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Abstract

We study the spectral functional A �→ Trf (D + A) for a suitable function f , a self-adjoint operator
D having compact resolvent, and a certain class of bounded self-adjoint operators A. Such functionals
were introduce by Chamseddine and Connes in the context of noncommutative geometry. Motivated by
the physical applications of these functionals, we derive a Taylor expansion of them in terms of Gâteaux
derivatives. This involves divided differences of f evaluated on the spectrum of D, as well as the matrix
coefficients of A in an eigenbasis of D. This generalizes earlier results to infinite dimensions and to any
number of derivatives.
© 2010 Published by Elsevier Inc.
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1. Introduction

The spectral action in noncommutative geometry [4] is given as the trace Trf (D) of a suitable
function f (D) of an unbounded self-adjoint operator D, which is assumed to have compact
resolvent. One is interested in this trace function as D is perturbed to D +A where A is a certain
self-adjoint bounded operator. For instance, the so-called inner fluctuations of a spectral triple
are of this type; they are central in the applications of noncommutative geometry to high-energy
physics [1–3] (cf. also [6]). A natural question that arises is what happens to the trace function
when D is perturbed to D + A. It is the goal of this paper to address this question.
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We aim for a Taylor expansion of the spectral action by Gâteaux deriving it with respect
to A. As we will see, the context of finite-dimensional noncommutative manifolds (i.e. spectral
triples) allows for a derivation of results previously obtained only for finite-dimensional (matrix)
algebras [13]. Our main result is the expansion:

SD[A] =
∞∑

n=0

1

n

∑
i1,...,in

Ai1i2 · · ·Aini1f
′[λi1, . . . , λin]

where f ′[λi1, . . . , λin] is the divided difference of order n of f ′ (cf. Definition 14 below) eval-
uated on the spectrum of D, and Aij are the matrix coefficients with respect to an eigenbasis
of D.

This paper is organized as follows. First, we recall in Section 2 some results on perturbations
of operators, in the setting of noncommutative geometry. Then, we give a precise definition of
the spectral action functional in Section 3. In that section, we also recall the definition of divided
differences and derive our main result on the Taylor expansion of the spectral action. We end
with some conclusions and an appendix recalling a theorem by Getzler and Szenes.

2. Perturbations and spectral triples

Recall that a spectral triple consists of an algebra A of bounded operators on a Hilbert
space H, together with a self-adjoint operator D with compact resolvent such that the com-
mutator [D,a] is a bounded operator for all a ∈ A. The key example is associated to a compact
Riemannian spin manifold M :

(
C∞(M),L2(M,S),/∂

)
,

where /∂ is a Dirac operator on the spinor bundle S → M . Indeed, /∂ is an elliptic differential
operator of degree one and smooth functions satisfy

∥∥[/∂,f ]∥∥ = ‖f ‖Lip < ∞

in the Lipschitz norm of f .
In general, a spectral triple (A, H,D) is said to be of finite summability if there exists an n � 0

such that (1 + D2)−n/2 is a traceclass operator on H. Let us start with a basic and well-known
result.

Lemma 1. Let p be a polynomial on R. Then for any t > 0 the operator p(D)e−tD2
is traceclass.

Proof. By finite summability and Hölder’s inequality (1 + D2)−n/2 is traceclass for some n.
Thus,

p(D)e−tD2 = ϕ(D)
(
1 + D2)−n/2

with ϕ defined by functional calculus for the function

ϕ(x) = p(x)
(
1 + x2)−n/2

e−tx2
.
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For t > 0, this is a bounded function on R so that ϕ(D)(1 + D2)−n/2 is in the ideal L1(H) of
traceclass operators as required. �

In particular, this applies to p(x) = 1, i.e. finite summability implies so-called θ -summability:

Tr
(
e−tD2)

< ∞ (t ∈ R+). (1)

2.1. Fréchet algebra of smooth operators

Given the derivation δ(·) = [|D|, ·] on B(H), there is a natural structure of a Fréchet algebra
on the smooth domain of δ.

