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 Abstract—We experimentally characterise the linear and 

nonlinear performance of a >70nm, dual-stage, 19.5dB average net 

gain discrete Raman amplifier using different nonlinear fibres in 

the second stage. We propose an architecture built with a 

combination of IDF and SMF, and compare its performance with 

amplifiers built with conventionally used nonlinear fibre types 

(IDF-IDF, IDF-DCF). The measured FWM product power shows 

the IDF-SMF architecture to generate less nonlinear interference 

when compared to other schemes. We test the amplifiers with 

5x120Gb/s DP-QPSK WDM signals in a recirculating loop at 10 

recirculations of 93.4km SMF fibre, where the power sweep shows 

up to 2dB optimum launch power difference, with the maximum 

Q2 factor varying by up to 1.6dB. Using the optimum transmission 

point we measure a Q2=8.8dB at 35 recirculations of 93.4km 

transmission (3269km) with the proposed IDF-SMF scheme, 

which is >460km further than the other tested architectures. All 

characterised schemes performed similarly in the linear noise 

regime.  

 
Index Terms—Discrete Raman Amplification, Broadband 

Transmission, Nonlinearity Characterisation.  

I. INTRODUCTION 

AMAN amplification is a technique that can be used to 

increase fibre transmission capacity by enhancing the 

bandwidth of the transmitted signal which is currently limited 

by the commonly used erbium doped fibre amplifiers (EDFA). 

The bandwidth of those devices is limited to ~40nm with a 

possibility for doubling by combining EDFAs operating in 

different bands, but such an approach generates a “bandwidth 

gap” introducing excess losses due to band splitters. Raman 

amplification on the other hand provides seamless broad 

bandwidth gain [1] with fully configurable gain profile. By 

using multiple pump lasers it is possible to scale the bandwidth 

to over 100 nm [2], however this can be costly as achieving a 

flat gain spectrum requires pumping at many wavelengths [3]. 

The majority of deployed Raman amplifiers employ distributed 

amplification, which by using the transmission fibre as the gain 

medium itself improves the optical signal to noise ratio (OSNR) 

and thus directly increases the achievable transmission distance 

[1]. This technique however requires low loss between terminal 

equipment and transmission fibre, and high optical pump 
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powers to be launched into the transmission fibre, which can be 

disadvantageous due to operational restrictions and laser safety.  

 Discrete Raman amplification (DRA), which by design uses 

a separate fibre as a gain medium overcomes these limitations, 

but at the expense of no improvement of the OSNR. Most 

reported discrete Raman amplifiers use dispersion 

compensating fibre (DCF) as the gain medium [4]. Other types 

of Raman gain fibre: highly nonlinear fibre (HNLF), dispersion 

shifted fibre (DSF) and inverse dispersion fibre (IDF) have also 

been investigated [5]. Choosing the right fibre type is an 

important factor because while a smaller core area results in 

higher gain, their high nonlinear index can result in Kerr-

induced nonlinear penalties due to self-phase modulation 

(SPM) induced nonlinear phase shift (NPS), cross-phase 

modulation (XPM) and four-wave mixing (FWM) [5-7].  

 The dual-stage DRA approach is a concept that has been 

shown to increase the overall performance of a discrete 

amplifier [8]. Having two stages instead of one with an optical 

isolator in between them limits double Rayleigh scattering 

(DRS) induced multi-path interference (MPI) crosstalk, 

enabling an increase in single stage limited maximum gain [9].  

 In this paper, for the first time to our knowledge, we 

experimentally characterise the linear and nonlinear 

performance of >70nm, 19.5dB gain dual-stage amplifier 

designs built with different fibre types (IDF, DCF, SMF) in the 

second stage and identify an IDF10km-SMF10km 

configuration as the one with lowest nonlinear transmission 

penalty. The first stage is built with 10km of IDF, which was 

chosen because of its optimal trade-off between noise figure 

(NF), nonlinear impairments and gain efficiency compared with 

DCF and SMF [6]. We use 10km of SMF, 5km and 10km of 

DCF and 7.5km of IDF in the second stage, and compare the 

performance of all four architectures in terms of gain, noise 

figure and FWM product power, where we measure a 3.3dB 

power difference in integrated FWM product between the best 

(IDF10km-SMF10km) and worst (IDF10km-DCF10km) 

performing setup. Finally, we characterise the performance of 

dual-stage DRA in a recirculating loop with the use of 

5x120Gb/s DP-QPSK signals at 10 spans of 93.4km of SMF. 

