
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/92345

Please be advised that this information was generated on 2020-09-09 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16176799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/92345

Size Analysis of Higher-Order Functions

Attila Gobi ?1, Olha Shkaravska2, and Marko van Eekelen??2,3

1 Faculty of Informatics, Eötvös Loránd University Budapest
2 Institute for Computing and Information Sciences, Radboud University Nijmegen

3 Open University of the Netherlands, Heerlen

Abstract. We present a lambda-calculus that formalizes the relations
between the sizes of arguments and the sizes of the corresponding results
of functions in a higher-order polymorphic strict functional language.
On top of usual constructions we consider two operators for finite maps:
List, that defines a (higher-order) finite maps, and Shift. Intuitively, size
expressions are abstract interpretations of programs in the natural arith-
metic.
To prove normalization and diamond (modulo integer axiomatics) prop-
erty of the calculus we show that it can be expressed in System F.

1 Introduction

We present a calculus that formalizes the relations between the sizes of arguments
and the sizes of the corresponding results of functions in a higher-order poly-
morphic strict functional language. Informally, the calculus extends the lambda-
calculus with arithmetic operations and two operators for finite maps: List, that
defines a (higher-order) finite maps, and Shift. To our knowledge, the novelty of
our approach is in using finite maps and the two operators above to present size
of lists. In the future we will consider possibility to infer polynomial size depen-
dencies for higher-order shapely functions, using polynomial interpolation.

Verification conditions we obtain as the result of syntax-directed stage of
type-checking, are (conditional) equations in the combination of three theories:
lambda-calculus, integer ring and finite maps. From the theory of finite maps we
need the extensionally axiom that looks like

f = g ⇐⇒ Dom(f) = Dom(g) ∧ ∀ n ∈ Dom(f).f(n) = g(n)

and the rewriting definition of Shift- and List-operators.
This research continues the series of work on size analysis of first-order strict

functional languages where annotation inference is based on polynomial inter-
polation[7]. At the end of this paper we show that similar test-and-interpolate
heuristic, which hints possible polynomial dependencies between sizes, is appli-
cable for higher-order functions as well.

? The research is supported by the European Union and co-financed by the European
Social Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003)

?? The second and the third authors are supported by Artemis Joint Undertaking in
the CHARTER project, grant-nr. 100039

77

2 Size calculus

Syntax of expressions in the calculus is given by the grammar on figure 1. We
call them size expressions.

Now we consider a few simple examples to give an idea behind our formaliza-
tion. We begin with an integer literal, eg. 42. We assume that it does not have
size, so we assign the expression Unsized to it.

The size of a list is expressed by the combinator List. For instance, the size of
the list [1] is given by List 1 (λx.Unsized). Here the first argument of List denotes
the length of the list while the second is a lambda abstraction expressing the
sizes of the elements of the list. λ-bound variable x corresponds to the position
of the element in a list. For instance, in the expression Listn (λx.e(x)), e(n− 1)
represent the size of the head, e(n − 2) represents the size of the element next
to the head, e(0) represents the length of the tailing element. 4 e(x) is a finite
map defined on 0, . . . , n− 1.

To define higher-order size expressions for functions we use two sorts of λ-
abstraction. For type list we use Λ abstraction, for other types we use λ.

For example, the size expression for a function of type Int→ Int is λx.Unsized,
since the size of its result is unsized regardless of its argument. Another simple
example is the identity function of type α→ α. Its size expression is λx.x, which
expresses the fact it does not change the size of its argument.

For list arguments we use Λ. In a way, it is the “inverse” of List, as List can
be seen as a data constructor of a pair, while Λ is the corresponding pattern
matching. In this paper it is defined by the following reduction:

(λ̂xy .e)(List a b)→ (e[x := a, y := b])

For an example of applying this definition see the comment after the match-rule
in Section 3.

In this way we can present the size expression for the result of a function by
giving a size expressions of its arguments. in the following example the function
addone takes its argument l′ : L(Int) and appends 1 to the list:

addone l′ = cons 1 l′

The simplest way to express its size dependency is:

λ̂sf . List(s+ 1)(λx.Unsized)

Now the combinator Shift is defined. Shift e1 n e2 inserts n elements of e1
before e2, so the reduction rule for the combinator is:

(Shift e1 c1 e2)c2 →
{
e1c2 if c2 < c1

e2(c2 − c1) otherwise

4 Note that this enumeration of list elements is “opposes” the traditional in the func-
tional languages enumeration, where the head element has number 0, etc. The enu-
meration we use is more convenient in our reasoning and, for instance, simplifies
significantly the match-rule.

