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Abstract

This paper develops a probabilistic multimodal adaptive control approach for
systems that are characterised by temporal multimodality where the system
dynamics are subject to abrupt mode switching at arbitrary times. In this
framework the control objective is redefined such that it utilises the complete
probability distribution of the system dynamics. The derived probabilistic con-
trol law is thus of a dual type that incorporates the functional uncertainty of
the controlled system. A multi-modal density model with prediction error-
dependent mixing coefficients is introduced to effect the mode switching. This
approach can deal with arbitrary noise distributions, nonlinear plant dynam-
ics and arbitrary mode switching. For the affine systems focussed upon for
illustration in this paper the approach has global stability. The theoretical
architecture constructs are verified by validation on a simulation example.

1 Introduction

In this article, we propose a new adaptive probabilistic control framework for
analysing and controlling complex dynamical systems capable of switching
randomly between regimes. The aim of the probabilistic adaptive controller
is to estimate the control signals to define a regime of operation of the dy-
namical system and force its dynamics to converge to a predefined desired
behaviour specified by multiple performance criteria. We devise a generalisa-
tion of the Mixture Density Network approach, modified to be a Multi-Modal
Density Model (MMDM) with prediction error-dependent mixing coefficients.
The mixing coefficients are used to select the most probable mixture mode and
produces globally stable solutions in the affine model case considered in this
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article. The MMDM estimates the arbitrary conditional distributions of the
systems’ dynamics that are of interest to the control problem and can switch
immediately and effectively from one mode of operation to another. The fully
probabilistic approach leads us to redefine the control objective to incorporate
the probability distribution of the system dynamics and so is of the dual type.

The architecture proposed in this paper circumvents several issues of previous
multi-objective control approaches which are often constrained to be linear,
deterministic and unable to exploit system uncertainties. The set of new fea-
tures offered as part of this architecture include:

• a redefined control objective such that the optimal controller should make
the pdf of the tracking error as narrow as possible. In addition, it should
minimise the mean value of the tracking error and control energy.
• a multimodal density function (MMDN) which is used to estimate the arbi-

trary distribution of the dynamic generator of the data such that it accom-
modates the sudden environmental changes and switches.
• the mixing coefficients of this MMDN depend on the prediction error, where

we use a neural network to estimate the mixing coefficients from the predic-
tion error and another neural network to predict the means and variances
of the MMDN Gaussian kernel functions given the input state vector.
• a learning algorithm in which a softmax normalisation of the mixing coeffi-

cients is used to competitively divide up the module learning and selection
problem.
• the use of the most probable component at an instant derives an explicit

closed form solution for the optimal control demonstrated in the case of
nonlinear affine systems.

This combination of features allows the proposed architecture of the MMDN
to learn multiple modes of operation and switch between them based on pre-
diction errors between estimated and actual modes of operation, and thus can
estimate an arbitrary distribution of random signals.

Although several approaches to multi-objective control have been developed
only a few of them have considered design methods for the controller pa-
rameters. In addition, most follow deterministic design approaches which are
unable to deal with the general control problem where high dimensionality,
multi-modality and uncertainty are involved.

The adaptive probabilistic multi-objective framework proposed here belongs
to the multi-model framework [Fabri and Kadirkamanathan, 2001, Herzallah,
2012] where the control system is described by dynamic probabilistic mixture
models and neural networks. Historical process data that describes the dy-
namics of the system to be controlled are analysed by a Bayesian approach to
build the mixture model in terms of a linear combination of adaptive dynam-
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ical kernel functions. The estimation of the proposed probabilistic adaptive
control framework is based on the use of mixture density network [Bishop,
1995, Herzallah and Lowe, 2003], that is extended and developed in this work
to handle uncertain jump systems. This method of estimation is referred to
as the multiple mode density network. The proposed mixture model provides
a general framework for modelling the conditional distribution of the sys-
tem’s dynamics that accommodates non-Gaussian noise and multi-modality
in the system dynamics. Within this setting each modality is associated with
one mixture component. The weight of the mixture components on the other
hand represents the probability of occurrence of a particular modality of op-
eration. Moreover, the means, variances and priors of the mixture components
are non-linear functions of the system’s input and estimation error. This de-
scription of mixtures of a system is especially useful for complex large scale
control systems when the system behaviour exhibits several different modali-
ties of operation. Examples of such systems include a multi-modal distribution
in a quality characteristics or the sporadic shift of the process average due to
sporadic adjustment of a machine parameters, the transition from free flow-
ing traffic to grid-lock in traffic networks, and the inverse kinematics solution
of robotics systems. Although we propose the use of neural networks for the
estimation of the mixture model kernel function parameters in the multiple
model density network, the use of neural networks is not mandatory and any
other nonlinear universal function approximator can be used instead.

To design a control strategy, the probabilistic indirect adaptive control method-
ology [Duarte, 1996, Kersting, 2017] is adopted. Indirect adaptive control is
concerned with the minimisation problem of the tracking error as measured
between the desired and actual output of the system. However, in their conven-
tional form these methods aim at the minimisation of the mean of the tracking
error, thus they ignore knowledge of uncertainty and only derive heuristic cer-
tainty equivalence controllers. In contrast to these methods the probabilistic
description of a mixture of Gaussians of the controlled system is used in this
work to derive the probability distribution of the tracking error and derive
control laws that aim at minimising the width and mean of the tracking error
in addition to the minimisation of the control energy, thus yielding a novel
dual probabilistic adaptive controller. This aim of simultaneous minimisation
of the mean and variance of the tracking error and control energy provides a
multiperformance criteria and defines the multiobjective problem considered
in this work. This natural definition of the multiperformance index, makes
the proposed framework distinct to other multiobjective [Peitz and Dellnitz,
2018] as well as multiple model [Apkarian et al. 2014, Piguet et al., 1997] ap-
proaches that are still suffering from the lack of a systematic methodology that
guarantees a satisfactory solution to the stochastic nonlinear and uncertain
multimodal problem.

To reemphasise, the reformulated aim of the control objective as defined in
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this work accompanied with the multiple model density network provides a
novel and distinct context to handle the multiobjective multiple modes control
problem and allows for the derivation of a novel dual controller that takes a
model’s functional uncertainty into consideration.

