GRiST nodes and how the presence of these 

relationships might affect risk judgement? 

 

It is very difficult to mimic the human decision-making process. People can intuitively 

prioritise things and can take a decision, which a computer program cannot compute. 

While past suicide attempts may increase the risk but at the same time the presence of 

regret might mitigate that risk to some extent. This research has tried to find these types 

of inter-node relationships that may affect risk judgement. To do it mathematically the 

chi-square, and FP-growth analysis was applied. Our experiments corroborate previous 

results (Ambert & Cohen, 2012), (Jakulin, 2005) that the attribute interaction may help in 

classification tasks. 

 

Firstly, the relation between the GRiST nodes have been measured by chi-square and if 

the p-value was <0.05 then they were assumed to have some significant relationship. 

There were many nodes that relate to each other in terms of their appearance in the 

same assessment. The critical question was whether their joint occurrence influenced 

the overall risk judgement or not. It has been found that in some cases these node 

relationships do affect the overall risk judgement.  

 

The analysis shows that the node relationships exist, and they appear more in the high-

risk category patients than in the lower risk category patients.  Considering the 

implication of this finding, I have looked at node relationships from various angles. The 

analysis was done first with extracted phrases, then with numerical data. All of these 

experiments have shown a similar tendency.  Presence of the relationships indicated 

higher risk. This finding is a valuable contribution to the GRiST project. 

 

A novel method has been proposed that can predict suicide risk based on the presence 

of the node relationships. Empirical results show that while the proposed method was 

not always able to predict due to no matching rules being found, but when it did the 

precision of prediction can be up to 90% accurate. This method is very flexible, and we 

can predict with different levels of confidence. It can predict risk before the assessment 

is fully completed, hence it is possible to generate a real time alert and the predictive 

accuracy is better than using regression analysis. This is a significant contribution to the 

GRiST project.  
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9.2.5 Reliability of Risk Judgement 

 

The information gain experiments described in Chapter 8 addresses the following 

research question. 

 

Question 7: Could the difference between a clinician given and calculated risk be 

explained by identifying patterns in the raw data particularly by using information theory? 

 

Information gain is the measure of how much information we know or in other words, 

how much uncertainty is reduced when we know specific information about an event. It 

was hypothesised that where there was less information gain by an assessment, the risk 

difference between the clinicians and consensus risk would be higher. If clinicians did 

not ask all the relevant questions, then their prediction might not be close to the 

consensus. We have considered regression generated risk from the numerical data as a 

consensus risk. 

 

Calculating total information gain is challenging due to the interaction between nodes. 

We have used the sum of questions weighted by their respective information gain as a 

relative total information gain of the assessment. The empirical results demonstrate that 

the risk difference and the total information gain are inversely correlated. This is more so 

in the case of high-risk category patients. In low risk category patients (risk prediction<5) 

the clinicians’ given and the calculated risk are closely related. There is still a negative 

correlation, but the impact is much less. However, in the high-risk category patients, the 

risk difference and total information gain are negatively correlated. 

 

“Relative weights” is a way to partition an MLR model R-square across predictors. They 

are computed by first transforming p predictors into a new set of p variables that are 

uncorrelated with one another, yet are correlated as highly as possible with the original 

predictors (Nimon & Oswald, 2013). We have obtained better results with relative 

weights. Our results complement the use of information gain for classification by Ambert 

& Cohen (2012) and the use of explained variance for survival analysis by Maucort-

Boulch, Roy, & Stare ( 2014). 
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The proposed techniques provide mathematical tools to look at how much information a 

clinician has taken into account before making a decision. In cases where there is a lack 

of information, we can dynamically prompt the clinicians to ask high gain questions. This 

also explains the cases where the clinicians given risk and calculated risk differ 

significantly. This technique is a valuable contribution to the GRiST system and to other 

similar systems. 

  

 

9.3 The Practical Implications 

 

This research has many practical applications in CDSS design and application. In 

particular, the contribution of this research can be used to improve the interactivity and 

the reliability of GRiST and similar CDSS systems in general. The following are some of 

the possible practical applications of this research. 

 

  

1. We have compared many state of the art phrase extraction algorithms. We have 

shown that using a two-stage phrase extraction method, which include semantic 

filtering works better than the manually trained or statistical method. The phrase 

mining method firstly extracts phrases by using linguistic patterns and then filters 

them using cosine distance from a domain relevant word list. The domain 

relevancy is measured by how closely an extracted phrase is related to the main 

concepts of the domain. It may eliminate the need for human annotation. The 

practical application of this method has been demonstrated with GRiST, I2B2 

and semeval2010 dataset. 

 

2. The concept of semantic stemming is explored to aid in the reduction of the 

number of extracted phrases. Combining with other filtering this method could be 

used in a concept mining task. It has been shown that the semantic phrase 

scoring work better than statistical scoring as found in the RAKE algorithm. A C-

language based web service was developed to facilitate the rapid generation of 

the vector value of a word. This could also help future researchers. 
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3. The various node relationship finding methods, which have been described in the 

context of GRiST can also be used in other systems. Knowing how the nodes 

interact and affect the risk judgement is vital for knowledge engineering. 

Particularly in the case of GRiST it has been shown that the node relations do 

affect the risk score. The FP-growth algorithm produced promising results and it 

can be used in hierarchical data as well. This finding has a direct application in 

GRiST for alerting the clinician about a potential high suicide risk situation. 

 

4. A simple dynamic feature selection method has been described that can improve 

the calculation of risk, especially where there are missing data in attributes. It is a 

very simple technique that can be used in real-time application. Using this 

technique for the first time, we have been able to calculate suicide risk with 

better accuracy from the GRiST data. 

 

5. We have proposed a method to determine which intervention measure may be 

more effective to reduce suicide risk. It may assist in risk management. The 

proposed method considers both the impact and amenability of the symptoms to 

adopt better risk management strategy. 

 

6. Using association rule mining to predict suicide risk shows promising results.   

The predictive accuracy can be up to 90%. In fact, this is the only method that 

we have found to predict the high risk category accurately. The method is very 

flexible, and we can predict with various levels of confidence. The rules that have 

high confidence produce results that are more accurate. This technique can be 

applied to the GRiST and other similar CDSS systems.  

 

7. A method has been described to explain the differences between clinical and 

calculated risk by using information gain and relative weights.  This can improve 

the interactivity and reliability of the risk assessment. It may explain why there 

are differences between the calculated and the clinicians given risk. This adds 

new capability to the GRiST system for it to become more interactive. It can also 

suggest which questions can maximise the accuracy of assessments.  
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We have started with the aim to find various methods to make the GRiST system more 

interactive and validate its outcome. We have achieved our goals by developing multiple 

methods to improve the GRiST CDSS. The following figure shows the old and the new 

proposed workflow of the GRiST system. 

 

 

 

Figure 29 the proposed new GRiST CDSS workflow 

 

All the proposed techniques are generic, and they can be easily adapted for other 

similar CDSS systems. The application of all the proposed methods may improve the 

accuracy of the risk judgement and make the system more interactive.  This may help 

gain widespread acceptance of the GRiST system by reducing the complexity of the 

system and improving the decision accuracy as they are the major factors for a 

successful CDSS (Al-gamdi, 2014). 
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9.4 Current Limitations and Future Works 

 

This research has some limitations, which will be discussed along with the proposed 

future enhancements.  

 

Firstly, the GRiST system was originally designed to collect numerical data. Inputting 

comments is optional and often they are missing. This could be easily rectified by 

making some data input mandatory.  

 

Secondly, there is no second judgement available for the same assessment by different 

clinicians. It could be valuable to use domain experts to re-evaluate some of the 

assessments and analyse the results. 

 

Thirdly, in GRiST, a filter question may be answered ‘No’ and the nodes underneath 

would not have any data. In this research, we have only used the ‘scale’ data type, 

which includes 141 nodes. More research needs to be conducted to explore all other 

node types. 

 

Finally, this research shows us that an initial assessment and subsequent assessments 

are different in nature. Some nodes are more amenable by clinical intervention and 

some are not. Any treatment plans should work with the amenable nodes and those that 

improve the treatment outcome. As the GRiST data does not include any treatment 

related information at the moment hence further work needs to be done to bring risk 

management into the picture.  

 

 

9.5 Conclusion 

 

The GRiST clinical decision support system is being used to manage mental health 

related risks. This research uncovered many patterns, described methods and 

demonstrated techniques that can help to make this system more interactive, improve 
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performance and ultimately provide better patient care and safety. The findings are not 

only specific to the GRIST system; they can be adapted for any similar system. 

 

The proposed node relationship analysis could potentially flag high risk patients. The 

information gain method could evaluate an assessment’s reliability and interactively 

suggest improvements. Repeat assessment and soft, hard node analysis could provide 

guidance on risk management. Proper implementation of all these measures and 

methods could make the GRIST system a more interactive and reliable CDSS, which 

was the main aim of this research. 

 

The actual process of this research activity and having done a lot of reading has 

enhanced my critical thinking and domain knowledge. It made me more familiar with the 

related tools and theories. It especially helped me to gain a better understanding of 

natural language processing and made me more familiar with different machine learning 

techniques. I hope to continue working in this area of research. 

 

According to the World Health Organisation (WHO) over 800,000 people die due 

to suicide every year and there are many more who attempt it. I sincerely hope that the 

use of CDSS such as the GRiST system and the contributions from research like this 

could save lives in the future.  
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Appendix A GRiST Ontology 

Following text shows a section of the GRiST ontology to demonstrate its logical 

structure. Question type, node label, etc. all attributes are removed to make the text size 

small. 

