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Abstract

In this paper we apply the previously derived formalism of per-
mutation orbifold conformal field theories to N = 2 supersymmetric
minimal models. By interchanging extensions and permutations of the
factors we find a very interesting structure relating various conformal
field theories that seems not to be known in literature. Moreover, un-
expected exceptional simple currents arise in the extended permuted
models, coming from off-diagonal fields. In a few situations they admit
fixed points that must be resolved. We determine the complete CFT
data with all fixed point resolution matrices for all simple currents of
all Z2-permutations orbifolds of all minimal N = 2 models with k 6= 2
mod 4.
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1 Introduction

Rational conformal field theory (RCFT) [1] has proved to be a useful tool
for studying perturbative string theory, and especially string model build-
ing. It provides a middle ground between approaches based on free field
theories (free bosons, free fermions and orbifolds) on the one hand and geo-
metric constructions on the other hand. While free field theory constructions
are undoubtedly simpler and more easily applicable to the computation of
features of phenomenological interest such as couplings and moduli depen-
dence, there is a danger of them being too special. This may lead to incorrect
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conclusions about what is possible or not in string theory, and how generic
certain features are. For example, the earliest attempts to obtaining MSSM
spectra using orbifold-based orientifolds were plagued by chiral exotics [2].
However, the first detailed exploration of interacting RCFT orientifolds pro-
duced hundreds of thousands of distinct spectra without such unacceptable
particles [3].

However, the set of RCFTs at our disposal is disappointingly small.
Decades ago it was conjectured that the moduli spaces of string theory were
densely populated by RCFT points, just as the c = 1 moduli space is densely
populated by rational circle compactifications and their orbifolds. Even to-
day, it is not clear what the status of that conjecture is, but it certainly
does not have any practical value. The only interacting RCFTs that we can
really use for building exact string are tensor products of N = 2 minimal
models, also known as “Gepner models” [5, 6]. Indeed, these are the only
ones that have been used in orientifold model building. In this situation we
face the same risk mentioned above regarding free CFTs: perhaps what we
are finding is too special. For example, in a study of the number of families
in Gepner orientifolds it was found that the number three was suppressed by
a disturbing two to three orders of magnitude [3] (similar conclusions were
obtained for Z2 × Z2 orientifolds in [4]). The origin of this phenomenon is,
to our knowledge, still not understood, but it would be interesting to know
if it persists beyond Gepner models.

The other area of application of RCFT model building, and the one where
it was historically used first, is the heterotic string. In this case a few results
are available beyond Gepner model building. This is possible because the
computation of the simplest heterotic spectra requires slightly less CFT data
than what is needed for orientifold spectra.

The full power of RCFT model building only manifests itself if one uses
the complete set [7] of simple current modular invariant partition functions
(MIPFs) [8, 9] (See [11] for a review of simple current MIPFs. The underlying
symmetries were discovered independently in [10]). Indeed, with only the
trivial (diagonal or charge conjugation) MIPFs essentially nothing would
have been found in orientifold model building. Indeed, already basic physical
constraints like world-sheet and space-time supersymmetry require a simple
current MIPF. Although the simple current symmetries can be read off from
the modular transformation matrix S, and the corresponding MIPFs can
be readily constructed, often additional information is required when the
simple current action has fixed points [12, 11]. In order to make full use
of the complete simple current formalism we need the following data of the
CFT under consideration:
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• The exact conformal weights.

• The exact ground state dimensions.

• The modular transformation matrix S.

• The fixed point resolution matrices SJ , for simple currents J with fixed
points.

Not all of this information is needed in all cases. The matrices S and SJ are
needed in the computation of boundary coefficients of orientifolds for simple
current MIPFs. In heterotic spectrum computations all we need to know is
the first two items, plus the simple current orbits implied by S. To compute
the Hodge numbers of heterotic compactifications, we only need to know the
exact ground state dimensions of the Ramond ground states.

In addition to Gepner models, for which all this information is available,
there are at least two other classes that are potentially usable: the Kazama-
Suzuki models [13] and the permutation orbifolds. In the former case, the
coset construction gives us the exact matrix S, and the results of [14] pro-
vide all the matrices SJ . The difficulty lies in computing the exact CFT
spectrum and the ground state dimensions. In some cases this just requires
the computation of branching functions, a tedious task that can however be
performed systematically. To our knowledge this has never been done, how-
ever. In other cases, those with field identification fixed points, no algorithm
is currently available. In both cases, it has been possible to compute at least
the Hodge numbers for the diagonal MIPF (see respectively [15] and [16]),
although in the latter case this required some rather involved tricks to deal
with fixed point resolution.

For permutation orbifolds the situation is more or less just the other way
around: it has been known for a long time how to compute their weights
and ground state dimensions, but there was no formalism for computing S
and SJ . Also in this case it has been possible to compute the Hodge num-
bers and even the number of singlets for the diagonal invariants [17, 18].
However, meanwhile it as become clear that the values of Hodge numbers
offer a rather poor road map to the heterotic string landscape. In par-
ticular they lead to the wrong impression that the number of families is
large and very often a multiple of 4 or 6. The former problem disappears
if one allows breaking of the gauge group E6 to phenomenologically more
attractive subgroups (ranging from SO(10) via SU(5) or Pati-Salam to just
SU(3)× SU(2)× U(1) (times other factors) by allowing asymmetric simple
current invariants [19, 20], whereas the second problem can be solved by
modifying the bosonic sector of the heterotic string, for example by means

4



of heterotic weight lifting [21], B-L lifting [22] or E8 breaking [23]. All of
these methods require knowledge of the full simple current structure of the
building blocks. This in its turn requires knowing S.

A first step towards the computation of S for Z2 permutation orbifolds
was made in [24], almost ten years after permutation orbifolds were first stud-
ied. While this might seem sufficient for permutation orbifolds in heterotic
string model building, we will see that even in that case more is needed. For
orientifold model building with general simple current MIPFs certainly more
is needed, as already mentioned above. The crucial ingredient in both cases
is fixed point resolution. Therefore we expect that significant progress can
be made by applying results we obtained recently [25, 26, 27], extending the
results of [24] to fixed point resolution matrices SJ , for currents J of order
2. Since in N = 2 minimal models all currents with fixed points have order
2, this seems to be precisely what is needed. The purpose of this paper is
to determine which of the CFT data listed above can now be computed for
permutations orbifolds of N = 2 minimal models, and provide algorithms for
doing so.

1.1 Basic concepts

The easiest way of constructing rational conformal field theories is by taking
the tensor product of existing ones. In the resulting CFT, all relevant CFT
data is known from its factor theories. Another possibility is to take orbifolds.
Orbifolds are already non-trivial theories, since they admit an untwisted and
a twisted sector. The twisted sector is demanded by modular invariance.
Normally the untwisted sector is easily derivable from the original theory,
but twisted fields are much harder to determine.

There are many kind of orbifolds, depending on the particular model
under consideration. In this paper we will consider the permutation orbifold,
which arises when a tensor product CFT has at least two identical factor
that can be permuted. The simplest instance of this orbifold is when there
are only two identical factors to interchange. Start with the CFT A and
build the tensor product A⊗A. It has a manifest Z2 symmetry which flips
the two factors. We denote this Z2 orbifold as

A⊗A/Z2 . (1.1)

The spectrum was worked out for the first time in [17] using modular invari-
ance, and twisted fields were determined. Subsequently, the modular S and
T matrices were given in [24] using an induction procedure on the algebra
generators.
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The next level of complication for a CFT is the simple-current extension.
A simple current is a particular field of the theory, with simple fusion rules
with any other field. If they have integer spin, they can be used to write down
new modular invariant conformal field theories, known as simple current
invariants. In the extension procedure, one computes the monodromy charge
QJ of each field with respect to the simple current J and organizes fields
into orbits, keeping only those with integer monodromy. Algebraically, an
extension is an orbifold projection, where one keeps states which are invariant
under the monodromy operator e2iπQJ and adds the twisted sector.

In principle the CFT data of such invariants are determined by those of
the original theory, but the level of difficulty rapidly increases if there are
fixed points, i.e. fields that the simple current leaves fixed under the fusion
rules. Equivalently, fixed points are orbits with length one. If there are fixed
points one needs a set of matrices “SJ” for each current J acting on the fixed
points [28]. Outside the fixed points of J , SJ vanishes. The full modular S
matrix is then expressed in terms of these SJ matrices in a complicated way.
Expressions for the SJ matrix are known for WZW models, coset theories
and extensions thereof [12, 28, 29, 30].

When we combine extensions and permutation orbifolds, things become
much more interesting and complicated at the same time. There it is always
needed to worry about fixed point resolutions and SJ matrices. The structure
of simple currents and fixed points in the permutation orbifold was derived in
[25, 26] and also a unitary and modular invariant ansatz for the SJ matrices
exists [27]. Using the formula of [28], we have checked that in simple current
extensions these matrices SJ yield a good S matrix (satisfying the condition
(ST )3 = S2) and produce non-negative integer coefficients in the fusion rules.

One may distinguish five kinds of fields in permutation orbifolds, which
we will denote as follows. The labels i and j refer to primaries of the original
CFT1:

• Diagonal fields (i, ξ), with ξ = 0 or 1. Here ξ = 0 labels the symmetric
combination and ξ = 1 the anti-symmetric one.

• Off-diagonal fields 〈i, j〉, i < j.

• Twisted fields (̂i, ξ), with ξ = 0 or 1. The (̂i, 1) denotes the excited
twist field.

1We use a different notation for off-diagonal combinations than previous work [24, 25,
26, 27]: 〈i, j〉 instead of (i, j). This is to prevent confusion between the antisymmetric
combination of the vacuum module, (0, 1), and the off-diagonal combination of fields nr.
0 and 1. The comma will be omitted in some cases.
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Exact formulas for the Virasoro characters of all these representations are
known [24], and can be used to get the exact ground state conformal weight
and dimensions (see chapter 3 for further details).

Here we want to apply the results of [24] and [25, 26, 27] to N = 2
minimal models. This may seem to be straightforward, as a supersymmet-
ric CFT is just an example of a CFT, and the aforementioned results hold
for any CFT. However, the permutation orbifold obtained by applying [24]
turns out not to have world-sheet supersymmetry. This is related to the fact
that a straightforward Virasoro tensor product (the starting point for the
permutation orbifold) does not have world-sheet supersymmetry either, for
the simple reason that tensoring produces combinations of R and NS fields.
The solution to this problem in the case of the tensor product is to extend
the chiral algebra by a simple current of spin 3, the product of the world-
sheet supercurrents of the two factors (or any two factors if there are more
than two). One might call this the supersymmetric tensor product. But for
this extended tensor product the formalism of [24] is not available. One can
follow two paths to solve that problem: either one can try to generalize [24]
to supersymmetric tensor products (or more generally to extended tensor
products) or one can try to supersymmetrize the permutation orbifold. We
will follow the second path.