The organisation of the paper is as follows. The objective functional of prob-
abilistic multi-modal control along with its motivation are given in Section 2.
Section 3 introduces the type of system model, discusses the multiple mode
density network, and defines the control objective. The main results includ-
ing the derivation of both of the conditional density function based and most
probable component based probabilistic model adaptive controllers are give
in Section 4. A simulation study is presented in Section 5. Section 6 gives
concluding remarks.

2 Objective Functional of Probabilistic Multi-modal Control

2.1 Motivation of Probabilistic Multi-modal Adaptive Control

Probabilistic Adaptive Control is an active field in the design of control sys-
tems to deal with uncertainties. Traditionally this method has been based
on single fixed or slowly adapting models of the system. While the single
model adaptive control method has proven to be efficient for dealing with low
levels of systems’ uncertainties, it performs poorly in more complex systems
that are characterised by high levels of uncertainty such as multimodality,
hysteresis, and that operate in multiple environments. To cope with such
situations, the multiple model adaptive control method was introduced in
the early 1990s [Fekri et al., 2006, Leith et al., 2003, Narendra and Chen,
2000]. In the context of multiple model adaptive control, several switching
mechanisms have been discussed. Examples include direct switching [Fu and
Barmish, 1986, Zhivoglyadov et al., 2000] where the choice of the switching
was taken to be dependent upon the output of the plant. Indirect switching
where multiple models were used to determine when and to which controller
to switch to was then proposed in [Middleton et al., 1988, Narendra et al.,
1995, Narendra and Chen, 2000] to overcome the impracticality of the direct
switching methods. Data driven unfalsified adaptive control methods which
seek evidence in the system output data to switch a controller out of the
loop when the controller fails to achieve the objective of the control system
was proposed in [Safonov and Tsao, 1997]. Dwell time switching logic [Morse,
1996, Morse, 1997] and Hysteresis based switching logic [Hespanha et al., 2003]
were also proposed to address the problem of how to coordinate the switching.
Many of these methods have been developed in an attempt to define minimal
prior information to achieve good and robust performance of the controlled
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systems. In a pursuit to try and minimise the number of required models,
new concepts in adaptive multiple control that are based on the estimation of
multiple models that cooperate together were proposed in [Han and Narendra,
2012]. In many of the aformentioned works, only the deterministic description
of the controlled systems dynamics were considered. The design of multiple
model adaptive control laws for stochastic dynamical systems has received lit-
tle attention and was mostly limited to the minimisation of the mean value
of the tracking error between the actual output of the system and a prede-
fined desired output, hence they fail to account for parameter and functional
uncertainties of the controlled system and can only derive heuristic certainty
equivalence control laws [Narendra and Chen, 2000, Watanabe and Tzafes-
tas, 1989, Zhang et al., 2012]. In addition, multiple adaptive control methods
are commonly restricted to control linear state space switching systems [Fiac-
chini et al., 2016, Fiacchini and Tarbouriech, 2017, Zhang, 2012] rather than
considering the general realistic problem of non-linear control.

This lack of a general framework that guarantees the derivation of optimal
controllers which consider the inherent nonlinearity and uncertainty of con-
trolled systems drives the work in the current paper. In particular, we develop
a general framework for minimising the uncertainty of the conditional prob-
ability distribution of the tracking error, which also accounts for systems’
uncertainty and multimodality in the control system design. Mixture density
networks (MDNs) were proposed in the literature to approximate the arbitrary
distribution of the generator of the systems’ data, and was extended to deal
with dynamical control systems for the first time in [Herzallah and Lowe, 2003].
However, the extended MDN as proposed in [Herzallah and Lowe, 2003] can
only handle dynamical systems that are characterised by spatial multimodal-
ity where the system dynamics are highly complex and operate in different
operating space. For the dynamical systems considered in this paper where
the system dynamics are characterised by temporal multimodality and where
the dynamics change abruptly and arbitrarily in time the extended MDN
as proposed in [Herzallah and Lowe, 2003] will not yield good performance.
Consequently, this paper introduces a novel Multiple Mode Density network
(MMDN) that can estimate the arbitrary conditional distributions of the sys-
tems’ dynamics that are of interest to the control problem and can switch
immediately and effectively from one mode of operation to another. Hence,
the proposed research proposes a novel and efficient methodology where the
multimodal control law is obtained from the multiple components of the for-
ward dynamical model and designed to deal with the uncertainty, complexity
and multimodality of the system operation. In the proposed framework, the
switching between different modes of operation is based on indirect methods
where the switching is achieved through mixing coefficients that are calculated
based on the error between the actual and estimated outputs of the system.
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2.2 Objective Functional

In this section we will formulate the objective functional of the probabilistic
multimodal switching control problem. The formulation will be developed for
general stochastic control problems where due to the effect of random forces
on the system output, yt+d the behavioral dynamics of the system can only be
specified by the probability distribution of its output conditioned on its input
ut, and its measurable state vector xt = [yt−1, yt−2, . . . , yt−n, ut−1, . . . , ut−m].
This conditional probability distribution of the system output can be described
in the following general form,

Py(yt+d|ut, xt), (1)

where d is the relative degree of the system, n is the maximum delay in the
output, and m is the maximum delay in the input. In general Py is an arbitrary
conditional probability density function of the system dynamics which can
have different numbers of multimodalities depending on the operating region
of the system.

To facilitate the development of the general methodology of minimising the
uncertainty of the conditional probability distribution of the tracking error,
the density of the tracking error needs to be acquired. This can be obtained
from the density of the system output, yt+d as follows,

Pe(yt+d, y
r
t+d) = Py(ek+d, y

r
t+d) (2)

where ek+d = yt+d − yrt+d is the tracking error, and yrt+d is the desired output
of the system. Hence, Pe is also an arbitrary conditional probability density
function which can have different numbers of multimodalities depending on
the complexity of the error surface.

Note that in this formulation, the value of the control input ut indirectly
parameterises and affects the distribution of the tracking error through its
effect on the distribution of the system output, Py. To best accommodate the
complexity and stochastic nature of the control system, we aim in this paper
to design randomised controllers, that are naturally explorative and that can
handle high level of uncertainty and multimodality in the system dynamics.
The details of the design method of the randomised controller will be discussed
later in the paper. However, this will essentially follow our principle for the
design problem, which can be stated as follows:

A controller of a stochastic system shapes the probability density function
of its tracking error. The control aim is that the optimal controller should
make the pdf of the tracking error as narrow as possible. In addition, it should
minimise the mean value of the tracking error and control energy.
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Remark. A narrow distribution indicates that the uncertainty of the tracking
error is small which also corresponds to a small variance for the model in this
paper.