 

<node code="mental-health-risk" > 

<node code="suic" > 

<node code="suic-specific" > 

<node code="suic-past-att" > 

<node code="suic-occur" > 

<node code="suic-most-rec" /> 

<node code="suic-patt-att" > 

<node code="suic-first-occ" /> 

<node code="suic-how-many" /> 

<node code="suic-escalate" /> 

</node> 

</node> 

<node code="suic-prep-serious-at" > 

<node code="suic-note-prev" /> 

<node code="suic-ser-method" > 

<node code="suic-discovery" /> 

<node code="suic-lethality" /> 

</node> 

</node> 

<node code="suic-person-per" > 

<node code="suic-thght-prev" > 

<node code="suic-ser-succd" /> 

<node code="suic-regret" /> 

</node> 

<node code="suic-leth-insght" /> 

</node> 

</node> 

<node code="suic-curr-sit-behav" > 
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<node code="suic-curr-int" > 

<node code="suic-plans" > 

<node code="suic-plan-real" /> 

<node code="suic-steps-takn" /> 

<node code="suic-prosp-leth" /> 

</node> 

<node code="suic-int-inform" /> 

<node code="suic-eol-prep" /> 

<node code="suic-s-h-behv" /> 

<node code="suic-bhvr-const" > 

<node code="insight-resp" /> 

<node code="suic-rel-belief" /> 

</node> 

</node> 

<node code="suic-int-p-trig" > 

<node code="suic-pot-trig" /> 

<node code="suic-p-trig-mtch" /> 

<node code="suic-fam-hist" /> 

</node> 

<node code="suic-ideation" > 

<node code="suic-id-control" /> 

<node code="suic-id-hi-risk" /> 

<node code="suic-id-freq" /> 

<node code="suic-id-strngth" /> 

</node> 

<node code="suic-app-behvr" > 

<node code="suic-phys-indic" > 

<node code="sn-appearnce" /> 

<node code="gen-sh-cuts" /> 

</node> 

<node code="gen-presentation" /> 

</node> 

</node> 

</node> 

<node code="gen-direct" /> 
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</node> 

</node> 

 

 

 

Table 77 Grist ontology node name and description 

Grist Node Description or Meaning 

suic ending your own life 

suic_patt_att pattern of attempts to end your life 

suic_prep_serious_at preparation and seriousness of attempts to end your life 

suic_discovery chance of being found after attempting to end your life 

suic_lethality how dangerous were your attempts to end your life 

suic_person_per what you think now about past attempts to end your life 

suic_ser_succd How much did you want to end your life 

suic_regret regret trying to end your life 

suic_leth_insght 
awareness of how dangerous were previous attempts to end your 
life 

suic_plans plans and methods for ending your life 

suic_plan_real realism of plan to end your life 

suic_steps_takn steps taken towards carrying out your plan to end your life 

suic_prosp_leth dangerousness of method to end your life 

suic_eol_prep making end of life preparations 

suic_s_h_behv dangerous self-harming 

suic_bhvr_const things that might help stop you ending your life 

suic_int_p_trig triggers for ending your life 

suic_pot_trig potential triggers for ending your life 

suic_p_trig_mtch match between current triggers and dangerous ones in the past 

suic_ideation thoughts about ending your life 

suic_id_control ability to control thoughts about ending your life 

suic_id_hi_risk very risky thoughts about ending your life 

suic_id_strngth strength 

suic_app_behvr your appearance and the distress it reflects 

gen_presentation your behavioural presentation 

sh Harming yourself 
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Grist Node Description or Meaning 

sh_patt_of_eps pattern of self-harming 

sh_seriousns_eps seriousness of self-harming 

sh_hlp_after chance of being helped after self-harming 

sh_lethality_mth dangerousness of self-harming method 

sh_for_hlp_diff self-harming to get help 

sh_pot_triggs_p triggers for self-harm 

sh_pot_triggs potential triggers for self-harm 

sh_pot_trigs_mtch match between current trggers and dangerous ones in the past 

sh_ideation self-harming thoughts 

sh_strength strength 

gen_presentation your appearance and the distress it reflects 

hto harming others or damaging property 

hto_emotional_ep seriousness of emotional harm to others 

hto_violent seriousness of violence or abuse 

hto_dest_prprty seriousness of damage to property 

hto_fire_setting seriousness of fire-setting 

hto_to_anmls seriousness of harming animals 

hto_curr_persp_ep thoughts about harm or damage you caused in the past 

hto_intention intention to cause harm or damage 

hto_means_plan ability to carry out your plan to cause harm or damage 

hto_steps_plan putting your plan for harm or damage into action 

app_harm_dam your appearance and the threat it reflects 

hto_constr_bhvr things that stop you causing harm or damage 

pot_trig_hto triggers for harm or damage 

hto_pot_trig potential triggers of harm or damage 

hto_pot_trig_mtch match between current triggers and dangerous ones in the past 

hto_fam_hist family history of causing harm or damage 

hto_ideation_vio violent thoughts 

hto_hi_rsk_ideatn high risk violent thoughts 

hto_strgth_ideatn strength 

hto_ideatn_link violent thoughts about real people 

gen_presentation your appearance and behaviour 

risk_dep risk to dependents 
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Grist Node Description or Meaning 

gen_presentation your appearance and behaviour 

sn not looking after yourself 

sn_app_behavr your appearance and the lack of care for yourself it reflects 

sn_hair_clothes hair and clothes 

sn_hygiene personal hygiene 

sn_recnt_app_chnge recent changes in your appearance 

sn_skin skin 

vuln_su feeling vulnerable 

app_vuln_abuse your appearance and the vulnerability to abuse it reflects 

sex_vuln sexual vulnerability 

phys_vuln physical vulnerability 

emot_vuln emotional vulnerability 

finan_vuln financial vulnerability 

dis_conf confusion and disorientation 

carers depending on carers 

gen_liv_skills life skills 

gen_mood_swings mood swings 

gen_negative_self negative feelings about myself 

gen_angry_emotns feeling angry 

gen_anx_emotns anxiety 

gen_helpless feeling helpless 

gen_sad feeling sad 

gen_hopeless hopefulness 

gen_plans_future plans for the future 

gen_life_not_livng enjoyment of your life 

grandiosity feeling all-important 

worthlessness self-worth 

gen_empathy_abil empathy 

gen_coping_abil coping with major life stresses 

gen_decision making decisions 

gen_insght_behvr understanding risk taking 

gen_resp_impct_oth taking responsibility for the risks I take 

gen_nd_hlp_diff my need for help 
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Grist Node Description or Meaning 

gen_mania feeling manic 

gen_voice_dang_s danger of the voices to you 

gen_voice_dang_o danger of the voices to others 

gen_prob_act_voice acting on the voices 

gen_paran_del_spec about specific people 

gen_paran_del_pers feeling under threat 

gen_prob_act_par_del acting on your paranoid thoughts 

gen_mentl_insght understanding my mental-health problems 

gen_phys_hlth_prb my physical health 

gen_epi_sieze fits/epilepsy 

gen_com_imp communication difficulties 

gen_phys_hlth_det worsening physical health 

gen_meds_concord following health professionals' advice 

gen_serv_perc_supp service support 

gen_serv_last_acc regular use of services 

gen_med_perc_benft benefit from treatment 

gen_phys_withd physical withdrawal from the world 

gen_motivation my motivation in life 

gen_listless energy 

gen_net_relat network of people in my life 

gen_relat_detr relationships that are bad for you 

gen_relat_detr_chg changes for the worse in relationships 

gen_isol_accom living in an isolated place 

gen_neigbrhd_rsky my neighbourhood 

gen_accom_hm_care caring for my home 

gen_accom_habitbl home comfort 

gen_perc_debt_anx debt 

gen_poverty cost of living 

gen_job_chg_frq my work history 

gen_rec_bad_job_ch unhelpful changes to employment 

gen_rsk_behavr risky activities 

gen_unint_risk_behavr carelessness 

gen_sleep_dist sleep 
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Grist Node Description or Meaning 

gen_diet_weigt_chg weight change 

gen_diet_drink fluid intake 

gen_unusl_rec_bhvr not being myself 

gen_chall_bhvr being challenging 

gen_day_actvty my general daily activity 

gen_day_struct structure in my lfe 

gen_alc_misuse bad effects of alcohol 

gen_drug_misuse bad effects of drugs 

gen_env_grew_up environment I grew up in 

gen_educ_expr school days 

gen_rapport rapport 

gen_responsve responsiveness 

gen_gut_assmnt uneasiness about you 

gen_risk_aggrsv sounding aggressive 

gen_risk_upbeat sounding depressed 

gen_coherence making sense to others 

gen_distrss_b_lang body language and distress 

gen_low_mood body language and low mood 

gen_threat_move body language and aggression 

gen_detached seeming preoccupied or detached 

gen_avoid_eye_contact eye contact 

gen_congruence presenting a coherent story 
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Appendix B GRiST Node Relationships 

 

Table 78 Node to node cosine similarity 

Node name Similar nodes 

gen_concentr 

 gen_concentr=1.0,   gen_anx_emotns=0.8,  gen_mania=0.8,  
gen_congruence=0.8,  gen_sleep_dist=0.8,  gen_mood_swings=0.8,  
gen_distress=0.8,  gen_cog_think_mem=0.8,  hto_pot_trig=0.8,  
gen_unusl_rec_bhvr=0.8,  gen_helpless=0.84 

gen_plans_future 

 gen_plans_future=1.0,  gen_helpless=0.9,  gen_life_not_livng=0.9,  
gen_dependence=0.9,  worthlessness=0.9,  gen_net_relat=0.9,  
gen_sad=0.9,  gen_phys_withd=0.9,  gen_relat_supp=0.9,  
suic_p_trig_mtch=0.9,  gen_relat_detr_chg=0.92 

hto_violent 

 hto_violent=1.0,  hto_dest_prprty=0.9,  hto_curr_persp_ep=0.8,  
app_vuln_abuse=0.8,  hto_means_plan=0.8,  hto_emotional_ep=0.8,  
hto=0.8,  sex_vuln=0.8,  gen_relat_detr=0.7,  hto_to_anmls=0.7,  
risk_dep=0.76 

suic_id_control 

 suic_id_control=1.0,  suic_id_hi_risk=0.9,  suic_ser_succd=0.9,  
sh_pot_triggs=0.9,  sh=0.9,  gen_unusl_rec_bhvr=0.9,  
suic_p_trig_mtch=0.9,  gen_impulse=0.9,  suic_planning=0.9,  
hto_pot_trig=0.9,  vuln_su=0.93 

suic_eol_prep 

 suic_eol_prep=1.0,  suic_id_strngth=0.8,  gen_dependence=0.8,  
gen_gut_assmnt=0.8,  finan_vuln=0.8,  suic_id_hi_risk=0.8,  
gen_life_not_livng=0.8,  gen_prob_act_par_del=0.8,  gen_net_relat=0.8,  
sh_planning=0.8,  gen_insght_behvr=0.85 

