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ABSTRACT          20 

The insidious nature of Zika virus (ZIKV) infections can have a devastating consequence for 21 

foetal development.  Recent reports have highlighted that chloroquine (CQ) is capable of 22 

inhibiting ZIKV endocytosis in brain cells.  We applied pharmacokinetic modelling to 23 

develop a predictive model for CQ exposure to identify an optimal maternal/foetal dosing 24 

regimen to prevent ZIKV endocytosis in brain cells.  Model validation utilised 13 non-25 

pregnancy and 3 pregnancy clinical studies and a therapeutic CQ plasma window of 0.3-2 26 

µM was derived. Dosing regimens used in rheumatoid arthritis, systemic lupus erythematosus 27 

and malaria were assessed for their ability to target this window.  Dosing regimen identified 28 

that weekly doses used in malaria were not sufficient to reach the lower therapeutic window, 29 

however daily doses of 150 mg achieved this therapeutic window. The impact of gestational 30 

age was further assessed and culminated in a final proposed regimen of 600 mg on day 1, 300 31 

mg on day 2 and 3 and 150 mg thereafter until the end of trimester 2, which resulted in 32 

maintaining 65 % and 94 % of subjects with a trough plasma concentration above the lower 33 

therapeutic window on day 6 and at term, respectively. 34 
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KEYWORDS 36 
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1. INTRODUCTION 39 

First isolated in an infected Ugandan monkey in 1947 
1
, the Zika virus (ZIKV), is a single 40 

stranded RNA virus originating from the Flaviviridae family and is transmitted to its host 41 

through bites from various Aedes species mosquito.  Other members of the Flaviviridae 42 

family include West Nile virus, dengue and yellow fever 
2
. An epidemic of Zika broke out in 43 

the Yap Islands in 2007 and was later known to have been reported in French Polynesia 44 

between 2013 and 2014, followed by a spread to the Americas in 2015 
1,3

 and subsequently 45 

countries from Africa, Asia and the Pacific 
3
.  The Pan American Health Organisation 46 

(PAHO) and the World Health Organisation (WHO) reports that, aside from the States within 47 

the USA, 48 other Central and South American countries have now become affected by the 48 

transmission of the disease, and there have been a total of 3720 cases of congenital syndrome 49 

associated with the infection 
4
.  The impact of ZIKV on foetal development can be described 50 

by five comment features: (i) severe microcephaly, (ii) reduced brain tissue, (iii) ocular 51 

damage, (iv) congenital contractures and (v) hypertonia restricting body movements 
5
.  The 52 

South American country of Brazil has particularly been affected by the largest number of 53 

congenital syndrome cases associated with ZIKV, currently 2952 confirmed cases (4
th

 54 

January 2018) 
4,6

 
7,8

.  With cases reported in several countries across the world, the spread of 55 

ZIKV disease may now be referred to as a pandemic 
1
. 56 

ZIKV has an incubation period thought to be between 3 and 12 days. A key symptom of the 57 

disease is a maculopapular rash in the face, palm, sole and trunk which is expected to be seen 58 

within the seven days of infection and infection may last for weeks. Other symptoms of the 59 

disease include the fever, joint pain, conjunctivitis and retroocular headache and usually 60 

resolves in one week 
9-11

.  However, acute inflammatory polyradiculoneuropathy known as 61 

the Guillian-Barre syndrome, is a complication and can consequently cause weakness and 62 

reduced reflexes in victims 
9,11

. Further, ZIKV is capable of crossing the placenta and brings 63 
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about congenital anomalies such as microcephaly and other ophthalmologic abnormalities in 64 

the foetus. ZIKV strains has been found to be present in the placenta and foetal tissue as well 65 

as the amniotic fluid of mothers with new-borns 
6,8,12-16

. Therefore, a major concern for ZIKV 66 

infections is the progression of the virus towards into foetal tissue and the subsequent 67 

devastating consequences on foetal brain development. 68 

Currently there are no viable treatment options to prevent the spread of ZIKV.  However, in a 69 

study by Delvecchio et al (2016) 
17

, the potential for the antimalarial agent chloroquine (CQ) 70 

to inhibit the endocytosis of ZIKV within human brain microvascular endothelial and neural 71 

stem cells was demonstrated in-vitro.  Chloroquine has been approved by the Food and Drug 72 

Administration (FDA) for the treatment of malaria and for prophylactic treatment in pregnant 73 

women at risk of Plasmodium parasites 
18

. In addition to its antimalarial benefits, CQ has 74 

been used as a suppressant of autoimmune disorders such as rheumatoid arthritis (RA) and 75 

systemic lupus erythematosus (SLE) 
19

.  Further, CQ has been demonstrated to prevent the 76 

pH-dependant steps in viral replications for human HIV 
20

, human influenza A, 
21

 Japanese 77 

encephalitis virus 
22

 and dengue virus type 2 
23

.  Given that CQ is widely used in non-78 

pregnant and pregnant subjects for a range of therapeutic interventions, it represents a viable 79 

candidate for the potential repurposing in the prevention of ZIKV disease, particularly prior 80 

to and during pregnancy.  Further, any potential teratogenic risk associated with CQ use in 81 

pregnancy has been investigated  at doses used for malaria, SLE and RA 
18

. Wolfe et al. 82 

(1985) 
24

 demonstrated no significant teratogenic consequences of CQ in pregnant women in 83 

169 births from women who had received 300 mg weekly of chloroquine for malaria during 84 

their pregnancy.  In a further study, Levy et al (1991) 
18

 demonstrated that infants born to the 85 

majority of pregnant women being treated with CQ for RA and SLE, who received up to 250 86 

mg of CQ salt daily in the first trimester or 500 mg CQ salt daily for three days during early 87 

pregnancy, did not develop adverse conditions likely to be related to the use of CQ in their 88 
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mothers.  Furthermore, Mackenzie et al (1983) 
25

 demonstrated no retinal damage associated 89 

with CQ in 900 SLE patients (non-pregnant) who were treated with less than 4 mg/kg/day of 90 

CQ salt, and suggested that the threshold for ocular toxicity was 5.1 mg/kg/day 
25

.  Finally, 91 

although very few studies have examined foetal CQ pharmacokinetics, two separate studies, 92 

Law et al (2008) 
26

 and Akintonwa et al (1998) 
27

, reported the CQ ratio between the foetal 93 

cord concentrations and the maternal plasma concentrations (C:M ratio) as being 94 

approximately 1, suggesting that the placenta is not a major barrier to the partitioning of CQ 95 

into the foetus and that maternal plasma concentrations would be similar to those exposed to 96 

the foetus.  97 

Despite being used worldwide for over half of a century for anti-malaria prophylaxis 
28,29

, 98 

there has been no significant evidence suggesting foetal damage caused from the use of CQ 99 

in pregnant women 
30-33

, adding to the possibility of repurposing CQ for prevent of ZIKV 100 

endocytosis in the developing foetal brain. 101 

Given the distinct physiological changes occurring during gestation
34-37

, any attempt at 102 

providing potential doses for ZIKV during pregnancy should account for the subsequent 103 

alterations in CQ pharmacokinetics during each trimester. 104 

In this current study, a physiologically based pharmacokinetic (PBPK) model was developed 105 

to describe the deposition of CQ in non-pregnant and pregnant subjects, with a particular 106 

emphasis on: (i) identifying an appropriate plasma therapeutic window for ZIKV, (ii) 107 

optimising dosing regimens to attain this therapeutic window and (iii) assessing an optimal 108 

dosing regimen for use in different stages of gestation.  109 

2. METHODS 110 

The virtual clinical trial simulator Simcyp (Simcyp® Ltd, a Certara company, Sheffield, UK, 111 