78

sizeexpr ::= c | x | sizeexpr binop sizeexpr
| λx . sizeexpr | sizeexpr sizeexpr
| Λxy . sizeexpr | List | Unsized
| Shift

Fig. 1. Syntax of Size Expressions

For example, using this combinator we can define the size expression of the usual
append function:

λ̂lf .λ̂
m
g . List (l +m) (Shift gmf)

3 Type system

Our type system does not check or infer types, but relies an underlying type
system instead. For the point of view of the size checking we only need a function
called Type which can give us the correct type of a function. For this reason and
for the sake of readability we omit underlying types in typings at all. Thus τ in
a typing z : τ is a size expression. The equality of two types τ1 and τ2 means
that they have the same normal form modulo axiomatics of integer rings, if we
use the reduction rules of λ-calculus and the reduction definitions of List and
Shift. We will also need an equation between expression related to extensionality
axiom, which we explain later.

D ` τ = τ ′

D; Γ, z : τ ` z :τ ′
Var

z /∈ dom(Γ)
D; Γ ` e1 :τz

D; Γ, z : τz ` e2 :τ

D; Γ ` let z = e1 in e2 :τ
Let

Type(f) = α1 → . . . αm → αm+1

∀i ∈ 1 . . .m : τi = fresh(αi)
True; Γ, z1 : τ1, . . . , zm : τm, f : τf ` ef :τf τ1 . . . τm

D; Γ, f : τf ` e :τ

D; Γ ` letfun f z1 . . . zm : τf = ef in e :τ
LetFun

The difference between LetFun and Let should be clarified. In the case of
Let no formal parameters or recursion allowed, but it does not have explicit size
signature – partial inference is used in that rule. LetFun can be recursive and
can have formal parameters, but it must be annotated by a size expression and
our type system can only check its type.
where

fresh(α) =





List τ (fresh(β)) if α = L(β)

List τ (λτ.′ Unsized)) if α = L(Int)

Unsized if α=Int

τ otherwise

,

where τ and τ ′ are fresh size variables.

79

We omit the cons and nil rule, because we consider them as predefined func-
tions, so their size expressions are in the context Γ . The size expression of nil is
the following.

nil : List 0 (λx.x)

Note that λx.x is arbitrary and should be never evaluated in a correctly typed
program. A naive version of the typing for cons is

cons : λx. λ̂sf . List (s+ 1) (Shift f s {0 7→ x})

where {0 7→ x} is the final map with the domain {0} that maps 0 to x. This rule
gives an insight, however it is rather semantic and we do not have syntactic tools
to define finite maps explicitly. So, we use more general version of the typing:

cons : λx. λ̂sf . List (s+ 1) (Shift f s λy.x),

D, (λ̂sf .l)τl = List 0 τ ′; Γ, l : τ ` enil :τ
hd , tl 6∈ dom(Γ) τhd = (λ̂sf .f(s− 1))τl τtl = (λ̂sf .List(s− 1)f)τl

D; Γ, hd : τhd , l : τl, tl : τtl ` econs :τ

D; Γ, l : τl ` match l with | nil⇒ enil
| cons hd tl ⇒ econs

:τ
Match

It is worth to note that for a well-typed function the type τl is reduced to
the type of the form List τ1 τ2 and τ1 is reduced to the integer expression. Then
the type of hd , which is

(
λ̂sf .f(s− 1)

)
τl, is reduced to τ2(τ1 − 1) according to

the rewriting definition. Similarly, the type of hd , which is (λ̂lf .List(l − 1)f)τl is
reduced to List(τ1 − 1)τ2.

D ` τ τ1 . . . τn = τ ′

D; Γ, f : τ, x1 : τ1 . . . xn : τn ` fx1 . . . xn :τ ′
FunApp

3.1 Examples

append
append (p, q) : λ̂s1f1 .λ̂

s2
f2
. List (s1 + s2) (Shift f2 s2 f1) =

match p with | nil⇒ q
| cons hd tl ⇒ let tl ′ = append tl q

in cons hd tl ′

Here p and q is of type L(α). According to the LetFun rule, we are creating
fresh size expressions for the arguments by using the function fresh. Assuming
that the fresh size expressions are List a b and List c d for p and q, respectively,
we need to prove the following:

True; append : λ̂s1f1 .λ̂
s2
f2
. List (s1 + s2) (Shift f2 s2 f1), p : List a b, q : List c d

` match . . . : (λ̂s1f1 .λ̂
s2
f2
. List (s1 + s2) (Shift f2 s2 f1)) (List a b) (List c d)

80

However it is not necessary, but in the examples we do the reductions of size
expressions to make the judgements shorted and more readable:

True; append : λ̂s1f1 .λ̂
s2
f2
. List (s1 + s2) (Shift f2 s2 f1), p : List a b, q : List c d

` match . . . : List (a+ c) (Shift d c b)

The first step is proving the nil branch:

a = 0; q : List c d ` q :List (a+ c) (Shift d c b)

a = 0 ` c = a+ c ∧ i ≥ 0 ∧ i < a+ c d i = (Shift d c b) i

Analyzing the cases according to the definition of Shift:

a = 0 ` (i ≥ 0) ∧ (i < a+ c) ∧ (i < c)⇒ d i = d i
a = 0 ` (i ≥ 0) ∧ (i < a+ c) ∧ (i ≥ c)⇒ d i = b (i− c)

a = 0 ` (i ≥ 0) ∧ (i < a+ c) ∧ (i < c)⇒ True
a = 0 ` (i ≥ 0) ∧ (i < a+ c) ∧ (i ≥ c)⇒ False