One might expect that the chiral algebra of permutation orbifold has
to be extended in order to restore world-sheet supersymmetry. That is in-
deed correct, but it turns out that there are two plausible candidates for
this extension: the symmetric and the anti-symmetric combination of the
world-sheet supercurrent of the minimal model. Denoting the latter as TF ,
the two candidates are the spin-3 currents (TF , 0) and (TF , 1). Somewhat
counter-intuitively, it is the second one that leads to a CFT with world-sheet
supersymmetry. The first one, (TF , 0), gives rise to a CFT that is similar,
but does not have a spin-3/2 current of order 2.

Both (TF , 0) and (TF , 1) have fixed points, but we know their resolution
matrices from the general results of [27]. They come in handy, because
it turns out that one of these fixed points is the off-diagonal field 〈0, TF 〉
of conformal weight 3

2
. As stated above, this is not a simple current of

the permutation orbifold, but it is a well-known fact that chiral algebra
extensions can turn primaries into simple currents. This is indeed precisely
what happens here. Since we know the fixed point resolution matrices of
(TF , 0) and (TF , 1) we can work out the orbits of this new simple current.
It turns out that in the former extension 〈0, TF 〉 has order 4, whereas in the
latter it has order 2. We conclude that the latter must be the supersymmetric
permutation orbifold; we will refer to this CFT as “X”. The fixed point
resolution also determines the action of the new world-sheet supercurrent
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〈0, TF 〉 on all other fields, combining them into world-sheet superfields of
either NS or R type.

The current 〈0, TF 〉 has no fixed points, as one would expect in an N = 2
CFT (because it has two supercurrents of opposite charge, and acting with
either one changes the charge). However, there are in general more off-
diagonal fields that turn into simple currents. Some of these do have fixed
points, and since the simple currents originate from fields that were not
simple currents in the permutation orbifold, our previous results do not allow
us to resolve these fixed points. We find that this problem only occurs if
k = 2 mod 4, where k = 1 . . .∞ is the integer parameter labelling the
N = 2 minimal models.

To prevent confusion we list here all the CFTs that play a rôle in the
story:

• The N = 2 minimal models.

• The tensor product of two identical N = 2 minimal models. We will
refer to this as (N = 2)2.

• The BHS-orbifold of the above. This is the permutation orbifold as
described in [24]. It will be denoted (N = 2)2orb.

• The supersymmetric extension of the tensor product. This is the ex-
tension of the tensor product by the spin-3 current (TF , TF ). We will
call this CFT (N = 2)2Susy

• The supersymmetric permutation orbifold (N = 2)2Susy−orb. This is
BHS orbifold extended by the spin-3 current (TF , 1)

• The non-supersymmetric permutation orbifoldX . This is BHS orbifold
extended by the spin-3 current (TF , 0)

1.2 Plan

The plan of this paper is as follows.
in section 2 we review the theory of N = 2 minimal models, their spectrum
and S matrix. As far as the characters are concerned, we recall the coset
construction and state a few known results from parafermionic theories, in
particular the string functions.
In section 3 we review general permutation orbifolds, the BHS formalism and
its generalization to fixed point resolution matrices. Then in section 4 we
move to the permutation orbifold of N = 2 minimal models. We consider
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extensions by the various currents related to the spin-3
2
worldsheet supercur-

rent and explain how the exceptional off-diagonal currents appear. We also
work out the special extension of the orbifold by the symmetric and anti-
symmetric representation of the worldsheet current.
In section 5 we study we study the exceptional simple currents and in par-
ticular the ones that have got fixed points. We give the structure of these
off-diagonal currents as well as of their fixed points, in the case they have
any. We illustrate the general ideas with the example of the minimal model at
level two. In section 6 we summarize the orbit and fixed point structures for
the various CFTs we consider, and we also present the analogous results for
N = 1 minimal models, where similar issues arise, and also some interesting
differences. in section 7 we give our conclusions.

2 N = 2 minimal models

In this section we review the minimal model of the N = 2 super conformal
algebra.

2.1 The N = 2 SCFT and minimal models

The N = 2 super conformal algebra (SCA) was first introduced in [33]. It
contains the stress-energy tensor T (z) (spin 2), a U(1) current j(z) (spin
1) and two fermionic currents T±

F (z) (spin 3
2
). In operator product form it

reads:

T (z)T (0) ∼ c

2z4
+

2

z2
T (0) +

1

z
∂T (0) (2.1a)

T (z)T±
F (0) ∼ 3

2z2
T±
F (0) +

1

z
∂T±

F (0) (2.1b)

T (z)j(0) ∼ 1

z2
j(0)

1

z
∂j(0) (2.1c)

T+
F (z)T

−
F (0) ∼ 2c

3z3
+

2

z2
j(0) +

2

z
T (0) +

1

z
∂j(0) (2.1d)

T+
F (z)T

+
F (0) ∼ T−

F (z)T
−
F (0) ∼ 0 (2.1e)

j(z)T±
F (0) ∼ ±1

z
T±
F (0) (2.1f)

j(z)j(0) ∼ c

3z2
. (2.1g)

Using the mode expansion

T (z) =
∑

n∈Z

Ln
zn+2

, j(z) =
∑

n∈Z

Jn
zn+1

, T±
F (z) =

∑

r∈Z±ν

G±
r

zr+
3

2

, (2.2)
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the algebra (2.1) is equivalent to the (anti-)commutators

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n (2.3a)

[Lm, Jn] = −nJm+n , (2.3b)

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3
(r2 − 1

4
)δr,−s (2.3c)

{G+
r , G

+
s } = {G−

r , G
−
s } = 0 , (2.3d)

[Jm, G
±
r ] = ±1

c
G±
r+n , (2.3e)

[Jm, Jn] =
c

3
mδm,−n . (2.3f)

The shift ν can in principle be real, but for our considerations we take it
to be integer (NS sector) or half-integer (R sector). Unitary representa-
tions of the N = 2 SCA can exists for values of the central charge c ≥ 3
(infinite-dimensional representations) and for the discrete series c < 3 (finite-
dimensional representations). The latter ones are discrete conformal field
theories, the N = 2 minimal models, whose central charge is specified by an
integer number k, called the level, according to:

c =
3k

k + 2
. (2.4)

The Cartan subalgebra is generated by L0 and J0, hence primary fields are
labelled by their weights h and charges q:

L0|h, q〉 = h|h, q〉 , J0|h, q〉 = q|h, q〉 . (2.5)

The allowed values for h and q are given by

hl,m,s =
l(l + 2)−m2

4(k + 2)
+
s2

8
, qm,s = − m

k + 2
+
s2

2
, (2.6)

where l, m, s are integer numbers with the property that

• l = 0, 1, . . . , k

• m is defined mod 2(k+2) (we will choose the range −k−1 ≤ m ≤ k+2)

• s = −1, 0, 1, 2 mod 4; s = 0, 2 for NS sector, s = ±1 for R sector.

In addition, in order to avoid double-counting, one has to take into account
that not all the fields are independent but are rather identified pairwise:

φl,m,s ∼ φk−l,m+k+2,s+2 . (2.7)
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In order to be able to say something about the characters of the minimal
model, let us mention the coset construction. The N = 2 minimal models
can be described in terms of the coset

su(2)k × u(1)2
u(1)k+2

. (2.8)

Throughout this paper, we use the convention that u(1)p contains 2p primary
fields. The characters of this coset are decomposed according to

χ
su(2)k
l (τ) · χu(1)2s (τ) =

k+2∑

m=−k−1

χu(1)k+2

m (τ) · χl,m,s(τ) , (2.9)

where χl,m,s are the characters (branching functions) of the coset theory.

2.2 Parafermions

We will soon see that χl,m,s will be determined in terms of the so-called string

functions, which are related to the characters of the parafermionic theories

[34, 35]. In order to determine χl,m,s, let us consider su(2)k representations.
Using the Weyl-Kac character formula [36, 37], su(2)k characters are given
by a ratio of generalized theta functions:

χ
su(2)k
l (τ, z) =

Θl+1,k+2(τ, z) + Θ−l−1,k+2(τ, z)

Θ1,2(τ, z) + Θ−1,2(τ, z)
, (2.10)

where by definition

Θl,k(τ, z) =
∑

n∈Z+ l
2k

qkn
2

e−2iπnkz . (2.11)

Parafermionic conformal field theories are given by the coset

su(2)k
u(1)k

, c =
2(k − 1)

k + 2
. (2.12)

We can decompose su(2)k characters in term of u(1)k and parafermionic
characters as

χ
su(2)k
l (τ, z) =

k∑

m=−k+1

χu(1)km (τ, z) · χparak
l,m (τ) . (2.13)

This decomposition also gives the weight of the parafermions:

hl,m =
l(l + 2)

4(k + 2)
− m2

4k
, l = 0, 1, . . . , k , m = −k + 1, . . . , k . (2.14)
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Using the fact that u(1)k characters are just theta functions,

χu(1)km (τ, z) =
Θm,k(τ, z)

η(τ)
, (2.15)

the su(2)k characters become

χsu(2)km (τ, z) =
k∑

m=−k+1

Θm,k(τ, z)

η(τ)
· χparak

l,m (τ) ≡
k∑

m=−k+1

Θm,k(τ, z) · C(k)
l,m(τ) ,

(2.16)

being C
(k)
l,m(τ) = 1

η(τ)
χ
parak
l,m (τ) the su(2)k string functions. Here, η(τ) is the

Dedekind eta function, which is a modular form of weight 1
2
,

η(τ) = q
1

24

∞∏

k=1

(1−qk) , η(τ)−1 = q−
1

24

∞∑

n=0

P (n)qn , q = e2iπτ , (2.17)

with P (n) the number of partitions of n.
As an example, consider the case with k = 1. Since the characters of

χ
su(2)1
m are the same as the characters of χ

u(1)1
m , we have

χ
para1
0,0 (τ) = χ

para1
1,1 (τ) = 1 , χ

para1
0,1 (τ) = χ

para1
1,0 (τ) = 0 . (2.18)

These relations for k = 1 generalize to arbitrary k to give selection rules
for the string functions. By decomposing su(2) representations into u(1)
representations, the branching functions (i.e. the parafermions) should not
carry u(1) charge, since they correspond to the coset (2.8) where the u(1)
part has been modded out. Bearing this observation in mind, the general
su(2)k-character decomposition, including the selection rules, is

χ
su(2)k
l (τ, z) =

k∑

m = −k + 1
l +m = 0mod 2

C
(k)
l,m(τ) ·Θm,k(τ, z) . (2.19)

2.3 String functions and N = 2 Characters

The string functions of su(2)k are Hecke modular forms [37]. They can be
expanded as a power sum with integer coefficients as

C
(k)
l,m(τ) = exp

[

2iπτ

(
l(l + 2)

4(k + 2)
− m2

4k
− c

24

)] ∞∑

n=0

pnq
n , (2.20)
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with c = 3k
k+2

, where pn is the number of states in the irreducible represen-
tation with highest weight l for which the value of J3

0 and N are m and n.
These integer coefficients depend in general on the string function labels l
and m and are most conveniently extracted from the following expression2:

C
(k)
l,m(τ) = η(τ)−3

∑

−|x|<y≤|x|

sign(x) e2iπτ [(k+2)x2−ky2] , (2.21)

where x and y belongs to the range

(x, y) or

(
1

2
− x,

1

2
+ y

)

∈
(

l + 1

2(k + 2)
,
m

2k

)

+ Z2 . (2.22)

Equation (2.21) is actually the solution to (2.16), when the l.h.s. is given as
in (2.10).