Proposition 2. The following define a multiplicative family of semi-norms on B(H):

∥∥δn(T )
∥∥ (

T ∈ B(H)
)

indexed by n ∈ Z�0.

Proof. The derivation property of δ yields

∥∥δn(T1T2)
∥∥ =

∥∥∥∥∥
n∑

k=0

(
n

k

)
δk(T1)δ

n−k(T2)

∥∥∥∥∥ �
n∑

k=0

(
n

k

)∥∥δk(T1)
∥∥∥∥δn−k(T2)

∥∥. �

We will denote

Bn(H) = {
T ∈ B(H):

∥∥δk(T )
∥∥ < ∞ for all k � n

}
.

Evidently, we have

B∞(H) ⊂ · · · ⊂ B2(H) ⊂ B1(H) ⊂ B(H)

where by definition B∞(H) = ⋂
n∈Z�0

Bn(H).

Remark 3. Recall that a spectral triple (A, H,D) is called regular if both the algebra A and
[D, A] are in the smooth domain of δ. This can thus be reformulated as:

the algebra generated by a and [D,b] (a, b ∈ A) is a subalgebra of B∞(H).

In particular, the A-bimodule of Connes’ differential one-forms [4, Sect. VI.1],

Ω1
D(A) =

{∑
j

aj [D,bj ]
}

is a subspace of B∞(H).



JID:YJFAN AID:6008 /SCO [m1+; v 1.129; Prn:21/12/2010; 15:18] P.4 (1-14)

4 W.D. van Suijlekom / Journal of Functional Analysis ••• (••••) •••–•••

2.2. Perturbations of heat operators

In this subsection, we take a closer look at the heat operator e−tD2
and its perturbations. First,

recall that the standard m-simplex is given by an m-tuple (t1, . . . , tm) satisfying 0 � t1 � · · · �
tm � 1. Equivalently, it can be given by an m+1-tuple (s0, s1, . . . , sm) such that s0 +· · ·+ sm = 1
and 0 � si � 1 for any i = 0, . . . ,m. Indeed, we have s0 = t1, si = ti+1 − ti and sm = 1 − tm and,
vice versa, tk = s0 + s1 + · · · + sk−1.

For later use, we prove the following bound, which already appeared in a slightly different
form in [10].

Proposition 4. For any m � 0 and 0 � k � m + 1 we have the bound

∫
�m

dms(s0 · · · sk−1)
−1/2 � πk

(m − k)! .

Proof. In terms of the parameters ti for the m-simplex, we have to find an upper bound for

1∫
0

dtm

tm∫
0

dtm−1 · · ·
t2∫

0

dt1
1√

t1(t2 − t1) · · · (tk − tk−1)
,

where tm+1 ≡ 1. First, note that by a standard substitution

t2∫
0

dt1
1√

t1(t2 − t1)
= π.

For the subsequent integral over t2:

t3∫
0

dt2
1√

t3 − t2
�

t3∫
0

dt2
1√

t2(t3 − t2)
= π

since t2 � 1. This we can repeat k times, leaving us with the integral

1∫
0

dtm

tm∫
0

dtm−1 · · ·
tk+1∫
0

dtk = 1

(m − k)! . �

Lemma 5. Let A be a bounded operator and denote DA = D + A. Then

e−t (DA)2 = e−tD2 − t

1∫
0

ds e−st (DA)2
P(A)e−(1−s)tD2

with P(A) = DA + AD + A2.
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Proof. Note that e−tD2
A is the unique solution of the Cauchy problem

{
(dt + DA)u(t) = 0,

u(0) = 1

with dt = d/dt . Using the fundamental theorem of calculus, we find that

dt

[
e−tD2 −

t∫
0

dt ′ e−(t−t ′)D2
AP (A)e−t ′D2

]
= −D2

A

(
e−tD2 −

t∫
0

dt ′ e−(t−t ′)D2
AP (A)e−t ′D2

)

showing that the bounded operator e−tD2 − ∫ t

0 dt ′ e−(t−t ′)D2
AP (A)e−t ′D2

also solves the above
Cauchy problem. �

The following estimates were proved in a slightly different form in [10].

