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Thesis Summary

This thesis studies ways of modelling instabilities in quasi-efficient markets. We consider

quasi-efficient markets where arbitrage is possible, but is relatively small and short lived.

Under such a assumption we derive optimal arbitrage strategy of one agent and consider

possible ways of finding optimal strategy under stop-loss constraint. Optimal strategy is

used to build a multi-agent model which defines the arbitrage dynamics, i.e. its mean-

reverting behaviour. The influence of agents on the asset prices is modelled by means

of permanent price impact function. Multi-agent model is self-consistent as it creates

mean-reverting term of the same type under which the optimal strategy for one agent was

derived. As we show adding stop-loss constraint creates possibility for market instabilities.

Keywords: Limits of Arbitrage, Stop-loss, Market instabilities, Margin call,

Superportfolio, Market impact
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To those who lost their money due to

market instabilities.
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1 Introduction

1.1 Motivation

Arbitrage is a possibility of making profit from discrepancies in prices of goods, that are

equal in some sense. In theory, when we are considering frictionless market, i.e. market

without costs of opening position, closing and without any limitations in borrowing or

lending and etc, the arbitrage should be riskless way of making money with zero initial

capital. In this case any present arbitrage opportunity should vanish with big efficiency,

as excess supply and demand will equalize the price. This ideal conditions play important

role in classical theories as Capital Asset Pricing Theory [71] and Arbitrage Pricing Theory

[71] or celebrated Black-Scholes pricing formula [30, 12], although some of the ideal as-

sumptions can be relaxed, nevertheless the effective elimination of arbitrage opportunities

plays big role, because this forces market to its equilibrium state. Therefore arbitrageurs,

people who are engaged in making profit from arbitrage, are good force as they make

prices of equal goods to be equal. But if one would take frictions and limitations into

account the efficiency of arbitrageurs can be in question.

Real world arbitrage involves atleast opening two positions, buying underpriced good(going
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Chapter 1 INTRODUCTION

long) and selling overpriced one(going short). For example, consider a futures contract

that obligates one party of the deal to buy and the other to sell the underlying asset for

some fixed price F in the future T . Suppose you are selling futures contract with price

F and buying the underlying with price S in case their prices do not match no-arbitrage

relation, i.e. F > SerT and in case of no arbitrage one should have F > SerT , where r

is riskfree rate. Making profit in this situation usually involves borrowing money under

interest rate r in amount of S dollars and simultaneously buying the stock and selling

futures contract. At maturity date one would need to deliver the stock for price F and

money to the lender with interest, i.e. SerT , residual F − SerT is arbitrageurs income.

This is a perfect situation to make money, but in order to sell something, one must borrow

it and this includes placing some collateral capital, which is called a margin. It usually

some percentage of notional value, but it also depends on current price of stock borrowed

as it changes. As it fluctuates one might need to increase the collateral or decrease it in

case the price drops. In case of futures contract one must every day keep his collateral

mark-to-market, i.e. place more money if underlying’s price increases or get payed back if

it decreases. If one is unable to meet margin requirements and receives a margin call he

is forced to close his position. Therefore you might be forced to liquidate your positions

before maturity or price convergence and face loses. Another example from Shleifer and

Vishny [68] is the simultaneous purchase and sell of the Bund futures contracts on Ger-

man bonds with face value of DM250000 and equal maturity. Since bonds have exactly the

same properties their prices should be equal. We will take exactly the same numbers as

in their example. Suppose one has a situation when in London on LIFFE the bond’s price

is DM240000 and in Frankfurt on DTB DM245000. One would buy a futures contract on

LIFFE and sell one on DTB, to do so one need to place initial margin of DM3000 in London

and DM3500 in Frankfurt which is returned after the positions are closed. As in previous

case the futures everyday are marked-to-market and any movement will result in realizing

profit or losses on everyday basis. The parallel movement of prices, i.e. movement in the

same direction of bond prices will result in loses on one leg of the position and profit on

the other which compensate each other. The unfavourable movement will be if the prices

will diverge further away then on overall one lost money. If one has deep enough pockets

to keep the position open till the prices converge or the contract matures one would realise

profit of DM5000. Otherwise one would be forced to liquidate and face a loss. Another

interesting feature of this example is the leverage of the position. In order to open the

position one needs to have only DM6500 as initial margin, but he gets market exposure

as if he actually bought and sold bonds for about DM250000 each. In real life leverage
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Chapter 1 INTRODUCTION

is a widespread practise as it amplifies the returns and of course losses. For arbitraging

this is important because the markets are very efficient and any discrepancies are very

small, therefore if one would like to have a good return relative to the money involved one

needs to leverage their positions. In this example if one would actually bought the bonds

the possible relative profit would be very small, but in case of futures contract one needs

only initial margin which is small compared and of course some extra money to keep the

position until the prices converge or maturity of the futures contracts. The latter sum

is undefined in the beginning. The leverage can be achieved in various ways, by using

derivatives or buy borrowing the money. The main point is that it helps to amplify your

exposure to the markets which in some cases is important, because otherwise the trade

will be not attractive and results in possible margin calls, i.e. forced position liquidation.

Another feature of the arbitrage investigated by Shleifer and Vishny [68] is that arbi-

trageurs are big funds running other people’s money. They argue that reasons for that is

in highly specialised knowledge about individual markets that is needed to be engaged in

arbitrage. Another reason for this is that price discrepancies are usually so small(chapter

8 [62]) that one must be highly leveraged and maintain operational costs as low as it is

possible. Big funds in this case are in more favourable position. Shleifer and Vishny argue

that this creates performance-based arbitrage, because the funds presented in the market

compete with each other pushing the target returns as high as possible and any mark-to-

market draw down of the portfolio will cause the investors to withdraw their money. Then

they conclude such a market preferences limits the possibility of arbitrageurs to eliminate

discrepancies, because any demand shock resulting in big draw down will result in money

withdraws, therefore this will force them close their positions and push arbitrage even

further away from equilibrium. This is the scenario under which arbitrageurs can become

a destabilizing force. The same scenario can be applied in case of marginal constraints, if

one can not meet margin call, he will be forced to unwind his position. So these capital

constraints can be viewed like as similar effects, but arising at different levels as it was

done in work of Ilinski and Pokrovski [31]. They view latter effect coming from market

micro-structure and former from macro level. As they do we will call this constraint a

stop-loss. In their work they investigate CAPM model under stop-loss constraint. They

show that this results in violation of Separation theorem and that the target returns will

not match long-run returns.

A good historical example is the story of the Long-Term Capital Management(LTCM)

hedge fund [48]. The fund was searching differences in values of assets that were closely

related and taking opposite positions assuming that in the future the prices will converge.
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Chapter 1 INTRODUCTION

It was a fund which had a diversified arbitrage positions, i.e. portfolio consisted of assets

of different type and uncorrelated. The risks were considered low and LTCM leveraged

their positions to substantial amount, their debt to equity ratio exceeded 25:1. It was a

successful fund which earned on average about 40% per year from its start in 1994 till

1996. The year of 1997 was less successful as they earned less than 20% and the fund

collapsed in year 1998. The story of their collapse started in mid-1998 when the Russian

government defaulted and this triggered a flight to quality around the globe in some asset

classes. A flight to quality is a situation when investors sell assets which are risky and

buy those which are less risky. MacKenzie showed in his studies [50, 49, 51] that flight to

quality was rather a trigger of their collapse then the main reason. He interviewed people

form LTCM fund and other portfolio managers from the Wall Street and found that main

reason for their collapse was, as he calls it, the superportfolio. Following the success of

the LTCM fund in the beginning, other hedge funds and banks started to participate in

the same arbitrage trades more intensively which resulted in many overlapping arbitrage

portfolios, as a result one has one big superportfolio. The flight to quality triggered closure

of the arbitrage positions of some investors, whether because of loses or other risk manage-

ment factors, as the result arbitrage instead of converging started to diverge hurting other

arbitrageurs and forcing them liquidate their positions to. The presence of overlapping

portfolios can result in avalanche closure of the positions, when small fraction liquidates

their positions and push the prices in opposite direction and triggering a chain of portfolio

stop-loss liquidations. The facts that back up this hypothesis are following. First of all

from the interviews MacKenzie concludes that the arbitrage opportunities started to dis-

appear as more and more arbitrageurs were engaged and the discrepancies narrowed. The

second one and the most important one is the dynamics of the superportfolio during the

collapse of LTCM fund. As no one knows the exact structure of it he took the arbitrage

position of the LTCM fund and used it as a proxy. He found the dynamics of the different

arbitrage positions diverged during the collapse which is fully consistent with superport-

folio hypothesis. Contrary the flight to quality hypothesis suggests that certain position

should have converged which does not correlate with observed dynamics. In short we have

a one more component for disaster the overlapping portfolios which creates a superport-

folio. Leland [38] gives a good overview of the crashes that happened in the past. One

of which happened in similar circumstances as in story of LTCM fund is the slaughter

of the quants in August of 2007. Long/short hedge funds had overlapping portfolios and

after facing adverse movement of the prices, which is assumed happened because one of

the long/short hedge funds decided to close his positions, stop-losses were triggered which
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Chapter 1 INTRODUCTION

resulted in further price declines and further stop-losses.

1.2 Objective of the thesis

The objective is to model the instability in quasi-efficient market that can arise in arbitrage

trading.

1.3 Key ideas and thesis outline

Now we would like to summarize the key ideas and define the structure of the thesis.

Arbitrage opportunities exist and are usually small. In other worlds one can say that

markets are almost efficient and deviation from the law of one price is moderate and the

arbitrage disappears relatively quickly. We will call such a market quasi-efficient. Arbi-

trageurs are the main force that must pull the prices to their equilibrium by introducing

an excess demand on one asset and excess supply on the other, hence shifting the prices.

As the arbitrage opportunities are small one must use leverage to make this investment

attractive. This is achieved buy using derivatives and/or money borrowing mechanism

which results in stop-loss constraint. If one faces an adverse movement of the market

and can not meet margin call requirements or the fund investors decide to withdraw their

money the fund will be forced to liquidate his positions at least some fraction. This con-

straint must be relative with respect to the maximum of the portfolio. We will assume

that if the portfolio mark-to-market value drops from maximum say by L dollars the fund

will unwind all of his positions. Now we can formulate the main goal of the fund who

is involved in arbitrage as to maximize the expected profit under the stop-loss. Chapter

3 is dedicated of finding arbitrage optimal strategy of one agent (fund) under stop-loss

constraint. Firstly we solve the stated problem without the constraint as it must be the

limiting case when portfolio’s value is far away from the stop-loss. Although the problem

with stop-loss was not explicitly solved we discuss the attempts that where made by the

author and difficulties that one faces. In order to find optimal strategy author uses theory

of optimal stochastic control, which is introduced in chapter 2. The conventional approach

leads us to Hamilton-Jacobi-Bellman equation, but we will discuss other possible routes of

optimization that we considered during this study as they have certain advantages. The

optimal arbitrage strategy moves us to the final step of modelling multi-agent behaviour

in chapter 4, where our main goal is to model instabilities that arise from superportfolio

and stop-loss combined. As we discussed the presence of stop-loss and the fact that all

funds invest in similar assets using similar strategies creates possibility for instabilities.
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Chapter 1 INTRODUCTION

The superportfolio is made by assuming that all the agents follow the same strategy for

the arbitrage. Firstly we try to show that arbitrage mean-reverting behaviour is created

by the agents. For this purpose we omit stop-loss constraint and show that arbitrageurs

create a pulling force that make the arbitrage converge to its equilibrium. As we will see in

one case this is achieved relatively easy and in the other it is not. The important principle

that we follow is self-consistency, which in our case states that optimal strategy should

create the same type process of arbitrage under which it was found. Then we add the

stop-loss constraint and build a model which as we show has solutions that force, under

certain conditions, arbitrageurs to liquidate their positions and push the arbitrage from

its equilibrium. When certain fraction of agents face a draw down threshold, i.e. stop-loss,

they close their positions and move the arbitrage further away from zero and it triggers

the next fraction to do the same. As a result this avalanche effect creates the instability.

In present research we will distinguish two different types of arbitrage opportunities in

the following sense. In first case we know some information about the future, for example,

if we consider futures contract and underlying stock or the futures on the bonds case we

know that at maturity date their prices coincide. We will refer to this type of arbitrage as

an arbitrage with predetermined convergence date. Other type of arbitrage does not incor-

porate any information about the future. This is usually referred as statistical arbitrage,

for example ”Siamese-twin” stocks like Royal Dutch and Shell stocks. These dual-listed

company give the same rights to its holders as well as dividends, therefore should be priced

accordingly, but it is observed that market not always price them accordingly. There is no

objective reason that statistical arbitrage will converge in any predefined moment of time.

We will refer to this type of arbitrage as an arbitrage with undetermined convergence date.

Next we will give a literature review on the optimal arbitrage strategies and limits of

arbitrage.

1.4 Literature review

Further let us consider different articles studying optimal arbitrage strategies under dif-

ferent types of arbitrage processes and different types of constraints. As it was previously

discussed in general one can think of any arbitrage opportunity as a violation of some

relation between prices of goods or financial instruments. We can split articles in two

categories. In the first category arbitrage dynamics follows Ornstein-Uhlenbeck process

and the second category is using Brownian bridge process. From now on we will denote

any arbitrage process by ξt. Ornstein-Uhlenbeck process, also known as mean-reverting
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Chapter 1 INTRODUCTION

process, is a random process which has a term that ”pools” the trajectory to zero. It is

modelled with dξt = −αξtdt+ σdBt stochastic differential equation, where the first term

−αξtdt represents the ”pooling” force and the second term σdBt is a random excitation

arising from a Brownian motion. The Brownian bridge process is basically a Brownian

motion which is conditioned to be ξT = 0, i.e. arbitrage converges and is zero. It can be

modelled using following stochastic differential equation dξt = − αξt
T−tdt + σdBt and each

term has exactly the same interpretation as in mean-reverting case. The only difference

would be that ”pooling” force increases with time − αξt
T−tdt which guarantees that when

t = T the arbitrage will converge to zero ξT = 0. One can give some physical interpre-

tation for each of these terms. The one that pools arbitrage to zero is created by the

arbitrageurs, they are taking advantage of the mispricing and creating an extra demand

which shifts the prices and reduces the arbitrage. The second term comes from the other

traders who are engaged in different trading activities which are not related with arbitrage

and shift the prices creating an arbitrage opportunity.

Boguslavskiy and Boguslavskaya [13] investigate a problem of a limited capital investor

with power utility risk preferences W γ

γ and finite time horizon having an opportunity to

invest in mean-reverting asset, modelled as the Ornstein-Uhlenbeck process. The mean-

reverting asset represents a relative value trading opportunity. They give explicit solution

of this problem by finding optimal strategy and optimal expected utility using Hamilton-

Jacobi-Bellman equation (HJB equation). Their solution has realistic features like: posi-

tion cutting after arbitrage window exceeds certain threshold and more risk averse investor

becoming less aggressive when time horizon approaches.

Jurek and Yang [34] extended work of Boguslavskiye [13] by considering the same type

of arbitrage process and two different type of preferences. One is power utility like in pre-

vious paper and other is Epstein-Zin utility function to model intermediate consumption.

They solve this problem using stochastic control theory apparatus (HJB equation) and

arrive to the same results. They prove that there is a qualitative difference between log

utility and power utility agent. In former case agent is using a myopic strategy which does

not depend on time left to the investment horizon. In latter case there is a term in the

strategy that does count for horizon.

Liu and Longstaff [46] are considering limited capital investor with logarithmic pref-

erences and finite investment horizon which coincides with asset maturity, i.e. objective

functional is supn E[logWT ]. Arbitrage is assumed to follow Brownian bridge process, what

can represent violation of the put-call parity for European options and investor wants to

take advantage of this opportunity. Portfolio constraints are introduced to model the re-
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quirement of collateral placement as a margin against the risk of short positions. As they

showed this limits the allowed position size and makes expected utility always finite. They

found that the optimal strategy often results in the investor underinvesting in the arbitrage

by taking smaller position than would be allowed by the margin constraint, therefore tak-

ing into account the risk of position widening. Liu and Longstaff also showed that despite

the optimality of the strategy it can generate small Sharp ratio when convergence speed

parameter is greater than 1 and therefore can be rejected in favour of the other investment

opportunities.

Liu and Timmermann [47] are working with more detailed model of arbitrage. They

consider market index and pairs of cointegrated assets with mean reverting term which

drives the spread between the assets. Their agent has power utility preferences and finite

investment horizon. They are comparing optimal strategies with fixed proportions among

cointegrated assets and without. For example, in these works [46],[34],[13] we have fixed

relative proportions of assets which form arbitrage. Using HJB equation they derive opti-

mal strategy for both cases and compare them by resulting Sharpe ratio. In former case

the resulting Sharpe ratio is lower than in latter, but not significantly. From practical point

of view this has irrelevant effect. Other interesting work was carried by Durrleman and

Lhermitte [20]. They model arbitrage with mean-reverting process and add some realistic

features like price impact on the arbitrage and liquidity costs for changing position. Liq-

uidity costs for changing position is a realistic feature, because there are always expenses

like bid/ask spread and temporary impact on price which has property of relaxation after

the position was adjusted [6]. In case of continuous strategy effect of bid/ask spread pre-

sumes. Another reason to take into account transaction costs is to avoid unrealistic results

like infinite income. Liu and Longstaff [46] show that if you avoid margin constraints the

optimal strategy impose an infinite position to be held near maturity date, what results in

infinite expected income. Work by Brennan and Schwartz [14] suggests strategy on index

arbitrage with transaction costs in case of position limits. The transaction costs are dis-

crete which gives rise to a ”window” where arbitrage is unfavourable, therefore they show

that absence arbitrage is subject to transaction costs. In this case when arbitrage is not

zero it does not mean that this opportunity is interesting to arbitrageur. Dai, Zhong and

Kwok [15] extend their work by considering a slightly modified transaction costs. Alsayed

and McGroarty [7] consider a modified model of arbitrage where they model the field of

arbitrageurs with non-linear mean-reverting term. When arbitrage widens the power of

mean-reversion do not rise linearly. Within this model they find optimal strategy and

show that there is a level of arbitrage when strategy starts to cut current position.
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Chapter 1 INTRODUCTION

Limits of arbitrage is a considerable field of study where researches investigate how

costs and other constraints prevent effective mispricing elimination. Getmansky and Lo

[26] study the limits of arbitrage imposed by the possibility of margin call. They argue

that because of market efficiency the mispricing is relatively small and without leverage

the investment is pointless. They describe the optimal behaviour for a fund depending

on its size and access to the capital in different scenarios. Getmansky and Lo state that

combination of leverage and margin call possibility in case of largely diversified portfolio

can not lead to a fund’s collapse, but when the diversification fails and assets become more

correlated this might lead to the fund’s collapse. From their point of view this is what

people who managed the LTCM fund did not took into account. A good overview of the

current state of the theory on the limits of arbitrage is given by Gromb and Vayanos [27].
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2

Random processes and

Stochastic Optimal Control

This chapter deals with mathematical apparatus to be used in subsequent chapters. We

will limit our modelling to the Ito processes and control of such a processes. Therefore we

firstly define a probability space, Brownian motion and Ito calculus. After short discussion

of Ito stochastic differential equations we will consider the connection between parabolic

partial differential equations and Ito processes.

After the calculus of stochastic processes we will turn to discussion of optimal stochastic

control. This will lead us to the Bellman principle and Hamilton-Jacobi-Bellman equation.

Although for finding optimal arbitrage strategy this will be enough we will also consider

alternative approaches for solving stochastic control problems which was done by the

author as part of this work.

2.1 Random processes and their connection with parabolic partial

differential equations

This section is mainly based on [55] and [69]. As this work is not about stochastic processes

or optimal control in general we introduce main definitions, notions and where it was

18
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possible gave a short proof of theorems mainly to clarify the matter.

2.1.1 Probability space and random process

Probability theory is a well developed scientific discipline and as such it is axiomatized,

therefore we will start with postulating basic objects and notions without going really

deeply into details. Any probability space consists of a triple (Ω,F ,P), Ω is a set consisting

of elementary events ω ∈ Ω, F is a σ-field made from subsets of Ω such that:

• ∅ ∈ F

• A ∈ F ⇒ AC ∈ F , where AC = Ω A, i.e. compliment

• A1, A2, A3, · · · ∈ F ⇒
⋂∞
i=1Ai ∈ F

and function P : F 7→ [0, 1] is called a measure and has following properties:

• P(∅) = 0

• for any mutually disjoint subsets A1, A2, A3, . . . , Ak ∈ F , i.e. Ai
⋂
Aj = ∅

P

(
k⋃
i=1

Ai

)
=

k∑
i=1

P(Ai) (2.1)

Now if we will include into σ-field F all subsets G ⊂ Ω with zero outer-measure P∗(G) :=

inf {P(F ) : F ∈ F , G ⊂ F} = 0, which always can be done, than we say that triple (Ω,F ,P)

forms a probability space.

Having defined the probability space we can take a next step to define a random

variable. This next step would be the definition of measurable function:

Definition 2.1. We say that function X : Ω 7→ Rn is F-measurable when for each open

subset U ∈ Rn there exists a pre-image F = X−1(U) such that it belongs to σ-field F ∈ F ,

where X−1(U) := {ω ∈ Ω : X(ω) ∈ U}.

Now that everything that we need is defined we can give definition of a random variable:

Definition 2.2. A random variable X on a probability space (Ω,F ,P) is a F-measurable

function X(ω) : Ω 7→ Rn

Each random variable induces a measure µX on Rn

µX(B) = P(X−1(B)) (2.2)
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and the mathematical expectation can be computed using this measure

E [f(X)] =

∫
Ω

f(X(ω))dP(ω) =

∫
Rn

f(x)dµX(x). (2.3)

Any random process can be considered as a parametrized random variable and this pa-

rameter can represent time or spatial coordinates. In the latter case one would say random

field rather than random process, although this is just question of terminology and the

essence will still be the same that

Definition 2.3. A random process Xt(ω) is a parametrized random variable on a proba-

bility space that maps from [0,∞)× Ω to Rn

Any random process or random variable generates a minimum σ-field FX that contains

all pre-images X−1(U) of open subsets U ⊂ Rn. In case of a random process this will be

a σ-field parametrized by time parameter such that for any s < t, s, t ∈ [0,∞) we have

Fs ⊂ Ft ⊂ F .

2.1.2 Brownian motion

A Gaussian noise m(t) with zero-mean is a random process that for each increasing se-

quence 0 ≤ t0 < t1 < t2 < t3 < · · · < tn forms a multidimensional vector

m =



m(t0)

m(t1)

m(t2)
...

m(tn)


(2.4)

which has normal distribution

Pr{m = x} = pm(x0, t0, x1, t1, . . . , xn, tn)

=
1

(2π det K)
n
2

exp

{
−1

2
x
′
K−1x

}
(2.5)

with K being a covariance matrix Ki,j = E [m(ti)m(tj)].

Definition 2.4. We will say that a random process Bt is a Brownian motion if it satisfies

three conditions:

1. B0 = 0
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2. It is a Gaussian noise with zero mean and covariance matrix Ki,j = E
[
BtiBtj

]
=

min (ti, tj)

3. Each path is continuous with probability one

From the second property of the definition one can conclude that it has independent

increments, i.e. Bt − Bs and Br − Bu are independent given the fact that u < r < s < t.

This follows from the simple observation that covariance of such a increments is zero

E [(Bt −Bs)(Br −Bu)] = E [BtBr −BtBu −BsBr +BsBu] = r − u − r + u = 0 and one

can always factorize the normal distribution in this case, i.e. Pr{Bt −Bs = x;Br −Bu =

y} = p(x)p(y).

2.1.3 Ito calculus

Ito calculus provides an apparatus to build wide range of stochastic models. As we will

see it is different from conventional calculus, reason lies in the fact that Brownian motion

has a non-zero quadratic variation. Let us start from considering following differential

equation with stochastic term σ(Xt, t)dBt

dXt = a(t,Xt)dt+ σ(t,Xt)dBt, (2.6)

where the dBt term represents a differential of a Brownian motion and the rest looks

rather standard. One can express the solution of the latter differential equation in the

integral form

Xt = Xs +

t∫
s

a(r,Xr)dr +

t∫
s

σ(r,Xr)dBr (2.7)

The main subject of this section would be to define the integral that contains differential

of the Brownian motion, i.e.
t∫
s
σ(r,Xr)dBr.