Having accepted this rephrased control aim, it is reasonable to formulate the
following objective functional for the purpose of the controller design,

J(ut) =R
∫
||et+d− < et+d|, yt+d, yrt+d > ||2Pe(yt+d, yrt+d)det+d

+M

(∫
et+dPe(yt+d, y

r
t+d)det+d

)2

+Qu2t (3)

where R,M,Q are constants reflecting the relative importance of the vari-
ous terms. To summarize, a novel MMDN will be developed to estimate the
general distribution that captures the complex and arbitrary structure of the
tracking error and that can switch mode abruptly and arbitrarily in time. Sim-
ilar to the MDN, the MMDN estimates the parameters of the mixture model
as continuous single-valued functions of the input variables using a standard
feed-forward neural network. On the other hand, in contrast to other standard
multiple model approaches, the MMDN minimises an error function that is
constructed from the likelihood of the linear combination of mixture models.
This new architecture which we refer to as the MMDN will be discussed in
detail in the next section. An important characteristic of the MMDN is that it
is able to produce a conditional density where the number of multimodalities
in this density function depends on the surface of the tracking error at the
control instant t. The randomised controllers are then optimised such that the
uncertainty of the conditional distribution of the tracking error is minimised
and the derived control law is of general dual type as opposed to the heuristic
certainty equivalence type. The current paper proposes a general framework
for solving this optimisation problem in a computationally coherent manner.
The basic idea of the proposed framework is that a control law exists to con-
trol the multimodal system where the inverse controller is derived such as to
minimise the mean value of the tracking error and at the same time make
its probability density function as narrow as possible. The combination of
the inverse controller and forward model of the system dynamics constitutes
the closed loop behavior of the controlled dynamical system. It is described
in terms of the general probability density function of the system forward
dynamics and tracking error represented by a mixture of Gaussian models.
Each Gaussian component of the tracking error density function evaluates a
number of probable control signals, and the component generating the min-
imum width and mean of the tracking error is used to represent the current
operating mode of the system and derive the most suitable control signal to
control the system. This overall framework is referred to as Probabilistic Mul-
timodal Adaptive Control (PMAC). This is especially useful for controlling
systems that are characterised by high levels of uncertainty, multimodality,
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and hysteresis.

3 System Model and Control Design

The objective functional of the PMAC developed in the previous section will
be implemented here to demonstrate the design of a randomised controller to
control an affine class of jump nonlinear stochastic single input single output
discrete time systems described by the following general form,

yt+d = ft+d + gt+dut,

ft+d = fm(t+d)[xt] + ηt+d,

gt+d = gm(t+d)[xt] + ηt+d. (4)

where yt+d, ut, and xt are the system output, control input vector, and input
state vector respectively as defined earlier, fm(t+d)[xt] : Rn+m 7−→ R and
gm(t+d)[xt] : Rn+m 7−→ R are smooth unknown non-linear functions of the
state, and ηt+d is an additive Gaussian noise signal. The smooth non-linear
functions ft+d and gt+d could switch form at an arbitrary instant in time
according to the switching index m(t+ d) ∈ {1, 2, . . . , H}. Here H represents
the number of modes of operation that the system can assume during the
course of time. In addition, the probability density function of the system
output yt+d are assumed to be unknown and need to be estimated.

The task of controlling such system is challenging, due to the presence of both
mode jumps, which is a form of temporal multimodality, in addition to the
inherent uncertainty of the dynamics of the modes. The latter refers to the
functional uncertainty in the system model and the inaccuracy in identifying
prior accurate models for all modes. As stated by the objective functional
defined in section 2.2, the objective of the control design is to make the prob-
ability density function of the tracking error between the system and desired
outputs as narrow as possible. This design objective will be achieved under
the following assumptions:
Assumption 1. The dynamics of every mode are minimum phase and the
functions gm(t+d) are bounded away from zero.
Assumption 2. The functions fm(t+d)[xt] and gm(t+d)[xt] are smooth nonlinear
functions.
Assumption 3. The random signals ft+d and gt+d are stochastically indepen-
dent.
Assumption 4. The noise ηt+d is an independent and identically distributed
Gaussian noise signal that has unknown probability density function.

As will be seen later, the proposed PMAC based on MMDN in this paper
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provides an efficient framework for addressing both of the aforementioned
challenges. Within this framework H Kernel functions in the MMDN, one per
mode, are used to identify the nonlinear mode dynamics of the jump system
which are then used to derive optimal control laws via the indirect adaptive
control method. As will be discussed in Section 3.1, we develop an automatic
mode detection approach based on the identification error between the active
mode output and the output of the Kernel functions to switch between the
H Kernel functions in the MMDN and force a particular Kernel function to
learn, by online adjustment of its parameters, the dynamics of that mode.
More significantly, the estimated Kernel functions of the MMDN are used
to derive original multiple dual adaptive control laws that guarantee robust
control results for the uncertain temporal multimodal systems considered in
this paper. The proposed dual adaptive control scheme is facilitated by our
definition of the objective functional (3) that contains terms related to the
estimated variance of the tracking error and to penalise the control input, thus
yielding a control law that is not of the heuristic certainty equivalence type.
To re-emphasise, this general multiple model framework is capable of handling
dynamic uncertainty and multimodality of the control system. The problem of
controlling temporal multimodal nonlinear systems has been considered in the
literature, but has only covered deterministic or linear systems. The proposed
framework on the other hand utilises the probabilistic information from a set of
kernel functions estimated by the MMDN and the automatic mode detection
to derive an optimal control law that can switch between active modes and
at the same time takes knowledge of uncertainty into consideration for more
robust control results.