The string functions satisfy a number of properties, that can be proved
by looking at (2.21) and at the summation range (2.22):

• C
(k)
l,m = 0, if l +m 6= 0 mod 2;

• C
(k)
l,m = C

(k)
l,m+2k , i.e. m is defined mod 2k;

• C
(k)
l,m = C

(k)
l,−m;

• C
(k)
l,m = C

(k)
k−l,k+m.

Using theta function manipulations, we can express the characters of the
N = 2 superconformal algebra in terms of the string functions as [5, 44]

χl,m,s(τ, z) =
∑

jmod k

C
(k)
l,m+4j−s(τ) ·Θ2m+(4j−s)(k+2),2k(k+2)(τ, kz) . (2.23)

This expression is invariant under any of the transformations s→ s+ 4 and
m → m + 2(k + 2), which shows that m is defined modulo 2(k + 2) and s
modulo 4. Also, χl,m,s = 0 if l + m + s 6= 0 mod 2 and moreover χl,m,s is
invariant under the simultaneous interchange l → k− l, m→ m+ k+2 and
s→ s+ 2. In the following, we will choose the standard range

l = 0, . . . , k , m = −k − 1, . . . , k + 2 , s = −1, . . . , 2 (2.24)

2There exist many different ways of determining the su(2)k string functions. See
for example [38], where a derivation is given in terms of representation theory of the
parafermionic conformal models, or [39], where a new basis of states is provided for the
parafermions. Our formula is the standard one, given in [37]. It also agrees with [40, 41]
For equivalent, but different-looking, expressions, see [42, 43].
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for the labels of the N = 2 characters. This range would actually produce
an overcounting of states, since there is still the identification

φl,m,s ∼ φk−l,m+k+2,s+2 (2.25)

to take into account. For this purpose, it is more practical to consider the
smaller range

• for k=odd:

{0 ≤ l <
k

2
, ∀m, ∀s} (2.26)

• for k=even:

{0 ≤ l <
k

2
, ∀m, ∀s}

⋃

{l = k

2
, m = 1, . . . , k + 1, ∀s}

⋃

(2.27)

⋃

{l = k

2
, m = 0, s = 0, 1}

⋃

{l = k

2
, m = k + 2, s = 0, 1}

which automatically implements the above identification as well as the con-
straint l + m + s = 0 mod 2 3. Taking this into account, the number of
independent representations is given by

#(fields) = (k + 1)
︸ ︷︷ ︸

from l

· 2(k + 2)
︸ ︷︷ ︸

from m

· 4
︸︷︷︸

from s

· 1

2
︸︷︷︸

ident.

· 1

2
︸︷︷︸

constr.

= 2(k + 1)(k + 2) , (2.28)

while the number of simple currents is

#(simple currents) = 4 (k + 2) , (2.29)

in correspondence with all the fields having l = 0 (as we will see in a moment).
To actually compute the minimal model characters using (2.23) is a com-

plicated matter that can only be done reliably using computer algebra. Re-
sults for the ground state dimensions are readily available in the literature,
but as we will see, this is not sufficient to determine the conformal weights
and ground state dimensions of the permutation orbifolds. Since the num-
ber of characters of N = 2 minimal models increases rapidly with k, it is
not really practical to provide explicit character expansions in this paper.
Therefore we will make them available electronically via the program kac

[45] that may also be used to compute all other CFT data discussed here.

3Observe however that formula (2.6) might give a negative weight for a field with labels
(l,m, s) in the range above. When this happens, we consider its identified primary with
labels (k − l,m+ k + 2, s+ 2), which is guaranteed to have positive weight.
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2.4 Modular transformations and fusion rules

The coset construction has the additional advantage of making clear what
the modular S matrix is for the minimal models. It is just the product of
the S matrix of su(2) at level k, the (inverse) S matrix of u(1) at level k+2
and the S matrix of u(1) at level 2:

SN=2
(l,m,s)(l′,m′,s′) = S

su(2)k
l,l′

(

S
u(1)k+2

m,m′

)−1

S
u(1)2
s,s′ = (2.30)

=
1

2(k + 2)
sin

(
π

k + 2
(l + 1)(l′ + 1)

)

e
−iπ

(

ss′

2
−mm′

k+2

)

.

The corresponding fusion rules [46] are

(l, m, s) · (l′, m′, s′) =
∑

λ,µ,σ

Nλ
µ,σ δ

(2(k+2))
m+m′−µ, 0 δ

(4)
s+s′−σ, 0 (λ, µ, σ) , (2.31)

where Nλ
µ,σ are the su(2)k fusion coefficients. Here, δ

(p)
x, 0 is equal to 0, except

if x = 0 mod p when it is 1. As a consequence, all the fields φ0,m,s (and
only these) are simple currents, since they are all related to the identity of
the su(2)k current algebra (or equivalently to the su(2)k representation with
l = k, which is the only simple current of the su(2)k algebra). In particular,
the field TF ≡ (0, 0, 2) (with l = 0) will be relevant in the sequel. It has spin
3
2
and multiplicity two: it contains the (two) fermionic generators T±(z) of

the N = 2 superconformal algebra.

3 Permutation orbifold

Before going into the details of the permutation orbifold of theN = 2minimal
models, let us recall a few properties of the generic permutation orbifold [24],
restricted to the Z2 case

Aperm ≡ A×A/Z2 . (3.1)

If c is the central charge of A, then the central charge of Aperm is 2c. The
typical (for exceptions see below) weights of the fields are:

• h(i,ξ) = 2hi

• h〈i,j〉 = hi + hj

• h(̂i, ξ) = hi
2
+ c

16
+ ξ

2
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for diagonal, off-diagonal and twisted representations. Sometimes it can hap-
pen that the naive ground state has dimension zero: then one must go to its
first non-vanishing descendant whose weight is incremented by integers.

For the sake of this paper, we are mostly interested in the orbifold char-
acters. Let us recall the expressions of [24] for the diagonal, off-diagonal and
twisted Z2-orbifold characters. We denote by χ the characters of the original
(mother) CFT A and by X the characters of the permutation orbifold:

X〈i,j〉(τ) = χi(τ) · χj(τ) (3.2a)

X(i,ξ)(τ) =
1

2
χ2
i (τ) + eiπξ

1

2
χi(2τ) (3.2b)

X
(̂i,ξ)

(τ) =
1

2
χi(

τ

2
) + e−iπξ T

− 1

2

i

1

2
χi(

τ + 1

2
) (3.2c)

where T
− 1

2

i = e−iπ(hi−
c
24

).
Now, each character in the mother theory can be expanded as

χ(τ) = qhχ−
c
24

∞∑

n=0

dnq
n (with q = e2iπτ ) (3.3)

for some non-negative integers dn. Observe that the dn’s can be extracted
from

dn =
1

n!

∂n

∂qn

(
∞∑

k=0

dkq
k

)∣
∣
∣
∣
∣
q=0

. (3.4)

Similarly, each character of the permutation orbifold can be expanded as

X(τ) = qhX− c
12

∞∑

n=0

Dnq
n (3.5)

for some non-negative integers Dn. A relation similar to (3.4) holds for the
Dn’s.

Using (3.2) and (3.4), we can immediately find the relationships between
the dn’s and the Dn’s. Here they are:

D
〈i,j〉
k =

k∑

n=0

d(i)n d
(j)
k−n (3.6a)

D
(i,ξ)
k =

1

2

k∑

n=0

d(i)n d
(i)
k−n +

{

0 if k = odd
1
2
eiπξ d

(i)
k
2

if k = even
(3.6b)

D
(̂i,ξ)
k = d

(i)
2k+ξ (3.6c)
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These expressions are particularly interesting because they tell us that, if we
want to have an expansion of the orbifold characters up to order k, then it
is not enough to expand the original characters up to the same order k (it
would be enough for the untwisted fields), but rather we should go up to the
higher order 2k + 1, as it is implied by the third line of (3.6).

There are two possible reasons why a “naive” ground state dimension
might vanish, so that the actual ground state weight is larger by some integer
value. If a ground state i has dimension one, the naive dimension of (i, 1)
vanishes. Then the first non-trivial excited state will occur for the non-zero
value of d

(i)
n . Similarly, the conformal weight of an excited twist field (ξ = 1)

is larger than that of the unexcited one (ξ = 0) by half an integer, unless
some odd excitations of the ground state vanish. In CFT, every state |φi〉,
except the vacuum, always has an excited state L−1|φi〉. Furthermore, in
N = 2 CFTs even the vacuum has an excited state J−1|0〉. Therefore, in
N = 2 permutation orbifolds, the conformal weights of all ground states is
equal to the typical values given above, except when a state |i〉 has ground
state dimension 1. Then the conformal weight is larger by one unit.

Using these characters, one can compute their modular transformation
and find the orbifold S matrix. It was determined in [24] and will be referred
to as SBHS . It reads as

S〈mn〉(pq) = Smp Snq + Smq Snp (3.7a)

S
〈mn〉(̂p,χ)

= 0 (3.7b)

S
(̂p,φ)(̂q,χ)

=
1

2
e2πi(φ+χ)/2 Pip (3.7c)

S(i,φ)(j,χ) =
1

2
Sij Sij (3.7d)

S(i,φ)〈mn〉 = Sim Sin (3.7e)

S
(i,φ)(̂p,χ)

=
1

2
e2πiφ/2 Sip , (3.7f)

where the P matrix (introduced in [48]) is defined by P =
√
TST 2S

√
T .
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For future reference, it is convenient to recall the ansatz for the SJ ma-
trices, as given in [27]:

S
(J,ψ)
〈mn〉(pq) = SJmp S

J
nq + (−1)ψSJmq S

J
np (3.8a)

S
(J,ψ)

〈mn〉(̂p,χ)
=

{
0 if J ·m = m

ASmp if J ·m = n
(3.8b)

S
(J,ψ)

(̂p,φ)(̂q,χ)
= B

1

2
eiπQ̂J (p) PJp,q e

iπ(φ+χ) (3.8c)

S
(J,ψ)
(i,φ)(j,χ) =

1

2
SJij S

J
ij (3.8d)

S
(J,ψ)
(i,φ)〈mn〉 = SJim S

J
in (3.8e)

S
(J,ψ)

(i,φ)(̂p,χ)
= C

1

2
eiπφ Sip . (3.8f)

By modular invariance, the phases satisfy the following relations:

B = (−1)ψ e3iπhJ , A2 = C2 = (−1)ψ e2iπhJ , (3.9)

hJ being the weight of the simple current, which might depend on the central
charge, rank and level of the original CFT. Note that B is fully fixed, while
A and C are fixed up to a sign. We choose the positive roots to get back the
BHS S matrix as special case.

4 Permutations of N = 2 minimal models

In this section we consider the permutation orbifold of two N = 2 minimal
models at level k. The CFT resulting from modding out the Z2 symmetry in
the tensor product (N = 2)k ⊗ (N = 2)k is known from [17, 18, 24]. Here we
focus mostly on the new interesting features arising when one extends the
theory with various simple currents.

