PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/92254

Please be advised that this information was generated on 2017-12-06 and may be subject to change.

Ranking Functions for Loops with Disjunctive Exit-Conditions

Rody Kersten¹ Marko van Eekelen^{1,2}

¹Institute for Computing and Information Sciences (iCIS), Radboud University Nijmegen

²School for Computer Science, Open University of the Netherlands

2nd International Workshop on the Foundational and Practical Aspects of Resource Analysis (FOPARA'11), Madrid

May 19, 2011

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

- Decreases in every basic block
- Here: in every loop iteration
- Bounded by zero

• Ranking function for the loop above is 15 - i

Conclusions

Motivation and Aim

- Prove termination
- Bounding runtime
- Compiler optimisations
- Resource Analysis

```
1 while (i < 15) {
2     consumeResource();
3     i++;
4 }</pre>
```

Conclusions

Motivation and Aim

- Prove termination
- Bounding runtime
- Compiler optimisations
- Resource Analysis

```
1 while (i < 15) {
2     consumeResource();
3     i++;
4 }</pre>
```

Conclusions

Motivation and Aim

- Prove termination
- Bounding runtime
- Compiler optimisations
- Resource Analysis

1 while (i < 15) {
2 consumeResource();
3 i++;
4 }</pre>

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Basic Procedure

Conclusions

Inference of Polynomial Loop Ranking Functions

O. Shkaravska, R. Kersten, M. van Eekelen. Test-Based Inference of Polynomial Loop-Bound Functions. PPPJ'10: Proceedings of the 8th International Conference on the Principles and Practice of Programming in Java

The basic method considers loops with conditions in the • following form:

$$C := sC \mid C_1 \land C_2$$
$$sC := e_1 [<, >, \le, \ge, =, \neq] e_2$$

- where e_i are arithmetical expressions
- i.e. conjunctions over arithmetical (in)equalities

Basic Procedure

Piecewise Ranking Function

Condition Jumpin

Conclusions

Test-Based Approach

1 Instrument loop with a counter

2 Do test runs for a set of $N_d^k = \binom{d+k}{k}$ input values satisfying **NCA** and the exit condition

Interpolate a polynomial from the results

Basic Procedure

Piecewise Ranking F

Condition Jumping

Conclusions

Test-Based Approach

- 1 Instrument loop with a counter
- 2 Do test runs for a set of $N_d^k = \binom{d+k}{k}$ input values satisfying **NCA** and the exit condition

Interpolate a polynomial from the results

Basic Procedure

Piecewise Ranking Functior

Condition Jumping

Conclusions

Test-Based Approach

- 1 Instrument loop with a counter
- 2 Do test runs for a set of $N_d^k = \binom{d+k}{k}$ input values satisfying **NCA** and the exit condition
- **③** Interpolate a polynomial from the results

Conclusions

Quadratic Example

- The procedure itself is unsound
- Use external prover to verify the inferred ranking functions
- KeY: http://www.key-project.org/
- Ranking function can be expressed in JML as a decreases clause

```
1 //@ decreases i < 15 ? 15 - i : 0;
2 while (i < 15) {
3 i++;
4 }
```

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

It's ranking function is non-trivially piecewise:

$$\left\{ \begin{array}{ll} 20-i & \quad \mbox{if} \ (i>0) \land (i<20) \\ i-50 & \quad \mbox{if} \ i>50 \\ 0 & \quad \mbox{else} \end{array} \right.$$

The extended method considers loops with conditions in the following form:

$$C := sC \mid C_1 \land C_2 \mid C_1 \lor C_2$$
$$sC := e_1 [<,>,\leq,\geq,=,\neq] e_2$$

- where e_i are arithmetical expressions
- i.e. first-order propositional logic expressions over arithmetical (in)equalities

- $i > 0 \land i < 20 \land \neg(i > 50)$
- $i > 50 \land \neg (i > 0 \land i < 20)$
- $i > 0 \land i < 20 \land i > 50$

- $i > 0 \land i < 20 \land \neg (i > 50)$
- i > 50 ∧ ¬(i > 0 ∧ i < 20)
- $i > 0 \land i < 20 \land i > 50$