First of all we will define this integral on step functions

φ(t, ω) =
∑
πn

f(t∗j , ω)1[tj ,tj+1)(t) (2.8)

t∗j ∈ [tj , tj+1]
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where πn is a partition of an interval [0, T ]. The step function is defined using some

function f(t, ω) : [0,∞] × Ω → R which step function approximates in some sense. Then

the integral
T∫
0

φ(t, ω)dBt(ω) will be defined as

T∫
0

φ(t, ω)dBt(ω) =
∑
πn

f(t∗j , ω)(Btj+1(ω)−Btj (ω)) (2.9)

Now the main question is how to pick the t∗j point. In case of a Riemann–Stieltjes integral

this will lead to the same result and makes no difference, but for an Ito integral this is not

the case. We can show that by the following

Example 2.1.1. Introducing two different step functions which will approximate a Brow-

nian motion path

φ1(t, ω) =
∑
πn

B(tj , ω)1[tj ,tj+1)(t)

φ2(t, ω) =
∑
πn

B(tj+1, ω)1[tj ,tj+1)(t)

then

E

 T∫
0

φ1(t, ω)dBt(ω)

 = E

[∑
πn

Btj (ω)(Btj+1(ω)−Btj (ω))

]
= 0

E

 T∫
0

φ2(t, ω)dBt(ω)

 = E

[∑
πn

Btj+1(ω)(Btj+1(ω)−Btj (ω))

]

= E

[∑
πn

(Btj+1(ω)−Btj (ω))2

]
= T

Now we see that different choice of the t∗j point gives two different objects, i.e. although

the approximations φ1 and φ2 of the Brownian path are slightly different this gives a very

different result.

There are two alternatives that are currently widespread

• non-anticipating t∗j = tj gives the Ito integral, which we will denoted from now on

T∫
0

f(t, ω)dBt(ω)

• anticipating midpoint t∗j = (tj+1 + tj)/2 gives the Stratonovich integral, usually
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denoted as

T∫
0

f(t, ω) ◦ dBt(ω)

Since this section is about Ito calculus we will only consider non-anticipating choice and

we can define

Definition 2.5. Ito integral for a step functions

T∫
0

φ(t, ω)dBt(ω) :=
∑
j

f(tj , ω)(Btj+1(ω)−Btj (ω)) (2.10)

where function f(t, ω) is continuous, bounded and Ft-adapted with filtration generated by

the Brownian motion Bt(ω).

One of the important properties of the above defined integral is called

Theorem 2.1. Ito isometry

E


 T∫

0

φ(t, ω)dBt(ω)

2
 = E

 T∫
0

φ2(t, ω)dt

 (2.11)

Proof. The proof is straightforward if one takes into account the fact that each increment

of Brownian motion is independent and expectation of it equals zero, i.e.

E
[
f(tj , ω)(Btj+1(ω)−Btj (ω))

]
= E [f(tj , ω)]E

[
Btj+1(ω)−Btj (ω)

]
= 0

and that square of the increment equals increment of time E
[
(Btj+1(ω)−Btj (ω))2

]
=

tj+1 − tj .

Using isometry of Ito integral for step functions we can generalize Ito integral for a

broader class of functions g(t, ω) : [0,∞)× Ω→ R which satisfy following properties:

• B × F- measurable where B is a σ-algebra on [0,∞)

• Ft-adapted which is generated by the Brownian motion Bt(ω)

• E

[
T∫
0

f2(t, ω)dt

]
<∞

This class of functions can be approximated with step functions as following: for each

g(t, ω) there exists a sequence of step functions {φn} such that E

[
T∫
0

(g(t, ω)− φn(t, ω))2dt

]
−−−→
n→∞

0, sketch of the proof can be found in [56]. Keeping that in mind we can define
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Definition 2.6. Ito integral of function g(t, ω) is

T∫
0

g(t, ω)dBt(ω) :=
L2(P)

lim
n→∞

T∫
0

φn(t, ω)dBt(ω) (2.12)

where {φn} is a sequence of step functions that

lim
n→∞

E

 T∫
0

(g(t, ω)− φn(t, ω))2dt

 = 0 (2.13)

Now if we for a moment assume that the sequence of step functions (2.13) exists then

from Ito isometry we can see that sequence (2.12) is a Cauchy one in L2(P)

0 < E


 T∫

0

(φm(t, ω)− φn(t, ω))dBt(ω)

2
 = E

 T∫
0

(φm(t, ω)− φn(t, ω))2dt


= E

 T∫
0

(φm(t, ω)− g(t, ω) + g(t, ω)− φn(t, ω))2dt


≤ 2E

 T∫
0

{
(φm(t, ω)− g(t, ω))2 + (g(t, ω)− φn(t, ω))2

}
dt

 −−−−−→
n,m→∞

0

therefore we can be sure that the limit exists. This ends the construction of an integral in

Ito sense.

In order to end the discussion on Ito calculus we need to define differentiation rule

which is as we will see is different from classical calculus. Consider a function h(t, x)

which is a C2 function with respect to x and has a continuous first derivative with respect

to time.

Theorem 2.2. Ito’s Rule. Suppose dXt = b(t,Xt)dt+ σ(t,Xt)dBt is an Ito process then

Yt = h(t,Xt) is also an Ito process that

dYt

=

(
∂th(t,Xt) + ∂xh(t,Xt)b(t,Xt) +

1

2
∂2
xh(t,Xt)σ

2(t,Xt)

)
dt+ ∂xh(t,Xt)σ(t,Xt)dBt

(2.14)

Proof. The difference with classical calculus has to do with 1
2∂

2
xh(t,Xt)dt term. To un-
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derstand how this term occurs let us consider a small increment of the process Yt

∆Yt = h(t+ ∆t,Xt+∆t)− h(t,Xt)

= ∂th(t,Xt)∆t+ ∂2
t h(t,Xt)(∆t)

2 + ∂xh(t,Xt)∆Xt + ∂2
t,xh(t,Xt)∆t∆Xt + ∂2

xh(t,Xt)(∆Xt)
2 +R

(2.15)

where R = o((∆t)2 + (∆Xt)
2). The sum of such increments transforms into an integral

and some of the terms do contribute to the integral as the increment size decreases ∆t→ 0

∑
j

∂tjh(tj , Xtj )∆tj →
∫
∂th(t,Xt)dt

∑
j

∂xh(tj , Xtj )∆Xtj →
∫
∂xh(t,Xt)dXt

∑
j

∂2
xh(tj , Xtj )(∆Xtj )

2 →
∫
∂2
xh(t,Xt)σ

2(t,Xt)dt (2.16)

and some disappear

∑
j

∂2
t h(tj , Xtj )(∆tj)

2 → 0

∑
j

∂2
t,xh(tj , Xtj )∆tj∆Xtj → 0

∑
j

Rj → 0

In order to make clear why
∑

j ∂
2
xh(tj , Xtj )(∆Xtj )

2 converges to
∫
∂2
xh(t,Xt)σ

2(t,Xt)dt

let us take a closer look at the sum

∑
j

∂2
xh(tj , Xtj )(∆Xtj )

2 =
∑
j

∂2
xh(tj , Xtj )a

2(tj , Xtj )(∆tj)
2

+2
∑
j

∂2
xh(tj , Xtj )a(tj , Xtj )σ(tj , Xtj )∆tj∆Btj +

∑
j

∂2
xh(tj , Xtj )σ

2(tj , Xtj )(∆Btj )
2

(2.17)

Only last term contributes to the sum as ∆t→ 0. To find the limit of this sum one must
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turn to definition of Ito integral and investigate following sum

E

∑
j

fj(∆Btj )
2 −

∑
j

fj∆tj

2
= E

∑
i,j

fifj((∆Bti)
2 −∆ti)((∆Btj )

2 −∆tj)


= E

[∑
i

f2
i ((∆Bti)

2 −∆ti)
2

]
=
∑
i

E
[
f2
i

]
E
[
(∆Btj )

4 − 2(∆Btj )
2∆tj + (∆tj)

2
]

=
∑
i

E
[
f2
i

]
E
[
3(∆tj)

2 − 2(∆Btj )
2∆tj + (∆tj)

2
]

=
∑
i

E
[
f2
i

]
(∆ti)

2 → 0 (2.18)

where fj = ∂2
xh(tj , Xtj )σ

2(tj , Xtj ). Therefore we found that

∂2
xh(tj , Xtj )σ

2(tj , Xtj )(∆Btj )
2 →

∫
∂2
xh(t,Xt)σ

2(t,Xt)dt, ∆t→ 0 (2.19)

sometimes last fact is presented in short as (dBt)
2 = dt.

One of the consequences of the just stated Ito’s rule 2.2 is

E [h(t,Xt)− h(0, X0)] = E

 t∫
0

{
∂th(s,Xs) + b(s,Xs)∂xh(s,Xs) +

σ2(s,Xs)

2
∂2
xh(s,Xs)

}
ds


= E

 t∫
0

{∂th(s,Xs) + Lh(s,Xs)}ds

 (2.20)

which allows to express average of the value at fixed point in time with average over

the interval. For shorter expressions using Ito’s rule we will introduce a linear operator

L = b(t, x)∂x + σ2(t,x)
2 ∂2

x,x and will use it for later discussions.

2.1.4 Ito stochastic differential equations

A stochastic differential equations that we will write as

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (2.21)

or

Ẋt = b(t,Xt) + σ(t,Xt)Ḃt (2.22)
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is understood as an integral equation

Xt = Xs +

t∫
s

b(r,Xr)dr +

t∫
s

σ(r,Xr)dBr (2.23)

where the second term is understood as an integral in Ito sense.

Theorem 2.3. One can guarantee existence and uniqueness of the SDE (2.21) if the drift

and diffusion functions are uniformly Lipschitz, i.e. there exists positive constant K such

that for any t

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| < K|x− y| (2.24)

and have at most linear growth

|b(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + x2) (2.25)

The uniqueness is understood in a sense that if Xt and X̂t are both solutions of (2.21)

then P
(
Xt = X̂t, 0 ≤ t <∞

)
= 1 and the solution is continuous a.s.

Now we will introduce a notion of Markov process

Definition 2.7. A stochastic process Xt, t ∈ [0, T ] is called Markov process if for any

partition 0 ≥ t1 < t2 < · · · < tn−1 < tn ≤ T its transition probability distribution function

has the property

Pr
[
Xtn < xn|Xtn−1 < xn−1, Xtn−2 < xn−2, . . . , Xt1 < x1

]
= Pr

[
Xtn < xn|Xtn−1 < xn−1

]
(2.26)

or one give a different, but equivalent

Definition 2.8. Suppose one has a stochastic process Xt, t ∈ [0, T ] defined on a probability

space (Ω,F ,P) and is Ft-adapted where the filtration is generated by the process itself. If

E [Xt| Fs] = E [Xt|Xs] (2.27)

for any 0 ≤ s ≤ t ≤ T then the process is Markov.

This definition is important, because one can show that solution of SDE (2.21) is a

Markov process
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Theorem 2.4. Solution of SDE (2.21) is a Markov process under the same restrictions

as in theorem (2.3).

2.1.5 Forward and Backward Kolmogorov equations

There is a connection between stochastic differential equations and parabolic differential

equations which is important for us as we will move to discussion of optimal stochastic

control and finding transition probability for a SDE, i.e. Green’s functions of parabolic

differential equations.

The density function pt(x) for a SDE (2.21), if it exists, must satisfy Kolmogorov

forward equation under certain conditions on b(t, x) and σ(t, x)

Theorem 2.5. Kolmogorov forward equation. Let a(t, x) belongs to C1 with respect to x

and σ(t, x) to C2 with respect to x, and conditions of theorem 2.3 are met. If the density

function pt(x) for SDE (2.21) exists and it belongs to C1 with respect to t and C2 with

respect to x, then density pt(x) is subject to Kolmogorov forward equation

∂tpt(x) = L∗pt(x) (2.28)

where L∗ = −∂xb(t, x) + 1
2∂

2
xσ

2(t, x).

Proof. Choose an arbitrary function f(y) ∈ C2 with compact support. From Ito’s rule

(2.2) one has

f(Xt) = f(X0) +

t∫
0

Lf(Xs)ds+

t∫
0

∂xf(Xs)σ(s,Xs)dBs (2.29)

where the last term is a martingale give the fact that f has a compact support. After

taking expectation or rhs and lhs and changing order of integration

E [fXt] = E [fX0] +

t∫
0

E [Lf(Xs)] ds (2.30)

After substituting expectation with integral by the density function and integrating by

parts one would get

∫
f(y)pt(y)dy =

∫
f(y)p0(y)dy +

∫
f(y)

t∫
0

L∗ps(y)dsdy (2.31)
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Note that this should hold for any f ∈ C2 with compact support, therefore

pt(y)− p0(y) =

t∫
0

L∗ps(y)ds (2.32)

is true for any y.

There is an another equation which is conjugate to the forward equation

Theorem 2.6. Kolmogorov backward equation. Suppose one has a function h(x) Borel-

measurable function and considers an expectation for fixed T

E [h(XT )|Xt = x] = g(t, x) (2.33)

which has a property

E [ |h(XT )||Xt = x] <∞, ∀t, x (2.34)

where Xt is a stochastic process subject to (2.21) and initial condition X0 = x0. Then

g(t, x) must obey partial differential equation

∂tg(t, x) + b(t, x)∂xg(t, x) +
σ2(t, x)

2
∂2
x,xg(t, x) = 0 (2.35)

g(T, x) = h(x)

or using linear operator L = b(t, x)∂x + σ2(t,x)
2 ∂2

x,x

∂tg(t, x) + Lg(t, x) = 0 (2.36)

g(T, x) = h(x)

Proof. First of all g(t,Xt) is a martingale with respect to the filtration Ft generated by

Xt as it was indicated that solution of SDE is a Markov process in theorem 2.4

E [h(XT )| Fs] = E [E [h(XT )| Ft]| Fs]

= E [h(XT )| Fs] = E [g(t,Xt)| Fs]

= E [g(t,Xt)|Xs = x] = g(s, x) (2.37)

29



Chapter 2 RANDOM PROCESSES AND STOCHASTIC OPTIMAL CONTROL

Hence, after applying Ito’s rule

dg(t,Xt) = {∂tg(t,Xt) + Lg(t,Xt)}dt+ σ(t,Xt)∂xg(t,Xt)dBt (2.38)

the drift part must be zero, i.e. ∂tg(t,Xt) +Lg(t,Xt) = 0, so that g(t,Xt) is a martingale.

The terminal condition is trivial.

The transition density function p(x, t|x′, t′) must satisfy backward equation with re-

spect to the x′, t′, because for a conditional probability Pr {Xt ∈ A|Xt′ = x′} = E [1A(Xt)|Xt′ = x′]

the theorem holds.

2.2 Stochastic Optimal Control

Many real world problems can be modelled using mathematical constructions with un-

known perturbations which can be considered random by nature. Finance is a field of

knowledge where such an approach found itself very useful. In short we introduce the

main notions and results of the theory of stochastic optimal control. As one will see the

central object of optimal control theory is the value function which must satisfy Hamilton-

Jacobi-Bellman (HJB) equation which is non-linear by its nature. When the value function

is found one can explicitly derive the optimal control. After a short discussion on possible

approaches of solving HJB equation we move towards considering two approaches of solv-

ing optimal control problems, although these have connections with conventional theory

they have their advantages in some cases. For a more detailed discussion one can find a

vast literature on the subject [55, 58, 22, 35, 32].

2.2.1 Dynamic programming principle and Hamilton-Jacobi-Bellman equation

We work on (Ω,F , {Ft},P) with an m-dimensional Ft-adapted Wiener process Bt. The

central object of interest in optimal control theory is a stochastic differential equation with

a control input

dXu
s = b(s,Xu

s , us)ds+ σ(s,Xu
s , Us)dBs, X0 = x (2.39)

where superscript denotes u means that we are considering equations with ut control

strategy in operation. Infinitesimal drift b : [0,∞)×Rn×U→ Rn and diffusion coefficient

σ : [0,∞)×Rn ×U→ Rn×m are measurable functions and U is the control set, i.e. set of

values that control input can take.
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Definition 2.9. The control strategy is called admissible strategy if

1. ut is a Ft-adapted process

2. ∀(ω, t) ∈ Ω× [0,∞), ut ∈ U

3. there exists a solution for Xu
s

A special interest for us will play a Markov strategy,

Definition 2.10. An admissible strategy is called a Markov strategy if it is of the form

ut = α(t,Xu
t ), where α : [0,∞)× Rn → U

As one can see admissible strategies can depend on the trajectory of the process

Xu
s , s ∈ [0, t] or on some additional information up to moment t, it only should be

Ft-adapted. Hence, trying to find optimal solution class of Markov strategies is restric-

tive, but in certain circumstances exactly Markov strategy is the optimal one among all

admissible strategies.

The second part of the optimal control is a cost functional. Its type and particular

realization depends on the problem in question. Our attention will focus on two types:

1. Optimal control with finite time horizon

J [u] = E

 T∫
0

l(s,Xu
s , us)ds+ g(Xu

T )

∣∣∣∣∣∣Xu
0 = x

 , (2.40)

where running cost function l : [0, T ] × Rn × U → R and terminal cost function

g : Rn → R are measurable and T is some finite terminal time.

2. Optimal control with indefinite time horizon

J [u] = E

 τu∫
0

l(Xu
s , us)ds+ g(Xu

τu)

∣∣∣∣∣∣Xu
0 = x

 (2.41)

where l : S × U→ R and g : ∂S → R are measurable functions and

τu = min [T, inf {s : X(s) /∈ S|Xu
0 = x}]

is a first exit time of Xu
t from S ⊂ Rn, but if it crosses boundary after T we let

τu = T . We omitted time dependence, but time can be considered as an extra

dimension of the process in question Xu
t and this was just done for a more compact

description.
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We will now mainly focus on the finite time horizon case and discuss the indefinite time

horizon case later. Suppose we specified the stochastic differential equation and cost

functional by fixing b, σ, l and g functions and in order to simplify the matter restrict

ourselves to Markov controls. In this case

E

 T∫
t

l(s,Xu
s , us)ds+ g(Xu

T )

∣∣∣∣∣∣Ft
 = E

 T∫
t

l(s,Xu
s , us)ds+ g(Xu

T )

∣∣∣∣∣∣Xu
t = xt

 , (2.42)

and we will slightly change the notation

Jut (xt) ≡ E

 T∫
t

l(s,Xu
s , us)ds+ g(Xu

T )

∣∣∣∣∣∣Xu
t = xt

 , (2.43)

so that now the cost functional is a function of time and initial state of controlled process.

Let us assume that there exists a Markov strategy u∗ such that for any other admissible

Markov strategy u one has Ju
∗

t (x) ≤ Jut (x),∀x ∈ Rn, t ∈ [0, T ]. With this assumption in

mind we would like to find optimal control u∗ and in order to do that we need to state

Theorem 2.7. Dynamic programming principle. Suppose there exists Markov control u∗

such that ∀x ∈ Rn and ∀t ∈ [0, T ] one has Ju
∗

t (x) ≤ Jut (x), then

Vr(x) = min
u′

E

 t∫
r

l(s,Xu′
s , u

′
s)ds+ Vt(X

u′
t )

∣∣∣∣∣∣Xu′
r = x

 , (2.44)

where Vt(x) = Ju
∗

t (x).

Proof. For any admissible Markov strategy u using Markov property and tower property

of conditional expectations one has

Jur (x) = E

 t∫
r

l(s,Xu
s , us)ds+ Jut (Xu

t )

∣∣∣∣∣∣Xu
r = x

 , (2.45)

next choose u′ to be a strategy that coincides with u on time interval [0, t) and with u∗

on [t, T ]. Then

Vr(x) ≤ Ju′r (x) = E

 t∫
r

l(s,Xu′
s , u

′
s)ds+ Vt(X

u′
t )

∣∣∣∣∣∣Xu′
r = x

 , (2.46)

where we have used the assumption ∀x ∈ Rn and ∀t ∈ [0, T ] one has Ju
∗

t (x) ≤ Jut (x). If

now one chooses control u to be optimal u∗ on the whole time interval one gets equality.
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Latter principle will lead us to the

Theorem 2.8. Hamilton-Jacobi-Bellman equation. Value function of optimal control

problem in question must satisfy following equation

min
α∈U
{∂sVs(x) + Lαs Vs(x) + l(s, x, α)} = 0, (2.47)

Proof. Let value function be once differentiable by t and twice by x then by Ito’s rule

Vt(X
u
t ) = Vr(X

u
r ) +

t∫
r

{∂sVs(Xu
s ) + LusVs(Xu

s )}ds+

t∫
r

∇xVs(Xu
s )dBs (2.48)

Now one should insert this representation of Vt(X
u
t ) into Dynamic programming principle

and will see that

E

 t∫
r

∂sVs(X
u
s ) + LusVs(Xu

s ) + l(s,Xu
s , us)ds

∣∣∣∣∣∣Xu
r = x

 ≥ 0 (2.49)

because the Ito’s integral is a martingale and vanishes after taking expectation. This

inequality becomes an equality when one chooses u = u∗, just as with dynamic principle

case. If now one will direct r to t one would arrive with HJB equation.

Now, the discussion that just took place can hardly be called mathematically strict, as

we made lots of assumptions in order to derive the main results. Nonetheless it serves as an

introduction to the optimal control principles. In fact the restriction to Markov strategies

can be eased and one can prove Dynamic programming principle to hold regardless of

whether an optimal strategy exists.

In practice one is more interested in justification that the solution of HJB equation one

found is the value function and the control is optimal. Rather starting from the optimal

control problem and moving towards HJB equation, one can start with HJB equation and

assuming he found a solution show that solution is the value function in question and the

control is optimal. This is achieved with verification theorems.

Verification Theorems

Theorem 2.9. Verification theorem for optimal control with finite time horizon. Suppose

there is a function Vt(x) which is C1 in t and C2 in x, such that satisfies HJB equation
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and terminal condition

∂tVt(x) + inf
α∈A
{Lαt Vt(x) + l(t, x, α)} = 0, VT (x) = g(x) (2.50)

Denote by A the class of admissible strategies such that

t∫
0

∇xVt(x)σ(s,Xu
s , Us)dBs

is a martingale for all u ∈ A and for all t ∈ [0, T ]. Suppose that

α∗(t, x) = argmin
α∈A
{Lαt Vt(x) + l(t, x, α)} (2.51)

belongs to A. Then for any α ∈ A we have J [α∗] ≤ J [α] and Vt(x) = Jα
∗

t (x).

Proof. Using Ito’s rule and martingale restrictions on admissible strategies one finds that

for any strategy u ∈ A

V0(X0) = E

 T∫
0

ds {−∂sVs(Xu
s )− LusVs(Xu

s )}+ VT (Xu
T )

∣∣∣∣∣∣Xu
0 = X0

 (2.52)

If one adds to the lhs and rhs −
T∫
0

ds l(s,Xu
s , us) and take into account HJB equation one

finds

V0(X0)− E

 T∫
0

ds l(s,Xu
s , us)

∣∣∣∣∣∣Xu
0 = X0


= E

 T∫
0

ds {−∂sVs(Xu
s )− LusVs(X

u
s )− l(s,Xu

s , us)}+ VT (Xu
T )

∣∣∣∣∣∣Xu
0 = X0


≤ E [VT (Xu

T )|Xu
0 = X0] (2.53)

and finally taking into account VT (Xu
T ) = g(Xu

T ) one arrives at

V0(X0) ≤ E

 T∫
0

ds l(s,Xu
s , us) + g(Xu

T )

∣∣∣∣∣∣Xu
0 = X0

 (2.54)
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On the other hand if one chooses us = α∗(s, x)

V0(X0) = E

 T∫
0

ds l(s,Xu
s , us) + VT (Xu

T )

∣∣∣∣∣∣Xu
0 = X0

 (2.55)

because in this case ∂sVs(X
α∗
s ) + Lα∗s Vs(Xα∗

s ) + l(s,Xα∗
s , us) = 0. One can make similar

argumentation for arbitrary t ∈ [0, T ] and initial state xt ∈ Rn. From latter follows that

J [α∗] ≤ J [α] and Vt(x) = Jα
∗

t (x).

Theorem 2.10. Verification theorem for optimal control with indefinite time horizon.

Suppose there is a function V (x) which belongs to class C2 in x ∈ S, such that satisfies

HJB equation and boundary conditions

inf
α∈A
{LαV (x) + l(x, α)} = 0, x ∈ S, V (x) = g(x), x ∈ ∂S (2.56)

Denote by A the class of admissible strategies such that

t∫
0

∇xV (x)σ(Xu
s , Us)dBs

is a martingale for all u ∈ A and for all t ∈ [0, T ]. Suppose that

α∗(x) = argmin
α∈A
{LαV (x) + l(x, α)} (2.57)

belongs to A. Then for any α ∈ A we have J [α∗] ≤ J [α] and Vt(x) = Jα
∗

t (x).