As already mentioned, each N = 2 minimal model at level k admits a
supersymmetric current TF (z) with ground state multiplicity equal to two
and spin h = 3

2
. In the coset language, it corresponds to the NS field partner

of the identity, namely (l, m, s) = (0, 0, 2). This current transforms each
NS field into its NS partner (with different s) and each R field into its R
conjugate (corresponding to the other value of s). In order to see this, note
that the m and s indices are just u(1) labels, hence in the fusion of two
representations they simply add up: (s) × (s′) = (s + s′ mod4) and (m) ×
(m′) = (m+m′ mod2(k + 2)).

The field TF (z) has simple fusion rules with any other field and it gen-
erates two integer-spin simple currents in the permutation orbifold, corre-
sponding to the symmetric and anti-symmetric representations (TF , 0) and
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(TF , 1) of diagonal-type fields, both with spin h = 3. Both these currents can
be used to extend the permutation orbifold. They are both of order two and,
interestingly (but not completely surprisingly), their product gives back the
anti-symmetric representation of the identity:

(TF , 0) · (TF , 1) = (0, 1) , (4.1)

with all the other possible products obtained from this one by using cyclicity
of the order two. In other words, the fields (0, 0), (TF , 0), (0, 1), (TF , 1) form
a Z4 group under fusion.

We will study the extensions in the next two subsections, where we will
also see the new CFT structure coming from interchanging extensions and
orbifolds. Before we do this, however, let us first mention some generic
properties of the orbifold. Consider the permutation orbifold of two N = 2
minimal models at level k and extend it by either the symmetric or the
anti-symmetric representation of TF (z). The resulting theory has the old
standard simple currents coming from φ0,m,s (or equivalently φk,m+k+2,s+2,
by the identification) in the mother theory (in number equal to the number
of simple currents of the (N = 2)k minimal model and corresponding to the
orbits of their diagonal representations according to the fusion rules given in
the next two subsections) and an equal number of exceptional simple currents
that were not simple currents before the extension (since coming from fixed
off-diagonal orbits of φ0,m,s, as we will see below).

The structure of the exceptional simple current is very generic: it is the
same for both (TF , 0) and (TF , 1), so we can consider both here. The word
exceptional means that they are simple currents just because their extended S
matrix satisfies the relation S0J = S00 [47]. First of all, note that the orbifold
simple currents come from symmetric and anti-symmetric representations of
the mother simple currents, hence there are as many as twice the number of
simple currents of the mother minimal theory. Secondly, all the exceptional
currents correspond to the label l = 0 (or equivalently l = k) as it should
be, since related to the su(2)k algebra. This has the following consequence.
Recall the orbifold (BHS) S matrix in the untwisted sector [24]:

SBHS(i,ψ)(j,χ) =
1

2
Sij Sij

SBHS(i,ψ)〈m,n〉 = Sim Sin

Using the minimal-model S matrix (2.30) one has:

S(0,0,0)(0,0,0) =
1

2(k + 2)
sin

(
π

k + 2

)

= S(0,0,0)(0,m,s)
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and hence
SBHS((0,0,0),0),〈(0,m,s),(0,m,s+2)〉 = 2SBHS((0,0,0),0),((0,0,0),0) . (4.2)

This equality will soon be useful. In particular, the factor 2 will disappear in
the extension, promoting the off-diagonal fields 〈(0, m, s), (0, m, s+ 2)〉 into
simple currents. We will come back later to these exceptional currents.

Let us show now that these exceptional simple currents of the (TF , ψ)-
extended orbifold correspond exactly to those particular off-diagonal fixed

points whose (TF , ψ)-orbits (ψ = 0, 1) are generated from the simple currents
of the mother N = 2 minimal model.
Consider off-diagonal fields of the form 〈(0, m, s), (0, m, s + 2)〉. They are
fixed points of (TF , ψ), since

4 TF · (0, m, s) = (0, m, s + 2). The number of
such orbits is equal to half the number of simple currents in the original
minimal model (i.e. those fields with l = 0). In the extension, they must
be resolved. This means that each of them will give rise to two “split” fields
in the extension. Hence their number gets doubled and one ends up with
a number of split fields again equal to the number of simple currents of
the original minimal model. Moreover, the extended S matrix, S̃, will be
expressed in terms of the SJ matrix corresponding to J ≡ (TF , ψ), according
to

S̃(a,α)(b,β) = C · [SBHSab + (−1)α+β S
(TF ,ψ)
ab ] . (4.3)

Recall that the SJ matrix is non-zero only if the entries a and b are fixed
points. The labels α and β keep track of the two split fields (α, β = 0 , 1).
The factor C in front is a group theoretical quantity, that in case a and b are
both fixed, is equal to 1

2
.

The generic formula for SJ as given in [27] was recalled in (3.7). In
particular, the untwisted (i.e. diagonal and off-diagonal) entries of SJ vanish,
since TF does not have fixed points:

S
(TF ,ψ)
〈m,n〉(p,q) = STFmp S

TF
nq + (−1)ψSTFmq S

TF
np ≡ 0

S
(TF ,ψ)
(i,φ)(j,χ) =

1

2
STFij STFij ≡ 0

S
(TF ,ψ)
(i,φ)〈m,n〉 = STFim STFin ≡ 0 .

This implies that
S̃(a,α)(b,β) = C · SBHSab (4.4)

for each split field corresponding to untwisted fixed points a, b. If either a or
b are not fixed points, then S(TF ,ψ) is automatically zero and the S̃ is given
directly by SBHS, up to the overall group theoretical factor C in front, which

4This is proved in the next subsections.
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is equal to 2 if both a and b are not fixed points and 1 if only one entry is
fixed. Using (4.2), this implies that after fixed point resolution one would
have

S̃((0,0,0),0)〈(0,m,s),(0,m,s+2)〉α = S̃((0,0,0),0)((0,0,0),0) (α = 0, 1) . (4.5)

This means that

〈(0, m, s), (0, m, s+ 2)〉α α = 0, 1 (4.6)

are the exceptional simple currents in the extended theory, being ((0, 0, 0), 0)
the identity of the permutation orbifold and (0, m, s) simple currents in the
mother theory. The label m runs over all the possible values, m ∈ [−k −
1, k + 2]; the label s is fixed by the constraint l +m+ s = 0 mod 2. This is
the origin of the exceptional currents in the extended permutation orbifold
of two N = 2 minimal models. Note that, since in the off-diagonal currents
both fields appear with s and s + 2, we can fix once and for all the s-labels
in the exceptional currents to be s = 0 in the NS sector and s = −1 in the
R sector.

These exceptional simple currents may have in principle fixed points.
However, it turns out to be in general not the case: in fact, we will see that
only four of the several exceptional currents have fixed points and only if
k = 2 mod 4. We will come back to this later.

4.1 Extension by (TF , 1)

Since we will need it later, let us start by studying how the current under
consideration, (TF , 1), acts on different fields in the orbifold. By looking
at some specific examples or by computing the fusion rules, one can show
that the orbits are given as in the following list. We denote the N = 2
minimal representations as i ≡ (l, m, s) and the “shifted” representations as
TF · i ≡ (l, m, s+ 2).

• Diagonal fields (i, ξ) (recall that ξ is defined mod 2)

(TF , 1) · (i, ξ) = (TF · i, ξ + 1) (4.7)

• Off-diagonal fields 〈i, j〉

(TF , 1) · 〈i, j〉 = 〈TF · i, TF · j〉 (4.8)
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• Twisted fields (̂i, ξ) (recall that ξ is defined mod 2)

(TF , 1) · (̂i, ξ) = ̂(i, ξ + 1) if i is NS (s = 0, 2)

(4.9)

(TF , 1) · (̂i, ξ) = (̂i, ξ) if i is R (s = −1, 1)

A comment about possible fixed points is in order, since they get split in the
extension and need to be resolved. Observe that there cannot be any fixed
points from the diagonal representations, since TF does not leave anything
fixed. They will become all orbits and will all be kept in the extension, since
they have integer monodromy:

Q(TF ,1)(i, ξ) = 2hTF + 2hi − 2

(

hi +
1

2

)

∈ Z .

The number of such orbits is equal to the number of fields in the mother
minimal model.
On the other side, there are in general fixed points for off-diagonal and twisted
representations. The off-diagonal fixed points arise when j = TF · i, i.e. in
our notation when 〈i, j〉 is of the form 〈(l, m, s), (l, m, s+ 2)〉; the remaining
off-diagonal fields organize themselves into orbits, of which some are kept
and some are projected out, depending on their monodromy. In particular,
using

Q(TF ,1)〈i, j〉 = 2hTF + (hi + hj)− (hTF i + hTF j) mod Z ,

and the fact that, from the term s2

8
in (2.6), hi − hTF i is

1
2
if i is NS and 0

if i is R, we see that the orbit (〈i, j〉, 〈TF i, TF j〉) is kept only if i and j are
both NS or both R, otherwise they are projected out.
The twisted fixed points come from all the R representations and are kept
in the extension, while the twisted fields coming from NS representations are
not fixed and projected out in the extension, since their monodromy charge

Q(TF ,1)(̂i, ξ) = 2hTF + (̂i, ξ)− ̂(i, ξ + 1) mod Z

is half-integer, being (TF , 1) of integer spin and the difference of weights
between a ψ = 0-twisted field and a ψ = 1-twisted field equal to 1

2
.

We will show soon that for k = 2 mod 4 some of the exceptional currents
in the extension have fixed points. Let us say a few words about them. It
turns out that these fixed points are either of the off-diagonal or twisted
type: there are none of diagonal kind. To be slightly more concrete, they
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are specific (TF , 1)-orbits of off-diagonal fields plus all the twisted (TF , 1)-
fixed points (necessarily corresponding to the Ramond fields of the original
minimal model). We will not say more now, but will come back later. At the
moment we are not able to resolve them: in other words, we do not know
what their SJ matrices are, J denoting the particular exceptional currents.

One important exceptional currents of the permutation orbifold is the
worldsheet supersymmetry current, which is the only current of order two
and spin h = 3

2
: it is the off-diagonal field coming from the tensor product

of the identity with TF (z). It does not have fixed points, because TF does
not. Let us denote it by Jw.s.orb ≡ 〈0, TF 〉. By the argument given above, Jw.s.orb

is guaranteed to be fixed by (TF , 1). This means that in the extension it gets
split into two fields, that we denote by 〈0, TF 〉α, with α = 0 or 1. In the
appendix we check that indeed 〈0, TF 〉α has order two:

〈0, TF 〉α · 〈0, TF 〉α = (0, 0) , (4.10)

where (0, 0) is the identity orbit.
Now consider the tensor product of two minimal models. We can either

extend by TF (z)⊗TF (z) to make the product supersymmetric or we can mod
out the Z2 symmetry and end up with the permutation orbifold. Let us start
with the latter option. It is known [27] that one can go back to the tensor
product by extending the orbifold by the anti-symmetric representation of the
identity, (0, 1). What we do instead is extending the orbifold by (TF , 1). The
resulting theory is the N = 2 supersymmetric permutation orbifold which
has the worldsheet spin-3

2
current in its spectrum.