Lemma 6. If the operators A,Ai are bounded, and αi ∈ {0,1} are such that
∑

i αi = k, then

∣∣∣∣
∫
�n

TrA0|DA|α0e−s0tD
2
AA1|D|α1e−s1tD

2 · · ·An|D|αne−sntD2
dns

∣∣∣∣

� ‖A0‖ · · · ‖An‖Tr e−(1−ε)tD2

(n − k)!(π−2εt)k/2

for any 0 < ε < 1.

Proof. Recall Hölder’s inequality:

∣∣Tr(T0 · · ·Tn)
∣∣ � ‖T0‖s−1

0
· · · ‖Tn‖s−1

n
(2)

when s0 + · · · + sn = 1. Also, we estimate for some arbitrary 0 < ε < 1:

∥∥Aie
−si tD

2∥∥
s−1
i

� ‖Ai‖
(
Tr e−tD2)si � ‖Ai‖

(
Tr e−(1−ε)tD2)si ,

∥∥Ai |D|e−si tD
2∥∥

s−1
i

� ‖Ai‖
∥∥|D|e−εsi tD

2∥∥(
Tr e−(1−ε)tD2)si

� (εsi t)
−1/2‖Ai‖

(
Tr e−(1−ε)tD2)si

writing e−stD2 = e−εstD2
e−(1−ε)stD2

. We have used Lemma 1 and the fact that

∥∥e−εstD2∥∥ � 1,
∥∥|D|e−εstD2∥∥ � sup

x∈R+

{
xe−εstx2} = (2eεst)−1/2.

Moreover, Theorem C in [10] (cf. Appendix A) gives

Tr e−t (1−ε/2)(DA)2 � e(1+2/ε)t‖A‖2
Tr e−t (1−ε)D2

. (∗)
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This further yields

∥∥A0|DA|e−s0tD
2
A

∥∥
s−1
0

� ‖A0‖
∥∥|DA|e−ε/2si tD

2
A

∥∥(
Tr e−(1−ε/2)tD2

A
)si

� (eεs0t)
−1/2e(1+2/ε)t‖A‖2‖A0‖

(
Tr e−(1−ε)tD2)s0 .

Combining these estimates with (2), we obtain for instance in the case that the first k αi are
nonzero (i.e. α0 = · · · = αk−1 = 1):

∣∣TrA0|DA|α0e−s0tD
2
AA1|D|α1e−s1tD

2 · · ·An|D|αne−sntD2∣∣
� ‖A0‖ · · · ‖An‖

s0 · · · sk(εt)k/2
Tr e−(1−ε)tD2

making use of the fact that s0 + s1 + · · · + sn = 1. The bounds of Proposition 4 complete the
proof. �

Let us introduce the following convenient notation (cf. [10]). If A0, . . . ,An are operators,
we define a t -dependent quantity by

〈A0, . . . ,An〉n := tn Tr
∫
�n

A0e
−s0tD

2
A1e

−s1tD
2 · · ·Ane

−sntD2
dns. (3)

Note the difference in notation with [10], for which the same symbol is used for the supertrace of
the same expression, rather than the trace. Also, we are integrating over the ‘inflated’ n-simplex
t�n, yielding the factor tn. The forms 〈A0, . . . ,An〉 satisfy, mutatis mutandis, the following
properties.

Lemma 7. (See [10].) In each of the following cases, we assume that the operators Ai are such
that each term is well defined:

1. 〈A0, . . . ,An〉n = 〈Ai, . . . ,An, . . . ,Ai−1〉n;
2. 〈A0, . . . ,An〉n = ∑n

i=0〈1, . . . ,Ai, . . . ,An,A0, . . . ,Ai−1〉n;
3.