To apply the match rule, we need to calculate the size expressions for hd and tl :

τhd = b (a− 1) τtl = List (a− 1) b

It is a let expression so the next step is to analyze the Let binding (which is two
function applications) and infer the size of the variable tl ′:

True `
(
λ̂s1f1 .λ̂

s2
f2
. List (s1 + s2) (Shift f2 s2 f1)

)
(List (a− 1) b)(List c d) =

List (a− 1 + c) (Shift d c b)

True;Γ ` append tl q :List (a− 1 + c) (Shift d c b)
FunApp

Continuing with the let body:

True `
(
λx.λ̂sf . List (s+ 1) (Shift f s λy.x)

)
(
b(a− 1)

) (
List (a− 1 + c) (Shift d c b)

)
=

List (a+ c) (Shift d c b)

True; Γ, tl : List (a− 1 + c) (Shift d c b)
` cons hd ′ tl ′ :List (a+ c) (Shift d c b)

FunApp

At the end we have to prove the equation above. After reduction we get:

List (a− 1 + c+ 1) (Shift (Shift d c b) (a− 1 + c) (λy.b(a− 1))) =
List (a+ c) (Shift d c b)

It is clear that a− 1 + c+ 1 = a+ c. For the nested part the following cases can
be identified:

`(i ≥ 0) ∧ (i < a+ c) ∧ (i < a− 1 + c)⇒ (Shift d c b)i = (Shift d c b)i

`(i ≥ 0) ∧ (i < a+ c) ∧ (i ≥ a− 1 + c)⇒ b(a− 1) = (Shift d c b)i

81

The first one is a tautology, while the second one can be split into two cases by
applying the Shift rule again:

`(i ≥ 0) ∧ (i < a+ c) ∧ (i ≥ a− 1 + c) ∧ (i < c)⇒ b(a− 1) = d i

`(i ≥ 0) ∧ (i < a+ c) ∧ (i ≥ a− 1 + c) ∧ (i ≥ c)⇒ b(a− 1) = b (i− c)

The first one holds because of the contradiction (eg. i ≥ a − 1 + c and i < c),
while the second one can be reduced to the following (which holds as well):

` ∀i ∈ [0..a+ c− 1] : (i ≥ a− 1 + c) ∧ (i ≥ c)⇒ a− 1 = i− c

map The map function is higher-order, its first argument is a function and its
second argument is a list. It maps the elements of that list with its first argument
one-by-one. The interesting part of the type checking is the last step (checking
cons hd ′ tl ′). All others are analogous to the previous example.

map (g, l) : λx.λ̂sf . List s (λi.x(fi)) =

match p with | nil⇒ nil
| cons hd tl ⇒ let tl ′ = map g tl

in let hd ′ = g hd
in cons hd ′ tl ′

Let’s assume that the fresh size variables are a and List b c, than the type envi-
ronment before the last step is:

Γ = {g : a, l : List b c, hd ′ : a(c(b− 1)), tl ′ : List (b− 1) (λi.x(c i)), . . .}

So we have to show the following:

`
(
λx.λ̂sf . List (s+ 1) (Shift f s (λy.x))

) (
a(c(b− 1))

) (
List (b− 1) (λi.(a(c i)))

)
=

List b (λi.a(c i))

` List (b− 1 + 1) (Shift (λi.(a(c i))) (b− 1) (λy.a(c(b− 1)))
)

=

List b (λi.a(c i))

The non-trivial part here is:

`(j ≥ 0) ∧ (j < b) ∧ j ≥ b− 1 ⇒ (λy.a(c(b− 1)))(j − b+ 1) = (λi.a(c i))j

`(j ≥ 0) ∧ (j < b) ∧ j ≥ b− 1 ⇒ a(c(b− 1))) = a(c j)

`(j ≥ 0) ∧ (j < b) ∧ j ≥ b− 1 ⇒ b− 1 = j

t3 The most interesting question is how can the size expressions handle such a
polymorphism when an argument can be a list and even a function. To demon-
strate this case we define the following function:

t3 (g, x) : λf.λx.f(f(fx)) = g(g(g x))

82

It’s easy to check the type of this function so it is left for the reader. The
interesting part is when we use this function in different kinds of expressions:

let t = t3 t3 in t addone

In this example the inferred type for t is

ft =
(
λf.λx.f(f(fx))

)(
λf.λx.f(f(fx))

)
→∗

λf.λx. f(f(f . . . (fx) . . .)︸ ︷︷ ︸
27 applications of f

Using the fact that addone has type f1: = λ̂sf . List (s+ 1) (λx.Unsized):

ft f1: = λx. f1:(f1: . . . (f1:x) . . .)︸ ︷︷ ︸
27 applications of f1:

We want to prove that this expression is equal to λ̂sf . List(s+27)(λx.Unsized).
Because of the partial application now we have to decide the equality of two ab-
stractions. Here the equality is proven by a property that reflects extensionality
axiom: λ .x.f = λ .x.g if and only if (λ .x.f)x and (λ .x.g)x are reduced to the
same normal form. To continue with our example we apply fresh variables (eg.
List a (λy.Unsized)) to both sides of the equation. For the left hand side we get:

(λx. f1:(f1: . . . (f1:x) . . .)︸ ︷︷ ︸
27 applications of f1:

)(List a (λy.Unsized))→

→ f1:

(
f1: . . .