3.1 Multiple Mode Density Network, MMDN

The class of dynamical systems defined in Equation (4) is characterised by
temporal multimodality. For these systems, the new system parameters must
be tracked fast enough to guarantee small transient degradation in control
performance. Multiple models were proposed in the literature to provide a
solution for this problem. The problem is also related to fault detection and
control reconfiguration [Boskovic and Mehra, 2018, Liu et al., 2018]. However,
these methods are based on the certainty equivalence assumption, thus do not
provide the optimal solutions for stochastic systems. Utilising the benefits of
a modular approach, we propose a new architecture of a mixture of Gaussian
densities network where the mixing priors are functions of the predicted error
thus emphasising individual modes, which we refer to as an MMDN. The main
objective of the MMDN network is to estimate the arbitrary distribution of
the dynamic generator of the data such that it accommodates the sudden
environmental changes and switches. To explain the general architecture and
operation concept of the MMDN, let ht+d represents either ft+d or gt+d of
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Equation (4), then the general distribution of ht+d can be estimated as follows,

P (ht+d|xt, eht) =
K∑
i=1

%i(eht)ϕi(ht+d|xt), (5)

where %i(eht) represent the mixing coefficients of ht+d, and can be regarded as
prior probabilities (which depend on the error vector between the actual, ht
and estimated, h̄t;i outputs at time t, eiht = ht− h̄t;i); ϕi(ht+d|xt) are the kernel
distributions of the mixture model of ht+d (whose parameters are conditioned
on the input state vector, xt), and K is the number of kernels in the mixture
models, which is also the number of modes H assumed in the dynamics. Vari-
ous choices are available for the kernel functions, but this work uses spherical
Gaussians of the form,

ϕi(ht+d|xt) =
1

(2π)c/2κci(xt)
exp

(
−‖ ht+d − h̄i(xt) ‖

2

2κ2i (xt)

)
, (6)

where c is the dimensionality of the random signal ht+d, h̄i(xt) represents the
centre of the ith kernel, with components h̄ij. In Equation (6), the components
of the output variable are assumed to be statistically independent within each
of the kernel functions, and can be described by a variance κ2i (xt).

The mixture model defined in Equation (5) provides a general formalism for
estimating an arbitrary conditional density function P (ht+d|xt, eht) of the ran-
dom signal ht+d. The dependency of the mixing coefficients on the error signal
between actual and estimated outputs as proposed in the MMDN allows the
switching between different modalities where the onset of the mode switch
and the currently active mode do not depend on any of the measurable state
variables. This dependency of the mixing coefficient on the error signal, rather
than the state vector as in the enhanced version of the MDN, also means that
two neural networks are required to estimate the various parameters of the
mixture model. The first neural network, which we refer to as the kernel func-
tions network, takes the means h̄i(xt) and the variances κ2i (xt) as its outputs
and the state vector xt as its input. The second neural network, which we refer
to as the mixing coefficients network, takes the mixing coefficients %(eht) as its
outputs and the error vector eiht as its input. The architecture of the MMDN
is shown in Figure 1.

To ensure that the two neural networks of the MMDN learn to competitively
divide up experience and solve the module learning and selection problems, the
ithmixing coefficient of the ith kernel component is calculated by transforming
the predicted error value from that component by the softmax function,
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Figure 1. The architecture of the proposed multiple model density network, MMDN.
The general conditional probability densities P (ht+d|xt, eht) are represented as a
parametric model of kernel functions and mixing coefficients. The parameters of the
kernel functions are determined by the outputs of the Kernel Functions network that
takes xt as its input vector. A second standard neural network, mixing coefficient
networks, that takes the error vector between the estimated and actual mixing
coefficients eht is also implemented to provide a prediction for the mixing coefficient
and switch between various kernel components based on the current active mode of
the dynamical system. TDL is time delay lines.

%̃i(eht) =
exp{−(ht − h̄t;i)2/κ2i }∑M
j exp{−(ht − h̄t;j)2/κ2j}

, (7)

which gives higher mixing coefficients for those components which capture
the current behavior of the dynamical system. These mixing coefficients are
then compared to the estimated coefficients generated from the transformed
outputs of the mixing coefficients neural network by the softmax function.
These error signals between the estimated and actual mixing coefficients can
hence be used to update the weights of the mixing coefficients network. The
predicted mixing coefficients from the mixing coefficients network are then
used to control the learning of the kernel functions network using an error
function from the likelihood as follows,

E = −
M∑
i=1

%i(eht)ϕi(ht+d|xt). (8)

This definition of the error function of the kernel functions network as the
likelihood function implies that the kernel components with high mixing co-
efficients receive more contribution than components with low mixing coef-
ficients which in turn allows the efficient division of the learning experience
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among the kernel components. In addition, the use of the predicted mixing
coefficients rather than the actual coefficients allows the components to switch
between them before the generation of the control action and the evaluation
of its consequences.

To summarise, the proposed architecture of the MMDN can learn multiple
modes of operation and switch between them based on prediction errors be-
tween estimated and actual mode of operation, thus can estimate an arbitrary
distribution of random signals.

3.2 Control Objective

The control objective as stated in Section 2 is to design a randomised controller
that minimises the uncertainty of the conditional distribution of the tracking
error function. As discussed earlier, the tracking error distribution can be
obtained from the distribution of the forward dynamics of the plant. The
developed architecture of the MMDN in Section 3.1 will be used here to provide
an estimate for the output pdf of the system defined in (4). To do this we note
that the output of the system of (4) is the addition of a multimodal non-linear
function ft+d to the product of another multimodal non-linear function gt+d
with the control input ut. Thus, two MMDNs are required to estimate the
pdfs of the two non-linear multimodal functions ft+d and gt+d. As discussed
in Section 3.1, the outputs of the two MMDNs approximating the conditional
distributions of the non-linear functions ft+d and gt+d are respectively given
by,

P (ft+d|xt, eft) =
M1∑
j=1

αj(eft)φj(ft+d|xt), (9)

P (gt+d|xt, egt) =
M2∑
i=1

βi(egt)θi(gt+d|xt), (10)

where αj(eft) and βi(egt) represent the mixing coefficients of ft+d and gt+d
respectively, φj(ft+d|xt) and θi(gt+d|xt) are the kernel distributions of the mix-
ture models of ft+d and gt+d respectively, and M1 and M2 are the number of
kernels in the mixture models. The kernel functions of both MMDNs are given
by spherical Gaussian functions as follows,

φj(ft+d|xt) =
1

(2π)c/2σcj(xt)
exp

(
−‖ ft+d − µj(xt) ‖

2

2σ2
j (xt)

)
, (11)

θi(gt+d|xt) =
1

(2π)c/2ρci(xt)
exp

(
−‖ gt+d − νi(xt) ‖

2

2ρ2i (xt)

)
, (12)
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where c is the dimensionality of the random signals ft+d and gt+d, µj(xt) and
νi(xt) represent the centres of the jth and ith kernel, with components µjk and
νik. The following conditions, related to the MMDNs, are assumed to hold:
Assumption 5. The state xt is always confined within a bounded region of
state space xt ∈ X.
Assumption 6. For every local mode of operation m(t+ d), there exist some
optimal Kernel centres, and variances as well as mixing coefficients that are
capable of approximating the probability density functions of the system mode
dynamics (fm(t+ d), gm(t+ d)) within the region X.