Alternatively, we can change the order and perform the extension before
orbifolding. Note that each N = 2 factor is supersymmetric, but the product
is not. In order to make it supersymmetric, we have to extend it by the
tensor-product current TF (z) ⊗ TF (z). As a result, in the tensor product
only those fields survive whose two factors are either both in the NS or
both in the R sector. In this way, the fields in the product have factors
that are aligned to be in the same sector. Now we still have to take the
Z2 orbifold. Starting from the supersymmetric product, by definition, we
look for Z2-invariant states/combinations and add the proper twisted sector.
We will refer to this mechanism which transform the supersymmetric tensor
product into the supersymmetric orbifold as super-BHS, in analogy with the
standard BHS from the tensor product to the orbifold. The following scheme
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summarizes this structure:

(N = 2)2

BHS
��

TF⊗TF // (N = 2)2Susy

super−BHS

��

(N = 2)2orb

(0,1)

KK

(TF ,1)// (N = 2)2Susy−orb

(0,1)

KK

As a check, let us consider the following example. Take the case of level
k = 1. The (N = 2)1 minimal model has central charge equal to one and
twelve primary fields (all simple currents). Its tensor product has central
charge equal to two, as well as its TF ⊗ TF -extension and Z2-orbifold.
By extending the tensor product by the current TF ⊗ TF , one obtains the
supersymmetric tensor product, with 36 fields. Instead, by going to the orb-
ifold and extending by the current (TF , 1), one obtains the supersymmetric
orbifold with 60 fields. As a side remark, there is only one theory with this
exact numbers of fields and same central charge and that is in addition su-
persymmetric, but only by working out the spectrum one can prove without
any doubt that the theory in question is the (N = 2)4 minimal model, which
is indeed supersymmetric.
We can continue now and extend the supersymmetric orbifold by the current
(0, 1). This operation is the inverse of the Z2-orbifold (super-BHS). As ex-
pected, we end up to the supersymmetric tensor product. Equivalently, the
Z2-orbifold of the supersymmetric tensor product gives back the supersym-
metric orbifold, consistently.

4.2 Extension by (TF , 0)

Many things here are similar to the previous case. Let us start by giving the
fusion rules of the current (TF , 0) with any other field in the permutation
orbifold.

• Diagonal fields (i, ξ) (recall that ξ is defined mod 2)

(TF , 0) · (i, ξ) = (TF · i, ξ) (4.11)

• Off-diagonal fields 〈i, j〉

(TF , 0) · 〈i, j〉 = 〈TF · i, TF · j〉 (4.12)
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• Twisted fields (̂i, ξ) (recall that ξ is defined mod 2)

(TF , 0) · (̂i, ξ) = (̂i, ξ) if i is NS (s = 0, 2)

(4.13)

(TF , 0) · (̂i, ξ) = ̂(i, ξ + 1) if i is R (s = −1, 1)

Again, the current (TF , 0) does not have diagonal fixed points, but does have
off-diagonal and twisted fixed points. The off-diagonal ones are like before,
while the twisted ones come this time from NS fields. Twisted fields coming
from R representations are projected out in the extension. Each fixed point
is split in two in the extended permutation orbifold and must be resolved.
Moreover, there will also be orbits coming from the diagonal and off-diagonal
fields.

Also for (TF , 0)-extensions a few exceptional currents might have fixed
points. They are either off-diagonal (TF , 0)-orbits or all the twisted (TF , 0)-
fixed points (necessarily of Neveu-Schwarz origin).

As before, consider now the tensor product of two minimal models and
its permutation orbifold. Extend the orbifold with the current (TF , 0), i.e.
the symmetric representation TF (z). One obtains a new, for the moment
mysterious, CFT that we denote by X . X is not supersymmetric, since it
does not contain the worldsheet supercurrent of spin h = 3

2
. To be more

precise, X does contain a spin 3
2
-current, which is again the off-diagonal

field 〈0, TF 〉. However, it is not the worldsheet supersymmetry current. The
reason is that in this case 〈0, TF 〉 (or rather the two split fields 〈0, TF 〉α,
with α = 0 or 1) has order 4, instead of order 2: acting twice with Jw.s.orb (z)
we should get back to the same field, but we do not. As we prove in the
appendix:

〈0, TF 〉α · 〈0, TF 〉α = (0, 1) , (4.14)

with (0, 1) · (0, 1) = (0, 0). Hence there is no such a current as Jw.s.orb (z) in
X . Continuing extending this time by the current (0, 1) we get back to the
familiar theory (N = 2)2Susy. The summarizing graph is below:

(N = 2)2

BHS
��

TF⊗TF // (N = 2)2Susy

(N = 2)2orb

(0,1)

KK

(TF ,0) // Non− Susy X

(0,1)

OO
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4.3 Common properties

By looking at the two graphs, we notice that there are two distinct ways
of reproducing the behavior of the current TF ⊗ TF which makes the tensor
product of two minimal models supersymmetric. We can go either through
the supersymmetric permutation orbifold or through the more mysterious
non-supersymmetric CFT X , as is shown below.

(N = 2)2

BHS




(N = 2)2orb

(0,1)

JJ

(TF ,0)

vvmmmmmmmmmmmmm
(TF ,1)

((QQQQQQQQQQQQ

Non− Susy X

(0,1) ((PPPPPPPPPPPPP

(N = 2)2Susy−orb

(0,1)vvmmmmmmmmmmmm

(N = 2)2Susy

We can summarize the commutativity of this diagram as:

(TF ⊗ TF ) ◦ (0, 1) = (0, 1) ◦ (TF , ψ) (4.15)

when acting on (N = 2)2orb. The small circle ◦ means composition of exten-
sions, e.g. (J2 ◦J1)A means that we start with the CFT A, then we extend it
by the simple current J1 and finally we extend it again by the simple current
J2.

It is useful to ask what happens to the exceptional current 〈0, TF 〉 (which
coincides with Jw.s.orb (z) for the (TF , 1)-extension). Using the fusion rules given
earlier, it is easy to see that 〈0, TF 〉 is fixed by both (TF , 0) and (TF , 1),
because of the shift by TF in both the factors in off-diagonal fields and the
symmetrization of the tensor product. As a consequence, the fixed point
resolution is needed in both situations for the field 〈0, TF 〉.

Let us make a comment on the nature of the CFT X . We have already
stressed enough that it is not supersymmetric. However, by looking at it more
closely, it is quite similar to the supersymmetric orbifold (N = 2)2Susy−orb. For
example, they contain the same number of fields and in particular they have
the same diagonal and off-diagonal fields. They only differ for their twisted
fields, being of R type in the supersymmetric orbifold and of NS type in X .

Another interesting point is that the (0, 1) extension of both X and (N =
2)2Susy−orb gives back the same answer, namely the (N = 2)2Susy. One could ask
how this happens in detail. The reason is that, after the (TF , ψ)-extension
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(either ψ = 0 or 1) of the orbifold, one is left with orbits and/or fixed points
corresponding to orbifold fields of diagonal, off-diagonal and twisted type.
In particular, as we already mentioned before, from the twisted fields only
the fixed points survive, with the difference that for ψ = 1 they come from
the Ramond sector and for ψ = 0 from the NS sector. However, they are
completely projected out by the (0, 1)-extension, which leaves only untwisted
(i.e. off-diagonal and diagonal -both symmetric and anti-symmetric-) fields
in the supersymmetric tensor product5.

5 Exceptional simple currents and their fixed

points

Let us be a bit more precise on the exceptional simple currents which admit
fixed points. There are four of them and they are always related to the
following mother-theory simple currents

J+ ≡ (l, m, s) ≡ (0,
k + 2

2
, s) ≡ (k,−k + 2

2
, s+ 2) (5.1)

and

J− ≡ (0,−k + 2

2
, s) ≡ (k,

k + 2

2
, s+ 2) (5.2)

(with s = 0 in the NS sector, s = −1 in the R sector). We will soon prove
that s must be in the NS sector. i.e. s = 0, otherwise there are no fixed
points. Using the facts that m is defined mod 2(k + 2) and that s is defined
mod 4, together with the identification (l, m, s) = (k − l, m + k + 2, s + 2),
it is easy to show that J+ and J− are of order four, i.e. J4

+ = J4
− = 1.

Moreover, we will soon show that off-diagonal fixed points of the exceptional
currents originate from fields in the mother N = 2 theory with l-label equal
to l = k

2
. One can easily check that, on these fields, the square of J±, J

2
±,

acts as follows. For J± in the R sector, J2
± fixes any other field (either R or

NS) of the original minimal model:

(J± ∈ R) J2
± : (l =

k

2
, m, s) −→ (l =

k

2
, m, s) =⇒ J2

± ≃ 1 ≡ (0, 0, 0) ,

(5.3)

5The reason is that the current (0, 1) always couples a twisted field (̂p, 0) to its partner

(̂p, 1), as it is shown in the appendix. Since these fields have weights which differ by 1

2
, then

their monodromy will be half-integer and they will be projected out in the (0, 1)-extension.
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acting on them effectively as the identity; for J± in the NS sector, J2
± takes

an R (NS) field into its conjugate R (NS) field:

(J± ∈ NS) J2
± : (l =

k

2
, m, s) −→ (l =

k

2
, m, s+2) =⇒ J2

± ≃ TF ≡ (0, 0, 2) ,

(5.4)
acting effectively as the supersymmetry current.

Having introduced now the currents J± in the mother theory, we can write
down the four simple currents in the orbifold theory extended by (TF , ψ)
which admit fixed points. Recalling that TF = (0, 0, 2) acts by shifting by
two the s-labels in the original minimal model, we can consider the following
off-diagonal fields in the permutation orbifold:

〈J±, TF · J±〉 . (5.5)

The two off-diagonal combinations above satisfy the condition (4.2); hence,
after fixed point resolution, each of them generates two exceptional simple
currents (for a total of four) in the (TF , ψ)-extended theory:

〈J±, TF · J±〉α , α = 0, 1 , (5.6)

being TF · J± = (0,±k+2
2
, s + 2). This is another way of re-writing (4.6),

specialized to the exceptional currents that have fixed points.
If one wants to be very precise about the fixed points, one should study

the fusion coefficients, which is in the present case very complicated, but
in principle doable. However, we can still make some preliminary progress
using intuitive arguments. First of all, since the resolved currents (4.6) carry
an index α which distinguishes them, but are very similar otherwise, it is
reasonable to expect that they might have the same fixed points and that
hence the fixed-point conformal field theories corresponding to the excep-
tional currents might be pairwise identical. This is indeed what happens.
Secondly, observe that in (4.6) the field (0, m, s) is equivalent to (k,m+ k+
2 mod 2(k+ 2), s+ 2 mod 4). From the su(2)k algebra, the field labelled by
l = k is the only non-trivial simple current with fusion rules given by

(k) · (j) = (k − j) , (5.7)

so in order for it to have fixed points, k must be at least even. Moreover, j is
a fixed point of the su(2)k algebra if and only if j = k

2
. This argument tells

us that off-diagonal fixed points of (4.6) must be orbits whose component
fields have l-label equal to l = k

2
. This is indeed what happens.