sn_hygiene 

 sn_hygiene=1.0,  sn_hair_clothes=0.8,  sn_recnt_app_chnge=0.8,  
sn_skin=0.8,  gen_app_diet=0.8,  gen_serv_perc_supp=0.8,  
gen_diet_eating=0.8,  gen_accom_hm_care=0.8,  gen_liv_skills=0.8,  
gen_decision=0.7,  gen_phys_hlth_det=0.79 

gen_rec_bad_job_ch 

 gen_rec_bad_job_ch=1.0,  gen_job_chg_frq=0.9,  gen_perc_debt_anx=0.9,  
gen_poverty=0.9,  dis_conf=0.8,  gen_net_relat=0.8,  
gen_relat_detr_chg=0.8,  gen_dependence=0.8,  worthlessness=0.8,  
gen_plans_future=0.8,  gen_accom_habitbl=0.87 

gen_meds_concord 

 gen_meds_concord=1.0,  gen_alc_misuse=0.9,  gen_med_perc_benft=0.9,  
gen_nd_hlp_diff=0.9,  gen_drug_misuse=0.9,  suic_lethality=0.9,  
gen_mentl_insght=0.9,  sh=0.9,  suic_planning=0.9,  sn=0.8,  
suic_leth_insght=0.88 

gen_rsk_behavr 

 gen_rsk_behavr=1.0,  gen_unint_risk_behavr=0.9,  gen_alc_misuse=0.9,  
gen_impulse=0.9,  gen_insght_behvr=0.9,  sex_vuln=0.9,  
gen_drug_misuse=0.9,  gen_neigbrhd_rsky=0.9,  suic_planning=0.9,  
suic_lethality=0.9,  suic_id_control=0.89 

gen_unint_risk_behavr 

 gen_unint_risk_behavr=1.0,  gen_rsk_behavr=0.9,  gen_impulse=0.9,  
suic_lethality=0.9,  gen_alc_misuse=0.9,  suic_planning=0.9,  
suic_leth_insght=0.9,  gen_insght_behvr=0.9,  suic_id_control=0.9,  
gen_drug_misuse=0.8,  gen_neigbrhd_rsky=0.88 
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Node name Similar nodes 

gen_phys_hlth_det 

 gen_phys_hlth_det=1.0,  gen_phys_hlth_disa=0.9,  
gen_phys_hlth_pain=0.9,  gen_app_diet=0.8,  gen_com_imp=0.8,  sn=0.8,  
gen_cog_think_mem=0.8,  sh_lethality_mth=0.8,  sn_skin=0.8,  
gen_diet_eating=0.8,  gen_helpless=0.81 

Hto 

 hto=1.0,  risk_dep=0.9,  phys_vuln=0.9,  hto_curr_persp_ep=0.9,  
gen_relat_detr=0.9,  gen_chall_bhvr=0.9,  hto_pot_trig=0.9,  sex_vuln=0.9,  
vuln_su=0.8,  app_vuln_abuse=0.8,  gen_prob_act_par_del=0.89 

gen_jealous 

 gen_jealous=1.0,  emot_vuln=0.9,  gen_prob_act_par_del=0.9,  
hto_pot_trig=0.9,  gen_chall_bhvr=0.8,  phys_vuln=0.8,  risk_dep=0.8,  
gen_angry_emotns=0.8,  gen_relat_detr_chg=0.8,  
gen_paran_del_spec=0.8,  gen_unusl_rec_bhvr=0.87 

sh_pot_triggs 

 sh_pot_triggs=1.0,  suic_p_trig_mtch=0.9,  hto_pot_trig=0.9,  sh=0.9,  
suic_ser_succd=0.9,  vuln_su=0.9,  suic_id_hi_risk=0.9,  
gen_unusl_rec_bhvr=0.9,  suic_id_control=0.9,  suic_pot_trig=0.9,  
gen_distress=0.94 

gen_resp_impct_oth 

 gen_resp_impct_oth=1.0,  gen_insght_behvr=0.9,  hto_pot_trig_mtch=0.9,  
gen_neigbrhd_rsky=0.9,  gen_prob_act_par_del=0.9,  gen_impulse=0.9,  
hto_curr_persp_ep=0.9,  finan_vuln=0.9,  gen_relat_detr=0.9,  
gen_reliable=0.9,  suic_id_hi_risk=0.90 

sn 

 sn=1.0,  gen_app_diet=0.9,  gen_nd_hlp_diff=0.9,  gen_mentl_insght=0.9,  
gen_helpless=0.9,  gen_cog_think_mem=0.9,  sh=0.9,  gen_diet_eating=0.9,  
suic_planning=0.9,  vuln_su=0.9,  gen_unusl_rec_bhvr=0.90 

hto_ideatn_link 

 hto_ideatn_link=1.0,  risk_dep=0.9,  hto_hi_rsk_ideatn=0.8,  
gen_prob_act_par_del=0.8,  phys_vuln=0.8,  hto_curr_persp_ep=0.8,  
hto=0.8,  gen_paran_del_pers=0.8,  gen_voice_dang_s=0.8,  emot_vuln=0.8,  
app_vuln_abuse=0.84 

gen_cog_think_mem 

 gen_cog_think_mem=1.0,  sn=0.9,  gen_helpless=0.9,  gen_app_diet=0.9,  
gen_diet_eating=0.8,  gen_sleep_dist=0.8,  gen_phys_withd=0.8,  
gen_life_not_livng=0.8,  gen_nd_hlp_diff=0.8,  gen_decision=0.8,  
gen_plans_future=0.87 

hto_curr_persp_ep 

 hto_curr_persp_ep=1.0,  risk_dep=0.9,  hto=0.9,  app_vuln_abuse=0.9,  
gen_relat_detr=0.9,  gen_resp_impct_oth=0.9,  gen_prob_act_par_del=0.9,  
sex_vuln=0.9,  phys_vuln=0.8,  hto_hi_rsk_ideatn=0.8,  
gen_neigbrhd_rsky=0.89 

gen_app_diet 

 gen_app_diet=1.0,  sn=0.9,  gen_diet_eating=0.9,  gen_helpless=0.9,  
gen_nd_hlp_diff=0.9,  gen_med_perc_benft=0.9,  gen_plans_future=0.9,  
gen_eating_dis=0.9,  gen_mentl_insght=0.9,  gen_sleep_dist=0.9,  
gen_life_not_livng=0.90 

gen_paran_del_pers 

 gen_paran_del_pers=1.0,  gen_prob_act_par_del=0.9,  
hto_curr_persp_ep=0.8,  risk_dep=0.8,  gen_paran_del_spec=0.8,  
hto_hi_rsk_ideatn=0.8,  gen_resp_impct_oth=0.8,  hto_ideatn_link=0.8,  
gen_gut_assmnt=0.8,  phys_vuln=0.8,  hto_pot_trig_mtch=0.84 

hto_fam_hist 

 hto_fam_hist=1.0,  gen_relat_detr=0.9,  sex_vuln=0.9,  
app_vuln_abuse=0.9,  hto=0.8,  hto_emotional_ep=0.8,  
gen_resp_impct_oth=0.8,  hto_curr_persp_ep=0.8,  risk_dep=0.8,  
gen_env_grew_up=0.8,  gen_relat_supp=0.86 
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Table 79 Node to node correlation by mg-value 

Node name Related nodes 

suic_planning 

suic_planning=1.00, suic_discovery=0.63, suic_ser_succd=0.61, 
sh_planning=0.50, suic_lethality=0.48, suic_id_hi_risk=0.38, 
suic_id_strngth=0.38, sh_lethality_mth=0.36, suic_eol_prep=0.35, 
suic_regret=0.34 

suic_discovery 

suic_discovery=1.00, suic_planning=0.63, suic_ser_succd=0.62, 
suic_lethality=0.48, sh_planning=0.37, sh_hlp_after=0.36, 
suic_id_strngth=0.32, suic_eol_prep=0.32, suic_regret=0.31, 
app_harm_dam=0.29 

suic_lethality 

suic_lethality=1.00, suic_ser_succd=0.65, suic_planning=0.48, 
suic_discovery=0.48, sh_lethality_mth=0.40, suic_id_hi_risk=0.38, 
suic_id_strngth=0.38, suic_id_control=0.34, suic_prosp_leth=0.32, 
hto_fire_setting=0.27 

suic_ser_succd 

suic_ser_succd=1.00, suic_lethality=0.65, suic_discovery=0.62, 
suic_planning=0.61, suic_id_hi_risk=0.44, suic_id_strngth=0.43, 
suic_id_control=0.39, suic_regret=0.38, sh_planning=0.34, 
sh_hlp_after=0.32 

suic_regret 

suic_regret=1.00, suic_id_hi_risk=0.49, suic_id_strngth=0.45, 
gen_life_not_livng=0.45, suic_id_control=0.44, gen_plans_future=0.41, 
suic_p_trig_mtch=0.38, suic_ser_succd=0.38, app_harm_dam=0.37, 
suic_leth_insght=0.37 

suic_leth_insght 

suic_leth_insght=1.00, suic_regret=0.37, gen_mentl_insght=0.35, 
app_harm_dam=0.32, suic_id_control=0.32, gen_learn_disab=0.32, 
gen_insght_behvr=0.31, suic_id_hi_risk=0.30, vuln_su=0.29, sex_vuln=0.29 

suic_plan_real 

suic_plan_real=1.00, suic_plan_dtail=0.55, suic_prosp_leth=0.47, 
suic_steps_takn=0.42, suic_id_hi_risk=0.37, suic_pot_trig=0.34, 
suic_id_strngth=0.31, gen_paran_del_spec=0.29, gen_violent_purs=0.28, 
sh_pot_trigs_mtch=0.28 

suic_plan_dtail 

suic_plan_dtail=1.00, hto_to_anmls=0.60, suic_plan_real=0.55, 
suic_steps_takn=0.55, hto_means_plan=0.49, suic_prosp_leth=0.47, 
suic_id_hi_risk=0.47, suic_id_strngth=0.39, hto_fire_setting=0.34, 
suic_planning=0.34 

suic_steps_takn 

suic_steps_takn=1.00, family_ment_hlth=0.59, suic_plan_dtail=0.55, 
suic_id_hi_risk=0.46, suic_eol_prep=0.45, suic_plan_real=0.42, 
sh_planning=0.41, suic_id_control=0.40, suic_id_strngth=0.40, 
gen_decision=0.38 

