
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/92254

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/92254

Ranking Functions for Loops with Disjunctive
Exit-Conditions

Rody Kersten1 Marko van Eekelen1,2

1Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen

2School for Computer Science, Open University of the Netherlands

2nd International Workshop on the Foundational and Practical Aspects of
Resource Analysis (FOPARA’11), Madrid

May 19, 2011

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 2 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Ranking Function

• Decreases in every basic block

• Here: in every loop iteration

• Bounded by zero

1 while (i < 15) {
2 i++;
3 }

• Ranking function for the loop above is 15− i

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 3 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Motivation and Aim

• Prove termination

• Bounding runtime

• Compiler optimisations

• Resource Analysis

Resource Analysis

1 while (i < 15) {
2 consumeResource () ;
3 i++;
4 }

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 4 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Motivation and Aim

• Prove termination

• Bounding runtime

• Compiler optimisations

• R

esource Analysis

Resource Analysis

1 while (i < 15) {
2 consumeResource () ;
3 i++;
4 }

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 4 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Motivation and Aim

• Prove termination

• Bounding runtime

• Compiler optimisations

• R

esource Analysis

Resource Analysis

1 while (i < 15) {
2 consumeResource () ;
3 i++;
4 }

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 4 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 5 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 6 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Inference of Polynomial Loop Ranking Functions

O. Shkaravska, R. Kersten, M. van Eekelen.
Test-Based Inference of Polynomial Loop-Bound Functions.
PPPJ’10: Proceedings of the 8th International Conference on
the Principles and Practice of Programming in Java

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 7 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Applicable Loops

• The basic method considers loops with conditions in the
following form:

C := sC | C1 ∧ C2

sC := e1 [<,>,≤,≥,=, 6=] e2

• where ei are arithmetical expressions

• i.e. conjunctions over arithmetical (in)equalities

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 8 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Test-Based Approach

1 Instrument loop with a counter

2 Do test runs for a set of Nk
d =

(d+k
k

)
input values satisfying

NCA and the exit condition

3 Interpolate a polynomial from the results

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 9 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Test-Based Approach

1 Instrument loop with a counter

2 Do test runs for a set of Nk
d =

(d+k
k

)
input values satisfying

NCA and the exit condition

3 Interpolate a polynomial from the results

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 9 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Test-Based Approach

1 Instrument loop with a counter

2 Do test runs for a set of Nk
d =

(d+k
k

)
input values satisfying

NCA and the exit condition

3 Interpolate a polynomial from the results

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 9 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Quadratic Example

public int m(int a, int b, int c) {
int count=0;
while (a > 0 && c <= b && c > 0) {

if (c == b) { a−−; c = 0; }
c++;
count++;

}
return count;

}

Test runs

1st group: degree 2 NCA on plane
a=1, b=1, c=1 => count=1
a=1, b=1, c=2 => count=2
a=1, b=1, c=3 => count=3
a=1, b=2, c=2 => count=1
a=1, b=2, c=3 => count=2
a=1, b=3, c=3 => count=1

2nd group: degree 1 NCA on plane
a=2, b=1, c=1 => count=2
a=2, b=1, c=2 => count=4
a=2, b=2, c=2 => count=3

3rd group: degree 0 NCA on plane
a=3, b=1, c=1 => count=3Expected

degree
of polynomial
(here: d=2)

Find the interpolating
polynomial and generate
the method annotated
with the corresponding
ranking function:
RF(a, b, c) = a*b – c + 1

public void m(int a, int b, int c) {
while (a > 0 && c <= b && c > 0) {

if (c == b) { a−−; c = 0; }
c++;

}
}

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 10 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Soundness

• The procedure itself is unsound

• Use external prover to verify the inferred ranking functions

• KeY: http://www.key-project.org/

• Ranking function can be expressed in JML as a decreases

clause

1 //@ d e c r e a s e s i < 15 ? 15 − i : 0 ;
2 while (i < 15) {
3 i++;
4 }

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 11 / 33

http://www.key-project.org/

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 12 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Any loop ranking function is piecewise...