Actually there are only four (coming from the above two resolved) ex-
ceptional simple currents which have fixed points and the corresponding four
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fixed-point conformal field theories are pairwise identical. Indeed, the ex-
ceptional simple currents have m-label equal to m = ±k+2

2
, even s-label and

hence the generic constraints l+m+ s = 0 mod 2 implies that k = 2 mod 4.
Let us describe more in detail the exceptional simple currents with fixed

points. Consider again (5.6) and study the fusion rules of (5.5). We are most
interested in off-diagonal fixed points, because they have an interesting struc-
ture; as far as the other kind (namely twisted) of fixed points is concerned,
they are as already reported in the previous section (namely of NS type for
(TF , 0) and of R type for (TF , 1)). Compute the fusion rule of the current
(J±, TFJ±) with any field of the form:

〈f, J±f ′〉 , (5.8)

where f ′ has either the same s-label as f or different; in other words, either
f ′ = f or f ′ = TFf . Here, f and f ′ label primaries of the original N = 2
minimal model which might be fixed points of (5.6), having their l-values
equal to l = k

2
. Explicitly, f = (k

2
, m, s) and f ′ = (k

2
, m, s′),with s′ = s or

s′ = s+ 2.
We would like to show that the fields 〈f, J±f ′〉 constitute the subset of

off-diagonal fixed points for the exceptional currents. For most of them,
this subset will be empty, but not for (5.6). As a remark, note that not all
the fields in (5.8) are independent, since they are identified pairwise by the
extension. We will come back to this at the end of this subsection.

Now let us compute the fusion rules. Naively:

〈J±, TFJ±〉 · 〈f, J±f ′〉 ∝ (J± ⊗ TFJ± + TFJ± ⊗ J±) · (f ⊗ J±f
′ + J±f

′ ⊗ f)

= (J±f ⊗ TFf
′ + J2

±f
′ ⊗ TFJ±f +

+TFJ±f ⊗ J2
±f

′ + TFJ
2
±f

′ ⊗ J±f) .

For currents in the R sector, J2
± = 1, while J2

± = TF in the NS sector; hence
the above expression simplifies in both cases:

〈J±, TFJ±〉·〈f, J±f ′〉 ∝ · · · =







(J±f ⊗ TFf
′ + f ′ ⊗ TFJ±f+ R sector

+TFJ±f ⊗ f ′ + TFf
′ ⊗ J±f) .

(J±f ⊗ f ′ + TFf
′ ⊗ TFJ±f+ NS sector

+TFJ±f ⊗ TFf
′ + f ′ ⊗ J±f)

In terms of representation, we can decompose the r.h.s. in two pieces corre-
sponding to the following symmetric representations:

(R) 〈J±, TFJ±〉 · 〈f, J±f ′〉 = 〈J±f, TFf ′〉+ 〈f ′, TFJ±f〉
(NS) 〈J±, TFJ±〉 · 〈f, J±f ′〉 = 〈f ′, J±f〉+ 〈TFf ′, TFJ±f〉 (5.9)

29



We have replaced here the proportionality symbol with an equality: a more
accurate calculation of the fusion coefficients would show that the propor-
tionality constant is indeed one. It is crucial that none of the two pieces in
the first line (R sector) reduces to (f, J±f

′) as on the l.h.s.; on the contrary,
either of them does, respectively if f = f ′ and f ′ = TFf , in the second line
(NS sector). For example, in the NS situation, this is obvious in the case
f = f ′; if f ′ = TFf instead, we must remember that the brackets means
symmetrization and that off-diagonal fields that are equal up to the action
of (TF , ψ) are actually identified by the extension. Similar arguments hold
for the R situation as well.

Note here that the two pieces in (5.9) are related by the application of
TF : if we talked about tensor product fields then the relation would be given
by the tensor product TF ⊗TF , but since we are working in the orbifold, it is
actually provided by the diagonal representation (TF , ψ). Let us move now
to the extended orbifold.

From the fusion rules given earlier, in the permutation orbifold extended
by (TF , ψ), off-diagonal fields belong to the same orbit if and only if

(TF , ψ) · 〈i, j〉 = 〈TF i, TF j〉 . (5.10)

Since
(TF , ψ) · 〈f, J±f ′〉 = 〈TFf, TFJ±f ′〉 , (5.11)

then the two quantities appearing on the r.h.s. of (5.9) are identified by the
extension and add up to give

(R) 〈J±, TFJ±〉 · 〈f, J±f ′〉 = 〈J±f, TFf ′〉 ,
(NS) 〈J±, TFJ±〉 · 〈f, J±f ′〉 = 〈f ′, J±f〉 . (5.12)

As a consequence, exceptional currents coming from R fields never have fixed
points (neither if f = f ′ nor if f ′ = TFf), while NS fields do have. This shows
that the exceptional simple currents with fixed points arise only for NS fields
in the mother theory and they are exactly of the desired form.

As a consistency check, let us give the following argument about the
currents (5.6) (equivalently, identify l → k − l , . . . etc). We have already
established that k must be even in order for the currents to have fixed points,
so we can discuss the two options of k = 4p and k = 2 + 4p (for p ∈ Z)
separately. In the former case, k = 4p,

h〈J±,TF ·J±〉α = hJ± + hTF ·J± = 2 · 3k
16

=
3p

2
. (5.13)

This is either integer or half-integer, depending on p, so the currents might
admit fixed points. However, the current m-label is equal to 2p + 1 ∈ Zodd;
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since the l-label is even, then the N = 2 constraint forces the s-label to be
±1. As a consequence, the currents (5.6) are of Ramond-type and hence
cannot have fixed points. In the latter case, k = 2 + 4p,

h〈J±,TF ·J±〉α = hJ± + hTF ·J± =

(
3k

16
− 1

8

)

+

(
3k

16
+

3

8

)

= 1 +
3p

2
. (5.14)

This is either integer or half-integer, depending on p, then the current can
have fixed points. Moreover, since the m-label is equal to 2p+2 ∈ Zeven, the
currents (5.6) are now of NS-type, hence they will have fixed points.

Needless to say, we do expect all a priori possible fields of the form (5.8)
to survive the (TF , ψ)-extension, the reason being that their (TF , ψ)-orbits
must have zero monodromy charge with respect to the current (TF , ψ). As an
exercise, let us compute this charge and prove that it vanishes (mod integer).
For this purpose, we need to know the weight of (5.8). Since

hJ±f = hf −
1

16
(k + 2± 4m) (5.15)

m being the m-label of the field f , then

h〈f,J±f ′〉 = hf + hJ±f ′ = 2hf −
1

8
(k + 2± 4m) +

1

2
δf ′,TF f . (5.16)

Similarly, we need to compute hTF f,TF J±f ′. Since

hTF J±f = hTF f −
1

16
(k + 2± 4m) (5.17)

then again

h〈TF f,TF J±f ′〉 = hTF f + hTF J±f ′ = 2hTF f −
1

8
(k + 2± 4m) +

1

2
δf ′,TF f . (5.18)

Hence:

Q(TF ,ψ)

(
〈f, J±f ′〉

)
= h(TF ,ψ) + h〈f,J±f ′〉 − h〈TF f,TF J±f ′〉 = 0 , (5.19)

i.e. these fields are kept in the extension and organize themselves into orbits.
Still, some fields seem not to appear among the off-diagonal field that we
would expect. The solutions to this problem is provided by the extension:
fields are pairwise identified. In fact, as a consequence of (5.9), two fields
related by the action of (5.5) are mapped into each other by (TF , ψ) and
hence are identified by the currents (5.6) in the extension.
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What happens in determining the fixed points of the exceptional currents
is the following. Start with a field f which has l-label equal to k

2
and apply

J± on f , recalling that J4
± = 1 and J2

± = TF for NS-type currents,

f
J±

��
J±TFf

J±
55

J±f

J±ww
TFf

J±

]]

as shown in the graph. The four fields organize themselves pairwise into two
J±-orbits which are related by the action of TF , or better of (TF , ψ). In fact,
from the fusion rules of (TF , ψ) with off-diagonal fields it follows that

(TF , ψ) · 〈f, J±f〉 = 〈TFf, J±TFf〉 . (5.20)

Each J±-orbit has the same form as (5.8). In the (TF , ψ)-extension they are
identified and becomes fixed points of the exceptional simple currents (5.6).
Similarly, we can organize the fields differently. For instance, by starting
from the J±-orbit 〈f, J±TFf〉, we have

(TF , ψ) · 〈f, J±TFf〉 = 〈TFf, J±f〉 , (5.21)

where we used T 2
F = 1. The same argument holds if we start from any J±-

orbit of two consecutive fields in the graph above: the (TF , ψ)-extension will
always identify it with the remaining orbit.

In the next subsection we give and explicit example corresponding to the
“easy” case of minimal models at level two.

5.1 k = 2 Example

In order to better visualize the structure of exceptional simple currents and
their fixed points, let us consider the k = 2 case, where we permute two
N = 2 minimal models at level two. This case is easy enough to be worked
out explicitly, but complicated enough to show all the desired properties.
This minimal model has 24 fields (12 in the R sector and 12 in the NS sector),
of which 16 simple currents. Using [17, 24, 27], its permutation orbifold has
got 372 fields, of which 32 simple currents coming from diagonal (symmetric
and anti-symmetric) combinations of the original simple currents. The ones
with (half-)integer spin have generically got fixed points which we know how
to resolve [27].
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In the (TF , ψ)-extended orbifold theory, the exceptional currents with
fixed points are

〈J±, TF · J±〉α , α = 0, 1 , (5.22)

with
J+ = (0, 2, 0) and J− = (0,−2, 0) . (5.23)

Their off-diagonal fixed points are of the form

〈f, J±f ′〉 , (5.24)

with f and J±f
′ given by

f = (1, 1, 0) and f ′ = (1,−1, 0)

f = (1, 2, 1) and f ′ = (1, 0, 1)

f = (1,−1, 0) and f ′ = (1, 1, 2)

f = (1, 2, 1) and f ′ = (1, 0,−1)

To these, we still have to add the twisted fixed points, but we know already
exactly what they are. One can observe that some fields appear twice, e.g.
(1, 2, 1), and other fields never appear, e.g. (1, 2,−1). This can be easily
explained. The reason why some of them appear more than once is because
f and f ′ can have either equal or different s-values (J± only acts on the
m-values).
Similarly, some fields are identified by the (TF , ψ)-extension and hence they
seem never to appear. For example, the off-diagonal field 〈(1, 2,−1), (1, 0, 1)〉
seems not to be there, but it is actually identified with 〈(1, 2, 1), (1, 0,−1)〉,
which appears in the last line of the list above; similarly 〈(1, 2,−1), (1, 0,−1)〉
seems again not to be there as well, but it is identified with 〈(1, 2, 1), (1, 0, 1)〉
which is there in the second line of the same list.