We reach a distance of 3269km (Q2=8.8dB) with the use of our 

IDF-SMF amplifier which is twice as far as the worst 
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performing configuration, IDF-DCF10km. We ascribe this 

improvement to its reduced sensitivity to signal power and 

superior performance in the nonlinear regime. 

II. AMPLIFIER DESIGN 

The discrete Raman amplifier design is shown in Fig. 1. It is 

built with two independent stages, each backward pumped with 

multiple semiconductor lasers, details shown in table 1.  

 
Fig. 1.  Amplifier design: two backward pumped stages with the pump 

wavelengths in range of 1425-1491 nm.  

 

 
For the first stage, we used 10km of IDF (0.23dB/km loss,            

-44ps/nm.km dispersion at 1550nm, γ=3.53/W.km). Four 

different fibre options were tested as the second stage: 10km 

SMF (0.2dB/km loss, 16.7ps/nm.km dispersion at 1550nm, 

γ=1.3/W.km), 5km DCF (0.67dB/km loss, -97.6ps/nm.km 

dispersion at 1550nm, γ=8.43/W.km), 10km DCF, and 7.5km 

IDF. Figure 2 shows a performance comparison of all four 

schemes, each pumped so as to have a similar broadband 

average net gain (a) of 19.5dB across >70nm from 1530-

1600nm. For this measurement, C and L band EDFA ASE was 

used, which was shaped with the help of wavelength selective 

switches (WSSs) to generate 24 channels (12 per band) from 

192.5-195.8THz (1531.12-1557.36nm) in the C-band and 

187.4-190.7THz (1572.06-1599.75nm) in the L-band,  -20dBm 

power per channel and 300GHz spacing within each band [6]. 

As seen in Fig. 2b, the resulting noise figure (NF) was found to 

be quite similar, which is expected, given it is mainly 

dominated by the constant first stage. Figure 2c shows the 

average gain saturating faster for the more nonlinear fibres. 

This is a result of the difference in total pumping power and in 

pump-pump interactions, whereby for fibres with higher 

nonlinearity a more efficient pump energy transfer from lower 

to higher wavelengths was observed. IDF-SMF presented the 

highest saturated output power of >22dBm. 

III. NONLINEAR NOISE CHARACTERISATION USING THE FWM 

TECHNIQUE 

A FWM measurement [10] was used to characterise the 

performance of the four different DRA schemes with the setup 

shown in Fig. 3. Two tuneable CW lasers (P1=P2=3dBm) were 

combined with the use of a 50/50 coupler and launched into a 

93.4km long SMF span, where the 19.5dB loss was 

compensated by the DRA. The FWM efficiency was measured 

around 191.9THz, where the frequency separation of the lasers 

(Δf) was varied from 1GHz to 50GHz, with the resulting FWM 

power (PFWM) recorded on a high resolution (150MHz) optical 

spectrum analyser (OSA).  

 
Fig. 3. FWM measurement setup. 

 

As expected, the IDF-SMF configuration had the lowest 

FWM product power due to the bigger core area of the SMF 

and the resulting lower nonlinearity. At 1GHz frequency 

separation it was measured to be -24.2dBm, 1.4dB lower than 

both IDF-DCF5km and IDF-IDF7.5km configurations and 

3.2dB lower than the IDF-DCF10km scheme. The integrated 

FWM power over 1GHz to 15GHz frequency separation was 

very similar for both IDF-IDF7.5km and IDF-DCF5km cases, 

giving values of -16.9dB and -17dB respectively and placing 

them 1.8dB above the IDF-SMF scheme (-18.8dBm) and 1.5dB 

below the IDF-DCF10km setup (-15.5dBm). 