Assumption 6 follows from the universal approximation property of the MDN.
Both of the assumptions 5 and 6 ensure that the system mode activity can be
captured by one of the Kernel functions of the estimated pdf of the system
output.

By assumption 3 it follows that the conditional probability density function
of the system output defined in Equation (4) can be obtained as follows

Py(yt+d|xt, eft , egt) =Pf ∗ Pug (13)

=P (ft+d|xt, eft) ∗ P (utgt+d|xt, egt),

where Pf ∗Pug denotes the convolution of Pf and Pug. Given the forms of the
probability density functions of the random signals ft+d and gt+d defined in
Equations (9) and (10) respectively, the above convolution of the two pdfs Pf
and Pug can be shown to be given by the form stated in the following lemma.
Lemma 3.1. Subject to assumption 3, the forms of pdfs of the random signals
ft+d and gt+d defined in Equations (9) and (10) respectively, and the forms
of Gaussian kernels defined in Equations (11) and (12), the pdf of the system
output defined in Equation (13) is given by

Py(yt+d|xt, eft , egt) =
M1∑
j=1

M2∑
i=1

αj(eft)φj(ft+d|xt)utβi(egt)θi(gt+d|xt)

=
M1∑
j=1

M2∑
i=1

αj(eft)βi(egt)ψji(yt+d|xt, ut) (14)

where

ψji(yt+d|xt) =
1

(2πγji)c/2
exp

(
−‖ yt+d − ȳji(xt) ‖2

2γji(xt)

)
, (15)

and where

γji =σ2
j (xt) + u2tρ

2
i (xt) (16)

ȳji =µj(xt) + utνi(xt). (17)
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Proof. The proof follows directly from the property that the moment gener-
ating function of the sum of independent random variables is the product of
the individual moment generating functions, and that the moment generating
function of a Gaussian probability distribution function is also of Gaussian
form. The details of the proof are provided in Appendix A.

Having obtained the distribution of the system output, the tracking error
distribution can be shown to be given by the form specified in the following
lemma.
Lemma 3.2. The probability distribution of the tracking error of the system
output defined in Equation (4) is given by,

Pe(et+d|xt, eft , egt) =
M1∑
j=1

M2∑
i=1

αj(eft)βi(egt)Ψji(et+d|xt, ut) (18)

where

Ψji(yt+d|xt) =
1

(2πγji)c/2
exp

(
−
‖ yt+d − (ȳji(xt)− yrt+d) ‖2

2γji(xt)

)
, (19)

and where γji and ȳji are as defined in Equations (16) and (17) respectively.

Proof. The proof follows directly from Lemma 3.1 and Equation (2).

The above result will naturally lead to the use of stochastic estimation and
control algorithms. In the proposed scheme, the derivation of control signals
utilizes the probabilistic information from the multiple mode density networks.

4 Controller Design

The controller design is concerned with the problem of finding a randomised
controller such that the objective functional defined in Equation (3) is min-
imised. This is a non-linear optimisation problem that can be solved by setting
the derivative of the objective functional (3) with respect to the control signal
equal to zero,

∂J(ut)

∂ut
= 0. (20)

Before demonstrating the exploitation of Equation (20) for the derivation of
the proposed control algorithm, we first discuss various methods proposed in
the literature for the selection of the output from an arbitrary distribution
of mixture of Gaussians. One method is based on the utilisation of the com-
plete description of the conditional density function of the tracking error as
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stated by equation (18). However, this does not allow for the selection of the
individual modes. An alternative as used in this paper is the estimation of
the error probability density function using the MMDN where the estimated
distribution consists of a number of distinct modes switched by the error
dependent priors. This consequently suggests the selection of only one compo-
nent from the estimated conditional density. One possibility for the selection
of the specific component is the selection of the most probable component.
The derivation of the optimal control law later, depends on the method used
for the selection of the output of the MMDN.

4.1 Conditional Density Function based PMAC Controller Design

The evaluation of the objective functional (3) based on the estimated condi-
tional density function of tracking error as stated in Equation (18) yields,

J(ut) =R
∑
j

∑
i

αj(eft)βi(egt)

{
γji(xt) +

[
χji(xt)−

∑
l1

∑
l2

αl1(eft)βl2(egt)χl1l2(xt)

]2}

+M

(∑
j

∑
i

αj(eft)βi(egt)χji(xt)

)2

+Qu2t , (21)

where χji = µj(xt) − yrt+d + utνi(xt). The first term in this equation is the
variance of the tracking error density function. The second term corresponds
to the squared mean of the conditional density function of the tracking error.
This mean is equivalent to the function computed by a standard network
trained using least squares method. The variance however is more general
to that computed by least squares method since this variance is constructed
to be a general function of the input values, xt. Thus, this method in fact
reproduces the conventional least squares method as a special case. As such,
this method may not be ideal for the derivation of the optimal control law for
the switching control problem considered in this paper as will be demonstrated
in the simulation example section.

Minimisation of the explicit objective functional (21) leads to the control law
specified in the following theorem.
Theorem 4.1. The control law minimising the performance index J(ut) of
Equation (21) subject to the density of the tracking error function of Equa-
tion (18) and the density function of the non-linear models of the system
dynamics of Equations (9) and (10), is given by

u∗t =
M(yrt+d − f̂t+d(xt))ĝt+d(xt)
Rs2gt+d

(xt) +Q+Mĝ2t+d(xt)
, (22)
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where

f̂t+d(xt) =
∑
j

αj(eft)µj(xt),

ĝt+d(xt) =
∑
i

βi(egt)νi(xt),

s2gt+d
(xt) =

∑
i

βi(egt)

{
ρ2i (xt) + ||νi(xt)−

∑
l2

βl2(egt)νl2(xt)||2
}
.