Version 16) was used to create all the population based PBPK models used in this study 112 
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through the implementation of a pre-validated ‘Healthy Volunteer’ (HV) population.  For 113 

simulations requiring the use of pregnant subjects, we utilised the Simcyp ‘Pregnancy’ 114 

population group 
38-40

, which incorporates gestational-phase dependant physiological changes 115 

associated with pregnancy that may alter the pharmacokinetics of drugs such as a change in 116 

blood volume and organ/tissue blood flows; change in enzyme/protein expressions 
38,41-45

. 117 

A 3-stage workflow model was utilised and is detailed in Figure 1.  We adopted a robust 118 

validation approach utilising 16 clinical studies for CQ, a summary of which is described 119 

within the supplementary material (Section A, Table S1).  Further, unless otherwise stated, 120 

population sizes used in validation steps simulations and those utilised within Steps 3 121 

included a 10x10 trial design with 100 subjects. 122 

2.1 Step 1: Development and validation of a CQ model in non-pregnant subjects 123 

Model development utilised a total of 13 clinical studies reporting CQ pharmacokinetic 124 

across a range of Caucasian and non-Caucasian population groups (see Supplementary 125 

Materials: Section A).  These studies incorporated both single and multiple dose studies for 126 

CQ model development and validation.  CQ physicochemical parameters were obtained from 127 

published studies and are detailed in Table 1. During model development, where the model 128 

did not appropriately recover the shape of plasma concentration-time profile and/or 129 

pharmacokinetic parameters, a parameter estimation methodology was employed. Further 130 

details on validation and optimisation can be found in the Supplementary Materials: Section 131 

B. 132 

For clinical studies conducted in non-Caucasian populations (Filiopino, Papuan, Nigerian, 133 

Pakistani, and Thai), the Simcyp HV population group was adapted to incorporate 134 

appropriate age-body weight relationships reported in non-Caucasian subjects 
46

.  Adaptation 135 
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to the age-weight relationships for non-Caucasian populations are reported in Supplementary 136 

Materials: Section B. 137 
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2.2 Step 2: Development and validation of a CQ model in pregnant subjects 139 

For simulations involving pregnant women, the non-pregnant CQ model was revised to 140 

incorporate a full PBPK distribution model, which allows for consideration of gestation-141 

phase dependant changes in maternal physiology 
41,42,44,45

 for pharmacokinetic modelling 142 

studies 
38-40

. To recover the distribution phase profile, an appropriate volume of distribution 143 

(Vss) was empirically fixed at the mean of the range reported in literature studies utilising 144 

pregnant subjects 
31,32,47

, following by parameter estimation using a Weighted Least Square 145 

(WLS) method and the Nelder-Mead minimisation approach. Parameter estimates for the 146 

final optimised pregnancy model are detailed in Table 1. This optimised CQ model was 147 

subsequently validated utilising three clinical studies, details of which can be found in 148 

Supplementary Materials: Section C Table S2. 149 

2.3 Step 3: Identification of a suitable CQ prophylactic dose regimen for ZIKV  150 

In order to propose a plasma therapeutic window for CQ which could be used to identify an 151 

optimal dosing regimen against ZIKV, we utilised reported in vitro and in vivo concentrations 152 

for the inhibition of ZIKV into cells. Delvecchio et al. (2016) reported a CQ EC50 for the 153 

inhibition of ZIKV uptake within Vero cells, human brain microvascular endothelial cells 154 

(hBMEC) and human neural stem cells (hNSC) being within the range of 9-15 µM 
17

.  155 

Further, in ZIKV-infected interferon signalling-deficient AG129 mice, Shiryaev et al 156 

(2017) 
48

, reported that CQ extended their lifespan and confirmed that concentrations up to 40 157 

µM were able to reduce ZIKV uptake in primary human foetal neural progenitor cells (NPCs) 158 

(with 90 % inhibition at 6 µM).   159 

In other studies, the correlation between brain and plasma concentrations have been 160 

identified, with a suggested 10-to-30-fold greater brain concentration compared to plasma 161 
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concentrations for CQ 
49,50

 and a 4-to-30-fold difference for the CQ analogue 162 

hydroxychloroquine 
51

, highlighting the ability of CQ of adequately partition into brain tissue. 163 

Furthermore, in the study reported by Shiryaev et al (2017) 
48

, doses of 30 mg/kg were used 164 

in their ZIKV-infected interferon signalling-deficient AG129 mice to demonstrate uptake 165 

inhibition, this dose was similar to those used in arthritic patients where 5 mg/kg CQ salt 166 

was administered daily for one week which resulted in a CQ plasma concentrations of 10 167 

µM 
25

. A total dose of about of 30 mg/kg would be achieved in humans, which would 168 

comparable to doses used in the study by Shiryaev et al (2017) 
48

, suggesting that such 169 

plasma concentrations are attainable using similar dosing regimens employed for existing 170 

therapeutic indication for CQ. 171 

Therefore, in order to define a therapeutic window for CQ, we assumed that the target brain 172 

concentration of a maximum of 40 µM was required and to theoretically achieve this 173 

concentration in the human brain, a plasma concentration of less than an average of at least 174 

20-folds of the brain concentration may be required, that is, approximately 2 µM.  This was 175 

defined as the upper plasma therapeutic window. Given that concentration in excess of 6 µM 176 

have been reported to prevent ZIKV uptake in brain derived cells, we set the lower plasma 177 

therapeutic window at 20-fold less, that is 0.3 µM.  Therefore a plasma concentration 178 

therapeutic range of 0.3 µM to 2 µM was assumed in this study.  179 

To identify an appropriate dosing regimen to target this therapeutic window, plasma 180 

concentration-time profiles for CQ were simulated in 100 pregnant subjects (during the entire 181 

gestational phase of 280 days) using the validated CQ model at doses used for the 182 

prophylaxis of malaria and RA, i.e. 150 mg-300 mg weekly or 150 mg daily, respectively.   183 
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During this optimisation phase, the dose regimen which was able to maintain trough plasma 184 

concentrations above the lower limit of the plasma therapeutic window was identified as the 185 

optimal predicted dosing regimen. 186 

2.4 Predictive performance 187 

There are currently no universally agreed measure of predictive performance range when 188 

comparing observed data to predicted data in PBPK pharmacokinetic studies, however, a 2- 189 

fold prediction of observed data is largely accepted 
52-54

.  190 

2.5 Visual Predictive Checks 191 

Model predictions were compared to existing clinical studies using visual predictive checking 192 

(VPC), and approach described at the 2012 FDA Pediatric Advisory Committee (US Food 193 

and Drug Administration, 2012) 
55

. In brief, the predictability of the simulations was 194 

confirmed by comparing the predicted 5
th

 and 95
th

 percentiles of predicted concentration–195 

time profiles with the observed data for any validation data sets.  When the predicted data 196 

points overlapped with those from the observed data sets, which should (normally) contain a 197 

measure of spread of observed plasma concentration data (e.g., a standard deviation for each 198 

mean concentration point), the prediction was assumed to be valid. 199 

2.6 Data analysis 200 

Retrospective clinical data used for VPC were extracted using WebPlotDigitizer v.3.10 201 

(http://arohatgi.info/WebPlotDigitizer/).  Where applicable, statistical analysis was conducted 202 

using paired t-tests with a P < 0.05 indicating statistical significance. 203 

 204 

 205 

 206 
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3.  RESULTS    207 

3.1 Step 1: Development and validation of a CQ model in non-pregnant subjects 208 

Following the optimisation of the model, the final model predicted Cmax, AUC and tmax were 209 

within 2-fold of the reported parameters across all thirteen published single and multiple dose 210 

clinical studies in Caucasian and non-Caucasian subjects (Table 2).  Further, for these studies 211 

the model was able to appropriately recover the plasma concentration-time profiles (Figure 212 

