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Long Intergenic Noncoding RNAs Mediate the Human
Chondrocyte Inflammatory Response and Are Differentially
Expressed in Osteoarthritis Cartilage

Mark J. Pearson,' Ashleigh M. Philp,' James A. Heward,? Benoit T. Roux,? David A. Walsh,?
Edward T. Davis,* Mark A. Lindsay,2 and Simon W. Jones'

Objective. To identify long noncoding RNAs
(IncRNAs), including long intergenic noncoding RNAs
(lincRNAs), antisense RNAs, and pseudogenes, associ-
ated with the inflammatory response in human primary
osteoarthritis (OA) chondrocytes and to explore their
expression and function in OA.

Methods. OA cartilage was obtained from
patients with hip or knee OA following joint replace-
ment surgery. Non-OA cartilage was obtained from
postmortem donors and patients with fracture of the
neck of the femur. Primary OA chondrocytes were iso-
lated by collagenase digestion. LncRNA expression ana-
lysis was performed by RNA sequencing (RNAseq) and
quantitative reverse transcriptase—polymerase chain
reaction. Modulation of IncRNA chondrocyte expression
was achieved using LNA longRNA GapmeRs (Exiqon).
Cytokine production was measured with Luminex.

Results. RNAseq identified 983 IncRNAs in pri-
mary human hip OA chondrocytes, 183 of which had
not previously been identified. Following interleukin-1/3
(IL-18) stimulation, we identified 125 lincRNAs that were
differentially expressed. The lincRNA p50-associated
cyclooxygenase 2—extragenic RNA (PACER) and 2 novel
chondrocyte inflammation—-associated lincRNAs (CILinc01
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and CILinc02) were differentially expressed in both knee
and hip OA cartilage compared to non-OA cartilage.
In primary OA chondrocytes, these lincRNAs were rap-
idly and transiently induced in response to multiple
proinflammatory cytokines. Knockdown of CILinc01
and CILinc02 expression in human chondrocytes signifi-
cantly enhanced the IL-1-stimulated secretion of proin-
flammatory cytokines.

Conclusion. The inflammatory response in human
OA chondrocytes is associated with widespread changes
in the profile of IncRNAs, including PACER, CILinc01,
and CILinc02. Differential expression of CILinc01 and
CIinc02 in hip and knee OA cartilage, and their role in
modulating cytokine production during the chondrocyte
inflammatory response, suggest that they may play an
important role in mediating inflammation-driven carti-
lage degeneration in OA.

Osteoarthritis (OA), typified by degenerative loss
of cartilage integrity and joint space narrowing, is a lead-
ing cause of pain, disability, and shortening of adult
working life throughout the world (1-3). Unfortunately,
at present there is no approved treatment that can modi-
fy the disease progression, resulting in limited therapeu-
tic options for patients (4).

In attempting to identify novel therapeutics,
inflammation is increasingly being recognized as an
important driver of OA cartilage pathology. Histologic
analysis, ultrasound, and magnetic resonance imaging
have all demonstrated evidence of synovitis in OA joints
(5-7), with increased cellular infiltration of activated B
cells and T lymphocytes. Indeed, synovitis is reported
not only in established OA, but also at the onset of OA,
being present in patients with only minimal radiographic
signs of the disease (8). Several proinflammatory cyto-
kines are elevated in the synovial fluid of OA joints
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compared to normal healthy joints (9), and cytokine
stimulation of ex vivo cartilage tissue mimics the patho-
logic changes observed within the OA joint (9,10). How-
ever, the key regulators of the cellular inflammatory
response in cartilage tissue are not well defined.

There is now overwhelming evidence that the
microRNA (miRNA) family of short noncoding RNAs
can regulate the inflammatory response (11,12). Indeed,
our group previously identified differentially expressed
miRNAs in human OA cartilage tissue that mediated the
production of matrix metalloproteinase 13 (MMP-13)
and tumor necrosis factor (TNF) (13), suggesting a role
of miRNAs in regulating inflammation and OA patholo-
gy (13). Importantly, RNA sequencing (RNAseq) has
now identified multiple families of long noncoding RNAs
(IncRNAs), which include antisense RNAs, pseudogenes,
and long intergenic noncoding RNAs (lincRNAs)
(14,15). Of interest, earlier reports suggest that these
IncRNAs may also be central regulators of biologic pro-
cesses (16-19), including the inflammatory response
(20). In support of those findings, we recently identified
IncRNAs that were differentially expressed upon lipo-
polysaccharide (LPS)-induced activation of the human
innate response and demonstrated that these regulated
interleukin-1B (IL-1B8) and IL-8 production (21).