∑n
i=0〈A0, . . . , [D,Ai], . . . ,An〉n = 0;

4. 〈A0, . . . , [D2,Ai], . . . ,An〉n = 〈A0, . . . ,Ai−1Ai, , . . . ,An〉n−1 − 〈A0, . . . ,AiAi+1, . . . ,

An〉n−1.

2.3. Gâteaux derivatives

As a preparation for the next section, we recall the notion of Gâteaux derivatives, referring to
the excellent treatment [12] for more details.

Definition 8. The Gâteaux derivative at x ∈ X of a map F : X → Y between locally convex
topological vector spaces is defined for h ∈ X by

F ′(x)(h) = lim
u→0

F(x + uh) − F(x)

u
.
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In general, the map F ′(x)(·) is not linear, in contrast with the Fréchet derivative. However,
if X and Y are Fréchet spaces, then the Gâteaux derivatives actually defines a linear map F ′(x)(·)
for any x ∈ X [12, Theorem 3.2.5]. In this case, higher order derivatives are denoted as F ′′, F ′′′
et cetera, or more conveniently as F (k) for the k-th order derivative. The latter will be understood
as a linear bounded operator from X × · · · × X (k + 1 copies) to Y .

Theorem 9 (Taylor’s formula with integral remainder). For a Gâteaux k + 1-differentiable map
F : X → Y between Fréchet spaces X and Y it holds for x, a ∈ X that

F(x) = F(a) + F ′(a)(x − a) + 1

2!F
′′(a)(x − a, x − a) + · · ·

+ 1

n!F
(k)(a)(x − a, . . . , x − a) + Rk(x)

with integral remainder given by

Rk(x) = 1

k!
1∫

0

F (k+1)
(
a + t (x − a)

)(
(1 − t)h, . . . , (1 − t)h,h

)
dt.

3. Trace functionals

In this section, we consider trace functionals of the form A �→ Trf (D + A). Here D is the
self-adjoint operator forming a finitely summable spectral triple (A, H,D), and A is a bounded
operator. We derive a Taylor expansion of this functional in A. Our main motivation comes
from the spectral action principle introduced by Chamseddine and Connes [1,2] and we define
accordingly

Definition 10. (See Chamseddine and Connes [2].) The spectral action functional SD[A] is de-
fined by

SD[A] = Trf (D + A)
(
A ∈ B(H)

)
.

The square brackets indicate that SD[A] is considered as a functional of A ∈ B(H).

Remark 11. Actually, Chamseddine and Connes considered SD[A] for so-called gauge fields
associated to the spectral triple (A, H,D). These are self-adjoint elements A in Ω1

D(A) which
by Remark 3 is a subset of B2(H).

For the function f we assume that it is a Laplace–Stieltjes transform:

f (x) =
∫

t>0

e−tx2
dμ(t)

for which we make the additional:
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Assumption 1. For all α > 0, β > 0, γ > 0 and 0 � ε < 1, there exist constants Cαβγ ε such that

∫
t>0

Tr tα|D|βe−t (εD2−β)
∣∣dμ(t)

∣∣ < Cαβγ ε.

In view of Theorem 9, we have the following Taylor expansion (around 0) in A ∈ B2(H) for
the spectral action SD[A]:

SD[A] =
∞∑

n=0

1

n!S
(n)
D (0)(A, . . . ,A). (4)

Indeed, SD is Fréchet differentiable on B2(H) as the following Proposition establishes.

Proposition 12. If n = 0,1, . . . and A ∈ B2(H), then S
(n)
D (0)(A, . . . ,A) exists and

S
(n)
D (0)(A, . . . ,A) = n!

n∑
k=0

(−1)k
∑

ε1,...,εk

〈
1, (1 − ε1){D,A} + ε1A

2, . . . ,

(1 − εk){D,A} + εkA
2〉

k
dμ(t),

where the sum is over multi-indices (ε1, . . . , εk) ∈ {0,1}k such that
∑k

i=1(1 + εi) = n.