2).  213 

The Mzayek et al (2007) 
56

 study demonstrated a wide variability in the absorption phase of 214 

the reported plasma concentration-time profiles, and the optimised model developed was able 215 

to recover this, with resultant predicted pharmacokinetic parameters within 2-fold of those 216 

reported (Table 2).  Further, for the Walker et al (1987) 
57

 study, the terminal elimination 217 

phase was slightly over predicted, however, the resultant AUC predicted by the model was 218 

within 2-fold of that reported (Table 2).  219 

3.2 Step 2: Development and validation of an optimised model of CQ in pregnant 220 

subjects  221 

The model was next optimised for use in pregnant population groups, utilising matching 222 

gestational weeks (where possible) to published studies, and subsequently was able to 223 

satisfactorily predict the plasma concentration-time profiles of CQ in pregnant women 224 

(Figure 4) with all pharmacokinetic parameters predicted to within 2-fold of those reported in 225 

clinical studies (Table 2). 226 

3.3 Step 3: Identification of a CQ prophylactic dosing regimen for ZIKV during 227 

pregnancy 228 
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In order to identify a dosing regimen appropriate for maintaining maternal plasma (and foetal 229 

exposure) levels, such that a sufficient concentration would be achieved to prevent foetal 230 

ZIKA brain endocytosis, standard CQ dosing regimens commonly used for malaria, RA and 231 

SLE (150 mg and 300 mg weekly, and 150 mg or 300 mg daily, respectively), were simulated 232 

during the first trimester.   233 

For malaria prophylaxis doses, 150 mg and 300 mg weekly, the simulated plasma 234 

concentration-time profiles did not achieve the lower target therapeutic limit until the end of 235 

trimester 1 (Supplementary Materials: Section C Figure S3) and were not considered for 236 

further optimisation. 237 

For doses used in RA and SLE, with a 150 mg daily dose the mean trough plasma-238 

concentration did not reach the lower limit of 0.3 µM until 12 days post first dose (Figure 239 

5A) where 96 % of subjects achieved a trough concentration in excess of the lower 240 

therapeutic window (Table 3).   At steady-state, a Cmax of 0.9 ± 0.4 µM was achieved.  For 241 

the 300 mg daily dose, the trough plasma-concentration doubled (Table 3) (Figure 5B), with a 242 

shortening of the time taken to reach the target plasma concentration to 5 days (Table 3).  243 

However, the mean steady-state Cmax was 1.8 ± 0.8 µM with 59 % of subject demonstrating a 244 

peak plasma-concentration in excess of 2 µM (Table 3) 245 

Dose optimisation was considered to identify an appropriate dosing regimen for trimester 1 to 246 

(i) achieve rapid attainment of the lower plasma therapeutic window and (ii) to maintain this 247 

concentration for the longest duration possible.  The dosing regimen identified was a loading 248 

dose of 600 mg on day 1 followed by 300 mg for 2 days and subsequently 150 mg daily 249 

during trimester 1 (Figure 5C). Under this regimen, the time taken for trough plasma 250 

concentration to be maintained within the therapeutic window shorted by six days (Figure 251 

5C) (Table 3) compared to a 150 mg daily dose (Figure 5A) (Table 3).  Further, only 1 % of 252 
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subjects possessed a plasma concentration above the upper therapeutic limit of 2 µM (Table 253 

3). 254 

 255 

Subsequently, the impact of initiating the optimal dosing regimen at the start of each 256 

trimester on the pharmacokinetics of CQ was assessed. CQ pharmacokinetic were simulated 257 

for each trimester period. In comparison to results from trimester 1, dosing this optimal 258 

regimen during either trimester 2 or 3 resulted in a progressive and statistically significant 259 

decrease (P < 0.001) in AUC, from 20.9 ± 9.6 µM.h to 11.8 ± 4.8 µM.h (calculated on the 260 

final day of the trimester) (Figure 6) with an increase in the time to reach target trough 261 

plasma concentration from 6 days for trimester 1 to 35 days for trimester 3 (Table 4) (Figure 262 

6).  Further, at trimester 3, only 79 % of subjects possessed a trough plasma concentration 263 

above the lower therapeutic limit (Table 4). 264 

 In order to finally identify an appropriate CQ dosing regimen for the entire duration of 265 

pregnancy, CQ treatment was extended from the end of the first trimester to the end of the 266 

second trimester. During trimester 1 (days 1 to 84), the predicted mean plasma concentration 267 

was maintained above the lower therapeutic window (Figure 7A) with a steady-state Cmax of 268 

0.92 ± 0.41 ng/mL (Table 5).  Assuming CQ was halted at the end of trimester 1, mean 269 

plasma concentration reached the lower therapeutic window on day 150 with 95 % of 270 

subjects possessing a trough plasma concentration above the lower therapeutic window 271 

(Table 5).  When dosing was continued throughout trimester 2 (Figure 7B), steady-state 272 

plasma concentrations were maintained with a Cmax of 0.92 ± 0.41 ng/mL (Table 5) until the 273 

end of trimester 2 (day 168), at which point CQ was halted.  Mean plasma concentrations 274 

reached the lower therapeutic window on day 279 with 94 % of subjects possessing a trough 275 
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plasma concentration above the lower therapeutic window and 5 % of subjects possessing a 276 

peak plasma concentration below the lower therapeutic window the (Table 5).  277 

 278 

 279 

4. DISCUSSION 280 

The Zika virus (ZIKV) is an infectious disease that began spreading at an alarming and 281 

unprecedented way in the early part of the current decade, and its spread has been classified 282 

as a pandemic 
1
.  Perhaps alarmingly (and importantly) a prominent feature of ZIKV which 283 

gained much publicity was the foetal and neurological consequences on infants born to 284 

infected mothers, and which primarily exhibited as microcephaly and Guillian-Barr 285 

syndrome.  Although no current treatment options are available for the prevention of the 286 

spread of ZIKV, the opportunity for repurposing existing treatments towards ZIKV exists for 287 

the antimalarial drug chloroquine (CQ).  This study addressed the potential to repurpose CQ 288 

for use in ZIKV, with a focus on developing potential dosing regimens for use in pregnancy.  289 

During model development and validation (Step 1), model performance depends largely upon 290 

the certainty of model input parameters describing CQ absorption, distribution and 291 

metabolism and elimination (ADME) 
58

.  When using literature reported pharmacokinetics 292 

parameters for absorption (ka), distribution (Vss) and elimination (clearance), the model 293 

performance was poor. This may be, in part, due to the wide variability reported for these 294 

parameters, for instance, ka has been reported in different studies as 1.8 h
-1

 (0.27-3.4 h
-1

) 
59

; 295 

1.19 h
-1 

± 1.44 h
-1 60

 and 0.51 h
-1

 ± 0.11 h
-1 61

 and Vss has been reported as 204-800 L/kg 
51

; 296 

128 L/kg (112-137 L/kg) 
47

 and 100-1000 L/kg 
62

.  Further, the reported Vss of CQ depends 297 

on whether they were estimated based on the plasma concentration or blood concentrations, 298 

particularly given that CQ has a high blood-to-plasma partitioning ratio of >5:1, therefore the 299 
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blood Vss is likely to differ from that of the plasma Vss by up to 10-folds 
63,64

. Therefore, we 300 

utilised a parameter estimation approach with the application of Weighted Least Square 301 

(WLS) and the Nelder-Mead minimisation, final optimised parameter value were obtained 302 

(Table 1), and this model was used for subsequently validation purposes.  303 

The application of this optimised model with retrospective clinical studies conducted in 304 