Currently, little is known about the expression
and functional role of IncRNAs in OA joint tissue. Their
potential importance is indicated in a recent report by
Fu et al (22), who identified ~4,700 IncRNAs that were
differentially expressed in cartilage from patients with
knee OA (compared with controls) using a microarray-
based approach. Although that preliminary study did
not examine the function of these IncRNAs, another
recent study has identified a lincRNA located upstream
of the gene PTGS2 (cyclooxygenase 2 [COX-2]). This
was shown to be increased in phorbol myristate acetate—
and LPS-stimulated monocytes and to positively regulate
COX-2 expression (23) by binding to, and relieving the
action of, the repressive p50 component of the NF-«B
complex (23). As a result of this action, the lincRNA
was renamed p50-associated COX-2-extragenic RNA
(PACER). Importantly, COX-2 is a key regulator of the
arachidonic acid pathway and subsequent prostaglandin
E, production (24), which is a putative mediator of
inflammation and pain in OA cartilage tissue (25,26).
Given these observations, and the key role of inflamma-
tion in OA cartilage pathology, we hypothesized that
IncRNAs, including PACER, are central regulators of
the inflammatory response in cartilage tissue.

The aim of this study was therefore to perform
RNAseq in order to identify IncRNAs that are associated
with the inflammatory response in primary human OA
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chondrocytes isolated from the articular cartilage of
patients with hip OA. We then proceeded to assess their
potential involvement in OA by examining the expression
of several “inflammation-associated” IncRNAs (includ-
ing PACER) in human articular cartilage from patients
with and those without hip or knee OA, profiling their
expression in response to multiple proinflammatory cyto-
kines and determining the functional effect of modulating
the expression of an inflammation-associated IncRNA
on the chondrocyte inflammatory response.

PATIENTS AND METHODS

Patients and tissue samples. Following ethics
approval (UK National Research Ethics Committee 14/ES/
1044), patients with hip OA (mean = SEM age 69 = 3 years;
n =9), patients with knee OA (age 70 = 3 years; n = 12), and
patients with fracture of the neck of the femur without OA
(age 74 = 2 years; n = 6) were recruited prior to elective joint
replacement surgery at either The Royal Orthopaedic Hospi-
tal (Birmingham, UK) or Russell’s Hall Hospital (Dudley,
UK). Patients with hip OA had Kellgren/Lawrence (K/L)
grades (27) of 3 or 4, patients with knee OA all had K/L grades
of 4, and patients with fracture of the neck of the femur had
K/L grades of 0. Cartilage from femoral condyles (from knee
OA patients) and femoral heads (from hip OA patients) was
collected. Ethics approval was also obtained (Derby Research
Ethics Committee 1 [11/H0405/2]) to collect non-OA knee car-
tilage from postmortem donors (mean*SEM age 74 =5
years; n =4) (Kings Mill Hospital, Sutton-in-Ashfield, UK)
with no history of joint pain or evidence of cartilage fibrillation
based on chondropathy assessment (28). Consent was obtained
from all patients or families. Patient demographic data are
provided in Supplementary Table 1, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/doi/10.
1002/art.39520/abstract. A protocol was in place to ensure that
samples were all handled in the same way and processed in the
same timeframe. For tissue processing, upon separation of car-
tilage from bone tissue, the cartilage was immediately snap-
frozen in liquid nitrogen.

Isolation of primary chondrocytes from articular
cartilage. Articular cartilage was separated from the subchon-
dral bone using a scalpel and digested using filter-sterilized
collagenase IIA (2 mg/ml; Sigma-Aldrich) for 5 hours at 37°C.
Digested cartilage was then filtered by passing through a 40-
pm cell strainer (BD Biosciences), and the filtrate was centri-
fuged. Primary chondrocytes were then resuspended in growth
media (Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal calf serum [FCS], penicillin [100 units/ml],
streptomycin [100 pg/ml], L-glutamine [2 mM], nonessential
amino acids [5% volume/volume] [all from Life Technologies],
and amphotericin [2 ug/ml; Sigma-Aldrich]) and grown to 70—
80% confluence before being used in subsequent studies.

RNAseq analysis. Primary hip OA chondrocytes
(n=3 patients) were left unstimulated or stimulated with
IL-1B (1 ng/ml) for 4 hours in 0.1% FCS culture media in the
absence of antibiotics and amphotericin. Total RNA was iso-
lated using TRIzol reagent (Life Technologies), further puri-
fied (RNeasy column; Qiagen), and the RNA integrity
number (RIN) was assessed (Agilent Bioanalyzer). All RIN
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Figure 1. Regulation of long noncoding RNA (IncRNA) expression by interleukin-18 (IL-1B) in human osteoarthritis (OA) chondrocytes. A, Pipe-
line for predicting IncRNAs from Cufflinks-assembled transfrags. FPKM = fragments per kilobase of transcript per million mapped reads. B,
Release of IL-6 from primary human hip OA chondrocytes left unstimulated or stimulated with IL-1B for 4 hours or 24 hours, as measured by
enzyme-linked immunosorbent assay. IL-6 release indicates activation of the inflammatory response. Bars show the mean = SEM. ##* = P <(.001.
C, Volcano plot displaying differentially expressed mRNAs (n =3 IL-1B-stimulated hip OA chondrocytes and 3 unstimulated hip OA chondro-
cytes.). D, Pathway analysis of differentially expressed mRNAs. FDR = false discovery rate. E, Overlap of IncRNAs in OA chondrocytes, Gencode
version 19, and the HumanBodyMap catalogs. F, Breakdown of differentially expressed IncRNAs based on positional classifications.