1 while (i < 15) {
2 i++;
3 }

Its ranking function is actually:{
15− i if (i < 15)
0 else

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 13 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Non-Trivial Example

1 while ((i>0 && i<20) | | i>50) {
2 if (i>50) i−−;
3 else i++;
4 }

It’s ranking function is non-trivially piecewise:
20− i if (i > 0) ∧ (i < 20)
i− 50 if i > 50

0 else

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 14 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Expressing Piecewise Ranking Functions in JML

1 //@ d e c r e a s e s (i>0&&i <20) ? 20− i : (i >50 ? i −50 : 0) ;
2 while ((i>0 && i<20) | | i>50) {
3 if (i>50) i−−;
4 else i++;
5 }

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 15 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Applicable Loops

• The extended method considers loops with conditions in the
following form:

C := sC | C1 ∧ C2 | C1 ∨ C2

sC := e1 [<,>,≤,≥,=, 6=] e2

• where ei are arithmetical expressions

• i.e. first-order propositional logic expressions over arithmetical
(in)equalities

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 16 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Example

1 while ((i>0 && i<20) | | i>50) {
2 if (i>50) i−−;
3 else i++;
4 }

1 Split up the condition into disjunctive parts:
• i > 0 ∧ i < 20 ∧ ¬(i > 50)

∧ ¬(i > 50)

• i > 50 ∧ ¬(i > 0 ∧ i < 20)

∧ ¬(i > 0 ∧ i < 20)

• i > 0 ∧ i < 20 ∧ i > 50

• i > 0 ∧ i < 20 ∧ i > 50

2 Execute the basic procedure separately for each of the pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 17 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Example

1 while ((i>0 && i<20) | | i>50) {
2 if (i>50) i−−;
3 else i++;
4 }

1 Split up the condition into disjunctive parts:
• i > 0 ∧ i < 20 ∧ ¬(i > 50)

∧ ¬(i > 50)

• i > 50 ∧ ¬(i > 0 ∧ i < 20)

∧ ¬(i > 0 ∧ i < 20)

• i > 0 ∧ i < 20 ∧ i > 50

• i > 0 ∧ i < 20 ∧ i > 50

2 Execute the basic procedure separately for each of the pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 17 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Example

1 while ((i>0 && i<20) | | i>50) {
2 if (i>50) i−−;
3 else i++;
4 }

1 Split up the condition into disjunctive parts:
• i > 0 ∧ i < 20

∧ ¬(i > 50)

∧ ¬(i > 50)
• i > 50

∧ ¬(i > 0 ∧ i < 20)

∧ ¬(i > 0 ∧ i < 20)

• i > 0 ∧ i < 20 ∧ i > 50

• i > 0 ∧ i < 20 ∧ i > 50

2 Execute the basic procedure separately for each of the pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 17 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Example

1 while ((i>0 && i<20) | | i>50) {
2 if (i>50) i−−;
3 else i++;
4 }

1 Split up the condition into disjunctive parts:
• i > 0 ∧ i < 20

∧ ¬(i > 50)∧ ¬(i > 50)

• i > 50

∧ ¬(i > 0 ∧ i < 20)∧ ¬(i > 0 ∧ i < 20)
• i > 0 ∧ i < 20 ∧ i > 50• i > 0 ∧ i < 20 ∧ i > 50

2 Execute the basic procedure separately for each of the pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 17 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Example

1 while ((i>0 && i<20) | | i>50) {
2 if (i>50) i−−;
3 else i++;
4 }

1 Split up the condition into disjunctive parts:
• i > 0 ∧ i < 20

∧ ¬(i > 50)∧ ¬(i > 50)

• i > 50

∧ ¬(i > 0 ∧ i < 20)∧ ¬(i > 0 ∧ i < 20)
• i > 0 ∧ i < 20 ∧ i > 50• i > 0 ∧ i < 20 ∧ i > 50

2 Execute the basic procedure separately for each of the pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 17 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Example

1 while ((i>0 && i<20) | | i>50) {
2 if (i>50) i−−;
3 else i++;
4 }


20− i if (i > 0) ∧ (i < 20)
i− 50 if i > 50

0 else

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 18 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Generic