Caucasian subjects 
56,65,66

  resulted in model predictions of pharmacokinetic parameters to 305 

within 2-fold of that reports (Table 2), with VPC confirming appropriate predictions of the 306 

plasma concentration-time profiles for each study (Figure 2). 307 

In non-Caucasian subjects, physiological parameters, such as body-weight, vary significantly 308 

from typical Caucasian subjects and these differences may alter the pharmacokinetics of the 309 

drugs 
46

. We have previously demonstrated the impact of this in Thai 
67,68

, Sudanese and 310 

Papua New Guinea 
68

, Ugandan 
69

 and Malaysians 
70

 population groups, and these alterations 311 

were made to the Simcyp HV population groups (Supplementary Materials: Section B).  312 

Following these revision, in all single and multidose simulations involving Caucasians and 313 

non-Caucasian subjects, plasma concentration-time profiles and resultant pharmacokinetic 314 

parameters were well predicted (Figure 3) and within 2-fold of the reported parameters 315 

(Table 2) 
32,47,71-75

. 316 

Having successfully validated a non-pregnant model in Caucasian and non-Caucasian 317 

subjects, the model was extended to pregnancy subjects. The non-pregnant model was 318 

adapted by the inclusion of a full PBPK distribution model, which enables the consideration 319 

of gestational-age related alterations in maternal physiology.  This is important considering 320 

that physiological alterations such as blood volume, tissue perfusion, plasma protein binding 321 

41,42,44,45
 and CYP450 metabolic capacity 

43
 can occur.  One strength of PBPK modelling is in 322 

its ability to incorporate these changes into predictive modelling approaches 
38

.  When using 323 
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this pregnancy model, key pharmacokinetic parameters were predicted to within 2-fold of the 324 

reported clinical parameters (Table 2), with plasma concentration-time profiles well 325 

recovered for all studies (Figure 4) 
31,32,47

.  The altered blood volumes, blood flows and 326 

albumin binding capacity expected in pregnancy led to a reduction in the overall exposure of 327 

CQ in pregnant subjects compared to non-pregnant subjects (Table 2), and a similar decrease 328 

in exposure (AUC) and associated Cmax has been reported in studies where was used in 329 

pregnant subjects 
31,32,47

. 330 

Current dose regimens for CQ use in antimalarial prophylaxis, RA and SLE treatment were 331 

next examined to determine the ability of these regimens to drive steady state concentrations 332 

within the proposed therapeutic window for ZIKV disease. With a malaria prophylactic 333 

weekly CQ dose of 150 mg and 300 mg administered to pregnant subjects during the first 334 

trimester, the proposed therapeutic range for ZIKV was not achieved (Supplementary 335 

Materials: Section C Figure S3).   However, when CQ doses commonly used for SLE, that is, 336 

150 mg daily (Figure 5A) or 300 mg daily (Figure 5B) was administered, the 150 mg daily 337 

dose achieved a satisfactory mean steady-state Cmax (Table 3) within the proposed therapeutic 338 

window for ZIKV (Figure 5A), and attained the lower therapeutic window on day 12 (Table 339 

3). However, despite the higher daily dose of 300 mg achieving the target lower therapeutic 340 

limit after 5 days, this regimen was not selected as a result of peak plasma concentrations 341 

exceeding the upper therapeutic window (Figure 5B) (Table 3).    342 

Based upon the 150 mg daily dose regimen, an optimal dosing regimen was derived to reduce 343 

the time taken for trough concentration of CQ to fall within the therapeutic range proposed, 344 

and consist of: (i) an initial loading dose of 600 mg on day 1; (ii) 300 mg daily on day 2 an 3; 345 

(iii) 150 mg daily thereafter (Figure 5C).  This dosing regimen attained the target lower limit 346 

within 6 days with the majority of subjects, 96 %, possessing trough plasma concentrations 347 

within above the lower therapeutic window (Table 3). In order to improve the clinical 348 
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plausibility of the optimised dose, the optimised dose was adapted from doses used for 349 

malaria treatment (600mg at 0 hour, 6 hours, 24 hours and 36 hours) 
71-74

 and SLE/RA 350 

prophylaxis (long-term 150 mg daily dose) 
18

 because there is sufficient evidence to show at 351 

these doses, CQ administration is safe for both mother and foetus 
18

 
24

. 352 

Having identified an optimal dosing regimen, we next assessed its application at different 353 

trimesters, and when comparing trimester 1 to trimester 3, identified a concurrent decrease in 354 

Cmax (0.92 ± 0.41 µM to 0.53 ± 0.21 µM) and AUC (21.8 ± 9.6 µM.h to 11.8 ± 4.8 µM.h) 355 

(Table 4) (Figure 6A), which resulted in an increased in the time take to achieve trough 356 

plasma concentrations at the lower limited of the therapeutic window (Figure 6B) (Table 4).   357 

The physiological changes during pregnancy, primarily alterations in the body weight, 358 

plasma proteins and plasma volume 
76-80

, will drive this decrease in exposure as gestation 359 

progresses. 360 

Finally, when assessing the optimised dosing regimen for its use throughout pregnancy, we 361 

first considered dosing through trimester 1 only (Figure 7A), which resulted in mean plasma 362 

concentrations decreasing below the lower window at 150 days gestation (Figure 7A) where 363 

95 % of subjects possessing tough plasma concentrations above the lower window (Table 5).  364 

On extension of this optimised dosing regimen throughout trimester 2 (Figure 7B), mean 365 

plasma concentrations were maintained within the therapeutic window until day 279, which 366 

exceeded the start of the ‘at term’ phase, commencing from week 38 onwards (Figure 7B), 367 

and where 94 % of subjects possessed trough plasma concentrations above the lower 368 

therapeutic window.  369 

In summary, we have identified a possible therapeutic regent that would be capable of 370 

proving sufficient plasma exposure for the duration of the gestations period to potential limit 371 

ZIKV uptake into the developing foetus.  However, this study is not without limitations.  372 
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An obvious limitation to our work is the current inability to accurately predict the 373 

pharmacokinetics of CQ in the foetus. Only two clinical studies have reported CQ as being 374 

able to reach the foetus through sampling cord blood 
26,27

, but foetal drug levels were not 375 

recorded. However, the reported foetal: maternal concentration ratio was reported to be near 376 

unity, suggesting overall foetal exposure would be similar to that within the mother.  377 

Therefore we assumed that the driving force for overall foetal exposure would be the material 378 

plasma concentration, which was used as a measure of the ‘target’ concentration within the 379 

foetus also.  It further goes without saying that this assumption would therefore need to also 380 

consider the gestational-related changes in foetal physiology.  However, the placenta plays a 381 

vital ADME role in controlling delivery of xenobiotics to the foetus, and given the similarity 382 

in exposure of CQ between both the mother and foetus 
26,27

, the Simcyp Pregnancy model 383 

incorporated these key gestation related changes in anthropometric features of the mother 384 

and the foetus (implemented as a pooled feto-placental compartment within Simcyp) 
38-40