Proof. We will prove this by induction on n; the case n = 0 being trivial. By definition of the
Gâteaux derivative and using Lemma 5,

S
(n+1)
D (0)(A, . . . ,A) = n!

n∑
k=0

∑
ε1,...,εk

[
k∑

i=1

(−1)k+1〈1, (1 − ε1){D,A} + ε1A
2, . . . ,

{D,A}
i

, . . . , (1 − εk){D,A} + εkA
2〉

k+1

+
k∑

i=1

(−1)k
〈
1, (1 − ε1){D,A} + ε1A

2, . . . ,2(1 − εi)A
2, . . . ,

(1 − εk){D,A} + εkA
2〉

k

]
dμ(t).

The first sum corresponds to a multi-index �ε′ = (ε1, . . . , εi−1,0, εi, . . . , εk), the second sum cor-
responds to �ε′ = (ε1, . . . , εi + 1, . . . , εk) if εi = 0, counted with a factor of 2. In both cases, we
compute that

∑
j (1+ε′

j ) = n+1. In other words, the induction step from n to n+1 corresponds
to inserting in a sequence of 0’s and 1’s (of, say, length k) either a zero at any of the k + 1 places,
or replace a 0 by a 1 (with the latter counted twice). In order to arrive at the right combinatorial
coefficient (n + 1)!, we have to show that any �ε′ satisfying

∑
i (1 + ε′

i ) = n + 1 appears in pre-
cisely n + 1 ways from �ε that satisfy

∑
i (1 + εi) = n. If �ε′ has length k, it contains n + 1 − k
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times 1 as an entry and, consequently, 2k − n − 1 a 0. This gives (with the double counting for
the 1’s) for the number of possible �ε:

2(n + 1 − k) + 2k − n − 1 = n + 1

as claimed. This completes the proof. �
Example 13.

S
(1)
D (0)(A) =

∫ (−〈
1, {D,A}〉1)dμ(t),

S
(2)
D (0)(A,A) = 2

∫ (−〈
1,A2〉

1 + 〈
1, {D,A}, {D,A}〉2)dμ(t),

S
(3)
D (0)(A,A,A) = 3!

∫ (〈
1,A2, {D,A}〉2 + 〈

1, {D,A},A2〉
2

− 〈
1, {D,A}, {D,A}, {D,A}〉3)dμ(t).

3.1. Divided differences

Recall the definition of and some basic results on divided differences.

Definition 14. Let g : R → R and x0, x1, . . . , xn be distinct points on R. The divided difference
of order n is defined by the recursive relations

g[x0] = g(x0),

g[x0, x1, . . . , xn] = g[x1, . . . , xn] − g[x0, x1, . . . , xn−1]
xn − x0

.

On coinciding points we extend this definition as the usual derivative:

g[x0, . . . , x, . . . , x, . . . , xn] := lim
u→0

g[x0, . . . , x + u, . . . , x, . . . , xn].

Finally, as a shorthand notation, we write for an index set I = {i1, . . . , in}:

g[xI ] = g[xi1, . . . , xin].

Also note the following useful representation due to Hermite [14].

Proposition 15. For any x0, . . . , xn ∈ R:

f [x0, x1, . . . , xn] =
∫
�n

f (n)(s0x0 + s1x1 + · · · + snxn) dns.
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As an easy consequence, we derive

n∑
i=0

f [x0, . . . , xi, xi, . . . , xn] = f ′[x0, x1, . . . , xn].

Proposition 16. For any x1, . . . , xn ∈ R we have for f (x) = g(x2):

f [x0, . . . , xn] =
∑

I

( ∏
{i−1,i}⊂I

(xi + xi+1)

)
g
[
x2
I

]

where the sum is over all ordered index sets I = {0 = i0 < i1 < · · · < ik = n} such that ij −
ij−1 � 2 for all 1 � j � k (i.e. there are no gaps in I of length greater than 1).