- $i > 0 \land i < 20 \land \neg(i > 50)$
- $i > 50 \land \neg (i > 0 \land i < 20)$
- $i > 0 \land i < 20 \land i > 50$

• *i* > 50

- *i* > 0 ∧ *i* < 20
- *i* > 50

$$\left\{ \begin{array}{ll} 20-\texttt{i} & \text{ if } (\texttt{i}>0) \land (\texttt{i}<20) \\ \texttt{i}-50 & \text{ if } \texttt{i}>50 \\ 0 & \text{ else} \end{array} \right.$$

Conclusions

Extending the Basic Procedure: Generic

1 Put the condition in Disjunctive Normal Form

- Ø Split up the condition into its disjunctive pieces
- 3 Execute the basic procedure separately for each of the pieces

Conclusions

Extending the Basic Procedure: Generic

- 1 Put the condition in Disjunctive Normal Form
- 2 Split up the condition into its disjunctive pieces
- 8 Execute the basic procedure separately for each of the pieces

Extending the Basic Procedure: Generic

- 1 Put the condition in Disjunctive Normal Form
- 2 Split up the condition into its disjunctive pieces
- 8 Execute the basic procedure separately for each of the pieces

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

1 while
$$((i>0 \&\& i<20) || i>22) \{$$

2 if $(i>22) i--;$
3 else $i+=4;$
4 }

$$\begin{cases} \lceil (20-i)/4 \rceil + 1 & \text{ if } (i > 0) \land (i < 20) \land i \mod 4 = 3\\ \lceil (20-i)/4 \rceil & \text{ if } (i > 0) \land (i < 20) \land i \mod 4 \neq 3\\ i - 22 & \text{ if } i > 22\\ 0 & \text{ else} \end{cases}$$

 \geq

Basic Procedur

Piecewise Ranking Functions

Condition Jumping

Conclusions

Detection of Condition Jumping: Example

1 while ((i>0 && i<20) || i>22) {
2 if (i>22) i--;
3 else i+=4;
4 }

$$next_i(i) = \begin{cases} i-1 & \text{if } i>22 \\ i+4 & \text{if } \neg(i>22) \end{cases}$$

1 (declare-fun i () Int)
2 (define-fun nexti ((x Int)) Int
3 (ite (> x 22) (- x 1) (+ x 4)))
4 (assert (and (and (> i 0) (< i 20))
5 (> (nexti i) 22)))
6 (check-sat)

Detection of Condition Jumping: Example

$$next_i(i) = \begin{cases} i - 1 & \text{if } i > 22\\ i + 4 & \text{if } \neg(i > 22) \end{cases}$$

1 (declare-fun i () Int)
2 (define-fun nexti ((x Int)) Int
3 (ite (> x 22) (- x 1) (+ x 4)))
4 (assert (and (and (> i 0) (< i 20))
5 (> (nexti i) 22)))
6 (check-sat)

Basic Procedure

Detection of Condition Jumping: Example

$$next_i(i) = \begin{cases} i-1 & \text{if } i > 22\\ i+4 & \text{if } \neg(i > 22) \end{cases}$$

Detection of Condition Jumping: Generic

- Symbolically execute the loop body to find a next function for each program variable
- Use SMT-solver to search for a model that satisfies one piece first and another after execution of the loop body

Finding Models for Condition Jumping: Example

Find all nodes that jump from the piece with condition $i > 0 \land i < 20$ into the piece with condition i > 22. Using an SMT-solver:

- Find all nodes that jump directly into the other piece
- Pind all nodes that can jump to {19}, {3,7,11,15} and add them to the list of jumping nodes:
 {3,7,11,15,19} = {i | i mod 4 = 3 ∧ i > 0 ∧ i < 20}

Finding Models for Condition Jumping: Example

Find all nodes that jump from the piece with condition $i > 0 \land i < 20$ into the piece with condition i > 22. Using an SMT-solver:

- **()** Find all nodes that jump directly into the other piece: {19}
- Pind all nodes that can jump to {19}, {3,7,11,15} and add them to the list of jumping nodes:
 {3,7,11,15,19} = {i | i mod 4 = 3 \lambda i > 0 \lambda i < 20}