values were >7, and 260:280 ratios (measured by NanoDrop)
were >1.7. Ribosomal RNA was removed using Ribozero
(Epicentre Technologies), and RNAseq (100-bp paired-end,
stranded sequencing) was performed on an Illumina HiSeq
2000 sequencer. Subsequent analysis was undertaken using
Tophat2/Cufflinks with alignment against the hgl9 reference
genome (Figure 1A). LncRNAs were identified using Cuff-
links and then compared with known IncRNAs previously
annotated in Gencode version 19 and the Human LincRNAs
Catalog (29). CuftDiff was used to compare control and IL-
1B-treated cells to identify differentially expressed transcripts
(false discovery rate [FDR] <0.05, fold change >2, and
change in fragments per kilobase of transcript per million
mapped reads [FPKM] >1). Sequence data are available
through the GEO database under series number GSE74220.
Analysis of IncRNA expression in primary chondro-
cytes and articular cartilage by quantitative reverse tran-
scriptase—polymerase chain reaction (qRT-PCR). Articular
hip and knee cartilage was snap-frozen in liquid nitrogen and
pulverized using a 6770 Freezer/mill (Spex Sample Prep).
Total RNA was extracted from both powdered cartilage and
primary chondrocytes using TRIzol and further purified using
RNeasy columns. RIN values were >7, and 260:280 ratios
were >1.7. Custom primers and FAM-labeled probes were
designed using Primer Express 3 software (Life Technologies)
for qRT-PCR. The qRT-PCR was performed from 25 ng of
total RNA in a one-step reaction (QuantiFast One-Step RT-
PCR kit; Qiagen) using a Roche LightCycler 480 II. The rela-

tive expression of IncRNAs was determined using the AAC,
method, following normalization to 18S RNA. GAPDH
expression (relative to 18S RNA) was comparable between
non-OA and OA cartilage in both hip and knee samples (see
Supplementary Figure 1, available on the Arthritis & Rheuma-
tology web site at http://onlinelibrary.wiley.com/doi/10.1002/
art.39520/abstract).

Inhibition of lincRNA expression in human chondro-
cytes using locked nucleic acid (LNA) GapmeRs. The
human chondrocyte cell line TC28, which was previously
characterized by Goldring et al (30), and provided to us as a
gift from AstraZeneca, was transfected with either LNAs tar-
geting CILincO1 or CILinc02 (30 nM) or with LNA control
(30 nM) using Lipofectamine 2000 (Life Technologies). Fol-
lowing 24-hour transfection, cells were stimulated (in 0.1%
FCS culture media in the absence of antibiotics and ampho-
tericin) for either 4 hours or 24 hours with IL-18 (1 ng/ml).
Supernatants were collected for subsequent cytokine analysis
with Luminex. Cells were lysed with RLT (Qiagen) for subse-
quent RNA extraction to examine knockdown of CILincO1
expression.

Analysis of cytokine production in human chondro-
cyte supernatants. Supernatants from human chondrocyte—
transfected cells and media controls were assayed for the con-
centration of 17 human proinflammatory cytokines using a
human cytokine 17-plex immunoassay (Bio-Plex Pro; Bio-
Rad). The interassay variability is <15%; intraassay variability
is <10%. Cross-reactivity is <1%, and the dynamic range is
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Figure 2. Location and expression of chondrocyte inflammation-associated long intergenic noncoding RNAs (lincRNAs) in relation to their
nearest protein-coding gene. A, Integrative Genomics Viewer plots showing the mapping data and relative locations of the long noncoding RNA
(IncRNA) and protein-coding genes in hip osteoarthritis (OA) chondrocyte samples left unstimulated (control) and samples stimulated with
interleukin-1B (IL-1pB) for 4 hours. Colors represent the direction of first read. Red blocks represent forward (positive) strand; blue blocks rep-
resent reverse (negative) strand; gray blocks represent reads of unknown status. PACER = p50-associated cyclooxygenase 2—extragenic RNA. B,
Dot plot showing the distances between transcription start sites (TSS) of novel lincRNAs and the TSS of their nearest protein-coding gene. C,
Pearson’s correlation between absolute fold change in expression of lincRNAs and absolute fold change of their nearest expressed protein-
coding gene in primary human OA chondrocytes after stimulation with IL-18 for 4 hours.

between 1 and 2,500 pg/ml. Briefly, nondiluted chondrocyte
cell culture supernatants were incubated with a magnetic Bio-
Plex bead cocktail consisting of beads specific for IL-13, IL-2,
IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 (p70), IL-13, I1L-17,
granulocyte colony-stimulating factor (G-CSF), granulocyte—
macrophage colony-stimulating factor, interferon-y, mono-
cyte chemotactic protein 1, macrophage inflammatory pro-
tein 18 (MIP-1B), and TNF. A Bio-Plex Pro Wash Station
was used to wash the beads between incubation steps using
the wash buffer supplied with the kit. A biotinylated second-
ary antibody was added, and quantification was carried out
using a streptavidin—phycoerythrin substrate with fluores-
cence detected on a Bio-Plex 200 System (Bio-Rad/
Luminex).