TABLE I 

PUMP POWERS USED  
1st 

stage 
2nd 

 stage 

Pumps 

(nm) 

IDF 

10km 

(mW) 

SMF 

10km 

(mW) 

IDF 

7.5km 

(mW) 

DCF 

5km 

(mW) 

DCF 

10km 

(mW) 

1425 351 278 135 107 89 

1431 0 188 113 87 71 

1444 236 221 112 100 95 

1462 99 135 58 50 17 

1476 16 115 12 12 4 

1491 142 260 145 120 72 

Total 844 1197 575 476 348 

 

 
Fig. 2.  Performance comparison of different DRA schemes: (a) net gain vs wavelength, (b) NF vs wavelength, (c) average net gain over 70nm bandwidth vs 

total output power. 
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Fig. 4. Experimental product power as a function of the frequency separation 

between two CW lasers (3dBm each). 

IV. NONLINEAR NOISE CHARACTERISATION USING 

TRANSMISSION SETUP 

The performance of every dual-stage DRA scheme was 

characterised through a WDM coherent transmission 

experiment inside a recirculating loop as shown in Fig. 5 [6]. 

Five 100GHz spaced (193.8 – 194.2THz), 120Gb/s DP-QPSK 

signals were generated using an IQ modulator and a 

polarization multiplexer (PolMux). A 30Gb/s, 231-1 long 

pseudo random binary sequence (PRBS) was applied to each I 

and Q modulator arms with a 18 bits relative delay. The 

resulting 5×30GBaud PM-QPSK signals were then amplified 

by a 23dBm output power EDFA and a variable attenuator was 

used to launch -5.7 to 4.3dBm/channel into the SMF fibre span 

while keeping the input OSNR fixed.  

 
Fig. 5. Transmission setup with the use of a recirculating loop.  

 

The loop itself consisted of a 93.4km SMF transmission span 

(19.5dB loss) followed by the dual stage DRA under test. A pair 

of 95/5 taps were used before and after the dual stage DRA to 

monitor the gain and adjust the pumping power to maintain a 

19.5dB gain that was independent of input signal power. An 

EDFA was used to compensate the additional ~15dB loop 

losses from the gain flattening filter (GFF), 3dB coupler, 

acousto-optic modulator (AOM), taps etc. 

The receiver chain consisted of a tuneable band pass filter 

(BPF) followed by an attenuator and an EDFA to provide 

constant power into a polarization diverse coherent receiver, 

where the signal was mixed with a 100kHz linewidth local 

oscillator and captured using an 80GSa/s, 36GHz real-time 

oscilloscope. The recorded data was then processed using 

offline digital signal processing (DSP), where the Q2 was 

derived from the bit error ratio (BER) [11]. 

 
Fig. 6.  Q2 vs signal power per channel for different dual-stage DRA schemes 

for 10 spans of 93.4km transmission length for 194THz channel. 

 

Figure 6 shows the Q2 vs signal power per channel for the 

centre WDM signal (194THz) at 10x93.4km transmission 

distance. The IDF-SMF based DRA showed the maximum Q2 

factor of 13.6dB, with the IDF-DCF5km and IDF-IDF7.5km 

reaching 13.2dB and 13.1dB respectively. The IDF-DCF10km 

configuration, which is the most affected by nonlinear effects, 

had a maximum Q2 factor of 12dB with its optimum launch 

power 2dB below the IDF-SMF configuration. The differences 

in the nonlinear regime match the predictions of FWM product 

measurements presented in Fig. 4. The nonlinear impairments 

increase with signal power and reach the highest measured 

penalty of 2.2dB for IDF-DCF5km, 3.4dB for IDF-IDF and 

4.7dB for IDF-DCF10km with respect to the IDF-SMF 

configuration. In the linear regime, which is limited by ASE 

amplifier noise, all the schemes showed similar performance 

which can be expected from similar NF measured in Fig. 2(b). 

 
Fig. 7.  Q2 vs transmission distance for different dual-stage DRA schemes. 