(
(λ̂sf . List (l + 1) (λx.Unsized))(List a (λy.Unsized))

)
. . .
)

︸ ︷︷ ︸
27 applications of f1:

→

→ f1:

(
f1: . . .

(
List (a+ 1) (λx.Unsized)

)
. . .
)

︸ ︷︷ ︸
26 applications of f1:

→∗ List (a+ 27) (λx.Unsized)

The following two expressions can be checked similarly:

let t = t3 addone in t3 t : λ̂sf . List (s+ 9)λy.Unsized
letfun t (x) : λx.Unsized = x+ 1 in t3 t : λx.Unsized

4 Normalization

Although recursion in size expressions is not allowed, it is easy to express recur-
sive functions using the fixed point combinator (Y = (λf.(λx.f(xx))(λx.f(xx))).

fix (f) : λs.Y s =
let z = fix f
in f z

83

Even the size expression is entirely correct it is easy to see that we are not able
to check it, because the size expression does not have normal form.

Size expressions are defined as a kind of untyped lambda calculus. The easiest
way to reason about normalization and diamond property is to give a typed
version of our size expressions and give the rewriting rules from the untyped to
the typed version of the size calculus. Our choice of type system is System F.
However type inference for System F is generally not possible we will show a
way how to construct these types from the underlying type system.

The following function transforms an underlying type τ to type of a size
expression:

SizeType(τ) =





∀α.SizeType(a) if τ = ∀α.a
SizeType(a)→ SizeType(b) if τ = a→ b

L a if τ = L(a)

τ if τ is a type variable

Unit otherwise

We assumed the usual Bool, Nat, Unit and product types with the usual
operations are defined. The following type is also predefined:

La := Nat× (Nat→ a)

This type expresses the fact that a size of a list is a tuple of the length of the
list and a map holding the sizes of the elements of the list. The following table
gives some examples:

Nat→ Nat U → U
L(Nat)→ L(Nat) LU → LU

L(a)→ L(a) ∀a.La → La
(a→ b)→ L(a)→ L(b) ∀a b.(a→ b)→ La → Lb

L(a)→ L(L(a)) ∀a.La → LLa

4.1 Types of the size operators

The Unsized can be easy represented by the Unit type:

Unsized = unit : Unit

List corresponds to the data constructor of a pair:

List = ΛA.λsNat.λfNat→A. <s, f>
: ∀A.Nat→ (Nat→ A)→ LA

If λ̂sf .e is seen as a syntactic sugar for Unlist AB (λsf.e), where A and B are
types. On the next subsection we will show that it can be inferred. Now it is
easy to describe λ̂sf . with help of the usual projections π1 and π2:

Unlist = ΛA.ΛB.λfNat→(Nat→A)→B .λtLA .f (π1t) (π2t)
: ∀A.∀B.(Nat→ (Nat→ A)→ B)→ LA → B

84

The last thing to do is to define the Shift function:

Shift = ΛA.λfNat→A.λnNat.λgNat→A.λxNat.IFA (x < n) (f x) (g (x− n))
: ∀(A.Nat→ A)→ Nat→ (Nat→ A)→ Nat→ A

4.2 Type inference

It is easy to see that if the underlying type system is a rank-1 predicative type
system then all of our types will be rank-1 predicative. It means that the type
reconstruction is possible using some kind of Hindley-Milner type inference. As
we can tell the correct type of the size expression for any function we need only
partial inference, which means it seams it is also possible to check size expressions
if the underlying type system is System F using HMF [5] or MLF [4], however
investigation of this possibility is a future plan.

4.3 (λ̂s
f .e1)e2 reduction

We prove that our previously defined reduction rule for λ̂sf . and List is correct eg.
every size expression which can be typed is strongly normalizable. This can be
done by proving that the original reduction rule and the typed reduction gives
the same result. So let e1 and e2 be fixed expressions and consider the expression
(λ̂sf .e1)e2 which is assumed to be well-typed. So there are corresponding ê1 and
ê2 sized expressions where e1 and e2 can be get by type erasure.

In the untyped system we can assume that e2 can be reduced to normal form.
It must be on the form List ab because of well-typedness, so we apply our rule,
and the result of the application will be e1[s := a][f := b].