Statistical analysis. Data were analyzed using SPSS
software. Analysis of variance was performed throughout, fol-
lowed by Fisher’s least significant difference post hoc test, where
appropriate. In all cases, data are presented as the mean *
SEM, and P values less than (.05 were considered significant.

RESULTS

RNAseq transcriptome profile of primary
human OA chondrocytes in response to stimulation
with IL-18. IL-1B stimulation of primary human hip
OA chondrocytes (n=3 patients) induced a rapid
release of IL-6 protein that peaked at 4 hours and
remained elevated at 24 hours (Figure 1B). IL-1 stimu-
lation also induced a significant increase in the release
of MMP-13 at 24 hours (see Supplementary Figure 2,
available on the Arthritis & Rheumatology web site at
http://onlinelibrary.wiley.com/doi/10.1002/art.39520/abstract).
Analysis of RNAseq data for Gencode-annotated mes-
senger RNAs (mRNAs) showed that 499 protein-coding
genes were differentially expressed upon IL-1 stimula-
tion (382 up-regulated and 117 down-regulated) (Figure
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Table 1. Human chondrocyte inflammation—associated lincRNAs and their expression in human OA and non-OA cartilage tissue*®

Fold change in

Nearest gene expression after IL-13

LincRNA LncRNA number Position (kb to TSS) stimulation, log2
PTGS2-lincRNA XLOC_081995 chr9:21682903-21689760 PTGS2 (0.188) 317
(PACER)
CILinc01 XLOC_043077 chr6:143267747-143280112 HIVEP2 (1.409) 6.07
CILinc02 XLOC_078832 chr8:79717154-79798424 IL-7 (0.604) 7.9%
CILinc03 XLOC_080615 chr8:90627962-90765918 RIPK2 (4.056) 2.67
CILinc04 XLOC_048072 chr21:43188194-43194760 RIPK4 (0.928) 3.7%
CILinc05 XLOC_072067 chr6:138175998-138186493 TNFAIP3 (1.857) 1.8%
CILinc06 XLOC_076579 chr7:80553659-80558813 SEMA3C (7.138) 1.4%
CILinc07 XLOC_048423 chr21:28984539-29019990 ADMATSS (681.158) 5.0F

* LincRNA =long intergenic noncoding RNA; OA = osteoarthritis; IncRNA =long noncoding RNA; TSS = transcription start site; IL-18 =

interleukin-1B3; PACER = p50-associated COX-2—extragenic RNA.
+ = P < 0.001 versus unstimulated control chondrocytes.
£ = P < 0.01 versus unstimulated control chondrocytes.

1C and Supplementary Table 2, available on the Arthritis
& Rheumatology web site at http://onlinelibrary.wiley.
com/doi/10.1002/art.39520/abstract). As expected, the
up-regulated genes from this set were significantly
enriched (FDR <0.05) in Kyoto Encyclopedia of Genes
and Genomes pathways involved in the inflammatory
response (Figure 1D). There were no significantly
enriched pathways in down-regulated genes. This initial
evaluation therefore demonstrated rapid and wide-
spread induction of inflammatory gene expression fol-
lowing IL-1 stimulation of human chondrocytes.
Identification of novel IncRNAs in chondrocytes
by RNAseq. Using the computational analysis pathway
described in Figure 1A, we identified 983 IncRNAs in
human chondrocytes, which could be divided into 642
lincRNAs, 124 antisense RNAs, and 217 pseudogenes
(see Supplementary Table 3, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.39520/abstract). Of these assembled genes,
158 lincRNAs and 25 antisense RNAs had not previously
been identified in Gencode version 19 or HumanBodyMap
IncRNA (Figures 1E and F). As previously reported
(14,15), the mean FPKM, length, and exon number for
IncRNAs were smaller than those for mRNAs (mean
FPKM 4.7 for IncRNAs and 29.6 for mRNAs, mean length
1.2 kb for IncRNAs and 2.8 kb for mRNAs, and mean
exon number 3.6 for IncRNAs and 16.4 for mRNAs).
Based on sequencing in ~400 human cell types
including chondrocytes, the FANTOM project has
recently released an atlas of 43,011 enhancer regions that
are characterized by bidirectional transcription of single-
exon efference RNAs (eRNAs) (31). Interestingly, we
found that <4% of our identified IncRNAs overlapped
with putative eRNA regions (see Supplementary Table 3,

available on the Arthritis & Rheumatology web site at
http://onlinelibrary.wiley.com/doi/10.1002/art.39520/abstract).
Furthermore, visual inspection and the fact that our tran-
scripts were unidirectional and multiexonic indicated that
these IncRNAs did not represent eRNAs.