More in general, this is a consequence of (5.9). In the present situation
we see this explicitly. Let us look at the current

〈(0, 2, 0), (0, 2, 2)〉 (5.25)

in the permutation orbifold and compute its fusion rules with the off-diagonal
field 〈(1, 2,−1), (1, 0, 1)〉:

〈(0, 2, 0), (0, 2, 2)〉·〈(1, 2,−1), (1, 0, 1)〉= 〈(1, 2,−1), (1, 0, 1)〉+〈(1, 2, 1), (1, 0,−1)〉 .
(5.26)

We see the appearance of the second term on the r.h.s., which is also an
off-diagonal field, so we are led to ask about its fusion as well:

〈(0, 2, 0), (0, 2, 2)〉·〈(1, 2, 1), (1, 0,−1)〉= 〈(1, 2,−1), (1, 0, 1)〉+〈(1, 2, 1), (1, 0,−1)〉 ,
(5.27)
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which is exactly the same as the first one. However, observe that the current
(TF , ψ) relates the two terms on both r.h.s.’s:

(TF , ψ) · 〈(1, 2,−1), (1, 0, 1)〉 = 〈(1, 2, 1), (1, 0,−1)〉
(TF , ψ) · 〈(1, 2, 1), (1, 0,−1)〉 = 〈(1, 2,−1), (1, 0, 1)〉 . (5.28)

Then, they form one orbit in the (TF , ψ)-extension and, since they have
integer monodromy charge, this off-diagonal orbit survives the projection.
Due to (5.26) and (5.27), this orbit becomes an off-diagonal fixed point of
the exceptional current.

As a comment, we remark that it is not known at the moment how to
resolve these fixed points. The reason is that they are fixed points of an
off-diagonal current for which there is no solution yet, unlike for the fixed
points of diagonal currents for which the solution exists and was provided in
[27].

6 Orbit structure for N = 2 and N = 1

Here we want to summarize the simple current orbits for theories considered
here, and give the analogous results for N = 1 minimal models for compari-
son. Most of the construction, and in particular the definition of the six kinds
of CFT listed in the introduction works completely analogously for N = 2
and N = 1. The worldsheet supercurrent, originating from the diagonal field
〈0, TF 〉, comes in both cases from a fixed point. However, a novel feature
occurring for N = 1 but not for N = 2 is that this supercurrent itself has
fixed points whose resolution requires additional data.

Another important difference between the N = 2 and N = 1 permu-
tation orbifolds is that in the latter case the supersymmetric and the non-
supersymmetric orbifold (the extensions of the BHS orbifold by (TF , 1) or
(TF , 0) respectively) have a different number of primaries, whereas for N = 2
this is the same.

The simple current groups of all these theories are as described below. A
few currents always play a special rôle, namely

• The “un-orbifold” current. This is the current that undoes the permu-
tation orbifold. In the BHS orbifold this is the anti-symmetric diagonal
field (0, 1), which has spin-1. If the theories are extended by (TF , 1)
or (TF , 0) this field becomes part of a larger module, but is still the
ground state of that module.

• The worldsheet supercurrent(s). This has always weight 3
2
, and can

have fixed points only for N = 1 (and then it usually does). The su-
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persymmetric permutation orbifolds always have two of them, which
originate from the split fixed points of the off-diagonal field 〈0, TF 〉.
Note that this multiplicity, two, has nothing to do with the number of
supersymmetries. The latter is given by the dimension of the ground
state of the supercurrent module. The fusion product of the two super-
currents is always the un-orbifold current. These spin-3

2
currents also

occur in the non-supersymmetric theory X , except in that case they
generate a Z4 group, whereas in the supersymmetric case the discrete
group they generate is Z2 × Z2.

• The Ramond ground state simple currents. These exist only for the
N = 2 and not for the N = 1 superconformal models.

In the following we call a fixed point “resolvable” if we have explicit
formulas for the fixed point resolution matrices, and unresolvable otherwise.
Therefore, “unresolvable” does not mean that the fixed points cannot be
resolved in principle, but simply that it is not yet known how to do it. Note
that the choices of generators of discrete groups described below are not
unique, but we made convenient choices. As much as possible, we try to
choose the special currents listed above as generators of the discrete group
factors.

• N = 2, k = 1 mod 2.

– The minimal models have a simple current group Z4k+8. As its
generator one can take the Ramond ground state simple current.
The power 2k+4 of this generator is the worldsheet supercurrent.
None of the simple current has fixed points.

– The supersymmetric permutation orbifold has a group structure
Z4k+8 × Z2. The first factor is generated by the Ramond ground
state simple current. The power 2k + 4 of this generator is the
un-orbifold current. This is the only current that has fixed points,
which are resolvable. The factor Z2 is generated by the worldsheet
supercurrent.

– The non-supersymmetric permutation orbifold X also has a group
structure Z4k+8 × Z2. The spin-3

2
fields originating from the di-

agonal field 〈0, TF 〉 have order 4, and generate a Zk+2 subgroup
of Z4k+8. The order-two element of Z4k+8 is, just as above, the
un-orbifold current. Also in this case it has resolvable fixed points.

• N = 2, k = 0 mod 4.
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– The minimal models have a simple current group Z2k+4 × Z2. As
the generator of the first factor one can take the Ramond ground
state simple current, and the worldsheet supercurrent can be used
as the generator of the second. The middle element of the Z2k+4

factor is an integer spin current with resolvable fixed points.

– The supersymmetric permutation orbifold has a group structure
Z2k+4 × Z2 × Z2. The first factor is generated by the Ramond
ground state simple current. The second factor by the un-orbifold
current. The last factor is generated by the worldsheet supercur-
rent. The middle element of the first factor and the generator of
the second factor, as well as their product have resolvable fixed
points.

– The non-supersymmetric permutation orbifoldX has a group struc-
ture Z2k+4 × Z4. The spin-3

2
fields originating from the diagonal

field 〈0, TF 〉 have order 4 can be chosen as generators of the Z4

factor. There are three non-trivial currents with resolvable fixed
points, which have the same origin (in terms of minimal model
fields) as the ones in the supersymmetric orbifold.

• N = 2, k = 2 mod 4.

– The minimal models have a simple current group Z2k+4×Z2. The
structure is exactly as for k = 0 mod 4.

– The supersymmetric permutation orbifold has a group structure
Z2k+4 × Z2 × Z2. One can choose the same generators as above
for k = 0 mod 4. The fixed point structure is also identical,
except that there are four additional currents with unresolvable
fixed points. These four currents are the two order 4 currents of
Z2k+4 multiplied with each of the two world-sheet supercurrents.

– The non-supersymmetric permutation orbifoldX has a group struc-
ture Z2k+4 × Z4. As in the supersymmetric case, there are three
non-trivial currents with resolvable fixed points, and four with
unresolvable fixed points. These currents have the same origin as
those of the supersymmetric orbifold.

• N = 1, k = 1 mod 2.

– The minimal models have a simple current group Z2, generated
by the worldsheet supercurrent. This current has resolvable fixed
points.
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– The supersymmetric permutation orbifold has a group structure
Z2 × Z2. The two factors can be generated by the un-orbifold
current and by the worldsheet current. The fourth element also
has spin-3

2
, and is an alternative worldsheet supercurrent. The

un-orbifold current has resolvable fixed points, the supercurrents
have unresolvable fixed points.

– The non-supersymmetric permutation orbifoldX has a group struc-
ture Z8. The order-2 element in this subgroup is the un-orbifold
current, which has resolvable fixed points. None of the other cur-
rents have fixed points.

• N = 1, k = 0 mod 2.

– The minimal models have a simple current group Z2×Z2. All cur-
rents have resolvable fixed points. One of them is the worldsheet
supercurrent.

– The supersymmetric permutation orbifold has a group structure
Z2 × Z2 × Z2. Two of the three factors are generated by the
un-orbifold current and one of the worldsheet supercurrents. All
currents have fixed points, and for four of them, including the
supersymmetry generators, they are unresolvable.

– The non-supersymmetric permutation orbifoldX has a group struc-
ture Z4 ×Z2. All currents have fixed points, and for four of them
they are unresolvable.

7 Conclusion

In this paper we study permutation and extensions of N = 2 minimal models
at arbitrary level k. These models are very interesting for several reason: not
only because they are non-trivial solvable conformal field theories, but also
because they are the building blocks of Gepner models which have some
relevance in string theory phenomenology.

Our main points are two. First of all, a new structure arises relating
conformal field theories built out of minimal models. Starting from the ten-
sor product we perform Z2-orbifold and extension in both possible orders,
generating in this way new CFT. Some of them are easily recognizable, such
as the N = 2 supersymmetric orbifold obtained by extending the standard
permutation orbifold by the current (TF , 1). Some others are however not
known, like the CFT that we have denoted by X , obtained by extending the
orbifold by (TF , 0).
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Secondly, unexpected off-diagonal simple currents appear due to the in-
terplay of the orbifold and the extension procedure. Sometimes they have
fixed points that need to be resolved. However, because they are related to
off-diagonal currents, we do not know how to resolve them at the moment.

The most natural and immediate application of our method is to consider
permutation orbifolds in Gepner models, which are built out of N = 2 su-
persymmetric minimal models. The results of this paper allow us to consider
permutation orbifold building blocks in combination with minimal models
to build new closed string theories. These closed string theories can be the
starting point of orientifold model building as well as heterotic model build-
ing. Since Gepner models allow a geometric interpretation as heterotic string
theory compactifications on a Calabi-Yau manifold [49], our results will ex-
tend the work of [18] regarding permutations in Gepner-type superstrings.
But we can go a lot further than that, because we can consider subgroups
of the canonical SO(10) gauge group, break the remnants of space-time and
world-sheet supersymmetry on the bosonic side, and combine all this with
heterotic weight lifting and B-L lifting, following [19, 20, 21, 22]. This ap-
plication also provides important tests on the structure of the CFT building
blocks. Anomaly cancellation is a very unforgiving constraint in these more
general heterotic strings (as opposed to (2,2) models with families of (27)’s
of E6, where it is automatic). We have already performed the first successful
tests of the results of the present paper applied to heterotic strings, but we
will present the results elsewhere [50].

The application to orientifold model building is also possible, and it will
be interesting to see if this extends the set of realizable brane configurations,
and/or enhances the possibilities for tadpole cancellation. However, we still
face one limitation here, since we cannot use permutation orbifolds with k 6= 2
mod 4. Perhaps this can be evaded by simply not using the simple currents
that have unresolvable fixed points. However, the unresolved fixed points
occur for currents that are products of powers of the Ramond ground state
simple current and the worldsheet supercurrent. Both of these components
are certainly needed separately, and it is not immediately obvious if there
are any MIPFs where the unresolved fixed points can be avoided. Even if
k 6= 2 mod 4 cannot be used, this still leaves us with three-quarters of the
N = 2 minimal permutation orbifolds, including permutations of the factors
of the “quintic” (3, 3, 3, 3, 3). We hope to report on this application of our
results in the future.
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A Twisted-fields orbits of the (0, 1)-current

In this appendix we want to prove that in any permutation orbifold the
simple current (0, 1) (anti-symmetric representation of the identity) always
couples a twisted field to its own (un)excited partner, i.e.