(23)

Proof. The proof follows directly from the substitution of the objective func-
tional of Equation (21) into Equation (20). The proof is given in Appendix
B.

4.2 Most Probable Component based PMAC Controller Design

For the switching control problem considered in this paper, the most probable
component of the tracking error distribution would be more appropriate. Since
each component of the mixture of Gaussians in the MMDN is normalised, then
under the assumption that the kernels densities are not strongly overlapping,
the most probable component can be shown to be given by,

arg max
j,i
{αj(eft)βi(egt)}.

This means that one Gaussian model can be available at a specific instant of
time,

Pe(et+d|xt) =
1

(2πγji)c/2
exp

(
−
‖ yt+d − (ȳji(xt)− yrt+d) ‖2

2γji(xt)

)
, (24)

and where γji and ȳji are as defined in Equations (16) and (17) respectively. For
the multimodal systems considered in this paper, the most probable compo-
nent was proven to be more suitable as will be demonstrated in the simulation
study. The evaluation of the objective functional (3) based on the estimated
most probable component of the tracking error as stated in Equation (24)
yields,

J(ut) = M [µj(xt) + νi(xt)ut − yrt+d]
2 +R(σ2

j (xt) + ρ2i (xt)u
2
t ) +Qu2t , (25)

where the first and second terms respectively represent the square mean and
the variance of the most probable Gaussian component. The optimal control
law that minimizes the performance function given in Equation (25) is stated
in the following theorem.
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Theorem 4.2. The optimal control law that minimizes the performance func-
tion J [ut] of Equation (25) subject to the tracking error conditional density
function of Equation (24), is given by

u∗t =
M [yrt+d − µj(xt)]νi(xt)
Mν2i (xt) +Q+Rρ2i (xt)

. (26)

Proof. : The proof of Theorem 4.2 can be obtained by evaluating the derivative
of the performance measure J [ut] of Equation (25) with respect to ut and
setting the derivative equal to zero.

5 Simulation example

In this section a second order affine non-linear system of the form defined in
Equation (4) is simulated. The system is described by three modes, where
each mode is characterised by a pair of the following equations:

f1 =− 1.5yt−1yt−2
1 + y2

t−1 + y2
t−2

+ 0.35 sin[yt−1 + yt−2], g1 = 5,

f2 =
2.5yt−1yt−2

1 + y2
t−1 + y2

t−2
, g2 = 1,

f3 =
1.5yt−1yt−2

1 + y2
t−1 + y2

t−2
+ 0.35 cos[yt−1 + yt−2], g3 = 3. (27)

This system was used in [Fabri and Kadirkamanathan, 2001] to demonstrate
the maximum a posteriori innovations dual control. Here the relative degree of
the system, d = 1, the non-linear functions (fi, gi) are assumed to be unknown,
and the state vector xt as can be deduced from the above equation is given
by (yt−1, yt−2). To introduce stochasticity to the system, a noise sampled from
a Gaussian distribution with zero mean and 0.001 variance was added to the
two non-linear functions ft and gt.

The three modes are activated during the time intervals shown in Table 1.
The desired system output is obtained by sampling a unit amplitude, 0.1Hz
square wave, with a sampling frequency Fs = 20Hz. The square wave is then
filtered with a first order low pass filter with a time constant τ = 0.5s.

In the first set of experiments, we compare the control results obtained from
the most probable system output as evaluated from the multiple mode density
network with those obtained from the conditional mean. Two MMDNs were
used to estimate the system given by Equation (27). The first MMDN used to
estimate the fi’s functions has three Gaassian kernel functions and uses two
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Table 1. The mode activity of simulated system

Mode Intervals of Activity (secs)

1 [0, 20), (43, 57), (58, 100]

2 [20, 29), (71, 85]

3 [29, 43], [57, 71]

multi layer perceptron neural networks each with two layers, twenty one tanh
sigmoidal units in the hidden layer, and nine outputs. The second MMDN
used to estimate the gi’s functions has three Gaussian kernel functions and
uses two multi layer perceptron neural networks each with two layers, five
tanh sigmoidal units in the hidden layer, and nine outputs. The parameters
of the networks were initialised randomly. To ensure fair comparison, both
conditional mean and most probable control laws are simulated with the same
noise sequence. This experiment was conducted using the design parameters,
M = 1, R = 0.2 and Q = 0.0001. The results of the most probable output
based control law are shown in Figure 2. This figure shows that by taking
the most probable output of the MMDN components as an estimate for the
actual output of the system dynamics, the derived control law which also
uses knowledge of the uncertainty in the estimated output are capable of
controlling the system output and driving it to accurately track the reference
signal. Notice that despite the unknown mode dynamics, the system output is
superimposed on the desired output and smoothly tracks the reference signal
showing short period transient spikes only following a mode transition. This
smooth tracking can be attributed to the fact that the switching probabilities
of conditional distribution of the system tracking error as estimated by the
MMDN are continuous functions of the error between the kernel components
and the currently active mode of the system. Figure 2(b), shows the tracking
error (yd − y) which shows the deviation between the system output and the
desired output. Figure 2(c), shows the control input. It can be seen from this
figure that despite the mode transition, the control signal changes smoothly
with the change in the reference signal. Figure 3 shows the corresponding
results obtained from the conditional mean based control law. The figure shows
bad tracking performance as can be seen from the large deviations between
the system output and the desired output. This confirms that the conditional
mean is not suitable for switching control problems where the plant dynamics
switch from one mode of operation to another.

The second set of experiments shows the performance of the control system
if the exact system functions, (fi, gi) were used in Equation (26) instead of
their estimates (µj, νi). In addition, note that as a result of using the exact
system functions the term ρ2i in the denominator of Equation (26) will be zero.
The results of this experiment are shown in Figure 4. This figure shows very
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similar performance when compared to the performance of the control system,
shown in Figure 2(a), if the actual functions were assumed to be unknown and
replaced by their estimates (µj, νi). The assumption of the availability of the
exact system model is unrealistic in practice meaning that a model need to be
obtained either from the physical system parameters or from the input and
output data of the system.