Induction of widespread changes in IncRNA
expression by IL-18 stimulation. Following IL-18
stimulation, we identified 125 IncRNAs that were differ-
entially expressed (P < 0.05), including 93 lincRNAs
(74%), 13 antisense RNAs (11%), and 19 pseudogenes
(15%) (see Supplementary Table 4, available on the
Arthritis & Rheumatology web site at http://onlinelibrary.
wiley.com/doi/10.1002/art.39520/abstract). Of these, we
observed 106 up-regulated and 19 down-regulated
IncRNAs, of which 37 (30%) were novel IncRNAs.
Using the Integrative Genomics Viewer (Broad Insti-
tute), the transcription start sites (TSS) for the majority
of the 92 differentially expressed lincRNAs were found
to be genomically located <5 kb from the TSS of a cod-
ing mRNA (Figures 2A and B). Previously, we have
referred to these as mRNA-flanking lincRNAs (21),
and it has been suggested that they may regulate the
expression of the nearby mRNA. In support of this
notion, we found a significant positive correlation
between the fold change in expression of an mRNA-
flanking lincRNA and the fold change in expression of
its nearest coding mRNA (Figure 2C). In addition,
detailed examination of these differentially expressed
mRNA-flanking lincRNAs identified one as being
PACER (Table 1). As previously described, PACER is
located upstream of the PTGS2 (COX-2) gene, is tran-
scribed in a bidirectional manner from the same pro-
moter region, and is known to positively regulate
PTGS2 expression (23) (Figure 2A). However, whether
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Figure 3. Expression of chondrocyte inflammation-associated long intergenic noncoding RNAs (lincRNAs) in human hip osteoarthritis (OA)
and knee OA cartilage compared to non-OA cartilage. Graphs show the relative expression of 8 chondrocyte inflammation—associated lincRNAs,
as determined by quantitative reverse transcriptase—polymerase chain reaction, in A, OA hip femoral head articular cartilage (n=9 patients)
compared to non-OA hip femoral head articular cartilage (n= 6 patients), and B, OA knee cartilage (n= 12 patients) compared to non-OA
knee cartilage (n=4 patients). Bars show the mean =SEM. *=P < 0.05; {=P < 0.01; £=P < 0.001, by one-way analysis of variance.

PACER = p50-associated cyclooxygenase 2—extragenic RNA.

this is true of other mRNA-flanking lincRNAs remains
to be elucidated.

Differential expression of inflammation-
associated lincRNAs in human hip OA and knee OA
cartilage. We next wished to further characterize the
expression of PACER as well as 7 additional chondrocyte
inflammation—associated lincRNAs (named CILinc01-
CILinc07) that were selected based on being significantly
induced in response to IL-18 stimulation (Table 1) and
their nearest coding mRNA being a gene with purport-
ed evidence of a role in either inflammation or OA
pathology (e.g., IL-7 and ADAMTS-5, respectively).

We initially determined the potential clinical rele-
vance of these chondrocyte inflammation—associated
lincRNAs by measuring their expression in human OA
hip cartilage compared to non-OA hip cartilage. All
8 lincRNAs were found to be significantly down-regulated

in OA hip cartilage (n =9 patients) compared to non-OA
hip cartilage (n = 6 patients) (Figure 3A). The lincRNAs
PACER, CILinc01, and CILinc02 were also significantly
down-regulated (>2-fold) in OA knee cartilage (n = 12)
compared to non-OA knee cartilage (n = 4) (Figure 3B).

Rapid, transient induction of lincRNAs by mul-
tiple proinflammatory cytokines. Based on their induc-
tion in response to IL-1B3 stimulation, and their
differential expression in both hip OA and knee OA
cartilage, we next examined the time course of expres-
sion of PACER, CILinc01, and CILinc02 in primary
OA chondrocytes in response to a panel of proinflam-
matory cytokines implicated in the pathogenesis of OA.
Following stimulation with IL-18, TNF, visfatin, and
leptin, we observed a rapid and time-dependent induc-
tion of expression of all 3 lincRNAs (Figure 4A). Of
note, stimulation with either TNF or leptin led to peak
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Figure 4. Rapid and transient induction of chondrocyte inflammation—-associated long intergenic noncoding RNAs (lincRNAs) in primary
human osteoarthritis (OA) chondrocytes in response to proinflammatory cytokines. A, Time course of lincRNA expression in primary human
hip OA chondrocytes over 24 hours following exposure to either tumor necrosis factor (TNF; 1 ng/ml), leptin (100 ng/ml), visfatin (100 ng/ml),
or interleukin-13 (IL-1B; 1 ng/ml). Symbols and error bars indicate the mean = SEM. * =P < 0.05; 1 =P < 0.01; £ =P < 0.001 versus time 0,
by two-way analysis of variance with a least significant difference post hoc test. B, Primary OA chondrocyte expression of PTGS2, HIVEP2, and
IL-7 genes in response to 4 hours of stimulation with IL-18 (1 ng/ml). Bars show the mean = SEM. £ =P < 0.001 versus unstimulated samples,
by two-way analysis of variance with a least significant difference post hoc test. C, Expression of pS50-associated cyclooxygenase 2—extragenic
RNA (PACER), CILinc01, and CILinc02 in primary non-OA chondrocytes isolated from cartilage from patients with fracture of the neck of the
femur (#NOF) and from postmortem (PM) cartilage and in primary OA chondrocytes isolated from hip and knee cartilage. Expression of
lincRNAs and genes was determined by quantitative reverse transcriptase—polymerase chain reaction and is shown as fold change compared to
control. Bars show the mean = SEM from 3 independent experiments. * =P < 0.05; 1 =P < 0.01; £ =P < 0.001 versus unstimulated samples,
by two-way analysis of variance with a least significant difference post hoc test.