. 385 

Recently Abduljalil et al (2018) 
81

 have collated foetal biometry and tissue composition data 386 

which may drive future studies to better describe and drive, from a mechanistic 387 

pharmacokinetic viewpoint, the development of a more appropriate and detailed foetal PBPK 388 

model which could predict overall foetal CQ brain exposure, however without CQ foetal 389 

tissue sampling data, any validation of such prediction would be difficult. 390 

Our modelling approach utilised a ‘worst-case’ scenario in deriving a possible plasma 391 

therapeutic window for CQ.  Our upper and lower plasma concentrations, 2 µM and 0.3 µM 392 

respectively, was based on assuming that a 10-to-30-fold greater brain concentration existing 393 

when compared to plasma concentrations for CQ 
49,50

.  We utilised the average of this range, 394 

a 20-fold lower plasma concentration compared to reported range of inhibitory concentration 395 

of 6-40 µM 
17,48

.  Whilst not being able to directly verify human foetal brain concentrations, 396 

our range of predicted peak plasma concentrations (0.1-1.88 µM) for the final optimised 397 
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dosing regimen in pregnant subjects spanned this range and would potentially provide an 398 

overall peak brain exposure of 18.8 µM to 56.4 µM.  This is assuming that CQ is capable of 399 

partitioning across the blood-brain barrier (BBB), with reports suggesting the BBB does not 400 

provide a permeability barrier to CQ 
50

.  However, it is known that the foetal BBB develops 401 

from gestational week 8 with tight junction formation by week 18 
82

.  Therefore further 402 

characterisation of the role of the foetal BBB is warrented to estimate the likely CQ foetal 403 

brain exposure. 404 

In relation to the dosing regimen proposed, chloroquine has been in use for at least 50 years, 405 

having been introduced as an alternative to quinine 
28,29

.  Its use in pregnancy has therefore 406 

been examined by various groups for safety and efficacy with little reported concerns.  At 407 

doses proposed in this simulation, Klinger et al (2001)
83

 reported no ophthalmic 408 

abnormalities in children born followed the maternal use of CQ during a mean duration of 7.2 409 

months of gestation for doses of up to 332 mg daily. In a further study by Rukaria-410 

Kaumbutho et al (1996)
84

, at doses of 25 mg/kg over 3 days, no safety concerns were 411 

identified in births at term.  Further, a review by Nosten et al (2006) 
85

 identified 755 cases of 412 

first trimester exposure to chloroquine with no significant abortion risk or foetal risk.  Finally, 413 

a study by Wolfe and Cordero (1985) 
24

 examined a cohort of 168 births to women treated 414 

with 300 mg CQ once weekly during the duration of pregnancy and identified no significant 415 

increase in the proportion of birth defects when compared to a control group who were not 416 

treated with CQ.  Therefore, the proposed dosing regimen would provide a level of exposure 417 

similar to those reported in existing studies of CQ in pregnant women. 418 

5. CONCLUSION 419 

With the CQ model developed in this study, a CQ dose of 600 mg on day one, followed by 2 420 

days treatment of 300 mg daily and thereafter 150 mg daily from day 3 until the end of 421 
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trimester 2 would provide a plasma concentration within the range of 0.3-2 µM, potentially 422 

providing protection against ZIKV throughout pregnancy.  Though the results from this study 423 

are subject to clinical confirmation, it is serves as a guide for future clinical studies. 424 

  425 
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List Of Figures 687 

Figure 1: Workflow of PBPK model 688 

The workflow based approach implemented in the development and validation of a CQ 689 

model for use in non-pregnant and pregnant subjects.  690 

 691 

Figure 2: Simulated blood or plasma concentration-time profiles of single dose CQ in 692 

non-pregnant subjects 693 

Simulated blood or plasma concentrations for CQ following single dose studies in healthy 694 

Caucasian (Frisk-Holmberg, Gustaffson and Mzayek only) subjects and non-Caucasian 695 

subjects. Solid lines represent mean predicted concentration-time profile with dotted lines 696 

representing 5
th

 and 95
th

  percentile range. Open red circles represent observed clinical data 697 

from each study.  For the Mzayek et al study, red circles indicate data extracted from 698 

complete plasma concentrations profile ‘lines’ for individual subjects rather than discrete 699 

time-points. Where presented, error bars indicate standard deviation.  700 

 701 

Figure 3: Simulated blood or plasma concentration-time profiles of multiple dose CQ in 702 

non-pregnant subjects 703 

Simulated mean blood or plasma concentrations for CQ following multi- dose studies in 704 

healthy Caucasian subjects (Wetsteyn only) and non-Caucasian subjects. Solid lines represent 705 

mean predicted concentration-time profile with dotted lines representing 5
th

 and 95
th

  706 

percentile range. Open red circles represent observed clinical data from each study. Error bars 707 

indicate standard deviation in the Lee; Na-Bangchang; Tanariya; Bustos and Wetsteyn 708 
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studies. Individual plasma or blood concentration data point are represented by open red 709 

circles in Karunajeewa and Hoglund studies.  Left-hand side panels indicate simulations for 710 

the total study duration and right-hand side panels illustrate the first three dosing days.  711 

 712 

Figure 4: Simulated plasma concentration-time profiles of multiple dose CQ in 713 

pregnant subjects 714 

Simulated mean plasma concentrations for CQ following multidose studies in pregnant 715 

subjects. Solid lines represent mean predicted plasma concentration-time profile with dotted 716 

lines representing 5
th

 and 95
th

  percentile range. Open red circles represent observed clinical 717 

data from each study. Error bars indicate standard deviation. Left-hand side panels indicate 718 

simulations for the total study duration and right-hand side panels illustrate the dosing period 719 

only.  720 

 721 

Figure 5:   Simulated plasma concentration-time profiles for CQ dosed during the first 722 

trimester.  723 

Simulated CQ plasma concentration-time profiles during trimester 1 for: (A) a 150 mg daily dose; 724 

(B) a 300 mg daily dose; (C) a proposed optimised daily dose. Dark green lines indicate mean 725 

plasma concentration-time profiles; light green shaded area bordered by the dash lines indicate 726 

the area within the 5th and 95th percentile of predicted mean plasma concentration-time profiles; 727 

light brown shaded area represents the proposed therapeutic range of CQ for ZIKV (0.3-2 µM); 728 

dashed dash vertical lines indicates the time at which trough concentration are maintained above 729 

the lower therapeutic window.  730 

 731 
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Figure 6: Simulated plasma concentration-time profiles for CQ dosed during each trimester 732 

Simulated CQ plasma concentration-time profile utilising the optimised dosing regimen, during 733 

each trimester. (A) Simulated profiles for the entire duration of each trimester; (B) Simulated 734 

profiles for the first 40 days of each trimester. Dark green, red and blue lines indicate mean 735 

plasma concentration-time profiles during the 1st, 2nd and 3rd trimesters respectively; lighter 736 

shaded areas indicate the area within the 95th and 5th percentile of the predicted mean plasma 737 

concentration-time profiles during trimester 1 (upper, light green) and trimester 3 (lower, light 738 

blue); light brown shaded area represents the proposed plasma therapeutic window of CQ for 739 

ZIKV (0.3-2 µM); dashed dash vertical lines indicates the time at which trough concentration are 740 

maintained above the lower therapeutic window.  741 

Figure 7:  Simulated plasma concentration-time profiles for CQ dosed during trimester 1 742 

and 2 743 

Simulated CQ plasma concentration-time profile utilising the optimised dosing regimen during 744 

(A) trimester 1 and (B) throughout trimester 1 and 2.  Left panels indicate the entire duration of 745 

gestation (day 0 to 280) and right panels indicate periods from the end of the trimester to the 746 

point at which mean trough plasma concentrations fall below the lower therapeutic window.  747 

Dark green and blue lines indicate mean plasma concentration-time profiles during the 1st and 2nd 748 

trimesters respectively with lighter shaded areas indicating the area within the 95th and 5th 749 

percentile of the predicted mean plasma concentration-time profiles; light brown shaded area 750 

represent the therapeutic range of CQ proposed to be effective against ZIKV.  The time at which 751 

the mean trough plasma concentrations fall below the lower therapeutic window is indicated by 752 

the arrows.  Red dashed lines indicates the ‘at term’ phase. 753 

 754 

 755 
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Table 1: Model parameter values for base and optimised model of CQ in non-pregnant and pregnant 

subjects 

Parameter 

Optimised model 

(non-pregnant) 