The most generic type for λs.λf.e1 is Nat → (Nat → B) → A, so the
desugared expression is: (Unlist AB (λs.λf.ê1))ê2. Because of well-typedness the

normal form of ê2 is of the form <â, b̂>. So the whole expression can be reduced
to: λs.λf.ê1 â b̂→β∗ ê1[s := â, f := b̂].

Because of the correspondence between typed and untyped calculus a and b
can be get by type erasure. Hence the result of the untyped expression can be got
by type erasure. Taking into account that System F is confluent, our embedding
of the rule is sane.

4.4 Diamond property of the rewriting system
modulo integer ring axiomatics

In this section, instead of (Shiftu1u2u3)u4 we consider its desugared definition
via branching operator IF.

Based on commutativity and associativity of addition and multiplication,
and their distributivity, we introduce the corresponding equivalence relation on
terms of our calculus. It is defined by induction on the term structure:

– c ∼ c, x ∼ x, List ∼ List, Unsized ∼ Unsized,
– t1 ∼ t′1, t2 ∼ t′2 ⇒ t1binop t2 ∼ t′1binop t′2,

85

– t1, t2 : Nat⇒ t1 + t2 ∼ t2 + t1, t1 ∗ t2 ∼ t2 ∗ t1,
– t1, t2, t3 : Nat⇒ (t1 + t2) + t3 ∼ t1 + (t2 + t3), (t1 ∗ t2) ∗ t3 ∼ t1 ∗ (t2 ∗ t3),
– t1, t2, t3 : Nat⇒ t1 ∗ (t2 + t3) ∼ t1 ∗ t2 + t1 ∗ t3, and the inverse distributivity
t1 ∗ t2 + t1 ∗ t3 ∼ t1 ∗ (t2 + t3) holds as well,

– t ∼ t′ ⇒ λx. t ∼ λx.t′,
– t1 ∼ t′1, t2 ∼ t′2 ⇒ t1t2 ∼ t′1t′2,
– t ∼ t′ ⇒ Λxy. t ∼ Λxy.t′,
– t1 ∼ u1, t2 ∼ u2, t3 ∼ u3 ⇒ IF(t1, t2, t3) ∼ IF(u1, u2, u3),
– no other pairs of terms can be added to this relation.

It is an exercise to prove that t1 +(t2 + t3) ∼ t1 +(t2 + t3) and (t1 + t2)∗ t3 ∼
t1 ∗ t3 + t2 ∗ t3, and t1 ∗ t3 + t2 ∗ t3 ∼ (t1 + t2) ∗ t3. Moreover, by induction on
the structure of term t one proves the reflexivity, symmetry and transitivity for
∼ (that is the fact that ∼ is indeed an equivalence). All these statements are
proven in Appendix.

Now, we follow the obvious definition of the diamond property modulo ∼
from the paper [6]: the diamond property holds if ∼ · ←∗ · →∗ · ∼⊆↓∼, where ·
denotes composition of relations and ↓∼ denotes joinability modulo ∼ that is the
composition→∗ · ∼ · ←∗. To prove diamond-modulo-∼ property for the calculus,
we need first to prove a series technical lemmata. Two substitution lemmata
above are proven by induction of the structure of terms in the equivalence rela-
tion. See Appendix for the full proofs.

Lemma 1 (Substitutions 1). If t1 ∼ t2 and x is free in t then t[x := t1] ∼
t[x := t2].

Lemma 2 (Substitutions 2). If t ∼ t′ and x is free in t and t′ then t[x :=
t′′] ∼ t′[x := t′′].

In the next lemma we consider interacting of ∼ with 1-step reduction.

Lemma 3 (Reduction). If t1 → t′1 and t1 ∼ t2, then there exists t′2 such that
t2 → t′2 and t′1 ∼ t2.

Proof. By case of reductions.

– We start with β-reduction. Let t1 = C1(λx. t′′1)t′′′1 C
′
1, where C1, C

′
1 are con-

texts. Then t2 = C2(λx. t′′2)t′′′2 C
′
2, where t′′1 ∼ t′′2 and t′′′1 ∼ t′′′2 , and the cor-

responding contexts are equivalent. Moreover, then t′1 := C1t
′′
1 [x := t′′′1]C ′1.

We take t′2 = C2t
′′
2 [x := t′′′2]C ′2 ∼ C2t

′′
1 [x := t′′′2]C ′2 ∼ C2t

′′
1 [x := t′′′1]C ′2 ∼

C1t
′′
1 [x := t′′′1]C ′1 = t′1 by the substitution lemmata and the definition of

equivalent terms.
– The case for List-pair reduction is similar to β-reduction and proven by the

substitution lemmata as well.
– Let t1 = C1(IF True u1 u2)C ′1. Then t2 = C2(IF true v1 v2)C ′2 for some
ui ∼ vi with i = 1, 2. In this case t′1 = u1 ∼ v1 = t′2. The False-case is
similar.

Next, by induction on the length of reduction chain, one proves

86

Lemma 4 (Reduction-Closure). If t1 →∗ t′1 and t1 ∼ t2, then there exists t′2
such that t2 →∗ t′2 and t′1 ∼ t′2.