To show the effect of the design parameters, M , Q and R on the closed loop
performance of the control system, we conduct another set of simulation ex-
periments using three different design parameter settings corresponding to
heuristic certainty equivalence R = 0, and dual control with two different
design settings: R = 0.5 and R = 0.2. The same noise sequence, initial con-
ditions, control penalty Q = 0.0001, weight of the mean of the tracking error
M = 1, and reference input were used in each case. The result is shown in Fig-
ure 5. As expected, the figure shows that the heuristic certainty equivalence
controller exhibits large overshoot because it is not taking into consideration
the functional uncertainty of the system models. The dual controllers however
show similar performance to each other, clearly showing no extra particular
overshoot whilst tracking the reference input with a good accuracy. This can
be clearly seen from the magnified figures in Figure 5 which show the response
of the system in capturing mode 1.

The last set of experiments compares the performance of the proposed MMDN
with the enhanced version of MDN [Herzallah and Lowe, 2003], and the single
model standard multi layer perceptron (MLP) neural network that is adapted
online to track the variation in the system dynamics. In the enhanced MDN
experiment, two MDN’s were used to estimate the system functions (fi and
gi). The MDN that estimates the fi functions has three Gaussian Kernel func-
tions and uses a multi layer perceptron neural network with two layers, twenty
one tanh sigmoidal units in the hidden layer, and nine outputs. The MDN that
estimates the gi functions has three Gaussian kernel functions and uses a multi
layer perceptron neural network with two layers, five tanh sigmoidal units in
the hidden layer, and nine outputs. For the standard MLP implementation,
two MLP networks with eleven and five hidden neurons were used to estimate
the fi and gi functions respectively, whose parameters were adapted online to
track the variations when the system switches from one mode of operation to
another. All model complexities determined by cross validation. The results
of both experiments are shown in Figure 6. As expected, both the enhanced
version of the MDN and standard MLP show very bad control performance
and inability to track the desired system output. Figure 6(a) shows that al-
though a standard MLP can normally track slow varying system parameters,
it is inadequate for systems that switch modes abruptly. The results of the
enhanced version of MDN as shown in Figure 6(b) also demonstrates bad con-
trol performance for the considered jump problem where the currently active
mode and its onset do not depend on any of the measurable variables that are
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accessible for estimation.
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Figure 2. Most probable control results using the design parameters M = 1, R = 0.2
and Q = 0.0001: output, tracking error and control input (a) the actual and reference
model outputs of most probable based control. (b) tracking error of most probable
based control. (c) control law of most probable based control.
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Figure 3. Conditional mean control results using the design parameters M = 1,
R = 0.2 and Q = 0.0001: output, tracking error and control input(a) the actual
and reference model outputs of conditional mean based based control. (b) tracking
error of conditional mean based control. (c) control law of conditional mean based
control.
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Figure 4. The effect of using the exact system functions, (fi, gi) in Equation (26)
instead of their estimates on the performance of the control system.
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Figure 5. Most probable control results for three set of design parameters: (a) the
actual and reference model outputs of conditional mean based based control using
M = 1, R = 0.2 and Q = 0.0001. (b) the actual and reference model outputs of
conditional mean based based control using M = 1, R = 0.5 and Q = 0.0001. (c)
the actual and reference model outputs of conditional mean based based control
using M = 1, R = 0 and Q = 0.0001.
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Figure 6. Standard MLP and enhanced MDN control results: (a) the actual and
reference model outputs of the standard MLP based control. (b) the actual and
reference model outputs of the enhanced MDN based control.
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6 Conclusion

A new probabilistic multimodal adaptive control framework has been pro-
posed. This control framework provides a general solution to the problem
of deriving the optimal control law of dynamical systems that switch modes
abruptly and arbitrarily in time. Furthermore, to address the multimodality
of the system dynamics, we developed a novel architecture called a Multiple
Mode Density Network that can estimate an arbitrary distribution of the sys-
tem dynamics using a mixture of kernel functions. The MMDN model can di-
vide the learning experience among its kernel functions based on the predicted
error values between the actual and estimated modes. Following the estima-
tion of the arbitrary distribution of the system dynamics, we then defined the
objective function of the control problem such that it utilises the complete in-
formation from this distribution. The theoretical findings presented were then
validated on a dynamical switching example. The example confirms the effec-
tiveness of the proposed multimodal probabilistic adaptive control framework
in achieving good tracking performance for the desired output.

A Convolution of Mixtures of Probability Distributions

Proposition A.1 The convolution of two independent Gaussian mixture mod-
els is also a Gaussian mixture model.

Proof: Specific to the notation of this paper, if ft+d and gt+d are independent
random signals, with moment generating functions Mf [s] and Mg[s], then the
moment generating function of a linear combination of the random variable
yt+d = ft+d + utgt+d is simply My[s] = Mf [s]Mg[uts]. The product of two
moment generating functions is equivalent to the convolution of the respective
probability distributions [Feller, 1971]. Since the distributions of ft+d and gt+d
are finite linear combinations of kernel distribution functions, then the moment
generating function of a linear combination of distributions is the same linear
combination of individual component moment generating functions. ie since

P (ft+d|xt, eft) =
M1∑
j=1

αj(eft)φj(ft+d|xt), (A.1)

P (gt+d|xt, egt) =
M2∑
i=1

βi(egt)θi(gt+d|xt), (A.2)

then the corresponding moment generating functions are:

25



Mf [s] =
M1∑
j=1

αj(eft)Mφj [s] (A.3)

Mg[s] =
M2∑
i=1

βi(egt)Mθi [s]. (A.4)

Therefore the moment generating function of yt+d is just

My[s] =
M1∑
j=1

M2∑
i=1

βi(egt)αj(eft)Mφj [s]Mθi [uts].

Then it only suffices to show that for Gaussian kernels a product of two Gaus-
sian moment generating functions corresponds to a Gaussian moment gener-
ating function, (ie so that Mφj [s]Mθi [uts] is a Gaussian moment generating
function).

This is trivial since the moment generating function of a normal random vari-
able X is:

MX [s] =
∫ ∞
−∞

exp(sx)
1√
2πσ

exp(− x2

2σ2
)dx = exp

(
s2σ2

2
+ µxs

)
.

Therefore for two independent normal random variables X1 and X2 with pa-
rameters (µ1, σ

2
1) and (µ2, σ

2
2), then

MX1+X2 = exp

(
(σ2

1 + σ2
2)s2

2
+ (µ1 + µ2)s

)

which is also the moment generating function of the normal distribution with
parameters (µ1 + µ2, σ

2
1 + σ2

2).