Before moving further one must clarify some aspects of HJB equation. Assume after

defining optimal control problem with finite time horizon one finds the HJB equation on

the value function

∂tVt(x) + sup
α∈A
{Lαt Vt(x) + l(t, x, α)} = 0, VT (x) = g(x) (2.58)

Because the differential equation is local by nature the optimal control α∗ must maxi-

mize supα∈A {Lαt Vt(x) + l(t, x, α)} for any pair (t, x). Usually one can apply necessary

optimality condition for optimal strategy

∂ {Lαt Vt(x) + l(t, x, α)}
∂α

|α=α∗ = 0 (2.59)

Therefore α∗ is expressed using value function and if one substitutes it to HJB equation
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one gets a closed equation on the value function. After finding the value function one

then is able to explicitly find the optimal control. We will deal with problems where this

approach is applicable. For example,

∂tVt(x) + sup
α∈A

{
x(b+ (a− b)α∂xVt(x) +

1

2
σ2x2α2∂2

x,xVt(x)

}
= 0 (2.60)

then

α∗(t, x) = −(a− b)∂xVt(x)

xσ2∂2
x,xVt(x)

(2.61)

after substitution one finally finds a closed equation

∂tVt(x) + bx∂xVt(x)− (a− b)2 (∂xVt(x))2

2σ2∂2
x,xVt(x)

= 0, VT (x) = xr, 0 < r < 1 (2.62)

This is non-linear partial differential equation and there is now straightforward way of

solving it. One of the standard approaches to solve such a equation is to substitute an

ansatz and reduce the complexity of the problem. The ansatz can be guessed from the

initial analysis of the problem in question. In Chapter 3 we will consider a perturbative

approach for our particular needs. Whatever approach is used one then can verify found

solution using verification theorems.

2.2.2 Stochastic Optimal Control in Discrete Time

Sometimes the optimal control problem is considered in discrete time, although this can

be considered as a separate optimization problem in this subsection we will discuss how a

continuous time stochastic control problem can be approached in discrete time. First of all

we will state a verification theorem for a discrete time stochastic process and describe how

this problem is tackled using backward induction. Assume one has a stochastic process

Xu
t , t = 0, 1, 2, . . . which is subject to a control u. We will consider a simple objective

functional

J [u] = E [g(Xu
T )|Xu

t = x] (2.63)

for which we would like to find value function

V (x, t) = max
u∈A

E [g(Xu
T )|Xu

t = x] (2.64)
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and optimal strategy

û = argmax
u∈A

E [g(Xu
T )|Xu

t = x] (2.65)

We will state a verification theorem that will give us a recipe how to solve the optimization

problem in question.

Theorem 2.11. Suppose there is a function h(x, t) such as

h(x, t) = max
u∈A

E
[
h(Xu

t+1)
∣∣Xu

t = t
]
, ∀t = 0, 1, 2, . . . (2.66)

and

h(x, T ) = g(x) (2.67)

If control û(x, t) = argmaxu∈A E
[
h(Xu

t+1, t+ 1)
∣∣Xu

t = x
]

is admissible then

V (x, t) = h(x, t) (2.68)

where V (x, t) is the value function (2.64) of optimal control problem and û(x, t) is the

optimal control.

Proof. For any admissible strategy u one has

h(x, t) ≥ E
[
h(Xu

t+1, t+ 1)
∣∣Xu

t = x
]

(2.69)

and from tower property one has

h(x, t) ≥ E
[
h(Xu

t+1, t+ 1)
∣∣Xu

t = x
]
≥ E

[
E
[
h(Xu

t+2, t+ 2)
∣∣Xu

t+1

]∣∣Xu
t = x

]
= E

[
h(Xu

t+2, t+ 2)
∣∣Xu

t = x
]
≥ · · · ≥ E [h(Xu

T , T )|Xu
t = x] (2.70)

Now if we remember that h(x, T ) = g(x) latter becomes

h(x, t) ≥ E [g(Xu
T )|Xu

t = x] (2.71)

Now if one would take at each step not any admissible control u, but û(x, t) all the

inequalities will be equalities, therefore

h(x, t) = E
[
g(X û

T )
∣∣∣X û

t = x
]

(2.72)
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which exactly the value function V (x, t) and û is the optimal control.

Now as one may noticed latter theorem contains everything one needs to solve the

optimal control problem. One starts with T − 1 and finds value function

V (x, T − 1) = max
u∈A

E
[
g(Xu

T )|Xu
T−1 = x

]
and optimal strategy

û(x, T − 1) = argmax
u∈A

E
[
g(Xu

T )|Xu
T−1 = x

]
for t = T − 1. In the next step one considers t = T − 2 for which

V (x, T − 2) = max
u∈A

E
[
V (Xu

T−1, T − 1)
∣∣Xu

T−2 = x
]

and

û(x, T − 2) = argmax
u∈A

E
[
V (Xu

T−1, T − 1)
∣∣Xu

T−2 = x
]
.

In the similar manner one iterates the process till t = 0. This iteration scheme is called

backward induction.

Now we would like to establish a link between continuous and discrete time stochastic

processes. Suppose one has Ito process

dXt = a(t,Xt)dt+ σ(t,Xt)dBt (2.73)

which is considered in a segment [0, T ]. Now taking uniform partition of [0, T ] with step

h we will introduce a discrete process

XN (tn) = XN (tn) + a(tn, XN (tn))h+ σ(tn, XN (tn))
√
hWn (2.74)

where tn = nh, n ∈ 0, 1, 2, . . . , N and Wi, ∀i ∈ 0, 1, 2, . . . , N are independent identically

distributed normal random values with mean zero and variance one, i.e. Wi ∼ N(0, 1).

Now the link between (2.74) and (2.73) is established by

Theorem 2.12. If a(t, x) and σ(t, x) are uniformly Lipschitz and continuous in R and

[0, T ], then the limit Xt = limh→0XN (t) exists (convergence in probability) and is the

solution of (2.73).
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Moreover

Theorem 2.13. Under the same conditions on a(t, x), σ(t, x) as in previous theorem and

assuming they are smooth the probability distribution function pN (XN (t), t|XN (0), 0) of

XN converges to distribution function p(Xt, t|X0, t) of Xt.

Proof and detailed discussion of these theorems can be found in [66, 67].

Now that we made all the preliminary discussions we can state the approach. The idea,

as one probably already guessed, is to turn the continuous stochastic control problem into

discrete time one by partitioning time segment. After that one can solve the new problem

by backward induction and take the partitioning step to zero. All these steps will be

legitimate if one will consider a class of admissible strategies and controlled stochastic

process for which all the conditions of the theorems 2.11, 2.12 and 2.13 hold. Although

this approach itself asks for a more detailed investigation we will refer reader to Appendix

E, where we solve a stochastic optimal control problem using this approach and obtain

similar results as from HJB equation, thus showing that it works at least for some problems.

Before we conclude we will stress that advantage of this approach is in straightforward

iterative backward induction optimization. The disadvantage is that one must capture the

structure of value function and optimal control for arbitrary step to find the final solution

after taking step size to zero.

2.2.3 Conditional optimal strategy

As it was mentioned before, HJB equation in general will be non-linear and one may face

difficulties in solving it. On the other hand one may have some insight how the strategy

should work and from what depends. If this is the case then one might want to consider

finding optimal policy not in the whole set of admissible strategies A, but only in subset

Ac ⊂ A which will be subject to ansatz placed on the optimal policy. The idea is in using

ansatz that gives possibility to explicitly find the objective functional under consideration

Jut (x), u ∈ Ac

Jut (x) = E

 T∫
t

l(s,Xu
s , us)ds+ g(Xu

T )

∣∣∣∣∣∣Xu
t = x

 (2.75)

u ∈ Ac

Choosing right ansatz not only gives a tractable problem to solve, but also gives possibility

in finding mean, volatility and all consequent moments of state process under optimal
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policy. The conditional value function and conditional optimal policy ûc ∈ Uc can be

found by varying the objective functional

δJ ût (x)

δu
= 0, u ∈ Ac (2.76)

V (x, t) = J ût (x) (2.77)

It is possible that one had chosen the ansatz so it contains optimal policy that would

satisfy HJB equation, i.e. û = ûc. This can be easily checked by substituting optimal

policy û and value function V (x, t) into (2.47), thus the found policy û would be optimal

among all admissible policies A. An example of this approach can be found in Appendix

D.

2.3 Summary

We introduce the theory of random processes to a necessary extent. Then we introduce the

theory of optimal stochastic control which will be used to find optimal arbitrage strategies.

The central object of investigation is the value function which must satisfy the Hamilton-

Jacobi-Bellman equation and defines the optimal control. We also give closely related with

conventional approach alternative ways of solving optimization problem. One of which is

to approach the problem in discrete time and then take the discretization time-step to zero

in order to return to continuous time. The other one is to set an ansatz on the optimal

strategy in a way that one can explicitly express the value function and then from the

first variational derivative one can find an equation on the optimal control. We give an

example of using both alternative approaches in appendices.
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3

Optimal Arbitrage Strategy

of One Agent

In this chapter we set the framework in which we are going to solve one agent problem of

finding optimal arbitrage strategy, but before that we define two notions: permanent and

temporary impact. Which will help us understand how a trader can influence the price of

an asset. Then we formulate the objective goal for an arbitrageur and solve the problem

for an agent with no constraints for two different types of arbitrage. After that we will

have a discussion of a constrained arbitrageur problem which was tackled by the author,

but with little success. We will continue to work in the same framework when we will

start building multi-agent model in the next chapter adding any necessary assumptions.

3.1 Permanent, temporary market impact and transaction costs

Market prices of financial instruments is a result of transactions that took place between

buyers and sellers, when the buyer and the seller agree on the price for a certain amount

the transaction takes place. The market for one particular asset consists of relatively small

with respect to volume and price increasing bits of sell offers and similarly price decreas-

ing buy offers. If one want to execute a large trade, either buy or sell, one would need to

buy/sell smaller chunks of asset with subsequently increasing/decreasing price, therefore
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the effective price of the executed trade will be different from the one observed before the

trade took place. On the other hand excess demand or supply that large trader will create

will be spotted by other market participants and the market will adjust their offer or ask

prices. These effects were empirically studied [5, 52, 42, 59] using data sets of actually

executed transactions and is referred as price impact. Researches usually distinguish two

components of the impact: permanent and temporary. Permanent price impact is the

resulting effect on the price after the big trade was executed and is mainly subject to

how market reacts on the excess demand or supply, how market participants adjust their

views on currents prices, if they spot that there is an excess demand they will increase

the selling price and in case of excess supply decrease the buying price. It was found

that the effect of permanent price impact can be described with power law function with

respect to the intensity of the position change, i.e. ∆St
St

= g
(

∆φt
∆t

)
= γ

∆φnt
∆tn , where ∆φt

is the position change and ∆St is the price change of the asset. The exponent n alters

from 0.25 to almost 1. This is due to different assets are considered in different works and

because of different approaches of investigation of price impact. One must note that this

is still a newly developed research field and some disagreements are naturally expected.

Temporary impact is mainly because of the fragmented structure of sell/buy offers, as was

earlier described, latency in execution and bid/ask spread. It affects the effective price

of buying/selling portion ∆φ of the asset. As in previous case its effect is modelled by

temporary impact function S̃t − St = h
(

∆φt
∆t

)
= η

∆φmt
∆tm , where S̃t denotes the effective

price for transaction size of ∆φt and empirical studies suggest exponent m around 1/2. As

the name implies this effect is temporary and will not influence observed price in the sub-

sequent moments of time, in contrast with permanent impact. In other words this effect

dissipates instantaneously. For this reason it is included in the portfolio as transaction

costs ∆φt(S̃t − St) = ∆φth
(

∆φt
∆t

)
and sometimes called implementation shortfall [57, 2].

The coefficients γ and η, which we have not yet discussed, define liquidity of the particular

asset. Although it is ill defined notion, one can say that asset is liquid if one can buy/sell

a large amount of assets in short time with little impact on the price. Hence, in terms of

the coefficients the smaller γ and η are the more liquid particular asset is. Since it is not

very clear from empirical data what functional dependence impact functions should have

different researchers used various impact functions in their studies.

One of the tasks that is being considered in the presence of permanent and tempo-

rary transaction costs is a large portfolio liquidation or adjustment in finite time. Alm-

gren and Chriss [3, 4] consider such a task in the presence of linear permanent mar-

ket impact g(φ̇t) = γφ̇t that accumulates with time and non linear temporary impact
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h(φ̇t) = ε sgn
(
φ̇t

)
+ ηφ̇t which vanishes quickly and only accumulates as quadratic trans-

action costs ε|φ̇t| + η
(
φ̇t

)2
. The parameters γ, η and ε are defined by the market and

represent, as was already mentioned, the liquidity of particular financial instrument. The

parameter ε can be interpreted as bid/ask spread. Schied and Schoneborn [65] work in

the similar framework, although they neglect the bid/ask spread, i.e. ε = 0, as well as

Bertsimas and Lo [10, 11]. The linear framework is very common, because it allows in

a simple way to introduce the effects of trading on the price and simplifies calculations,

although as studies show it does not always agree with empirical observations. The other

advantage of linear impact functions is that it is the only functional dependence that does

not allow round-trip arbitrage strategies as was shown by Gatheral [25] and Huberman

and Stanzl [29]. In the next article Almgren [6] solves the same problem with power law

temporary market impact, which, as he argues, according with latest research is more

realistic functional dependence. Forsyth [23] uses different non-linear temporary impact

function, but uses linear permanent impact function.

Price impact effects were considered in other applications beside the portfolio liquida-

tion. Li and Almgren [41] considered problem of an investor delta hedging a large option

position, where they used linear impact function for permanent and temporary effect.

Rogers and Singh [64] study same question but only with temporary impact. Avellaneda

and Lipkin [9] model an effect called stock pinning. Stock pinning occurs when the market

price of the underlier of an option contract at the time of the contract’s expiration is close

to the option’s strike price and there is huge option position on the underlying. Option

holders hedge their position creating a pressure on the underlying stock. For example if

it is a call option when the underlying is slightly above the strike they sell underlying

pushing its price downwards, but if it is slightly less the strike they buy pushing the price

up. This hedging forces the price of underlying to stick around the strike price of the op-

tion. Modelling of this pressure on the price was done by the permanent impact function.

Avellaneda and Lipkin [9] used a linear impact function as well as power law in their next

study of stock pinning [8].

Now the stock pinning case is of interest for us, because Avellaneda and Lipkin by

means of permanent impact model the influence of a large group of traders on the stock.

In our work we will assume presence of the impact, permanent as well as temporary. This

mechanism will help us to build multi-agent model and we will solve one agent problem in

presence of this effects. Through out this work we will use linear permanent and temporary

impact function, latter will result in quadratic transaction costs.
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3.2 Framework

Consider two different assets S1, S2 that for some reason should have identical price. In

real life situation one asset, suppose S1, can be a synthetic construct from other financial

instruments that replicates asset S2, but we are going to abstract to the level of two assets

without really worrying about details.

Assumption 3.2.1. There is a group of traders who we will refer as arbitrageurs that

forces prices to converge to one price and produces a mean-reversion term

d log
S1(t)

S2(t)
∝ −α log

S1(t)

S2(t)
dt, (3.1)

here α > 0 is a mean-reversion factor.

Although this looks a bit artificial as we will see that in combination with other as-

sumptions it will result in mean-reverting dynamic model of arbitrage that is widely used

in research as can be seen in the literature review in the introduction. In this chapter we

are considering an arbitrageur who is also engaged in making profit from price discrep-

ancies between S1 and S2. He takes long position in one asset and short position, i.e.

sells the one that is cheap, in the other in equal quantities φ, therefore his portfolio M

dynamics depends from price dynamics

dMt = φt(dS1(t)− dS2(t)) = φtdξt, (3.2)

ξt = S1(t)− S2(t)

We will refer to ξt as the arbitrage and we would like to define the dynamics of ξt. For

this purpose we need to formulate two more assumptions

Assumption 3.2.2. Arbitrage is very small, in other words we assume that market is

very efficient.

∣∣∣∣ ξS2

∣∣∣∣� 1

From latter we conclude that first assumption is equivalent to

d

(
ξt

S2(t)

)
∝ −α ξt

S2(t)
dt (3.3)

and taking another one
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Assumption 3.2.3. Arbitrage dynamics is fast compared to financial instrument dynam-

ics, so we can assume that sum

S1 + S2

2
= S0 := const

is constant. This feature is also attributed to market efficiency.

one concludes that mean-reverting term has a simple impact on arbitrage

dξt ∝ −αξtdt (3.4)

As was stressed in the introduction we assume that markets are quasi-efficient. In other

words the arbitrage does exist, but is relatively small and quickly eliminated by arbi-

trageurs. The last two assumptions contain this general idea. We will assume that

Assumption 3.2.4. Traders actions have permanent impact on the price of each asset,

but are opposite in sign since he is short one asset and long the other

dS1(t)

S1(t)
∝ µ1φ̇tdt

dS2(t)

S2(t)
∝ −µ2φ̇tdt, (3.5)

where 1� µ1, µ2 > 0 permanent impact factors which we will assume are small, since this

is impact of one arbitrageur.

A small trader can not affect the price of the asset, but because the arbitrage is small

and not long lived the arbitrageurs leverage their positions to make the trade attractable

and need to react quickly, as a result this impacts the arbitrage. As was already discussed

in previous section we will use linear permanent impact function to model this. Applying

market efficiency assumptions one can rewrite permanent impact on the arbitrage as

dξt ∝ S0(µ1 + µ2)φ̇t (3.6)

and without loss of generality we can make a substitute S0(µ1 + µ2) → µ. The impact

terms produces a mechanism that creates the overall term by all arbitrageurs (3.1) and the

next chapter will be dedicated to the overall term. Adding the permanent impact term to

the dynamics of arbitrage

dξt ∝ −αξtdt+ µφ̇tdt (3.7)
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gives us almost final differential equation. In order to finish derivation of equation for

arbitrage one must also add

Assumption 3.2.5. Other traders that create arbitrage opportunities will be modelled by

means of Brownian motion

dξt ∝ σdBt (3.8)

It is a conventional approach to model the asset dynamics using Brownian motion

resulting from many trades of all sorts of investors. The final result will be

dξt = −αξtdt+ µφ̇tdt+ σdBt (3.9)

and for an observer the arbitrage process will look exactly the same only without perma-

nent impact, i.e. µ = 0, since he is not participating in any trades.

Assumption 3.2.6. When the agent adjusts his position he is paying liquidity costs

dMt ∝ −
λ

2
φ̇2
tdt (3.10)

that is modelled by linear temporary impact function S̃t−St = λ
2

∆φt
∆t as was discussed

in previous section. This would result in a quadratic transaction costs with respect to

position change ∆φt

(
S̃t − St

)
= λ

2
∆φt
∆t ∆φt and in the limit ∆t→ 0 provides us with term

λ
2 φ̇

2
tdt, which we include with opposite sign as when we buy fraction of assets actual price

is greater and vice versa. Latter completes equation for PnL (Profit ans Loss) dynamics

dMt = dξtφt −
λ

2
φ̇2
tdt (3.11)

As one can see liquidity costs prevent anyone to infinitely quickly build up his position.

3.3 Problem statement

Each arbitrageur has investment horizon T and wants to maximize his expected Profit

and Loss (PnL) by choosing the appropriate strategy φ∗

φ∗ = arg max
φ

E [M(T )|M(t) = Mt, ξ(t) = ξt, φ(t) = φt] , (3.12)

here E [ | ] is a conditional expectation operator. We aim to find optimal strategy for two

different arbitrage types. First one would be with undetermined convergence time, i.e.
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there is no objective reason for the arbitrage to converge at some specified moment in

time. Second one with predetermined convergence date and we will assume that it will

coincide with agent’s investment horizon. Both will be modelled with derived process from

previous section. In other words arbitrage SDE

dξ(t) = −αξ(t)dt+ σdBt, (3.13)

but in one case the arbitrage will jump at moment T to zero, i.e. Pr(ξ(T ) = 0) = 1, and

in the other will not. Then we will divide the problem for two more cases. In one case the

arbitrageur has no constraints and indifferent to any draw-downs of his portfolio, in other

case when a certain draw-down is reached he is forced to liquidate his position. We will

refer to one as strategy without stop-loss and to the other as with stop-loss respectively.

This will result in two different value functions, which is our main interest in subsequent

sections. In the first case

V (Mt, ξt, φt, t) = max
φ

E [M(T ) + Ψ(ξ(T ), φ(T ), T )|Mt, ξt, φt, t] (3.14)

and in the case with stop-loss constraint

V (Mt, ξt, φt, t) = max
φ

E [M(τ̂) + Ψ(ξ(τ̂), φ(τ̂), τ̂)|Mt, ξt, φt, t] (3.15)

τ̂ = min{T, τ}

τ = inf {s > t : M(s) < L}

In the latter case the the value function is constructed using Markov moment of time τ

which represents the first moment when portfolio crosses a draw-down limit. Although it

is a random time moment, but it does not affect the HJB equation. As we will see there

will be only extra boundary conditions. Each value function has Ψ term which will be

used as an auxiliary function to introduce constraints or/and include some extra costs. Its

form and nature will be defined for each case.

3.4 Optimal strategy without stop-loss and undetermined conver-

gence date

In this section we are solving stated problem under no stop-loss condition, i.e. the port-

folio’s value can fluctuate to arbitrary extent. From problem setting we see that we have
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following system of equations
dξt = −αξtdt+ µφ̇tdt+ σdBt

dM = dξtφt − λ
2 φ̇

2
tdt

φ̇(t) = u(t)

(3.16)

Here we are introducing new function u(t) which will be our policy, therefore our task

will be to find first derivative of the position size φ in order to maximize expected PnL.

Readjusting a position is a costly operation, therefore at the end of the investment horizon

one needs to be sure that all positions are closed in order to correctly calculate PnL. For

this reason we are adding an auxiliary term to the terminal condition. A penalising term

Ψ(ξT , φT , T ) = − θφ2T
2 , which in limiting case θ → +∞ makes sure that position size at

terminal date will be zero, i.e. φT = 0. The limit should be taken after the solution is

found for some finite and positive θ > 0. From what had been just discussed we see that

values is

V (Mt, ξt, φt, t) = max
u∈U

J(Mt, ξt, φt, t;ut) = max
u∈U

E
[
M(T )− θφ2(T )

2

∣∣∣∣Mt, ξt, φt, t

]
(3.17)

We will consider Mt, ξt and φt as state variables. The HJB equation for the value function

in our particular case will be

max
u∈U

[
∂tV + u∂φV + (−αξ + µu)∂ξV + (−αξφ+ µφu)∂MV −

λ

2
u2∂MV

+
σ2

2

{
∂2
ξξV + 2φ∂2

ξMV + φ2∂2
MMV

}]
= 0 (3.18)

V (MT , ξT , φT , T ) = MT −
θφ2

T

2

Then optimal policy is

ût =
1

λ∂MV
[µφ∂MV + µ∂ξV + ∂φV ] (3.19)

therefore we have following non-linear PDE on the value function

∂tV − αξ∂ξV − αξφ∂MV +
σ2

2

{
∂2
ξξV + 2φ∂2

ξMV + φ2∂2
MMV

}
+

1

2λ∂MV
[µφ∂MV + µ∂ξV + ∂φV ]2 = 0 (3.20)

V (MT , ξT , φT , T ) = MT −
θφ2

T

2
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One can solve this problem immediately considering infinitely growing trading costs,

i.e. λ → +∞. Solution in this limiting case is u = 0, in other words, you do not change

the position at all and hope for the best, because any move with finite speed will end

up with infinite loses. Keeping that in mind we will assume analytic dependence of the

optimal strategy u and value function V with respect to 1
λ , i.e. u = 1

λu1 + 1
λ2
u2 + . . .

and V = V0 + 1
λV1 + 1

λ2
V2 + . . . . Substituting latter expansions and matching the terms

with equal powers one gets a chain of equations, first one is linear and homogeneous.

The subsequent ones are linear, but inhomogeneous and depend from previous solutions.

Formally this will be



LV0 = 0

V0|t=T = MT −
θφ2T

2

LV1 = F1(V0)

V1|t=T = 0

LV2 = F2(V0, V1)

V2|t=T = 0

LV3 = F3(V0, V1, V2)

V3|t=T = 0

. . . ,

(3.21)

where L = ∂t − αξ∂ξ − αξφ∂M + σ2

2

{
∂ξξ + 2φ∂2

ξM + ∂2
MM

}
and Fi(. . . ) is some inhomo-

geneous part that depends from previous solutions and is different in each case.