Now, we prove the diamond-modulo property.

Lemma 5 (Diamond-Modulo-∼ Property). ∼ · ←∗ · →∗ · ∼⊆→∗ · ∼ · ←∗

Proof. If (t, t′) ∈∼ · ←∗ · →∗ · ∼ then there are (t′′, t′′′) ∈←∗ · →∗ such that
t ∼ t′′ and t′′′ ∼ t′. Since the calculus itself has the diamond property, therefore
there exists t1 such that t′′ →∗ t1 ←∗ t′′′. Using the reduction-closure lemma 4,
we obtain that there is t2 such that t→∗ t2 and t2 ∼ t1, and there exists t3 such
that t′ →∗ t3 and t3 ∼ t1. From that follows that t→∗ t2 ∼ t1 ∼ t3 ←∗ t′, that is
(t, t′) ∈→∗ · ∼ · ←∗

5 Related work

Structure of size expressions in our research is close to the approach of A.
Abel [1], who has applied sized types for termination analysis of higher-order
functional programs. For instance, in his notation sized lists of type A of length
ı are defined as λ ıA.µı.1+A×X and size expressions are higher-order arithmetic
expressions with λ-abstraction as well. The difference is that in that work one
uses linear arithmetic over ordinals, where ordinals represent zero-order sizes.
Moreover, in that research size information is not a stand-alone formalism, but
a part of dependent-type system.

In the paper [8] the authors go beyond linear arithmetic. For a given higher-
order functional program, they obtain a set of first-order arithmetical constraints
over unknown cost functions f . Solving these constraints w.r.t. f gives desired
costs of the program. The underlying arithmetic is the arithmetic over naturals,
extended with undefined ε and unbounded ω values, equipped with a natural lin-
ear order. Size expressions admit addition +, multiplication ∗ and subtraction
of a constant −n, thus such expressions are monotonic. Function types are an-
notated with natural numbers (latencies), e.g. α→l β, so it may be conveniently
interpreted as an increment in cost consumption, like l clock ticks if the resource
of interest is time. Our approach is different in a sense that we aim at expressing
size dependencies directly in terms of sizes of inputs, bypassing latencies.

In paper [2] the authors approach to complexity analysis of an imperative
language, which is a version of Gödel’s T. It is done via abstract interpretation of
programs in a semiring of matrices. Informally, matrices represent data flow along
program variables. The authors give an upper bound for the return values in term
of initial values. However, this is a conjecture and no proof is given. Similarly
the conjecture about existing of an abstract interpretation is not proven.

In recent paper [3] the authors develop amortized cost analysis for a higher-
order functional language Shopenhauer. The analysis is generic, that is it is
applicable to different sorts of resources: heap usage, stack size and the number
of function calls. Type-derivation procedure generates linear constraints, solving
of which gives desirable upper bounds. The analysis succeeds for sure, if bounds
are linear. So far, the methodology does not support polymorphic recursion.

87

6 Conclusions

We presented a size analysis for higher order functions for a higher-order poly-
morphic strict functional language. The calculus is based upon the lambda-
calculus extending it with arithmetic operations and special operators for finite
maps representing size of lists.

We have shown that the extended λ-calculus we have presented is strongly
normalizable (for size expressions of well-typed functions), if a normal form for
integer expressions is defined.

We are investigating the possibility to use polynomial interpolation [7] to
infer size expressions for higher-order functions as well.

Acknowledgments. The authors would like to convey thanks to Christoph
Herrmann for the fruitful discussion.

References

1. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Ph.D.
thesis, Ludwig-Maximilians University, Munich (2006)

2. Avery, J., Kristiansen, L., Moyen, J.Y.: Static complexity analysis of higher order
programs. In: van Eekelen, M., Shkaravska, O. (eds.) Proceedings of the First inter-
national conference on FOundational and Practical Aspects of Resource Analysis
(FOPARA). LNCS, vol. 6324, pp. 84–99. Springer-Verlag, Berlin, Heidelberg (2010),
http://portal.acm.org/citation.cfm?id=1886124.1886130

3. Jost, S., Hammond, K., Loidl, H.W., Hofmann, M.: Static determination of quantita-
tive resource usage for higher-order programs. SIGPLAN Not. 45, 223–236 (January
2010), http://doi.acm.org/10.1145/1707801.1706327

4. Le Botlan, D., Rémy, D.: MLF: raising ml to the power of system f. In: Proceedings
of the eighth ACM SIGPLAN international conference on Functional programming.
pp. 27–38. ICFP ’03, ACM, New York, NY, USA (2003), http://doi.acm.org/10.
1145/944705.944709

5. Leijen, D.: HMF: simple type inference for first-class polymorphism. In: Proceeding
of the 13th ACM SIGPLAN international conference on Functional programming.
pp. 283–294. ICFP ’08, ACM, New York, NY, USA (2008), http://doi.acm.org/
10.1145/1411204.1411245