Finding Models for Condition Jumping: Example

Find all nodes that jump from the piece with condition $i > 0 \land i < 20$ into the piece with condition i > 22. Using an SMT-solver:

- **1** Find all nodes that jump directly into the other piece: {19}
- Pind all nodes that can jump to {19}, {3,7,11,15} and add them to the list of jumping nodes:
 {3,7,11,15,19} = {i | i mod 4 = 3 ∧ i > 0 ∧ i < 20}

Finding Models for Condition Jumping: Generic

J is the set of models of which it is known that condition jumping occurs, Q is a queue of models, find all models that jump from b_1 to b_2 :

- **1** Is there a model \bar{v} for which $b_1(\bar{v}) \wedge b_2(next(\bar{v})) \wedge \bar{v} \notin J$?
 - SAT ightarrow Add $ar{m{v}}$ to J and $m{Q}$, goto 1.
 - UNSAT \rightarrow Goto 2.
- Q empty?
 - Yes \rightarrow Done.
 - No \rightarrow Goto 3.
- **6** Pop a model \bar{q} off the queue Q. Is there a model \bar{v} for which $b_1(\bar{v}) \wedge next(\bar{v}) = \bar{q} \wedge \bar{v} \notin J$?
 - SAT \rightarrow Add \bar{v} to J and Q, goto 3.
 - UNSAT \rightarrow Goto 2.

Generating Ranking Functions: Example

- We now know the set {i | i mod 4 = 3 ∧ i > 0 ∧ i < 20} for which jumping occurs
- So, we can split the condition $i > 0 \land i < 20$ into two: $i > 0 \land i < 20 \land i \mod = 3$ and $i > 0 \land i < 20 \land i \mod \neq 3$
- We can then apply the basic method separately to each of these disjunctive pieces

Generating Ranking Functions: Generic

- We now know the set $D_{1,2}$ for which jumping occurs
- So, we can split the condition b₁ into two: b₁(v̄) ∧ v̄ ∈ D_{1,2} and b₁(v̄) ∧ v̄ ∉ D_{1,2}
- We can then apply the basic method to each of these disjunctive pieces

Multi-Jumping

- 1 DNF-split into *n* conditions
- **2** For each *i* and *j*, $1 \le i < j \le n$, detect jumping from D_i to D_j . Build a list *J* of jumping pairs (D_x, D_y) for which condition jumping from D_x to D_y can occur.
- If there are no more jumping pairs (D_x, D_y) for which D_x is unflagged, done! Else, goto 4.
- **4** Pop a jumping pair (D_x, D_y) off J, for which D_x is unflagged.
- Find the set D_{x,2} of all nodes in D_x from which jumping to D_y occurs and, dually, the set D_{x,1} for which no jumping to D_y occurs. Replace any condition pair (D_x, D_z) in J by (D_{x,1}, D_z). Add (D_{x,2}, D_y) to J.
 - If $D_{x,1} = \emptyset$, flag $D_{x,2}$ as complete, goto 3.
 - Else, for any jumping pair (D_z, D_x) in J (i.e. for which jumping from D_z to D_x can occur), unflag D_z , detect jumping into $D_{x,1}$ and $D_{x,2}$ and update J accordingly. Goto 3.

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Presentation Outline

Introduction

Basic Procedure

Piecewise Ranking Functions

Condition Jumping

Conclusions

Conclusions

- Extension to the method presented at PPPJ'10, which can infer *polynomial* ranking functions:
 - Definition of Condition Jumping
 - Detection of Condition Jumping
 - Infer ranking functions for loops in which condition jumping occurs
- Ranking functions for loops can be used in the creation of a *global* ranking function in order to prove termination
- If the body of a loop with ranking function $RF(\bar{v})$ consumes n resources, then we know that the whole loop consumes $RF(\bar{v}) \cdot n$ resources

Basic Procee

Piecewise Ranking Function

Condition Jumping

Conclusions

Implementation: ResAna

http://resourceanalysis.cs.ru.nl/resana

- The basic procedure and DNF-splitting (minus removal of unsatisfiable pieces) have been implemented
- Future work: implement condition jumping solution