We would like to find few first terms and if we are lucky to capture the structure of

all terms. The first one

∂tV0 − αξ∂ξV0 − αξφ∂MV0 +
σ2

2

{
∂ξξV0 + 2φ∂2

ξMV0 + φ2∂2
MMV0

}
= 0 (3.22)

V0(MT , ξT , φT , T ) = MT −
θφ2

T

2

is solved using Green’s function that is defined by the parabolic operator L

G(Mt′ , ξt′ , φt′ , t
′;Mt, ξt, φt, t)

=
δ [Mt′ − φt(ξt′ − ξt)−Mt] δ [φt′ − φt]√

σ2/α(1− e−2α(t′−t))
exp

[
− (ξt′ − ξte−α(t′−t))2

σ2/α(1− e−2α(t′−t))

]
(3.23)
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by integrating terminal conditions with Green’s function

V0(Mt, ξt, φt, t) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

dMTdξTdφT

{
MT −

θφ2
T

2

}
G(MT , ξT , φT , T ;Mt, ξt, φt, t)

= Mt − φtξt(1− e−α(T−t))− θφ2
t

2
(3.24)

As we take time to its terminal value, i.e. t→ T , we see that terminal condition is satisfied.

Now PDE for the subsequent term can be found explicitly

∂tV1 − αξ∂ξV1 − αξφ∂MV1 +
σ2

2

{
∂ξξV1 + 2φ∂2

ξMV1 + φ2∂2
MMV1

}
= −1

2

[
(µφ+ ξ)e−α(T−t) − ξ − θφ

]2
(3.25)

V1(MT , ξT , φT , T ) = 0

and solution is found as a convolution with Green’s function of linear operator L

V1(Mt, ξt, φt, t)

=

T∫
t

ds

∞∫
−∞

∞∫
−∞

∞∫
−∞

dξsdMsdφs
1

2

[
(µφs + ξs)e

−α(T−s) − ξs − θφs
]2
G(Ms, ξs, φs, s;Mt, ξt, φt, t)

(3.26)

One can continue these steps and will notice that each term starting from V1 have the

following structure

Vi(Mt, ξt, φt, t) = ξ2
t ai(t) + ξtφtbi(t) + φ2

t ci(t) + σ2di(t) (3.27)

Since we assumed that solution is analytic with respect to 1
λ it means that for some values

of λ series

a(t) =
∞∑
i=0

ai(t)

λi
(3.28)

must converge and the same goes for all the rest coefficients, i.e. b(t), c(t), d(t). Hence,

solution of the value function can be expressed with ansatz

V (Mt, ξt, φt, t) = Mt +
1

2
ξ2
t a(t) + ξtφtb(t) +

1

2
φ2
t c(t) + σ2d(t) (3.29)
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At this point we can choose one of the two ways to establish analytic expressions for the

time dependent coefficients, i.e. a(t), b(t), c(t), d(t). First one is to try to find general

expression for arbitrary ith term, i.e. for ai(t), bi(t), ci(t), di(t), and then sum them

up. This can be quite time consuming and one needs some luck if the result is a special

function in order to find it’s series representation in a handbook, for example like [61, 60].

The other way is to substitute latter anzats into PDE for value function. In this case one

arrives to a system of Riccati equations

ȧ(t)− 2αa(t) + 1
λ [µa(t) + b(t)]2 = 0

ḃ(t)− αb(t) + 1
λ [µ+ µb(t) + c(t)][µa(t) + b(t)]− α = 0

ċ(t) + 1
λ [µ+ µb(t) + c(t)]2 = 0

ḋ(t) + 1
2a(t) = 0

(3.30)



a(T ) = 0

b(T ) = 0

c(T ) = −θ

d(T ) = 0

One can easily check that it does satisfy the PDE with stated terminal conditions. In one

particular case µ = 0 solution can be found explicitly very easily.

3.4.1 No impact case, µ = 0

As one can see the system of equations (3.30) is becoming less entangled when we assume

that impact is so weak that it can be neglected µ = 0

ȧ0(t)− 2αa0(t) + 1
λb

2
0(t) = 0

ḃ0(t)− αb0(t) + 1
λc0(t)b0(t)− α = 0

ċ0(t) + 1
λc

2
0(t) = 0

ḋ0(t) + 1
2a0(t) = 0

(3.31)



a0(T ) = 0

b0(T ) = 0

c0(T ) = −θ

d0(T ) = 0

51



Chapter 3 OPTIMAL ARBITRAGE STRATEGY OF ONE AGENT

One starts with c0(t) function and then subsequently solves all the rest. Since we are only

interested with solution that appears as a limiting case when θ → ∞ we will only write

down solution for this limiting case

c0(t) = − λ

T − t

b0(t) =
1− e−α(T−t) − α(T − t)

α(T − t)

a0(t) =

[
1− e−α(T−t)] [e−α(T−t)(α(T − t) + 2) + α(T − t)− 2

]
−2α2(T − t)λ

d0(t) =
−1− 4γε + e−2α(T−t) + 2α(T − t) + 8Ei(−α(T − t))− 4Ei(−2α(T − t)) + 4 log

(
2

α(T−t)

)
8α2λ

As it was already mentioned, that makes sure that at the end of the investment pe-

riod our position is fully closed. The solution contains exponential integral function

Ei(x) = −
∞∫
−x

e−t

t dt and Euler–Mascheroni constant γε, which equals the derivative of

gamma function at point 1 with opposite sign, i.e. γε = −Γ′(1). Since we found all the

time functions from the anzats we can write down the optimal strategy using the relation

(3.19)

û(ξt, φt, t) =
∂φV

λ∂MV
=
ξt
λ
b(t) +

φt
λ
c(t)

=
ξt
λ

1− e−α(T−t) − α(T − t)
α(T − t)

− φt
1

T − t
(3.32)

and expected PnL that is generated by it

V (Mt, ξt, φt, t) = Mt +
1

2
ξ2
t a0(t) + ξtφtb0(t) +

1

2
φ2
t c0(t) + σ2d0(t) (3.33)

In order to understand what contributes the most into expected PnL when you start the

trade and when you are approaching your investment horizon we will consider two different

cases and will write the leading terms of time-dependent coefficient we just found, i.e. a0(t),

b0(t), c0(t) and d0(t). The first case would be α(T − t)� 1, it represents situation when

your investment horizon is very large compared with mean-reversion coefficient α and you

are far from the end of your investment horizon

V (Mt, ξt, φt, t) ≈
1

4αλ
ξ2
t − ξtφt −

λ

2(T − t)
φ2
t + σ2α(T − t)

4α2λ
+Mt, α(T − t)� 1 (3.34)

Each summand represents contribution from different factors to the expected PnL. The

first summand 1
4αλξ

2
t tells us how much we will gain if we start trading when the current
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arbitrage value is different from zero. It is positive and it is always more favourable to

start with the biggest arbitrage possible. The second summand −ξtφt defines how much

money will be made from the current open position and current value of arbitrage. It is

positive if position is of opposite sign with the arbitrage, which is in full agreement with

the model. When the arbitrage is positive it means that it is to expensive and you sell,

i.e. taking negative position, betting that it will return to zero and vice versa. Next goes

the term that gives us idea how much it will cost to close current position neglecting all

the other factors, it is always negative − λ
2(T−t)φ

2
t . The last term to discuss is the one that

contributes the most σ2 α(T−t)
4α2λ

, which represents the fact that money is made from the

deviation of arbitrage from zero. The bigger the deviation on average is σ2 and the longer

you trade α(T − t) the more profitable it is.

The second case is when the arbitrageur nearly reached the investment horizon α(T −

t)� 1. All the terms preserve the meaning that was described earlier, but now the largest

contribution in case of an open position φt 6= 0 comes from closing costs − λ
2(T−t)φ

2
t

V (Mt, ξt, φt, t) ≈

α3(T − t)3

24αλ
ξ2
t −

α(T − t)
2

ξtφt −
λ

2(T − t)
φ2
t + σ2α

4(T − t)4

96α2λ
+Mt, α(T − t)� 1 (3.35)

and it is negative. In other words the closer you are getting to the end of the trade the

more you will be concerned with the fact that you need your position to be fully closed.

This goes in full agreement with optimal trading strategy (3.32) that we can analyse in

the same way

û(ξt, φt, t) ≈


− ξt
λ −

φt
T−t , α(T − t)� 1

−α(T−t)ξt
2λ − φt

T−t , α(T − t)� 1

(3.36)

Here we see two competing terms. First one tells how fast one needs to build the position

of the opposite sign with respect to arbitrage ξt the other guarantees that the position

will be closed at t = T .

3.4.2 When impact can not be neglected, µ > 0

As was mentioned the system of equations (3.30), that was derived by substituting ansatz

(3.29) into HJB equation (3.18), is entangled and can not be tackled in a simple way if

µ > 0. One may use the theory of Riccati equations which is set forth in appendix A in a

minimum necessary amount, but in this case one needs to rewrite the ansats in a matrix
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form

V (Mt, ξt, φt, t) =

Mt +
1

2

ξt
φt

T a(t) b(t)

b(t) c(t)

ξt
φt

+ σ2d(t) = Mt +
1

2
xTΩtx + σ2d(t) (3.37)

Then after substitution latter to (3.18) and introducing constant matrix coefficients

Q =

 0 −α

−α µ2

λ

 , A =

−α 0

µ2

λ
µ
λ

 , R =

µ2

λ
µ
λ

µ
λ

1
λ

 (3.38)

we will get a system of equations which is given in a matrix form


Ω̇t + Q + AΩt + ΩtA

T + ΩtRΩt = Θ

ḋ(t) + 1
2a(t) = 0

(3.39)


ΩT =

0 0

0 −θ


d(T ) = 0

and is exactly the same as (3.30), but now it is expressed as a Ricatti problem. The only

part that is not included in this form is d(t), but it is in a simple relation with a(t). In

order to tackle this quadratic differential equation one needs to find a particular solution

to an inhomogeneous equation. Since all the coefficients are constant one can try to find

a constant solution, i.e. solve an algebraic Ricatti equation

Q + AX + XAT + XRX = Θ (3.40)

and it will also satisfy the differential Ricatti equation as well. This can be done using

theorem A.1 from appendix A and one finds many solutions one of which is

X =

 − 1
µ −1

1 + αλ
µ 0

 (3.41)

Any solution will reduce the inhomogeneous Ricatti differential equation Ω̇t + Q + AΩt +

ΩtA
T + ΩtRΩt = Θ to homogeneous which can be solved by two quadratures (A.14).
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Therefore one can use particular solution (3.41) and explicit expression (A.14) to find

a(τ) =
2− 2 cosh (τ) + τ sinh (τ)

αλ
[
−2µ1 + (2µ1 +

√
1 + 2µ1τ) cosh (τ) + (2µ1

√
1 + 2µ1 + (1 + µ1)τ) sinh (τ)

]
b(τ) = − 1 + (

√
1 + 2µ1τ − 1) cosh (τ) + (τ(1 + µ1)−

√
1 + 2µ1) sinh (τ)

−2µ1 + (2µ1 +
√

1 + 2µ1τ) cosh (τ) + (2µ1
√

1 + 2µ1 + (1 + µ1)τ) sinh (τ)

c(τ) = −
αλ(1 + µ1)3/2

(√
1 + 2µ1 cosh (τ) + (1 + µ1) sinh (τ)

)
−2µ1 + (2µ1 +

√
1 + 2µ1τ) cosh (τ) + (2µ1

√
1 + 2µ1 + (1 + µ1)τ) sinh (τ)

where µ1 = µ
αλ and τ = T−t

α
√

1+2µ1
.

Now we can present the optimal strategy for this case

φ̇t = ξt
µa(τ) + b(τ)

λ
+ φt(µ+ µb(τ) + c(τ)) (3.42)

which can be rewritten to clarify the structure

φ̇t = ξtK(T − t)− φt
T − t

− φtL(T − t), t ∈ [0, T ] (3.43)

K(T − t) < 0

L(T − t) > 0

In this representation it has similar structure as in case when µ = 0 and has an extra term

L that is small when µ << 1. We will use the strategy in latter representation in the next

chapter which is dedicated to multi-agent models.

3.5 Optimal strategy without stop-loss and with predetermined

convergence date

We can solve the same problem assuming that the arbitrage convergence date is known

in advance and investment horizon coincides with it. In this case one can generalize the

model of arbitrage process and make a mean-reversion coefficient time-dependent
dξt = −αtξtdt+ µφ̇tdt+ σdBt

dMt = dξtφt − λ
2 φ̇

2(t)dt

φ̇(t) = u(t)

(3.44)

Hence the HJB equation needs to be changed, but the main difference lie in the termi-

nal conditions. Now we expect that arbitrage converges and arbitrageur trades till this

moment, hence there is no need to take care of closing the position. Since the arbitrage
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undergoes a jump at T there will be extra PnL (0 − ξT )φT = −ξTφT . We redefine Ψ

function, which we introduced in the problem statement section, to include extra PnL

Ψ(ξT , φT , T ) = −ξTφT . Therefore the value function is

V (Mt, ξt, φt, t) = max
u∈U

J(Mt, ξt, φt, t;ut) = max
u∈U

E [MT − ξTφT |Mt, ξt, φt, t] (3.45)

The HJB equation this value function must satisfy is

max
u∈U

[
∂tV + u∂φV + (−αtξ + µu)∂ξV + (−α(t)ξφ+ µφu)∂MV −

λ

2
u2∂MV

+
σ2

2

{
∂2
ξξV + 2φ∂2

ξMV + φ2∂2
MMV

}]
= 0 (3.46)

V (MT , ξT , φT , T ) = MT − ξTφT

It is very similar to the equation considered previously (3.18) except the terminal condition,

therefore the optimal strategy is exactly the same from value function point of view

ût =
1

λ∂MV
[µφ∂MV + µ∂ξV + ∂φV ] (3.47)

Substituting optimal policy into (3.46) one gets a non-linear PDE

∂tV − αtξ∂ξV − αtξφ∂MV +
σ2

2

{
∂2
ξξV + 2φ∂2

ξMV + φ2∂2
MMV

}
+

1

2λ∂MV
[µφ∂MV + µ∂ξV + ∂φV ]2 = 0 (3.48)

V (MT , ξT , φT , T ) = MT − ξTφT

which we are going to approach in the similar manner as we handled 3.18. We will seek

solution in the form V =
∑∞

i=0
1
λi
Vi, although previously it gave us a clue about the

structure of the solution and this led us to propose an ansatz, in this case, as we will see,

this would lead us directly to solution. We will assume that self-impact is negligibly small

and will be neglected, i.e. µ = 0. As previously substituting V =
∑∞

i=0
1
λi
Vi one finds a

chain of equations on Vi. V0 must satisfy

∂tV − αtξ∂ξV − αtξφ∂MV +
σ2

2

{
∂2
ξξV + 2φ∂2

ξMV + φ2∂2
MMV

}
= 0 (3.49)

V0(MT , ξT , φT , T ) = MT − ξTφT
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Which can be solved using following Green’s function

G(Mt′ , ξt′ , φt′ , t
′;Mt, ξt, φt, t)

=
δ [Mt′ − φt(ξt′ − ξt)−Mt] δ [φt′ − φt]√√√√

2πσ2
t′∫
t

dτe
−2

t′∫
τ

dτ ′α(τ ′)

exp


−

ξt′ − ξte− t′∫
t

dτατ

2

2σ2
t′∫
t

dτe
−2

t′∫
τ

dτ ′ατ ′


(3.50)

Hence,

V0(Mt, ξt, φt, t) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

(MT − ξTφT ) dMTdξTdφTG(MT , ξT , φT , T ;Mt, ξt, φt, t)

= Mt − φtξt (3.51)

The equation for term V1

∂tV1 − αtξ∂ξV1 − αtξφ∂MV1 +
σ2

2

{
∂2
ξξV1 + 2φ∂2

ξMV1 + φ2∂2
MMV1

}
+

1

2λ∂MV
[∂φV0]2 = 0

(3.52)

V (MT , ξT , φT , T ) = 0

Using the same Green’s function one can solve latter equation

V1(Mt, ξt, φt, t) =

T∫
t

ds

∞∫
−∞

∞∫
−∞

∞∫
−∞

dξsdMsdφs
1

2
ξ2
sG(Ms, ξs, φs, s;Mt, ξt, φt, t)

=
ξ2
t

2

T∫
t

dse
−2

s∫
t

dτα(τ)
+
σ2

2

T∫
t

ds

s∫
t

dτe
−2

s∫
τ

dτ ′α(τ ′)
(3.53)

As one can check it is the last term in the expansion V =
∑∞

i=0
1
λi
Vi and we present the

solution

V (Mt, ξt, φt, t) = V0(Mt, ξt, φt, t) +
1

λ
V1(Mt, ξt, φt, t)

= Mt − φtξt +
ξ2
t

2λ

T∫
t

dse
−2

s∫
t

dτα(τ)
+
σ2

2λ

T∫
t

ds

s∫
t

dτe
−2

s∫
τ

dτ ′α(τ ′)
(3.54)
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Which immediately gives us the optimal strategy (3.47)

φ̇t = −ξt
λ

(3.55)

What is interesting in this strategy that it only depends on the transaction costs λ, but

no dependence on mean-reversion factor αt which we assumed is time-dependent and to

a certain extent arbitrary. The reason for that lies in the following. First of all the

arbitrage converges at T , hence one must use every opportunity to invest in arbitrage

when it is out from equilibrium and do not need to worry about closing his positions in

contrast with arbitrage with undetermined convergence date. The only balance one needs

to seek is between profit from arbitrage and transaction costs. The analysis of the portfolio

dynamics for this particular case will be presented in the next chapter.

3.6 Optimal strategy with stop-loss constraint

We took care of optimal strategies when it is allowed for the arbitrageurs portfolio to

fluctuate to an arbitrary extent. Now we are going to assume that there is a threshold

for the portfolio after which the position must be closed, i.e. stop-loss constraint. One

must distinguish between two type of stop-loss rules possible. First one is absolute, when

the portfolio value drops to a certain extent, which is fixed, the arbitrageur is forced to

liquidate his position. Second one is relative, in this case threshold value for the portfolio

depends on the maximum the portfolio have achieved. Arbitrageurs liquidates his portfolio

after facing a draw down of certain size with respect to maximum. We will only discuss

absolute stop-loss case, because in the relative stop-loss case one must model maximum

which is difficult, although it is less realistic. Relative stop-loss is a much more realistic

set up and will be used in the chapter dedicated to multi-agent models.

The framework in which we are working tells us that there are transaction costs each

time we adjust our position. Forced position liquidation of size φ may result in substantial

transaction costs and will depend on the position size φ and characteristic time ∆c in

which position must be closed. In previous sections we found that optimal way of closing

a position in our framework can be expressed with following differential equation

φ̇(t) = − φ(t)

∆c − t
, t ∈ [0,∆c] (3.56)
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which leads to

−λφ
2

2∆c
= −λ

2

∆c∫
0

dtφ̇2(t) (3.57)

transaction costs inverse proportional with respect to time ∆c and quadratic in position

size φ. If one is forced to liquidate the position in short time the transaction costs will be

of substantial size and should not be ignored. Hence, if we hit the stop-loss limit we will

add to the portfolio extra term − λφ2

2∆c
, which must be part of Ψ function.

Keeping this in mind we would like to introduce two Ψ functions. One that will be used

for two different type of arbitrage that were already discussed. If one considers arbitrage

with predetermined convergence time Ψ function is

Ψ1(ξτ , φτ , τ) =


− λφ2

2∆c
, τ ∈ [0, T −∆c)

−ξτ
(
φτ − φτ

∆c
(T − τ)

)
− λφ2τ

∆2
c

(T − τ), τ ∈ [T −∆c, T ]

(3.58)

If the portfolio drops to L when τ ∈ [0, T −∆c) then one must liquidate his portfolio and

this results in transaction costs − λφ2

2∆c
. If this happens very close to convergence moment

τ ∈ [T − ∆c, T ] then one will not be able to liquidate his position completely prior to

convergence of arbitrage, therefore the liquidation transaction costs are −λφ2τ
∆2
c

(T − τ) and

−ξτ
(
φτ − φτ

∆c
(T − τ)

)
term is because arbitrage converges at T .

In case of arbitrage with undetermined convergence the Ψ function is different as we need to

make sure that position is closed when t = T . As in previous case the arbitrageur liquidates

his position if his portfolio drops to a certain level which result in extra transaction costs

− λφ2

2∆c
and we need to add a penalising term − θφ2τ

2 to make sure that position is closed

when investment horizon is reached

Ψ2(ξτ , φτ , τ) =


− λφ2

2∆c
, τ ∈ [0, T −∆)

− λφ2

2∆c

T−τ
∆ − θφ2τ

2
τ−(T−∆)

∆ , τ ∈ [T −∆, T ]

(3.59)

One must make clear that time segment ∆ has nothing to do with characteristic time ∆c

which represents time selected to close the position. The ∆ defines when penalising term

kicks, therefore after finding solution to the problem with Ψ2 function one must take limit

θ →∞ and ∆→ 0. This set up is very similar to the case without stop-loss considered in

the previous chapters.
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Now that we defined the Ψi, i = 1, 2 functions we can define the optimization problem

Vi(Mt, ξt, φt, t) = max
u∈U

J(Mt, ξt, φt, t;ut)

= max
u∈U

E [M(τ̂) + Ψi(Mτ̂ , ξτ̂ , φτ̂ , τ̂)|Mt, ξt, φt, t] , i = 1, 2 (3.60)

τ̂ = min{T, τ}

τ = inf {s > t : M(s) < L}

HJB equation for this optimization problem is very similar with (3.18) except for the extra

boundary condition

max
u∈U

[
∂tVi + u∂φVi + (−αξ + µu)∂ξVi + (−αξφ+ µφu)∂MVi −

λ

2
u2∂MVi

+
σ2

2

{
∂2
ξξVi + 2φ∂2

ξMVi + ∂2
MMVi

}]
= 0 (3.61)

Vi(L, ξt, φt, t) = L+ Ψi(ξt, φt, t), t ∈ [0, T ], ∀ξt, φt i = 1, 2

We stressed that equation looks very similar to what we already considered, therefore

one can try to find the solution in a similar way, assuming that solution is analytic with

respect to 1
λ and substituting expansion V =

∑∞
k=0

1
λk
Vk. Which will obviously lead to a

chain of equations, but in order to find each term Vk one would need a Green’s function for

the Ornstein-Uhlenbeck process with absorbing constant boundary. Although, one may

argue, that assumption that solution is analytic is very optimistic, one still may hope that

first few terms can have a good behaviour and will approximate actual solution to a certain

extent quite well. Therefore one would get a solution for the case when transaction costs

are big λ � 1. The other possibility is that attempting to find solution perturbativelly

may reveal the possible structure of the solution and give an idea for a good ansatz.

In other words this approach may be fruitful, but one need to find Green’s function for

Ornstein-Uhlenbeck process in order to use this approach. One more possibility to use

fundamental solution is to consider optimal arbitrage strategy in discrete time. Hence

one will change the initial framework and use optimal stochastic control theory in discrete

time which was discussed in the previous chapter, and, as we demonstrated, it is possible

to return to continuous time in the limit. One can say that Green’s function is a central

object to find optimal strategy. In the next section we discuss different approaches author

made to find the fundamental solution.
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3.6.1 Green’s function for Ornstein-Uhlenbeck process with fixed absorbing

boundary

This subsection is dedicated to different approaches applied and considered by the author

to find Green’s function for a Ornstein-Uhlenbeck process with fixed absorbing boundary

∂tG(x, t, x′) = ∂x
(
xG(x, t, x′)

)
+

1

2
∂2
x,xG(x, t, x′) (3.62)

G(a, t, x′) = G(x, t, a) = 0, ∀t

G(x, 0, x′) = δ(x− x′) (3.63)

Author had considered different approaches to find exact or approximate solution. We

will list and discuss these approaches and their difficulties.

Stitch of a short term and long term asymptote solutions Main idea of this

approach is in finding short term and long term asymptote solutions and then trying to

stitch them together. This would give an approximate solution which should deviate from

exact solution to a small extent and then it can be applied to various task, in particular

case to solve the stochastic control problem. This can be successfully done if region where

they deviate from exact solution to a small extent overlaps and this is where the main

difficulty is.

The long term solution can be found using eigenfunction expansion

G(x, t, x′) =

∞∑
m=0

e−λmte−x
2Hλm(x)Hλm(x′)Hλm(−a)Γ(−λm)

2λmH
(1)
λm

(a)
√
π

(3.64)

H
(1)
−s (x) = ∂sH−s(x)

where λm are found from the condition Hλ(a) = 0 and Hλ(x) is a Hermite function [36].