6. Ohlebusch, E.: Church-rosser theorems for abstract reduction modulo an equivalence
relation. In: RTA. pp. 17–31 (1998)

7. Shkaravska, O., van Eekelen, M.C.J.D., van Kesteren, R.: Polynomial size analysis
of first-order shapely functions. Logical Methods in Computer Science 5(2) (2009)

8. Vasconcelos, P.B., Hammond, K.: Inferring cost equations for recursive, polymor-
phic and higher-order functional programs. In: Trinder, P., Michaelson, G., Peña, R.
(eds.) Revised selected papers of the 15th international symposium on Implemen-
tation of Functional Languages (IFL’03). LNCS, vol. 3145, pp. 86–101. Springer-
Verlag, Edinburgh, UK, September 8-11, 2003 (2004)

88

Appendix

Lemma 6 (Associativity 2). t1 + (t2 + t3) ∼ t1 + (t2 + t3)

Proof. t1+(t2+t3) ∼ (t2+t3)+t1 ∼ t2+(t3+t1) ∼ (t3+t1)+t2 ∼ t3+(t1+t2) ∼
(t1 + t2) + t3 due to associativity and commutativity.

Lemma 7 (Distributivity 2). (t1+t2)∗t3 ∼ t1∗t3+t2∗t3 and t1∗t3+t2∗t3 ∼
(t1 + t2) ∗ t3.

Proof. – (t1 + t2)∗ t3 ∼ t3 ∗ (t1 + t2) ∼ t3 ∗ t1 + t3 ∗ t2 ∼ t1 ∗ t3 + t2 ∗ t3, applying
commutativity and distributivity,

– the second equivalence is proved by the symmetric chain.

By induction on the structure of term t we can prove the reflexivity, symmetry
and transitivity lemmata (that is the fact that ∼ is indeed an equivalence).

Lemma 8 (Reflexivity). t ∼ t.

Proof. – If t = x is a variable then t = x ∼ x = t follows from the assumption
and the equivalence x ∼ x by the definition.

– Let t = t1binop t2. Then, by induction assumption t1 ∼ t1, t2 ∼ t2 and by
the definition of ∼ we have t = t1binop t2 ∼ t1binop t2 = t.

– If t is given by one of the lambda-abstractions or by the application or by
IF, the proof is similar.

Lemma 9 (Symmetry). t ∼ t′ ⇒ t′ ∼ t.

Proof. From the definition of ∼ it follows that t ∼ t′ must be either an instance
of integer axiomatics, or (if not) t and t′ must be of the same structure (i.e. either
both are variables, or both are composed by binop, or by one of two applications,
or by abstractions, or by If).

– Let the equivalence be an instance of the axioms:
• if t = (t1 + t2) for some t1, t2 and t ∼ t′ is an instance of commutativity

then t′ = (t2 + t1). Therefore, by the definition of ∼ (commutativity
case) we have t′ = (t2 + t1) ∼ (t1 + t2) = t,
• if t =

(
(t1 + t2) + t3)

)
for some t1, t2, t3 and t ∼ t′ is an instance of

associativity, then t′ =
(
t1 + (t2 + t3)

)
. Therefore, by lemma 6 t′ =(

t1 + (t2 + t3)
)
∼
(
(t1 + t2) + t3)

)
= t,

• if t =
(
t1 ∗ (t2 + t3)

)
for some t1, t2, t3 and t ∼ t′ is an instance of

distributivity, then t′ =
(
t1 ∗ t2 + t1 ∗ t3)

)
. Therefore, by the inverse

distributivity t′ =
(
t1 ∗ t2 + t1 ∗ t3

)
∼
(
t1 ∗ (t2 + t3)

)
= t,

• if t ∼ t′ is an instance of the inverse distributivity, the proof of t′ ∼ t is
similar to the proof above.

– Let the equivalence do not follow from the axioms. So, both terms in it are
of the same structure.
• If t = x then t′ must be x as well, therefore t′ = x ∼ x = t.

89

• Let t = t1binop t2. Therefore t′ = t′1binop t′2 as well. Then, by the def-
inition of ∼ (and since commutativity is excluded) t1 ∼ t′1, t2 ∼ t′2.
By the induction assumption we have t′1 ∼ t1 and t′2 ∼ t2, therefore
t′ = (t′1binop t′2) ∼ (t1binop t2) = t.

• If t is given by one of the lambda-abstractions or by the application, ,
or by If, the proof is similar.

Lemma 10 (Transitivity). t ∼ t′, t′ ∼ t′′ ⇒ t ∼ t′′.

Proof. From the definition of ∼ it follows that t ∼ t′ must be either an instance
of integer axiomatics, or (if not) t and t′ must be of the same structure (i.e. either
both are variables, or both are composed by binop, or by one of two applications,
or by abstractions, or by If).