 

All four DRA configurations were tested for the maximum 

possible transmission distance using the optimum signal launch 

power and assuming a Q2 FEC threshold of 8.5dB 

(corresponding to BER 3.8x10-3), results of which can be seen 

in Fig. 7. Using IDF-SMF, which had the highest optimum 

launch power, it was possible to reach 35 recirculations 

(3269km) with a Q2 of 8.8dB. This was 5 recirculations 

(467km) more than in the IDF-DCF5km and IDF-IDF7.5km 

configurations for the same Q2. With the IDF-DCF10km it was 

possible to reach only half of the IDF-SMF distance (1681km). 
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V. DISCUSSION 

The average net gain was kept similar for all four DRA 

schemes at ~19.5dB and their NF was found to be similar to 

each other (Fig. 2a and Fig. 2b), which is readily understood 

given that the NF of dual-stage amplifiers is mainly dominated 

by the first stage NF. The maximum NF of the 1st stage 

IDF10km was 6.5dB and a <1dB NF increase was observed 

after adding the second stage. The NF tilt of <2dB is due to 

backward pumping configuration and could be reduced by 

using bidirectional pumping [12]. Pump-pump interactions are 

an important issue for broadband amplification. In fibres with 

higher nonlinearity (IDF, DCF) a stronger energy transfer from 

lower to higher pumping wavelengths than in the case of SMF 

results in a different distribution of pumping powers required 

for each case. This effect is modified when the amplifier is 

driven into saturation, which further changes the power 

distribution and may result in additional gain flatness distortion. 

For the measurements of gain, NF and saturation output power, 

the pumps were kept fixed, whereas for the nonlinear 

characterisation the pumps were adjusted to keep the gain and 

amplifier output power unchanged so that saturation effects 

wouldn’t affect the results. As the DRA schemes described 

above have different saturation points (see Fig. 2(c)), a fair 

comparison of nonlinear penalties among different 

configurations requires fixed gain to ensure the same signal 

power profiles for each case. 

Although IDF-SMF can be intuitively identified as the 

scheme least affected by nonlinearities, the FWM product 

power measurements gave us an insight on the quantifiable 

amount of the difference between all the DRA architectures. As 

the Kerr-induced nonlinearities accumulate over increased 

transmission distance, 10 spans of 93.4km SMF fibre were 

chosen to perform the characterisation of nonlinear 

performance of the dual stage DRAs. As mentioned before, the 

gain was kept constant for all the input powers to prevent 

saturation effects from masking the impact of DRA fibre 

nonlinearity. An attenuator was used before the receiver EDFA 

to keep its NF constant for the same reason as mentioned above.  

The transmission results in Fig. 6 achieved with our DRAs are 

qualitatively similar to those of SMF links with EDFAs [13], 

but with reduced performance. The additional nonlinear 

impairments due to high power signal propagation in the 

nonlinear DRA fibre depend on the exact signal power profile 

[2] and the dispersion map introduced by the DRA, and can be 

predicted by the GN-model [13]. Using SMF versus DCF or 

IDF for the second stage not only reduces the nonlinear 

impairments of a DRA but also increases the total dispersion of 

the link, which is beneficial for the signal transmission [13]. 

These nonlinear impacts are most important over long 

distances, but in metro networks where distances are relatively 

short and capacity growth currently strongest, the received 

OSNR is paramount as it determines the useable higher-order 

modulation format [14]. We anticipate the increased bandwidth 

of systems based on DRAs with tolerable nonlinear impact, as 

described here, could readily increase network capacity.  

VI. CONCLUSION 

 We have characterized a dual stage IDF-SMF design of 

discrete broadband Raman amplifier in terms of linear and 

nonlinear noise performance. We have shown that while the 

linear noise figure is mainly dominated by the first stage, using 

SMF in the second stage can significantly reduce the nonlinear 

noise induced penalties. Our 19.5dB broadband (>70nm) net 

gain amplifier was proven to generate significantly lower FWM 

product power, which gave a superior performance in the 

nonlinear regime compared with other tested DRA 

architectures, and resulted in an up to 2dB optimum launch 

power improvement with a 1.6dB increase in optimum Q2 

factor at 10 spans of 93.4km SMF of transmission. With the 

proposed IDF-SMF architecture we measured a Q2 of 8.8dB 

after 3269 km transmission, which is >460km further than for 

the second best tested (IDF-IDF) configuration and twice as far 

as for the worst performing one (IDF-DCF).  
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