All the technical details of derivation can be found in Appendix B. The leading term

when t → ∞ is the one with smallest λm which depends on the boundary a and can be

approximated with

λ̄0(z) =
e−z

2

√
π

a0 + a1z − z2

b0 + z
(3.65)
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The coefficients a0, a1 and b0 can be found in Appendix B. Hence the long term asymptote

is

G(x, t, x′) = e−λ0(a)te−x
2Hλ0(a)(x)Hλ0(a)(x

′)Hλ0(a)(−a)Γ(−λ0(a))

2λ0(a)H
(1)
λ0(a)(a)

√
π

+O(e−λ1t), t� 1

(3.66)

Obviously this asymptote can not be improved as it is an exact solution. Region where it

has small deviation from exact solution varies with boundary a and x′.

The short term asymptote was approached using perturbation technique with respect

to boundary a, because an exact solution when a = 0 is known. Author found an approx-

imation

G(x, t, x′) =
exp

[
− (x−x′e−t+a(1−e−t))2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

−
exp

[
− (x+x′e−t+aJ−(x,x′,t))2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

(3.67)

For all details, please, see appendix B.

Although both these solution asymptotically behave correctly their regions of small

deviation from exact solution do not overlap. Hence, these approach was not successful.

Lie group The author of MSc thesis [37] approached problem in question using Lie

groups. In his work he explicitly shows that Green’s function invariant under the group

transformation can be found for a time dependent absorbing boundary a(t) = Y0e
t +

Y1e
−t, Y0, Y1 ∈ R. In our particular case we are interested in constant boundary. The

equation does not imply Lie group that will not change the constant boundary, hence can

not give us a solution for the problem in question.

Method of images for diffusion equation Initial problem can be transformed via

space-time change of variables to a simple diffusion parabolic differential equation with

time-dependent absorbing boundary

∂τ G̃(y, τ, y′)− 1

2
∂2
yyG̃(y, τ, y′) = 0 (3.68)

G̃(y, τ, y′)|τ=τ ′ = δ(y − y′)

G̃(ξ(τ), τ, y′) = 0

ξ(τ) = a

√
µ

σ2

√
2τ + 1
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All details can be found in Appendix C. If one can solve the transformed case, then

after reversing space-time change of variables one would get solution of initial problem.

In monograph [39] Lerche showed that solution of a simple diffusion parabolic differential

equation with time-dependent absorbing boundary can be expressed

G̃(y, τ, 0) =
1√
2πt

exp

(
−y

2

2t

)
− 1

c

∞∫
0

1√
2πt

exp

(
−(y − θ)2

2t

)
F (dθ) (3.69)

where c > 0 and F is a σ-finite measure with
∞∫
0

exp
(
− εθ

2

2

)
√

2π
F (dθ), ∀ε > 0. The measure F

is picked to satisfy boundary conditions, i.e. G̃(ξ(τ), τ, 0) = 0 and is unique for a specific

boundary curve. This construction is called general method of images. Given a specific

time-dependent boundary one can question what measure F does represent this boundary.

In order to answer this question one must solve Fredholm equation of the first type

∞∫
0

exp

(
θξ(τ)

τ
− θ2

2τ

)
F (dθ) = c (3.70)

Green’s function with absorbing boundary and first passage time distribution

As Siegert [70] shows there is an integral relation between a Green’s function of a time

homogeneous diffusion equation with constant absorbing boundary a and the first passage

time density of the same diffusion

Ga(x, t, x
′) = G(x, t, x′)−

t∫
0

ds G(x, t− s, a)p(x′, s|a) (3.71)

where Ga(x, t, x
′), G(x, t, x′) is the Green’s function with and without absorbing boundary,

respectively, and p(x′, s|a) is the first passage time density function. This relation can be

established from Laplace transform of original equation. Hence, now the question is how

to find the first passage time density function. In our particular case, i.e. Ornstein-

Uhlenbeck process, the exact expression is known as eigenfunction expansion [44], but this

will bring us to the same result that was already established (3.64). Therefore one can turn

to different approximation methods for first passage time density [28, 16, 17, 1, 54, 53],

although different approaches are effective in some cases, but we have not found one that

could give a decent approximation for our particular needs.
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3.7 Summary

In this chapter we set the framework in which we derive optimal arbitrage strategy using

theory of optimal stochastic control. In the framework we define price impact functions

to model arbitrageurs influence on the arbitrage and liquidity costs. The permanent price

impact effect will be important in the next chapter. We consider two different types

of arbitrage one with undetermined convergence date for which the optimal strategy is

φ̇t = ξtK(T − t) − φt
T−t − φtL(T − t) and one with predetermined convergence date for

which strategy that was found is φ̇t = − 1
λξt. Latter strategy is found under more general

arbitrage process where mean-reversion factor αt is time dependent. Then we discuss the

problem of finding optimal strategy under the possibility of hitting stop-loss. We describe

how one can fit latter effect into HJB equation and discuss possible ways of solving HJB

equation on the value function. The central object for solving latter optimal control

problem is the fundamental solution of Ornstein-Uhlenbeck PDE with constant absorbing

boundary, i.e. Green’s function. We give an overview of the ways author have tried to

find the fundamental solution.
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4 Multi-Agent model

The previous chapter gave us two different strategies for two different types of arbitrage.

One that has predetermined convergence date and the other without. This strategies were

derived under certain assumptions on the arbitrage and we always used the same equation

for the arbitrage process. One of the main principles that we will use constructing multi-

agent models is as following: Agents create the same law of arbitrage dynamics as the

one that was used in derivation of their strategy. We will refer to this principle as self-

consistency. The first section of this chapter is about construction of self-consistent models

for different types of arbitrage with strategies that were previously found. We assume in

this section that all arbitrageurs have unlimited access to the capital and any mark-to-

market losses make no difference. In the second section we introduce capital constraints.

We assume that after suffering substantial portfolio draw down arbitrageur is forced to

liquidate his position. This creates an opportunity for instabilities, namely, if a certain

group of arbitrageurs is forced to liquidate their position, for some reason, they can push

arbitrage further away from zero which may result that more and more arbitrageurs face a

substantial draw down of their portfolios and will liquidate their position, as a consequence

this may lead to an avalanche effect and to a large arbitrage deviation from its equilibrium.
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4.1 Multi-Agent Model without capital constraints

Before building any models one should list all the principles that will be used. This list

should not contradict with the framework presented in the previous chapter in which the

optimal strategies were found, because otherwise we will fail to meet the self-consistency

principle.

Principle 4.1.1. Each arbitrageur impacts the arbitrage when he changes his position size

ξ̇t ∝ φ̇t (4.1)

This functional dependence was derived assuming linear price impact function in the

previous chapter.

Principle 4.1.2. Each arbitrageur trades using one of the optimal strategies found in the

previous chapter

φ̇t = − 1

λ
ξt (4.2)

or

φ̇t = K(T + t0 − t)ξt −
φt

T + t0 − t
− L(T + t0 − t)φt, t ∈ [t0, t0 + T ] (4.3)

where t0 is the moment when arbitrageur begins to trade and T + t0 when he terminates.

As one can see the first strategy does not include any investment horizon as a parameter

or a starting point, but from the way the strategy was derived we know that arbitrage

converges at known moment in time and we will assume that all arbitrageurs participate

until the convergence. The second strategy has all the listed properties but works with

arbitrage that does not have defined convergence date, therefore each arbitrageur needs to

decide for himself when he starts to invest and when he terminates. All the arbitrageurs

have the same liquidity costs as they participate in the same arbitrage trade, therefore λ

has the same value for everyone. Another aspect of the latter principle is that it creates

the superportfolio. Not only large amount of traders participate in the arbitrage, but they

all follow the same strategy as it is the only one optimal for everyone in the presented

framework. It is, as was mentioned in the introduction, one of the necessary components

for possibility of instabilities.

Principle 4.1.3. The mean-revering term is created by all arbitrageurs. In case of the
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first strategy

−αtξt = µtφ̇t (4.4)

and the second one

−αξt =
∑

i∈{k:t∈[t0,k,t0,k+Tk]}
µiφ̇i(t|Ti, t0,i) (4.5)

We denote with µi the amount of arbitrageurs multiplied by the impact factor µ with

certain Tk investment horizon length and t0,k starting point. As one can see the sum only

includes those who are still trading, i.e. t ∈ [t0,k, t0,k + Tk].

Principle 4.1.4. Each arbitrageur has no capital constraints and any draw-down of his

portfolio has no effect on his trade

In this section we are aiming only to demonstrate how the mean-reverting dynamics

arise from arbitrageur actions and the effects of capital constraints will be considered later.

4.1.1 Model with strategy φ̇t = − 1
λ
ξt

Equipped with this principles we can move to define a self-consistent multi-agent model.

We will start with arbitrage we defined convergence date and strategy φ̇t = − 1
λξt. This

strategy was derived with under assumption that arbitrage dynamics is

dξt = −αtξtdt+ σdBt (4.6)

where the mean-reversion factor αt can be time-varying or constant. Since according

with first principle each arbitrageur linearly impacts the arbitrage one can say that mean-

reverting term is generated by the amount of arbitrageurs Ξt multiplied by the impact

factor µ

−αtξt = −ξt
λ
µΞt (4.7)

where Ξt in general can vary with time and this still be self-consistent. The reasons why

Ξt can vary with time can be different. For example, if we assume that arbitrage was just

spotted by a large group and they decide to participate in arbitrage opportunity than Ξt

will increase. On the other hand it may be that part of those who are already involved

decide to stop, then Ξt must decrease. Whatever the reason we will still be self-consistent.
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This case was straightforward and simple, but the second strategy will require a greater

deal of discussion.

4.1.2 Model with strategy φ̇t = K(T + t0 − t)ξt − φt
T+t0−t − L(T + t0 − t)φt

When we derived the second strategy we assumed that arbitrage follows SDE

dξt = −αξtdt+ σdBt (4.8)

where the mean-reversion factor is constant. Therefore one needs to look for a model that

will give a constant factor. As it was already stated in one of the principle one can write

the mean-reverting term for this type of strategy as following

−αξt =
∑

i∈{k:t∈[t0,k,t0,k+Tk]}
µiφ̇i(t|Ti, t0,i), (4.9)

but the strategy depends not only on the arbitrage ξt, but also from current position φt

φ̇t = K(T + t0 − t)ξt −
φt

T + t0 − t
− L(T + t0 − t)φt, t ∈ [t0, t0 + T ]. (4.10)

One can resolve this by solving this equation which will lead to an arbitrage path dependent

term

φ̇t = K(T + t0 − t)ξt

−[1 + (T + t0 − t)L(T + t0 − t)]
t∫

t0

dτξτ
K(T + t0 − τ)

T + t0 − τ
exp


τ∫
t

dτ ′L(T + t0 − τ ′)


(4.11)
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Now the strategy depends only on the arbitrage and one can write a closed expression

dξt = µ

∞∫
0

dT

t∫
t−T

dt0Pt(T, t0)φ̇(t|T, t0) + σdBt

= µξt

∞∫
0

dT

t∫
t−T

dt0Pt(T, t0)K(T + t0 − t)

−µ
∞∫

0

dT

t∫
t−T

dt0Pt(T, t0)[1 + (T + t0 − t)L(T + t0 − t)]

×
t∫

t0

dτξτ
K(T + t0 − τ)

T + t0 − τ
exp


τ∫
t

dτ ′L(T + t0 − τ ′)

+ σdBt (4.12)

In order to progress further we will assume that distribution Pt(T, t0) is uniform with

respect to t0 and delta type with respect to investment horizon T , i.e. all investors

have same investment horizon T. Surprisingly this simple set-up lead to a model where

arbitrageurs leave no impact on the arbitrage

Statement 4.1. If every agent trades with strategy

φ̇t = K(T + t0 − t)ξt −
φt

T + t0 − t
− L(T + t0 − t)φt, t ∈ [t0, t0 + T ] (4.13)

K(x) < 0

L(x) > 0

and they all are distributed uniformly on the time line with fixed investment horizon, i.e.

Pt(T
′, t0) = δ(T ′−T )

T , then overall impact on the arbitrage equals zero.

Proof. Consider a time segment [t′, t] which is significantly greater than T , i.e. t− t′ � T

Integrating lhs and rhs of (4.12) with Pt(T
′, t0) = δ(T ′−T )

T one would get

ξt = ξt′ +

t∫
t′

dkξk

T∫
0

K(t0)
dt0
T

+

t∫
t′

dBk

−
t∫

t′+T

dk

k∫
k−T

dτξτ

τ∫
k−T

dt0
T

K(T + t0 − τ)

T + t0 − τ
[1 + (T + t0 − k)L(T + t0 − k)]

× exp


τ∫
k

dτ ′L(T + t0 − τ ′)

+

t′+T∫
t′

dkR(k)ξk (4.14)

where we used a simple relation that
t∫

t−T

dt0
T K(T + t0 − t) =

T∫
0

dt0
T K(t0). The last term
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t′+T∫
t′

dkR(k)ξk arises as an initial condition and will impact the arbitrage only in the

beginning, i.e. t ∈ [t′, t′ + T ]. Therefore we are treating it as an unimportant term and

ignore it. After changing order of integration one would get

ξt = ξt′ +

t∫
t′

dkξk

T∫
0

K(t0)
dt0
T

+

t∫
t′

dBk

−
t∫

t′

dτξτ

τ∫
τ−T

dt0
T

K(T + t0 − τ)

T + t0 − τ

t0+T∫
τ

dk[1 + (T + t0 − k)L(T + t0 − k)]

× exp


τ∫
k

dτ ′L(T + t0 − τ ′)

+

t′+T∫
t′

dkR(k)ξk (4.15)

and if one substitute

t0+T∫
τ

dk [1 + (T + t0 − k)L(T + t0 − k)] exp

 τ∫
k

dτ ′L(T + t0 − τ ′)


=

t0+T∫
τ

dk exp

 τ∫
k

dτ ′L(T + t0 − τ ′)

− t0+T∫
τ

(T + t0 − τ)dk

exp

 τ∫
k

dτ ′L(T + t0 − τ ′)


= T + t0 − τ (4.16)

into (4.15)

ξt = ξt′ +

t∫
t′

dkξk

T∫
0

K(t0)
dt0
T
−

t∫
t′

dτξτ

τ∫
τ−T

dt0
T
K(T + t0 − τ) +

t∫
t′

dBk +

t′+T∫
t′

dkR(k)ξk

(4.17)

Here the first two integrals with opposite sign will disappear as they are equal and we

finally get

ξt = ξt′ +

t∫
t′

dBk +

t′+T∫
t′

dkR(k)ξk (4.18)

As one can see the impact of the arbitrageurs is only due to term
t′+T∫
t′

dkR(k)ξk, because

this term acts on the arbitrage dynamics only in the beginning it can not be responsible for

the mean reverting term. As a result this simple set up can not create the mean-reversion

one desires.
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As we have just showed uniformly distributed agents can not be responsible for the

mean reverting term −αξt. Now even if one would add more arbitrageurs with range of

investment horizons this result still hold true. In general it does not mean that arbitrageurs

engaged in the arbitrage using strategy φ̇t = K(T + t0 − t)ξt − φt
T+t0−t − L(T + t0 − t)φt

can not impact the arbitrage that will lead to the desired dynamics. It means that more

research and more advanced set up are needed to investigate this question. This can be

subject of future research.

In the next section we will build a model with capital constraints that will be specified.

We will focus only on the arbitrageurs with strategy φ̇t = − ξt
λ assuming that arbitrage

converges in the future with probability one. We will extend the model introducing capital

constraints for the arbitrageurs.

4.2 Multi-Agent model with capital constrained arbitrageurs

Now that we discussed multi-agent models with arbitrageurs that have unlimited access

to the capital we will attempt to introduce capital constraints to our model and discover

what kind of effects this can bring to the dynamics of arbitrage. As before we will list key

principles that will be used building the model

Principle 4.2.1. Each arbitrageur impacts the arbitrage when he changes his position size

ξ̇t ∝ φ̇t (4.19)

Principle 4.2.2. Each arbitrageur trades using optimal strategy found in the previous

chapter

φ̇t = − 1

λ
ξt (4.20)

and if he needs to liquidate his portfolio he will do that in the following way

φ̇(t) = −φt
γ

(4.21)

where γ characteristic time to close the position.

Although the optimal strategy to liquidate position found in the previous chapter is

different, i.e. φ̇t = −φt′
Tc

, which has constant speed of liquidation we will deviate from

this strategy for simplicity and clarity. This way of liquidating the position has similar

property as the real optimal one, namely it has characteristic time when the position can
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be considered close. Although the optimal one has a precise time Tc, one can assume

γ = 3Tc.

Principle 4.2.3. Performance of arbitrageurs portfolio is marked-to-market.

This means that all the profits and losses are evaluated using current market prices of

the arbitrage portfolio assets.

Principle 4.2.4. Risk profile is determined by the maximumly allowed draw-down with

respect to current maximum value of the portfolio, which we will denote as Mmax
t .

If an arbitrageurs portfolio value drops to a certain critical amount with respect to the

current maximum, i.e. Mt −Mmax
t = L, he will start liquidating his position. In other

words trader hits stop-loss. In order to incorporate this principle into our model we will

need to think how we can calculate the draw-down. In general, if one knows the current

maximum Mmax
t and the value of portfolio Mt one can deduct what the future values of

these will be and they will depend on the whole path of the arbitrage ξt trajectory, given

any particular strategy. Path-dependence would complicate the problem to a large extent,

hence it is desirable to overcome this using some sort of approximation. Therefore one

would need to construct a proxy for a maximum draw-down.

4.2.1 Draw down proxy

We found that the draw down can be well approximated by the product of current position

size with arbitrage φtξt. We will show that this is indeed a good proxy using following

Statement 4.2. Dynamics of the portfolio Mt under the trading strategy φ̇t = − 1
λξt and

arbitrage dynamics dξt = −αξtdt+ σdBt consists from two parts:

Mt = M0 + φtξt +

t∫
0

ξ2
τ

2λ
dτ (4.22)

product of position size with arbitrage which has following statistical properties:

E [φtξt] ∼


−σ2t2

2λ , αt� 1

− σ2

2α2λ
, αt� 1

Var(φtξt) ∼


7σ4t4

12λ2
, αt� 1

tσ4

2α3λ2
− σ4

2α4λ2
, αt� 1

(4.23)
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and non-decreasing part that has:

E

 t∫
0

ξ2
τ

2λ
dτ

 ∼

σ2t2

4λ , αt� 1

σ2t
4αλ −

σ2

8α2λ
, αt� 1

Var

 t∫
0

ξ2
τ

2λ
dτ

 ∼


σ4t4

12λ2
, αt� 1

tσ4

8α3λ2
− 5σ4

32α4λ2
, αt� 1

(4.24)

The correlation of portfolio Mt with φtξt is very close to one

Corr(ξtφt,Mt) ∼


3
√

21
14 , αt� 1√

4
5 , αt� 1

(4.25)

Proof. After substituting trading strategy φ̇t = − 1
λξt it is easy to see that

dMt = dξtφt −
1

2λ
ξ2
t dt

= d(ξtφt)− dφtξt −
1

2λ
ξ2
t dt

= d(ξtφt) +
1

2λ
ξ2
t dt. (4.26)

Hence assuming ξ0 = 0 and φ0 = 0

Mt = M0 + ξtφt +

t∫
0

ξ2
τ

2λ
dτ (4.27)

If one solves arbitrage SDE and substitutes the solution ξ(t) =
t∫

0

e−α(t−τ)dBτ , ξ0 = 0 into

latter expression for the portfolio and after some manipulations one finds that portfolio

dynamics can be expressed as a quadratic form with respect to Brownian motion

Mt = M0 +

t∫
0

t∫
0

dBτ
{
K(t, τ, τ ′) + L(t, τ, τ ′)

}
dBτ ′ , (4.28)

K(t, τ, τ ′) =
σ2

αλ

[
e−α(t−τ)−α(t−τ ′) − e−α(t−τ) + e−α(t−τ ′)

2

]
(4.29)

L(t, τ, τ ′) =
σ2

4αλ

[
e−α|τ−τ

′| − e−α(t−τ)−α(t−τ ′)
]

(4.30)

where the first part K(t, τ, τ ′) comes from ξtφt and the second L(t, τ, τ ′) is because of

non-decreasing integral term
∫ ξ2τ

2λdτ .

In order to find mean, variance and correlation of and between different parts of the
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portfolio one can use Wick’s theorem [72, 33], which in our particular case states that

E [dBτ1dBτ2dBτ3dBτ4 ]

= E [dBτ1dBτ2 ]E [dBτ3dBτ4 ] + E [dBτ1dBτ3 ]E [dBτ2dBτ4 ] + E [dBτ1dBτ4 ]E [dBτ2dBτ3 ]

(4.31)

which in combination with Brownian motion property E [dBτdBτ ′ ] = dτdτ ′δ(τ − τ ′) gives

us

E [dBτ1dBτ2dBτ3dBτ4 ]

= dτ1dτ2dτ3dτ4 [δ(τ1 − τ2)δ(τ3 − τ4) + δ(τ1 − τ3)δ(τ2 − τ4) + δ(τ1 − τ4)δ(τ2 − τ3)] (4.32)

Hence, mean of a quadratic form is

E [Gt] =

t∫
0

t∫
0

E [dBτdBτ ′ ]G(t, τ, τ ′) =

t∫
0

dτ {G(t, τ, τ)} , (4.33)

variance

Var(Gt) =

t∫
0

t∫
0

t∫
0

t∫
0

E [dBτ1dBτ2dBτ3dBτ4 ]G(t, τ1, τ2)G(t, τ3, τ4)− (E [Gt])
2

= 2

t∫
0

t∫
0

dτdτ ′G2(t, τ, τ ′) (4.34)

and correlation

Corr(Gt, Ht) =
E [GtHt]− E [Gt]E [Ht]√

Var(Gt)
√

Var(Ht)

=

t∫
0

t∫
0

dτdτ ′G(t, τ, τ ′)H(t, τ, τ ′)√
t∫

0

t∫
0

dτdτ ′G2(t, τ, τ ′)

√
t∫

0

t∫
0

dτdτ ′H2(t, τ, τ ′)

(4.35)

From latter one can rapidly find statistical properties of the portfolio and its parts.

We listed only leading terms for short and long times as this gives a better understand-

ing and is more suitable for our further discussions. One can easily find precise expression

if needed.

From the statistical properties listed in the latter statement we can see that main

trend comes from non-decreasing integral part
∫ ξ2τ

2λdτ as its mean is a linearly increasing
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Figure 4.1: The upper left figure: Dynamics of the portfolio Mt of one arbitrageur who
follows strategy φ̇t = − ξt

λ . The upper right figure: Dynamics of non-decreasing integral
part of the portfolio. The bottom left figure: Dynamics of the global maximum of the
portfolio. The bottom right figure: Blue plot is the real draw down of the portfolio and the
red plot is the product of arbitrage with position size. Monte Carlo simulations performed
with following parameters and initial conditions: α = 1, σ = 0.01, λ = 1, M0 = 0, ξ0 = 0
and φ0 = 0.

function, in contrast to the product position size with arbitrage φtξt which has a constant

mean. At the same time if one compares variation of both terms

Var(φtξt)

Var

(
t∫

0

ξ2τ
2λdτ

) ∼


7, αt� 1

4, αt� 1

(4.36)

it is obvious that variation of φtξt is substantially greater compared with non-decreasing

integral part. This explains high level of correlation of portfolio with product of position

size with arbitrage. Hence, one can use term φtξt as a good proxy for a draw-down. When

portfolio is substantially decreasing the same with high probability will be true for the

φtξt. We can clarify this using the results of Monte Carlo simulations. On the Figure 4.1

one can clearly see the high level of correlation between actual draw down and proxy we

suggest, i.e. product of position size with arbitrage. At the same time it is obvious that

most of the variation comes from the latter term. Here we conclude the discussion of the

draw down and how it can be approximated and move towards using this proxy to build

the model.
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4.2.2 Model with draw down proxy φtξt

We introduce two groups of arbitrageurs: 1) first group are those who are still in the

game, they trade with optimal strategy and will be described by density function Pt(φ);

2) second group are those who are closing their positions and are described with density

function Qt(φ). Now the first group creates the mean-reverting term

ξ̇t ∝ −
ξtµ

λ

∞∫
−∞

dφPt(φ) = −αtξt (4.37)

and the second group creates a term

ξ̇t ∝ −
µ

γ

∞∫
−∞

φQt(φ)dφ = βt (4.38)

that in principle can be of any sign, but in certain circumstances it will push arbitrage

further away, i.e. will be the same sign as the arbitrage. Now we need to define the

dynamics of these densities. The equation for the arbitrageurs who are still trading consists

of two parts. The first part is the dynamics of each portfolio, because the arbitrageurs

follow the same strategy they change the portfolio synchronously

∂tPt(φ) ∝ ∂φ
(
ξt
λ
Pt(φ)

)
(4.39)

Now to take into account the effect of closing the position when a certain draw down is

reached one needs to add following term

∂tPt(φ) ∝ −νΘ (L− ξtφt)Pt(φ) (4.40)

which creates a density leak every time the arbitrageur hits the draw down limit L. The

Θ(x) function is Heaviside step function and ν is the intensity of the leak which must be

big so that the leak is relatively fast process comparing with all the rest dynamics. Density

leaks to Qt(φ)

∂tQt(φ) ∝ νΘ (L− ξtφt)Pt(φ) (4.41)

increasing the amount of arbitrageurs who are currently closing the position

∂tQt(φ) ∝ ∂φ
(
φ

γ
Qt(φ)

)
(4.42)
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Combining all the terms together one arrives at a system of equations
dξt = (−αt + βt)ξtdt+ σdBt

∂tPt(φ) = −νΘ (L− ξtφt)Pt(φ) + ∂φ

(
ξt
λ Pt(φ)

)
∂tQt(φ) = νΘ (L− ξtφt)Pt(φ) + ∂φ

(
φ
γQt(φ)

) (4.43)

αt =
µ

λ

∞∫
−∞

dφPt(φ); βt = −µ
γ

∞∫
−∞

φQt(φ)dφ

Let us discuss qualitatively the model dynamics with greater detail. Figure 4.2 shows

the dynamics of the density Pt(φ). Because all arbitrageurs who are still involved in the

arbitrage use the same strategy the density will move as a whole according with φ̇t = − ξt
λ .