Converting back to the original variables

Mφj [s]Mθi [uts] ≡Mψij
[s]

where

Mψij
[s] = exp

(
(σ2

j + u2tρ
2
i )s

2

2
+ (µj + utνi)s

)
.

Combining these observations it is a trivial generalisation to map over to
the kernel mixture models of Equations (9) and (10) in which the individual
convolutions between the Gaussian mixture components are weighted by the
coefficients αj(eft), βi(egt). The resultant distribution is therefore a mixture
combination of Gaussian distributions, ie. the distribution of the random vari-
able yt+d ≡ ft+d + utgt+d can be expressed as a recombined Gaussian mixture
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model:

p(yt+d|xt, eft , egt) =
M1∑
j=1

M2∑
i=1

αj(eft)βi(egt)ψji(yt+d|xt) (A.5)

where

ψji(yt+d|xt) =
1

(2πγji)c/2
exp

(
−‖ yt+d − ȳji(xt) ‖2

2γji(xt)

)
, (A.6)

and where

γji =σ2
j (xt) + u2(t)ρ2i (xt)

ȳji =µj + u(t)νi.

B Optimal Control Law

The objective functional of the optimal control problem is defined in (21),
repeated here,

J(ut) =R
∑
j

∑
i

αj(eft)βi(egt)

{
γji(xt) +

[
χji(xt)−

∑
l1

∑
l2

αl1(eft)βl2(egt)χl1l2(xt)

]2}

+M

(∑
j

∑
i

αj(eft)βi(egt)χji(xt)

)2

+Qu2t , (B.1)

where,

γji =σ2
j (xt) + u2tρ

2
i (xt), (B.2)

χji = µ̄j + utνi, (B.3)

and where

µ̄j = µj − yrt+d. (B.4)

Taking the derivative of the objective functional (B.1) with respect to the
control signal and setting it to zero yields,
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0 =R
∑
j

∑
i

αj(eft)βi(egt)utρ
2
i

+R
∑
j

∑
i

αj(eft)βi(egt)

[
χji(xt)−

∑
l1

∑
l2

αl1(eft)βl2(egt)χl1l2(xt)

]
[
νi −

∑
l1

∑
l2

αl1(eft)βl2(egt)νl2

]
+M

(∑
j

∑
i

αj(eft)βi(egt)

)2

νi(µ̄j + utνi)

+Qut,

=Rut
∑
j

∑
i

αj(eft)βi(egt)ρ
2
i

+R
∑
j

∑
i

αj(eft)βi(egt)

[
µ̄j + utνi

][
νi −

∑
l1

∑
l2

αl1(eft)βl2(egt)νl2

]

−R
∑
j

∑
i

αj(eft)βi(egt)
∑
l1

∑
l2

αl1(eft)βl2(egt)

[
µ̄l1 + utνl2

][
νi −

∑
l1

∑
l2

αl1(eft)βl2(egt)νl2

]

+M

(∑
j

∑
i

αj(eft)βi(egt)

)2

νi(µ̄j + utνi) +Qut. (B.5)

Rearranging this equation such that all control signal dependent terms are
kept on one side of the equation and all other terms are taken to the other
side yields,

ut

{
R
∑
j

∑
i

αj(eft)βi(egt)ρ
2
i +R

∑
j

∑
i

αj(eft)βi(egt)νi

[
νi −

∑
l1

∑
l2

αl1(eft)βl2(egt)νl2

]

−R
∑
j

∑
i

αj(eft)βi(egt)
∑
l1

∑
l2

αl1(eft)βl2(egt)νl2

[
νi −

∑
l1

∑
l2

αl1(eft)βl2(egt)νl2

]

+M

(∑
j

∑
i

αj(eft)βi(egt)

)2

ν2i +Q

}

=R
∑
j

∑
i

αj(eft)βi(egt)
∑
l1

∑
l2

αl1(eft)βl2(egt)µ̄l1

[
νi −

∑
l1

∑
l2

αl1(eft)βl2(egt)νl2

]

−R
∑
j

∑
i

αj(eft)βi(egt)µ̄j

[
νi −

∑
l1

∑
l2

αl1(eft)βl2(egt)νl2

]

−M
(∑

j

∑
i

αj(eft)βi(egt)

)2

νiµ̄j. (B.6)

Since αj(eft) and βi(egt) are prior probabilities, this means that∑
j

αj(eft) = 1,
∑
i

βi(egt) = 1. (B.7)

Using this equation in Equation (B.6) and simplifying yields,
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ut

{
R
∑
i

βi(egt)ρ
2
i +R

∑
i

βi(egt)νi

[
νi −

∑
l2

βl2(egt)νl2

]

−R
∑
i

βi(egt)
∑
l2

βl2(egt)νl2

[
νi −

∑
l2

βl2(egt)νl2

]
+M

(∑
i

βi(egt)νi

)2

+Q

}

=R
∑
i

βi(egt)
∑
l1

αl1(eft)µ̄l

[
νi −

∑
l2

βl2(egt)νl2

]

−R
∑
j

αj(eft)µ̄j
∑
i

βi(egt)

[
νi −

∑
l2

βl2(egt)νl2

]

−M
∑
i

βi(egt)νi
∑
j

αj(eft)µ̄j. (B.8)

The first two terms on the right hand side of Equation (B.8) then vanish as
they are equal but have opposite signs. Hence Equation (B.8) simplifies to the
form,

utR
∑
i

βi(egt)

{
ρ2i + ν2i − 2νi

∑
l2

βl2(egt)νl2 +

(∑
l2

βl2(egt)νl2

)2}

+M

(∑
i

βi(egt)νi

)2

ut +Qut

=−M
∑
i

βi(egt)νi
∑
j

αj(eft)µ̄j. (B.9)

If we define,

f̂t+d =
∑
j

αj(eft)µj, (B.10)

ĝt+d =
∑
i

βi(egt)νi, (B.11)

s2gt+d
(xt) =

∑
i

βi(egt)

{
ρ2i (xt) + ||νi(xt)−

∑
l2

βl2(egt)νl2(xt)||2
}
, (B.12)

then Equation (B.9) can be rewritten as,

utRs
2
gt(xt) +M

(∑
i

βi(egt)νi

)2

ut +Qut

=M
∑
i

βi(eft)νi
∑
j

αj(eft)(y
r
t+d − µj). (B.13)
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