(̂p, 0)
(0,1)↔ (̂p, 1) . (A.1)

To prove this, let use compute the fusion coefficients:

(0, 1) · (̂p, ξ) =
∑

K

N
K

(0,1)(̂p,ξ)
(K) , (A.2)

where the sum runs aver all the fieldsK in the orbifold. By Verlinde’s formula
[46]:

N
K

(0,1)(̂p,ξ)
=

∑

N

S(0,1)NS(̂p,ξ)N
S† K
N

S(0,0)N

=

=
∑

〈i,j〉

S(0,1)〈i,j〉S(̂p,ξ)〈i,j〉
S
† K
〈i,j〉

S(0,0)〈i,j〉
+

+
∑

(j,χ)

S(0,1)(j,χ)S(̂p,ξ)(j,χ)
S
† K
(j,χ)

S(0,0)(j,χ)

+

+
∑

(̂j,ξ)

S
(0,1)(̂j,χ)

S
(̂p,ξ)(̂j,χ)

S
† K

(̂j,χ)

S
(0,0)(̂j,χ)

.
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Now use the orbifold S matrix (3.7): the first line automatically vanishes,
since the SBHS vanishes when one entry is a twisted field and the other one
is off-diagonal. The other two lines give

N
K

(0,1)(̂p,ξ)
=

1

2

1∑

χ=0

∑

j

eiπχ Spj · S⋆ K
(j,χ) − 1

2

1∑

χ=0

∑

j

eiπ(ξ+χ) Ppj · S⋆ K

(̂j,χ)
.

The two contributions both vanish if K is of diagonal type or of off-diagonal
type, as one can easily verify by using (3.7). On the other hand, if K is of
twisted type, we find a non-vanishing answer that can be written as

N
(̂k,η)

(0,1)(̂p,ξ)
=

1

2
δkp (1− eiπ(ξ−η)) = δkp δ

η
ξ+1 . (A.3)

Here we have used unitarity of the S and P matrices. In other words,

(0, 1) · (̂p, 0) = (̂p, 1) , (A.4)

as well as the other way around, being the current (0, 1) of order two.

B Fusion rules of 〈0, TF 〉 and corresponding

split fields

In this section we would like to show that the fusion coefficients of 〈0, TF 〉
with itself, before and after the (TF , ψ)-extension, do not depend on the sign
choice for the coefficients A and C appearing in the SJ ansatz (3.8). In
particular, the intrinsic ambiguity related to the freedom of ordering twisted
fields (i.e. which one we label by χ = 0 and which one by χ = 1) should not
make any difference in the calculation of the fusion rules. The calculation
is straightforward and relatively short before making the (TF , ψ)-extension,
since it involves only the BHS S matrix: we will describe it in detail.

However, after taking the (TF , ψ)-extension, the full extended S matrix
must be used. This means that the BHS S matrix appears together with the
S(TF ,ψ) matrix; moreover, fixed point resolution implies that the fixed points
of (TF , ψ) are split, hence there will be twice their number, while non-fixed
points form orbits and only half of them will be independent. The calculation
in this case is lengthy and more involved, so we will only point out where the
sign ambiguities mentioned above could (but will not) play a role.

40



B.1 Before (TF , ψ)-extension

The quantity that we want to compute is

〈0, TF 〉 · 〈0, TF 〉 =
∑

K

N
K

〈0,TF 〉〈0,TF 〉 (K) , (B.1)

where the sum runs over all the fields K of the permutation orbifold. The
quantity N

K
〈0,TF 〉〈0,TF 〉 is given by Verlinde’s formula [46]

N
K

〈0,TF 〉〈0,TF 〉 =
∑

N

S〈0,TF 〉NS〈0,TF 〉NS
† K
N

S(0,0)N

. (B.2)

Let us start with the case that K is a diagonal field, K = (k, χ), and use the
BHS expression for the orbifold S matrix:

N
(k,χ)

〈0,TF 〉〈0,TF 〉 =
∑

m<n

(S0mSTF ,n + S0nSTF ,m)
2 · (S⋆mkS⋆nk)

S0mS0n
+

+
1∑

φ=0

∑

i

(S0iSTF ,i)
2 · (1

2
S⋆2ik )

(1
2
S2
0i)

+ 0 .

The zero in the second line comes from the twisted contribution, since from
the BHS formula S

〈mn〉(̂i,χ)
= 0. The sum over φ gives a factor of 2 in the

diagonal contribution. In the first sum we can use

∑

m,n

= 2
∑

m<n

+
∑

m=n

. (B.3)

The sum
∑

m=n will cancel the diagonal contribution. Eventually we are left
only with three terms coming from expanding the square in the sum over m
and n. The two sums are now independent and factorize:

N
(k,χ)

〈0,TF 〉〈0,TF 〉 =
1

2

∑

m

S⋆mkS0m

∑

n

S⋆nkS
2
TF ,n

S0n
+

1

2

∑

n

S⋆nkS0n

∑

m

S⋆mkS
2
TF ,m

S0m
+

+
∑

m

S⋆mkS0m

∑

n

S⋆nkS0n =

= δk,0N
k

TF TF
+ δk,TF =

= δk,0 + δk,TF , (B.4)

where we have used the fact that TF has order two, i.e. N k
TF TF

= δk,0. Note
that the answer does not depend on χ.
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We can now repeat the same steps in the case that K is off-diagonal,
K = 〈k1, k2〉 (with k1 < k2). We get:

N
〈k1,k2〉

〈0,TF 〉〈0,TF 〉 ∝ δ0,k1 · δ0,k2 = 0 , (B.5)

since k1 6= k2.

Similarly, for K twisted, K = (̂k, χ):

N
(̂k,χ)

〈0,TF 〉〈0,TF 〉 = 0 + 0 + 0 = 0 , (B.6)

where the first and third contributions vanish because S
〈mn〉(̂i,χ)

= 0 in the

BHS S matrix, while the second one vanishes because
∑1

φ=0 e
iπφ = 0.

Putting everything together we have the following fusion rules for 〈0, TF 〉
with itself before the (TF , ψ)-extension:

〈0, TF 〉 · 〈0, TF 〉 = (0, 0) + (0, 1) + (TF , 0) + (TF , 1) . (B.7)

B.2 After (TF , ψ)-extension

After the extension by (TF , ψ), the off-diagonal field 〈0, TF 〉 becomes a simple
current. Moreover, since it is fixed by (TF , ψ), as well as (0, ψ), it gets split
and originates two simple currents, 〈0, TF 〉α with α = 0, 1.

In order to compute the fusion rules between 〈0, TF 〉α and 〈0, TF 〉β, we
need to know the full S matrix of the extension. It is given by [28]

S̃aαbβ = Const · (Sab + (−1)α+βS
(TF ,ψ)
ab ) . (B.8)

Here, Sab is the BHS S matrix and S
(TF ,ψ)
ab is the fixed-point resolution matrix

SJ corresponding to the current J = (TF , ψ). The overall constant is a group-
theoretical factor such that

Const =







1
2

if both a& b are fixed points
1 if either a or b (not both) is fixed point
2 if neither a& b are fixed points

(B.9)

As mentioned in the paper, the S
(TF ,ψ)
ab in the untwisted sector vanishes,

because TF does not have fixed points.
We want to compute:

〈0, TF 〉α · 〈0, TF 〉β =
∑

Q

N
Q

〈0,TF 〉α〈0,TF 〉β
(Q) , (B.10)
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where

N
Q

〈0,TF 〉α〈0,TF 〉β
=
∑

N

S̃〈0,TF 〉αN S̃〈0,TF 〉βN S̃
† Q
N

S̃(0,0)N

. (B.11)

Consider Q to be diagonal, Q = (q, χ). Diagonal fields are never fixed
points of (TF , ψ), hence if the S(TF ,ψ) has at least one diagonal entry it
vanishes. Then we have:

N
(q,χ)

〈0,TF 〉α〈0,TF 〉β
=

∑

N

S̃〈0,TF 〉αN S̃〈0,TF 〉βN S̃
† (q,χ)
N

S̃(0,0)N

= (B.12)

=
∑

〈mn〉

S̃〈0,TF 〉α〈mn〉S̃〈0,TF 〉β〈mn〉S̃
† (q,χ)
〈mn〉

S̃(0,0)〈mn〉

+

+
∑

(p,φ)

S̃〈0,TF 〉α(p,φ)S̃〈0,TF 〉β(p,φ)S̃
† (q,χ)
(p,φ)

S̃(0,0)(p,φ)

+

+
1∑

γ=0

∑

(̂p,φ)γ

S̃
〈0,TF 〉α (̂p,φ)γ

S̃
〈0,TF 〉β (̂p,φ)γ

S̃
† (q,χ)

(̂p,φ)γ

S̃
(0,0)(̂p,φ)γ

.

Let us stress a few points here. First, the sum over 〈mn〉 is symbolic: we
must consider both the situations when 〈mn〉 is a fixed point of (TF , ψ) (in
which case it will carry an extra label 〈mn〉γ , with γ = 0 or 1) and when it is
just an orbit representative (in which case we should not include its partner
〈TFm, TFn〉 in the sum in order to avoid double counting).
Diagonal fields are always orbit representatives, while twisted fields are al-
ways fixed points. In principle, the S(TF ,ψ) matrix can appear in the sums

over 〈mn〉 and over (̂p, φ), but in practice it only appear in the latter, since
it vanishes for untwisted-untwisted entries. So the possible ambiguity might
play a role only in the last line. Hence let us have a closer look there. For
off-diagonal-twisted entries, the BHS S matrix is identically zero, so we can
replace S̃ with S(TF ,ψ), up to the overall constant. Using the ansatz (3.8),
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the contribution to the fusion rules from the last line is then

2
∑

(̂p, φ)

(̂p, φ) f.p. of S(TF ,ψ)

1
2
(−1)α+γAS0p · 1

2
(−1)β+γAS0p · C⋆ 1

2
e−ıπχS⋆pq

C 1
2
S0p

=

=
1

2
A2 C

⋆

C
(−1)α+β e−iπχ ·

∑

(̂p, φ)

(̂p, φ) f.p. of S(TF ,ψ)

S0pS
⋆
pq .

The sum over (̂p, φ) fixed points of S(TF ,ψ) can be computed using Corollary
1 in the Appendix of [27]. It contains the ψ dependence. What is relevant for
our discussion here is the prefactor: there is no ambiguity related to different
choices for the coefficients A and C, since changing A→ −A and/or C → −C
would not alter the result.

The full and exact calculation of the fusion rules after the S(TF ,ψ)-extension
is too lengthy to be repeated and we will not do it here. In particular, the
cases when Q is off-diagonal or twisted are not very relevant, since then the
fusion coefficients vanish identically, as one can check numerically. We simply
state the outcome of the complete calculation:

• For the (TF , 0)-extension:

〈0, TF 〉α · 〈0, TF 〉α = (0, 1) α = 0, 1

〈0, TF 〉α · 〈0, TF 〉β = (0, 0) α 6= β ; (B.13)

hence 〈0, TF 〉α is of order four, being (0, 1) · (0, 1) = (0, 0), so it cannot
be a supersymmetry current.

• For the (TF , 1)-extension:

〈0, TF 〉α · 〈0, TF 〉α = (0, 0) α = 0, 1

〈0, TF 〉α · 〈0, TF 〉β = (0, 1) α 6= β ; (B.14)

hence 〈0, TF 〉α is of order two, as a supersymmetry current should be.

Note that in both cases only a particular diagonal field contributes to the
fusion rules, namely the identity, as one could have expected because of the
order two of TF .
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