This does not affect the αt strength of the mean-reverting term, because as one can see

αt represents the total measure multiplied by permanent impact factor µ and transaction

costs factor 1
λ . When part of the group faces a draw down that is greater than certain

threshold φtξt < L then this part of the density Pt(φ) leaks to the density Qt(φ) which as

we already mentioned is the group of arbitrageurs who are closing their positions. From

the point of view αt mean reversion factor it decreases, but the βt changes. Without

loss of generality we can assume that for a certain moment in time t arbitrage is positive

ξt > 0 in this case the threshold will be negative φb = L
ξt

, because the maximum allowed

draw down is a negative value L < 0. All the arbitrageurs who have position less than a

threshold φt < φb must close their position. In the model terms this part of the density

Pt(φ) : φ < φb leaks to Qt(φ) and changes its mean. If one assumes that in the beginning

the mean of density Qt(φ) was zero, then after the leak it will become negative. The same

will be true for the βt term only with opposite sing, as one can see βt is the mean of Qt(φ)

multiplied by minus the permanent impact factor divided by characteristic time of closing

the position −µ
γ . The positive βt pushes the arbitrage further from zero and the mean

reverting factor αt decreases which results in a less effective way of arbitrage elimination.

The dynamics of βt has one more components which push it towards zero, this is because

the agents are closing their positions φ̇t = −φt
γ .

Hence, the draw down constraints creates a term that has an opposite effect from mean

reverting term and can push the arbitrage further away from zero, which is created by

the arbitrageurs subject to draw down constraints. One should question what are the

conditions that will lead to a widening of arbitrage. The model we introduced is hard for

such an analysis and one can try further simplifications. For this purpose we introduce a

special case of the latter model.
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Figure 4.2: Schematic dynamics of the density Pt(φ) of arbitrageurs who are still involved
in the arbitrage. The black dots represent threshold position size below or above which
(depending on the sign of threshold) the density starts to leak which is defined using proxy
for the draw down φb = L

ξt
and is defined by current value of arbitrage ξt and maximum

draw down L

4.2.3 Special case

We will neglect the stochastic part σ = 0 and focus on the dynamics of deterministic part

of the model. If one is interested in extreme dynamics when the density Pt(φ) rapidly

leaks to Qt(φ) and the arbitrage ξt is pushed further away from zero the noise term, if

it is small, will not contribute much in general. The trigger for such a rapid dynamics

can be a large arbitrage fluctuation due to some large fund decide to unwind his positions

in arbitrage or other external shock in the market. In general it is not important, what

is important is the conditions under which this dynamics will start. We will assume the

process started and derive the equations it must follow. This is our special case and we

will discuss it below.

In terms of the model that was presented in previous subsection it means that the

total measure
∞∫
−∞

∂tPt(φ)dφ ≤ 0 continuously decreases and the total measure of those

who are closing their position increases
∞∫
−∞

∂tQt(φ)dφ ≥ 0. In order to simplify the matter

even further we will assume that density Pt(φ) is uniform with respect to position size

with height h. Figure 4.3 accompanies our discussion. One can define threshold value of

position size for the current level of arbitrage from the condition φtξt < L, obviously it is

φb = L
ξt

. Now as arbitrage changes the same becomes true for the threshold

δφb = − L
ξ2
t

δξt = − L
ξ2
t

(−αtξt + βt)dt (4.44)
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Figure 4.3: Blue uniform distribution represents density of agents with respect to position
size. Black line is a position size threshold φb. Dashed line is the shift of the distribu-
tion according with trading strategy. Dashed-dotted line is the shift of the position size
threshold φb due to dynamics of arbitrage.

Those who are still trading change their position size according with strategy that is the

same for everyone, which in our case shifts the whole density

δφs = −ξt
λ

dt (4.45)

These two values define the amount of arbitrageurs that will leak from group one to group

two. If we assume that leaking is instantaneous we can write an equation for αt

α̇t = −hµ
λ

[
ξt
λ
− L

ξ2
t

(−αtξt + βt)

]
Θ(αt) sgn (ξt), (4.46)

where Θ(x) is a Heaviside step function and sgn (ξt) takes into account different cases, i.e.

one when ξ̇t ≥ 0 & ξt > 0 and the other ξ̇t ≤ 0 & ξt < 0. The same can be done for the

βt term, but it is a bit trickier. Since we assumed the leaking is instantaneous in terms of

density function Qt(φ) this leads an equation with a delta function

∂tQt(φ) = h

[
ξt
λ
− L

ξ2
t

(−αtξt + βt)

]
Θ(αt) sgn (ξt)δ

(
φ− L

ξt

)
+ ∂φ

(
φ

γ
Qt(φ)

)
(4.47)

Because we are mainly interested in the βt itself, and from the definition of βt it means

we are interested only in the mean of the density Qt(φ), one must multiply both rhs and
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lhs by −µφ
γ and integrate by the φ which will give us equation for βt

β̇t = −hµL
γξt

[
ξt
λ
− L

ξ2
t

(−αtξt + βt)

]
Θ(αt) sgn (ξt)−

βt
γ

(4.48)

As a result the model boils down to a system of ordinary differential equations
ξ̇t = −αtξt + βt

α̇t = −hµ
λ

[
ξt
λ −

L
ξ2t

(−αtξt + βt)
]

Θ(αt) sgn (ξt)

β̇t = −hµL
γξt

[
ξt
λ −

L
ξ2t

(−αtξt + βt)
]

Θ(αt) sgn (ξt)− βt
γ

(4.49)

Figure 4.4 shows a numerical solution of this system of ODEs where one can see one of

the scenarios. We must stress that this special case was derived assuming that ξ̇t ≥ 0, ∀t

if ξ0 > 0 or ξ̇t ≤ 0, ∀t if ξ0 < 0, therefore solutions that satisfy this condition will be

consistent with derivation and correct. The next natural step would be to ask what

range of initial conditions and parameters gives a consistent solution and how intensive

arbitrage deviation from zero will be for different cases, as the consequence one will answer

the question of necessary conditions to trigger the rapid dynamics, i.e. instability. It is a

subject of future research.
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4.3 Summary

In this chapter we considered construction of multi-agent models using two different strate-

gies found in the previous chapter. We showed that without stop-loss constraint strategy

φ̇t = − 1
λ creates the same mean-reverting arbitrage dynamics under which it was derived.

Hence the multi-agent model is self-consistent in the presented framework. On the con-

trary, the other strategy φ̇t = K(T + t0− t)ξt− φt
T+t0−t −L(T + t0− t)φt under the uniform

distribution of agents on the time line does not create mean-reverting behaviour of arbi-

trage. Further we built a model with stop-loss constraint using only strategy φ̇t = − 1
λ

and consider a special case which leads to instabilities when arbitrageurs one-by-one hit

stop-loss and start unwinding their positions as the result the arbitrage substantially devi-

ates from its equilibrium value. This dynamics is self-enforcing as larger the deviation the

more arbitrageurs hit the stop-loss threshold. In a special case we neglect the stochastic

term assuming it is small. In order to incorporate the stop-loss constraint we show that

φtξt can be used as a proxy to evaluate the draw down, therefore we get rid of any path-

dependence. Unstable dynamics model has two extra degrees of freedom. First one is the

mean-reverting factor αt which in our case is proportional to the total mass of arbitrageurs

who still participate in the trade and the second one βt which is proportional to the mean

of position size of those who unwind their positions. We do not give a complete analysis

of the model for unstable dynamics, although demonstrate that there are numerical solu-

tions that have unstable dynamics and which are consistent with assumptions under which

the special case was derived. Addressing the question of consistent with model derivation

initial conditions and parameters one will find necessary conditions for instability to occur.
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The conventional framework in which the problem of one agent is solved usually involves

modelling the risk preferences of the agent by utility function which is clear from the liter-

ature review. Apart from that the framework in which we were finding optimal arbitrage

strategy is similar. We substitute the utility function with possibility of hitting stop-loss

which as we think is a more appropriate way of modelling the risk preferences of an agent,

because it is consistent with market practises and must also bound the portfolio volatility,

especially from the below. Although as we see under stop-loss constraint the problem is a

lot challenging, as from the mathematical point of view one needs to solve HJB equation

with boundary. We found the optimal strategy without the stop-loss constraint, as it

should represent the limiting case when the stop-loss threshold becomes arbitrarily big,

i.e. the probability of hitting stop-loss goes to zero. Thus one can say that we found part

of the solution.

An important part of the our framework is the market impact functions. The tempo-

rary impact function introduces liquidity costs and prevents one from arbitrarily fast

position change. Which is clear from the strategies we found φ̇t = − 1
λξt and φ̇t =

K(T − t)ξt − φt
T−t − L(T − t)φt, where the function K(T − t) is inverse proportional
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to λ. The λ factor defines the liquidity costs and enters both strategies in a similar way

φ̇t ∝ − 1
λξt. The smaller λ is the faster you adjust your position and vice versa. Without

the liquidity costs the strategy will be in infinitely fast position change which is clearly

unrealistic. The long term dynamics of expected PnL is defined by the term σ2(T−t)
4αλ in

case of both strategies. As one can see it is proportional to the variation of arbitrage

σ2

α and inverse proportional to the liquidity costs λ, hence the more volatile arbitrage

is the more attractive for trading it should be. Although since this solution does not

include stop-loss constraint one can say that this conclusion is true only if the portfolio

mark-to-market value is far away from stop-loss threshold. We would expect that near

the stop-loss arbitrage volatility would be unfavourable as it will increase the probability

of hitting stop-loss.

The permanent impact is mostly important for the multi-agent modelling. By means

of permanent impact function we model the arbitrageurs influence on the arbitrage which

as we showed results in mean-reverting dynamics. In case of arbitrage with the prede-

termined convergence date where the optimal strategy is φ̇t = − 1
λξt the self-consistent

multi-agent model is fairly easy to construct. As we demonstrated, all the agents create a

mean-reverting term −αtξt which has exactly the same structure as one that enters SDE

for the arbitrage under which the optimal strategy was found. Hence, we have a self-

consistent multi-agent model. On the contrary, the other case is not that straightforward.

The strategy φ̇t = K(T − t)ξt− φt
T−t −L(T − t)φt has three parts. One that is responsible

for profiting from arbitrage trading K(T − t)ξt and the one − φt
T−t that guarantees full

position unwinding at maturity φT = 0. The third part −L(T − t)φt takes into account

the presence of the permanent impact. The reason why this strategy in multi-agent model

does not create mean-reverting term is not very clear. Maybe one should consider a more

complicated framework as we only considered an uniform distribution of agents on the

time-line with equal investment horizons. Although one must stress that integral impact

on the arbitrage of one agent in case of this strategy and with linear permanent impact

ξ̇t ∝ φ̇t equals zero, because
T∫
0

dξt ∝
T∫
0

φ̇tdt = φT − φ0 = 0 − 0 = 0. The mean-reverting

term is local by nature and is a result of trading activity of agents started trading in dif-

ferent moments in time. Whether or not integral impact property is somehow connected

with local is not very obvious. In any case, this issue requires further study and can be

subject of future research.

Previously discussed multi-agent models where built without stop-loss constraint. We

introduced stop-loss constraint to the multi-agent model with strategy φ̇t = − 1
λ using φtξt

as a proxy for relative draw down avoiding any path dependence. We demonstrate that
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the product of position size with arbitrage φtξt is a good proxy, as it mainly contributes

to the portfolio variation and has a constant mean. The proxy naturally dictates that one

needs to introduce two densities. One density Pt(φ) represents the distribution of agents

who are still involved in the trade with respect to the position size and the other Qt(φ)

represents those agents who already reached stop-loss and are unwinding their position.

Into arbitrage equation enter only factors αt and betat, but not the distributions them-

selves. The factor αt is proportional to the total mass of all agent in trade
∫
Pt(φ)dφ and

the factor βt is proportional to the mean of the distribution Qt(φ), i.e
∫
Qt(φ)φdφ. The

transition from one group to the other is modelled by continuous measure leakage where

we introduced parameter ν which should be chosen in a way that leaking dynamics is fast

compared with all the other processes, because we assume that after hitting stop-loss agent

must immediately start liquidating the position. As we are interested in unstable dynam-

ics we consider a special case introducing extra assumptions to get a more tractable from

analysis point of view model. We assume that market instability was already triggered by

some external event and derive a system of equations the arbitrage must be subject to.

Although we do not give an extensive analysis of the special case model we demonstrate

that there are numerical solutions which are consistent with assumptions under which

special case model was derived. The consistent with model derivation initial conditions

will give us necessary conditions for unstable dynamics to occur and it requires further

study in the future. Now we would like to point the main drawback of the model. We

introduced stop-loss constraints, but the strategy that is used by the arbitrageurs was

found under the assumption that there are no constraints or portfolio never approaches

stop-loss threshold. In other words the model is not really self-consistent. We think that

one should expect, that rational arbitrageur in case of approaching stop-loss threshold

would at least stop increasing the position as it will definitely increase his exposure to

adverse movement. The other optimal strategy feature that we assume is possible is de-

creasing the position near the stop-loss. Hence, finding the right strategy, i.e. with the

stop-loss constraint, is important, because it can change the multi-agent model dynamics

significantly and change the initial conditions for unstable dynamics to occur.
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A Ricatti equations

This appendix is dedicated to matrix differential equations with constant coefficients and

square matrices. We will present mainly facts without proofs, all the proofs and more

detailed discussion can be found in monograph [21]. Starting from linear equations we

will move towards matrix equations with quadratic terms, i.e. Riccati equations.

A.1 Homogeneous linear matrix equation

In general form one can present linear matrix as following

Ẋ = AX + XB, (A.1)

as was mentioned earlier here we are only concerned with quadratic matrices with constant

coefficients, i.e. A,B ∈Mn×n. Now if we consider only part that contains matrix A, i.e.

Ẏ = AY the solution can be immediately found

Y(t) = eAtY(0) (A.2)
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which is easily checked. Since by definition eAt =
∑∞

k=0
(At)k

k! one can consider a leading

term in the difference Y(t)−Y(0)
t with respect to λ∗t� 1

Y(t)−Y(0)

t
=

Y(0)− tAY(0)−Y(0)

t
+O(t), (A.3)

where λ∗ is the maximum absolute value among all absolute values of eigenvalues of matrix

A. This means that Ẏ(0) = AY(0). Keeping that in mind and taking into account that

eFeG = eF+G F,G ∈Mn×n we complete the check.

Now if consider the equation with term that contains B we can apply the same logic

in order to solve

Ż = ZB (A.4)

and one would arrive with following solution Z(t) = Z(0)eBt. Combining these two solu-

tions we can solve initial problem by

X(t) = eAtX(0)eBt (A.5)

A.2 Inhomogeneous linear matrix equation

Inhomogeneous case is tackled by variation of parameters, i.e. substituting X(t) =

eAtC(t)eBt into

Ẋ = AX + XB + F(t) (A.6)

one finds out that

eAtĊ(t)eBt = F(t) (A.7)

which leads us to the final solution

X(t) = eA(t−t0)X(t0)eB(t−t0) +

t∫
t0

dτeA(t−τ)F(τ)eB(t−τ) (A.8)

A.3 Homogeneous quadratic matrix equation

Homogeneous quadratic equation can be transformed into inhomogeneous linear equation,

which we already know how to solve, by multiplying both sides of equation by inverse
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solution

X−1 × | XRX + BX + XA + Ẋ = Θ | ×X−1, (A.9)

where Θ is a null matrix. Combining this step with the fact that ẊX−1 = −X ˙X−1 one

gets

R + AX−1 + X−1B = ˙X−1 (A.10)

Thus problem is converted to the previous one and using previous results we find that

solution is

X(t) =

eA(t−t0)X−1(t0)eB(t−t0) +

t∫
t0

dτeA(t−τ)ReB(t−τ)

−1

(A.11)

A.4 Inhomogeneous quadratic matrix equation

Inhomogeneous equation can be transformed into homogeneous if one knows a particular

solution X1. One should substitute a sum X = Y + X1 into inhomogeneous equation

XRX + BX + XA + Q + Ẋ = Θ (A.12)

and one would get an equation on Y

YRY + (X1R + B)Y + Y(A + RX1) + Ẏ = Θ (A.13)

which is still quadratic, but does not contain Q. Hence, the problem boils down to finding

particular solution and homogeneous quadratic equation, solution for which was found in

the previous section. We will dedicate next section to finding particular solution, but right

now we can write down general solution using previous results, assuming that for some

reason we know the particular one X1

X(t)

=

e(A+RX1)(t−t0) [X(t0)−X1]−1 e(X1R+B)(t−t0) +

t∫
t0

dτe(A+RX1)(t−τ)Re(X1R+B)(t−τ)

−1

+ X1

(A.14)
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A.5 Algebraic quadratic matrix equation

Finding particular solution for the problem that was considered in the latter section is a

problem of finding root of an algebraic quadratic matrix equation, since we are dealing

only with square matrices with constant coefficients, i.e.

XRX + BX + XA + Q = Θ, (A.15)

where A,B,R,Q,Θ ∈Mn×n. For this purpose we will formulate following

Theorem A.1. Let matrix M ∈M2n×2n

M =

 A R

−Q −B

 (A.16)

has only simple eigenvalues λi, then each Kν matrix that solves

Pν = KνXν (A.17)

also solves algebraic Riccati equation A.15. Matrix Pν and Xν are made from the corre-

sponding eigenvectors Mzi = λizi, which we will split in half

zi =



xi1

xi2
...

xin

p1

p2

...

pn



(A.18)

and make columns from different eigenvectors in the following way. First half of the

eigenvectors, i.e. the one that is denoted as xij, goes to Xν and the second half in the same

order goes to Pν . For example, suppose n = 3

X146 =


x1

1 x4
1 x6

1

x1
2 x4

2 x6
2

x1
3 x4

3 x6
3

 P146 =


p1

1 p4
1 p6

1

p1
2 p4

2 p6
2

p1
3 p4

3 p6
3

 (A.19)
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All the permutations of the same eigenvectors will lead to the same solution, i.e. if

K146 solves P146 = K146X146 then it will solve P461 = K461X461, so K461 = K146. The

same theorem can be extended to the case of eigenvalues with algebraic multiplicity greater

than 1, the only difference that now one will construct Xν and Pν from eigenvectors and

generalized eigenvectors.

A.6 Matrix function

This is last and complementary section for this appendix. Earlier we mentioned definition

of a matrix exponent. We can extend this definition for all analytic functions

f(A) =

∞∑
n=0

an
An

n!
, (A.20)

but this definition is not very handy for finding analytic expression. In order to overcome

this we may use the Cauchy’s integral formula from the theory of complex analysis

f(x) =
1

2πi

∮
C

f(z)

z − x
dz (A.21)

and redefine matrix function

f(A) =
1

2πi

∮
C

f(λ)

λE−A
dλ, (A.22)

where E is the unity matrix. In case of a small matrix this definition is more useful, for

example

A =

1 1

0 0


(λE−A)−1 =

 λ
λ2−λ

1
λ2−λ

0 λ−1
λ2−λ

 (A.23)

Hence,

sin (At) =
1

2πi

∮
|λ|=2

dλ

λ sin (λt)
λ2−λ

sin (λt)
λ2−λ

0 (λ−1) sin (λt)
λ2−λ

 =

sin (t) sin (t)

0 0

 (A.24)
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This result is easily checked considering the fact that An = A, ∀n = 1, 2, 3, . . . , i.e.

f(A) =
∞∑
n=0

an
Antn

n!
= A

∞∑
n=0

an
tn

n!
= Af(t)

=

f(t) f(t)

0 0


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B

Long term and short term

asymptote

B.1 Green’s function of Ornstein-Uhlenbeck process and eigen-

function expansion

Spectral theory of linear differential operators is a common mathematical tool in physics

which can also be applied in finance [43, 45, 18, 19]. In this section we derive an eigenfunc-

tion expansion of a Green’s function for a Ornstein-Uhlenbeck partial differential equation.

The conventional approach [24] is to start with an ansatz f(x)e−λt and then try to find

eigenfunctions fn(x) and eigenvalues λn that satisfy boundary conditions. One can show

that in our case the spectrum will be discrete [40]. We will take a different route as it will

automatically takes care of eigenfunction’s normalization.

Green’s function must satisfy not only forward Kolmogorov equation, but as well back-

ward Kolmogorov equation

∂tG(x, t, x′) = −x′∂x′G(x, t, x′) +
σ2

2
∂2
x′,x′G(x, t, x′) (B.1)

G(a, t, x′) = G(x, t, a) = 0, ∀t

G(x, 0, x′) = δ(x− x′) (B.2)
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which allows us to write an equation for a Laplace transform of the Green’s function with

respect to time Ĝ =
∞∫
0

e−stG(x, t, x′)dt

sĜ(x′)− δ(x− x′) = −x′∂x′Ĝ(x′) +
1

2
∂2
x′,x′Ĝ(x′) (B.3)

Ĝ(a) = 0

x ∈ I = [a,∞)

We would like to find Green’s function for this ODE in L2(I,m(x)), where m(x) = 2e−x
2
.

After the solution is found one must inverse the Laplace transform and this would give

the final result. This is a Hermite function ODE. One can find comprehensive information

on this ODE and Hermite function in monograph [36]. It has two linearly independent

solutions H−s(x), H−s(−x). We need two solutions that have proper behaviour in I. One

solution must meet boundary condition

φ1(x) = H−s(−a)H−s(x)−H−s(−x)H−s(a), (B.4)

Other must not grow faster than zn, ∀n > 0 as z → +∞

φ2(x) = H−s(x) (B.5)

In order to find Green’s function we need to find Wronskian

W [f, g] =
fg′ − f ′g
s(x)

(B.6)

In our case s(x) = ex
2

and Wronskian is

W (s) = W [φ1, φ2]

=
2−s+1√πH−s(a)

Γ(s)
(B.7)

Green’s function will take the following form

Ĝ(x, y, s) =
Θ(x− y)φ2(x)φ1(y) + Θ(y − x)φ1(x)φ2(y)

W (s)
x, y ∈ I (B.8)

Wronskian has roots coming from Gamma function and Hermite function when s < 0.

Gamma function gives roots in negative integer points, i.e. s = 0,−1,−2,−3 . . . , but

at these points φ1(x) = 0. Therefore Green’s function will have residuals coming from
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Hermite function only

i∞∫
−i∞

dsest Ĝ(x, y, s)

=

∞∑
m=0

e−λmt
Hλm(x)Hλm(y)Hλm(−a)Γ(−λm)

2λm+1H
(1)
λm

(a)
√
π

(B.9)

H
(1)
−s (x) = ∂sH−s(x)

Finally we can write down Green’s function for initial problem

G(x, t, x′) = m(x)

i∞∫
−i∞

dsest Ĝ(x, x′, s)

=
∞∑
m=0

e−λmte−x
2Hλm(x)Hλm(x′)Hλm(−a)Γ(−λm)

2λmH
(1)
λm

(a)
√
π

(B.10)

B.2 Roots of Hermite function respect to its index ν

One can find similar study in [63] which was done to find first passage time density and

moments for Ornstein-Uhlenbeck process, but here we solely use properties of Hermite

function [36]. We will use recurrence relation for Hermite functions for finding its roots

Hν(a) = 0 with respect to its index variable ν.