suic_prosp_leth 

suic_prosp_leth=1.00, suic_plan_real=0.47, suic_plan_dtail=0.47, 
suic_id_hi_risk=0.42, suic_steps_takn=0.34, suic_lethality=0.32, 
suic_pot_trig=0.31, gen_paran_del_pers=0.31, suic_id_strngth=0.30, 
sh_pot_trigs_mtch=0.30 

suic_eol_prep 
suic_eol_prep=1.00, suic_steps_takn=0.45, suic_id_hi_risk=0.38, 
app_harm_dam=0.38, sh_planning=0.37, hto_steps_plan=0.37, 
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Node name Related nodes 

suic_planning=0.35, suic_plan_dtail=0.33, hto_emotional_ep=0.32, 
suic_id_strngth=0.32 

suic_pot_trig 

suic_pot_trig=1.00, sh_pot_triggs=0.69, suic_p_trig_mtch=0.67, 
suic_id_hi_risk=0.60, suic_id_strngth=0.57, sh_pot_trigs_mtch=0.56, 
hto_pot_trig=0.53, suic_id_control=0.50, hto_pot_trig_mtch=0.48, 
sh_strength=0.47 

suic_p_trig_mtch 

suic_p_trig_mtch=1.00, suic_pot_trig=0.67, sh_pot_trigs_mtch=0.66, 
sh_pot_triggs=0.59, hto_pot_trig_mtch=0.58, suic_id_hi_risk=0.57, 
suic_id_strngth=0.56, suic_id_control=0.51, gen_life_not_livng=0.49, 
sh_strength=0.48 

suic_id_control 

suic_id_control=1.00, suic_id_strngth=0.77, suic_id_hi_risk=0.76, 
sh_strength=0.59, gen_prob_act_voice=0.57, gen_life_not_livng=0.55, 
suic_p_trig_mtch=0.51, suic_pot_trig=0.50, gen_voice_dang_s=0.49, 
gen_plans_future=0.48 

suic_id_hi_risk 

suic_id_hi_risk=1.00, suic_id_strngth=0.83, suic_id_control=0.76, 
gen_life_not_livng=0.62, gen_prob_act_voice=0.60, sh_strength=0.60, 
suic_pot_trig=0.60, suic_p_trig_mtch=0.57, gen_plans_future=0.54, 
gen_voice_dang_s=0.50 

suic_id_strngth 

suic_id_strngth=1.00, suic_id_hi_risk=0.83, suic_id_control=0.77, 
sh_strength=0.65, gen_life_not_livng=0.62, gen_voice_dang_s=0.58, 
suic_pot_trig=0.57, gen_prob_act_voice=0.56, suic_p_trig_mtch=0.56, 
gen_plans_future=0.52 

gen_sh_cuts 

gen_sh_cuts=1.00, sh=0.65, suic_s_h_behv=0.54, app_harm_dam=0.49, 
sh_strength=0.43, gen_prob_act_voice=0.42, hto_fam_hist=0.41, 
gen_voice_dang_s=0.40, gen_unint_risk_behavr=0.40, 
gen_negative_self=0.37 

suic_s_h_behv 

suic_s_h_behv=1.00, sh=0.62, gen_sh_cuts=0.54, hto_fam_hist=0.50, 
app_harm_dam=0.47, sh_lethality_mth=0.41, hto_steps_plan=0.40, 
gen_violent_purs=0.40, gen_unint_risk_behavr=0.40, gen_impulse=0.38 

sh 

sh=1.00, sh_strength=0.73, gen_sh_cuts=0.65, suic_s_h_behv=0.62, 
sh_pot_triggs=0.62, sh_pot_trigs_mtch=0.62, gen_voice_dang_s=0.53, 
hto_fam_hist=0.47, gen_prob_act_voice=0.46, suic_id_hi_risk=0.46 

sh_planning 

sh_planning=1.00, suic_planning=0.50, sh_lethality_mth=0.42, 
suic_steps_takn=0.41, sh=0.40, sh_hlp_after=0.40, suic_discovery=0.37, 
app_harm_dam=0.37, suic_eol_prep=0.37, sh_strength=0.36 

sh_hlp_after 

sh_hlp_after=1.00, sh_planning=0.40, suic_discovery=0.36, 
hto_to_anmls=0.35, suic_ser_succd=0.32, gen_eating_dis=0.30, 
suic_planning=0.28, gen_helpless=0.26, sh_strength=0.25, sh=0.25 

sh_lethality_mth 

sh_lethality_mth=1.00, sh_planning=0.42, suic_s_h_behv=0.41, 
suic_lethality=0.40, suic_planning=0.36, sh=0.33, suic_id_hi_risk=0.32, 
app_harm_dam=0.32, suic_id_strngth=0.32, sh_strength=0.31 

sh_for_hlp_diff 

sh_for_hlp_diff=1.00, gen_mood_swings=0.29, suic_id_control=0.29, 
suic_id_hi_risk=0.28, suic_s_h_behv=0.27, sh_lethality_mth=0.27, 
sh_pot_triggs=0.25, gen_sh_cuts=0.25, sh=0.25, sh_strength=0.25 

sh_pot_triggs 

sh_pot_triggs=1.00, sh_pot_trigs_mtch=0.77, suic_pot_trig=0.69, sh=0.62, 
hto_pot_trig=0.60, suic_p_trig_mtch=0.59, sh_strength=0.58, 
hto_pot_trig_mtch=0.55, gen_negative_self=0.47, suic_id_hi_risk=0.44 
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Table 80 Node to node relationship by snomed phrase 

Node Name Other node 
Both 

present 
Avg 
Risk Chi p-value remark 

gen_alc_misuse gen_relat_detr_chg 13 3.23 13.74 0 increase 

gen_alc_misuse suic_lethality 16 4.31 9.12 0.003 increase 

gen_alc_misuse gen_life_not_livng 13 3.92 6.6 0.01 increase 

gen_angry_emotns hto_pot_trig 13 2.54 33.22 0 decrease 

gen_angry_emotns suic_pot_trig 35 4.43 42.97 0 increase 

gen_angry_emotns suic_id_control 15 4.87 16.92 0 increase 

gen_angry_emotns gen_mood_swings 40 3.58 115.24 0 increase 

gen_angry_emotns gen_negative_self 28 3.36 87.08 0 increase 

gen_angry_emotns gen_sad 17 4.18 37.97 0 increase 

gen_angry_emotns gen_life_not_livng 13 3.08 34.37 0 decrease 

gen_angry_emotns gen_sleep_dist 25 3.68 29.82 0 increase 

gen_angry_emotns gen_unusl_rec_bhvr 13 4.23 78.02 0 increase 

gen_anx_emotns sh_pot_triggs 21 3 25.7 0 decrease 

gen_anx_emotns gen_distress 18 2.56 61.46 0 decrease 

gen_anx_emotns gen_mood_swings 72 2.92 125.6 0 decrease 

gen_anx_emotns suic_ser_succd 15 4.6 5.05 0.025 increase 

gen_anx_emotns suic_p_trig_mtch 31 4.52 30.49 0 increase 

gen_anx_emotns suic_id_control 27 4.48 14.4 0 increase 

gen_anx_emotns suic_id_hi_risk 18 4.78 17.12 0 increase 

gen_anx_emotns gen_helpless 25 4.04 121.6 0 increase 

gen_anx_emotns gen_sad 42 3.4 97.37 0 increase 

gen_anx_emotns gen_life_not_livng 27 2.85 55.48 0 decrease 

gen_anx_emotns worthlessness 17 2.88 38.04 0 decrease 

gen_anx_emotns gen_phys_hlth_disa 20 3.45 15.33 0 increase 

gen_anx_emotns gen_phys_hlth_det 16 3.88 11.58 0.001 increase 

gen_anx_emotns gen_diet_eating 17 2.82 16.95 0 decrease 

gen_anx_emotns gen_env_grew_up 21 2.43 22.97 0 decrease 

gen_app_diet sn 62 3.19 36.75 0 increase 

gen_app_diet suic_pot_trig 50 4.26 9.03 0.003 increase 

gen_app_diet vuln_su 11 2.27 4.76 0.029 decrease 

gen_app_diet gen_chall_bhvr 11 3.09 9.53 0.002 increase 

gen_app_diet sh_pot_triggs 19 2.89 15.3 0 decrease 

gen_app_diet sn_recnt_app_chnge 11 2 30.01 0 decrease 

gen_app_diet gen_mood_swings 33 2.94 4.07 0.044 decrease 

gen_app_diet gen_negative_self 33 3.55 20.76 0 increase 

gen_app_diet gen_life_not_livng 20 3.9 19.15 0 increase 

gen_app_diet gen_phys_hlth_pain 23 3.61 6.46 0.011 increase 
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Node Name Other node 
Both 

present 
Avg 
Risk Chi p-value remark 

gen_app_diet gen_phys_hlth_disa 17 3.65 6.27 0.012 increase 

gen_app_diet gen_phys_hlth_det 19 2.37 17.1 0 decrease 

gen_app_diet gen_unint_risk_behavr 11 4.09 24.69 0 increase 

gen_app_diet gen_sleep_dist 44 3.73 17.99 0 increase 

gen_app_diet gen_diet_weigt_chg 13 2.46 17.66 0 decrease 

gen_app_diet gen_eating_dis 19 2.58 26.04 0 decrease 

gen_chall_bhvr hto_pot_trig 17 2.53 69.84 0 decrease 

gen_chall_bhvr hto 43 2.37 51.28 0 decrease 

gen_chall_bhvr gen_mood_swings 21 2.67 19.57 0 decrease 

gen_chall_bhvr gen_negative_self 11 3.64 5.45 0.02 increase 

gen_chall_bhvr gen_unint_risk_behavr 13 3.54 144.58 0 increase 

gen_cog_think_mem gen_phys_hlth_det 22 1.55 159.45 0 decrease 

gen_cog_think_mem hto 24 1.71 7.92 0.005 decrease 

gen_cog_think_mem gen_concentr 12 1.75 270.29 0 decrease 

gen_cog_think_mem gen_phys_hlth_pain 14 2.07 21.9 0 decrease 

gen_com_imp gen_phys_hlth_disa 26 2.31 377.85 0 decrease 

gen_com_imp gen_phys_hlth_det 12 2.42 88.45 0 decrease 

gen_com_imp gen_phys_hlth_pain 26 1.92 245.67 0 decrease 

gen_concentr hto 17 1.65 26.8 0 decrease 

gen_coping_abil suic_id_control 11 4.55 7 0.008 increase 

gen_coping_abil sh_pot_triggs 12 4.08 30.37 0 increase 

gen_coping_abil suic_p_trig_mtch 17 5.06 34.03 0 increase 

gen_coping_abil suic_lethality 12 4.67 23.73 0 increase 

gen_coping_abil risk_dep 14 4.21 22.92 0 increase 
 

 