lincRNA expression at ~2 hours, which had dropped
toward baseline levels by 24 hours. Stimulation with
IL-1p or visfatin led to a slightly more prolonged induc-
tion of lincRNA expression, with peak induction of
CILinc01 and CILinc02 between 4 and 6 hours (Figure
4A). Of note, stimulation with IL-18 for 4 hours also led
to significant (P < 0.001) induction of the expression of
mRNA for the closest coding genes to PACER,
CILinc01, and CILinc02, namely, PTGS2, HIVEP2, and
IL-7, respectively (Figure 4B).

We then assessed whether PACER, CILinc01,
and CILinc02 were also present in non-OA chondro-
cytes and whether stimulation of these cells with
IL-18 would also induce their expression. PACER,
CILinc01, and CILinc02 were expressed in both non-
OA knee chondrocytes (isolated from postmortem
cartilage) and non-OA hip chondrocytes (isolated
from patients with fracture of the neck of the
femur). Furthermore, 4 hours of IL-183 stimulation
of both non-OA knee and non-OA hip chondrocytes
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Figure 5. Long intergenic noncoding RNAs (lincRNAs) modulate the interleukin-18 (IL-1p)-stimulated induction of proinflammatory cytokines
in human chondrocytes and are suppressed by IKK-2 inhibition. A, Knockdown of IL-1B-stimulated CILincO1 and CILinc02 human chondrocyte
TC28 cells using LNA GapmeRs. TC28 cells were transfected overnight either with locked nucleic acids (LNAs) targeting CILinc01 or targeting
CILinc02 or with a nontargeting control (NTC) LNA GapmeR. Following transfection, cells were left unstimulated or stimulated with IL-18 (1
ng/ml) for 4 hours. Bars show the mean = SEM. * =P < 0.05; £ =P < 0.001, versus nontargeting control LNA-transfected cells. B and C, Con-
centration of cytokines (pg/ml) in supernatants from human chondrocytes transfected with either B, CILinc01 LNA or C, CILinc02 LNA and
then stimulated with 1 ng/ml of IL-18 for 4 hours. Bars show the mean = SEM (n = 3 samples per group). * =P < 0.05; =P < 0.01, versus
nontargeting control LNA-transfected cells. D, Suppression of the IL-1p-stimulated induction of CILinc0O1 and CILinc02 in primary human OA
chondrocytes preincubated with the IKK-2 inhibitor TPCA-1 (10 uM). Bars show the mean = SEM (n =3 samples per group). * =P < 0.05;
=P < 0.001, by one-way analysis of variance. TNF = tumor necrosis factor; G-CSF = granulocyte colony-stimulating factor; MIP-1p =
macrophage inflammatory protein 1.

led to a significant increase in expression of each of of proinflammatory cytokines. To test this hypothesis,
the 3 lincRNAs (Figure 4C). we examined the effect of knockdown of CILinc01 and

Negative regulation of the IL-1B-stimulated CILinc02 expression on the human chondrocyte inflam-
production of proinflammatory cytokines in human matory response. For these experiments, we used the

chondrocytes by CILinc01 and CILinc02. Given the human chondrocyte TC28 cell line, which when incu-
association of CILincO1 and CILinc02 with the IL-18 bated in low serum (0.1% FCS) without stimulation
chondrocyte inflammatory response, and their down- expressed type II collagen (see Supplementary Figures
regulation in OA cartilage tissue, we speculated that 3A and B, available on the Arthritis & Rheumatology web
CILinc01 and CILinc02 might mediate the production site at http://onlinelibrary.wiley.com/doi/10.1002/art.39520/
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abstract). Similar to the findings in primary chondrocytes,
IL-1B stimulation of TC28 cells induced a rapid release
of IL-6 protein (Supplementary Figure 3C) and induction
of MMPs and proinflammatory cytokines (Supplementa-
ry Figure 3D). TC28 cells were transfected with either
LNA GapmeRs targeting CILinc01 or CILinc02, or a non-
targeting control LNA GapmeR. Following 24 hours of
transfection, cells were stimulated with IL-18 for 4
hours in order to provoke an inflammatory response.
Similar to our findings in primary human chondrocytes,
4 hours of exposure of the TC28 chondrocyte cell line
to IL-1B led to a significant induction of expression of
CILinc01 and CILinc02. The IL-1B-induced expression
of CILinc01 was significantly reduced (by 63%) in chon-
drocytes transfected with an anti-CILinc01 LNA GapmeR,
and CILinc02 expression was significantly reduced
(by 74%) in cells transfected with an anti-CILinc02
GapmeR, compared to an LNA control sequence (Fig-
ure 5A).