Optimised model 

(pregnant) 

Compound type Diprotic base 
43

 Diprotic base 
43

 

Molecular weight (g/mol) 319.9 
44

 319.9 
44

 

log P  4.72 45 4.72 45 

fu 0.55
 46

 0.55 
46

 

pKa 1 10.1 45 10.1 45 

pKa 2 8.38 
45

 8.38 
45

 

Vss (L/kg) 125 (CV: 40 %) 
b
 130

b
 

Vsac (L/kg) 52.9 
b
 - 

Q (L/h) 5 
b
 - 

Kp scalar - 3.35 
c
 

fa 0.8 d 0.8 d 

ka (h
-1

) 1.2
 d

 0.5 
d
 

Solubility (mg/mL) 0.0175 
44

 0.0175 
44

 

Vmax2D6 (pmol/min/pmol) 2.10 
47

 2.10 
47

 

Vmax3A4 (pmol/min/pmol) 2.94 
47

 2.94 
47

 

Vmax2C8 (pmol/min/pmol) 8.33 
47

 8.33 
47

 

Km2D6 (µM) 19.5 47 19.5 47 

Km3A4 (µM) 294 
47

 294 
47

 

Km2C8 (µM) 111 
47

 111 
47

 

fumic 0.13
 e
 0.13 

e
 

ISEF CYP 2D6 0.5 
f
 0.8 

f
 

ISEF CYP 3A4 0.42 
f
 0.7 

f
 

ISEF CYP 2C8 1.1 f 1.6 f 

Clrenal (L/h) 4.6 
g
 5.5 

g
 

Absorption model  first order first order 

Distribution model minimal PBPK full PBPK 

a
 Simcyp® mechanistic prediction; 

b
 parameter estimated using a minimal PBPK model with a single adjusting 

compartment (SAC); 
c
 an appropriate Kp scalar was empirically optimised for a full PBPK model in 
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pregnancy; 
d
 parameter estimated using a first order absorption kinetic model; 

e
 parameter estimated; 

f
 

parameter estimated for use in optimisation of clearance kinetics; 
g
 parameter estimated. logP: the logarithm 

of the n-octanol:buffer partition coefficient; fu: unbound fraction; B/P: blood-to-plasma ratio; Vss: steady 

state volume of distribution; Vsac: volume of single adjusting compartment; Q: blood flow to the single 

adjusting compartment; ka: absorption rate constant; Kp scalar: scalar applied to all predicted tissue partition 

values fa: fraction dose absorbed; ka: absorption rate constant; Vmax: maximum rate of metabolite 

formation; Km: Michaelis-Menten constant; fumic: fraction of unbound drug in the invitro microsomal 

incubation; ISEF: Intersystem extrapolation factor for scaling CYP in-vitro kinetic data; CLrenal: renal 

clearance.  
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Table 2. Summary of predicted and observed pharmacokinetic parameters of for CQ 

    Cmax tmax (h) AUC 

    Predicted Observed Predicted Observed Predicted Observed 

C
a

u
ca

si
a

n
 

S
in

g
le

 D
o

se
 

Gustafsson  
a,  e

 56.8 ± 23.8 76 ± 14 4.9 ± 2.6 3.6 ± 2.0 9315 ± 3951 6111 ± 1315 

Mzayek 
 b, f *

 1.45 (0.3 – 6.1) 1.8 (1.3-5.2) 4.2 (1.5 – 7.1) 3.0 (1.0-8.0) 112 (31.5 - 225) 90 (48.9-212 

Frisk (150 mg dose)
 b,  i

 0.11 NR 5.2 ± 2.4 NR 3.14 ± 1.3 2.54 ± 0.55 

Frisk (300 mg dose)
 b,  i

 0.94 NR 5.2 ± 2.4 NR 6.28 ± 2.5 6.19 ± 1.39 

Frisk (600 mg dose)
 b, i

 1.9 ± 7.4 NR 5.2 ± 2.4 NR 12.6 ± 5.1 11.6 ± 2.4 

N
o

n
-C

a
u

ca
si

a
n

 

S
in

g
le

 D
o
se

 

Chukwuani 
 a, e

 177 ± 170 391 ± 91 4.7 ± 2.4 5.6 ± 0.8 7408 ± 4622 10820 ± 2714 

Najmi 
 c, g,

** 172 ± 166 201 ± 15 4.6 ± 2.3 6.10 ± 0.66 12775 ± 5835 10827 ± 1340 

Walker 
 a, e

 159 ± 149 374 ± 56 4.8 ± 2.4 5 ± 3 25865 ± 10608 18609 ± 4254 

N
o

n
-C

a
u

ca
si

a
n

 

M
u
lt

i 
D

o
se

 

 

Karunajeewa 
 c, g,

** 297 (79.1-769) 376 
#
 - - 

57014 (11218-

112760) 

47892 (43486-

53746) 

Na-Bangchang 
 a,  j.***

 883.6 (266-2306) 838 (656-1587) - - 167 (35.4-315) 122 (103-182) 

Bustos 
 a,  k,** 166.4 (63.47-335.7) 285 (186-422) - - 2189  (525-4760) 2299 (1149 -39908) 

Lee 
 a, e,

** 836 (244-3006) 700 (403 - 1625)
##

 - - 

189024               

(47160 - 334210) 

134087 (62940 - 

229695) 

Hoglund 
 b, I,**

 2.7 (2.04) NR 3.8 NR 24.2 (10.3) NR 
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Tanariya 
 a, k,**

 994 (666) NR 4.3 NR 7897 (3245) NR 

C
a

u
ca

si
a

n
  

M
u
lt

i 
D

o
se

 

Wetsteyn 
 d, l,**

 85.6 (56.1) NR 3.6 NR 1429 (590) NR 

 

P
re

g
n

a
n

t 

Fakeye 
 a, e

 123.9 ± 56.0 204.36 ± 134.7 4.6 ± 1.68 2 2113.9 ± 38.3 NR 

Karunjeewa 
 d, h,**

 145.7 (53.4-240.5) 296** - - 

38585               

(14236-65641) 

35750 (31343-

39729) 

Lee 
 a, e,**

 482.7 (166.5-921.8) 960.5 (297-1835) 3.84 (2.4- 4.8) 3 (1.5- 8) 

156 847               

(54768-349488) 

122216 (74145- 

269600) 

 

Units for Cmax are as follows: 
a
 ng/mL; 

b
 µM; 

c
 mg/L; 

d
 µg/L; Units for AUC are as follows: 

e
 ng/mL.h; 

f
 µM.h; 

g
 mg/L.h; 

h
 µg/L.h; 

i
 µM.day; 

j
 

µg/mL.h ; 
k
 ng/mL.Day; 

l
 µg/L.Day. Unless otherwise stated, data represent means ± SD or median (range). * Data represents median (range); ** 

AUC0-∞ (AUC calculated from the start of the study and extrapolated to infinity); *** AUC0-28d: AUC calculated 28 days period only; **** AUC0-48d: 

AUC calculated 48 days period only. 
#
 No SD or median was reported; 

##
 Cmax reported for the first dose only 
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Table 3: Steady-state pharmacokinetic parameters of CQ during pregnancy 

Dose  

(mg) 

Cmax 

(µM) 

tmax  

(h) 

AUC  

(µM.h) 

Time to 

lower 

window 
a
 

(days) 