Table 81 Node to node relationship by node mg value 

Node Other node 

Both 
coun

t 
Avg 
risk 

Chi 
square 

p-
valu

e Remark 

suic_discovery suic_pot_trig 1157 5.57 33.32 0 increase 

suic_discovery suic_lethality 2050 4.47 562.43 0 increase 

suic_lethality sh_lethality_mth 1138 4.68 277.4 0 increase 

suic_lethality suic_pot_trig 2763 5.29 61.93 0 increase 

suic_lethality suic_p_trig_mtch 1804 5.61 34.96 0 increase 

suic_lethality sh_pot_triggs 1454 5.12 31.97 0 increase 

suic_lethality suic_s_h_behv 1078 5.13 90.12 0 increase 

suic_ser_succd sh_pot_triggs 1056 5.4 17.33 0 increase 

suic_ser_succd suic_pot_trig 2303 5.49 116.98 0 increase 

suic_pot_trig sh_pot_triggs 1878 5.15 698.04 0 increase 
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Node Other node 

Both 
coun

t 
Avg 
risk 

Chi 
square 

p-
valu

e Remark 

suic_pot_trig hto_pot_trig 1013 5.06 308.58 0 increase 

suic_pot_trig sh_pot_trigs_mtch 1354 5.29 450.75 0 increase 

suic_p_trig_mtch sh_pot_triggs 1051 5.55 398.55 0 increase 

hto_curr_persp_ep gen_insght_behvr 1108 2.55 86.93 0 decrease 

hto_curr_persp_ep gen_resp_impct_oth 1332 2.85 159.92 0 decrease 

carers gen_liv_skills 1818 2.38 852.22 0 decrease 

gen_mood_swings suic_id_hi_risk 1055 6.35 219.6 0 increase 

gen_negative_self suic_id_hi_risk 1367 6.27 235.83 0 increase 

gen_negative_self suic_id_control 1089 6.27 214.35 0 increase 

gen_helpless suic_id_hi_risk 1278 6.35 448.03 0 increase 

gen_helpless suic_id_control 1005 6.33 322.86 0 increase 

gen_plans_future suic_id_hi_risk 1035 6.58 647.79 0 increase 

gen_life_not_livng suic_id_control 1026 6.49 621.96 0 increase 

gen_life_not_livng suic_id_hi_risk 1365 6.44 949.98 0 increase 

gen_empathy_abil gen_relat_supp 1379 3.68 100.41 0 increase 

gen_coping_abil suic_id_hi_risk 1007 6.3 39.86 0 increase 

gen_coping_abil suic_s_h_behv 1014 5.13 32.89 0 increase 

gen_insght_behvr gen_mentl_insght 1688 2.57 309.65 0 decrease 

gen_nd_hlp_diff gen_mentl_insght 1637 2.44 820.78 0 decrease 

gen_net_relat gen_relat_detr 2036 3.47 285.08 0 increase 

gen_relat_supp gen_relat_detr 1982 3.56 643.97 0 increase 

gen_relat_supp gen_neigbrhd_rsky 1056 3.55 156.97 0 increase 

gen_alc_misuse gen_drug_misuse 1166 3.54 232.52 0 increase 

sh_for_hlp_diff sh 1447 4.57 233.52 0 increase 

sh_pot_trigs_mtch sh 1846 4.64 849.03 0 increase 

hto_pot_trig hto 1620 3.56 699.12 0 increase 

hto_pot_trig_mtch hto 1100 3.43 555.38 0 increase 

phys_vuln vuln_su 1370 3.05 935.29 0 decrease 

emot_vuln vuln_su 1514 3.29 992.59 0 increase 

carers vuln_su 1301 2.59 243.61 0 decrease 

suic_ser_succd suic_regret 1939 5.19 576.46 0 increase 

suic_ser_succd suic_id_hi_risk 1049 6.6 265.5 0 increase 

suic_ser_succd suic_p_trig_mtch 1508 5.81 64.48 0 increase 

suic_regret suic_pot_trig 1639 5.71 206.43 0 increase 

suic_regret suic_p_trig_mtch 1142 5.91 214.96 0 increase 

suic_pot_trig vuln_su 1221 5.15 106.26 0 increase 

suic_pot_trig sh 1673 5.49 340.16 0 increase 

suic_id_control suic_pot_trig 1267 6.38 352.61 0 increase 

suic_id_hi_risk suic_pot_trig 1676 6.33 555.75 0 increase 

suic_id_strngth suic_pot_trig 1553 6.26 497.84 0 increase 
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Node Other node 

Both 
coun

t 
Avg 
risk 

Chi 
square 

p-
valu

e Remark 

sh_for_hlp_diff sh_pot_triggs 1287 4.53 61.07 0 increase 

sh_for_hlp_diff suic_pot_trig 1121 5.24 22.95 0 increase 

hto vuln_su 1033 3.14 507.49 0 decrease 

gen_mood_swings suic_pot_trig 2391 5.27 259.59 0 increase 

gen_mood_swings sh_pot_triggs 1634 4.7 148.72 0 increase 

gen_mood_swings gen_alc_misuse 1085 4.31 9.03 0.003 increase 

gen_negative_self suic_pot_trig 2865 5.24 313.53 0 increase 

gen_negative_self sh_pot_triggs 1829 4.67 234.34 0 increase 

gen_negative_self vuln_su 1321 4.33 89.29 0 increase 

gen_angry_emotns suic_pot_trig 1235 5.28 96.47 0 increase 
 

 

Table 82 Node node connections and correlation 

nodecode Othernode 
 Node 
distance 

Common 
parentnode 

Snomed 
match 

Match 
any 

Match 
other 

Match 
aid Corr. 

suic_id_control suic_id_strngth 2 suic_curr_sit_behav 16 14 14 10 0.78 

suic_id_control suic_id_hi_risk 2 suic_curr_sit_behav 16 8 9 9 0.74 

gen_motivation gen_listless 6 gen_direct 7 2 2 2 0.72 

emot_vuln phys_vuln 2 vuln_app_behavr 24 7 10 4 0.69 

gen_helpless gen_sad 2 gen_state_mind 22 5 5 5 0.66 

gen_negative_self Worthlessness 2 gen_state_mind 22 5 3 2 0.65 

sh_pot_triggs suic_pot_trig 8 mental_health_risk 62 8 6 3 0.62 

suic_lethality suic_ser_succd 4 suic_past_att 8 4 1 3 0.62 

gen_distress gen_helpless 2 gen_state_mind 19 2 2 2 0.6 

suic_id_hi_risk suic_pot_trig 2 suic_curr_sit_behav 20 4 6 3 0.59 

gen_distress gen_sad 2 gen_state_mind 24 6 3 2 0.58 

suic_id_strngth suic_pot_trig 2 suic_curr_sit_behav 19 1 1 5 0.56 

hto_hi_rsk_ideatn hto_pot_trig 2 
harm_dam_ 
curr_sit_behav 6 2 2 2 0.56 

hto hto_pot_trig_mtch 6 root 25 4 4 2 0.56 

emot_vuln sex_vuln 2 vuln_app_behavr 19 4 5 2 0.55 

gen_plans_future gen_sad 3 gen_state_mind 17 1 2 2 0.54 

sex_vuln vuln_su 6 root 32 4 3 4 0.52 

sn vuln_su 2 root 105 17 14 4 0.52 

gen_anx_emotns gen_distress 2 gen_state_mind 21 5 5 5 0.52 

gen_mania gen_mood_swings 5 gen_direct 26 1 2 2 0.52 

emot_vuln finan_vuln 2 vuln_app_behavr 13 4 5 3 0.51 

gen_life_not_livng suic_id_control 7 suic 20 3 3 2 0.51 

suic_id_control suic_pot_trig 2 suic_curr_sit_behav 38 9 5 3 0.5 
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nodecode Othernode 
 Node 
distance 

Common 
parentnode 

Snomed 
match 

Match 
any 

Match 
other 

Match 
aid Corr. 

suic_id_hi_risk suic_p_trig_mtch 2 suic_curr_sit_behav 18 4 4 2 0.5 

gen_anx_emotns gen_helpless 2 gen_state_mind 17 6 5 5 0.49 

gen_plans_future suic_id_hi_risk 7 suic 10 2 2 2 0.48 

suic_id_hi_risk suic_regret 5 sui_specific 9 1 7 2 0.48 

gen_angry_emotns Hto 6 root 36 5 5 4 0.47 

finan_vuln phys_vuln 2 vuln_app_behavr 15 4 6 2 0.45 

suic_discovery suic_lethality 2 suic_prep_serious_at 16 7 1 2 0.44 

hto_pot_trig suic_p_trig_mtch 8 mental_health_risk 28 3 3 2 0.44 

hto_pot_trig gen_prob_act_voice 11 mental_health_risk 7 1 1 4 0.43 

gen_plans_future suic_regret 8 suic 10 1 1 2 0.42 

sn gen_diet_eating 10 root 25 7 6 6 0.4 

gen_anx_emotns gen_sad 2 gen_state_mind 24 4 4 4 0.4 

gen_coping_abil gen_impulse 2 gen_person_thinking 10 5 4 2 0.4 

finan_vuln sex_vuln 2 vuln_app_behavr 11 2 4 2 0.39 

gen_negative_self suic_pot_trig 6 suic 40 4 3 2 0.38 

gen_mood_swings hto_pot_trig 8 mental_health_risk 34 9 5 5 0.37 

gen_sad suic_pot_trig 6 suic 43 3 2 5 0.37 

gen_plans_future suic_pot_trig 7 suic 37 1 1 2 0.37 

gen_life_not_livng sh_pot_triggs 9 mental_health_risk 22 1 1 2 0.37 

suic_pot_trig suic_regret 5 sui_specific 25 1 1 3 0.37 

gen_sad suic_id_hi_risk 6 suic 11 1 1 2 0.37 

gen_distress gen_mood_swings 2 gen_state_mind 22 4 4 2 0.37 

hto vuln_su 2 root 124 17 15 3 0.36 

gen_distress hto_pot_trig 8 mental_health_risk 22 1 1 3 0.36 

gen_mood_swings Sh 6 root 59 1 1 4 0.36 

gen_mood_swings suic_id_control 6 suic 27 6 5 2 0.35 

gen_plans_future suic_p_trig_mtch 7 suic 24 4 2 2 0.34 

sh suic_pot_trig 6 root 90 4 5 2 0.33 

sn_recnt_app_chnge gen_phys_hlth_det 8 suic 6 3 4 2 0.33 

gen_helpless gen_mood_swings 2 gen_state_mind 31 4 3 2 0.32 

sn_recnt_app_chnge gen_diet_eating 12 suic 8 2 2 2 0.31 

suic_discovery suic_regret 4 suic_past_att 12 3 1 4 0.31 

sn gen_phys_withd 9 root 20 2 2 2 0.31 

gen_mood_swings vuln_su 6 root 67 12 9 3 0.31 

gen_empathy_abil gen_mentl_insght 4 gen_direct 8 2 2 2 0.31 

gen_distress gen_prob_act_voice 7 gen_direct 7 3 3 3 0.3 

gen_dependence vuln_su 6 root 21 4 2 2 0.29 

gen_distress gen_voice_dang_s 8 gen_direct 7 3 3 3 0.29 

gen_sad suic_regret 7 suic 15 1 1 2 0.28 

gen_voice_dang_s hto_pot_trig 12 mental_health_risk 7 1 1 3 0.28 

sh vuln_su 2 root 119 12 14 3 0.27 
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Common 
parentnode 