We then investigated the effect of CILincO1 and
CILinc02 knockdown on the inflammatory response, by
measuring the secretion of a panel of 17 proinflammatory
cytokines in response to 4 hours of IL-18 stimulation of
human chondrocytes (see Supplementary Table 5, avail-
able on the Arthritis & Rheumatology web site at http:/
onlinelibrary.wiley.com/doi/10.1002/art.39520/abstract).
Knockdown of CILinc01 expression significantly enhanced
the IL-1B-stimulated production of IL-6, IL-8, TNF, MIP-
1B, and G-CSF (Figure 5B), while knockdown of CILinc02
expression significantly enhanced the IL-1B-stimulated
production of IL-6 (Figure 5C). Since previous studies
have shown that NF-«B activity can regulate the expres-
sion of IncRNAs, we then also examined the effect of phar-
macologic inhibition of IKK-2 on the IL-1p-stimulated
production of CILincO1 and CILinc02. To this end we
used TPCA-1, a known IKK-2 inhibitor (20,32,33). In cell-
free enzymatic assays, TPCA-1 displays 22-fold selectivity
for IKK-2 over IKK-1 and a >550-fold selectivity over oth-
er kinases, including MAP kinases and JNK kinases (32),
though a recent study showed that in non-small cell lung
cancer cell lines TPCA-1 also inhibited STAT-3 phosphor-
ylation (34). Preincubation of primary chondrocytes with
TPCA-1 (10 uM) significantly reduced the induction of
both CILinc01 and CILinc02 that occurred after 4 hours
of stimulation with IL-1B. (Figure 5D).

DISCUSSION

This study is the first to use RNAseq to determine
the profile of IncRNA expression in primary human OA
chondrocytes and has resulted in the cataloging of 983
IncRNAs, including members of the lincRNA, antisense
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RNA, and pseudogene families. Importantly, we have
identified 158 lincRNAs and 25 antisense RNAs that
are absent from Gencode version 19 (35) and the
HumanBodyMap IncRNA catalog (29), and might
therefore be unique to chondrocytes and have a cell-
specific function. In addition, this study is the first to
examine the changes in IncRNA levels that are associat-
ed with the inflammatory response in human chondro-
cytes. In this regard, 125 IncRNAs were differentially
expressed upon IL-18 stimulation of human OA chon-
drocytes. Of relevance, Fu et al (22) recently showed a
catalog of 4,714 IncRNAs found by microarray analysis
to be differentially expressed in knee OA patients com-
pared to non-OA cartilage. In our RNAseq chondrocyte
analysis, if we included IncRNAs with a P value of less
than 0.05 (rather than an FDR optimized q of <0.05),
which was the inclusion criterion used by Fu et al (22), 7
of these IncRNAs (namely, ENST00000426066, ENST
00000369884, ENST00000419463, ENST00000421237,
ENST00000412485, ENST00000455607, and ENST
00000418242) were differentially expressed in chondro-
cytes upon IL-1B stimulation. This relatively low num-
ber of IncRNAs in common is likely due to differences
in conditions (IL-1B stimulation of chondrocytes versus
end-stage cartilage disease comparison) and methodo-
logic approach (sequencing versus microarrays). As an
example, the microarray studies by Fu et al (22) would
not have detected changes in PACER, CILinc01, and
CILinc02 since these are novel transcripts for which
there are no microarray probes. Despite these differ-
ences, we speculate that these shared IncRNAs might
have a function in OA, which would warrant further
investigation.

Importantly, there is now evidence that IncRNAs
regulate in cis local mRNA expression (21,36). Indeed,
among those IncRNAs differentially expressed upon
IL-1p stimulation was the lincRNA PACER (23), which
is located adjacent to and upstream of the gene PTGS2
(COX-2) and has been shown to regulate PTGS2 pro-
duction (23). As shown in the present study, PACER
appears to be transcribed from the same promoter
regions as PTGS2, which results in bidirectional produc-
tion of both coding and noncoding RNA. Significantly,
the majority of the inflammation-associated IncRNAs
we identified were found to be mRNA flanking, several
of which (including PACER) were located close to
genes relevant to either inflammation or cartilage biolo-
gy, which could be indicative of a functional role in OA.