Hν(z) = 2zHν−1(z)− 2(ν − 1)Hν−2(z) (B.11)

First we will consider roots for small values of argument z � 1 . If z = 0 then roots form

set of positive odd integers, i.e. H2p+1(0) = 0, p = 0, 1, 2, . . . . Because of analyticity of

Hermite function with respect to its index and argument we can state

H2p+1+ε(z) = 0 (B.12)

ε = O(z)

z � 1
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Using latter statement and recurrence relation we get

H2p+1+ε(z) = 2zH2p+ε(z)− 2(2p+ ε)H2p−1+ε(z)

= 2zH2p(0)− 4pH2p−1+ε(z)− 2εH2p−1(z) + o(z)

= z
22p+1√π
Γ(1

2 − p)
− 4pH2p−1+ε(z)− 2εH2p−1(z) + o(z) (B.13)

The third term will contribute only for p = 0, because for all other roots it will be of lower

order 2εH2p−1(z) = o(z), p = 1, 2, . . . . For p = 0 we get

H1+ε(z) = 2z − 2εH−1(z) + o(z)

= 2z − 2ε

√
π

2
+ o(z)

≈ 2z − 2ε

√
π

2
= 0 (B.14)

Then ε = z 2√
π

+ o(z), therefore the first root will be λ0 = 1 + z 2√
π

+ o(z).

Subsequent root, i.e. p = 1, we can find in the similar manner

H3+ε(z) = 2zH2(0)− 4H1+ε(z) + o(z)

= −4z − 4

[
2z − 2ε

√
π

2

]
+ o(z)

= −12z + 4ε
√
π + o(z) (B.15)

and next root will be λ1 = 3 + z 3√
π

+ o(z). The third root will be λ3 = 5 + z 15
4
√
π

+ o(z),

because

H5+ε(z) = 120z − 32ε
√
π + o(z) (B.16)

ε = z
15

4
√
π

+ o(z)

Based on these three roots one can guess solution for arbitrary p

λp(z) = 2p+ 1 + z
(2p+ 1)!!

(2p)!!

2√
π

+ o(z) (B.17)

z � 1
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In case of large negative arguments one can use following asymptotic expression for Hermite

function

Hν(−z) =

( √
π

Γ(−ν)
ez

2
z−ν−1 + (−1)ν(2z)ν

)[
1 +O(|z|−2)

]
, (B.18)

z → +∞

which can be rewritten for index value around some positive integer p+ ε for the leading

term

Hp+ε(−z)

=
(−1)p+1√π(p+ ε)(p− 1 + ε) . . . (1 + ε)ε

Γ(1− ε)
ez

2
z−p−1−ε [1 +O(|z|−2)

]
(B.19)

z → +∞

ε� 1

Therefore

Hp+ε(−z) = Hp(−z) +H(1)
p (−z)ε+ o(ε2)

= Hp(−z) + (−1)p+1√πp!ez2z−p−1
[
1 +O(|z|−2)

]
ε+ o(ε2) (B.20)

z → +∞

ε� 1

From latter expansion we conclude that asymptotic values of roots are

λp(z) = p− zp+1Hp(z)e
−z2

√
πp!

(B.21)

= p− 2pz2p+1e−z
2

√
πp!

z → −∞

p = 0, 1, 2, . . .

In case of big positive arguments the asymptotic of Hermite function is

Hν(z) = (2z)ν
[
1 +O(|z|−2)

]
(B.22)

z → +∞
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Substituting this asymptotic into recurence relation

Hν(z) = 2zHν−1(z)− 2(ν − 1)Hν−2(z)

=
(
(2z)ν − 2(ν − 1)(2z)ν−2

) [
1 +O(|z|−2)

]
= (2z)ν

[
1− 2(ν − 1)(2z)−2

] [
1 +O(|z|−2)

]
(B.23)

we can conclude that all roots asymptoticly tend to 2z2 + 1

λp(z)→ 2z2 + 1 (B.24)

z → +∞

Let us find first root with more precision

λ0(z) = 1 + z
2√
π

+ 4z2 1 + ψ(1
2)− ψ(1) + log(2)

π
+ o(z2) (B.25)

= 1 + zA+ z2B + o(z2)

ψ(x) =
Γ′(x)

Γ(x)

Using latter result and z → −∞ asymptotic we can approximate first root with

λ̄0(z) =
e−z

2

√
π

a0 + a1z − z2

b0 + z
, (B.26)

where a0, a1 and b0 found using small z asymptotic

a0 =
−1−A

√
π

1 +B
,

a1 =
−A+

√
π(1−A2 +B)

1 +B
,

b0 =
−1−A

√
π√

π(1 +B)
, (B.27)

therefore our approximation of the first root λ̄0(z) has equal asymptotic behaviour on

(−∞, 0].
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B.3 Perturbative approach

We would like to find fundamental solution of the Ornstein-Uhlenbeck parabolic partial

differential equation with the Dirichlet boundary conditions

∂tG(x, t, x′) = ∂x

(
xG(x, t, x′) + aG(x, t, x′) +

σ2

2
∂xG(x, t, x′)

)
(B.28)

G(x, t, x′)|t=0 = δ(x− x′)

G(0, t, x′) = G(x, t, 0) = 0

Solution when boundary equals zero, i.e. a = 0 is known

G0(x, t, x′) =
1√

πσ2(1− e−2t)

(
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
− exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

])
(B.29)

Using G0(x, t, x′) one could write an integral equation for the solution of PDE B.28

G(x, t, x′) = G0(x, t, x′) + a

t∫
0

dτ

∞∫
0

dyG0(x, t− τ, y)∂yG(y, τ, x′)

= G0(x, t, x′)− a
t∫

0

dτ

∞∫
0

dy∂yG0(x, t− τ, y)G(y, τ, x′)

= G0(x, t, x′) + a∂x

t∫
0

dτe−(t−τ)

∞∫
0

dyG
(+)
0 (x, t− τ, y)G(y, τ, x′) (B.30)

where

G
(+)
0 (x, t, x′) =

1√
πσ2(1− e−2t)

(
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
+ exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

])
(B.31)

We will seek solution in the following form

G(x, t, x′) =
∞∑
k=0

akGk(x, t, x
′) (B.32)

(B.33)

which creates a chain where Gk+1(x, t, x′) is related with Gk(x, t, x
′)

Gk+1(x, t, x′) = ∂x

t∫
0

dτe−(t−τ)

∞∫
0

dyG
(+)
0 (x, t− τ, y)Gk(y, τ, x

′) (B.34)
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Here we calculate the first term

G1(x, t, x′) = ∂x

t∫
0

dτe−(t−τ)

∞∫
0

dyG
(+)
0 (x, t− τ, y)G0(y, τ, x′)

= ∂x

t∫
0

dτ
e−(t−τ)√

πσ2(1− e−2t)
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
Erf[z+]

−∂x

t∫
0

dτ
e−(t−τ)√

πσ2(1− e−2t)
exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
Erf[z−] (B.35)

z+ =
1

σ
√

1− e−2t

xe−(t−τ)

√
1− e−2τ

1− e−2(t−τ)
+ x′e−τ

√
1− e−2(t−τ)

1− e−2τ

 (B.36)

z− =
1

σ
√

1− e−2t

xe−(t−τ)

√
1− e−2τ

1− e−2(t−τ)
− x′e−τ

√
1− e−2(t−τ)

1− e−2τ

 (B.37)

Erf[z] =
2√
π

z∫
0

dye−y
2

It is easy to see that z+ > 0 and z− monotonically increases with τ , but limτ→0 z− = −∞

and limτ→t z− = +∞, therefore it will have one root

t∗ =
t

2
+

1

2
log

[
x+ x′et

x′ + xet

]
(B.38)

104



Appendix B LONG TERM AND SHORT TERM ASYMPTOTE

Assuming σ � 1 we will substitute error function with step function

G1(x, t, x′) ≈ ∂x
1− e−t√

πσ2(1− e−2t)
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
+∂x

2e−(t−t∗) − e−t − 1√
πσ2(1− e−2t)

exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
= ∂x

1− e−t√
πσ2(1− e−2t)

exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]

+∂x
2e−t/2

√
x+x′et

x′+xet − e
−t − 1√

πσ2(1− e−2t)
exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
= − 1− e−t√

πσ2(1− e−2t)
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
2(x− x′e−t)
σ2(1− e−2t)

+
1 + e−t√

πσ2(1− e−2t)
exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
2(x+ x′e−t)

σ2(1− e−2t)

− 1√
πσ2(1− e−2t)

exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
e−t/2(1− e−2t)x′√

(x′ + xe−t)(x+ x′e−t)3

−
2e−t/2

√
x+x′et

x′+xet√
πσ2(1− e−2t)

exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
2(x+ x′e−t)

σ2(1− e−2t)
(B.39)

G1(x, t, x′)

= ∂x

t∫
0

dτ
e−(t−τ)√

πσ2(1− e−2t)
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
Erf[z+]

−∂x

t∫
0

dτ
e−(t−τ)√

πσ2(1− e−2t)
exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
Erf[z−]

≈ ∂x
1− e−t√

πσ2(1− e−2t)
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
−∂x

e−t√
πσ2(1− e−2t)

exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
J−(x, x′, t)

≈ ∂x
1− e−t√

πσ2(1− e−2t)
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
−J−(x, x′, t)∂x

1√
πσ2(1− e−2t)

exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
,

J−(x, x′, t) ≈ −2e−t/2
√
x+ x′et

x′ + xet
+ e−t + 1 (B.40)
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Final approximation preserves boundary conditions

G1(x, t, x′)

≈ ∂x
1− e−t√

πσ2(1− e−2t)
exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
−J−(x, x′, t)∂x

1√
πσ2(1− e−2t)

exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
= ∂x′

1− et√
πσ2(1− e−2t)

exp

[
− (x− x′e−t)2

σ2(1− e−2t)

]
−J−(x, x′, t)∂x′

et√
πσ2(1− e−2t)

exp

[
− (x+ x′e−t)2

σ2(1− e−2t)

]
(B.41)

G2(x, t, x′) =

t∫
0

dτ

∞∫
0

dyG0(x, t− τ, y)∂yG1(y, τ, x′)

≈
t∫

0

dτ

∞∫
0

dyG0(x, t− τ, y)

(
∂2
x′

e2τ − eτ√
πσ2(1− e−2τ )

exp

[
− (y − x′e−τ )2

σ2(1− e−2τ )

]

−J−(y, x′, τ)∂2
x′

e2τ√
πσ2(1− e−2τ )

exp

[
− (y + x′e−τ )2

σ2(1− e−2τ )

])

≈
t∫

0

dτ∂2
x′

exp
[
− (x−x′e−t)2
σ2(1−e−2t)

]
2
√
πσ2(1− e−2t)

{
(e2τ − eτ ) [1 + Erf[z+]] + e2τ [1− Erf[z+]] J−(0, x′, τ)

}

−
t∫

0

dτ∂2
x′

exp
[
− (x+x′e−t)2

σ2(1−e−2t)

]
2
√
πσ2(1− e−2t)

{
(e2τ − eτ ) [1− Erf[z−]]

+e2τ [1 + Erf[z−]]
[
J−(y∗, x′, τ)Θ(y∗) + J−(0, x′, τ)Θ(−y∗)

]}
, (B.42)

y∗ = x
e−(t−τ)(1− e−2τ )

1− e−2t
− x′ e

−τ (1− e−2(t−τ))

1− e−2t
(B.43)

Major simplifications can be done assuming σ � 1 and taking into account that y∗ changes

sign simultaneously with Erf[z−] at point t∗

G2(x, t, x′)

≈
t∫

0

dτ∂2
x′

exp
[
− (x−x′e−t)2
σ2(1−e−2t)

]
√
πσ2(1− e−2t)

(e2τ − eτ )

−
t∫

0

dτ∂2
x′

exp
[
− (x+x′e−t)2

σ2(1−e−2t)

]
2
√
πσ2(1− e−2t)

{
(e2τ − eτ ) [1− Erf[z−]]

+e2τ [1 + Erf[z−]] J−(y∗, x′, τ)Θ(y∗)
}

(B.44)
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G2(x, t, x′)

≈ 1

2
(et − 1)2∂2

x′

exp
[
− (x−x′e−t)2
σ2(1−e−2t)

]
√
πσ2(1− e−2t)

− 1

2
J2(x, x′, t)∂2

x′

exp
[
− (x+x′e−t)2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

(B.45)

1

2
J2(x, x′, t) =

1

2

t∫
0

dτ
[
(e2τ − eτ ) [1− Erf[z−]] + e2τ [1 + Erf[z−]] J1(y∗, x′, τ)Θ(y∗)

]

≈
t∗∫

0

dτ(e2τ − eτ ) +

t∫
t∗

dτe2τ

(
1 + e−τ − 2e−τ/2

√
y∗ + x′eτ

x′ + y∗eτ

)
(B.46)

=
1

2

(
1 + et − 2et/2

√
x+ x′et

x′ + xet

)2

,

t∗ =
t

2
+

1

2
log

[
x+ x′et

x′ + xet

]
,

J(x, x′, t) = 1 + et − 2et/2
√
x+ x′et

x′ + xet

As we can easily check

1

2
J2(0, x′, t) =

1

2
(et − 1)2 (B.47)

1

2
J2(x, 0, t) =

1

2
(et − 1)2 (B.48)

hence boundary conditions are met. The third term managed in a similar way

G3(x, t, x′)

≈ 1

6
(1− et)3∂3

x′

exp
[
− (x−x′e−t)2
σ2(1−e−2t)

]
√
πσ2(1− e−2t)

− 1

6
J3(x, x′, t)∂3

x′

exp
[
− (x+x′e−t)2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

, (B.49)

therefore

Gn(x, t, x′)

≈ 1

n!
(1− et)n∂nx′

exp
[
− (x−x′e−t)2
σ2(1−e−2t)

]
√
πσ2(1− e−2t)

− 1

n!
Jn(x, x′, t)∂nx′

exp
[
− (x+x′e−t)2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

(B.50)
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Full sum presents a shift operator ea∂xf(x) = f(x+ a)

G(x, t, x′) =
∞∑
k=0

akGk(x, t, x
′)

≈
∞∑
k=0

ak(1− et)k

k!
∂kx′

exp
[
− (x−x′e−t)2
σ2(1−e−2t)

]
√
πσ2(1− e−2t)

−
∞∑
k=0

akJk(x, x′, t)

k!
∂kx′

exp
[
− (x+x′e−t)2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

= ea(1−et)∂x′
exp

[
− (x−x′e−t)2
σ2(1−e−2t)

]
√
πσ2(1− e−2t)

− eaJ(x,x′,t)∂x′
exp

[
− (x+x′e−t)2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

=
exp

[
− (x−x′e−t+a(1−e−t))2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

−
exp

[
− (x+x′e−t+aJ−(x,x′,t))2

σ2(1−e−2t)

]
√
πσ2(1− e−2t)

(B.51)
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C

Conversion of

Ornstein-Uhlenbeck PDE

In this appendix we are going establish connection between Ornstein-Uhlenbeck PDE with

constant absorbing boundary

∂tG(x, t, x′, t′)− µG(x, t, x′, t′)− µx∂xG(x, t, x′, t′)− σ2

2
∂2
xxG(x, t, x′, t′) = 0 (C.1)

G(x, t, x′)|t=t′ = δ(x− x′)

G(a, t, x′, t′) = G(x, t, a, t′) = 0 ∀t > t′

and simple Wiener diffusion PDE. As we will see the constant absorbing boundary will

change to time-dependent one. Consider following space-time transform

y = xeµt
√

µ
σ2

y′ = x′eµt
′
√

µ
σ2

τ = 1
2e

2µt − 1
2

τ ′ = 1
2e

2µt′ − 1
2

(C.2)
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and in order to preserve measure correctly one must take into account measure change in

differential

G̃(y, τ, y′)dy = G(x, t, x′)dx⇒ G̃(y, τ, y′)dxeµt
√

µ

σ2
= G(x, t, x′)dx (C.3)

Hence,

∂tG(x, t, x′) = ∂t

(
G̃(y, τ, y′)eµt

√
µ

σ2

)
= µG̃(y, τ, y′)eµt

√
µ

σ2
+ µy∂yG̃(y, τ, y′)eµt

√
µ

σ2
+ µe2µt∂τ G̃(y, τ, y′)eµt

√
µ

σ2
(C.4)

∂xG(x, t, x′) = ∂x

(
G̃(y, τ, y′)eµt

√
µ

σ2

)
= eµt

√
µ

σ2
∂yG̃(y, τ, y′)eµt

√
µ

σ2
(C.5)

∂2
xxG(x, t, x′) = ∂2

xx

(
G̃(y, τ, y′)eµt

√
µ

σ2

)
= e2µt µ

σ2
∂2
yyG̃(y, τ, y′)eµt

√
µ

σ2
(C.6)

and

∂tG(x, t, x′)− µG(x, t, x′)− µx∂xG(x, t, x′)− σ2

2
∂2
xxG(x, t, x′)

= µG̃(y, τ, y′)eµt
√

µ

σ2
+ µy∂yG̃(y, τ, y′)eµt

√
µ

σ2
+ µe2µt∂τ G̃(y, τ, y′)eµt

√
µ

σ2

−µG̃(y, τ, y′)eµt
√

µ

σ2
− µxeµt

√
µ

σ2
∂yG̃(y, τ, y′)eµt

√
µ

σ2

−σ
2

2
e2µt µ

σ2
∂2
yyG̃(y, τ, y′)eµt

√
µ

σ2

= µG̃(y, τ, y′)eµt
√

µ

σ2
+ µy∂yG̃(y, τ, y′)eµt

√
µ

σ2
+ µe2µt∂τ G̃(y, τ, y′)eµt

√
µ

σ2

−µG̃(y, τ, y′)eµt
√

µ

σ2
− µy∂yG̃(y, τ, y′)eµt

√
µ

σ2
− σ2

2
e2µt µ

σ2
∂2
yyG̃(y, τ, y′)eµt

√
µ

σ2

= µe2µt∂τ G̃(y, τ, y′)eµt
√

µ

σ2
− σ2

2
e2µt µ

σ2
∂2
yyG̃(y, τ, y′)eµt

√
µ

σ2
(C.7)
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From latter we can conclude that

∂τ G̃(y, τ, y′)− 1

2
∂2
yyG̃(y, τ, y′) = 0 (C.8)

G̃(y, τ, y′)|τ=τ ′ = δ(y − y′)

G̃(ξ(τ), τ, y′) = 0

ξ(τ) = a

√
µ

σ2

√
2τ + 1

On the other hand we can derive the same equation using backward Kolmogorov equation
−∂t′G(x, t, x′, t′) + µx∂xG(x, t, x′, t′)− σ2

2 ∂
2
xxG(x, t, x′, t′) = 0

G(x, t, x′)|t=t′ = δ(x− x′)

G(a, t, x′, t′) = G(x, t, a, t′) = 0 ∀t > t′

Taking into account the change of variables

∂t′G(x, t, x′, t′) = ∂t′

(
G̃(y, τ, y′, τ ′)eµt

√
µ

σ2

)
= µy′∂y′G̃(y, τ, y′, τ ′)eµt

√
µ

σ2
+ µe2µt′∂τ ′G̃(y, τ, y′, τ ′)eµt

√
µ

σ2
(C.9)

∂x′G(x, t, x′, t′) = ∂x′

(
G̃(y, τ, y′, τ ′)eµt

√
µ

σ2

)
= eµt

′
√

µ

σ2
∂y′G̃(y, τ, y′)eµt

√
µ

σ2
(C.10)

∂2
x′x′G(x, t, x′, t′) = ∂2

x′x′

(
G̃(y, τ, y′, τ ′)eµt

√
µ

σ2

)
= e2µt′ µ

σ2
∂2
y′y′G̃(y, τ, y′, τ ′)eµt

√
µ

σ2
(C.11)

and

−µy′∂y′G̃(y, τ, y′, τ ′)eµt
√

µ

σ2
− µe2µt′∂τ ′G̃(y, τ, y′, τ ′)eµt

√
µ

σ2

+µx′eµt
′
√

µ

σ2
∂y′G̃(y, τ, y′)eµt

√
µ

σ2
− σ2

2
e2µt′ µ

σ2
∂2
y′y′G̃(y, τ, y′, τ ′)eµt

√
µ

σ2

= −µy′∂y′G̃(y, τ, y′, τ ′)eµt
√

µ

σ2
− µe2µt′∂τ ′G̃(y, τ, y′, τ ′)eµt

√
µ

σ2

+µy′∂y′G̃(y, τ, y′)eµt
√

µ

σ2
− σ2

2
e2µt′ µ

σ2
∂2
y′y′G̃(y, τ, y′, τ ′)eµt

√
µ

σ2
(C.12)

111



Appendix C CONVERSION OF ORNSTEIN-UHLENBECK PDE

From the latter we get
−∂τ ′G̃(y, τ, y′, τ ′)− 1

2∂
2
y′y′G̃(y, τ, y′, τ ′) = 0

G̃(y, τ, y′, τ ′)|τ=τ ′ = δ(y − y′)

G̃(y, τ, ξ(τ ′), τ ′) = 0

(C.13)
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D

Conditional Optimal

Strategy

In this appendix we will consider a case of solving conditional optimization problem. We

set the problem and an ansatz for the strategy. After that we show how one explicitly

express objective functional which then can be varied in order to find conditional optimal

strategy. This problem is very similar to one that solved in the Chapter 3, although we

slightly changed notation.