Snomed 
match 

Match 
any 

Match 
other 

Match 
aid Corr. 

gen_negative_self suic_regret 7 suic 14 3 3 2 0.27 

vuln_su gen_phys_hlth_det 6 root 59 8 7 5 0.26 

gen_mood_swings suic_p_trig_mtch 6 suic 39 5 5 2 0.26 

gen_coping_abil Sh 6 root 23 5 4 3 0.26 

suic_lethality suic_pot_trig 5 sui_specific 22 3 1 5 0.25 

suic_pot_trig vuln_su 6 root 110 4 2 4 0.25 

suic_pot_trig gen_sleep_dist 9 suic 28 5 4 4 0.25 

gen_helpless vuln_su 6 root 47 2 2 2 0.24 

gen_mood_swings gen_sad 2 gen_state_mind 36 7 7 4 0.24 

gen_angry_emotns Sh 6 root 32 3 5 2 0.24 

sh_lethality_mth suic_p_trig_mtch 8 mental_health_risk 9 3 2 2 0.23 

finan_vuln gen_mood_swings 8 mental_health_risk 12 4 3 2 0.23 

gen_anx_emotns gen_mental_withd 7 gen_direct 13 4 4 4 0.23 

hto_curr_persp_ep vuln_su 5 root 30 4 3 3 0.22 

hto sh_pot_triggs 6 root 42 2 2 2 0.22 

sn gen_job_chg_frq 7 root 15 1 1 2 0.22 

gen_mood_swings risk_dep 6 root 37 2 2 2 0.22 

gen_nd_hlp_diff gen_meds_concord 8 suic 19 2 2 2 0.21 

gen_cog_think_mem vuln_su 7 root 35 4 2 2 0.21 

gen_reliable hto_pot_trig 8 mental_health_risk 12 5 4 4 0.2 

sn gen_alc_misuse 6 root 38 1 1 3 0.18 

suic_pot_trig gen_phys_hlth_pain 6 suic 36 2 3 4 0.17 

gen_distress hto_ideatn_link 8 mental_health_risk 6 1 1 2 0.17 

gen_motivation gen_mentl_insght 4 gen_health_care 7 2 2 2 0.17 

gen_dependence gen_relat_detr 6 gen_direct 9 4 4 4 0.16 

sh_for_hlp_diff suic_pot_trig 7 mental_health_risk 18 1 1 5 0.14 

suic_regret vuln_su 7 root 24 5 4 2 0.14 

gen_angry_emotns suic_regret 7 suic 8 3 3 2 0.14 

gen_insght_behvr gen_alc_misuse 8 suic 9 6 2 2 0.13 

sh_for_hlp_diff suic_lethality 8 mental_health_risk 10 5 5 5 0.13 

hto gen_alc_misuse 6 root 40 8 7 3 0.13 

suic_pot_trig gen_phys_hlth_disa 6 suic 27 1 1 2 0.12 

sh gen_drug_misuse 6 root 28 4 4 3 0.12 

gen_mood_swings gen_mentl_insght 4 gen_direct 28 3 3 2 0.12 

suic_pot_trig gen_mentl_insght 6 suic 33 1 1 2 0.11 

gen_life_not_livng Hto 7 root 20 6 1 2 0.11 

gen_learn_disab hto_curr_persp_ep 7 mental_health_risk 7 1 1 2 0.08 

gen_coping_abil gen_drug_misuse 4 gen_direct 8 9 3 3 0.07 

gen_liv_skills sh_pot_triggs 7 mental_health_risk 8 3 2 2 0.06 

hto_curr_persp_ep Sh 5 root 21 1 1 5 0.06 

gen_insght_behvr suic_lethality 7 sui_specific 9 2 2 2 0.01 
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aid Corr. 

gen_cog_think_mem Sh 7 root 17 3 2 2 
-

0.03 

 

 

 

 

Table 83 Grist node to snomed-ct concept mapping 

Grist node name Snomed-ct concept name 
sn_appearnce Victim of neglect 
sn_hygiene Smell 
sn_recnt_app_chnge Weight decreasing 
sn_skin Infective disorder 

Suic [X](Intentional self-harm) or (suicide) 
(event) 

suic_curr_int Thinking, function (observable entity) 
suic_discovery OD - Overdose of drug 

suic_eol_prep [X](Intentional self-harm) or (suicide) 
(event) 

suic_escalate [X](Intentional self-harm) or (suicide) 
(event) 

suic_fam_hist [X](Intentional self-harm) or (suicide) 
(event) 

suic_fam_hist [X](Intentional self-harm) or (suicide) 
(event) 

suic_first_occ [X](Intentional self-harm) or (suicide) 
(event) 

suic_how_many [X](Intentional self-harm) or (suicide) 
(event) 

suic_id_control Thinking, function (observable entity) 
suic_id_freq Thinking (observable entity) 
suic_id_hi_risk Thinking, function (observable entity) 
suic_id_strngth Thinking (observable entity) 
suic_ideation Thinking (observable entity) 

suic_int_inform [X](Intentional self-harm) or (suicide) 
(event) 

suic_int_p_trig [X](Intentional self-harm) or (suicide) 
(event) 

suic_leth_insght [X](Intentional self-harm) or (suicide) 
(event) 

suic_lethality 
(Poisoning (& [drug] &/or [biological 
substance] or [medicinal])) or (overdose: 
[biological substance] or [drug]) (disorder) 
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Grist node name Snomed-ct concept name 
suic_most_rec OD - Overdose of drug 

suic_note_prev [X](Intentional self-harm) or (suicide) 
(event) 

suic_p_trig_mtch [X](Intentional self-harm) or (suicide) 
(event) 

suic_past_att [X](Intentional self-harm) or (suicide) 
(event) 

suic_patt_att 
(Poisoning (& [drug] &/or [biological 
substance] or [medicinal])) or (overdose: 
[biological substance] or [drug]) (disorder) 

suic_plan_real OD - Overdose of drug 

suic_planning [X](Intentional self-harm) or (suicide) 
(event) 

suic_plans Thinking, function (observable entity) 
suic_pot_trig Alcohol measurement 

suic_regret [X](Intentional self-harm) or (suicide) 
(event) 

suic_rel_belief Religious believer 

suic_s_h_behv [X](Intentional self-harm) or (suicide) 
(event) 

suic_s_h_behv [X](Intentional self-harm) or (suicide) 
(event) 

suic_ser_succd 
(Poisoning (& [drug] &/or [biological 
substance] or [medicinal])) or (overdose: 
[biological substance] or [drug]) (disorder) 

suic_steps_takn [X](Intentional self-harm) or (suicide) 
(event) 

vuln_app_behavr Abuse (event) 
vuln_su Abuse (event) 

wandering History of (contextual qualifier) (qualifier 
value) 

worthlessness Self-esteem 
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Appendix C Risk Analysis Results 

 

Mallet: Following is the screenshot of the results given by Mallet tool for 10 classes 

prediction. 

 

 

 

Figure 30 Mallet results for 10 category of risk 
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Mallet: Following is the screenshot of the results given by Mallet tool for 3 classes 

prediction. 

 

Figure 31 Mallet results for 3 category of risks 

 

Stanford classifier: Following is the screenshot of Stanford classifier results. 

 

 

 

Figure 32 Results from Stanford classifier 
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Experiment 1: Weka screenshot of snomed concepts extracted by cTAKES, 10 classes. 

 

 

 

Figure 33 Prediction by snomed 10 classes 
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Experiment 2: Weka screenshot snomed concepts extracted by cTAKES, 3 classes. 

 

 

Figure 34 Prediction by snomed 3 classes 

 

 

Experiment 3: Weka screenshot N-gram not filtered by ECM semantic 3 classes. 

 

 

Figure 35 Prediction by ECM semantic 
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Experiment 4: Weka screenshot N-gram phrases filtered by ECM semantic 3 classes 

 

Figure 36 Prediction by ECM phraseness 

 

Experiment 5: Weka screenshot snomed concepts compressed by String Stemming 3 

classes. 

 

 

Figure 37 Prediction by snomed string stemming 
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Experiment 6: Weka screenshot Snomed concepts compressed by Semantic Stemming 

3 classes. 