Proof. This follows from the chain rule for divided difference: if f = g ◦ ϕ, then [9]

f [x0, . . . , xn] =
n∑

k=1

∑
0=i0<i1<···<ik=n

g
[
ϕ(xi0), . . . , ϕ(xik )

] k−1∏
j=0

ϕ[xij , . . . , xij+1].

For ϕ(x) = x2 we have ϕ[x, y] = x + y, ϕ[x, y, z] = 1 and all higher divided differences are
zero. Thus, if ij+1 − ij > 2 then ϕ[xij , . . . , xij+1] = 0. In the remaining cases one has

ϕ[xij , . . . , xij+1] =
{

xij + xij+1 if ij+1 − ij = 1,

1 if ij+1 − ij = 2,

and this selects in the above summation precisely the index sets I . �
Example 17. For the first few terms, we have

f [x0, x1] = (x0 + x1)g
[
x2

0 , x2
1

]
,

f [x0, x1, x2] = (x0 + x1)(x1 + x2)g
[
x2

0 , x2
1 , x2

2

] + g
[
x2

0 , x2
2

]
,

f [x0, x1, x2, x3] = (x0 + x1)(x1 + x2)(x2 + x3)g
[
x2

0 , x2
1 , x2

2 , x2
3

]
+ (x2 + x3)g

[
x2

0 , x2
2 , x2

3

] + (x0 + x1)g
[
x2

0 , x2
1 , x2

3

]
.

3.2. Taylor expansion of the spectral action

We fix a complete set of eigenvectors {ψn}n of D with respective eigenvalue λn ∈ R, forming
an orthonormal basis for H. We also denote Amn := (ψm,Aψn) so that

∑
m,n Amn|ψm)(ψn|

converges to A in the weak operator topology.

Theorem 18. If f satisfies Assumption 1 and A ∈ B2(H), then

S
(n)
D (0)(A, . . . ,A) = n!

∑
i1,...,in

Aini1Ai1i2 · · ·Ain−1inf [λip , λi1, . . . , λin].
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A similar result was obtained in finite dimensions in [13].

Proof. Proposition 12 gives us an expression for S
(n)
D in terms of the brackets 〈· · ·〉. We compute

for these:

(−1)k
〈
1, (1 − ε1){D,A} + ε1A

2, . . . , (1 − εk){D,A} + εkA
2〉

k
dμ(t)

= (−1)k
∑

i0=ik, i1,...,ik

∫
�k

(
k∏

j=1

(
(1 − εj )(λij−1 − λij )A + εjA

2)
ij−1ij

)

× e
−(s0tλ

2
i0

+···+sktλ
2
ik

)
dks dμ(t)

=
∑

i0=ik, i1,...,ik

(
k∏

j=1

(
(1 − εj )(λij−1 − λij )A + εjA

2)
ij−1ij

)
g
[
λ2

i0
, . . . , λ2

ik

]
.

Glancing back at Proposition 16 we are finished if we establish a one-to-one relation between the
order index sets I = {0 = i0 < i1 < · · · < ik = n} such that ij−1 − ij � 2 for all 1 � j � k and
the multi-indices (ε1, . . . , εk) ∈ {0,1}k such that

∑k
i=1(1 + εi) = n. If I is such an index set, we

define a multi-index:

εj =
{

0 if {ij − 1, ij } ⊂ I,

1 otherwise.

Indeed, then ij = ij−1 + 1 + εj so that

k∑
i=1

(1 + εi) = i0 +
k∑

i=1

(1 + εi) = ik = n.

It is now clear that, vice-versa, if ε is as above, we define I = {0 = i0 < i1 < · · · < ik = n} by
ij = ij−1 + 1 + εj and starting with i0 = 0. �
Corollary 19. If n � 0 and A ∈ B2(A), then

S
(n)
D (0)(A, . . . ,A) = (n − 1)!