Given these observations, we selected PACER
and 7 additional inflammation-associated lincRNAs and
proceeded to investigate their potential clinical rele-
vance by comparing their expression in articular hip and
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knee cartilage obtained from both OA and non-OA
patients. Notably, all 8 of the inflammation-associated
lincRNAs were found to be significantly down-regulated
in hip OA cartilage, while only PACER, CILinc01, and
CILinc02 were also down-regulated in knee OA carti-
lage. This could indicate that these lincRNAs perform
protective roles in preventing inflammation-mediated
cartilage degeneration, but also suggests that there are
anatomic site-specific differences in OA cartilage at the
level of IncRNA expression. Indeed, a recent report
described epigenetic differences between knee and hip
OA cartilage based on DNA methylation analyses (37),
and previous studies have shown differences in dysregu-
lated mRNA transcripts and pathways between knee
OA and hip OA cartilage (38). It should be noted that
there were differences in K/L grade between our hip
OA and knee OA patients. However, all of our knee
OA samples were K/L grade 4, while our hip OA sam-
ples were either K/L grade 3 or K/L grade 4, so it would
appear unlikely that the differential expression of all
8 inflammation-associated IncRNAs in hip OA cartilage
was due to differences in OA severity.

Subsequent experiments demonstrated that
PACER, CILinc01, and CILinc02 were induced in OA
chondrocytes by multiple proinflammatory cytokines,
which have been reported to be elevated in either OA
sera or OA synovial fluid (TNF, visfatin, and leptin as
well as IL-1B). Importantly, the induction of chondro-
cyte lincRNA expression in response to multiple proin-
flammatory stimuli was rapid and transient, as might be
expected if they were key regulators of the inflammatory
response in joint cartilage.

Given that PACER has previously been shown to
positively regulate PTGS2 production (23) and that
PTGS?2 is associated with inflammation, we were initially
surprised to discover that PACER was down-regulated in
hip OA cartilage. However, there are reports that PTGS2
expression in OA synovial tissue is significantly lower in
late OA compared to early OA (39), suggesting it may
play a different role in established human OA. Further-
more, PTGS?2 has also been implicated as having an anti-
inflammatory functional role (40), since the release of
prostaglandin D, (PGD,) and its breakdown product
PGDJ, are associated with the resolution of inflammation
(41). Indeed, in stark contrast to their efficacy in blocking
proinflammatory responses, inhibitors of COX-2 have
been shown to delay the resolution of inflammation (42).
Therefore, the decreased expression of PACER we
observed in human hip OA cartilage could represent a
pathologic reduction in the ability of the cartilage tissue
to resolve aberrant inflammation.
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The functional significance of our finding that
CILinc02 is down-regulated in human hip OA cartilage is
unclear. Studies in rheumatoid arthritis suggest that IL-7
(the nearest coding gene to CILinc02) contributes to
inflammation (43) and mediates the production of TNF
(44), while in OA, IL-7 has been reported to induce
MMP-13 and proteoglycan loss from cartilage, suggesting
that it may promote cartilage degeneration (45). However,
we did not detect expression of the IL-7 gene in either OA
or non-OA hip cartilage samples.

Functional studies to determine the roles of
CILinc01 and CILinc02 showed that knockdown of their
expression in human chondrocytes significantly in-
creased the IL-1B-stimulated production of several
proinflammatory cytokines, including IL-6, suggesting
that CILinc01 and CILinc02 may negatively regulate the
chondrocyte inflammatory response. It is significant,
therefore, that we found decreased expression of
CILinc01 and CILinc02 in both knee OA and hip OA
cartilage compared to normal healthy cartilage, since
this could indicate that down-regulation of CILinc01
and CILinc02 in human articular cartilage leads to an
inability to regulate inflammation in the joint. Of inter-
est, the nearest coding gene to CILinc01 is HIVEP2
(also known as Schnurri-2), which has previously been
reported to be a negative regulator of allergic airway
inflammation via repression of NF-«kB activity (46), as
well as being implicated in mediating chondrocyte dif-
ferentiation (47). Therefore, it is conceivable that the
observed effects of CILincO1 on chondrocyte cytokine
production are mediated via repression of NF-«B activi-
ty through modulation of HIVEP2 gene expression. Of
note, stimulation of primary chondrocytes with an IKK-
2 inhibitor blocked the IL-1B-stimulated production of
both CILinc01 and Cllinc02, suggesting that NF-xB
activity may regulate their expression in chondrocytes.

In conclusion, these data signify that CILinc01 and
CILinc02 may play an important physiologic role in regu-
lating the pathologic response to inflammation within the
OA joint, and that its down-regulation in both knee and
hip OA cartilage could contribute to inflammation-driven
cartilage degeneration. Clearly, future studies to deter-
mine the mode of action of CILinc01 and CILinc02 as well
as other chondrocyte inflammation—associated lincRNAs
in mediating OA cartilage pathology and inflammation
are warranted and may lead to the identification of novel
targets for the development of therapeutic agents.
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