 

 

Figure 38 Prediction by snomed semantic stemming 

 

 

Figure 39 Sceenshot of prediction by document vector 
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Figure 40 Sceenshot of Prediction by similarity to node 

 

 

 

 

Table 84 Repeat assessment soft node data 

Node Name 

suic 

Increase 

suic 

Decre. 

suic 

same 

Sub 

total 

Has 

value  Corr. 

change 

prob 

Decr /  

Total 

Dummy 925 4274 2141 4274 4274 1 1.00 1.00 

Suic 925 1208 0 2133 4274 1 0.50 0.28 

vuln_su 298 358 542 1198 3219 0.25 0.37 0.11 

Sh 355 477 346 1178 3266 0.69 0.36 0.15 

Hto 249 348 503 1100 2927 0.17 0.38 0.12 

Sn 214 292 446 952 2597 0.26 0.37 0.11 

gen_distress 202 283 294 779 1957 0.43 0.40 0.14 

gen_sad 214 282 279 775 2027 0.52 0.38 0.14 

gen_anx_emotns 181 258 259 698 1947 0.25 0.36 0.13 

gen_mentl_insght 165 195 273 633 2650 -0.01 0.24 0.07 

gen_helpless 176 240 217 633 1866 0.54 0.34 0.13 

suic_pot_trig 210 242 180 632 1730 0.46 0.37 0.14 

gen_mood_swings 185 215 209 609 2007 0.42 0.30 0.11 

gen_life_not_livng 169 253 184 606 1760 0.63 0.34 0.14 



10 References 

 

284 

 

 

Node Name 

suic 

Increase 

suic 

Decre. 

suic 

same 

Sub 

total 

Has 

value  Corr. 

change 

prob 

Decr /  

Total 

gen_negative_self 161 227 188 576 1915 0.49 0.30 0.12 

gen_plans_future 160 223 183 566 1786 0.49 0.32 0.12 

gen_angry_emotns 139 200 220 559 1690 0.25 0.33 0.12 

gen_impulse 138 167 136 441 2561 0.19 0.17 0.07 

gen_alc_misuse 144 128 157 429 2000 0.29 0.21 0.06 

suic_p_trig_mtch 143 162 106 411 1279 0.6 0.32 0.13 

gen_hostile 107 124 143 374 2136 0.11 0.18 0.06 

gen_mania 75 103 193 371 1300 0.11 0.29 0.08 

gen_sleep_dist 80 115 148 343 1309 0.28 0.26 0.09 

gen_dependence 89 130 107 326 2503 0.09 0.13 0.05 

gen_insght_behvr 90 86 147 323 2181 0.11 0.15 0.04 

gen_day_struct 82 87 148 317 1311 0.16 0.24 0.07 

suic_regret 107 114 93 314 2329 0.33 0.13 0.05 

gen_empathy_abil 90 99 118 307 2487 0.07 0.12 0.04 

emot_vuln 67 76 163 306 1204 0.22 0.25 0.06 

gen_reliable 97 94 114 305 2364 0.05 0.13 0.04 

sh_pot_triggs 83 121 95 299 1057 0.46 0.28 0.11 

gen_nd_hlp_diff 66 79 152 297 2208 -0.07 0.13 0.04 

gen_coping_abil 102 107 84 293 2590 0.29 0.11 0.04 

gen_net_relat 94 97 100 291 2716 0.27 0.11 0.04 

hto_pot_trig 67 84 140 291 1003 0.33 0.29 0.08 

gen_resp_impct_oth 80 82 125 287 2296 0.3 0.13 0.04 

gen_chall_bhvr 59 90 134 283 1194 0.17 0.24 0.08 

gen_relat_supp 76 102 104 282 2679 0.2 0.11 0.04 

worthlessness 93 103 84 280 1014 0.47 0.28 0.10 

phys_vuln 55 79 145 279 1128 0.11 0.25 0.07 

sn_hair_clothes 60 77 141 278 935 0.12 0.30 0.08 

gen_drug_misuse 88 92 93 273 1389 0.37 0.20 0.07 

sn_hygiene 49 84 135 268 904 0.12 0.30 0.09 

gen_unusl_rec_bhvr 64 88 113 265 1091 0.23 0.24 0.08 

suic_id_strngth 86 106 69 261 949 0.78 0.28 0.11 

suic_id_control 85 99 73 257 945 0.65 0.27 0.10 

suic_id_hi_risk 77 94 64 235 935 0.86 0.25 0.10 

hto_pot_trig_mtch 55 66 110 231 796 0.31 0.29 0.08 

gen_relat_detr_chg 58 89 79 226 1080 0.24 0.21 0.08 

sh_pot_trigs_mtch 59 91 75 225 867 0.52 0.26 0.10 

gen_listless 48 75 90 213 836 0.22 0.25 0.09 

gen_diet_eating 51 73 87 211 878 0.22 0.24 0.08 

gen_mental_withd 51 76 81 208 862 0.23 0.24 0.09 
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Node Name 

suic 

Increase 

suic 

Decre. 

suic 

same 

Sub 

total 

Has 

value  Corr. 

change 

prob 

Decr /  

Total 

suic_ser_succd 83 69 52 204 2374 0.53 0.09 0.03 

gen_unint_risk_behavr 46 62 91 199 1061 0.21 0.19 0.06 

gen_sh_cuts 53 68 77 198 803 0.47 0.25 0.08 

sh_lethality_mth 74 67 57 198 1902 0.33 0.10 0.04 

gen_motivation 48 74 74 196 849 0.31 0.23 0.09 

gen_meds_concord 41 53 94 188 755 0.26 0.25 0.07 

finan_vuln 45 50 91 186 953 0.2 0.20 0.05 

sex_vuln 38 49 96 183 919 0.14 0.20 0.05 

suic_lethality 87 49 46 182 2593 0.38 0.07 0.02 

hto_curr_persp_ep 53 45 83 181 1602 0.2 0.11 0.03 

risk_dep 44 73 63 180 872 0.39 0.21 0.08 

suic_leth_insght 64 56 59 179 2016 0.34 0.09 0.03 

sn_recnt_app_chnge 35 54 80 169 712 0.2 0.24 0.08 

gen_rsk_behavr 41 46 80 167 941 0.3 0.18 0.05 

sn_skin 36 57 71 164 739 0.15 0.22 0.08 

gen_phys_hlth_det 19 55 90 164 656 0.24 0.25 0.08 

sh_for_hlp_diff 60 55 38 153 1849 0.32 0.08 0.03 

gen_relat_detr 57 52 43 152 1986 0.25 0.08 0.03 

gen_phys_withd 40 52 60 152 787 0.2 0.19 0.07 

suic_discovery 62 57 27 146 2223 0.5 0.07 0.03 

carers 43 30 67 140 1409 -0.05 0.10 0.02 

gen_med_perc_benft 39 41 57 137 622 0.24 0.22 0.07 

gen_liv_skills 32 27 77 136 1301 -0.18 0.10 0.02 

app_vuln_abuse 25 41 68 134 735 0.08 0.18 0.06 

gen_paran_del_pers 31 29 69 129 544 0.15 0.24 0.05 

gen_prob_act_par_del 20 33 75 128 515 0.38 0.25 0.06 

sh_hlp_after 47 34 44 125 1509 0.25 0.08 0.02 

gen_accom_habitbl 22 43 57 122 680 0.12 0.18 0.06 

gen_serv_perc_supp 31 39 51 121 688 0.18 0.18 0.06 

gen_phys_hlth_pain 32 37 51 120 1221 0.32 0.10 0.03 

gen_neigbrhd_rsky 38 43 35 116 1582 0.07 0.07 0.03 

gen_concentr 19 36 59 114 569 0 0.20 0.06 

gen_paran_del_spec 28 29 55 112 497 0.28 0.23 0.06 

gen_phys_hlth_disa 22 36 51 109 1234 0.11 0.09 0.03 

gen_voice_dang_s 27 39 42 108 448 0.63 0.24 0.09 

gen_diet_weigt_chg 27 30 50 107 545 0.1 0.20 0.06 

gen_jealous 25 38 43 106 804 0.14 0.13 0.05 

gen_prob_act_voice 28 28 48 104 461 0.55 0.23 0.06 

gen_diet_drink 17 34 50 101 526 0.15 0.19 0.06 
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Node Name 

suic 

Increase 

suic 

Decre. 

suic 

same 

Sub 

total 

Has 

value  Corr. 

change 

prob 

Decr /  

Total 

gen_accom_hm_care 20 35 45 100 558 0.12 0.18 0.06 

gen_perc_debt_anx 32 31 37 100 619 0.24 0.16 0.05 

suic_planning 34 32 19 85 873 0.55 0.10 0.04 

gen_cog_think_mem 18 25 38 81 493 -0.04 0.16 0.05 

suic_s_h_behv 40 23 15 78 1606 0.58 0.05 0.01 

hto_violent 22 20 32 74 1474 -0.03 0.05 0.01 

sh_strength 20 31 22 73 385 0.57 0.19 0.08 

gen_congruence 18 21 32 71 520 0.08 0.14 0.04 

grandiosity 18 22 17 57 397 0.09 0.14 0.06 

dis_conf 11 15 30 56 351 0.14 0.16 0.04 

gen_poverty 15 21 19 55 892 0.16 0.06 0.02 

gen_env_grew_up 20 20 15 55 2020 0.31 0.03 0.01 

sh_planning 26 13 16 55 638 0.27 0.09 0.02 

suic_eol_prep 21 19 12 52 378 0.36 0.14 0.05 

gen_voice_dang_o 16 18 18 52 318 0.23 0.16 0.06 

gen_isol_accom 12 14 21 47 1279 0.12 0.04 0.01 

hto_dest_prprty 7 17 19 43 925 0.05 0.05 0.02 

gen_rec_bad_job_ch 12 19 9 40 305 0.2 0.13 0.06 

gen_risk_upbeat 12 11 16 39 322 0.51 0.12 0.03 

gen_risk_aggrsv 10 9 19 38 287 -0.22 0.13 0.03 

gen_com_imp 8 16 12 36 557 0.01 0.06 0.03 

gen_detached 6 8 20 34 229 0.12 0.15 0.03 

gen_responsve 6 10 17 33 246 -0.01 0.13 0.04 

gen_distrss_b_lang 7 11 14 32 243 0.28 0.13 0.05 

gen_coherence 8 5 18 31 265 -0.14 0.12 0.02 

gen_educ_expr 9 9 13 31 1506 0.27 0.02 0.01 

gen_avoid_eye_contact 4 9 16 29 214 0.16 0.14 0.04 

gen_eating_dis 9 14 5 28 942 0.2 0.03 0.01 

suic_prosp_leth 7 12 8 27 240 0.3 0.11 0.05 

gen_low_mood 5 11 11 27 230 0.45 0.12 0.05 

gen_rapport 5 10 12 27 246 0.04 0.11 0.04 

gen_job_chg_frq 10 7 10 27 774 0.12 0.03 0.01 

suic_plan_real 5 11 10 26 281 0.41 0.09 0.04 

suic_steps_takn 7 8 7 22 230 0.38 0.10 0.03 

hto_emotional_ep 6 8 7 21 486 0.17 0.04 0.02 

gen_gut_assmnt 4 7 10 21 222 0.1 0.09 0.03 

hto_hi_rsk_ideatn 5 7 8 20 157 0.35 0.13 0.04 

gen_violent_purs 4 7 9 20 426 0.29 0.05 0.02 

hto_ideatn_link 6 4 10 20 145 0.28 0.14 0.03 
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Node Name 

suic 

Increase 

suic 

Decre. 