Suppose we are given a system of equations
ξ̇t = −aξt + µφ̇t + σḂt

Ṁt = ξ̇tφt − λ
2 φ̇

2(t)

φ̇t = ut

(D.1)

and our objective is to find strategy ut in order to maximize Ju(Mt, ξt, φt, t)

V (Mt, ξt, φt, t) = argmax
u∈Ac

Ju(Mt, ξt, φt, t)

= E [Mu
T |Mt, ξt, φt] (D.2)
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where we set an ansatz on ut

ut = αtξt + βtφt (D.3)

and this defines the set of admissible strategies Ac. In order to proceed we will need to

find explicit expression of Mu
t assuming strategy ut has structure (D.3). First one can

find expression for φt

φt = B(t)

∫ t

0

α(τ)

B(τ)
ξ(τ)dτ + φ0B(t) (D.4)

B(t) = e
∫ t
0 β(τ)dτ

We can substitute latter result into for ξ̇t

ξ̇t = (−a+ µαt)ξt + µḂ(t)

∫ t

0

α(τ)

B(τ)
ξτdτ + µφ0Ḃ(t) + σḂt (D.5)

In order to reduce latter expression to second kind integral Volterra type equation we

can assume that three last terms on the rhs is inhomogeneous part of first order ODE,

therefore

ξt = ξ0e

t∫
0

(−a+µα(y))dy
+ µ

∫ t

0
dτ e

t∫
τ

(−a+µα(y))dy
∫ τ

0

α(x)Ḃ(τ)

B(x)
ξxdx

+µφ0

∫ t

0
dτ Ḃ(τ)e

t∫
τ

(−a+µα(y))dy
+

∫ t

0
dτ e

t∫
τ

(−a+µα(y))dy
σḂτ (D.6)

Let us introduce new functions, i.e integral kernel K(t, x) and inhomogeneous part f(t)

K(t, x) = µ

∫ t

x
dτ e

t∫
τ

(−a+µα(y))dyα(x)Ḃ(τ)

B(x)
(D.7)

f(t) = ξ0e

t∫
0

(−a+µα(y))dy
+ µφ0

∫ t

0
dτ Ḃ(τ)e

t∫
τ

(−a+µα(y))dy

+

∫ t

0
dτ e

t∫
τ

(−a+µα(y))dy
σḂτ (D.8)

Therefore

ξt = f(t) +

∫ t

0
dx K(t, x)ξx (D.9)
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In order to solve this second kind Volterra type integral equation we need to find resolvent

R(t, x)

R(t, x) =

∞∑
n=1

Kn(t, x) (D.10)

Kn(t, x) =

∫ t

x
K(t, τ)Kn−1(τ, x)dτ

K1(t, x) = K(t, x)

Using resolvent we can write the solution

ξt = f(t) +

t∫
0

R(t, x)f(x)dx (D.11)

Further we would like to separate out Gaussian white noise in latter expression, therefore

we will introduce new kernel R̃(t, τ)

R̃(t, τ) = exp

 t∫
τ

(−a+ µα(y))dy

+

t∫
τ

R(t, x) exp

 x∫
τ

(−a+ µα(y))dy

dx (D.12)

Using kernel R̃(t, τ) one can rewrite (D.11)

ξ(t) = f̃(t) +

t∫
0

R̃(t, τ)ν(τ)dτ, (D.13)

where f̃(t) contains all terms without σḂt.

f̃(t) = ξ0 exp

 t∫
0

(−a+ µα(y))dy

+ µφ0

t∫
0

dτ Ḃ(τ) exp

 t∫
τ

(−a+ µα(y))dy


+ξ0

t∫
0

dτ R(t, τ) exp

 τ∫
0

(−a+ µα(y))dy


+µφ0

t∫
0

dτ R(t, τ)

τ∫
0

dx Ḃ(x) exp

 τ∫
x

(−a+ µα(y))dy


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Now as we found explicit expression for ξt one can move to Mt

Mt =

t∫
0

(
ξ̇τφτ −

λ

2
φ̇2
τ

)
dτ +M0 (D.14)

After making all necessary calculations we can define new kernels and function in order

to write the result

m(t) =

t∫
0

dτ B(τ)
˙̃
f(τ)[b(τ) + φ0]

−λ
2

t∫
0

dτ
(
Ḃ2(τ)b2(τ) + Ḃ2(τ)φ2

0 + α2(τ)f̃2(τ) + 2Ḃ2(τ)b(τ)φ0

)
L(t, x) = B(x)b(x) +B(x)φ0+

t∫
x

dτ
(
B(τ)[b(τ) + φ0] ˙̃Rτ (τ, x) +

˙̃
f(τ)B(τ)B(τ, x)

)

−λ
t∫

x

dτ
(
Ḃ2(τ)[b(τ) + φ0]B(τ, x) + α2(τ)f̃(τ)R̃(τ, x)

)

M(t, x, x′) =

t∫
max(x,x′)

dτ
(
B(τ) ˙̃Rτ (τ, x)B(τ, x′)

)

−λ
2

t∫
max(x,x′)

dτ
(
Ḃ2(τ)B(τ, x)B(τ, x′) + α2(τ)R̃(τ, x)R̃(τ, x′)

)
+B(x)B(x, x′)Θ(x− x′) (D.15)

B(t, x) =

t∫
x

dτ
α(τ)R̃(τ, x)

B(τ)

b(t) =

t∫
0

α(τ)

B(τ)
f̃(τ)dτ

Using introduced function and kernels one can write Mt in the following way

Mt = m(t) +

t∫
0

L(t, x)σdBx +

t∫
0

t∫
0

M(t, x, x′)σ2dBxdBx′ +M0 (D.16)

Explicit solution for Mt gives the opportunity to find any conditional expectation us-

ing Wick’s theorem. Our objective functional Ju(Mt, ξt, φt, t) = E [Mu
T |Mt, ξt, φt] only
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depends on the first moment of Mt, therefore

Ju(Mt, ξt, φt, t) = E [Mu
T |Mt, ξt, φt]

= m(T ) +

T∫
t

T∫
t

M(t, x, x′)σ2δ(x− x′) +Mt = m(T ) +Mt + σ2

T∫
t

dx M(T, x, x) (D.17)

From necessary optimality condition

Ju(Mt, ξt, φt, t)

δu
= 0 (D.18)

one will find an equation on αt and βt

µφt − λ(αtξt + βtφt) + µ
∂m(ξt, φt)

∂ξt
+
∂m(ξt, φt)

∂φt
= 0 (D.19)

where we explicitly specify dependence of m(t) on ξt and φt. From anzats (D.3) that we

setted up on the strategy we can conclude that αt and βt should not depend on initial

conditions, i.e. ξt, φt, but only on time left T − t. Equation (D.19) has following structure

φthφt(µ, λ) + ξthξt(µ, λ) , therefore we can separate parts that contain ξt, φt and set them

equal to zero


hφt(µ, λ) = 0

hξt(µ, λ) = 0

(D.20)

Therefore we have to equations on two functions, i.e. α(t), β(t). In case of no impact

factor, i.e. µ = 0, solution can be easily found

αt =
1

λ

(
e−a(T−t) − 1

)
βt = 0 (D.21)

Now that we have found optimal strategies we can find value function V (Mt, ξt, φt, t). As

with optimal strategy we will only consider case when µ = 0

V (Mt, ξt, φt, t)

= Mt +
ξ2
t

4aλ

[
1 + e−2a(T−t)(3 + 2a(T − t))− 4e−a(T−t)

]
+ ξtφt

(
e−a(T−t) − 1

)
+

σ2

2a2λ

[
2e−a(T−t) +

a

2
(T − t)− e−2a(T−t) − a

2
(T − t)e−2a(T−t) − 1

]
(D.22)
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In the short term, i.e. a(T − t)� 1 , mainly contributes from ξtφt term

V (Mt, ξt, φt, t) ≈Mt +
ξ2
t

4aλ

(
2a3(T − t)3

3
− 5a4(T − t)4

6

)
+ξtφt

(
−a(T − t) +

a2(T − t)2

2
− a3(T − t)3

6
+
a4(T − t)4

24

)
+

σ2

2a2λ

a4(T − t)4

12
(D.23)

In case of long term, a(T − t)� 1, most contribution comes from volatility term

V (Mt, ξt, φt, t) ≈Mt +
ξ2
t

4aλ
− ξtφt

+
σ2

2a2λ

(
a(T − t)

2
− 1

)
(D.24)
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E

Stochastic Optimal Control

in Discrete Time

This appendix is devoted to discrete time approach of solving continuous stochastic control

problem. In first section we demonstrate how one can find probability density function

of a SDE by partitioning the time segment. In next section we will state a continuous

optimization problem and solve in discrete time. After taking time step size to zero we

obtain solution of original problem.

E.1 Transition density function for a SDE

Lets consider linear SDE with constant coefficients

dA(t) = µA(t)dt+ σdB(t), (E.1)

We would like to find transition density function p(A(t), t|A(t′), t′) Let us consider dis-

cretization of the process on reasonably small time steps h = t
N

Ai −Ai−1 = µAi−1h+ σ
√
hWi. (E.2)
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We can conclude that for small time step h transition density function for increment of

A(t+ h)−A(t) is Gaussian and has following form

p(Ai|Ai−1) =
1√

2πσ2h
exp

(
−(Ai −Ai−1(1 + µh))2

2σ2h

)
(E.3)

If one will consider integration over all intermediate time steps and then will take frag-

mentation to infinity N → ∞ one would arrive to continuous time result, starting from

time moment 0 to t

p(AN |A0) =

∫
RN−1

p(AN |AN−1)p(AN−1|AN−2) . . . p(A1|A0)dAN−1 . . . dA1 (E.4)

p(At|A0) = lim
N→∞

p(AN |A0) (E.5)

Lets do integration for one step ahead denoting a = (1 + µh)

∫
R

dAip(Ai+1|Ai)p(Ai|Ai−1)

=

∫
R

dAi
2πσ2h

exp

(
−(Ai+1 −Aia)2

2σ2h
− (Ai −Ai−1a)2

2σ2h

)
=

1√
2πσ2h(1 + a2)

exp

(
−(Ai+1 −Ai−1a

2)2

2σ2h(1 + a2)

)
(E.6)

For two steps the result will be

∫ ∫
R2

dAi+1dAip(Ai+2|Ai+1)p(Ai+1|Ai)p(Ai|Ai−1)

=
1√

2πσ2h((1 + a2)a2 + 1)
exp

(
− (Ai+2 −Ai−1a

3)2

2σ2h((1 + a2)a2 + 1)

)
(E.7)

It is easy to capture the structure for further steps. The mean will be

A0 exp(µt) = A0 lim
N→∞

aN = A0 lim
N→∞

(
1 + µ

t

N

)N
(E.8)

and for variance one has

t

N
b1 =

t

N
;
t

N
b2 = a2 t

N
+

t

N
; . . .

t

N
bN = a2 t

N
bN−1 +

t

N
(E.9)

after taking limit N →∞ one gets a simple ODE

db(τ)

dτ
(t) = 2µb(t) + 1 (E.10)
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Last ODE subject to initial condition b(0) = 0, which represents the fact that we start

from a fixed point A0 at time moment 0, has the following solution

b(t) =
exp (2µt)− 1

2µ
(E.11)

We can now write down the result in continuous time

p(At|A0) =

√
µ

πσ2(exp (2µt)− 1)
exp

−(At −A0 exp (µt))2

σ2 (exp(2µt)−1)
µ

 (E.12)

The same scheme can be applied for Brownian bridge SDE

dA(t) = −αA(t)dt

T − t
+ σdW (t), (E.13)

where α ∈ (0,∞). It is quite similar to the previous case, but now a depends on time

ai =
(

1− αh
T−ih

)
, where h = t

N , 0 < t < T and the transition probability for infinitesimal

small step h will be

p(Ai|Ai−1) =
1√

2πσ2h
exp

(
−(Ai −Ai−1ai−1)2

2σ2h

)
(E.14)

As before to capture the recursion dependencies we need to derive transition probability

for more then one step ahead. For one step ahead one has

∫
R

dAip(Ai+1|Ai)p(Ai|Ai−1)

=

∫
R

dAi
2πσ2h

exp

(
−(Ai+1 −Aiai)2

2σ2h
− (Ai −Ai−1ai−1)2

2σ2h

)
=

1√
2πσ2h(1 + a2

i−1)
exp

(
−(Ai+1 −Ai−1ai−1ai)

2

2σ2h(1 + a2
i−1)

)
(E.15)

and for two steps ahead

∫ ∫
R2

dAi+1dAip(Ai+2|Ai+1)p(Ai+1|Ai)p(Ai|Ai−1)

=
1√

2πσ2h((1 + a2
i−1)a2

i + 1)
exp

(
−(Ai+2 −Ai−1ai−1aiai+1)2

2σ2h((1 + a2
i−1)a2

i + 1)

)
(E.16)
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It is clear that mean term will look like

A0

N∏
i=0

ai = A0 exp

(
N∑
i=0

log(ai)

)
∼ A0 exp

(
N∑
i=0

− αh

T − ih

)
→N→∞

A0 exp

(∫ t

0
− α

T − s
ds

)
= A0

(
T − t
T

)α
(E.17)

As in previous case we will derive an ODE for dispersion term which will have same initial

conditions c(0) = 0

t

N
c1 =

t

N
;
t

N
c2 = a2

1

t

N
+

t

N
; . . . ;

t

N
cN = a2

N−1

t

N
cN−1 +

t

N
(E.18)

in the limit N →∞

dc(τ)

dτ
(t) = c(t)

−2α

T − t
+ 1 (E.19)

Solving this ODE gives us following result

c(t) =


T

1−2α

[(
T−t
T

)2α − T−t
T

]
, if α 6= 1

2

(T − t) log
(

T
T−t

)
, if α = 1

2

(E.20)

Finally we can write down transition probability in continuous time

p(At|A0) =

√
1

2πσ2c(t)
exp

−
(
At −A0

(
T−t
T

)α)2

2σ2c(t)

 (E.21)

E.2 Stochastic control in discrete time

Assume you have a portfolio comprising of riskless asset Rt and risky one At

Wt = NtAt + PtRt, (E.22)

where At represents Brownian bridge stochastic process (E.13), Rt corresponds to ODE

dRt = rRtdt and Nt, Pt are amount of risky and riskless assets in portfolio respectively.

Portfolio will be subject to self-financing constraint and therefore portfolio differential can

be represented in the following form

dWt = NtdAt + PtdRt = NtdAt + rPtRtdt = NtdAt + r(Wt − NtAt)dt (E.23)
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Given the SDE of At (E.13) we can rewrite the last expresion

dWt =

(
rWt −

(
r +

α

T − t

)
NtAt

)
dt+ σNtdBt, (E.24)

We must note that at this particular moment Nt function is fully arbitrary and will be

subject to optimization problem, therefore we can introduce new function Ft which we will

define from following expression Nt = FtWt. Having in mind this new arbitrary function

we can rewrite last SDE for portfolio wealth

dWt

Wt
=

(
r −

(
r +

α

T − t

)
FtAt

)
dt+ σFtdBt, (E.25)

Using Ito’s rule lets write down SDE for a logarithm of wealth W̃t = log (Wt)

˜dWt =

(
r −

(
r +

α

T − t

)
FtAt −

σ2

2
F 2
t

)
dt+ σFtdBt, (E.26)

Keeping in mind the fact that both wealth process and risky asset process subject to the

one and the same stochastic component it is easy to express former by At

˜dWt =

(
r − rFtAt −

σ2

2
F 2
t

)
dt+ FtdAt, (E.27)

as you can see dynamics of logarithm of wealth is fully governed by At and Ft.

Let us state the problem we want to solve. We want to find Ft that maximizes

the expectation of utility function of wealth. In our case we will consider power util-

ity function U(Wt) = W γ

γ with some arbitrary power γ and logarithm utility function

U(Wt) = log (Wt). In case of logarithm of wealth former and latter utility functions can

be easily rewritten U(W̃t) = exp (γW̃t)
γ , U(W̃t) = W̃t and problem will be

F̂t = arg max
Ft

E
[
U(W̃T )

∣∣∣A0 = a0, W̃0 = w̃0

]
, (E.28)

which will be subject to some initial conditions on wealth W0 and risky asset A0. Here

E [ |] is an expectation operator. Moreover strategy must depend on information that is

available in every moment of time t, which is At. For this reason we will solve our problem

from the end. Let us look forward in order to explain what we mean.

We will consider time discretization of logarithm of wealth. For this purpose we will

write SDE (E.27) for an infinitesimal time step h = t
N , 0 < t < T

δW̃i = W̃i+1 − W̃i =

(
r − σ2

2
F 2
i

)
h+ Fi (Ai+1 −Ai(1 + rh)) (E.29)

123



Appendix E STOCHASTIC OPTIMAL CONTROL IN DISCRETE TIME

Using last expression let us write down W̃N

W̃N =
N−1∑
i=0

δW̃i =
N−1∑
i=0

[(
r − σ2

2
F 2
i

)
h+ Fi (Ai+1 −Ai(1 + rh))

]
+ W̃0 (E.30)

As it was stressed earlier we assume that Fi depends on information available at moment

i, Fi(Ai), because of that in case of power utility function we can not calculate expectation

in order to find F that maximizes it.

E0

[
U(W̃N )

]
=

1

γ

∫
· · ·
∫ N∏

i=1

[
exp

(
γδW̃i−1

)
p(Ai|Ai−1)

]
exp (γW̃0)

N∏
i=1

dAi =

1

γ

∫
· · ·
∫ N∏

i=1

[
exp

(
γ

(
r − σ2

2
F 2
i (Ai)

)
h+ γFi(Ai) (Ai+1 −Ai(1 + rh))

)]
×

exp (γW̃0)

N∏
i=1

p(Ai|Ai−1)dAi (E.31)

In order to overcome this problem one can start solving this problem from the end, i.e.

backward induction. Let us assume that there is arbitrary small time left h till our

investment horizon and we know current value of arbitrage AN−1

EN−1

[
U(W̃N )

]
=∫

exp

(
γ

(
r − σ2

2
F 2
N−1(AN−1)

)
h+ γFN−1(AN−1) (AN −AN−1(1 + rh))

)
×

exp
(
γW̃N−1

)
p(AN |AN−1)dAN (E.32)

Integration is done over AN , so dependence of FN−1 from AN−1 doesn’t cause any problem

in calculating expectation. After expectation was calculated we can vary over F and define

the position that must be taken in moment N − 1 in order to maximize this expectation.

Let us denote optimal position by F̂N−1(AN−1). The next step will be to consider situation

when time is left for two steps, as in previous case we know AN−2.

EN−2

[
U(W̃N )

]
= ∫ ∫

exp γ
(
δW̃N−1 + δW̃N−2 + W̃N−2

)
×

p(AN |AN−1)p(AN−1|AN−2)dANdAN−1 (E.33)
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In term δW̃N−1 we will substitute optimal position F̂N−1(AN−1), which was found in pre-

vious step, so it will only depend from AN , AN−1. After that we can calculate expectation

and vary it over FN−2 in order to find optimal position F̂N−2(AN−2) when there are two

time steps left. Procedure can be continued and one would arrive at optimal positions for

every time step and as a by-product calculate expectation of utility for optimal strategy.

In case of logarithmic utility function calculations needed to be done are simpler, let us

have a look why it is so. The first step will have no difference from power utility case

EN−1

[
U(W̃N )

]
=

∫ (
δW̃N−1 + W̃N−1

)
p(AN |AN−1)dAN (E.34)

By varying F one will find F̂N−1(AN−1). Further we will consider two time steps

EN−2

[
U(W̃N )

]
=

∫ ∫ (
δW̃N−1 + δW̃N−2 + W̃N−2

)
×

p(AN |AN−1)p(AN−1|AN−2)dANdAN−1 (E.35)

Because here we are working with sum and not with product in the integrand, as in case

of power utility, we can find optimal position in time step N − 2 without even knowing

position for further time step

∫ ∫ (
δW̃N−2

)
p(AN |AN−1)p(AN−1|AN−2)dANdAN−1 =∫ (

δW̃N−2

)
p(AN−1|AN−2)dAN−1, (E.36)

varying by F we will get F̂N−2(AN−2) which maximizes this summand. Thereby maxi-

mizing each summand will result in maximization of the whole sum. So we can easily find

optimal position for each time step in case of logarithmic utility.

∫ (
rh− σ2h

2
F 2
i h+ Fi(Ai+1 −Ai(1 + rh))

)
p(Ai+1|Ai)dAi+1

= rh− σ2

2
F 2
i h+ Fi(−

αAih

T − ih
−Airh)) (E.37)

From here we can find optimal position F̂i(Ai) at arbitrary time moment i which will give

a maximum of the expectation of logarithmic utility, therefore after taking limit h → 0
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one will find optimal position size in continuous time

− σ2F̂ih− (
αAih

T − ih
+Airh)) = 0→

F̂i = −Ai
σ2

(
α

T − ih
+ r

)
→ F̂ (s) = −A(s)

σ2

(
α

T − s
+ r

)

Let us proceed with power utility case. We will assume that our investment horizon τ

doesn’t coincide with expiry of arbitrage T , in other words τ < T . As it was described

earlier we are considering first step when there is one step left to our investment horizon

and we know arbitrage size AN−1.

J(N,N − 1, AN−1)

=
1

γ

∫
exp γ

(
rh− σ2h

2
F 2
N−1 + FN−1 [AN −AN−1(1 + rh)]

)
×

p(AN |AN−1)dAN

=
1

γ
exp γ

(
rh− σ2h

2
F 2
N−1(1− γ)− FN−1AN−1 [1 + rh− aN−1]

)
, (E.38)

where J(N,N −k,AN−k) = EN−k
[
U(W̃N )

]
exp

(
−γW̃N−k

)
. From this point we can find

F̂N−1 which will maximize our utility on step N − 1.

−σ2hFN−1(1− γ)−AN−1 [1 + rh− aN−1] = 0

F̂N−1 =
AN−1(1 + rh− aN−1)

σ2h(γ − 1)
(E.39)

If we will substitute this optimal position F̂N−1 into J(N,N − 1, AN−1) we will get max-

imum, let us denote it with hat Ĵ .

Ĵ(N,N − 1, AN−1) =
1

γ
exp

(
γrh−

A2
N−1

2σ2h

γ(1 + rh− aN−1)2

γ − 1

)

=
1

γ
exp

(
γrh−

A2
N−1

2σ2h
SN−1

)
, (E.40)
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where SN−1 =
γ(1 + rh+ aN−1)2

γ − 1
. We can do the next step by considering case when

there are two time steps left till investment horizon τ .

J(N,N − 2, AN−2)

=
1

γ

∫
exp γ

(
rh− σ2h

2
F 2
N−2 + FN−2 [AN−1 −AN−2(1 + rh)]

)
×

Ĵ(N,N − 1, AN−1)p(AN−1|AN−2)dAN−1

=

√
1 + SN−1

γ
exp γ

(
2γrh− σ2h

2
F 2
N−2(1− γ

1 + SN−1
)

)
×

exp

(
−FN−2AN−2

[
1 + rh− aN−2

1 + SN−1

]
−
A2
N−2a

2
N−2SN−1

2σ2h(1 + SN+1)

)
(E.41)

Optimal position for J(N,N − 2, AN−2) will be

−σ
2h

2
FN−2(1− γ

1 + SN−1
)−AN−2

[
1 + rh− aN−2

1 + SN−1

]
= 0 (E.42)

F̂N−2 =
AN−2

(
1 + rh− aN−2

1+SN−1

)
σ2h

(
γ

1+SN−1
− 1
) (E.43)

and maximum utility will be

Ĵ(N,N − 2, AN−2)

=

√
1 + SN−1

γ
exp

2rh−
A2
N−2

2σ2h

γ
[
1 + rh− aN−2

1+SN−1

]2

γ
1+SN−1

− 1
−
A2
N−2a

2
N−2SN−1

2σ2h(1 + SN+1)


=

√
1 + SN−1

γ
exp

(
2γrh−

A2
N−2SN−2

2σ2h

)
, (E.44)

where SN−2 =
γ
[
1 + rh− aN−2

1+SN−1

]2

γ
1+SN−1

− 1
+
a2
N−2SN−1

1 + SN−1
. By introducing SN−2 we are reducing

problem to the previous case therefore we can easily write value of optimal utility and
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strategy for arbitrary step.

Ĵ(N,N − i, AN−i) =

∏i−1
k=1

√
1 + SN−k
γ

exp

(
γ

i∑
k=1

rh−
A2
N−iSN−i

2σ2h

)
(E.45)

F̂N−i =
AN−i

(
1 + rh− aN−i

1+SN−i+1

)
σ2h

(
γ

1+SN−i+1
− 1
) (E.46)

SN−i =
γ
[
1 + rh− aN−i

1+SN−i+1

]2

γ
1+SN−i+1

− 1
+
a2
N−iSN−i+1

1 + SN−i+1
(E.47)

One must stress that SN−i ∼ h, so we will denote sN−i =
SN−i
h . We can now write down

all these equations in continous time.

E0

[
U(W̃τ )

]
=

exp
(
γW̃0

)
γ

exp

γτr − A2
0s0

2σ2
+

1

2

τ∫
0

s(x)dx

 (E.48)

F̂t =
At
σ2

α
T−t + r + st

γ − 1
(E.49)

ṡ(t) =
γ

1− γ

(
α

T − t
+ r

)2

+
2

1− γ

(
rγ +

α

T − t

)
s(t) +

1

1− γ
s2(t) (E.50)

s(τ) = 0

t ∈ (0, τ)

T > τ

These results can be easily transformed for mean-reverting process, qualitative difference

between brownian bridge process and mean-reverting is in time dependence of the mean

term. So if one will make certain substitutions: α
T−t → α; t → τ − t; γ → 1 − γ; s(t) →

−2σ2s(t); one would derive result of Jurek and Yang [34].

Equation (E.50) is an Riccati ODE and generally speaking can’t be solved in arbitrary

form unless you can guess particular solution. If one will assume that riskfree rate is zero

r = 0 particular solution for this equation will be

sp(t) =
b1,2
T − t

(E.51)

b2 + b(2α+ γ − 1) + γα2 = 0

D = (γ − 1)(γ − (2α− 1)2)

b1,2 =
−(2α+ γ − 1)±

√
D

2
.
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Further we need to do an substitution in our Riccati equation keeping in mind that r = 0

s(t) = sp(t) + sg(t)

ṡg + ṡp

=
γ

1− γ
α2

(T − t)2
+

2

1− γ
α

T − t
(sg + sp) +

1

1− γ
(
s2
g + 2sgsp + s2

p

)
The latter equation gives us an ODE for sg

ṡg =
2

1− γ

(
α+ b1,2
T − t

)
sg +

1

1− γ
s2
g, (E.52)

which is Bernoulli ODE and can be solved exactly.

sg(t) =
1

φ(t)
[

1
1−γ

∫
dt
φ(t) + C1,2

] (E.53)

φ(t) = (T − t)
2(α+b1,2)

1−γ

Therefore solution for ODE (E.50) with r = 0 will be

s(t) = sg(t) + sp(t)

=
b1,2
T − t

+
1

1
1−γ−2(α+b1,2)(T − t) + C1,2 (T − t)

2(α+b1,2)

1−γ

(E.54)

2(α+ b1,2)

1− γ
= 1± D

1− γ

D 6= 0,

where constant C1,2 will be subject to initial conditions s(τ) = 0

C1,2 = −
(

1

1− γ − 2(α+ b1,2)
+

1

b1,2

)
(T − τ)

1−
2(α+b1,2)

1−γ . (E.55)

You can choose any root b1,2 because both roots will give the same result.

Assuming r � 1 one can obtain asymptotic solution using (E.54) by considering asymp-

totic expansion

s(t, r) = s(t) + s′(t)r
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Substituting this expansion into (E.50) and retaining terms up to O(r) we obtain

ṡ′(t) =
2

1− γ

(
α

T − t
+ s(t)

)
s′(t) (E.56)

s′(t) = C ′ exp

(
2

1− γ

∫ t

0

α

T − x
+ s(x) dx

)
(E.57)
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