1 Put the condition in Disjunctive Normal Form

2 Split up the condition into its disjunctive pieces

3 Execute the basic procedure separately for each of the pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 19 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Generic

1 Put the condition in Disjunctive Normal Form

2 Split up the condition into its disjunctive pieces

3 Execute the basic procedure separately for each of the pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 19 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Extending the Basic Procedure: Generic

1 Put the condition in Disjunctive Normal Form

2 Split up the condition into its disjunctive pieces

3 Execute the basic procedure separately for each of the pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 19 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 20 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Example

1 while ((i>0 && i<20) | | i>22) {
2 if (i>22) i−−;
3 else i+=4;
4 }


d(20− i)/4e if (i > 0) ∧ (i < 20)
i− 22 if i > 22

0 else

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 21 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Example

1 while ((i>0 && i<20) | | i>22) {
2 if (i>22) i−−;
3 else i+=4;
4 }


d(20− i)/4e+ 1 if (i > 0) ∧ (i < 20) ∧ i mod 4 = 3
d(20− i)/4e if (i > 0) ∧ (i < 20) ∧ i mod 4 6= 3
i− 22 if i > 22

0 else

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 22 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

What happens...

D
1,2

D
1,1

D
1

D
2

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 23 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Detection of Condition Jumping: Example

1 while ((i>0 && i<20) | | i>22) {
2 if (i>22) i−−;
3 else i+=4;
4 }

nexti (i) =

{
i− 1 if i > 22

i + 4 if ¬(i > 22)

1 (declare−fun i () Int)
2 (define−fun nexti ((x Int)) Int

3 (ite (> x 22) (− x 1) (+ x 4)))
4 (assert (and (and (> i 0) (< i 2 0))
5 (> (nexti i) 2 2)))
6 (check−sat)

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 24 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Detection of Condition Jumping: Example

1 while ((i>0 && i<20) | | i>22) {
2 if (i>22) i−−;
3 else i+=4;
4 }

nexti (i) =

{
i− 1 if i > 22

i + 4 if ¬(i > 22)

1 (declare−fun i () Int)
2 (define−fun nexti ((x Int)) Int

3 (ite (> x 22) (− x 1) (+ x 4)))
4 (assert (and (and (> i 0) (< i 2 0))
5 (> (nexti i) 2 2)))
6 (check−sat)

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 24 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Detection of Condition Jumping: Example

1 while ((i>0 && i<20) | | i>22) {
2 if (i>22) i−−;
3 else i+=4;
4 }

nexti (i) =

{
i− 1 if i > 22

i + 4 if ¬(i > 22)

1 (declare−fun i () Int)
2 (define−fun nexti ((x Int)) Int

3 (ite (> x 22) (− x 1) (+ x 4)))
4 (assert (and (and (> i 0) (< i 2 0))
5 (> (nexti i) 2 2)))
6 (check−sat)

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 24 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Detection of Condition Jumping: Generic

• Symbolically execute the loop body to find a next function
for each program variable

• Use SMT-solver to search for a model that satisfies one piece
first and another after execution of the loop body

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 25 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Finding Models for Condition Jumping: Example

Find all nodes that jump from the piece with condition
i > 0 ∧ i < 20 into the piece with condition i > 22. Using an
SMT-solver:

1 Find all nodes that jump directly into the other piece: {19}
2 Find all nodes that can jump to {19}, {3, 7, 11, 15} and add

them to the list of jumping nodes:
{3, 7, 11, 15, 19} = {i | i mod 4 = 3 ∧ i > 0 ∧ i < 20}

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 26 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Finding Models for Condition Jumping: Example

Find all nodes that jump from the piece with condition
i > 0 ∧ i < 20 into the piece with condition i > 22. Using an
SMT-solver:

1 Find all nodes that jump directly into the other piece: {19}
2 Find all nodes that can jump to {19}, {3, 7, 11, 15} and add

them to the list of jumping nodes:
{3, 7, 11, 15, 19} = {i | i mod 4 = 3 ∧ i > 0 ∧ i < 20}

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 26 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Finding Models for Condition Jumping: Example