suic 

same 

Sub 

total 

Has 

value  Corr. 

change 

prob 

Decr /  

Total 

hto_means_plan 6 5 8 19 151 0.08 0.13 0.03 

hto_steps_plan 6 4 9 19 125 0.06 0.15 0.03 

gen_threat_move 2 4 13 19 179 -0.18 0.11 0.02 

hto_strgth_ideatn 5 8 5 18 119 0.41 0.15 0.07 

suic_plan_dtail 6 7 2 15 109 0.42 0.14 0.06 

gen_decision 1 3 10 13 34 -0.16 0.38 0.09 

hto_fam_hist 3 3 6 12 480 0.44 0.03 0.01 

app_harm_dam 3 3 4 10 98 0.39 0.10 0.03 

gen_learn_disab 2 2 5 9 234 0.05 0.04 0.01 

hto_fire_setting 2 3 4 9 321 0.17 0.03 0.01 

hto_to_anmls 1 1 1 2 50 -0.17 0.04 0.02 

 

 

 

 

Table 85 GRiST node and Information Gain 

Node name Corr. with suicide 
Information 

Gain GainRatio 

suic_answer 1 2.6 0 

gen_app_diet_answer 0 1.92 0.828 

suic_id_hi_risk_answer 0.86 0.87 0.292 

suic_id_strngth_answer 0.78 0.71 0.241 

suic_id_control_answer 0.65 0.51 0.181 

suic_pot_trig_answer 0.46 0.39 0.132 

suic_p_trig_mtch_answer 0.6 0.38 0.12 

sh_answer 0.69 0.32 0.119 

app_harm_dam_answer 0.39 0.25 0.117 

gen_life_not_livng_answer 0.63 0.33 0.111 

sh_strength_answer 0.57 0.3 0.1 

hto_to_anmls_answer -0.17 0.26 0.086 

gen_voice_dang_s_answer 0.63 0.25 0.082 

gen_prob_act_voice_answer 0.55 0.24 0.08 

suic_plan_real_answer 0.41 0.23 0.073 

suic_steps_takn_answer 0.38 0.22 0.068 

sh_pot_triggs_answer 0.46 0.2 0.067 

suic_s_h_behv_answer 0.58 0.19 0.065 

gen_low_mood_answer 0.45 0.2 0.064 

sh_pot_trigs_mtch_answer 0.52 0.19 0.063 
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Node name Corr. with suicide 
Information 

Gain GainRatio 

gen_plans_future_answer 0.49 0.18 0.062 

gen_risk_upbeat_answer 0.51 0.18 0.056 

suic_regret_answer 0.33 0.17 0.055 

family_ment_hlth_answer 0.08 0.18 0.055 

hto_steps_plan_answer 0.06 0.18 0.054 

suic_prosp_leth_answer 0.3 0.16 0.053 

hto_means_plan_answer 0.08 0.17 0.053 

gen_sh_cuts_answer 0.47 0.15 0.052 

worthlessness_answer 0.47 0.15 0.048 

hto_strgth_ideatn_answer 0.41 0.15 0.048 

hto_fam_hist_answer 0.44 0.14 0.047 

suic_eol_prep_answer 0.36 0.13 0.047 

hto_hi_rsk_ideatn_answer 0.35 0.14 0.046 

gen_helpless_answer 0.54 0.14 0.044 

gen_sad_answer 0.52 0.14 0.044 

gen_negative_self_answer 0.49 0.14 0.044 

hto_fire_setting_answer 0.17 0.13 0.043 

gen_voice_dang_o_answer 0.23 0.1 0.04 

hto_emotional_ep_answer 0.17 0.13 0.04 

hto_pot_trig_answer 0.33 0.12 0.039 

gen_violent_purs_answer 0.29 0.09 0.038 

sh_planning_answer 0.27 0.09 0.038 

suic_ser_succd_answer 0.53 0.12 0.037 

hto_pot_trig_mtch_answer 0.31 0.11 0.037 

gen_gut_assmnt_answer 0.1 0.11 0.037 

gen_distrss_b_lang_answer 0.28 0.12 0.035 

hto_ideatn_link_answer 0.28 0.11 0.034 

suic_planning_answer 0.55 0.09 0.031 

gen_distress_answer 0.43 0.1 0.031 

gen_impulse_answer 0.19 0.1 0.031 

gen_threat_move_answer -0.18 0.09 0.031 

risk_dep_answer 0.39 0.07 0.03 

gen_coherence_answer -0.14 0.09 0.03 

gen_prob_act_par_del_answer 0.38 0.09 0.029 

gen_risk_aggrsv_answer -0.22 0.09 0.028 

hto_answer 0.17 0.07 0.027 

gen_mood_swings_answer 0.42 0.08 0.026 

suic_lethality_answer 0.38 0.08 0.026 

sh_lethality_mth_answer 0.33 0.08 0.026 

gen_motivation_answer 0.31 0.07 0.023 



10 References 

 

289 

 

 

Node name Corr. with suicide 
Information 

Gain GainRatio 

gen_listless_answer 0.22 0.07 0.023 

suic_discovery_answer 0.5 0.06 0.022 

sn_answer 0.26 0.06 0.022 

grandiosity_answer 0.09 0.05 0.022 

suic_leth_insght_answer 0.34 0.06 0.02 

gen_paran_del_pers_answer 0.15 0.06 0.02 

dis_conf_answer 0.14 0.06 0.02 

gen_detached_answer 0.12 0.07 0.02 

gen_learn_disab_answer 0.05 0.07 0.02 

gen_decision_answer -0.16 0.07 0.02 

gen_coping_abil_answer 0.29 0.05 0.019 

gen_paran_del_spec_answer 0.28 0.06 0.019 

gen_rapport_answer 0.04 0.06 0.019 

gen_relat_detr_chg_answer 0.24 0.06 0.018 

gen_perc_debt_anx_answer 0.24 0.05 0.018 

gen_mental_withd_answer 0.23 0.06 0.018 

gen_unint_risk_behavr_answer 0.21 0.05 0.018 

sn_recnt_app_chnge_answer 0.2 0.06 0.018 

gen_avoid_eye_contact_answer 0.16 0.06 0.018 

sex_vuln_answer 0.14 0.04 0.017 

app_vuln_abuse_answer 0.08 0.04 0.017 

emot_vuln_answer 0.22 0.05 0.016 

sh_for_hlp_diff_answer 0.32 0.05 0.015 

gen_rec_bad_job_ch_answer 0.2 0.05 0.015 

gen_jealous_answer 0.14 0.03 0.015 

gen_rsk_behavr_answer 0.3 0.04 0.014 

gen_sleep_dist_answer 0.28 0.05 0.014 

sh_hlp_after_answer 0.25 0.04 0.014 

gen_unusl_rec_bhvr_answer 0.23 0.05 0.014 

sn_skin_answer 0.15 0.04 0.014 

gen_diet_weigt_chg_answer 0.1 0.05 0.014 

gen_reliable_answer 0.05 0.04 0.014 

gen_nd_hlp_diff_answer -0.07 0.04 0.014 

gen_phys_hlth_pain_answer 0.32 0.04 0.013 

gen_meds_concord_answer 0.26 0.04 0.013 

vuln_su_answer 0.25 0.04 0.013 

gen_med_perc_benft_answer 0.24 0.04 0.013 

gen_diet_eating_answer 0.22 0.04 0.013 

gen_eating_dis_answer 0.2 0.04 0.013 

gen_poverty_answer 0.16 0.04 0.013 
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Node name Corr. with suicide 
Information 

Gain GainRatio 

gen_congruence_answer 0.08 0.04 0.013 

gen_responsve_answer -0.01 0.04 0.013 

gen_liv_skills_answer -0.18 0.04 0.013 

finan_vuln_answer 0.2 0.03 0.012 

gen_diet_drink_answer 0.15 0.04 0.012 

gen_com_imp_answer 0.01 0.02 0.012 

gen_phys_hlth_det_answer 0.24 0.04 0.011 

phys_vuln_answer 0.11 0.03 0.011 

gen_concentr_answer 0 0.03 0.011 

carers_answer -0.05 0.03 0.011 

gen_phys_withd_answer 0.2 0.03 0.01 

sn_hair_clothes_answer 0.12 0.03 0.01 

gen_accom_habitbl_answer 0.12 0.03 0.01 

gen_mania_answer 0.11 0.03 0.01 

gen_cog_think_mem_answer -0.04 0.03 0.01 

gen_resp_impct_oth_answer 0.3 0.03 0.009 

gen_angry_emotns_answer 0.25 0.02 0.009 

gen_anx_emotns_answer 0.25 0.03 0.009 

hto_curr_persp_ep_answer 0.2 0.03 0.009 

gen_serv_perc_supp_answer 0.18 0.03 0.009 

sn_hygiene_answer 0.12 0.03 0.009 

gen_accom_hm_care_answer 0.12 0.02 0.009 

gen_job_chg_frq_answer 0.12 0.02 0.009 

gen_neigbrhd_rsky_answer 0.07 0.03 0.009 

hto_dest_prprty_answer 0.05 0.03 0.009 

gen_mentl_insght_answer -0.01 0.03 0.009 

gen_drug_misuse_answer 0.37 0.02 0.008 

gen_env_grew_up_answer 0.31 0.03 0.008 

gen_relat_supp_answer 0.2 0.03 0.008 

gen_day_struct_answer 0.16 0.02 0.008 

gen_isol_accom_answer 0.12 0.02 0.008 

hto_violent_answer -0.03 0.02 0.008 

gen_alc_misuse_answer 0.29 0.02 0.007 

gen_net_relat_answer 0.27 0.03 0.007 

gen_chall_bhvr_answer 0.17 0.02 0.007 

gen_insght_behvr_answer 0.11 0.02 0.007 

gen_dependence_answer 0.09 0.02 0.007 

gen_empathy_abil_answer 0.07 0.02 0.007 

gen_relat_detr_answer 0.25 0.01 0.006 

 