Percentage of 

subjects with 

Cmin > 0.3 µM 

at SS 
b
 

Percentage 

of subjects 

with Cmax < 

2 µM at SS 
c
 

150 0.9 ± 0.4 2.4 ± 0.5 21.8 ± 9.4 12 96 99 

300 1.8 ± 0.8 2.4 ± 0.5 43.9 ± 18.7 5 99 59 

Optimised 0.9 ± 0.4 2.4 ± 0.5 48.8 ± 30.9 6 96 99 

Data represents mean ± standard deviation. 
a
 Time taken for mean trough plasma 

concentrations to be maintained above 0.3 µM; 
b 

Percentage of subjects with trough plasma 

concentrations above 0.3 µM at steady-state; 
c 

Percentage of subjects with peak plasma 

concentrations below 2 µM at steady-state.  AUC was calculated for the final dosing day.   
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Table 4: Steady-state pharmacokinetic parameters of the optimised CQ regimen 

during pregnancy 

Trimester 

Cmax  

(µM) 

tmax  

(h) 

AUC  

(µM.h) 

Time to 

lower 

window 
a
 

(days) 

Percentage of 

subjects with 

Cmin > 0.3 

µM at SS 
b
 

Percentage of 

subjects with 

Cmax < 2 µM 

at SS 
b
 

1 0.92 ± 0.41 2.2 ± 0.5 21.8 ± 9.6 6 96 99 

2 0.75 ± 0.32 2.2 ± 0.5 17 ± 7.2 14 93 100 

3 0.53 ± 0.21 2.6 ± 0.7 11.8 ± 4.8 35 79 100 

Data represents mean ± standard deviation. 
a
 Time taken for mean trough plasma 

concentrations to be maintained above 0.3 µM; 
b 

Percentage of subjects with trough plasma 

concentrations above 0.3 µM at steady-state; 
c 

Percentage of subjects with peak plasma 

concentrations below 2 µM at steady-state.  AUC was calculated for the final dosing day. 
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Table 5: Steady-state pharmacokinetic parameters of the optimised CQ regimen 

during pregnancy 

  Trimester 

  1 1 and 2 
*
 

Cmax  (µM) 0.92 ± 0.41 0.92 ± 0.41 

tmax (h) 2.2 ± 0.5 2.2 ± 0.5 

AUC (µM.h)  20.9 ± 9.6 21.0 ± 9.5 

Time to increase to lower window 
a
 (Days) 6 6 

Subjects with Cmin above window (%) 
b
 67 65 

Time to decrease to lower window
 c
 (Days) 150 279 

Subjects with Cmin above window (%) 
b
 95 94 

Subjects with Cmax below window (%) 
d
 1 5 

 

Data represents mean ± standard deviation from the final dose. * Cmax, tmax and AUC 

collected on the final dosing day.  
a
 Time taken for mean concentrations to be reach 0.3 µM; 

b 

Percentage of subjects with trough plasma concentrations above 0.3 µM; AUC was calculated 

for the final dosing day; 
c 

Time taken for mean plasma concentrations to decrease to 0.3 µM; 

d 
Percentage of subjects with peak plasma concentrations below 0.3 µM. 
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Section A 6 

Table S1.  Summary of single and multiple dose studies used in the validation of CQ pharmacokinetics in non-pregnant subjects 7 

Study 

Number 

of 

subjects 

Ethnic group 
Age 

(Years) 

Weight  

(kg) 

Gender 

 (M/F) 
Dosing regimen 

Concentration 

matrix 

Mzayek et al (2007)
1
 24 

Mixed  

(Caucasian  

and  

Black American) 

28.7 ± 5.3 75.8 ± 18.6 M, F 
600 mg (single 

oral) 
Blood 

Gustaffson et al 

(1983)
2
 

11 Caucasian 20 - 36 65 - 91  M 
300 mg (single 

oral) 
Plasma 

Najmi et al (2008)
3
 10 Pakistani 33.5 66 M 

600 mg (single 

oral) 
Plasma 

Höglund et al (2016)
4
 75 Thai 17 - 52 NR M, F 

10 and 5 mg/kg at 0 

and 6–12 h on day 

0, and 5 mg/kg each 

on day 1 and day 2 

Plasma 

Karunajeewa et al 

(2010)
5
 

30 Papuan 25.5 ± 8.9 51.8 ± 5.5 F 
450 mg once daily 

for 3 days  
Plasma 

Tanariya et al (1995)
6
 57 Thai 26.4 ± 8.7 56.4 ± 7.1 M, F 

600 mg initially, 

followed by 300 mg 

at hours 6, 24 and 

48 hours) 

Blood 

Na-Bangchang et al 

(1994)
7
 

7 Thai 18 - 35 45 - 68 M 

600 mg initially, 

followed by 300 mg 

at hours 6, 24 and 

48 hours) 

Blood 

Chukwuani et al 

(2004)
8
 

5 Nigerian 23 - 37 56 - 66 F 
600 mg (single 

oral) 
Plasma 

Lee et al (2008)
9
 13 Thai 

29 (15 - 

40) 
46 ± 4.9  F 

10, 10, and 5 mg/kg 

given at 0, 24, and 
Blood 

Page 52 of 65Journal of Pharmaceutical Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3 

 

48 hours 

Bustos et al (2002)10 11 Filipino 
35 (13 - 

63) 
60 (40-63) M, F 

10 and 5 mg/kg at 0 

and 6 hours on day 

0, and 5 mg/kg each 

on day 1 and day 2 

Plasma 

Wetsteyn et al 

(1995)
11

 
5 Caucasian 41 64 ± 10 M, F 

300 mg weekly for 

3 weeks  
Plasma 

Frisk-Holmberg et al 

(1984)
12

 
5 Caucasian 37 - 42  72 ± 8 M, F 

150 mg (single 

oral); 300 mg 

(single oral); 600 

mg (single oral) 

given to each 

subject on 3 

separate occasions 

Blood 

Walker et al (1987)
11

  8 Nigerian 19 - 55 53 - 66 M, F 
600 mg (single 

oral) 
Plasma 

 8 

Data represented as: range, mean (range) or mean ± SD. 9 

 10 
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Section B 11 

Step 1: Development and validation of a CQ model in non-pregnant subjects 12 

In this step, the CQ model was optimised to adequately recover the general shape of 13 

the plasma concentration-time profiles and accurately predict pharmacokinetic 14 

parameters of CQ in non-pregnant populations. Where the initial model did not 15 

appropriately recover pharmacokinetic phases and parameters, a parameter estimation 16 

methodology was employed.   17 

To recover the shape of the absorption phase, a First Order absorption model was 18 

utilised to identify an appropriate maximum plasma/blood concentrations (Cmax) and 19 

time to reach the Cmax (tmax).  Clinically reported absorption rate constants (ka) and 20 

fraction absorbed (fa) values were selected with ka reported in literature as ranging 21 

from 0.27 to 3.4 h
-1

 and fa reported as 0.9.  These were empirically fixed (with ka 22 

fixed as the mean of the reported range), and subsequently optimised by parameter 23 

estimation methodology implementing a Weighted Least Square (WLS) approach and 24 

the Nelder-Mead minimisation method to arrive at parameters which appropriately 25 

recovered the absorption phase (fa: 0.8; ka: 1.2 h
-1

), and were within the range 26 

reported from clinical studies 
13-15

. 27 

The volume of distribution at steady-state (Vss) was estimated by a similar 28 

methodology as that applied for the absorption phase, with Vss reported in clinical 29 

studies as ranging from 100 L/kg to 1000 L/kg 
5,16,17

, and empirically fixed as the 30 

mean of this range prior to parameter estimation.  As the reported Vss was large, a 31 

minimal PBPK model was utilised with the incorporation of a ‘single adjusting 32 

compartment’ (SAC) to capture the correct distribution phases of the plasma 33 

concentration-time profile (Figure S1).  Final parameter estimates of 125 L/kg for the 34 
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5 