∑
i1,...,in

Ai1i2 · · ·Aini1f
′[λi1, . . . , λin].

Consequently,

SD[A] =
∞∑

n=0

1

n

∑
i1,...,in

Ai1i2 · · ·Aini1f
′[λi1, . . . , λin].

An interesting consequence is the following, which was obtained recently at first order for
bounded operators [11].
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Corollary 20. If n � 0 and A ∈ B2(A) and if f ′ has compact support, then

S
(n)
D (0)(A, . . . ,A) = (n − 1)!

2πi
Tr

∮
f ′(z)A(z − D)−1 · · ·A(z − D)−1.

The contour integral encloses the intersection of the spectrum of D with suppf ′.

Proof. This follows directly from Cauchy’s formula for divided differences (cf. [8, Ch. I.1])

g[x0, . . . , xn] = 1

2πi

∮
g(z)

(z − x0) · · · (z − xn)
dz

with the contour enclosing the points xi . �
4. Outlook

We have obtained a Taylor expansion for the spectral action in noncommutative geometry.
As such, it is natural to consider its quadratic part as the starting point for a free quantum field
theory. Expectedly, this involves the usual nuances of a gauge theory such as gauge fixing, Gribov
ambiguities, et cetera. Under the assumption of vanishing tadpole

S
(1)
D (A) = 0

(
A ∈ Ω1(A)

)
,

also exploited in [5], one indeed encounters a degeneracy in the quadratic part. In fact, in this
case S

(2)
D (A, [D,a]) = 0 for all a ∈ A. This vanishing on pure gauge fields will be considered in

more detail elsewhere. Once this issue has been dealt with, the higher derivatives of the spectral
action account for interactions, allowing for a development of a perturbative quantization of the
spectral action.

Another application of the present work is to matrix models, as our Taylor expansion is
very similar to Lagrangians encountered in matrix models. In fact, if the spectral triple is
(MN(C),C

N,D) with D a symmetric N × N -matrix, then the spectral action is exactly the
hermitian one-matrix model (cf. [7]). An honest infinite-dimensional example might be provided
by the spectral triples that are involved in Moyal deformations (see [15] and references therein).
It would be interesting to apply the above results and develop a quantum theory for these models.
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Appendix A. A theorem by Getzler and Szenes

In [10] Getzler and Szenes proof the following theorem. For completeness, we repeat it here
(specified to our finitely-summable case).
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Theorem 21 (Getzler–Szenes). Let (A, H,D) be a finitely-summable spectral triple and V a
self-adjoint bounded operator on H. Then (A, H,DV ) with DV = D +V is a finitely-summable
spectral triple, and

Tr e−(1−ε/2)t (DV )2 � e(1+2/ε)t‖V ‖2
Tr e−(1−ε)tD2

for any 0 < ε < 1 and t > 0.

Proof. This follows from the fact that for two positive self-adjoint operator A and B we have

Tr e−A−B � Tr e−A. (5)

Indeed, let

A = (1 − ε)tD2,

B = εtD2/2 + (1 − ε/2)t
(
DV + V D + V 2) + (1 + 2/ε)t‖V ‖2,

so that A + B = (1 − ε/2)(D + V )2 + (1 + 2/ε)‖V ‖2. Obviously, A is positive. To see that B is
positive, we use the fact that

0 � εtD2/2 + 2tV 2/ε + t (DV + V D),

which is just positivity of (
√

εt/2D + √
2t/εV )2. Combining this with V 2 � ‖V 2‖ and multi-

plying by the positive number (1 − ε/2) we obtain

0 � (1 − ε/2)
(
εtD2/2 + 2t‖V ‖2/ε + t (DV + V D)

) = B − ε2/4tD2 − (1 − ε/2)tV 2,

ensuring positivity of B . Eq. (5) then implies

Tr e−(1−ε/2)t (D2+DV +V D+V 2)e−(1+2/ε)t‖V ‖2 � Tr e−(1−ε)tD2

as desired. �
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