– Let the equivalence be an instance of the axioms:
• if t = (t1 + t2) for some t1, t2 and t ∼ t′ is an instance of commutativity

then t′ = (t2 + t1). Now, we have to do the same analysis for t′ ∼ t′′.
∗ if t′ ∼ t′′ is an instance of commutativity axiom then t′′ = t1+t2 = t,
∗ if t′ ∼ t′′ is an instance of associativity axiom then t′ = (t2 + t1)

with t2 = (t21 + t22) for some t21, t22. Therefore, t′′ = t21 + (t22 +
t1) ∼lemmaAssociativity2∼ (t21 + t22) + t1 ∼ t2 + t1 ∼ t1 + t2 = t,

∗ if t′ ∼ t′′ is an instance of distributivity axiom then it may be only
inverse distributivity due to the structure of t′ = (t2 + t1) and with
t2 = (t11 ∗ t22), t1 = (t11 ∗ t12) for some t11, t12, t22. Therefore, t′′ =
t11 ∗ (t22 + t12) ∼ t11 ∗ t22 + t11 ∗ t12 = t2 + t1 ∼ t1 + t2 = t,

∗ if t′ ∼ t′′ is an instance of the structure-cases of the definition of ∼,
then t′′ = t′′2 + t′′1 , where t′′2 ∼ t2 and t′′1 ∼ t1; therefore t′′ = t′′2 + t′′1 ∼
t′′1 + t′′2 ∼ t1 + t2 = t.

• the proof is similar (based induction, axiomatics and derived lemmata,
the definition of σ) if the first equivalence is the instance of other axioms.

– Let the first equivalence do not follow from the axioms. So, both terms in it
are of the same structure.
• If t = x then t′ must be x as well and the same holds for t′′, therefore
t′′ = x ∼ x = t.

• If the second equivalence is an instance of axioms, then the proof is
similar to the proof for the pair of equivalences with the axiom being
first and the structural case being second, see above.

• If both equivalences are given by a structural case of the definition of ∼,
then the proof is straightforward by induction assumption.

Lemma 11 (Substitutions 1). If t1 ∼ t2 and x is free in t then t[x := t1] ∼
t[x := t2].

Proof. – If t = x is a variable then t[x := t1] = t1 ∼ t2 = t[x := t2] follows
from the assumption t1 ∼ t2.

– Let t = (t′binop t′′). Then t[x := t1] = (t′[x := t1]binop t′′[x := t1]) ∼ (t′[x :=
t2]binop t′′[x := t2]) = t[x := t2] by the induction assumption.

90

– If t is given by one of the lambda-abstractions or by the application or by
If, the proof is similar.

Lemma 12 (Substitutions 2). If t ∼ t′ and x is free in t and t′ then t[x :=
t′′] ∼ t′[x := t′′].

Proof. From the definition of ∼ it follows that t ∼ t′ must be either an instance
of integer axiomatics, or (if not) t and t′ must be of the same structure (i.e. either
both are variables, or both are composed by binop, or by one of two applications,
or by abstractions, or by If).

– Let the equivalence be an instance of the axioms:
• if t = (t1 + t2) for some t1, t2 and t ∼ t′ is an instance of commutativity

then t′ = (t2+t1). Therefore, by the definition of ∼ (commutativity case)
we have t[x := t′′] = (t1[x := t′′] + t2[x := t′′]) ∼ (t2[x := t′′] + t1[x :=
t′′]) = t′[x := t′′],

• if t =
(
(t1 + t2) + t3)

)
for some t1, t2, t3 and t ∼ t′ is an instance of

associativity, then t′ =
(
t1 + (t2 + t3)

)
. Therefore, by the associativity

property t[x := t′′] =
(
(t1[x := t′′]+t2[x := t′′])+t3[x := t′′]

)
∼
(
t1[x :=

t′′] + (t2[x := t′′] + t3[x := t′′])
)

= t′[x := t′′],
• if t =

(
t1 ∗ (t2 + t3)

)
for some t1, t2, t3 and t ∼ t′ is an instance of

distributivity, then t[x := t′′] =
(
t1[x := t′′]∗(t2[x := t′′]+t3[x := t′′])

)
∼(

t1[x := t′′]∗ t2[x := t′′]+ t1[x := t′′]∗ t3[x := t′′]
)

=
(
t1 ∗ t2 + t1 ∗ t3

)
[x :=

t′′] = t′[x := t′′],
• if t ∼ t′ is an instance of the inverse distributivity, the proof of t′ ∼ t is

similar to the proof above.
– Let the equivalence do not follow from the axioms. So, they are of the same

structure.
• If t = x then t′ = x and t′[x := t′′] = [x := t′′] = t′′ ∼ t′′ = [x := t′′] =
t′[x := t′′].

• Let t = t1binop t2. Then t′ = t′1binop t′2 for some t′1, t
′
2. Further, t[x :=

t′′] = (t1[x := t′′]binop t2[x := t′′]) ∼ (t′1[x := t′′]binop t′2[x := t′′] =
t′[x := t′′].

• If t is given by one of the lambda-abstractions or by the application, ,
or by If, the proof is similar.

91

View publication statsView publication stats

https://www.researchgate.net/publication/254883244