 

central compartment (VSS) and 52.9 L/kg for the SAC (Vsac) were able to appropriately 35 

recover the distribution phase of the profile.  It should be noted that this was achieved 36 

following the incorporation of a change in the mean dispersion parameter applied to 37 

the central compartment (i.e. the coefficient of variation), which was adjusted from 38 

the Simcyp default of 30 % to a revised 40 %. 39 

Finally, the rate of metabolite formation, Vmax and Michaelis-Menten constant (Km) 40 

for CYP2D6, 3A4 and 2C8 elimination pathways were obtained from a literature 41 

reported study 
18

 using recombinant P450 systems.  However, to achieve satisfactory 42 

recovery of the elimination phase, the Inter-System Extrapolation Factor (ISEF) for 43 

scaling recombinant cytochrome (CYP) P450 enzymes from in vitro kinetic data were 44 

parameter estimated for all three metabolism pathways. In addition, CQ elimination 45 

has contributions from both hepatic and renal pathways, with the latter contribution 46 

approximately 30-50 % of the total clearance of CQ 
2,19

.  Therefore, a renal clearance 47 

was parameter estimated based on an empirically fixed mean estimate. 48 

Parameter sensitivity analysis was subsequently conducted on ISEF for CYP2D6 and 49 

CYP3A4 (the two isozymes requiring significant changes in ISEF).  When conducted 50 

over a range of 0.2-2, there was minimal sensitivity of CL, Cmax and AUC to changes 51 

in ISEF (Figure S2) confirming appropriate estimates of ISEF for CYP2D6 and 52 

CYP3A4.  53 

These revisions were confirmed in against 13 published clinical studies conducted in 54 

Caucasian and non-Caucasian subjects. Final parameter estimates are detailed within 55 

Table of the manuscript.  56 
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All modelled was conducted within the Simcyp Simulator (Version 17).  This is 58 

available under a free licence for academic research (non-profit) from Certara 59 

(www.certata.com).  However, for those unable to obtain a licence from Certara, the 60 

open source package PK-Sim (Open Systems Pharmacology) 61 

(https://github.com/Open-Systems-Pharmacology) allows simulations in both non-62 

pregnant and pregnant subjects and provides a detailed summary of ‘systems’ related 63 

parameters for model building.    The ‘Compound’ related parameters described 64 

within Table 1 of the manuscript will allow re-creation and re-validation of CQ within 65 

PK-SIM.66 
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 67 

Figure S1:   PBPK models utilised within Simcyp.  68 

Structure of the full (A) and minimal (B) PBPK models used within the Simcyp Simulator. Q refers to tissue perfusion; Kin/Kout (CLint/CLout): refer to 69 

transfer processes between the systemic compartment and the single adjusting compartment.  70 

 71 
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  72 

Figure S2:   Sensitivity analysis of CYP3A4 and CYP2D6 ISEF 73 

Sensitivity analysis of (A) clearance, (B) first dose Cmax and (C) AUC following 74 

alterations in CYP3A4 and CYP2D6 ISEF (over a range of 0.2-2) for non-pregnant 75 

adults. Current optimised model estimates (CYP3A4 ISEF = 0.42 and CYP2D6 = 0.5) 76 

and default estimates (ISEF = 1) are illustrated. 77 
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Adaptation of the age-weight relationships for non-Caucasian groups  79 

Customised age-weight relationships for non-Caucasian subjects were incorporated 80 

through adaptation of the Simcyp Healthy Volunteer population group and utilising 81 

reported age-weight relationships 
20

 for specific countries of origin relating to each 82 

clinical study used, which included Filipinos, Nigerians, Pakistani, Papuans and 83 

Thais. The reported median age-weight reference charts for the specific population 84 

groups were used to establish mathematical (polynomial regression) relationships to 85 

predict body weight from age, using TableCurve2D (Systat Software, San Jose, CA, 86 

USA) 87 

The final mathematical relationships are detailed below: 88 

Filipinos and Papuans 89 

Due to geographical locations, an age-weight relationship for Filipinos and Papuans 90 

were assumed to be similar and the age weight relationship was shown below: 91 

Adult males: 92 

Body weight = (6.0000871 + (1.8363904*age) + (-0.28876641*age
2
) + 93 

(0.011482471*age
3
)) / (1 + (-0.06584622*age) + (-0.0016572488*age

2
) + 94 

(0.00016955778*age
3
)) 95 

 96 

Adult females: 97 

Body weight = (6.03 + 0.197*age
2 

+ 0.0012*age
4
) / (1+0.00127*age

2 
+ 98 

0.0000255*age
4
) 99 

 100 

 101 
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Nigerians:  102 

Adult males: 103 

Body weight = (3.1190351 + (2.7547707*age
0.5

)+(-104 

1.9861521*age)+(0.29731577*age
1.5

))/(1+(-105 

0.63494158*age
0.5

)+(0.15239313*age)+(-106 

0.017751472*age
1.5

)+(0.0010549434*age
2
)) 107 

Adult females:  108 

Body weight = (3.9015149+(0.280026178*age
0.5

) + (-0.92347063*age) + 109 

(0.16145376*age
1.5

)) / (1 + (-0.75349793*age
0.5

) + (0.2157188*age) + (-110 

0.028738874*age
1.5

) + (0.0016167479*age
2
)) 111 

 112 

Pakistani and Thais: 113 

Due to geographical locations, an age-weight relationship for Pakistani and Thais 114 

were assumed to be similar and the age weight relationship was shown below: 115 

Adult males:  116 

Body weight = 33.46 + (-0.3569*age
2
) + (0.001522*age

4
) / (1 + (-0.00755*age

2
) + 117 

(2.78x10 - 5*age
4
) + (-1.07x10-9*age

6
)) 118 

Adult Females: 119 

Body weight = -920.66 + (-188.63*age) + (22.48*age
1.5

) + (-0.999*age
2
) + 120 

(700.23*age
0.5

).  121 
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Section C 122 

Table S2.  Summary 123 

of single and 124 

multiple dose 125 

studies used in the 126 

validation of CQ 127 

pharmacokinetics in 128 

pregnant subjects 129 

 130 

 131 

 132 

 133 

 134 

Study 

Number 

of 

subjects 

Ethnic 

group 

Age  

(Years) 

Weight 

(kg) 

Gestation  

(Weeks) 

Dosing 

 regimen 

Concentration 

matrix 

Karunajeewa et 

al 2010
5
 

30 Papuan 26.0 ± 5.9 54.0 ± 6.4 NR 
450 mg once daily 

for 3 days  
Plasma 

Lee et al 

20089 
12 Thai 25 (15 - 37) 49.5 ± 5.6 20 -32 

10, 10, and 

5 mg/kg  given at 

0, 24, and 48 hours 

Blood 

Fakeye et al, 

2002
21

 
4 Nigerian 30 ± 2.3 60.3 ± 8.9 

 

10, 10, and 

5 mg/kg  given at 

0, 24, and 48 hours 

Plasma 
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Data represented as: range, mean (range) or mean ± SD. 135 

 136 

 137 

 138 

 139 
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 140 

Figure S3:   Simulated plasma concentration-time profiles for CQ dosed once 141 

weekly during the first trimester.  142 

Simulated CQ plasma concentration-time profiles during trimester 1 for: (A) a 150 mg 143 

weekly dose; (B) a 300 mg weekly dose. Dark green lines indicate mean plasma 144 

concentration-time profiles; light green shaded area bordered by the dash lines indicate 145 

the area within the 5th and 95th percentile of predicted mean plasma concentration-time 146 

profiles; light brown shaded area represents the proposed therapeutic range of CQ for 147 

ZIKV (0.3-2 µM).  148 
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