Find all nodes that jump from the piece with condition
i > 0 ∧ i < 20 into the piece with condition i > 22. Using an
SMT-solver:

1 Find all nodes that jump directly into the other piece: {19}
2 Find all nodes that can jump to {19}, {3, 7, 11, 15} and add

them to the list of jumping nodes:
{3, 7, 11, 15, 19} = {i | i mod 4 = 3 ∧ i > 0 ∧ i < 20}

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 26 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Finding Models for Condition Jumping: Generic

J is the set of models of which it is known that condition jumping
occurs, Q is a queue of models, find all models that jump from b1
to b2:

1 Is there a model v̄ for which b1(v̄) ∧ b2(next(v̄)) ∧ v̄ 6∈ J?
• SAT → Add v̄ to J and Q, goto 1.
• UNSAT → Goto 2.

2 Q empty?
• Yes → Done.
• No → Goto 3.

3 Pop a model q̄ off the queue Q. Is there a model v̄ for which
b1(v̄) ∧ next(v̄) = q̄ ∧ v̄ 6∈ J?

• SAT → Add v̄ to J and Q, goto 3.
• UNSAT → Goto 2.

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 27 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Generating Ranking Functions: Example

• We now know the set {i | i mod 4 = 3 ∧ i > 0 ∧ i < 20} for
which jumping occurs

• So, we can split the condition i > 0 ∧ i < 20 into two:
i > 0 ∧ i < 20 ∧ i mod = 3 and i > 0 ∧ i < 20 ∧ i mod 6= 3

• We can then apply the basic method separately to each of
these disjunctive pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 28 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Generating Ranking Functions: Generic

• We now know the set D1,2 for which jumping occurs

• So, we can split the condition b1 into two: b1(v̄) ∧ v̄ ∈ D1,2

and b1(v̄) ∧ v̄ 6∈ D1,2

• We can then apply the basic method to each of these
disjunctive pieces

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 29 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Multi-Jumping

1 DNF-split into n conditions

2 For each i and j , 1 ≤ i < j ≤ n, detect jumping from Di to
Dj . Build a list J of jumping pairs (Dx ,Dy) for which
condition jumping from Dx to Dy can occur.

3 If there are no more jumping pairs (Dx ,Dy) for which Dx is
unflagged, done! Else, goto 4.

4 Pop a jumping pair (Dx ,Dy) off J, for which Dx is unflagged.

5 Find the set Dx ,2 of all nodes in Dx from which jumping to
Dy occurs and, dually, the set Dx ,1 for which no jumping to
Dy occurs. Replace any condition pair (Dx ,Dz) in J by
(Dx ,1,Dz). Add (Dx ,2,Dy) to J.

• If Dx,1 = ∅, flag Dx,2 as complete, goto 3.
• Else, for any jumping pair (Dz ,Dx) in J (i.e. for which

jumping from Dz to Dx can occur), unflag Dz , detect jumping
into Dx,1 and Dx,2 and update J accordingly. Goto 3.

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 30 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 31 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Conclusions

• Extension to the method presented at PPPJ’10, which can
infer polynomial ranking functions:

• Definition of Condition Jumping
• Detection of Condition Jumping
• Infer ranking functions for loops in which condition jumping

occurs

• Ranking functions for loops can be used in the creation of a
global ranking function in order to prove termination

• If the body of a loop with ranking function RF (v̄) consumes n
resources, then we know that the whole loop consumes
RF (v̄) · n resources

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 32 / 33

Introduction Basic Procedure Piecewise Ranking Functions Condition Jumping Conclusions

Implementation: ResAna

http://resourceanalysis.cs.ru.nl/resana

• The basic procedure and DNF-splitting (minus removal of
unsatisfiable pieces) have been implemented

• Future work: implement condition jumping solution

Rody Kersten, Marko van Eekelen Ranking Functions for Loops with Disjunctive Exit-Conditions May 19, 2011 33 / 33

http://resourceanalysis.cs.ru.nl/resana

	Introduction
	Basic Procedure
	Piecewise Ranking Functions
	Condition Jumping
	Conclusions

